+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Реактивная мощность — это… Что такое Реактивная мощность?

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мгновенная электрическая мощность

Мгновенная электрическая мощность P (t), выделяющаяся на элементе электрической цепи — произведение мгновенных значений напряжения U (t) и силы тока I (t) на этом элементе:

 P = I \cdot U

Если элемент цепи — резистор c электрическим сопротивлением R, то

 P = I^2 \cdot R = \frac{U^2}{R}

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то среднюю мощность можно вычислить по формулам:

 P = I \cdot U = I^2 \cdot R = \frac{U^2}{R}

Мощность переменного тока

Активная мощность

Среднее за период Т значение мгновенной мощности называется активной мощностью: ~ P = \frac{1}{T} \int\limits_0^T p(t)dt . В цепях однофазного синусоидального тока P = U \cdot I \cdot cos \varphi , где U и I — действующие значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P = I^2 \cdot r =V^2 \cdot g. В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением P = S \cdot cos \varphi . Единица активной мощности — ватт (W, Вт). Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом активной мощности является мощность, поглощаемая нагрузкой.

Реактивная мощность

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока, равна произведению действующих значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = UI sin φ. Единица реактивной мощности — вольт-ампер реактивный (

var, вар). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: ~ Q = \sqrt{S^2 - P^2} . Реактивная мощность в электрических сетях вызывает дополнительные активные потери (на покрытие которых расходуется энергия на электростанциях) и потери напряжения (ухудшающие условия регулирования напряжения). В некоторых электрических установках реактивная мощность может быть значительно больше активной. Это приводит к появлению больших реактивных токов и вызывает перегрузку источников тока. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности. Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом реактивной мощности является мощность, отраженная от нагрузки.

Необходимо отметить, что величина sinφ для значений φ от 0 до плюс 90 ° является положительной величиной. Величина sinφ для значений φ от 0 до минус 90 ° является отрицательной величиной. В соответствии с формулой Q = UI sinφ реактивная мощность может быть отрицательной величиной. Но отрицательное значение мощности нагрузки характеризует нагрузку как генератор энергии. Активное, индуктивное, емкостное сопротивление не могут быть источниками постоянной энергии. Модуль величины Q = UI sinφ приблизительно описывает реальные процессы преобразования энергии в магнитных полях индуктивностей и в электрических полях емкостей. Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения. Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sinφ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

Полная мощность

Полная мощность — величина, равная произведению действующих значений периодического электрического тока в цепи I и напряжения U на её зажимах: S = U×I; связана с активной и реактивной мощностями соотношением: S = \sqrt{(P^2 + Q^2)}

, где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0). Единица полной электрической мощности — вольт-ампер (VA, ВА).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой: \stackrel{\longrightarrow}{S}=\stackrel{\longrightarrow}{P}+\stackrel{\longrightarrow}{Q}

Измерения

Литература

  • Бессонов Л. А. — Теоретические основы электротехники: Электрические цепи — М.: Высш. школа, 1978

Ссылки

См. также

Wikimedia Foundation. 2010.

dic.academic.ru

Реактивная мощность — это… Что такое Реактивная мощность?


Реактивная мощность
        величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока (См. Переменный ток). Р. м. Q равна произведению действующих значений напряжения U и тока /, умноженному на синус угла сдвига фаз (См. Сдвиг фаз) φ между ними: Q = UI sinφ. Измеряется в Варах. Р. м. связана с полной мощностью (См. Полная мощность) S и активной мощностью (См. Активная мощность) Р соотношением: Мощности коэффициента электрических установок осуществляется компенсация реактивной мощности (см. Компенсирующие устройства).

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Реактивная лампа
  • Реактивная сила

Смотреть что такое «Реактивная мощность» в других словарях:

  • реактивная мощность — Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника. [ГОСТ Р 52002 2003]… …   Справочник технического переводчика

  • РЕАКТИВНАЯ МОЩНОСТЬ — электр. мощность в цепи переменного тока, расходуемая на поддержание вызываемых переменным током периодических изменений: 1) магнитного поля при наличии в цепи индуктивности; 2) заряда конденсаторов при наличии конденсаторов и проводов (напр.… …   Технический железнодорожный словарь

  • РЕАКТИВНАЯ МОЩНОСТЬ

    — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока I и напряжения U на синус угла сдвига фаз между ними: Q =… …   Большой Энциклопедический словарь

  • РЕАКТИВНАЯ МОЩНОСТЬ — величина, характеризующая скорость обмена энергией между генератором переменного тока и магнитным (млн. электрическим) полем цепи, создаваемым электротехническими устройствами (индуктивностью и ёмкостью). Р. м. возникает в цепи при наличии сдвига …   Большая политехническая энциклопедия

