+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

10 способов применения графена, которые изменят вашу жизнь

Он прочный, он гибкий и он уже здесь: после долгих лет исследований и экспериментов графен приходит в нашу жизнь, а именно – в продукты, которыми мы пользуемся каждый день. В скором времени графен изменит мир смартфонов, аккумуляторов, спортивной экипировки, суперкаров и сверхпроводников. Свойства этого материала настолько невероятные, что некоторые люди даже считают, что графен достался нам от инопланетных кораблей, оставленных на нашей планете задолго до появления человечества.

Это, конечно же, фантастика, но потенциал графена не может не рождать подобные теории заговора. Прошло более 60 лет с тех пор, как ученые и производители электроники впервые попытались раскрыть всю мощь нового материала, однако его практическое применение стало реальным только сейчас. Новости о технологических прорывах в этой области не прекращаются, и очередной всплеск инфоповодов по этой теме состоялся в ходе недавней выставки мобильной электроники MWC 2018. Далее речь пойдет о 10 способах использования графена, которые изменят вашу жизнь в обозримом будущем.

Миниатюрные УФ-сканеры

Обычная одежда спасает нас от вредных ультрафиолетовых лучей, но зачастую этого бывает недостаточно, особенно в жарких солнечных странах. Проблема будет решена с помощью небольшого гибкого УФ-сканера, который может крепиться на кожу, как обычный пластырь, либо изначально встраиваться в одежду. Когда этот сканер определит, что вы слишком долго находитесь под прямыми солнечными лучами, он отправит соответствующее уведомление на смартфон, предупредив вас об опасности.

Умные стельки для атлетов

Производители обуви и спортивных товаров также делают большую ставку на графен. Сегодня уже существуют носки и стельки, распознающие силу давления в той или иной области подошвы. Но подавляющее большинство таких продуктов оснащены всего несколькими датчиками, графен позволяет разместить более 100 датчиков, которые никак не повлияют на вес обуви. Прототипы высокотехнологичных стелек существуют уже сегодня, они изготовлены из специальной пены и измеряют давление с точностью до миллиграмма.

Графеновый крио-кулер для охлаждения базовых станций 5G

Всем модулям беспроводной связи при увеличении объема передаваемых данных требуется все больше охлаждения, иначе оборудование перегреется. Таким образом, многократное повышение пропускной способности в приближающихся 5G-сетях. Разработанный в Швеции компактный охлаждающий насос способен понижать температуру базовых станций вплоть до -150 градусов, поддерживая стабильный сигнал.

Аудиотехника

Хотя впервые графен был получен в Университете Манчестера, исследования данного материала ведутся по всему миру, а наибольшее число патентов по использованию графена принадлежит Китаю. Неудивительно, что крупнейший производитель электроники в этой стране стал одним из первых брендов, внедривших графен в свои продукты. Так, Xiaomi Mi Pro HD являются наушниками с графеновой диафрагмой, которая позволяет передавать более громкий, чистый и насыщенный звук. Также у Xiaomi есть терапевтический пояс PMA A10 из ткани, покрытой графеном.

Самые эффективные в мире солнечные батареи

В Италии ученые разрабатывают солнечную батарею на основе графена и органических кристаллов. Такая технология позволяет делать солнечные ячейки более крупными, что повышает эффективность сбора энергии и удешевляет производство в 4 раза.

Графеновые самолеты

В авиации вес – это все, от него напрямую зависит стоимость полета. Именно поэтому Ричард Брэнсон (и другие, менее известные люди) предсказывают полный переход коммерческих авиакомпаний на гораздо более легкий и прочный графен уже в ближайшее десятилетие. И это не просто слова – к примеру, Airbus уже не первый год активно занимается этим направлением.

Чехлы для смартфонов

Чехлы со встроенной батареей так и не прижились на рынке, а проблема быстро разряжающихся мобильных аккумуляторов никуда не делась. Чехлы с задней панелью из графена смогут намного эффективнее охлаждать смартфон, прибавляя до 20% ко времени работы батареи в вашем мобильном устройстве.

Супертонкие электронные книги

На MWC 2017 компания FlexEnable продемонстрировала построенную на основе графена полноцветную пиксельную матрицу для энергоэффективных дисплеев и дисплеев с электронными чернилами. Такие экраны будут иметь толщину обычной бумаги. К тому же, эти матрицы будут гибкими, что избавляет от необходимости использования толстого защитного стекла.

Автомобили

Графен раскрывает широкие перспективы для автомобилестроения, в частности для электромобилей. Дело в том, что с изготовленные из графена транспортные средства обладают меньшим весом и большей жесткостью кузова, что позволяет им быстрее ускоряться и расходовать значительно меньше электроэнергии.

Сверхбыстрые зарядки

Что, если бы вы могли зарядить свой смартфон на 100% за 5 минут? Именно столько времени требуется зарядному устройству от Zap & Go. И хотя тестовый прототип имел емкость всего 750 мАч, этот результат не может не впечатлять. А в следующем году инженеры компании обещают снизить этот показатель до 15-20 секунд. Тем временем, в Huawei разработали обычные литий-ионные батареи, которые благодаря применению графена могут работать на температурах до 60оС, что на 10 превышает показатель стандартных аккумуляторов на 10 градусов, что продлевает срок эксплуатации батареи почти в 2 раза.

www.computerra.ru

Графен, его производство, свойства и применение в электронике и др.

Графен, его производство, свойства и применение в электронике и др.

 

 

Графен является самым прочным материалом на Земле. В 300 раз прочнее стали. Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится.

 

Описание графена

Свойства и преимущества графена

Физические свойства графена

Получение графена

Получение графена в домашних условиях

Применение графена

Другие формы углерода: графен, усиленный – арматурный графен, карбин, алмаз, фуллерен, углеродные нанотрубки, “вискерсы”.

 

Описание графена:

Графен – это двумерная аллотропная форма углерода, в которой объединённые в гексагональную кристаллическую решётку атомы образуют слой толщиной в один атом. Атомы углерода в графене соединяются между собой sp

2-связями. Графен в буквальном смысле представляет собой материю, ткань.

Углерод имеет множество аллотропов. Некоторые из них, например, алмаз и графит, известны давно, в то время как другие открыты относительно недавно (10-15 лет назад) – фуллерены и углеродные нанотрубки. Следует отметить, что известный многие десятилетия графит представляет собой стопку листов графена, т.е. содержит несколько графеновых плоскостей.

На основе графена получены новые вещества: оксид графена, гидрид графена (называемый графан) и флюорографен (продукт реакции графена со фтором).

Графен обладает уникальными свойствами, что позволяет его использовать в различных сферах.

 

Свойства и преимущества графена:

– графен является самым прочным материалом на Земле. В 300 раз прочнее стали. Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится,

благодаря двумерной структуре графена, он является очень гибким материалом, что позволит использовать его, например, для плетения нитей и других верёвочных структур. При этом тоненькая графеновая «верёвка» по прочности будет аналогична толстому и тяжёлому стальному канату,

– в определённых условиях у графена активируется ещё одна способность, которая позволяет ему «залечивать» «дырки» в своей кристаллической структуре в случае её повреждений,

графен обладает более высокой электропроводностью. Графен практически не имеет сопротивления. У графена в 70 раз мобильность электронов выше, чем у кремния. Скорость электронов в графене составляет 10 000 км/с, хотя в обычном проводнике скорость электронов порядка 100 м/с.

– обладает высокой электроемкостью. Удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы,

обладает высокой теплопроводностью. Он в 10 раз теплопроводнее меди,

– характерна полная оптическая прозрачность. Он поглощает всего 2,3% света,

графеновая плёнка пропускает молекулы воды и при этом задерживает все остальные, что позволяет использовать ее как фильтр для воды,

– самый легкий материал. В 6 раз легче пера,

инертность к окружающей среде,

– впитывает радиоактивные отходы,

благодаря Броуновскому движению (тепловым колебаниям) атомов углерода в листе графена последний способен «производить» электрическую энергию,

– является основой для сборки различных не только самостоятельных двумерных материалов, но и многослойных двумерных гетероструктур,

– при протекании соленой воды по листу графена последний способен генерировать электрическую энергию за счет преобразования кинетической энергии движения потока соленой воды в электрическую (т.н. электрокинетический эффект).

 

Физические свойства графена*:

Наименование показателя:Значение:
Длина связи С–С, нм0,142
Плотность, мг/м20,77
Удельная площадь поверхности, м22630
Подвижность электронов, см
2
/(В с)
1,5 × 104
Модуль Юнга, ТПа1
Теплопроводность, Вт/(м К)5,1 × 103
Оптическая проницаемость0,977

* при комнатной температуре.

