+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Резонанс — это… Что такое Резонанс?

Эффект резонанса для разных частот внешнего воздействия и коэффициентов затухания

Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность. Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн.[1][2]

Механика

Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:

,

где g это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна, и включает эллиптический интеграл). Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).

Резонансные явления могут вызвать необратимые разрушения в различных механических системах.

В основе работы механических резонаторов лежит преобразование потенциальной энергии в кинетическую. В случае простого маятника, вся его энергия содержится в потенциальной форме, когда он неподвижен и находится в верхних точках траектории, а при прохождении нижней точки на максимальной скорости, она преобразуется в кинетическую. Потенциальная энергия пропорциональна массе маятника и высоте подъёма относительно нижней точки, кинетическая — массе и квадрату скорости в точке измерения.

Другие механические системы могут использовать запас потенциальной энергии в различных формах. Например, пружина запасает энергию сжатия, которая, фактически, является энергией связи её атомов.

Струна

Струны таких инструментов, как лютня, гитара, скрипка или пианино, имеют основную резонансную частоту, напрямую зависящую от длины, массы и силы натяжения струны. Длина волны первого резонанса струны равна её удвоенной длине. При этом, его частота зависит от скорости

v, с которой волна распространяется по струне:

где L — длина струны (в случае, если она закреплена с обоих концов). Скорость распространения волны по струне зависит от её натяжения T и массы на единицу длины ρ:

Таким образом, частота главного резонанса зависит от свойств струны и выражается следующим отношением:

,

где T — сила натяжения, ρ — масса единицы длины струны, а m — полная масса струны.

Увеличение натяжения струны и уменьшение её массы (толщины) и длины увеличивает её резонансную частоту. Помимо основного резонанса, струны также имеют резонансы на высших гармониках основной частоты f, например, 2f, 3f, 4f, и т. д. Если струне придать колебание коротким воздействием (щипком пальцев или ударом молоточка), струна начнёт колебания на всех частотах, присутствующих в воздействующем импульсе (теоретически, короткий импульс содержит

все частоты). Однако частоты, не совпадающие с резонансными, быстро затухнут, и мы услышим только гармонические колебания, которые и воспринимаются как музыкальные ноты.

Электроника

В электронных устройствах резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.

Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно, так и параллельно. При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.

Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения

,

где  ; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах. Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы.

СВЧ

В СВЧ электронике широко используются объёмные резонаторы, чаще всего цилиндрической или тороидальной геометрии с размерами порядка длины волны, в которых возможны добротные колебания электромагнитного поля на отдельных частотах, определяемых граничными условиями. Наивысшей добротностью обладают сверхпроводящие резонаторы, стенки которых изготовлены из сверхпроводника и диэлектрические резонаторы с модами шепчущей галереи.

Оптика

В оптическом диапазоне самым распространенным типом резонатора является резонатор Фабри-Перо, образованный парой зеркал, между которыми в резонансе устанавливается стоячая волна. Применяются также кольцевые резонаторы с бегущей волной и оптические микрорезонаторы с модами шепчущей галереи.

Акустика

Резонанс — один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы, например, струны и корпус скрипки, трубка у флейты, корпус у барабанов.

Астрофизика

Орбитальный резонанс в небесной механике — это ситуация, при которой два (или более) небесных тела имеют периоды обращения, которые относятся как небольшие натуральные числа. В результате эти небесные тела оказывают регулярное гравитационное влияние друг на друга, которое может стабилизировать их орбиты.

Резонансный метод разрушения льда

Известно, что при движении нагрузки по ледяному покрову развивается система изгибных гравитационных волн (ИГВ). Это сочетание изгибных колебаний пластины льда и связанных с ними гравитационных волн в воде. Когда скорость нагрузки близка к минимальной фазовой скорости от ИГВ, вода прекращает поддержку ледяного покрова и поддержка осуществляется только упругими свойствами льда. Амплитуда ИГВ резко возрастает, и с достаточной нагрузкой, начинается разрушения. Потребляемая мощность в несколько раз ниже (в зависимости от толщины льда) по сравнению с ледоколами и ледокольными навесными оборудованиями. Этот метод разрушения льда известен как резонансный метод разрушения льда[3][4] Ученый Козин, Виктор Михайлович получил экспериментальные теоретические кривые, которые показывают возможности своего метода[5].

