Мощность
Все мы много раз сталкивались с понятием мощности. Например, разные автомобили характеризуются разной мощностью двигателя. Также, электроприборы могут иметь различную мощность, даже если они имеют одинаковое предназначение.
Мощность — это физическая величина, характеризующая скорость работы.
Соответственно, механическая мощность — это физическая величина, характеризующая скорость механической работы:
Т. е. мощность — это работа в единицу времени.
Мощность в системе СИ измеряется в ваттах: [N] = [Вт].
1 Вт — это работа в 1 Дж, совершенная за 1 с.
Существуют и другие единицы измерения мощности, например, такие, как лошадиная сила:
Именно в лошадиных силах чаще всего измеряется мощность двигателя автомобилей.
Давайте вернемся к формуле для мощности: Формула, по которой вычисляется работа, нам известна: Поэтому мы можем преобразовать выражение для мощности:
Тогда в формуле у нас образуется отношение модуля перемещения к промежутку времени. Это, как вы знаете, скорость:
Только обратите внимание, что в получившейся формуле мы используем модуль скорости, поскольку на время мы поделили не само перемещение, а его модуль. Итак, мощность равна произведению модуля силы, модуля скорости и косинуса угла между их направлениями.
Это вполне логично: скажем, мощность поршня можно повысить за счет увеличения силы его действия. Прикладывая бо́льшую силу, он будет совершать больше работы за то же время, то есть увеличит мощность. Но даже если оставить силу постоянной, и заставить поршень двигаться быстрее, он, несомненно, увеличит работу, совершаемую в единицу времени. Следовательно, увеличится мощность.
Примеры решения задач.
Задача 1. Мощность мотоцикла равна 80 л.с. Двигаясь по горизонтальному участку, мотоциклист развивает скорость равную 150 км\ч. При этом, двигатель работает на 75% от своей максимальной мощности. Определите силу трения, действующую на мотоцикл.
Задача 2. Истребитель, под действием постоянной силы тяги, направленной под углом 45° к горизонту, разгоняется от 150 м/с до 570 м/с. При этом, вертикальная и горизонтальная скорость истребителя увеличиваются на одинаковое значение в каждый момент времени. Масса истребителя равна 20 т. Если истребитель разгонялся в течение одной минуты, то какова мощность его двигателя?
videouroki.net
Что такое мощность в физике формула. Что такое мощность
Для того, чтобы перетащить 10 мешков картошки с огорода, расположенного в паре километров от дома, вам потребуется целый день носиться с ведром туда-обратно. Если вы возьмете тележку, рассчитанную на один мешок, то справитесь за два-три часа.
Ну а если закинуть все мешки в телегу, запряженную лошадью, то через полчаса ваш урожай благополучно перекочует в ваш погреб. В чем разница?
Формула расчета мощности
И в таком случае, формула расчета мощности принимает следующий вид: мощность= работа/время, или
где N — мощность,
A — работа,
t — время.
Единицей мощности является ватт (1 Вт). 1 Вт — это такая мощность, при которой за 1 секунду совершается работа в 1 джоуль. Единица эта названа в честь английского изобретателя Дж. Уатта, который построил первую паровую машину. Любопытно, что сам Уатт пользовался другой единицей мощности — лошадиная сила, и формулу мощности в физике в том виде, в котором мы ее знаем сегодня, ввели позже. Измерение мощности в лошадиных силах используют и сегодня, например, когда говорят о мощности легкового автомобиля или грузовика.
Применение мощности в физике
Мощность является важнейшей характеристикой любого двигателя. Различные двигатели развивают совершенно разную мощность. Это могут быть как сотые доли киловатта, например, двигатель электробритвы, так и миллионы киловатт, например, двигатель ракеты-носителя космического корабля. При различной нагрузке
Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы . Работой, совершаемой постоянной силой F , называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы F и перемещения S :
Работа является скалярной величиной. Она может быть как положительна (0° ≤ α α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж). Джоуль равен работе, совершаемой силой в 1 ньютон на перемещении 1 метр в направлении действия силы.
Если же сила изменяется с течением времени, то для нахождения работы строят график зависимости силы от перемещения и находят площадь фигуры под графиком – это и есть работа:
Примером силы, модуль которой зависит от координаты (перемещения), может служить сила упругости пружины, подчиняющаяся закону Гука (F упр = kx ).
Мощность
Работа силы, совершаемая в единицу времени, называется мощностью . Мощность P (иногда обозначают буквой N ) – физическая величина, равная отношению работы A к промежутку времени t , в течение которого совершена эта работа:
По этой формуле рассчитывается средняя мощность
skupaem-auto.ru
формула и применение в физике
Для того, чтобы перетащить 10 мешков картошки с огорода, расположенного в паре километров от дома, вам потребуется целый день носиться с ведром туда-обратно. Если вы возьмете тележку, рассчитанную на один мешок, то справитесь за два-три часа.
Ну а если закинуть все мешки в телегу, запряженную лошадью, то через полчаса ваш урожай благополучно перекочует в ваш погреб. В чем разница? Разница в быстроте выполнения работы. Быстроту совершения механической работы характеризуют физической величиной, изучаемой в курсе физики седьмого класса. Называется эта величина мощностью. Мощность показывает, какая работа совершается за единицу времени. То есть, чтобы найти мощность, надо совершенную работу разделить на затраченное время.
Формула расчета мощности
И в таком случае, формула расчета мощности принимает следующий вид: мощность= работа/время , или
N=A/t,
где N – мощность,
A – работа,
t – время.
Единицей мощности является ватт (1 Вт). 1 Вт – это такая мощность, при которой за 1 секунду совершается работа в 1 джоуль. Единица эта названа в честь английского изобретателя Дж. Уатта, который построил первую паровую машину. Любопытно, что сам Уатт пользовался другой единицей мощности – лошадиная сила, и формулу мощности в физике в том виде, в котором мы ее знаем сегодня, ввели позже. Измерение мощности в лошадиных силах используют и сегодня, например, когда говорят о мощности легкового автомобиля или грузовика.
Применение мощности в физике
Мощность является важнейшей характеристикой любого двигателя. Различные двигатели развивают совершенно разную мощность. Это могут быть как сотые доли киловатта, например, двигатель электробритвы, так и миллионы киловатт, например, двигатель ракеты-носителя космического корабля. При различной нагрузке
Нужна помощь в учебе?
Предыдущая тема: Механическая работа: определение и формула
Следующая тема:   Простые механизмы и их применение: рычаг, равновесие сил на рычаге
Все неприличные комментарии будут удаляться.
www.nado5.ru
Мощность в физике определение и формула. Мощность — физическая величина, формула мощности
Если вам нужно единицы измерения мощности привести в одну систему, вам пригодится наш перевод мощности – конвертер онлайн. А ниже вы сможете почитать, в чем измеряется мощность.
Мощность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.
В чем измеряется мощность?
Единицы измерения мощности, которые известны каждому школьнику и являются принятыми в международном сообществе – ватты. Названы так в честь ученого Дж. Уатта. Обозначаются латинской W или вт.
1 Ватт – единица измерения мощности, при которой за секунду происходит работа, равная 1 джоулю. Ватт равен мощности тока, сила которого 1 ампер, а напряжение – 1 вольт. В технике, как правило, применяются мегаватты и киловатты. 1 киловатт равен 1000 ватт.
Измеряется мощность и в эрг в секунду. 1 эрг в сек. Равен 10 в минус седьмой степени ватт. Соответственно, 1 ватт равен 10 в седьмой степени эрг/сек.
А еще единицей измерения мощности считается внесистемная «лошадиная сила». Она была введена в оборот еще в восемнадцатом веке и продолжает до сих пор применяться в автомобилестроении. Обозначается она так:
- Л.С. (в русском),
- HP (в английском).
- PS (в немецком),
- CV (во французском).
При переводе мощности помните, что в рунете существует невообразимая путаница при конверте лошадиных сил в ватты. В России, странах СНГ и некоторых других государствах 1 л.с. равняется 735, 5 ватт. В Англии и Америке 1 hp равняется 745, 7 ватт.
Здравствуйте! Для вычисления физической величины, называемой мощностью, пользуются формулой, где физическую величину — работу делят на время, за которое эта работа производилась.
Выглядит она так:
P, W, N=A/t, (Вт=Дж/с).
В зависимости от учебников и разделов физики, мощность в формуле может обозначаться буквами P, W или N.
Чаще всего мощность применяется, в таких разделах физики и науки, как механика, электродинамика и электротехника. В каждом случае, мощность имеет свою формулу для вычисления. Для переменного и постоянного тока она тоже различна. Для измерения мощности используют ваттметры.
Теперь вы знаете, что мощность измеряется в ваттах. По-английски ватт — watt, международное обозначение — W, русское сокращение — Вт. Это важно запомнить, потому что во всех бытовых приборах есть такой параметр.
Мощность — скалярная величина, она не вектор, в отличие от силы, которая может иметь направление. В механике, общий вид формулы мощности можно записать так:
P=F*s/t, где F=А*s,
v=s/t,
Р=F*v.