 

Получение графена:

Основными способами получения графена считаются:

микромеханическое отшелушивание слоев графита (метод Новоселова – метод скотча). Образец графита помещали между лентами скотча и последовательно отшелушивали слои, пока не остался последний тонкий слой, состоящий из графена,

диспергирование графита в водных средах,

механическая эксфолиация;

эпитаксиальный рост в вакууме;

химическое парофазное охлаждение (CVD-процесс),

метод “выпотевания” углерода из растворов в металлах или при разложении карбидов.

 

Получение графена в домашних условиях:

Необходимо взять кухонный блендер мощностью не менее 400 Вт. В чашу блендера выливают 500 мл воды, добавляя в жидкость 10-25 миллилитров любого моющего вещества и 20-50 грамм толченого грифеля от карандаша. Далее блендер должен поработать от 10 минут до получаса вплоть до появления взвеси из чешуек графена. Полученный материал будет обладать высокой проводимостью, что позволит использовать его в электродах фотоэлементов. Также произведенный в бытовых условиях графен способен улучшить свойства пластика.

 

Применение графена:

солнечная энергетика,

водоочистка, фильтрация воды, опреснение морской воды,

электроника (ЖК-мониторы, транзисторы, микросхемы и пр.),

в аккумуляторах и источниках энергии. Графеновый аккумулятор позволяет автомобилю без подзарядки преодолевать 1000 км, время зарядки которого не более 16 секунд,

медицина. Ученые обнаружили, что графеновые чешуйки оксида графена ускоряют размножение стволовых клеток и регенерацию клеток костной ткани,

создание суперкомпозитов,

очистка воды от радиоактивных загрязнений. Оксид графена быстро удаляет радиоактивные вещества из загрязненной воды. Хлопья оксида графена быстро связываются с естественными и искусственными радиоизотопами и конденсируют их, превращая в твердые вещества. Сами хлопья растворимы в жидкости, и их легко производить в промышленных масштабах.

 

карта сайта

как сделать графен википедия материал аккумулятор свойства аэрогель углерод графит купить цена видео россия презентация плотность
техническое применение открытие получение технология производство структура изобретение графена в светодиодных устройствах мастер нож

Коэффициент востребованности 4 488

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

5 направлений, где применяется графен. Графеновая лихорадка / Устой…

Ультратонкий материал — графен, за последнее десятилетие наделал в научном мире столько шума, что его стали применять практически во всех сферах человеческой деятельности. Из него пытаются делать аккумуляторы для электромобилей, собирают радиоактивные отходы, делают поролон, наращивают костную ткань и даже нейтрализуют раковые опухоли.


Читайте также:
5 зеленых трендов, которые всколыхнули мир за последние 10 лет

Как известно, графен — это сверхпрочный и сверхэлектроёмкий материал. Он обладает в 100 раз более высокой электропроводностью, чем кремний, используемый сегодня в солнечных батареях.

Он был открыт в Манчестерском университете бывшими советскими, а ныне британскими физиками Андреем Геймом и Константином Новосёловым.
В 2004 году в журнале Science они впервые написали о графене, а в 2010 году ученые получили за свое открытие Нобелевскую премию.

«У графена есть свойства, которых нет ни у одного материала, — говорит Новоселов, — это в буквальном смысле материя, ткань. С ней можно делать то же самое, что вот с этой салфеткой: сгибать, сворачивать, растягивать…» Бумажная салфетка неожиданно рвется у него в руках. С графеном такого не случится, замечает физик, это самый прочный материал на Земле.

Сейчас графеновыми исследованиями плотно занимается, так называемая испанская тройка:

  • Университет Кордобы занимается вопросами проектирования и конструирования.
  • Grabat Energy — компания, специализирующаяся в области нанотехнологий и энергетики. Отвечать за производство графеновых батарей в промышленных масштабах.
  • Graphenano, является одним из основных производителей графеновых изделий в Испании. Здесь занимаются созданием этого материала и изготовлением его в виде полимера.
Графен в автомобилестроении

Графеновый аккумулятор, который позволяет автомобилю без подзарядки преодолевать 1000 км очень обнадеживает всех ценителей экологического транспорта. Тем более, что такие же исследования с графеном проводились исследователями в Институте науки и технологий, Кванджу, Южная Корея и им также удалось создать батареи автомобиля с той же мощности, но, время зарядки сокращается до 16 секунд.

Заметьте, это исследования, которые проводились еще в 2013 году. А уже через год испанцы опубликовали о том, что их батарея будет

rodovid.me

Материал Будущего, История Открытия, Физические и Химические Свойства, Возможности Применения, Проблемы и Прогнозы Массового Использования

14.06.2019

Так выглядит структура графена — всего лишь один слой атомов углерода

Разные периоды человеческой истории тесно связаны с теми или иными материалами. За каменным веком наступила эпоха бронзы, которую потом вытеснило железо. Последние десятилетия стали «звездным часом» кремния, который подарил нам цифровую революцию и интернет. Мы стремительно входим в следующий технологический уклад и судорожно ищем новый материал, достойный служить его символом. Возможно, что им станет углерод, вернее, одна из его разновидностей – графен.

В последние годы этот материал постоянно на слуху. Графен называют – ни много, ни мало – самым важным открытием XXI века и не жалеют в его описаниях превосходных степеней. Адепты технического прогресса обещают нам новый дивный «графеновый» мир, в котором мы окажемся буквально завтра. В нем железо не будет ржаветь, люди смогут делать топливо из воздуха и пить воду прямо из океана. Ну и по мелочи: мы получим новое поколение электроники, сверхпрочную броню, колоссальной емкости аккумуляторы и прочая, и прочая, и прочая. Скептики, слушая восторженные спичи такого рода, лишь привычно и гадко ухмыляются. Действительно, «графеновую революцию» нам обещают уже лет пятнадцать лет, а пока нет даже приемлемого способа получения материала.

Так что же такое графен: реальный прорыв или очередной научно-технический фейл? Почему его открытие вызвало такую истерию, и какие «пряники» сулит нам использование этого материала? И почему оно до сих пор не началось?

Химические и физические свойства

По химическому составу графен ничем не отличается от алмаза или графита – он состоит из тех же атомов углерода, вся «фишка» в их особом пространственном расположении. Именно оно приводит к колоссальному различию физических свойств. В традиционных материалах атомы упорядочены в трех измерениях, поэтому окружающие нас предметы имеют высоту, длину и ширину. Графен – это аллотропная модификация углерода, в которой атомы образуют двумерную гексагональную кристаллическую решетку толщиной всего лишь один атом. По сути, это просто единственный слой, «вытащенный» из объемного кристалла вещества – третьего измерения у него нет.

Графен — самый прочный из известных нам материалов

Графен – первый двумерный материал, полученный учеными. Благодаря такой уникальной атомарной структуре он может «похвастать» целым рядом удивительных свойств:

  • огромной теплопроводностью;
  • просто запредельной механической прочностью;
  • гибкостью;
  • высокой электропроводностью;
  • непроницаемостью для большинства жидкостей и газов;
  • прозрачностью.

Но самое поразительное другое: при своей атомарной тонкости графен абсолютно стабилен, он не распадается, хотя многие ученые не верили в это. Еще в 30-е годы выдающиеся физики Рудольф Пайерлс и Лев Ландау утверждали, что двумерные материалы будут неустойчивы и быстро разрушатся под действием внешних факторов. Оказалось, что атомы удерживаются вместе благодаря особым вибрациям.

Изучение этого чудо-материала продолжается, и он не устает удивлять исследователей. Так, например, недавно выяснилось, что двухслойный графен в определенном положении ведет себя как сверхпроводник, хотя раньше этого и не предполагали.

Открытие графена настолько воодушевило ученых, что буквально в течение десяти лет были получены еще три двумерных материала со схожими свойствами: силицен – на основе кремния, фосфорен – фосфора и германен – германия.

Как был открыт «материал столетия»?

Гипотеза о существовании двумерной формы углерода была выдвинута еще в XIX веке, но подтвердить ее фактически долгое время не получалось. В 1859 году Бенджамин Броуди впервые синтезировал оксид графена, но только в 1948 году с помощью электронного микроскопа удалось доказать чрезвычайно малую толщину этого материала. Позже ученые обнаружили, что среди кристаллов оксида графена попадаются частицы толщиной в один атом. В 70-е годы монослойный углерод пытались выращивать на различных металлических подложках.