Примечания

См. также

Литература

  • Richardson LF (1922), Weather prediction by numerical process, Cambridge.
  • Bretherton FP (1964), Resonant interactions between waves. J. Fluid Mech., 20, 457—472.
  • Бломберген Н. Нелинейная оптика, М.: Мир, 1965. — 424 с.
  • Захаров В. Е. (1974), Гамильтонов формализм для волн в нелинейных средах с дисперсией, Изв. вузов СССР. Радиофизика, 17(4), 431—453.
  • Арнольд В. И. Потеря устойчивости автоколебаний вблизи резонансов, Нелинейные волны / Ред. А. В. Гапонов-Грехов. — М.: Наука, 1979. С. 116—131.
  • Kaup PJ, Reiman A and Bers A (1979), Space-time evolution of nonlinear three-wave interactions. Interactions in a homogeneous medium, Rev. of Modern Phys, 51(2), 275—309.
  • Haken H (1983), Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and devices, Berlin, Springer-Verlag.
  • Филлипс O.М. Взаимодействие волн. Эволюция идей, Современная гидродинамика. Успехи и проблемы. — М.: Мир, 1984. — С. 297—314.
  • Журавлёв В. Ф., Климов Д. М. Прикладные методы в теории колебаний. — М.: Наука, 1988.
  • Сухоруков А.П Нелинейные волновые взаимодействия в оптике и радиофизике. — М.: Наука, 1988. — 232 с.
  • Брюно А. Д. Ограниченная задача трёх тел. — М.: Наука, 1990.

Ссылки

dic.academic.ru

25. Вынужденные колебания. Явление резонанса. Резонансные кривые.

Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Второй закон Ньютона для такого осциллятора запишется в виде: . Если ввести обозначения:и заменить ускорение на вторую производную от координаты по времени, то получим следующее дифференциальное уравнение:

Решением этого уравнения будет сумма общего решения однородного уравнения и частного решения неоднородного. Общее решение однородного уравнения было уже получено здесь и оно имеет вид:

где A,φ произвольные постоянные, которые определяются из начальных условий.

Найдём частное решение. Для этого подставим в уравнение решение вида: и получим значение для константы:

Тогда окончательное решение запишется в виде:

Резонаìнс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы.

Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы.

Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:

где g это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс

Резонансные явления могут вызвать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 — разрушился Такомский мост в США. Чтобы предотвратить такие повреждения существует правило, заставляющее строй солдат сбивать шаг при прохождении мостов.

Резонансная кривая колебательного контура Резонансная кривая колебательного контура: w0 — частота собственных колебаний; W — частота вынужденных колебаний; DW — полоса частот вблизи w0, на границах которой амплитуда колебаний V = 0,7 Vmakc. Пунктир — резонансная кривая двух связанных контуров.

26. Основные понятия и исходные положения положения термодинамики. Обратимые и необратимые процессы. Круговые процессы (циклы).

Термодинамика — раздел физики, изучающий соотношения и превращения теплоты и других форм энергии

Перечень начал термодинамики

Первое начало термодинамики представляет собой закон сохранения энергии в применении к термодинамическим системам.( Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил)

ΔU = QA

Второе начало термодинамики накладывает ограничения на направление термодинамических процессов, запрещая самопроизвольную передачу тепла от менее нагретых тел к более нагретым. Также формулируется как закон возрастания энтропии. dS≥0 (Неравенство Клаузиуса)

Третье начало термодинамики говорит о том, как энтропия ведет себя вблизи абсолютного нуля температур.

Обратимый процесс (то есть равновесный) — термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Обратимые процессы дают наибольшую работу. Боìльшую работу от системы вообще получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

Необратимым называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы. Примеры необратимых процессов: диффузия, теплопроводность и др.

Термодинамиìческие циìклы — круговые процессы в термодинамике, то есть такие процессы, в которых начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура, энтропия) совпадают.