  • Реактивная мощность — Электрическая мощность физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Содержание 1 Мгновенная электрическая мощность 2 Мощность постоянного тока …   Википедия

  • реактивная мощность — 3.1.5 реактивная мощность (вар): Реактивная мощность сигналов синусоидальной формы какой либо отдельной частоты в однофазной цепи, определяемая как произведение среднеквадратических значений тока и напряжения и синуса фазового угла между ними.… …   Словарь-справочник терминов нормативно-технической документации

  • реактивная мощность — reaktyvioji galia statusas T sritis Standartizacija ir metrologija apibrėžtis Menamoji kompleksinės galios dalis, skaičiuojama pagal formulę Q² = S² – P²; čia Q – reaktyvioji galia, S – pilnutinė galia, P – aktyvioji galia. Matavimo vienetas –… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • реактивная мощность — reaktyvioji galia statusas T sritis fizika atitikmenys: angl. reactive power; wattless power vok. Blindleistung, f; wattlose Leistung, f rus. безваттная мощность, f; реактивная мощность, f pranc. puissance déwatée, f; puissance réactive, f …   Fizikos terminų žodynas

  • реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока I и напряжения U на синус угла сдвига фаз между ними:… …   Энциклопедический словарь

  • реактивная мощность — reaktyvioji galia statusas T sritis automatika atitikmenys: angl. reactive power vok. Blindleistung, f; wattlose Leistung, f rus. реактивная мощность, f pranc. puissance réactive, f …   Automatikos terminų žodynas


dic.academic.ru

Реактивная мощность | Домашний электрик

Электрическая мощность — это сейчас для нас все. Мы живем на электричестве, мы его пьем, едим, им греемся, на нем ездим. Через него смотрим на целый мир, им общаемся, и уж как-то им начинаем и думать. Но мощность электрическая имеет некоторое лукавое измерение, с помощью которого способна от нас утекать.

Мощность бывает активная, а бывает полная. Спрашивается, полная чем? А вот, мол, тем, что нам служит на пользу, что делает нам полезную работу, но и… оказывается, это еще не все. Еще есть вторая составляющая, которая получается этаким довеском, и она просто сжигает энергию. Греет то что не надо, а нам от этого ни жарко, ни холодно.

Такая мощность называется реактивной. Но виноваты, как это ни странно, мы сами. Вернее, наша система выработки, передачи и потребления электроэнергии.

Мощность активная, реактивная и полная

Мы пользуемся электричеством с помощью сетей переменного тока. Напряжение у нас в сетях каждую секунду колеблется 50 раз от минимального значения до максимального. Это так получилось. Когда изобретали электрический генератор, который механическое движение преобразует в электричество, то оказалось, что perpetuum mobile, или, переведя с латинского, вечное движение, легче всего устроить по кругу. Изобрели когда-то колесо, и с тех пор знаем, что если его подвесить на оси, то можно вращать долго-долго, а оно будет оставаться все на том же месте — на оси.

Почему у нас в сети напряжение переменное

И электрический генератор имеет ось и нечто, на ней вращающееся. А в результате и получается электрическое напряжение. Только генератор состоит из двух частей: вращающейся, ротора, и неподвижной, статора. И обе они участвуют в выработке электроэнергии. А когда одна часть крутится около другой, то неизбежно точки поверхности вращающейся части то приближаются к точкам поверхности неподвижной, то от них отдаляются. И это совместное их положение с неизбежностью описывается только одной математической функцией — синусоидой. Синусоида есть проекция вращения по кругу на одну из геометрических осей. Но осей таких можно построить много. Обычно наши координаты друг другу перпендикулярны. И тогда при вращении по кругу некоторой точки на одной оси проекцией вращения будет синусоида, а по другой — косинусоида, или та же синусоида, только смещенная относительно первой на четверть поворота, или на 90°.

Вот нечто такое и представляет собой напряжение, которое доводит до нашей квартиры электрическая сеть.

Синусоида Синусоида

угол поворота здесь разбит не на 360 градусов,
а на 24 деления. То есть одно деление соответствует 15°
6 делений = 90°

Итак, напряжение в нашей сети синусоидальное с частотой 50 герц и амплитудой 220 вольт, потому что удобнее было делать генераторы, которые вырабатывают напряжение именно переменное.