«Крестным отцом» этого материала стал Ханс-Питер Бём, который в 1986 году предложил называть однослойный углерод графеном. В конце 90-х Йошико Охаши изучал электрические свойства тонких графитовых пленок толщиной в несколько десятков атомарных слоев.

Первооткрыватели графена — Гейм и Новоселов. В 2010 году за эту работу они получили Нобелевскую премию

Впервые получить графен удалось двум британским ученым российского происхождения – Андрею Гейму и Константину Новоселову. Для этого они использовали самые подручные материалы – кусок графита, обычный скотч ну и, конечно же, знаменитую русскую смекалку. Ученые наносили на липкую ленту небольшое количество графита, после чего ее много раз склеивали и расклеивали, каждый раз разделяя вещество пополам. Когда пятно становилось совсем прозрачным, полученный графен переносился на подложку. Позже этот способ назвали «методом отшелушивания».

В 2010 году Гейм и Новоселов получили Нобелевскую премию и весьма обидную кличку от журналистов – «мусорные физики». Ученые всего мира наконец-то смогли исследовать графен, ибо липкой ленты хватало в любой лаборатории. Это стало настоящим прорывом: по словам людей, которые занимаются данным вопросом, за последние годы мы узнали о двумерных материалах куда больше, чем за все предыдущее столетие. В сети вы легко найдете подробное описание метода Гейма и Новоселова и при желании сможете повторить его в домашних условиях.

Новая эра в электронике?

Графен – уникальный по своей электропроводности материал: его сопротивление на 35% меньше, чем у меди, а по подвижности носителей заряда он превосходит и кремний, и антимонид индия.

Существующие сегодня чипы памяти и микропроцессоры уже преодолевают технологические границы в 10 нанометров. Процесс дальнейшей миниатюризации представляет значительные сложности. Все громче раздаются голоса, что мы практически достигли пределов кремниевых чипов. Сегодня разработчики топчутся на тактовой частоте около 4 ГГц, не в силах обеспечить дальнейшее увеличение быстродействия.

На основе графена можно делать гибкие экраны электронных устройств. Скорее всего, это станет первой областью применения этого материала

Кремний всем хорош для микроэлектроники, но есть у него и существенный недостаток – низкая теплопроводность. С увеличением плотности элементов и ростом тактовой частоты это становится серьезным барьером для дальнейшего развития отрасли.

Правда, для изготовления полевого транзистора из графена нужно как-то создать в нем запрещенную зону, чтобы задавать два состояния, пригодных для двоичной логики: непроводящее и проводящее. Однако уже сегодня предложены несколько способов решения данной проблемы, и это позволяет надеятся на скорое появление подобных транзисторов. Инженеры полагают, что быстродействие графеновых микропроцессоров может быть на порядок выше существующих – на основе этого материала уже построены транзисторы, модуляторы, микросхемы, работающие на частотах выше 10 ГГц.

Помимо высокой электропроводности, графен отличается практически полной прозрачностью. Он поглощает всего лишь 2% света, причем в самом широком оптическом диапазоне. Список материалов, одновременно обладающих этими качествами, очень ограничен, и графен лучше их всех. Поэтому это идеальный материал для жидкокристаллических дисплеев. Кроме того, он отличается высокой механической прочностью, так что скоро вы сможете забыть о разбитых экранах смартфонов и ноутбуков. Мы уже можем получать материал подходящего качества, и сейчас вопрос стоит только в снижении его себестоимости.

Графен не только прочный и прозрачный, он еще и отличается прекрасной гибкостью – пластину из этого материала можно растянуть чуть ли не на 20%. Поэтому уже в ближайшем будущем нас точно ожидает эра гибкой электроники. Подобные девайсы уже не раз демонстрировались на выставках, но до коммерческого использования дело пока не дошло. Весьма активен в этом направлении корейский гигант Samsung.

Еще одной ожидаемой областью применения графена является производство различных измерительных устройств, датчиков, сенсорных систем. Например, газовые датчики из этого материала могут реагировать буквально на единичные акты адсорбции/реабсорбции молекул — то есть работать на пределе чувствительности для таких устройств. Еще в 2015 году специалисты из Американского химического общества (ACS) на основе графена разработали прототип тепловизора с высокочувствительной матрицей, не требующей охлаждения. В будущем это позволит создавать качественные и, главное, недорогие тепловизионные приборы и обычные телекамеры, способные вести съемку в полной темноте.

Графен — один из главных претендентов на смену кремния в микропроцессорах

Кто из нас не мечтал о новом смартфоне или ноутбуке с батареей, запаса которой хватало хотя бы на несколько дней? Очень может быть, что уже в ближайшем будущем это станет реальностью. Графен имеют максимальное отношение поверхности к объему, благодаря чему прекрасно подходит для аккумуляторов и суперконденсаторов.

Разработки в этом направлении ведутся самым активным образом. Несколько лет назад испанские инженеры сообщили о создании графенового аккумулятора для электромобилей, который может заряжаться всего за восемь минут, на 77% дешевле литиевых аналогов и в два раза легче их по весу. Разработчики утверждают, что заряда достаточно для 1000 километров пробега.

В 2017 году Институт передовых технологий Samsung (SAIT) заявил о создании революционной батареи на основе «графеновых шариков». Она, якобы, в несколько раз превосходит существующие аналоги по скорости зарядки и имеет на 45% большую емкость.

Тверже алмаза и легче перышка

Графен – самый прочный из известных нам материалов. По этому параметру он в двести раз превосходит сталь. Лист графена толщиной в один атом, выдержит давление острия карандаша, на другой стороне которого балансирует слон. А ученые из Georgia Tech пришли к выводу, что двухслойной пленке из этого материала не страшна даже пуля.

Понятно, что мимо таких способностей не могли пройти компании, занимающиеся военными разработками и защитным снаряжением. Уже появилось множество проектов графеновой брони, скафандров и легких бронежилетов. Правда, пока не совсем понятно, как из идеального двумерного материала сделать трехмерный, сохранив при этом его уникальные свойства.

На основе этого материал уже пробуют создать суперпрочные пластмассы и резину. Однако эти разработки пока находятся на начальном этапе.

Графен и проблема дефицита воды

Население планеты неуклонно растет, а количество водных ресурсов, наоборот, стремительно сокращается. Сегодня проблема нехватки питьевой воды не менее актуальна, чем проблема голода. И это при том, что ею покрыта большая часть поверхности земного шара. При чем тут графен, спросите вы?

Дело в том, что этот материал практически непрозрачен для большинства химических веществ, но воду он пропускает. Грубо говоря, фильтр с графеновой мембраной будет задерживать морскую соль, опресняя тем самым воду. Правда, неизвестно, насколько долговечным будет подобное устройство, ведь хлориды – очень агрессивные вещества. Ученым придется решить еще множество проблем на этом пути, но работы не прекращаются, ибо слишком уж заманчивы перспективы.

На основе графена можно делать уникальные фильтры, которые будут способны не только очищать воду, но и опреснять ее

Точно так же можно очищать воду от любых токсинов, ядов и радиоактивных загрязнений. С помощью графена предлагают даже фильтровать ядерные отходы.

На страже здоровья или перспективы в медицине

Графен поможет человечеству победить рак. Он способен находить клетки опухоли в организме. Это удивительное свойство обнаружили ученые из Университета штата Иллинойс. Феномен связан с разницей электрических потенциалов здоровых и раковых клеток, которую легко определяют частицы материала.

Однако графен способен не только находить опухоли, но и эффективно уничтожать их. Биологи из Университета Манчестера выяснили, что частицы оксида графена могут поражать стволовые раковые клетки, никак не влияя на здоровые.

Уверенно можно сказать, что одной из главных сфер применения графена станут различные биодатчики, кардиостимуляторы, протезы, элементы нейроинтерфейса. Например, на основе этого материала уже разработаны специальные полупрозрачные татуировки, способные показывать температуру тела и состояние кожи. Медики надеются, что в будущем подобные рисунки смогут измерять активность сердца, мозга, снимать другие важные показатели.

Возможно, что графен поможет залечивать переломы костей. Ученые из Университета Карнеги-Меллона создали на его основе биоразлагаемый материал, который привлекает стволовые клетки к месту перелома. Это значительно ускоряет процесс восстановления. Пока этот метод опробован только на мышах, так что до практического использования еще далеко.