Термодинамические циклы являются моделями процессов, происходящих в реальных тепловых машинах для превращения тепла в механическую работу. Единственным обратимым циклом для машины, в которой передача тепла осуществляется только между рабочим телом, нагревателем и холодильником, является Цикл Карно. Существуют также другие циклы (например, циклы Стирлинга и Эрикссона), в которых обратимость достигается путём введения дополнительного теплового резервуара — регенератора

studfiles.net

Эмоциональный резонанс | ЭМПАТИЯ

Явление резонанса колебательных систем известно всем еще из школьного курса
по физике. Возьмем для примера два камертона. Возбудим один камертон на частоте в 500 Гц и поднесем его к другому камертону с такой же собственной частотой в 500 Гц. Что же произойдет? Он – зазвучит. С таким же успехом резонанс взаимодействия, может быть, применим и ко всему живому на Земле – это человек, животное, растительный мир.

Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность. Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн.

(Материал из Википедии — свободной энциклопедии)

Резонанс  — это основной способ передачи эмоций от человека к человеку.

Так описан резонанс в Википедии. Зачем эмпату или экстрасенсу знать о резонансе? Для экстрасенса, работающего с потоками энергии, чувствами, эмоциями, это явление можно использовать как инструмент. Резонанс — это физическое явление, оно также влияет на чувства, эмоции и другие биоэнергетические проявления как, к примеру, на звук. Звук — это тоже своего рода поле, вернее его вибрация, она заполняет собой всё вокруг, куда сможет проникнуть. Чувства и эмоции — это обычное поле и подчиняются физическим законам.

К примеру, чтобы усилить чувство-эмоцию достаточно найти ещё одного человека с подобной эмоцией или возбудить её в другом человеке. Чем больше людей находятся вместе в одной эмоции, тем она становится сильней. Если наращивать количество людей с одной эмоцией, то она, в какой то момент поглотит личности людей, и люди теряют над собой контроль. Толпа болельщиков на стадионе, митинги, просто собрания единомышленников, религиозные служения — вот несколько примеров эффекта резонанса в эмоциональном плане.

Чем опасно телевидение в этом плане.

Выше я писал:- чем больше людей находятся вместе в одной эмоции, тем она становится сильней. А теперь представьте, идёт какая нибудь передача, или художественный фильм не оставляющие людей равнодушными. Это та же самая групповая медитация, то-есть имеет огромную силу влияющую на общее сознание людей города, страны, планеты. Всё зависит от того, сколько людей смотрит данный продукт.  Если по телевидению осуждают кого то или что то не важно заслуженно или нет, и все телезрители испытывают негодование, то тому о ком идёт речь не будет ни чего хорошего.

Но если к примеру идёт художественный фильм, там чаще всего персонажи вымышленные, то-есть особо расстраиваться нечего, вреда ни кому нет. Но не так всё просто. Если человеком переживаются негативные эмоции, то он разрушает сам себя, а представьте что будет если учесть резонанс от всех телезрителей в этот момент. Для подобных вещей расстояние не помеха. Это получается групповая медитация на самоуничтожение. По этому если смотреть по телевидению передачи или фильмы, то только вызывающие позитив. Но и тут не всё просто, та энергия которая выделяется человеком, она не остаётся ему лично, она забирается определёнными эгрегорами.

Проведите эксперимент, или просто вспомните, если что то подобное в жизни с вами уже случалось. Посмотрите фильм по одному из центральных каналов, в пиковое время когда много людей смотрит телевизор а через какое то время посмотрите тот же фильм в интернете или просто с диска, так сказать в одиночестве и обратите внимание что эмоции когда вы смотрите в одиночестве с DVD гораздо мене яркие, чем при просмотре по центральному каналу телевидения когда одновременно с вами смотрят этот фильм тысячи человек.

Проявления резонанса в бытовом плане.

Если вы думаете, что в жизни вам может не встретиться резонанс, потому что вы не болельщик и вообще избегаете сборищ людей, вы ошибаетесь.

Несколько примеров.

  • Дружба. Друг, подруга — это резонанс уровня сознаний, интересов.
  • Любовь. Влюблённость — резонанс чувств, внешнего и внутреннего соответствия вашим идеалам обеих участников.
  • Влюблённость односторонняя безответная. Это тоже резонанс, но резонанс уже не с человеком, а с образом человека, созданным собственным умом. А объект влюблённости просто похож на образ, живущий в подсознании влюблённого.
  • Обсуждение. Резонанс совпавших взглядов, мнений на событие, вещь, человека.
  • Сочувствие, сострадание. Со-настройка с человеком, осознанное вхождение с человеком в резонанс. Это действие происходит намеренно или по привычке, на автомате, если на ваш взгляд эти проявления являются правильными.
  • Обида, злость. Это сильные эмоциональные взрывы. Большинство людей легко входят в эти эмоции, практически моментально, так как они для нашего низко-вибрационного мира являются обычными, естественными.
  • Страх. Групповой страх — это также любимое занятие многих людей. Серьёзность — это скрытое проявление страха, эта игра одна из любимых людьми.