Выгода от переменного напряжения — выгода системы

А чтобы сделать напряжение постоянным, надо специально его выпрямить. И это можно делать либо прямо в генераторе (специально сконструированном — тогда он станет генератором постоянного тока), либо когда-нибудь потом. Вот это «когда-нибудь» и получилось снова очень кстати, потому что переменное напряжение можно преобразовывать трансформатором — повышать или понижать. Это оказалось вторым удобством переменного напряжения. А повысив его трансформаторами до напряжений буквально ЗАПРЕДЕЛЬНЫХ (полмиллиона вольт и больше), можно передавать на гигантские расстояния по проводам без гигантских при этом потерь. И это тоже пришлось вполне кстати в нашей большой стране.

Вот, доведя, все-таки, напряжение до нашей квартиры, понизив его до хоть сколько-то мыслимой (хотя все еще и опасной) величины в 220 вольт, преобразовать его в постоянное опять забыли. Да и зачем? Лампочки горят, холодильник работает, телевизор показывает. Хотя в телевизоре этих постоянных/переменных напряжений… но, не будем тут еще и об этом.

Убытки от переменного напряжения

И вот мы пользуемся сетью переменного напряжения.

А в ней присутствует «плата за забывчивость» — реактивное сопротивление наших потребляющих сетей и их реактивная мощность. Реактивное сопротивление — это сопротивление переменному току. И мощность, которая просто-напросто уходит мимо наших потребляющих электроприборов.

Ток, идя по проводам, создает вокруг них электрическое поле. Электростатическое поле притягивает к себе заряды со всего, что источник поля, то есть ток, окружает. А изменение тока создает еще и поле электромагнитное, которое начинает бесконтактно наводить во всех проводниках вокруг электрические токи. Так, наша токовая синусоида, как только мы что-то у себя включаем, есть не просто ток, а непрерывное его изменение. Проводников вокруг хватает, начиная от металлических корпусов тех же электроприборов, металлических труб водоснабжения, отопления, канализации и кончая прутами арматуры в железобетонных стенах и перекрытиях. Вот во всем этом и наводится электричество. Даже вода в бачке унитаза, и та участвует во всеобщем веселье — в ней тоже индуцируются токи наводки. Такое электричество нам совсем не нужно, мы его «не заказывали». Но оно эти проводники пытается разогреть, а значит, уносит из нашей квартирной сети электроэнергию.

Получается, наша пространственная система прохождения тока у нас в квартире работает как большой трансформатор, и уходящая «в стены» энергия как раз и характеризуется реактивной частью этой мощности (индуктивная составляющая). А еще «мегасеть» работает и как большой конденсатор — вспомним электростатическую составляющую, — при этом статические заряды, наводимые во всем окружающем, заставляют заряды нашей электрической сети (а ток — это движение зарядов) реагировать на наведенные заряды вокруг — паразитную емкость. Это уже емкостная составляющая. «Конструкция» этой самой, охватившей нас со всех сторон паразитной невидимой сети просто неописуема. Мы же сами в ней участвуем — в наших телах и заряды накапливаются, и токи наводятся. Следовательно, вся эта паразитная реактивная нагрузка, ее сопротивление, мощность не могут поддаваться никакому расчету. Но вот мощность измеряется. А именно, как соотношение полезной мощности и полной.

Рассчитать или измерить мощность: полную, активную и реактивную

Чтобы охарактеризовать соотношение мощностей в сети нашего переменного тока, рисуют треугольник.

Треугольник мощностей в цепи переменного тока Треугольник мощностей в цепи переменного тока

S – полная мощность, расходуемая нашей сетью,
P – активная мощность, она же полезная активная нагрузка,
Q – мощность реактивная.

Мощность полную можно замерить ваттметром, а активная мощность получается расчетом нашей сети, в которой мы учитываем только полезные для нас нагрузки. Естественно, сопротивлением проводов мы пренебрегаем, считая их малыми относительно полезных сопротивлений электроприборов.

Полная мощность

S = U x I = Ua x If

А вот мощность паразитную, реактивную можно получить из данного треугольника по теореме Пифагора.

Q (реактивная мощность) тем больше, чем больше угол j  в треугольнике мощностей Q (реактивная мощность) тем больше, чем больше угол j в треугольнике мощностей

То есть, чем «тупее» этот острый угол, тем хуже у нас работает внутренняя квартирная потребляющая сеть — много энергии уходит в потери.

Что такое активная, реактивная и полная мощности

Угол j  можно еще назвать углом фазового сдвига между током и напряжением в нашей сети. Ток является результатом приложения к нашей сети исходного напряжения в 220 вольт частотой в 50 герц. Когда нагрузка активна, то фаза тока совпадает с фазой напряжения в ней. А реактивные нагрузки эту фазу сдвигают на этот угол.

Диаграмма тока и напряжения в сети переменного тока Диаграмма тока и напряжения в сети переменного тока

Собственно говоря, угол и характеризует степень эффективности нашего потребления энергии. И надо стараться его уменьшить. Тогда S будет приближаться к P.