Уникальные динамики, краска будущего и презервативы

Миллиардер и филантроп Билл Гейтс вложил круглую сумму в разработку презервативов из графена

Возможности применения графена фантастически широки – кажется, что он пригодится человечеству буквально везде. Достаточно добавить его и любой материал станет прочнее, долговечнее, устойчивее. Мария Шарапова играет ракеткой, выполненной из графена, строители хотят домешивать его в бетон, Билл Гейтс прилично вложился в создание сверхпрочных графеновых презервативов. Автопроизводители хотят делать из него кузова машин, а авиастроители – детали ракет и самолетов. Вот еще несколько примеров возможного использования материала:

  • Сейчас немецкие исследователи работают над специальной краской на основе графена, которая будет сигнализировать о возможных дефектах изменением цвета. Пока этот проект находится в начальной стадии, о его коммерческом использовании говорить рано;
  • Китайские ученые из Северо-Западного университета разработали покрытие на основе графена, которое защищает металлы от ржавчины. Причем, этот состав способен самовосстанавливаться после небольших повреждений;
  • В конце 2017 года исследователи из частного университета Райса представили общественности кроссовки с добавлением графена. Материал был использован при изготовлении подошвенной резины. Разработчики утверждали, что их обувь отличается повышенной износостойкостью и невероятно прочна. Кроме того, кроссовки поразили присутствующих своей эластичностью: их можно было легко гнуть, крутить и складывать;
  • На основе графена планируют создать новое поколение акустических систем. Современные динамики работают за счет генерации механических вибраций. Британские ученые показали, что графен способен издавать сложные и управляемые звуковые колебания при нагревании и охлаждении. Таким образом можно изготовить колонки, которые вообще не содержат движущихся деталей, при этом заметно уменьшив их размеры. В идеале такой динамик будет частью графенового экрана вашего телефона или другого устройства. Опытный образец имеет размер меньше ногтя, причем в него еще встроен эквалайзер.

Долгий путь между пробиркой и прилавком

Открытие графена нередко сравнивают с изобретением колеса, паровой машины, бумаги или транзистора. О росте интереса к графеновой теме можно судить по увеличению количества заявок на патенты: в 2010 году их было около 6 тыс. штук, а в 2016 – это число увеличилось до 50 тыс.

Больше всего заявок подали китайские компании и научные центры. В Поднебесной все, что связано с графеном пользуется огромной государственной поддержкой. Китай особо и не скрывает, что планирует забрать себе до 80% графенового рынка. Аналогичные программы поддержки отрасли существуют и в других странах. Почему же до сих не видно массовых графеновых технологий, несмотря на очень серьезные финансовые вливания в эту отрасль? Тому есть серьезные причины.

В настоящее время используется несколько способов получения графена, которые, в принципе, уже обеспечивают промышленные объемы этого вещества. Довольно серьезной проблемой является качество полученных образцов, а именно от него во многом зависят свойства и функционал материала. И если для красок или композитов вполне сгодится дешевый хлопьевидный графен, полученный химическим путем, то для высокочастотной электроники необходимо качественное сырье с минимумом дефектов и примесей.

К сожалению, пока не существует установленных стандартов качества графена, из-за чего страдает отрасль в целом. Недавно было проведено исследование продукции 60 компаний, которые, якобы, предлагали графен. Однако вместо него в образцах был обнаружен дешевый графит, к тому же содержащий еще и примеси других веществ.

В последние годы графен стремительно дешевеет

В принципе, нынешнее положение дел очень напоминает ситуацию на заре компьютерной эры, когда были огромные трудности с получением чистого кремния. Однако они уже давно решены.

Себестоимость графена неуклонно падает. Сегодня пластинка материала площадью 1 кв. см стоит меньше одного евро. Эксперт утверждают, что к 2022 году его цена упадет еще на порядок. Однако проблемы все еще остаются. Наибольшую трудность представляет процесс переноса графеновой пластины на ту или иную подложку – а это едва ли не основное требование для начала массового промышленного производства. Вероятно, что сначала мы получим графеновые экраны, затем дело дойдет до электронных устройств и различных детекторов. Другие, более экзотичные варианты применения материала, скорее всего, – дело ближайших десятилетий.

Внутри любого современного мобильного телефона «содержится» более двадцати Нобелевских премий, часть из которых была присуждена еще в середине 60-х годов. То есть, от идеи до ее воплощения прошло более пятидесяти лет. Графену не исполнилось еще и пятнадцати, а на рынке уже есть товары, содержащие этот материал. Так что графен не опаздывает, он, наоборот, опережает время.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

С друзьями поделились:

militaryarms.ru

Открытие графена и его использование в домашних условиях

Развитие такой отрасли науки и техники, как нанотехнологии, позволило найти применение удивительным качествам углерода. Одно из ярких событий в науке ознаменовалось открытием графена. Многих читателей интересует, что такое графен, и когда он появился. Надо обратиться к истории его изобретения.

Кристаллическая решётка графена

История открытия

Графен – это пластина, представляющая собой кристаллическую решётку из двухмерных кристаллов углерода. Автором нового материала, учёным Уоллесом, в 1947 году были замечены необычные свойства графена. Он утверждал, что вещество по своим характеристикам аналогично металлам.

Невозможность получения углерода в чистом виде в те времена объяснялось отсутствием должного оборудования. С появлением нанотехнологии в 2004 году учёными Новосёловым и Геймом был получен этот материал. Выходцам из России, работающим в Манчестерском университете, за графен присуждена Нобелевская премия.

Описание графена

Чтобы понять, что это такое графен, достаточно провести карандашом по бумаге. Графитовый след будет состоять из слоя кристаллов этого вещества. Грифель состоит из множества слоёв кристаллических решёток нановещества. Такой материал, как графен, представляет собой слой атомов углерода, объединённых в форму шестигранных сот.

Структура графена

На рисунке в левом нижнем углу изображен графит, его можно обнаружить в простом карандаше. Его структура выглядит, как слои торта. Прочные пласты графена перемежаются слабыми прослойками. Свёрнутые листы в виде трубки или шара называют фуллеренами. Их подразделяют на цилиндры – углеродные нанотрубки (в нижнем ряду по центру) и на сферы – бакиболсы (там же справа).

Свойства и преимущества графена

Это самый тонкий в мире материал, полученный лабораторным путём. Из-за ничтожной толщины материал графен абсолютно прозрачен. Его прочность превышает в 200 раз показатель стали. В перспективе новый материал станет заменой кремния и медных проводников в интегральных микросхемах.

Важно! С каждым годом учёные мира обнаруживают новые свойства графеновых материалов. Это открывает окно бескрайних возможностей в развитии нанотехнологии. Новый материал – настоящее чудо современной науки. Он обладает непревзойдёнными термическими, оптическими, электрическими и механическими качествами.

Получение

Графен был получен вышеупомянутыми учёными, когда они стали поступательно отделять от графита чешуйки вещества, применяя липкую ленту (скотч). Сейчас делаются попытки получения материала химическим способом. Однако ещё требуются усилия по преодолению трудностей, связанных с полным разделением графеновых слоёв и препятствованием их сворачиваемости.

Совсем недавно учёные Стэндфордского университета и специалисты из Китая опубликовали совместную статью о новом способе извлечения наноматериала. Получение графена представляет довольно сложный процесс, состоящий из обработки химреактивами графита, воздействия ультразвуком, нагрева взвеси до 10000 С. В результате графит, как ножом, разрезается на множество слоёв.

В это же время ирландские учёные опубликовали другой способ, основанный на скрупулёзном подборе интеркоагулянтов. В результате этого графитовый порошок становится гидрофильным веществом. В растворе под воздействием ультразвука графитовая взвесь легко расслаивается. Оба метода признаны успешными.

Получение графена в домашних условиях

Несмотря на сложность вышеперечисленных методик, получить графен в обычных домашних условиях вполне возможно. Надо следовать следующей инструкции:

  1. Дома нужно воспользоваться мощным блендером (400 Вт).
  2. Графитовый стержень от обычного карандаша измельчают до порошкообразного состояния.
  3. В агрегат заливают ½ литра воды вместе с 20 мл моющего средства для посуды.
  4. Блендером сбивают раствор в течение получаса. В результате сверху появится взвесь чешуек графена.
  5. Ленту скотча опускают на поверхность жидкости липкой стороной вниз, чтобы чешуйки прилипли к ней.
  6. Скотч складывают вдвое, затем разнимают половинки. Чешуйки разделятся на две части. Процесс можно повторять до десяти раз.
  7. В результате появятся светлые лепестки графена, переливающиеся разными цветами. Образец помещают под окуляр 100-кратного микроскопа. Если повезёт, можно будет наблюдать совсем прозрачные чешуйки.