У вас есть выбор — не резонировать.

Не резонировать — значит оставаться нейтральным по отношению к эмоции, мировоззрению, убеждению, разделяемой группой людей. Человек, понимающий и узнающий явление резонанса, может усилием воли или, используя выбор, не участвовать в резонансе. Для экстрасенсов и особенно для эмпатов это очень важное понимание. Да, усиленная эмоция, во много раз будет ослепительней, это неприятно, но, осознавая, что вы можете не резонировать, можно не терять разум. Просто относиться к резонирующим людям как к опьяненным. Сами понимаете, что опьяненный человек не совсем адекватен, нужно просто подождать, когда человек протрезвеет, и тогда он станет нормальным.

В энергетических практиках часто используют резонанс в групповых медитациях. Да, групповая медитация дает значительно больший эффект, чем медитация в одиночестве, при условии, что все участники примерно одного уровня и духовного настроя. Но нужно не забывать, что любое эмоциональное, энергетическое излучение, особенно сильное, резонансное включает закон кармического уравновешивания. Это может выглядеть как эмоциональный взрыв, чаще проявляется в негативных эмоциях у большинства участников групповой медитации. Обычно это происходит на следующий день, хотя может наступить и через несколько часов. Некоторые это явление называют чисткой. Но это всего-лишь плата за искажения, внесенные в пространство мироздания во время медитации. Чистка проходила во время медитации, за счёт усиления энергетических потоков.

Зная о резонансе, можно сглаживать и даже избегать многих эмоциональных перегрузок, стрессов.  Резонанс – это инструмент, хотя его и не возьмешь в руки. Но если не учитывать влияние резонанса, тогда резонанс будет управлять тобой.

автор статьи Игорь Ваганов

Статьи на эту тему.
Резонансно-полевая теория распространения эмоций

xn--80aqkmq6dta.com

Резонанс токов — описание явления и области применения

Резонанс токов, хорошо известный как естественный токовый «параллельный резонанс» — процесс или явление, которое протекает в условиях параллельного типа колебательного контура и наличия напряжения.

В данном случае частота источника напряжения должна иметь совпадение с аналогичными резонансными показателями контура.

Что такое резонанс?

Токовым резонансом называется особый вид состояния цепи, когда общие токовые показатели совпадают по фазным параметрам с уровнем напряжения, а реактивная мощность равняется нулю и цепью потребляется исключительно активная мощность.

Данный вариант является характерным преимущественно для схем с переменными показателями токовых величин и обладает не только положительными свойствами, но и некоторыми совершенно нежелательными качествами, которые в обязательном порядке учитываются еще в процессе проектирования.

Положительное резонансное действие — явление из области радиотехники, автоматики и проволочной телефонии. Резонанс напряжений относится к категории нежелательных явлений, обусловленных перенапряжениями. При этом добротным электрическим контуром принято считать величину:

Достижение токового резонанса осуществляется подбором необходимого индуктивного или емкостного значения, а также показателей частотности питающих сетей.

Токовый резонанс получается подбором параметров электроцепи в условиях заданной частоты источника питания, а также посредством выбора обратных показателей.

Применение токового резонанса

Основная область активного применения широко востребованных резонансных токов сегодня представлена:

  • некоторыми видами фильтрующих систем, в которых току с определенными частотными параметрами оказываются значительные показатели сопротивления;
  • радиотехникой в виде приемников, выделяющих сигналы, предназначенные для конкретных точек радиостанций. Оказание значительного сопротивления току сопровождается снижением показателей контурного напряжения при максимальной частоте;
  • асинхронного типа двигателями, в особенности функционирующими в условиях неполной нагрузки;
  • установками высокоточной электрической сварки;
  • колебательными контурами внутри узлов генераторов электронного типа;
  • приборами, отличающимися высокочастотной закалкой;
  • снижением показателей генераторной нагрузки. При таких условиях в приемном трансформаторе с первичной обмоткой делается колебательный контур.