Только удобнее оперировать не с углом, а с косинусом угла. Это как раз и есть соотношение двух мощностей:

Формула Формула

Косинус угла приближается к единице, когда угол приближается к нулю. То есть, чем острее угол j, тем лучше, эффективнее работает электрическая потребляющая сеть. На практике, если добиться величины косинуса фи (а его можно выразить в процентах) порядка 70–90%, то это уже считается неплохо.

Часто используется другое отношение, связывающее активную мощность и реактивную:

Еще формула Еще формула

Из диаграммы тока и напряжения можно найти выражения для мощностей: активной, реактивной и полной.

Диаграммы тока Диаграммы тока

Если более привычная нам активная мощность измеряется в ваттах, то полная мощность измеряется в вольт-амперах (вар). Ватт из вара можно посчитать умножением на косинус фи.

Что такое реактивная мощность

Реактивная мощность бывает индуктивная и емкостная. Они ведут себя в электрической цепи по-разному. На постоянном токе индуктивность — это просто кусок провода, имеющий какое-то очень малое сопротивление. А конденсатор на постоянном напряжении — просто разрыв в цепи.

И когда мы их включаем в цепь, подводим к ним напряжение, во время переходного процесса они ведут себя тоже прямо противоположно. Конденсатор заряжается, при этом возникающий ток сначала большой, потом, по мере зарядки, маленький, уменьшающийся до нуля.

В индуктивности, катушке с проводом, возникающее магнитное поле после включения в самом начале сильно препятствует прохождению тока, и он сначала маленький, потом увеличивается до своего стационарного значения, определяемого активными элементами схемы.

Конденсаторы, таким образом, способствуют изменению тока в цепи, а индуктивности препятствуют изменению тока.

Индуктивная и емкостная составляющие сопротивления сети

Таким образом, реактивные элементы имеют свои разновидности сопротивления — емкостное и индуктивное. С полным сопротивлением, включающим активную и реактивную составляющие, это связывается следующей формулой:

Z = R + jX

Z – полное сопротивление,

R – активное сопротивление,

X – реактивное сопротивление.

В свою очередь, реактивное сопротивление состоит из двух частей:

X = XL — XC

XL – индуктивной и XC – емкостной.

Отсюда мы видим, что вклад в реактивную составляющую у них разный.

Все, что в сети индуктивно, увеличивает реактивное сопротивление сети, все, что в сети имеет емкостной характер, уменьшает реактивное сопротивление.

На этом и строится возможность уменьшения паразитного, реактивного сопротивления.

Электроприборы, влияющие на качество потребления

Если бы все приборы у нас в сети были, как лампочки, то есть являлись чисто активной нагрузкой, проблем бы не было. Была бы активная потребляющая сеть, одна сплошная активная нагрузка, и, как говорится, в чистом поле — вокруг ничего, то все легко бы подсчитывалось по законам Ома и Кирхгофа, и было справедливо — сколько потребил, за столько и заплатил. Но вот имея и вокруг себя загадочную токопроводящую «инфраструктуру», и в самой сети множество неучтенных емкостей и индуктивностей, мы и получаем, кроме полезной нам, еще и реактивную, ненужную нам нагрузку.

Как от нее избавиться? Когда электрическая потребляющая сеть уже создана, то можно проводить мероприятия по уменьшению реактивной составляющей. Компенсация и строится на «антагонизме» индуктивностей и емкостей.

То есть, в сложившейся сети следует измерить ее составляющие, а потом придумать компенсацию.

Особенно хороший эффект от таких мероприятий достигается в больших потребляющих сетях. Например, на уровне заводского цеха, имеющего большое количество постоянно работающего оборудования. 

Для компенсации реактивной составляющей используются специальные компенсаторы реактивной мощности (КРМ), содержащие в своей конструкции конденсаторы, меняющие суммарный сдвиг фаз в сети в лучшую сторону.

Компенсатор реактивной мощности Компенсатор реактивной мощностиЕще один КРМ Еще один КРМОдин из видов КРМ Один из видов КРМЕсть и такие КРМ Есть и такие КРМ

Еще приветствуется использование в сетях синхронных двигателей переменного тока, так как они способны компенсировать реактивную мощность. Принцип простой: в сети они способны работать в режиме двигателя, а когда при сдвиге фаз наблюдается «завал» электроэнергии (других слов язык уже не находит), они способны компенсировать это, «подрабатывая» в сети в режиме генератора.

Похожие статьи:

domelectrik.ru

РЕАКТИВНАЯ МОЩНОСТЬ — это… Что такое РЕАКТИВНАЯ МОЩНОСТЬ?