Дефекты

Кажущаяся лёгкость получения графена неразрывно связана с фундаментальной проблемой – термодинамической устойчивостью двумерных проводников. Новый наноматериал, представленный слоистыми кристаллами, относится к 2D системам. Двумерные слоистые структуры, обладая металлическими свойствами, термодинамически крайне неустойчивы.

В условиях понижения окружающей температуры графеновые материалы теряют свойства металлов. То есть происходит переход из металла в диэлектрик. Проблема требует дальнейших исследований.

Возможные применения

Уникальные свойства графена позволили применять его практически во всех сферах деятельности человека. Уже сейчас появляются новейшие разработки использования графена в различных устройствах.

Оксиды наноматериала

Оксид – продукт взаимодействия атомов кислорода с молекулярной структурой какого-либо вещества. Учёные, занимающиеся вопросом, что такое графен и областью его применения, обнаружили по краям углеродной сетки графена оксидные группы молекул. Несколькими граммами этого вещества можно накрыть футбольное поле. Наноматериал уже используют в биомедицине.

Биомедицинское применение

Сверхспособности вещества в оптике и электронике позволят врачам распознавать злокачественные опухоли на ранней стадии развития. Оксид графена способен осуществлять адресную доставку лекарства к определённому органу человека, минуя окружающие ткани. Недавно было сделано заявление о создании сорбентовых датчиков, которые могут распознавать молекулы ДНК, используя свойства нановещества.

Индустриальное применение

Адресные сорбенты оксида графена будут способны деактивировать территории, заражённые в результате техногенных катастроф. Сейчас рассматривается применение продукта для очистки водных ресурсов и воздушного пространства от радионуклидов.

Новые технологии на основе оксида графена совершат технологическую революцию в химической промышленности. Они позволят значительно снизить затраты по извлечению драгоценных металлов из бедных руд.

Дополнительная информация. Внедрение наноматериала в пластиковый полимер сделает его способным проводить ток. Замена кремния в микросхемах сделает переворот в создании новых компьютеров с огромными возможностями.

Перспективы использования нановещества в оборонной промышленности практически неограниченны. Появление брони, выдерживающей самые мощные снаряды, даст толчок в создании новой бронетехники и бронежилетов.

Использование в автомобилестроении

Удельная энергоёмкость графена в 50 раз превышает энергоёмкость литий-ионных аккумуляторов. Заметив это свойство, учёные приступили к разработке аккумуляторных батарей нового поколения.

Проблема, связанная с громоздкостью и ограниченностью заряда аккумуляторов для электромобилей, в ближайшее время будет решена. Машина с графеновой батареей сможет за один раз проехать тысячу километров, причём на одну зарядку аккумулятора понадобится около 8 минут.

Графеновый аккумулятор

Обратите внимание! Автомобилисты часто пользуются аэрогелем с графитовой смазкой. Средство покрывает тонкой плёнкой автодетали, предохраняя их от коррозии, проникая в заржавевшие резьбовые соединения. В какой-то мере это прообраз графена.

Сенсорные экраны

Углеродный наноматериал используют при изготовлении сенсорных экранов с диагональю в несколько метров. Это позволяет получить сенсорные дисплеи, которые можно будет скручивать в трубку для переноски.

Физика

Физическая природа графена объясняется электрическими свойствами атомов вещества. Материал имеет общее сходство с графитом и алмазами.

Теория

Теоретические исследования ещё 70 лет назад предсказали существование такого вещества, как графен. Утверждалось, что углерод способен создавать кристаллические двумерные пространственные решётки в виде тончайших плёнок толщиной в 1 атом. Теория была подкреплена практическими опытами в 2012 году, когда были получены первые образцы наноматериала.

Кристаллическая структура

Группа правильных шестиугольников образует решётку, что отражает эквивалентную гексагональную структуру построения атомов углерода. На рисунке жёлтым фоном выделена элементарная ячейка. В кругу розового цвета видны атомы с векторами. Синие и красные кружочки отображают различные подрешётки кристалла, являющиеся базисом решётки.

Кристаллическая графеновая решётка

Зонная структура

Суть термина выражает близкие связи электронов. Вокруг ядра атома углерода вращаются электроны. Три из них связаны с соседними атомами, формируя связи в кристаллической решётке. Четвёртый электрон образует связи в одной плоскости. Диаграмма зонной структуры графена выглядит в виде конусов.

Конусы зонной структуры

Линейный закон дисперсии

Выявление зонной структуры нановещества позволило вывести закон дисперсии одномерных нанотрубок.

Закон дисперсии определён уравнением Дирака. Математическое выражение подтверждает линейную зависимость дисперсии и вытекает из уравнения Шредингера для зонной структуры вещества при малых затратах энергии электронов.

Эффективная масса

Линейный закон дисперсии определяет эффективную массу электронов и дырок в структуре наноматериала, не имеющую никакой величины. Но при вращении электронов вокруг ядра получается иная масса, называемая энергией Ландау.

Хиральность и парадокс Клейна

Трёхмерное уравнение Дирака для частиц без массы (нейтрино) определяет постоянную величину – спиральность в квантовой электродинамике. В графене выявлен аналог, который называют хиральностью, то есть проекцией псевдоспина в сторону движения.

Эксперимент

Практически все эксперименты связаны с отшелушиванием чешуек – кристаллических решёток. Извлечение графена в результате опытов описано выше.

Проводимость

Было замечено, что наноматериал ведёт себя как полупроводник. Из-за этого графен имеет перспективу полностью заменить кремний в интегральных микросхемах. Это принесёт существенный экономический эффект от производства дешёвых радиокомпонентов.

Квантовый эффект холла

Когда на двумерную кристаллическую решётку воздействуют перпендикулярно направленным магнитным полем, возникает эффект холла. Взаимодействие направленного движения тока в графене с поперечным магнитным потоком вызывает напряжение, которое называют холловским эффектом.

Двухслойный графен

Американские учёные в результате многочисленных опытов обнаружили, что при воздействии на двойной слой графена высоким давлением материал приобретает твёрдость алмаза. Явление уникально тем, что таких качеств нет у однослойного и многослойного наноматериала. В связи с этим ведутся активные изыскания по созданию сверхтонкого защитного покрытия.

Вид двухслойного графена

Открытие непревзойдённых качеств графена рисует перед учёными мира перспективу технологической революции во всех сферах деятельности человечества. Однако, наряду с этим, высказываются мнения, охлаждающие пыл энтузиастов.

Видео

amperof.ru

мифы и реальность / Offсянка

От редакции: затрагивая тему модернизации экономики России и развития высоких технологий в нашей стране, мы ставили задачу не только обратить внимание читателей на недостатки, но и рассказать о положительных примерах. Тем более что таковые есть, и немало. На минувшей неделе мы рассказывали о разработке в России топливных элементов, а сегодня поговорим о графене, за изучение свойств которого «бывший наш народ» недавно получил Нобелевскую премию. Оказывается, и в России, а точнее — в Новосибирске, над этим материалом работают весьма серьезно.

Кремний как основа микроэлектроники прочно завоевал позиции в пространстве высоких технологий, и произошло это не случайно. Во-первых, кремнию относительно легко придать нужные свойства. Во-вторых, он известен науке давно, и изучен «вдоль и поперек». Третья причина заключается в том, что в кремниевые технологии вложены поистине гигантские средства, и делать сейчас ставки на новый материал, пожалуй, мало кто решится. Ведь для этого придется перестраивать огромную промышленную отрасль. Вернее, строить ее почти с нуля.

Тем не менее, есть и другие претенденты на лидерство в качестве полупроводникового материала. Например, графен, который после вручения Нобелевской премии за изучение его свойств, стал очень моден. Для перехода на него с кремния действительно есть основания, так как графен обладает рядом существенных преимуществ. Но получим ли мы в итоге «электронику на графене» — еще не ясно, потому что рядом с достоинствами притаились и недостатки.

Чтобы поговорить о перспективах графена в микроэлектронике и о его уникальных свойствах, мы встретились в Новосибирске с главным научным сотрудником Института неорганической химии им. А. В. Николаева СО РАН, доктором химических наук, профессором Владимиром Федоровым.

Алла Аршинова: Владимир Ефимович, каковы современные позиции кремния в микроэлектронике?