Схема цепи

Особенно часто колебательные контуры или токовые резонансы применяются в производстве современного промышленного индукционного котлового оборудования, что позволяет в значительной степени улучшить стартовые показатели коэффициента полезного действия.

Стандартные колебательные контуры, функционирующие в условиях режима токового резонанса, массово применяются в качестве одного из наиболее важных узлов в современных электронных генераторах.

Принцип резонанса токов

Токовый резонанс наблюдается внутри электроцепи, обладающей параллельным катушечным, резисторным и конденсаторным подсоединением. Основной принцип работы стандартного резонанса токов не слишком сложен для понимания простого обывателя:

  • включение электропитания сопровождается накоплением заряда внутри конденсатора до номинальных показателей напряжения источника;
  • отключение питающего источника с последующим замыканием цепи в контур сопровождается процессом переноса разряда на катушечную часть прибора;
  • токовые показатели, проходящие по катушке, вызывают генерирование магнитного поля и создание электродвижущей силы самоиндукции, в направлении, встречном току;
  • максимальное значение токовых показателей достигается на стадии полного конденсаторного разряда;
  • весь объем накопленной энергетической емкости легко преобразуется в магнитное индукционное поле;
  • катушечная самоиндукция не провоцирует остановку заряженных частиц, а повторный этап зарядки с другим типом полярности обусловлен отсутствием конденсаторного противотока.

Резонанс в параллельной цепи (резонанс токов)

Итогом данного цикла является повторяющееся преобразование всего катушечного поля в конденсаторный заряд. Определение стандартной резонансной частоты осуществляется аналогично расчетам резонанса напряжения.

Присутствующая внутренняя активная составляющая R вызывает постепенное угасание колебательного процесса, чем и обуславливается токовый резонанс.

Резонанс токов в цепи с переменным током

Протекание тока внутри электрической цепи с последовательным, параллельным или смешанным типом соединения элементов, вызывает получение различных режимов функционирования.

Таким образом, резонанс электрической цепи является режимом участка, который содержит элементы индуктивного и емкостного типа, а угол фазового сдвига между токовыми величинами и показателями напряжения нулевые.

В соединяемых параллельным способом конденсаторе и катушечной части наблюдается равное реактивное сопротивление, чем обусловлен резонанс.

Также должен учитываться тот факт, что для катушечной части и конденсатора характерно полное отсутствие активного сопротивления, а равенство реактивного сопротивления делает нулевыми общие токовые показатели внутри неразветвленной части электрической цепи и большие величины тока в ветвях.

В условиях параллельного соединения индуктивной катушки и конденсатора получается колебательный контур, который отличается наличием создающего колебания генератора, не подключенного в контур, что делает систему замкнутой.

Явление, сопровождающееся резким уменьшением амплитуды силы токовых величин внешней цепи, которая используется для питания параллельно включенного конденсатора и обычной индуктивной катушки в условиях приближения частоты приложенного напряжения к частоте резонанса, носит название токового или параллельного резонанса.

Расчет резонансного контура

Необходимо помнить, что явление, представленное токовым резонансом, нуждается в очень грамотном и тщательном расчете резонансного контура. Особенно важно выполнить правильный и точный расчет при наличии параллельного соединения, что позволит предотвратить развитие помех внутри системы. Чтобы расчет был правильным, требуется определиться с показателями мощности электрической сети. Среднюю стандартную мощность, которая рассеивается в условиях резонансного контура, можно выразить среднеквадратичными показателями тока и напряжения.

В условиях резонанса стандартный коэффициент мощности составляет единицу, а формула расчета имеет вид:

Формула расчета

С целью правильного определения нулевого импеданса в условиях резонанса потребуется использовать стандартную формулу:

Резонансные кривые

Резонанс колебательной частоты аппроксимируется по следующей формуле:

Резонанс колебательного контура

Чтобы получить максимально точные данныепо формулам, все получаемые в процессе расчетов значения рекомендуется не подвергать округлению. Некоторыми физиками расчеты значений резонансного контура осуществляются в соответствии с методом векторной диаграммы активных токовых величин. В таком случае грамотный расчет и правильная настройка приборов гарантирует достойную экономию при условии переменного тока.