РЕАКТИВНАЯ МОЩНОСТЬ
РЕАКТИВНАЯ МОЩНОСТЬ

электр. мощность в цепи переменного тока, расходуемая на поддержание вызываемых переменным током периодических изменений: 1) магнитного поля — при наличии в цепи индуктивности; 2) заряда конденсаторов — при наличии конденсаторов и проводов (напр. длинных кабелей), обладающих большой электр. емкостью. Характерным отличием Р. м. является то, что соответствующая ей энергия, переходя в энергию магнитного поля или в энергию конденсаторов, не может быть использована для преобразования в приемниках тока в полезную (с точки зрения использования энергии для практических целей) работу, напр. в механ. работу в электр. моторах, в световую энергию в лампах, в тепло в нагревательных приборах и т. п. В этом — отличие Р. м. от активной мощности, создающей работу электр. тока в приемниках. Р. м. измеряется в вольт-амперах или в киловольт-амперах.

Технический железнодорожный словарь. — М.: Государственное транспортное железнодорожное издательство. Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович, Т. С. Хачатуров. 1941.

.

  • РАСШИРЕНИЕ ПАРА
  • РЕАКТОР

Смотреть что такое «РЕАКТИВНАЯ МОЩНОСТЬ» в других словарях:

  • реактивная мощность — Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника. [ГОСТ Р 52002 2003]… …   Справочник технического переводчика

  • РЕАКТИВНАЯ МОЩНОСТЬ — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока I и напряжения U на синус угла сдвига фаз между ними: Q =… …   Большой Энциклопедический словарь

  • РЕАКТИВНАЯ МОЩНОСТЬ — величина, характеризующая скорость обмена энергией между генератором переменного тока и магнитным (млн. электрическим) полем цепи, создаваемым электротехническими устройствами (индуктивностью и ёмкостью). Р. м. возникает в цепи при наличии сдвига …   Большая политехническая энциклопедия

  • Реактивная мощность — Электрическая мощность физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Содержание 1 Мгновенная электрическая мощность 2 Мощность постоянного тока …   Википедия

  • реактивная мощность — 3.1.5 реактивная мощность (вар): Реактивная мощность сигналов синусоидальной формы какой либо отдельной частоты в однофазной цепи, определяемая как произведение среднеквадратических значений тока и напряжения и синуса фазового угла между ними.… …   Словарь-справочник терминов нормативно-технической документации

  • реактивная мощность — reaktyvioji galia statusas T sritis Standartizacija ir metrologija apibrėžtis Menamoji kompleksinės galios dalis, skaičiuojama pagal formulę Q² = S² – P²; čia Q – reaktyvioji galia, S – pilnutinė galia, P – aktyvioji galia. Matavimo vienetas –… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • реактивная мощность — reaktyvioji galia statusas T sritis fizika atitikmenys: angl. reactive power; wattless power vok. Blindleistung, f; wattlose Leistung, f rus. безваттная мощность, f; реактивная мощность, f pranc. puissance déwatée, f; puissance réactive, f …   Fizikos terminų žodynas

  • реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока I и напряжения U на синус угла сдвига фаз между ними:… …   Энциклопедический словарь

  • реактивная мощность — reaktyvioji galia statusas T sritis automatika atitikmenys: angl. reactive power vok. Blindleistung, f; wattlose Leistung, f rus. реактивная мощность, f pranc. puissance réactive, f …   Automatikos terminų žodynas

  • Реактивная мощность —         величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока (См. Переменный ток). Р. м. Q равна произведению действующих значений напряжения U и тока… …   Большая советская энциклопедия


dic.academic.ru

Реактивная мощность в электрической сети и способы ее компенсации

Реактивная мощность,  преимущества ее компенсации.

 

 

Реактивная мощность – это паразитная мощность, приводящая к потерям на нагрев и излучение в электрических сетях. За счет внедрения автоматических конденсаторных и дроссельных установок можно добиться снижения энергопотребления до 40%.

 

Реактивная мощность в электрической сети

Способы компенсации реактивной мощности

Преимущества автоматических установок компенсации реактивной мощности

 

Реактивная мощность в электрической сети:

Понятие электрической мощности описывается скоростью, с которой генерируется, передается либо потребляется электроэнергия за определенный период. С ее ростом увеличивается и работа, совершаемая электроустановкой.

Полная мощность (S) в цепях переменного тока имеет активную (P) и реактивную (Q) составляющую. При первой (полезной) током совершается эффективная работа, вторая (паразитная) – ничего не выполняет, но разогревает провода и излучается в окружающее пространство.

Формула взаимосвязи мощностей может быть представлена в виде треугольника мощностей:

треугольник мощностей

S2 = P2 + Q2

Где S измеряется в Вольт-амперах (ВА), P – в Ваттах (Вт), а Q – в Вольт амперах реактивных (Вар).

Для работы и синхронизации генераторных установок, вырабатывающих и передающих ток в линию, используются реактивные нагрузки (катушки либо конденсаторы). Но они сдвигают фазу тока на опережение либо отставание от напряжения. То же делают реактивные нагрузки на предприятиях-потребителях электричества. Этот угол между фазами принимают, как косинус фи (cos φ = P/S) и измеряют при помощи фазометра. В результате возникает реактивная составляющая мощности, способствующая появлению электромагнитных полей, поддерживающих функциональность оборудования. Она же способствует и перегрузкам электроподстанций, увеличению сечений передающих линий, снижению сетевого напряжения, так как все сети нагружаются полной мощностью без учета, что ее реактивная составляющая не выполняет полезной работы.

Реактивная мощность может и должна компенсироваться, за счет чего повышается эффективность работы сетей и улучшается качество транспортируемой энергии.

 

Способы компенсации двух видов реактивной мощности:

Индуктивная нагрузка (фазовое опережение тока относительно напряжения) компенсируется конденсаторами или синхронными двигателями.

Емкостная нагрузка (фазовое отставание тока относительно напряжения) компенсируется дросселями или реакторами.

Полностью выровнять фазы между током и напряжением невозможно, но, даже повысив cos φ с обычных 0,5-0,6 до 0,95-0,97, можно добиться экономического эффекта в 45-50%.

 

Преимущества автоматических установок компенсации реактивной мощности:

За счет внедрения автоматических конденсаторных и дроссельных установок на проектируемые и модернизируемые объекты можно добиться следующих результатов:

– снижение уровня энергопотребления до 40%,

уменьшение нагрузки на силовых трансформаторах, что сказывается на долговечности их эксплуатации,

– уменьшение нагрузки на кабельные и проводные линии, что позволит использовать провода с меньшим сечением,

убрать лишние наводки и гармоники в питающих электросетях, улучшить качество транспортируемого по ним электричества,

– стоимость компенсирующего оборудования и его монтажа может окупиться в течение полгода – года, а использовать полученные преимущества можно будет несколько десятилетий.

 

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 

треугольник мощностейтреугольник мощностейтреугольник мощностейтреугольник мощностей

карта сайта

 

Коэффициент востребованности 413

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Что такое реактивная мощность и её компенсация

17.08.2017

Что такое реактивная мощность и что с ней делать.

Асинхронные двигатели, трансформаторы, газоразрядные и люминесцентные лампы, индукционные и дуговые печи и т.д. в силу своих физических свойств вместе с активной энергией потребляют из сети также и реактивную энергию, которая необходима для создания электромагнитного поля. В отличие от активной энергии, реактивная не преобразуется в другие виды – механическую или тепловую – и не выполняет полезной работы, однако вызывает потери при ее передаче. На Рис.1 изображены направления протекания тока при работе с реактивными нагрузками.

Тепловой компонент = полезная работа, циркулирующий компонент работы не совершает

Рис.1. Полная мощность.

Наличие в сети реактивной мощности (Q, Вар) характеризуется коэффициентом мощности (PF, cos ф) и является соотношением активной (P, Вт) к полной (S, ВА). Ниже можно увидеть зависимость полной мощности от ее составляющих как на векторной диаграмме, так и на более житейском уровне – бокале пива, где пиво является активной составляющей, а пена – реактивной. Никто же не хочет иметь бокал только с пеной?

Что такое коэффициент мощности?

Рис.2. Треугольник мощностей. Расчет коэффициента мощности.

При низких значениях коэффициента мощности в сети будет возникать ряд нежелательных явлений, которые могут привести к существенному уменьшению срока службы оборудования. Рекомендуется иметь cos ф не менее 0,9 (например, в Чехии за cos ф менее 0,95 штрафуют). Для этого разработан ряд мероприятий по регулированию баланса реактивной мощности в сети – компенсация реактивной мощности.

Компенсация реактивной мощности (КРМ).

Следует понимать, что реактивная мощность бывает двух характеров – индуктивная и емкостная. Нас интересует компенсация только первого типа, т.к. второй встречается редко. В нашем случае – сетях с индуктивной нагрузкой – для увеличения cos ф требуется устанавливать компенсационные конденсаторы. Но как это сделать?

Выбор способа компенсации предполагает определение места установки конденсаторов (зачастую в составе конденсаторной установки (далее КУ)). Существует три основных варианта:

  • Индивидуальная компенсация

Размещение конденсаторов у устройств с низким cos ф и включение одновременно с последними.

  • Групповая компенсация

Размещение конденсаторов у группы устройств (например, пожарных насосов).

  • Централизованная компенсация

Предусматривает установку КУ на главном распределительном щите. Если предыдущие варианты могли быть как регулируемыми, так и нет, то этот, как правило, регулируемый.

Способы компенсации реактивной мощности

Рис.3. Способы компенсации.

При правильном подборе КУ мероприятия по компенсации реактивной мощности позволяют:

  • существенно уменьшить нагрузку на трансформаторах, а следовательно уменьшить их нагрев и увеличить срок службы

  • при включении КУ в расчет при проектировании новых объектов, существенно уменьшить сечение проводников

  • при включении КУ в уже существующие сети, разгрузить их, повышая пропускную способность без реконструкции

  • снизить расходы на электроэнергию за счет снижения потери в проводниках

  • повысить стабильность напряжения (все) и качество электроэнергии (при использовании ФКУ)

Где мы можем сэкономить видно невооруженным глазом, но для начала придется и потратиться.

Во-первых, необходимо заказать проект, который следует доверить проверенной организации. Которая в свою очередь проведет ряд измерений или сделает расчеты для новых объектов и исходя из них даст рекомендации по способу компенсации, типу КУ и их параметрам.

Во-вторых, следует выбрать организацию-сборщика, которая соберет, установит и настроит наши КУ.

Схема конденсаторной установки Что может входить в состав КУ?

Рассмотрим максимально возможную комплектацию конденсаторной установки:

  1. Вводное устройство – автоматический выключатель, разъединитель предохранительный или выключатель нагрузки (при наличии еще одного вводного устройства, например, в ГРЩ).

  2. Защитные устройства ступеней – большинство производителей (например, ZEZ Silko) рекомендуют использовать плавкие вставки с характеристикой gG (см. таблицу ниже), но нередко можно встретить и защиту автоматическими выключателями.

  3. Коммутационное устройство (для статической компенсации НН) – контактор с токоограничевающей приставкой (контакты предварительного включения с сопротивлениями). Важно выбрать качественного производителя, т.к. через контактор при включении ступени проходят огромные токи (до 200Iе), обусловленные зарядом конденсатора, например, Benedict-Jager или Eaton (Moeller).

  4. Антирезонансные дроссели (реакторы) – используются для защиты от перегрузки токами конденсаторов при наличии в сети высших гармоник.

  5. Компенсационные конденсаторы – главный компонент всей установки – емкостной элемент. Читать подробнее о применении, конструкции и монтаже низковольтных цилиндрических компенсационных конденсаторов в предыдущей статье.

  6. Регулятор реактивной мощности – своего рода анализатор сети с функцией управления ступенями. В зависимости от модели разные регуляторы кроме основных параметров (U, I, P, cos ф, количество подключенных ступеней) контролируют и ряд дополнительных (нелинейные искажения, температура и т.д). Также могу быть и дополнительные функции, например, коммуникация или автонастройка.

* Рассмотрена только основная комплектация без оболочек и микроклимата, защиты вторичных цепей.

Номинальный ток 3-фазного конденсатора

[A]

3-фазн. компенсационная мощность при 400 V

[kvar]

Рекомендуемое сечение Cu проводников

[mm2]

Номинальный ток предохранителя

[A]

2,9

2

2,5

8

3,6

2,5

2,5

8

4,5

3,15

2,5

10

5,8

4

2,5

10

7,2

5

2,5

16

9

6,25

2,5

16

11,5

8

4

20

14,4

10

4

25

18,1

12,5

6

32

21,7

15

6

40

28,8

20

10

50

36,1

25

10

63

43,4

30

16

80

50,5

35

16

100

57,7

40

25

100

72,2

50

25

125

86,6

60

35

160

115,5

80

70

200

144,3

100

95

250

Таблица 1. Подбор предохранителей и проводников.

В заключение хочется напомнить, что неверно спроектированные, собранные и настроенные компенсационные установки или из материалов сомнительного происхождения имеют обыкновение громко выходить из строя.


Коммерческое предложение действительно на 08.12.2019 г.

lsys.by

О природе реактивной энергии / Habr

Вокруг реактивной энергии сложилось немало легенд, активно способствовала развитию околонаучного фольклора любовь нашего человека к халяве и разнообразным теориям глобального заговора.

В рунете можно найти множество success story о том как простой мужичок из глубинки годами эксплуатирует халявную реактивную энергию (которую бытовой счетчик электроэнергии не регистрирует) и живет себе, не зная бед. Так же можно найти заметки людей, призывающих бросить бесполезное занятие поиска источника халявы в халявной реактивной энергии. Для того чтобы окончательно раставить точки над ‘i’ в этом вопросе, я решил написать этот пост, не мудрствуя лукаво.

Как известно, потребляемая от источника переменного тока энергия складывается из двух составляющих:

  1. Активной энергии
  2. Реактивной энергии

1. Активная энергия — та часть потребляемой энергии, которая целиком и безвозвратно преобразуется приемником в другие виды энергии.

Пример: Протекая через резистор, ток совершает активную работу, что выражается в увеличении тепловой энергии резистора. Вне зависимости от фазы протекающего тока, резистор преобразует его энергию в тепловую. Резистору не важно в каком направлении течет по нему ток, важна лишь его величина: чем он больше, тем больше тепла высвободится на резисторе (количество выделенного тепла равно произведению квадрата тока и сопротивления резистора).

2. Реактивная энергия — та часть потребляемой энергии, которая в следующую четверть периода будет целиком отдана обратно источнику.

Пример: Представим себе, что к источнику переменного тока подключен конденсатор. Начальный заряд на обкладках конденсатора равен нулю, начальная фаза напряжения источника так же равна нулю. Одно полное колебание состоит из четырех четвертьпериодов:

  1. Напряжение источника растет от 0 до максимального мгновенного значения (при действующем значении U источника 230V оно равно 230 * 1,4142 = 325V) При этом конденсатор потребляет ток, необходимый для его полного заряда
  2. Напряжение источника стремительно уменьшается (движется к нулю), при этом, напряжение на заряженном конденсаторе оказывается выше чем на источнике, что вызывает течение тока в обратную сторону (ведь ток течет от большего потенциала к меньшему), то есть конденсатор разряжается, отдавая накопленную энергию обратно источнику!
  3. Для следующих двух четвертьпериодов вышеописанная история повторяется с тем лишь различием, что токи заряда и разряда емкости потекут в противоположных направлениях.

    В случае включения вместо конденсатора катушки индуктивности, суть процесса не изменится.

    В этом и состоит главный фокус реактивной энергии — в момент ‘прилива’ мы заполняем свои цистерны, в момент отлива же, мы сливаем их содержимое обратно. Как можно заметить из этой простой аналогии, мы просто туда-сюда переливаем жидкость (или ток в электроцепях). Если же мы соблазнимся слить хоть немного жидкости ‘налево’ (включить последовательно с реактивным конденсатором активный резистор), то мы станем брать ‘несколько больше’ чем возвращать, а это ‘несколько больше’ уже является активной энергией по определению (ведь мы эту часть не возвращаем обратно, не так ли?), за которую как известно, приходится платить.

    Или иной пример: предположим, что мы берем у кредитора некоторую сумму денег взаймы и сразу же возвращаем ему взятый только что кредит. Если мы отдадим ровно столько, сколько взяли (чистая реактивность) — мы придем к исходному состоянию и никто никому не будет ничего должен. В случае же, если мы потратим часть кредита на какую ни будь покупку и вернем то, что осталось от кредита после совершения покупки (добавим в цепь активную нагрузку и часть энергии уйдет из системы) — мы будем все еще должны. Эта потраченная часть является активной составляющей взятого нами кредита.

    Теперь у вас может возникнуть один весьма резонный вопрос — если все так просто, и для того чтобы энергия считалась реактивной, ее просто нужно полностью вернуть обратно источнику, почему предприятия вынуждены платить за потребляемую (и полностью возвращаемую) реактивную энергию?

    Все дело в том, что в случае чисто реактивной нагрузки, момент максимально потребляемого тока (реактивного) приходится на момент минимального значения напряжения, и наоборот, в момент максимума напряжения на клеммах нагрузки, протекающий через нее ток равен нулю.

    Протекающий реактивный ток греет питающие проводники — но это активные потери, вызванные протеканием реактивного тока по проводникам с ограниченной проводимостью, что эквивалентно последовательно включенным с реактивной нагрузкой активным резистором. Так же, поскольку в момент максимума реактивного тока напряжение на полюсах реактивного элемента переходит через ноль, активная мощность подводимая к нему в этот момент (произведение тока и напряжения) равна нулю. Вывод — реактивный ток вызывает нагрев проводов, не совершая при этом никакой полезной работы. Следует заметить, что эти потери так-же является активными и будут засчитываться бытовым счетчиком активной энергии.

    Большие предприятия сопсобны генерировать достаточно большие реактивные токи, которые отрицательно сказываются на функционировании энергосистемы. По этой причине, для них проводится учет как активной, так и реактивной составляющей потребленной энергии. Для уменьшения генерации реактивных токов (вызывающих вполне реальные активные потери), на предприятиях размещают установки компенсации реактивной мощности.

habr.com

Разное

Добавить комментарий

Ваш адрес email не будет опубликован.