Владимир Федоров: Кремний очень давно используется в отрасли в качестве основного полупроводникового материала. Дело в том, что он легко легируется, то есть, в него можно добавлять атомы различных элементов, которые направленным образом изменяют физические и химические свойства. Подобная модификация высокочистого кремния позволяет получать полупроводниковые материалы n- или р-типа. Таким образом, направленным легированием кремния регулируют важные для микроэлектроники функциональные свойства материалов.

Кремний — действительно уникальный материал, и именно это является причиной того, что в него вложено столько сил, средств и интеллектуальных ресурсов. Фундаментальные свойства кремния изучены настолько детально, что есть распространенное мнение о том, что ему просто не может быть замены. Однако недавние исследования графена дали зеленый свет другой точке зрения, которая заключается в том, что новые материалы могут быть доведены до такой степени, что смогут заменить кремний.

Кристаллическая структура кремния

Подобные дискуссии возникают в науке периодически, и разрешаются они, как правило, только после серьезных исследований. Например, недавно была схожая ситуация с высокотемпературными сверхпроводниками. В 1986 году Беднорц и Мюллер открыли сверхпроводимость в барий-лантан-медном оксиде (за это открытие им была присуждена Нобелевская премия уже в 1987 году – через год после открытия!), которая обнаруживалась при температуре, значительно превышающей значения, характерные для известных к тому времени сверхпроводящих материалов. При этом по строению купратные сверхпроводящие соединения значительно отличались от низкотемпературных сверхпроводников. Затем лавинообразные исследования родственных систем привели к получению материалов с температурой сверхпроводящего перехода 90 К и выше. Это означало, что в качестве хладоагента можно использовать не дорогой и капризный жидкий гелий, а жидкий азот — в газообразном виде его в природе очень много, и к тому же он существенно дешевле гелия.

Но, к сожалению, эта эйфория вскоре прошла после тщательных исследований новых высокотемпературных сверхпроводников. Эти поликристаллические материалы, как и другие сложные оксиды, подобны керамике: они хрупкие и непластичные. Оказалось, что внутри каждого кристалла сверхпроводимость имеет хорошие параметры, а вот в компактных образцах критические токи достаточно невысокие, что обусловлено слабыми контактами между зернами материала. Слабые Джозефсоновские переходы (Josephson junction) между сверхпроводящими зернами не позволяют изготовить материал (например, сделать провод) с высокими сверхпроводящими характеристиками.

Солнечная батарея на основе поликристаллического кремния

С графеном может получиться такая же ситуация. В настоящее время у него найдены очень интересные свойства, но еще предстоит провести широкие исследования для окончательного ответа на вопрос о возможности получения этого материала в промышленном масштабе и использования его в наноэлектронике.

Алла Аршинова: Объясните, пожалуйста, что такое графен, и чем он отличается от графита?

Владимир Федоров: Графен – это моноатомный слой, образованный из атомов углерода, который, как и графит, имеет решетку в форме сот. А графит это, соответственно, уложенные друг на друга в стопочку графеновые слои. Слои графена в графите связаны между собой очень слабыми Ван-дер-Ваальсовыми связями, потому и удаётся, в конце концов, оторвать их друг от друга. Когда мы пишем карандашом, это пример того, что мы снимаем слои графита. Правда, след карандаша, остающийся на бумаге, это еще не графен, а графеновая мультислойная структура.

Теперь каждый ребенок может на полном серьезе утверждать, что он не просто переводит бумагу, а создает сложнейшую графеновую мультислойную структуру

А вот если удается расщепить такую структуру до одного слоя, тогда получается истинный графен. Подобные расщепления и провели Нобелевские лауреаты по физике этого года Гейм и Новоселов. Им удалось расщепить графит с помощью скотча, и после исследования свойств этого «графитового слоя» выяснилось, что у него очень хорошие параметры для использования в микроэлектронике. Одним из замечательных свойств графена является высокая подвижность электронов. Говорят, графен станет незаменимым материалом для компьютеров, телефонов и прочей техники. Почему? Потому что в этой области идет тенденция на ускорение процедур обработки информации. Эти процедуры связаны с тактовой частотой. Чем выше рабочая частота, тем больше можно обработать операций в единицу времени. Поэтому скорость носителей заряда очень важна. Оказалось, что у графена носители заряда ведут себя как релятивистские частицы с нулевой эффективной массой. Такие свойства графена действительно позволяют надеяться, что можно будет создать устройства, способные работать на терагерцовых частотах, которые недоступны кремнию. Это одно из наиболее интересных свойств материала.

Нобелевские лауреаты по физике 2010 года Андрей Гейм и Константин Новоселов

Из графена можно получить гибкие и прозрачные пленки, что также очень интересно для целого ряда применений. Еще одним плюсом является то, что это очень простой и очень легкий материал, легче кремния; к тому же в природе углерода предостаточно. Поэтому если действительно найдут способ использовать этот материал в высоких технологиях, то, конечно, он будет иметь хорошие перспективы и, возможно, заменит в коне концов кремний.

Но есть одна фундаментальная проблема, связанная с термодинамической устойчивостью низкоразмерных проводников. Как известно, твердые тела подразделяются на различные пространственные системы; например, к системе 3D (three-dimensional) относят объемные кристаллы. Двумерные (2D) системы представлены слоистыми кристаллами. А цепочечные структуры относятся к одномерной (1D) системе. Так вот низкоразмерные – 1D цепочечные и 2D слоистые структуры с металлическими свойствами с термодинамической точки зрения не устойчивы, при понижении температуры они стремятся превратиться в систему, которая теряет металлические свойства. Это так называемые переходы «металл-диэлектрик». Насколько устойчивы будут графеновые материалы в каких-то устройствах, еще предстоит выяснить. Конечно, графен интересен, как с точки зрения электрофизических свойств, так и механических. Считается, что монолитный слой графена очень прочен.

Алла Аршинова: Прочнее алмаза?

Владимир Федоров: Алмаз обладает трехмерными связями, механически он очень прочный. У графита в плоскости межатомные связи такие же, может, и прочнее. Дело в том, что с термодинамической точки зрения алмаз должен превращаться в графит, потому что графит стабильнее алмаза. Но в химии есть два важных фактора, которые управляют процессом превращения: это термодинамическая стабильность фаз и кинетика процесса, то есть скорость превращения одной фазы в другую. Так вот, алмазы в музеях мира лежат уже столетиями и в графит не хотят превращаться, хотя должны. Может быть, через миллионы лет они все-таки превратятся в графит, хотя было бы очень жалко. Процесс перехода алмаза в графит при комнатной температуре протекает с очень медленной скоростью, но если вы нагреете алмаз до высокой температуры, тогда кинетический барьер преодолеть будет легче, и это точно произойдет.

Графит в первозданном виде

Алла Аршинова: То, что графит можно расщеплять на очень тонкие чешуйки, известно уже давно. В чем же тогда было достижение нобелевских лауреатов по физике 2010 года?

Владимир Федоров: Вы, наверное, знаете такого персонажа, как Петрик. После вручения Нобелевской премии Андрею Гейму и Константину Новоселову он заявил, что у него украли Нобелевскую. В ответ Гейм сказал, что, действительно, подобные материалы были известны очень давно, но им дали премию за изучение свойств графена, а не за открытие способа его получения как такового. На самом деле, их заслуга в том, что они смогли отщепить от высоко ориентированного графита очень хорошие по качеству графеновые слои и детально изучить их свойства. Качество графена очень важно, как и в кремниевой технологии. Когда научились получать кремний очень высокой степени чистоты, только тогда и стала возможна электроника на его основе. Такая же ситуация и с графеном. Гейм и Новоселов взяли очень чистый графит с совершенными слоями, сумели отщепить один слой и изучили его свойства. Они первые доказали, что этот материал обладает набором уникальных свойств.

Алла Аршинова: В связи с вручением Нобелевской премии ученым с русскими корнями, работающим заграницей, наши соотечественники, далекие от науки, задаются вопросом, можно ли было прийти к таким же результатам здесь, в России?

Владимир Федоров: Наверное, можно было. Просто они в свое время уехали. Их первая статья, опубликованная в Nature, написана в соавторстве с несколькими учеными из Черноголовки. По-видимому, наши российские исследователи тоже вели работу в этом направлении. Но завершить ее убедительным образом не получилось. Жалко. Возможно, одной из причин являются более благоприятные условия для работы в зарубежных научных лабораториях. Я недавно приехал из Кореи и могу сравнить условия работы, которые мне были там предоставлены, с работой дома. Так вот там я ничем не был озабочен, а дома – полно рутинных обязанностей, которые отнимают много времени и постоянно отвлекают от главного. Меня обеспечивали всем, что было необходимо, причем исполнялось это с поразительной быстротой. Например, если мне нужен какой-то реактив, я пишу записку — и на следующий день мне его привозят. Подозреваю, что у нобелевских лауреатов тоже очень хорошие условия для работы. Ну и им хватило упорства: они многократно пытались получить хороший материал и, наконец, достигли успеха. Они действительно потратили большое количество времени и сил на это, и премия в этом смысле вручена заслуженно.