Резонансные цепи применяются преимущественно для выделения сигнала на нужных частотах в результате фильтрования других сигналов, поэтому самостоятельные расчеты контура должны быть предельно точными.

Заключение

Резонанс токовых величин в физике — это естественное явление, сопровождающееся резким возрастанием амплитуды колебания внутри системы, что обусловлено совпадением показателей собственных и внешних возмущающих частот.

Подобный вариант явлений характеризует электрические схемы с наличием элементов, представленных нагрузками активного, индуктивного и емкостного типа. Таким образом, токовый резонанс — один из наиважнейших параметров, широко используемых в настоящее время в целом ряде современных отраслей, включая промышленное электрическое снабжение и радиосвязь.

proprovoda.ru

Резонанс напряжений и резонанс токов

В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов.

Резонанс напряжений

Резонанс напряжений возникает в последовательной RLC-цепи.

 

Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.

При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.

 

С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.

 

Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту 

Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.

Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.

Резонанс токов

Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.

 

Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.

Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.

 

Выразим резонансную частоту 

Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.

Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.

  • Просмотров: 35004
  • electroandi.ru

    Резонанс токов и напряжений: условия возникновения и применение

    Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну. К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем. Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике.

    Реактивные сопротивления индуктивности и емкости

    Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.

    Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.

    Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.

    Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.

    Емкость и индуктивность в цепи переменного тока

    Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.

    Реактивное сопротивление катушки индуктивности определяется по формуле:

    Векторная диаграмма:

     

    Реактивное сопротивление конденсатора:

    Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.

    Векторная диаграмма:

    Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:

    Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):

    От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.

    Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.

    Резонанс напряжений

    Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.

    Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.

    При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.

    Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:

    U=I/X

    Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.

    Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:

    Период колебаний определяется по формуле Томпсона:

    Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:

    Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:

    K=Q

    А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.

    Uк=Uвх*Q

    При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:

    Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.

    Коэффициент мощности будет равен:

    cosФ=1

    Эта формула показывает, что потери происходят за счет активной мощности:

    S=P/Cosф

    Резонанс токов

    Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.

    Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:

    В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:

    1. Частота питания аналогична резонансной у контура.
    2. Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.

    Применение на практике

    Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.

    Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.

    Заключение

    Резонанс напряжений и токов — интересное явление, о котором нужно знать. Он наблюдается только в индуктивно-емкостных цепях. В цепях с большим активным сопротивлениям он не может возникнуть. Подведем итоги, кратко ответив на основные вопросы по этой теме:

    1. Где и в каких цепях наблюдается явление резонанса?

    В индуктивно-емкостных цепях.

    1. Какие условия возникновения резонанса токов и напряжений?

    Возникает при условии равенства реактивных сопротивлений. В цепи должно быть минимальное активное сопротивление, а частота источника питания совпадать с резонансной частотой контура.

    1. Как найти резонансную частоту?

    В обоих случаях по формуле: w=(1/LC)^(1/2)

    1. Как устранить явление?

    Увеличив активное сопротивление в цепи или изменив частоту.

    Теперь вы знаете, что такое резонанс токов и напряжений, каковы условия его возникновения и варианты применения на практике. Для закрепления материала рекомендуем просмотреть полезное видео по теме:

    Материалы по теме:

    samelectrik.ru

    Резонанс токов

    Резонанс токов возникает в электрических цепях переменного тока при параллельном соединении ветвей с разнохарактерными (индуктивными и емкостными) реактивными сопротивлениями. В режиме резонанса токов реактивная индуктивная проводимость цепи оказывается равной ее реактивной емкостной проводимости, т.е. BL=BC.

    Простейшей электрической цепью, в которой может наблюдаться резонанс токов, является цепь с параллельным соединением катушки индуктивности и конденсатора. Данная схема соответствует цепи, представленной на рис. 8, а, для которойR2 = 0, а R1=Rк (здесьRк – активное сопротивление катушки индуктивности). Полная проводимость такой цепиY=.

    Условие резонанса токов (BL=BC) можно записать через соответствующие параметры электрической цепи. Так как реактивная проводимость катушки, имеющей активное сопротивлениеRк, определяется выражениемBL=XL/=L/(Rк2+2L2), а проводимость конденсатора без учета его активного сопротивления (RC= 0)BC=XC/= 1/XC=C, то условие резонанса может быть записано в виде

    L/(+2L2) = C.

    Из этого выражения следует, что резонанс токов в такой цепи можно получить при изменении одного из параметров Rк,L,Cипри постоянстве других. При некоторых условиях в подобных цепях резонанс может возникать и при одновременном изменении указанных параметров.

    Простейшие резонансные цепи, состоящие из параллельно соединенных между собой катушки индуктивности и конденсатора, широко применяются в радиоэлектронике в качестве колебательных контуров, резонанс токов в которых достигается при некоторой определенной частоте поступающего на вход соответствующего устройства сигнала.

    В лабораторных условиях наиболее часто резонанс токов достигается при неизменной индуктивности катушки L, путем изменения емкостиСбатареи конденсаторов. С изменением емкостной проводимостиBC=C, пропорциональной емкости конденсатора, происходит изменение полной проводимостиY, общего токаIи коэффициента мощности cos. Указанные зависимости приведены на рис. 10,a. Анализ этих зависимостей показывает, что при увеличении емкости от нуля полная проводимость электрической цепи сначала уменьшается, достигает при (BL=BC) своего минимума, а затем возрастает с увеличениемС, в пределе стремясь к бесконечности. Общий токI=YU, потребляемый цепью, пропорционален полной проводимости. Поэтому характер его изменения подобен характеру изменения проводимости.

    Коэффициент мощности cosс увеличением емкости сначала возрастает, а затем уменьшается, в пределе стремясь к нулю, так как cos=G/Y. В результате анализа указанных зависимостей можно установить, что резонанс токов характеризуется следующими явлениями.

    a)б)

    Рис. 10

    1. При резонансе токов полная проводимость всей электрической цепи приобретает минимальное значение и становится равной активной ее составляющей:

    Y = =G.

    2. Минимальное значение проводимости обусловливает минимальное значение тока цепи:

    I = YU = GU.

    3. Емкостный ток ICи индуктивная составляющаяIL тока катушкиIкоказываются при этом равными по величине, а активная составляющая тока катушкиIа1 становится равной токуI, потребляемому из сети:

    Iр1 = IL = BLU = BCU = IC = Iр2Iа = Iа1 =GU = YU =I.

    При этом реактивные составляющие токов IL иICв зависимости от значений реактивных проводимостей могут приобретать теоретически весьма большие значения и намного превышать токI, потребляемый электрической цепью из сети.

    4. Реактивная составляющая полной мощности цепи при BL=BCоказывается равной нулю:

    Q = BLU2  BCU2 = QL  QC = 0.

    При этом индуктивная и емкостная составляющие реактивной мощности также могут приобретать весьма большие значения, оставаясь равными друг другу.

    5. Полная мощность цепи при резонансе равна ее активной составляющей:

    S = YU 2 = GU 2 = P.

    6. Коэффициент мощности всей цепи при резонансе:

    cos = P/S = GU 2/YU 2 = 1.

    Напряжение и ток электрической цепи при резонансе токов совпадают по фазе. Векторная диаграмма, построенная для условий резонанса токов и применительно к рассматриваемой цепи, представлена на рис. 10, б. В табл. 2 методических указаний по выполнению работы обозначениямIL, IK, IC соответствуют обозначенияIр1, I1, Iр2 на векторной диаграмме токов (рис. 10,б).

    Резонанс токов находит широкое применение в силовых электрических цепях для повышения коэффициента мощности, так как это имеет большое технико-экономическое значение. Большинство промышленных потребителей переменного тока имеют активно-индуктивный характер; некоторые из них работают с низким коэффициентом мощности и потребляют значительную реактивную мощность. К таким потребителям могут быть отнесены асинхронные двигатели (особенно работающие с неполной нагрузкой), установки электрической сварки, высокочастотной закалки и т.д. Для уменьшения реактивной мощности и повышения коэффициента мощности параллельно потребителю включают батарею конденсаторов. Реактивная мощность конденсаторной батарей снижает общую реактивную мощность установки и тем самым увеличивает коэффициент мощности. Повышение коэффициента мощности приводит к уменьшению тока в проводах за счет снижения его реактивной составляющей и, соответственно, к уменьшению потерь энергии в генераторе и подводящих проводах.

    studfiles.net

    Разное

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о