Из формул видно, как мы вместо А подставляем силу F умноженную на путь s. В итоге мощность в механике, можно записать, как силу умноженную на скорость. К примеру, автомобиль имея определенную мощность, вынужден снижать скорость при движении в гору, так как это требует большей силы.
Средняя мощность человека принята за 70-80 Вт. Мощность автомобилей, самолетов, кораблей, ракет и промышленных установок, часто, измеряют в лошадиных силах. Лошадиные силы применяли еще задолго до внедрения ватт. Одна лошадиная сила равна 745,7Вт. Причем в России принято что л. с. равна 735,5 Вт.
Если вас вдруг случайно спросят через 20 лет в интервью среди прохожих о мощности, а вы запомнили, что мощность — это отношение работы А, совершенной в единицу времени t. Если сможете так сказать, приятно удивите толпу. Ведь в этом определении, главное запомнить, что делитель здесь работа А,
elec-master.ru
A. Мощность — PhysBook
Мощность
Различные машины и механизмы, выполняющие одинаковую работу, могут отличаться мощностью. Мощность характеризует быстроту совершения работы. Очевидно, что чем меньшее время требуется для выполнения данной работы, тем эффективнее работает машина, механизм и др.
При движении любого тела на него в общем случае действует несколько сил. Каждая сила совершает работу, и, следовательно, для каждой силы мы можем вычислить мощность.
Средняя мощность силы — скалярная физическая величина Ν, равная отношению работы А, совершаемой силой, к промежутку времени Δt, в течение которого она совершается:
\(~N = \frac{A}{\Delta t}.\)В СИ единицей мощности является ватт (Вт).
Если тело движется прямолинейно и на него действует постоянная сила, то она совершает работу \(~A = F \Delta r \cos \alpha\). Поэтому мощность этой силы
\(~N = \frac{F \Delta r \cos \alpha}{\Delta t} = F \upsilon \cos \alpha = F_{\upsilon} \cdot \upsilon.\)где Fυ — проекция силы на направление движения.
По этой формуле можно рассчитывать и среднюю, и мгновенную мощности, подставляя значения средней \(~\mathcal h \upsilon \mathcal i\) или мгновенной υ скорости.
Мгновенная мощность — это мощность силы в данный момент времени.
\(~N_m = \lim_{\Delta t \to 0} \frac{A}{\Delta t} = A’ .\)Любой двигатель или механизм предназначены для выполнения определенной механической работы, которую называют полезной работой Ap. Но любой машине приходится совершать большую работу, так как вследствие действия сил трения часть подводимой к машине энергии не может быть преобразована в механическую работу. Поэтому эффективность работы машины характеризуют коэффициентом полезного действия η (КПД).
Коэффициент полезного действия η — это отношение полезной работы Ap, совершенной машиной, ко всей затраченной работе Az (подведенной энергии W):
\(~\eta = \frac{A_p}{A_z} = \frac{A_p}{W} = \frac{N_p}{N_z},\)где Np, Nz — полезная и затраченная мощности соответственно. КПД обычно выражают в процентах.
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 63-64.
www.physbook.ru
Работа. Мощность. — FizikatTYT
Каждое тело, совершающее движение, можно охарактеризовать работой. Иными словами, она характеризует действие сил.
Работа определяется как:
Произведение модуля силы и пути пройденного телом, умноженное на косинус угла между направлением силы и движения.
Работа измеряется в Джоулях:
1 [Дж] = [H * м] = [кг* м2/c2]
К примеру, тело A под действием силы в 5 Н, прошло 10 м. Определить работу совершенную телом.
Так как направление движения и действия силы совпадают, то угол между вектором силы и вектором перемещения будет равен 0°. Формула упроститься, потому что косинус угла в 0° равен 1.
Подставляя исходные параметры в формулу, находим:
A= 15 Дж.
Рассмотрим другой пример, тело массой 2 кг, двигаясь с ускорением 6 м/ с2, прошло 10 м. Определить работу проделанную телом, если оно двигалось по наклоненной плоскости вверх под углом 60°.
Для начала, вычислим какую силу нужно приложить, что бы сообщить телу ускорение 6 м/ с2.
F = 2 кг * 6 м/ с2 = 12 H.
Под действием силы 12H, тело прошло 10 м. Работу можно вычислить по уже известной формуле:
Где, а равно 30°. Подставляя исходные данные в формулу получаем:
A= 103, 2 Дж.
Мощность
Множество машин механизмов выполняют одну и ту же работу за различный промежуток времени. Для их сравнения вводится понятие мощности.
Мощность – это величина, показывающая объем работы выполненный за единицу времени.
Мощность измеряется в Ватт, в честь Шотландского инженера Джеймса Ватта.
1 [Ватт] = 1 [Дж/c].
К примеру, большой кран поднял груз весом 10 т на высоту 30 м за 1 мин. Маленький кран на эту же высоту за 1 мин поднял 2 т кирпича. Сравнить мощности кранов.
Определим работу выполняемую кранами. Груз поднимается на 30м, при этом преодолевая силу тяжести, поэтому сила, затрачиваемая на поднятие груза, будет равна силе взаимодействия Земли и груза(F = m * g). А работа – произведению сил на расстояние пройденное грузами, то есть на высоту.
Для большого крана A1 = 10 000 кг * 30 м * 10 м / с2 = 3 000 000 Дж, а для маленького A2 = 2 000 кг * 30 м * 10 м / с2 = 600 000 Дж.
Мощность можно вычислить, разделив работу на время. Оба крана подняли груз за 1 мин (60 сек).
Отсюда:
N1 = 3 000 000 Дж/60 c = 50 000 Вт = 50 кВт.
N2 = 600 000 Дж/ 60 c = 10 000 Вт = 10 к Вт.
Из выше приведенных данных наглядно видно, что первый кран в 5 раз мощнее второго.
fizikatyt.ru
Производные величины | Символ | Описание | Единица СИ | Примечания |
---|---|---|---|---|
Площадь | S | Размер пространства ограниченного замкнутой линией и опирающейся на эту линию поверхностью | м2 | |
Объём | V | Размер пространства заключённого в трёхмерном объекте | м3 | экстенсивная величина |
Скорость | v | Изменение положения тела в единицу времени | м/с | вектор |
Ускорение | a | Изменение скорости в единицу времени | м/с² | вектор |
Импульс | p | Количество движения тела | кг·м/с | экстенсивная, сохраняющаяся величина |
Сила | F | Мера взаимодействия материи | кг·м/с2 (ньютон, Н) | вектор |
Механическая работа | A | Скалярное произведение силы и перемещения. | кг·м2/с2 (джоуль, Дж) | скаляр |
Энергия | E | Способность тела или системы совершать работу. | кг·м2/с2 (джоуль, Дж) | экстенсивная, сохраняющаяся величина, скаляр |
Мощность | P | Быстрота совершения работы. | кг·м2/с3 (ватт, Вт) | |
Давление | p | Сила, действующая на единицу площади поверхности перпендикулярно этой поверхности | кг/(м·с2) (паскаль, Па) | интенсивная величина |
Плотность | ρ | Масса на единицу объёма. | кг/м3 | интенсивная величина |
Поверхностная плотность | ρA | Масса на единицу площади. | кг/м2 | |
Линейная плотность | ρl | Масса на единицу длины. | кг/м | |
Количество теплоты | Q | Энергия, передаваемая от одного тела к другому немеханическим путём | кг·м2/с2 (джоуль, Дж) | скаляр |
Электрический заряд | q | Способность тел быть источником электромагнитного поля и принимать участие в электромагнитном взаимодействии | А·с (кулон, Кл) | экстенсивная, сохраняющаяся величина |
Напряжение | U | Изменение потенциальной энергии, приходящееся на единицу заряда. | м2·кг/(с3·А) (вольт, В) | скаляр |
Электрическое сопротивление | R | Сопротивление объекта прохождению электрического тока | м2·кг/(с3·А2) (ом, Ом) | скаляр |
Магнитный поток | Φ | Величина, учитывающая интенсивность магнитного поля и занимаемую им область. | кг·м2/(с2·А) (вебер, Вб) | |
Частота | ν | Число повторений события за единицу времени. | с−1 (герц, Гц) | |
Угол | α | Величина изменения направления. | радиан (рад) | |
Угловая скорость | ω | Скорость изменения угла. | с−1 (радиан в секунду) | |
Угловое ускорение | ε | Изменение угловой скорости в единицу времени | с−2 (радиан на секунду в квадрате) | |
Момент инерции | I | Мера инертности объекта при вращении. | кг·м2 | тензорная величина |
Момент импульса | L | Мера вращения объекта. | кг·м2/c | сохраняющаяся величина |
Момент силы | M | Произведение силы на длину перпендикуляра, опущенного из точки на линию действия силы. | кг·м2/с2 | вектор |
Телесный угол | Ω | Часть пространства, которая является объединением всех лучей, выходящих из данной точки и пересекающих некоторую поверхность | стерадиан (ср) |
ru.wikipedia.org