Алла Аршинова: А какие именно преимущества дает графен по сравнению с кремнием?

Владимир Федоров: Во-первых, мы уже сказали, что он обладает высокой подвижностью носителей, как говорят физики, носители заряда не обладают массой. Масса всегда тормозит движение. А в графене электроны движутся таким образом, что можно считать их не обладающими массой. Такое свойство уникально: если и есть другие материалы и частицы со схожими свойствами, то встречаются они крайне редко. Этим графен оказался хорош, этим же он выгодно отличается от кремния.

Во-вторых, графен обладает высокой теплопроводностью, и это очень важно для электронных устройств. Он очень легкий, а графеновый лист — прозрачный и гибкий, его можно свернуть. Графен может быть и очень дешевым, если разработают оптимальные методы его получения. Ведь «скотч-метод», который продемонстрировали Гейм и Новоселов, не является промышленным. Этим методом получают образцы действительно высокого качества, но в очень малых количествах, только для исследований.

И сейчас химики разрабатывают другие способы получения графена. Ведь нужно получать большие листы, чтобы поставить производство графена на поток. Этими вопросами занимаемся и мы здесь, в Институте неорганической химии. Если научатся синтезировать графен с помощью таких методов, которые бы позволили получать материал высокого качества в промышленных масштабах, тогда есть надежда, что он произведет революцию в микроэлектронике.

Алла Аршинова: Как, наверное, все уже знают из СМИ, графеновую мультислойную структуру можно получить с помощью карандаша и липкой ленты. А в чем заключается технология получений графена, применяемая в научных лабораториях?

Владимир Федоров: Существует несколько методов. Один из них известен очень давно, он основан на использовании оксида графита. Его принцип довольно прост. Графит помещают в раствор высоко окисляющих веществ (например, серная, азотная кислота и др.), и при нагревании он начинает взаимодействовать с окислителями. При этом графит расщепляется на несколько листочков или даже на одноатомные слои. Но полученные монослои не являются графеном, а представляют собой окисленный графен, в котором есть присоединенный кислород, гидроксильные и карбоксильные группы. Теперь главная задача заключается в том, чтобы эти слои восстановить до графена. Поскольку при окислении получаются частички небольшого размера, то надо их каким-то образом склеить, чтобы получить монолит. Усилия химиков направлены на то, чтобы понять, как можно из оксида графита, технология получения которого известна, сделать графеновый лист.

Есть еще один метод, также достаточно традиционный и известный уже давно — это химическое осаждение из газовой фазы с участием газообразных соединений. Его суть заключается в следующем. Сначала реакционные вещества возгоняют в газовую фазу, потом их пропускают через нагретую до высоких температур подложку, на которой и осаждаются нужные слои. Когда подобран исходный реагент, например, метан, его можно разложить таким способом, чтобы водород отщепился, а углерод остался на подложке. Но эти процессы трудно контролируемы, и идеальный слой получить сложно.

Графен— одна из аллотропных модификаций углерода

Существует и другой метод, который сейчас начинает активно применяться, – метод использования интеркалированных соединений. В графит, как и в другие слоистые соединения, можно помещать между слоями молекулы различных веществ, которые называются «молекулы гостя». Графит – это матрица «хозяина», куда мы поставляем «гостей». Когда происходит интеркаляция гостей в решетку хозяина, естественно, слои разъединяются. Это как раз то, что и требуется: процесс интеркаляции расщепляет графит. Интеркалированные соединения являются очень хорошими предшественниками для получения графена — нужно только вынуть оттуда «гостей» и не дать слоям снова схлопнуться в графит. В этой технологии важным этапом является процесс получения коллоидных дисперсий, которые можно превращать в графеновые материалы. Мы в нашем институте поддерживаем именно такой подход. На наш взгляд, это самое продвинутое направление, от которого ожидаются очень хорошие результаты, потому что из различного рода интеркалированных соединений можно наиболее просто и эффективно получать изолированные слои.

По структуре графен похож на соты. И с недавних пор он стал очень «сладкой» темой

Выделяют и еще один способ, который называют тотальный химический синтез. Он заключается в том, что из простых органических молекул собирают нужные «соты». Органическая химия обладает очень развитым синтетическим аппаратом, который позволяет получать огромное разнообразие молекул. Поэтому методом химического синтеза пытаются получить графеновые структуры. Пока что удалось создать графеновый лист, состоящий примерно из двухсот атомов углерода.

Разрабатываются и другие подходы к синтезу графена. Несмотря на многочисленные проблемы, наука в этом направлении успешно продвигается вперед. Есть большая доля уверенности в том, что существующие препятствия будут преодолены, и графен приблизит новую веху в развитии высоких технологий.

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Графен и его применение. Открытие графена. Нанотехнологии в современном мире

Сравнительно недавно в науке и технике появилась новая область, которую назвали нанотехнологией. Перспективы данной дисциплины не просто обширны. Они грандиозны. Частица, именуемая «нано», представляет собой величину, равную одной миллиардной доле от какого-либо значения. Подобные размеры можно сравнить только с размерами атомов и молекул. Например, нанометром называют одну миллиардную долю метра.

Основное направление новой области науки

Нанотехнологиями называют те, которые манипулируют веществом на уровне молекул и атомов. В связи с этим данную область науки называют еще и молекулярной технологией. Что же явилось толчком к ее развитию? Нанотехнологии в современном мире появились благодаря лекции Ричарда Фейнмана. В ней ученый доказал, что не существует никаких препятствий для создания вещей непосредственно из атомов.

Средство для эффективного манипулирования мельчайшими частицами назвали ассемблером. Это молекулярная наномашина, с помощью которой можно выстроить любую структуру. Например, природным ассемблером можно назвать рибосому, синтезирующую белок в живых организмах.

Нанотехнологии в современном мире являются не просто отдельной областью знаний. Они представляют собой обширную сферу исследований, непосредственно связанную со многими фундаментальными науками. В их числе находятся физика, химия и биология. По мнению ученых, именно эти науки получат наиболее мощный толчок к развитию на фоне грядущей нанотехнической революции.

Область применения

Перечислить все сферы деятельности человека, где на сегодняшний день используются нанотехнологии, невозможно из-за весьма внушительного перечня. Так, при помощи данной области науки производятся:

— устройства, предназначенные для сверхплотной записи любой информации;
— различная видеотехника;
— сенсоры, солнечные элементы, полупроводниковые транзисторы;
— информационные, вычислительные и информационные технологии;
— наноимпринтинг и нанолитография;
— устройства, предназначенные для хранения энергии, и топливные элементы;
— оборонные, космические и авиационные приложения;
— биоинструментарий.

На такую научную область, как нанотехнологии, в России, США, Японии и ряде европейских государств с каждым годом выделяется все больше финансирования. Это связано с обширными перспективами развития данной сферы исследований.

Нанотехнологии в России развиваются согласно целевой Федеральной программе, которая предусматривает не только большие финансовые затраты, но и проведение большого объема конструкторских и научно-исследовательских работ. Для реализации поставленных задач происходит объединение усилий различных научно-технологических комплексов на уровне национальных и транснациональных корпораций.

Новый материал

Нанотехнологии позволили ученым изготовить углеродную пластину более твердую, чем алмаз, толщина которой составляет всего один атом. Состоит она из графена. Это самый тонкий и прочный материал во всей Вселенной, который пропускает электричество намного лучше кремния компьютерных чипов.

Открытие графена считается настоящим революционным событием, которое позволит многое изменить в нашей жизни. Этот материал обладает настолько уникальными физическими свойствами, что в корне меняет представление человека о природе вещей и веществ.

История открытия

Графен представляет собой двухмерный кристалл. Его структура является гексагональной решеткой, состоящей из атомов углерода. Теоретические исследования графена начались задолго до получения его реальных образцов, так как данный материал является базой для построения трехмерного кристалла графита.

Еще в 1947 г. П. Воллес указал на некоторые свойства графена, доказав, что его структура аналогична металлам, и некоторые характеристики подобны тем, которыми обладают ультрарелятивистские частицы, нейтрино и безмассовые фотоны. Однако у нового материала есть и определенные существенные отличия, делающие его уникальным по своей природе. Но подтверждение этим выводам было получено только в 2004 г., когда Константином Новоселовым и Андреем Геймом впервые был получен углерод в свободном состоянии. Это новое вещество, которое назвали графеном, и стало крупным открытием ученых. Найти этот элемент можно в карандаше. Его графитовый стержень состоит из множества слоев графена. Каким образом карандаш оставляет след на бумаге? Дело в том, что, несмотря на прочность составляющих стержень слоев, между ними существуют весьма слабые связи. Они очень легко распадаются при соприкосновении с бумагой, оставляя след при письме.

Использование нового материала

По мнению ученых, сенсоры, созданные на основе графена, смогут анализировать прочность и состояние самолета, а также предсказывать землетрясения. Но только тогда, когда материал с такими потрясающими свойствами покинет стены лабораторий, станет понятно, в каком направлении пойдет развитие практического применения данного вещества. На сегодняшний день химики, физики, а также инженеры-электронщики уже заинтересовались уникальными возможностями графена. Ведь всего несколькими граммами этого вещества можно покрыть территорию, равную футбольному полю.

Графен и его применение потенциально рассматриваются в производстве легковесных спутников и самолетов. В этой сфере новый материал способен заменить углеродные волокна в композиционных материалах. Нановещество может быть использовано вместо кремния в транзисторах, а его внедрение в пластмассу придаст ей электропроводность.

Графен и его применение рассматриваются и в вопросах изготовления датчиков. Эти устройства, выполненные на основе новейшего материала, будут способны обнаруживать самые опасные молекулы. А вот использование пудры из нановещества при производстве электрических аккумуляторов в разы увеличит их эффективность.

Графен и его применение рассматриваются в оптоэлектронике. Из нового материала получится очень легкий и прочный пластик, контейнеры из которого позволят в течение нескольких недель сохранять продукты в свежем состоянии.

Использование графена предполагается и для изготовления прозрачного токопроводящего покрытия, необходимого для мониторов, солнечных батарей и более крепких и устойчивых к механическим воздействиям ветряных двигателей.

На основе наноматериала получатся лучшие спортивные снаряды, медицинские имплантаты и суперконденсаторы.

Также графен и его применение актуальны для:

— высокочастотных высокомощных электронных устройств;
— искусственных мембран, разделяющих две жидкости в резервуаре;
— улучшения свойства проводимости различных материалов;
— создания дисплея на органических светодиодах;
— освоения новой техники ускоренного секвенирования ДНК;
— улучшения жидкокристаллических дисплеев;
— создания баллистических транзисторов.

Использование в автомобилестроении

Согласно данным исследователей, удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы. Этот факт ученые использовали для создания зарядных устройств нового поколения.

Графен-полимерный аккумулятор — прибор, при помощи которого максимально эффективно удерживается электрическая энергия. В настоящее время работа над ним ведется исследователями многих стран. Значительных успехов достигли в этом вопросе испанские ученые. Графен-полимерный аккумулятор, созданный ими, имеет энергоемкость, в сотни раз превышающую подобный показатель у уже существующих батарей. Используют его для оснащения электромобилей. Машина, в которой установлен графеновый аккумулятор, может проехать без остановки тысячи километров. На подзарядку электромобиля при исчерпании энергоресурса понадобится не более 8 минут.

Сенсорные экраны

Ученые продолжают исследовать графен, создавая при этом новые и не имеющие аналогов вещи. Так, углеродный наноматериал нашел свое применение в производстве, выпускающем сенсорные дисплеи с большой диагональю. В перспективе может появиться и гибкое устройство подобного типа.

Ученые получили графеновый лист прямоугольной формы и превратили его в прозрачный электрод. Он-то и участвует в работе сенсорного дисплея, отличаясь при этом долговечностью, повышенной прозрачностью, гибкостью, экологичностью и низкой стоимостью.

Получение графена

Начиная с 2004 г., когда был открыт новейший наноматериал, ученые освоили целый ряд методов его получения. Однако самыми основными из них считаются способы:

— механической эксфолиации;
— эпитаксиального роста в вакууме;
— химического перофазного охлаждения (CVD-процесс).

Первый из этих трех методов является наиболее простым. Производство графена при механической эксфолиации представляет собой нанесение специального графита на клейкую поверхность изоляционной ленты. После этого основу, подобно листу бумаги, начинают сгибать и разгибать, отделяя нужный материал. При применении данного способа графен получается самого высокого качества. Однако подобные действия не годятся для массового производства данного наноматериала.

При использовании метода эпитаксиального роста применяют тонкие кремниевые пластины, поверхностный слой которых является карбидом кремния. Далее этот материал нагревают при очень высокой температуре (до 1000 К). В результате химической реакции происходит отделение атомов кремния от атомов углерода, первые из которых испаряются. В результате на пластинке остается чистый графен. Недостатком подобного метода является необходимость использования очень высоких температур, при которых может произойти сгорание атомов углерода.

Самым надежным и простым способом, применяемым для массового производства графена, является CVD-процесс. Он представляет собой метод, при котором протекает химическая реакция между металлическим покрытием-катализатором и углеводородными газами.

Где производится графен?

На сегодняшний день крупнейшая компания, изготавливающая новый наноматериал, находится в Китае. Название этого производителя — Ningbo Morsh Technology. Производство графена начато им в 2012 году.

Главным потребителем наноматериала выступает компания Chongqing Morsh Technology. Графен используется ею для производства проводящих прозрачных пленок, которые вставляют в сенсорные дисплеи.

Сравнительно недавно известная компания Nokia оформила патент на светочувствительную матрицу. В составе этого столь необходимого для оптических приборов элемента находится несколько слоев графена. Такой материал, использованный на датчиках камер, в значительной мере увеличивает их светочувствительность (до 1000 раз). При этом наблюдается и снижение потребления электроэнергии. Хорошая камера для смартфона также будет содержать графен.

Получение в бытовых условиях

Можно ли изготовить графен в домашних условиях? Оказывается, да! Необходимо просто взять кухонный блендер мощностью не менее 400 Вт, и следовать методике, разработанной ирландскими физиками.

Как же изготовить графен в домашних условиях? Для этого в чашу блендера выливают 500 мл воды, добавляя в жидкость 10-25 миллилитров любого моющего вещества и 20-50 грамм толченого грифеля. Далее прибор должен поработать от 10 минут до получаса, вплоть до появления взвеси из чешуек графена. Полученный материал будет обладать высокой проводимостью, что позволит использовать его в электродах фотоэлементов. Также произведенный в бытовых условиях графен способен улучшить свойства пластика.

Оксиды наноматериала

Ученые активно исследуют и такую структуру графена, которая внутри или по краям углеродной сетки имеет присоединенные кислородосодержащие функциональные группы или (и) молекулы. Это оксид самого твердого нановещества, который является первым двумерным материалом, дошедшим до стадии коммерческого производства. Из нано- и микрочастиц этой структуры ученые изготовили сантиметровые образцы.

Так, оксид графена в сочетании с диофилизированным углеродом был недавно получен китайскими учеными. Это весьма легкий материал, сантиметровый кубик которого удерживается на лепестках небольшого цветка. Но при этом новое вещество, в котором находится оксид графена, является одним из самых твердых в мире.

Биомедицинское применение

Оксид графена обладает уникальным свойством селективности. Это позволит данному веществу найти биомедицинское применение. Так, благодаря работам ученых стало возможным использование оксида графена для диагностики раковых заболеваний. Обнаружить злокачественную опухоль на ранних стадиях ее развития позволяют уникальные оптические и электрические свойства наноматериала.

Также оксид графена позволяет производить адресную доставку лекарственных и диагностических средств. На основе данного материала создаются сорбционные биодатчики, указывающие на молекулы ДНК.

Индустриальное применение

Различные сорбенты на основе оксида графена могут быть применены для дезакцивации зараженных техногенных и природных объектов. Крое того, данный наноматериал способен переработать подземные и поверхностные воды, а также почвы, очистив их от радионуклидов.

Фильтры из оксидов графена могут обеспечить суперчистотой помещения, где производятся электронные компоненты специального назначения. Уникальные свойства данного материала позволят проникнуть в тонкие технологии химической сферы. В частности, это может быть извлечение радиоактивных, рассеянных и редких металлов. Так, использование оксида графена позволит добыть золото из бедных руд.

fb.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *