Линейное напряжение — Asutpp
В электрических цепях бывают разные типы напряжения. Линейное напряжение можно наблюдать в трехфазной сети, где оно возникает между двумя фазовыми проводами. В большинстве случаев его уровень достигает 380 Вольт.
Отличие линейного от фазного напряжения
Если представить трехфазную цепь, то четко понятно, что в ней есть определенное напряжение между фазными контактами и фазным и нулевым проводом. Это происходит из-за того, что в этой схеме используется четырёхпроводная трехфазная цепь. Главные её характеристики – напряжение и частота. Напряжение, возникающее в цепи между двумя фазными проводами – это линейное, а то, что появляется между фазным и нулевым – фазным.
4-проводная сетьПримечательной особенностью линейного напряжения является то, что именно по нему рассчитываются токи и другие параметры трехфазной цепи. Кроме того, к такой схеме можно подключать не только стандартные трехфазные контакты, но и однофазные (это различные бытовые приборы, приемники).
Существует несколько вариантов такого соединения, скажем, система с нейтралью под заземлением является самой популярной. Она характеризуется тем, что подключение к ней производится по особой схеме:
- Однофазные отводы подключаются к фазным проводам;
- Трехфазные – к трехфазным, соответственно.
Линейное напряжение имеет очень широкое использование благодаря своей безопасности и удобства разветвления сети. Электрические приборы подключаются только к одному- фазному проводу, опасность представляет он один. Расчет системы очень прост, в нем руководствуются стандартными формулами из физики. При этом, чтобы измерить этот параметр сети, достаточно воспользоваться простым мультиметром, для того, чтобы замерить характеристики фазового подключения потребуется несколько специальных устройств (датчики тока, вольтметры и прочие).
Некоторые особенности сети:
- При разводке такой проводки не требуется использовать профессиональные приборы- все измерения проводятся отвертками с индикаторами;
- При соединении проводников нет необходимости подключать нулевой провод, т. к. благодаря свободной нейтрали, риск поражения током крайне мал;
- Электротехника использует такую схему подключения для различных электродвигателей и других устройств, требующих высокую мощность для работы. Дело в том, что используя этот тип напряжения есть возможность повысить КПД на треть, что является весьма полезным свойством, в особенности, для асинхронного двигателя;
- Схема используется как для переменного тока, так и для постоянного;
- Нужно помнить, что однофазное соединение можно подключить к трехфазной сети, но не наоборот;
- Но, у такой цепи есть и определенные недостатки. В линейном соединении проводников очень сложно обнаружить повреждения. Это способствует повышенной пожарной опасности.
Соответственно, основная разница между фазовым и линейным напряжением заключается в разности подсоединяемых проводов обмоток.
Для контроля и выравнивания этого параметра часто используется специальный прибор — линейный стабилизатор напряжения. Он позволяет поддерживать показатель на определённом уровне, при этом нормализуя повышенное. Еще одно его определение – импульсный стабилизатор. Устройство может подключаться к розетке, контактам электрических приборов и т. д.
РасчетСоединение
Линейное и фазное напряжение часто используется для запуска генератора. Рассмотрим, какие бывают соединения проводов на примере трехфазного генератора. Он состоит из первичных и вторичных обмоток. Их можно соединить звездой или треугольником.
Соединяя проводники в «треугольник» начало второй фазы соединяется с концом первой. Помимо этого, к каждому фазному проводнику подключаются линейные провода источника. Это выравнивает токи, исходя из чего, фазовое напряжение становится равным линейному. Аналогичная схема и для подключения трансформатора и двигателя.
Такое соединение также позволяет обеспечить нулевую электрическую движущую силу и постоянную частоту. Токи обмоток сдвигаются на 120 градусов, благодаря чему в общей схеме это соединение имеет вид трех отдельных токов, которые относительно друг друга сдвинуты на 2/3 периода. Это соотношение может изменяться в зависимости от типа подключаемого устройства и характеристик сети.
Аналогично можно подсоединить трехфазный асинхронный двигатель, стабилизатор или усилитель в сеть 220 вольт «звездой». Эта схема подразумевает подключение начала обмоток к сети. Тогда от входа начнет двигаться ток с характеристиками сети. Контакты выхода (концы обмоток), соединятся с началом при помощи специальных перемычек. Таким образом, межфазное напряжение будет протекать через все активные контакты.
В изолированной сети используются различные пусковые конденсаторы для запуска системы. Аналогично соединяются клеммы на обмотках. Это подключение часто используется для понижающих трансформаторов и различных двигателей, предусмотренных для работы в однофазной сети.
Стабилизатор напряжения с защитой от перегрузокРасчет
Для того чтобы рассчитать линейное напряжение используется формула Киргофа:
n
∑ Ik = 0;, которая говорит о том, что в любом узле цепи сила тока равна нулю.
k=1
И закон Ома:
I = U / R . Зная эти законы можно без проблем рассчитать любую характеристику определенного контакта или сети.
При разветвлении системы может понадобиться вычислить напряжение между фазовым проводом и нейтральным:
IL = IF – эти параметры могут изменяться в зависимости от подключения. Отсюда следует, что линейные параметры равняются фазовым.
Но, в определенных ситуациях, необходимо рассчитать, чем равно соотношение напряжения между фазовым и линейным проводниками.
Для этого используется формула: Uл=Uф∙√3, где:
Uл –линейное, Uф – фазовое.
При включении в сеть дополнительных отводов, нужно отдельно вычислять фазовое напряжение каждого из подключений. Тогда вместо Uф подставляются данные этого конкретного отвода.
При работе с промышленными установками может потребоваться расчет реактивной трехфазной мощности. Он производится по формуле:
Q = Qа + Qb + Qс
Аналогичный вид имеет формула активной:
P = Pа + Pb + Pс
Линейные и фазные напряжения
Под симметричной трехфазной системой принято понимать совокупность трех ЭДС синусоидальной формы равной частоты, амплитуды, сдвинутых по фазе на треть периода (угол 2/3) .
График изменения ЭДС во времени, векторная диаграмма имеют вид.
Источником системы 3-х-фазного напряжения обычно служит генератор, у которого в пазах статора уложены проводники – обмотки. Плоскости этих обмоток обычно сдвинуты на 120 гр в пространстве. Под фазой участка трехфазной цепи понимают расстояние с одинаковым по величине током.
Разность потенциалов между нулевым узлом схемы и началом любой из фаз именуют фазным напряжением, условно обозначая UA, Uв, Uс. Разность потенциалов от начала вектора принято называть линейным, обозначая UAB, UBC, UCA.
Соответственно, фазные напряжения согласно 2-му закону Кирхгофа в общем случае равны:
UAB =UА- UB.
На диаграмме векторов они изображается участком от концов векторов UA, UB. По аналогии, вычисляют и другие линейные величины — UBC, UCA. При симметричной системе фазных напряжений совокупность линейных также — симметрична.
Существуют 2 способа подключения обмоток генерирующих установок и приемников электроэнергии трехфазной сети:
— звезда;
— треугольник.
При соединении звездой величина линейного напряжения равна:
Uл = v3 Uф = 1,73Uф.
К примеру, если мы имеем фазное напряжение генераторной установки равное 220В, при этом линейное будет – 380В.
Другим способом соединения, использующий трехпроходное соединение, является треугольник.
В таком случае, конец каждой обмотки подключается к началу следующей, образуя треугольник, при этом линейные провода подключены к его вершинам.
При подключении треугольником линейное напряжение генераторной установки в общем случае равно фазному:
Uл = Uф .
Исходя из этого, делаем вывод: переключение обмоток генераторной установки со звезды к треугольнику приводит к увеличению линейного напряжения в 1,73р. Выполнять подключение обмоток, используя метод треугольника, рекомендуется лишь при симметричной нагрузке, поскольку в противном случае ток, может превышать номинальные величины.
Линейное и фазное напряжение — соотношение и формулы, схема соединения звездой и треугольником
Одним из видов систем с множеством фаз, представлены цепи, состоящие из трех фаз. В них действуют электродвижущие силы синусоидального типа, возникающие с синхронной частотой, от единого генератора энергии, и имеют разницу в фазе.
Электрическое напряжение трехфазных сетей
Под фазой, понимаются самостоятельные блоки системы с множеством фаз, имеющие идентичные друг другу параметры тока. Поэтому, в электротехнической области, определение фазы имеет двойное толкование.
Во-первых, как значение, имеющее синусоидальное колебание, а во-вторых, как самостоятельный элемент в электросети с множеством фаз. В соответствии с их количеством и маркируется конкретная цепь: двухфазная, трехфазная, шестифазная и т.д.
Сегодня в электроэнергетике, наиболее популярными являются цепи с трехфазным током. Они обладают целым перечнем достоинств, выделяющих их среди своих однофазных и многофазных аналогов, так как, во-первых, более дешевы по технологии монтажа и транспортировки электроэнергии с наименьшими потерями и затратами.
Во-вторых, они имеют свойство легко образовывать движущееся по кругу магнитное поле, которое является движущей силой для асинхронных двигателей, которые используются не только на предприятиях, но и в быту, например, в подъемном механизме высотных лифтов и т.д.
Электрические цепи, имеющие три фазы, позволяют одновременно пользоваться двумя видами напряжения от одного источника электроэнергии – линейным и фазным.
Виды напряжения
Знание их особенностей и характеристик эксплуатации, крайне необходимо для манипуляций в электрощитах и при работе с устройствами, питаемыми от 380 вольт:
- Линейное. Его обозначают как межфазный ток, то есть проходящий между парой контактов или идентичными клеймами разных фаз. Оно определяется разностью потенциалов пары фазных контактов.
- Фазное. Оно появляется при замыкании начального и конечного выводов фазы. Также, его обозначают как ток, возникающий при замыкании одного из контактов фазы с нулевым выводом. Его величина определяется абсолютным значением разности выводов от фазы и Земли.
Отличия
В обычной квартире, или частном доме, как правило, существует только однофазный тип сети 220 вольт, поэтому, к их щиту электропитания, подведены в основном два провода – фаза и ноль, реже к ним добавляется третий – заземление.
К высотным многоквартирным зданиям с офисами, гостиницами или торговыми центрами, подводится сразу 4 или 5 кабелей электропитания, обеспечивающих три фазы сети 380 вольт.
Почему такое жесткое разделение? Дело в том, что трехфазное напряжение, во-первых, само отличается повышенной мощностью, а во-вторых, оно специфически подходит для питания особых сверхмощных электродвигателей трехфазного типа, которые используются на заводах, в электролебедках лифтов, эскалаторных подъемниках и т.д.
Такие двигатели при включении в трехфазную сеть вырабатывают в разы большее усилие, чем их однофазные аналоги тех же габаритов и веса.
Проводить разводку проводки такого типа можно без использования профессионального оборудования и приборов, достаточно обычных отверток с индикаторами.
Соединяя проводники не нужно монтировать нулевой контакт, ведь вероятность пробоя очень мала, благодаря не занятой нейтрали.
Но такая схема сети имеет и свое слабое место, так как в линейной схеме монтажа крайне сложно найти место повреждения проводника в случае аварии или поломки, что может повысить риск возникновения пожара.
Таким образом, главным отличием между фазным и линейным типами являются разные схемы подключения проводов обмоток источника и потребителя электроэнергии.
Соотношение
Значение напряжения фазы равняется около 58% от мощности линейного аналога. То есть, при обычных эксплуатационных параметрах, линейное значение стабильно и превосходит фазное в 1,73 раза.
Оценка напряжения в сети трехфазного электрического тока, в основном производится по показателям его линейной составляющей. Для линий тока этого типа, подающегося с подстанций, оно, как правило, равняется 380 вольтам, и идентично фазному аналогу в 220 В.
В электросетях с четырьмя проводами, напряжение трехфазного тока маркируется обоими значениями – 380/220 В. Это обеспечивает возможность питания от такой сети устройств, как с однофазным потреблением электроэнергии 220 вольт, так и более мощных агрегатов, рассчитанных на ток 380 В.
Самой доступной и универсальной стала система трехфазного типа 380/220 В, имеющая нулевой провод, так называемое заземление. Электрические агрегаты, работающие на одной фазе 220 В., могут быть запитаны от линейного напряжения при подключении к любой паре фазных выводов.
Электрические агрегаты трехфазного питания работают только при подключении сразу к трем выводам разных фаз.
В этом случае, применение нулевого вывода в качестве заземления, не является обязательным, хотя в случае повреждения изоляции проводов, его отсутствие серьезно повышает вероятность удара током.
Схема
Агрегаты трехфазного тока имеют две схемы подключения в сеть: первая – «звезда», вторая – «треугольником». В первом варианте, начальные контакты всех трех обмоток генератора замыкаются вместе по параллельной схеме, что, как и в случае с обычными щелочными батарейками не даст прироста мощности.
Вторая, последовательная схема подключения обмоток источника тока, где каждый начальный вывод подключается к конечному контакту предыдущей обмотки, дает трехкратный прирост напряжения за счет эффекта суммирования напряжений при последовательном подключении.
Кроме того, такие же схемы подключения имеют и нагрузку в виде электродвигателя, только устройство, подключенное в трехфазную сеть по схеме «звезда», при токе в 2,2 А будет выдавать мощность 2190Вт, а тот же агрегат, подключенный «треугольником», способен выдать в три раза большую мощность – 5570, за счет того, что благодаря последовательному подключению катушек и внутри двигателя, сила тока суммируется и доходит до 10 А.
Имея источник трехфазного напряжения и двигатели, имеющие аналогичную схему подключения, можно получить в разы больше мощности просто за счет эффективного подключения всех агрегатов.
Расчет линейного и фазного напряжения
Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй – это земля.
Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно использовать обычный мультиметр, в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.
Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:
Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю – k=1.
И закон Ома:
Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.
В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:
Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.
Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.
Для этого, применяют формулу:
Uл – линейное, Uф – фазовое. Формула справедлива, только если – IL = IF.
При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.
При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:
Идентичная структура формулы активной мощности:
Примеры расчета:
Например, катушки трехфазного источника тока подключены по схеме «звезда», их электродвижущая сила 220В. Необходимо вычислить линейное напряжение в схеме.
Линейные напряжения в этом подключении будут одинаковы и определяются как:
- U1=U2=U3= √3 Uф=√3*220=380 В.
формула, соотношение фазного и линейного напряжения
Электрические цепи характеризуются наличием различных типов напряжения.
Какое напряжение называется линейным, а какое фазным
Линейным называется напряженье между 2-мя фазами линии или когда определяется величина между 2-мя проводами различных фаз.
Напряжение между любой фазой и нулём — фазное. Оно меряется между начальной и конечной стадией фазы. Практически ФН от ЛН отличается на 58-60 процентов. То есть, величины ЛН в 1,73 раза больше величин ФН.
Трёхфазные цепи имеют 380В ЛН, что позволяет получить 220В фазного.
Отличия
Специфика ЛН — это показатель, по которому производится расчёт токов и остальных величин трёхфазной цепи. Подобная схема позволяет подключать одно- и трёхфазные контакты. Номинальное равно 380В и меняется при изменениях в ограниченной сети, к примеру, вследствие скачков.
Популярнейшей является цепь с нейтралью и заземлением. Подключение в такой системе производится по схеме:
- к фазным проводам подсоединяются однофазные провода;
- к 3-фазным — 3-фазные.
Широта применения ЛН обуславливается его безопасностью и комфортностью разветвления цепи. Оборудование в таком случае подключается к фазному выводу, и лишь он не безопасен.
Расчёт системы несложен, при этом действуют стандартные физические формулы. Параметры ЛН сети замеряются мультиметром, а ФН — спецустройствами, например, вольтметром, датчиком тока, тестером.
Характеристики сети:
- Разводка подобной проводки не нуждается в применении профессионального оборудования. Достаточно отвёрток, которые имеют индикаторы.
- Вероятность удара током очень мала. Подобное объясняется присутствующей в цепи свободной нейтралью.
- Схема подходит для всех видов тока.
Важно! К 3-фазной цепи можно подключить 1-фазную. Наоборот сделать нельзя.
Включение в трёхфазную цепь приёмников электрической энергии- Подобная схема подключения пригодна для многих устройств, которым необходима высокая мощность, чтобы работать. ЛН позволяет увеличить КПД двигателя на33%.
При переключении обмоток генератора к треугольнику со звезды обуславливает увеличение в 1,73 раза величины ЛН.
Соединения в трёхфазных цепяхВажно! Сложность обнаружения повреждений в линейном соединении является немаловажным недостатком цепи, так как вследствие этого может случиться пожар.
Отличие между ЛН и ФН состоит в различии соединяемых проводов обмоток. Чтобы проконтролировать параметры ЛН и ФН потребуется импульсный стабилизатор, по-другому — линейный стабилизатор. Этот прибор даёт возможность, сохраняя показатель на одном уровне, приводить в норму напряжение, если оно резко выросло. Прибор можно подключить к контактам электорооборудования, обычной розетке.
Соотношения фазного и линейного напряжения
Соотношение между напряжением линейным и фазным составляет 1,73. То есть при ста процентах мощности ЛН, напряжение фазы будет 58%. То есть, ЛН превышает ФН в 1,73 раза и при этом стабильно.
ФН и ЛН, отличие и соотношениеНапряжение в трёхфазной цепи оценивается по параметрам линейной составляющей. Обычно оно 380 вольт и тождественно 220 вольтам фазной компоненты сети трёхфазного электротока. В электрических сетях, где имеется четыре провода, напряжение 3-фазного тока обозначается 380/220В. Это позволяет подключить к подобной сети оборудование с 1-фазным потреблением электричества 220В и мощных приборов, которые могут работать от 380В.
Универсальной и приемлемой в большинстве случаев является трёхфазная цепь 380/220В 0-вым проводом. Электроприборы, которые функционируют от однофазного напряженья 220В, могут при подсоединении к паре проводов ФН питаться от ЛН.
Электрооборудование, которое запитывается от трёхфазной сети может работать, только если имеется подсоединение одновременно к 3-м выводам различных фаз. Тогда заземление не обязательно, но если изоляционный материал провода будет повреждён, то отсутствие 0-ого значительно увеличивает опасность удара электрическим током.
Важно! При понижении ЛН меняются величины ФН. При уже выясненном значении междуфазного напряжения определить величину ФН труда не составит.
Чему равно линейное напряжение
В большей части стран мира стандартное ЛН составляет примерно 380В.
В трёхфазных цепях фазное и линейное напряжение находятся в соотношении 220В/380В соответственно.
В чем измеряется
Согласно ГОСТ 13109 норма напряжения в электрической сети варьирует в диапазоне от 198В до 242В (то есть 220В плюс или минус 10 процентов). При частой поломке бытовой техники, ламп или их мигании потребуется измерение напряжения в электрической проводке. Подобная проверка делается мультиметром или вольтметром. Ночью, когда электроприборы используются по минимуму, полученные значения будут максимальными.
Мультиметром измеряется напряжение в трёхфазной сети так:
- Между рабочим 0 и каждой из фаз: А-N, В-N, С-N.
- Линейные напряжения: А-В, А-С, В-С.
Всего должно получиться шесть измерений. Иногда делается ещё один замер — между заземляющим и нулевым рабочим проводником: N-PE.
Как измерить
Измерить подобную систему можно мультиметром или применив физические формулы.
Измерение подключения к сетиЛН рассчитывается по формуле Кирхгофа: ∑ Ik = 0. Здесь сила тока равняется нулю во всех частях электроцепи, то есть к=1. Используется также закон Ома: I=U/R. Применив обе формулы можно высчитать параметры клейма или электросети.
В системе из несколько линий, потребуется найти напряжение между 0 и фазой IL = IF. Значения IL и IF непостоянные и меняются при разных вариациях подключения. Потому линейные параметры точно такие же, как и фазные.
Фазное
Для того чтобы получить показания подключения фазного вида, потребуется специальное оборудование, например, мультиметр, вольтметр. Для того чтобы измерить токи и напряжения в трёхфазных цепях обычно достаточно знать данные одного линейного тока и одного ЛН.
Перекос фазФН измеряется при проседании (падении) линейного. Из линейных величин извлекается Квадратный корень из трёх. Полученный показатель и есть параметры ФН.
Линейное
Для расчёта соотношения линейного проводника и фазы применяется формула: Uл=Uф∙√3, Uф — фазовое, Uл — линейное.
Важно! Формула справедлива, только если IL = IF. Когда в цепь добавлены другие отводящие элементы, то для них потребуется сделать персональный расчёт фазового напряжения. Тогда Uф нужно заменить цифровыми величинами самостоятельного клейма.
Реактивная трёхфазная мощность рассчитывается по формуле: Q = Qа + Qb + Qс. Значение активной мощности можно найти, используя аналогичную формулу: P = Pа + Pb + Pс. Необходимость в подобных расчётах возникает, если к электрической сети подключается промышленная система.
Распространённость сетей с линейным током объясняется их относительной безопасностью и несложностью разведения электропроводки. Электрооборудование присоединено исключительно к одному фазному проводу (по нему проходит ток) и только он может быть опасен, второй — это заземление. ЛН возникает в трёхфазной цепи и даёт увеличение приблизительно на 73%.
Фазное и линейное напряжение
Одним из вариантов систем многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях происходит действие синусоидальных электродвижущих сил с одинаковой частотой. Они отличаются друг от друга по фазе и создаются от общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, отличающиеся своими электрическими характеристиками.
Что такое фаза
Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой. Поэтому определение фазы имеет двоякое значение в электротехнике. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет наименование цепей: двухфазные, трехфазные, шестифазные и т.д.
Самыми распространенными цепями в современной энергетике являются трехфазные. Они имеют ряд преимуществ перед другими видами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью достаточно просто образуется вращающееся круговое магнитное поле, обеспечивающее работу асинхронных двигателей. Данное явление известно, как ЭДС или по-другому, электродвижущая сила индукции.
Вращающийся магнит называется ротором, а катушки, расположенные вокруг него, образуют статор. Переменное напряжение получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.
Изменение магнитного потока происходит за счет вращения ротора, что и приводит к образованию переменного напряжения. В статоре имеется три катушки, в каждой из которых присутствует собственная отдельная электрическая цепь. Каждая катушка сдвинута относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита во всех катушках возникает одинаковое переменное напряжение между фазами в трехфазной сети.
Трехфазные цепи дают возможность получать два эксплуатационных напряжения на одной установке – фазное и линейное.
Фазное и линейное напряжение в трехфазных цепях
Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.
Линейное – определяется как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз.
Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.
В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин – 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные – на 220 вольт.
Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом отсутствие заземления повышает риск поражения током, когда нарушена изоляция.
Отличие линейного напряжения от фазного
Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем различаются между собой линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникнуть либо между двумя фазами, либо между одной из фаз и нулевым проводом. Подобное взаимодействие становится возможным из-за использования в схеме четырехпроводной трехфазной цепи. Ее основными характеристиками являются напряжение и частота.
Напряжение, возникающее между двумя фазными проводниками, считается линейным, а между фазным и нулевым возникает фазное. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам возможно подключение не только трехфазных контактов, но и однофазных, например, различных бытовых приборов. Номинальное значение линейного напряжения составляет 380 В. Иногда оно изменяется под действием различных факторов, появляющихся в локальной сети. Таким образом, все основные различия между обоими видами напряжений заключаются в способах соединения обмоток.
Наибольшее распространение получило линейное напряжение, из-за безопасного использования и удобного распределения сетей. Для его замеров достаточно мультиметра, тогда как определение характеристик фазного напряжения требует использования вольтметров, датчиков тока и других специальных приборов.
Контроль и выравнивание данного параметра осуществляется с помощью линейного стабилизатора напряжения. Этот прибор обеспечивает поддержание этого показателя на нормативном уровне, в том числе он нормализует и повышенное напряжение.
Использование линейного и фазного напряжения
Классическим примером использования линейного и фазного напряжения считаются соединения, используемые при запуске трехфазного генератора. В его конструкцию входят первичные и вторичные обмотки, которые могут соединяться звездой или треугольником.
Схема «треугольник» предполагает соединение конца первой фазы с началом второй. Кроме того, каждый фазный проводник соединяется с линейными проводами источника тока. В результате, происходит выравнивание токов, а фазное напряжение становится равным линейному. По такой же схеме подключаются электродвигатели и трансформаторы.
Другим вариантом является схема «звезда». В этом случае начала всех обмоток подключаются к одной сети при помощи перемычек. Таким образом, в обмотки будет поступать ток с характеристиками этой сети, а межфазное напряжение вступит во взаимодействие со всеми активными контактами.
Разбираемся в разнице между фазным и линейным напряжениями
Фазное напряжение и линейное, соединение звездой и треугольником. В разговорах профессиональных электриков можно нередко слышать эти слова. Но даже не всякий электрик знает точное их значение. Так что же означают эти термины? Попробуем разобраться.
На заре развития электротехники энергия электрических генераторов и батарей передавалась потребителям по сетям постоянного тока. В США главным апологетом этой идеи был знаменитый изобретатель Томас Эдисон и крупнейшие на то время энергетические компании, подчиняясь авторитету «гиганта инженерной мысли», беспрекословно внедряли её в жизнь.
Однако, когда встал вопрос о создании разветвлённой электрической сети потребителей, питающейся от расположенного на большом расстоянии генератора, что потребовало создания первой линии электропередачи, победил проект никому тогда неизвестного сербского эмигранта Николы Теслы.
Он кардинально изменил саму идею системы электроснабжения, применив в ней вместо постоянного, генератор и электрические линии переменного тока. что позволило значительно снизить потери энергии, расход материалов и повысить энергоэффективность.
В этой системе использовался созданный Теслой трёхфазный генератор переменного тока, а передача энергии осуществлялась с помощью трансформаторов напряжения, изобретённых русским учёным П. Н. Яблочковым.
Другой русский инженер М. О. Доливо‑Добровольский уже через год не только создал подобную систему электроснабжения в России, но и значительно усовершенствовал её.
У Теслы для генерации и передачи энергии использовались шесть проводов, Добровольский предложил путём видоизменения подключения генератора сократить это количество до четырех.
Экспериментируя над созданием генератора, он попутно изобрёл асинхронный электродвигатель с короткозамкнутым ротором, находящий и поныне самое широкое применение в промышленности.
Что такое фаза: определяемся в значении
Понятие фазы существует только в цепях синусоидального переменного тока. Математически такой ток можно представить и описать уравнениями вращающегося вектора, закреплённого одним концом в начале координат. Изменение величины напряжения цепи с течением времени будет представлять собой проекция этого вектора на ось координат.
Значение этой величины зависит от угла, под которым находится вектор к координатной оси. Строго говоря, угол вектора — это и есть фаза.
Значение напряжения измеряется относительно потенциала Земли, всегда равного нулю. Поэтому провод, в котором существует напряжение переменного тока, называют фазным, а другой, заземлённый, — нулевым.
Фазовый угол одиночного вектора не представляет большого практического значения — в электрических сетях он за 1/50 сек совершает полный оборот в 360°. Куда большее применение имеет относительный угол между двумя векторами.
В цепях с так называемыми реактивными элементами: катушками, конденсаторами, он образуется между векторами значений напряжения и тока. Такой угол называют фазовым сдвигом.
Если величины реактивных нагрузок не меняются во времени, то и фазовый сдвиг между током и напряжением будет постоянным. А уже с его помощью можно производить анализ и расчёт электрических цепей.
В XIX веке, когда ещё не было научной теории электричества, и все разработки нового оборудования осуществлялись опытным путем, экспериментаторы заметили, что виток провода, вращающийся в постоянном магнитном поле, создаёт на своих концах электрическое напряжение.
Затем выяснилось, что оно изменяется по синусоидальному закону. Если намотать катушку из многих витков, напряжение пропорционально увеличится. Так появились первые электрические генераторы, которые могли обеспечивать потребителей электрической энергией.
Тесла в генераторе, разрабатываемом для крупнейшей тогда в США Ниагарской гидроэлектростанции, для более эффективного использования магнитного поля, разместил в нем не одну катушку, а три.
За один оборот ротора магнитное поле статора пересекали сразу три катушки благодаря чему отдача генератора увеличилась в корень из трёх раз и от него можно было запитать одновременно трёх различных потребителей.Экспериментируя с такими генераторами, первые инженеры‑электрики заметили, что напряжения в обмотках изменяются не одновременно. Когда, например, в одной из них оно достигает положительного максимума, в двух других оно будет равным половине отрицательного минимума и так периодически для каждой обмотки, а для математического описания такой системы уже нужна была система трёх вращающихся векторов с относительным углом между ними в 120°.
В дальнейшем оказалось, что если нагрузки в цепях обмоток сильно отличались друг от друга, это значительно ухудшало работу самого генератора. Выяснилось, что в больших разветвлённых сетях выгоднее не тащить к потребителям три различных линии электропередач, а подвести к ним одну трёхфазную и уже на конце её обеспечивать равномерное распределение нагрузок по каждой фазе.
Именно такую схему и предложил Доливо‑Добровольский, когда по одному выводу от каждой из трёх обмоток генератора соединяются вместе и заземляются, вследствие чего их потенциал становится одинаковым и равным нулю, а электрические напряжения снимаются с других трёх выводов обмоток.
Эта схема получила наименование «соединения звездой». Она и поныне является основной схемой организации трёхфазных электрических сетей.
Разберёмся что такое фазное напряжение
Для создания таких сетей требуется провести от генератора к потребителям линию электропередачи, состоящую из трёх проводов фазных и одного нулевого. Конечно, в реальных сетях для уменьшения потерь в проводах на обоих концах линий подключаются ещё и повышающие и понижающие трансформаторы, но реальной картины работы сети это не меняет.
Нулевой провод нужен, чтобы зафиксировать передать к потребителю потенциал общего вывода генератора, ведь именно по отношению к нему создаётся напряжение в каждом фазном проводе.
Таким образом, фазное напряжение образуется и измеряется относительно общей точки соединения обмоток — нулевого провода. В хорошо сбалансированной по нагрузкам трёхфазной сети через нулевой провод течет минимальный ток.
На выходе трёхфазной линии электропередачи имеются три фазных провода: L1, L2, L3 и один нулевой — N. По существующим евростандартам они должны иметь цветовые обозначения:
- L1 — коричневый;
- L2 — чёрный;
- L3 — серый;
- N — синий;
- Жёлто‑зелёный для защитного заземления.
Такие линии подводятся к большим серьёзным потребителям: предприятиям, городским микрорайонам и т. п. Но маломощным конечным потребителям, как правило, не нужны три источника напряжения, поэтому они подключаются к однофазным сетям, где имеется только один фазный и один нулевой провод.
Равномерным распределением нагрузок в каждой из трёх однофазных линий обеспечивается баланс фаз в трёхфазной системе электроснабжения.
Таким образом, для организации однофазных сетей используется напряжение одного из фазных проводов относительно нулевого. Такое напряжение и называется фазным.По принятому в большинстве стран стандарту для конечных потребителей оно должно составлять 220 В. На него рассчитывается и выпускается практически все бытовое электрооборудование. В США и некоторых странах Латинской Америки для однофазных сетей принято стандартное напряжение 127 В, а кое‑где и 110 В.
Что такое линейное напряжение сети
Преимущества однофазной сети в том, что один из проводов имеет потенциал, близкий к потенциалу Земли.
Это, во‑первых, помогает обеспечивать электробезопасность оборудования, когда риск поражения электротоком представляет только один, фазный провод.
Во‑вторых, такая схема удобна для разводки сетей, расчета и понимания их работы, проведения измерений. Так, для нахождения фазного провода не нужны специальные измерительные приборы, достаточно иметь индикаторную отвёртку.
Но от трёхфазных сетей можно получить и ещё одно напряжение, если подключить нагрузку между двумя фазными проводами. Оно будет по значению выше фазного напряжения, потому что будет представлять собой проекцию на координатную ось не одного вектора, а двух, расположенных под углом в 120° друг к другу.
Этот «довесок» и будет давать прирост примерно в 73%, или √3–1. По существующему стандарту линейное напряжение в трёхфазной сети должно быть равно 380 В.
Каково основное отличие этих напряжений
Если к такой сети подключить соответствующую нагрузку, например, трёхфазный электродвигатель, он будет давать механическую мощность, значительно большую, чем однофазный такого же размера и веса. Но подключить трёхфазную нагрузку можно двумя способами. Один, как уже было сказано — «звезда».
Если же начальные выводы всех трёх обмоток генератора или линейного трансформатора не соединять вместе, а подключить каждый из них к конечному выводу следующей, создав из обмоток последовательную цепочку, такое соединение называется «треугольником».
Особенность его в отсутствии нулевого провода, и для подключения к таким сетям нужно соответствующее трёхфазное оборудование, у которого нагрузки также соединены «треугольником».
При таком соединении в нагрузке действуют только линейные напряжения 380 В. Один пример: электродвигатель, включённый в трёхфазную сеть по схеме «звезда», при токе в обмотках 3,3 А будет развивать мощность 2190 Вт.
Тот же двигатель, включенный «треугольником», будет в корень из трёх раз мощнее — 5570 Вт за счёт увеличения тока до 10 А.Получается, что, имея трёхфазную сеть и такой же электродвигатель, мы можем получить значительно больший выигрыш по мощности, чем при использовании однофазных, а просто изменив схему подключения, мы увеличим выходную мощность двигателя ещё втрое. Правда, его обмотки также должны быть рассчитаны на повышенный ток.
Таким образом, основное отличие между двумя видами напряжений в сетях переменного тока, как мы выяснили, — это величина линейного напряжения, которая в 3 раза больше фазного. За величину фазного напряжения принимается абсолютное значение разности потенциалов фазного провода и Земли. Линейное же напряжение — это относительная величина разности потенциалов между двумя фазными проводами.
Ну и в завершении статьи два видео о соединении звездой и треугольником, для тех кто хочет разобраться подробнее.Чем фазное напряжение отличается от линейного?
Прежде чем браться за ответ на вопрос выше потребуется проделать целую экскурсию в историю и обустройство силовых электрических сетей переменного тока. Также важно понимать, что рассматриваемые термины имеют чётко определённый смысл лишь в описываемом ниже контексте.
С чего всё началось
Первую коммерческую попытку передачи электроэнергии потребителям предпринял Т.Эдисон, используя для этого сеть постоянного тока — однако быстро выяснилось, что предложенная им архитектура построения сети очень материалоёмка и неудобна, а сколько-нибудь эффективное преобразование одного постоянного напряжения в другое по величине на стороне потребителя энергии попросту невозможно (в то время в принципе ещё не существовало ни электронных ламп, ни транзисторов, на которых можно было бы построить нужные устройства-преобразователи).
Т.Эдисон
Тогда же свою альтернативную систему, базирующуюся на синусоидальном переменном токе, начал продвигать Д.Вестингауз (синусоидальная форма вызвана не тем, что кому-то она «особенно понравилась» — просто ток/напряжение именно этой формы получались в типовом генераторе в силу естественных физических причин). Очевидный плюс использования переменного тока выражался в том, что его можно легко и эффективно (КПД до ~99%) преобразовывать по напряжению с помощью простого электромагнитного устройства — трансформатора (в нём есть как минимум две обычно электрически разделённых обмотки/катушки, при этом находящихся на общем магнитопроводе, обеспечивающем сильную индуктивную связь между ними).
Д.Вестингауз
Многофазные электрические сети
Для усовершенствования оборудования сетей переменного тока Д.Вестингауз пригласил Н.Тесла, который изобрёл и теоретически обосновал работу многофазных электрических сетей и машин, положив начало использования в США двухфазной сети переменного тока и попутно предложив трёхфазную систему, использующую для передачи электроэнергии шесть проводов. В свою очередь М.Доливо-
Добровольский предложил существенное усовершенствование трёхфазной системы Н.Тесла, в которой для передачи электроэнергии достаточно всего четырёх или даже вообще трёх проводов — чем положил начало силовым трёхфазным сетям практически в том виде, в каком нам они сейчас известны.
Соединение обмоток звезда-звезда
Как это устроено и работает
Простую однофазную систему можно представить как два провода, в одном из которых присутствует меняющееся синусоидальному закону напряжение, а второй провод служит «землёй», куда это напряжение может стекать при подключении потребителя (нагрузки).
Поскольку напряжение фазы меняется по закону синуса, легко представить два других провода под напряжением, в которых запаздывает или опережает по фазе электрических колебаний рассмотренное в первой линии на 120 градусов — тогда получится полностью взаимно-симметричная система (ведь в окружности ровно 360 градусов!), где любая из выбранных фаз опережает либо отстаёт от соседней точно на 120 градусов — и в такой системе может быть выделена одна-единственная «земля» и три разных фазных провода (именно эту схему в итоге и предложил М.Доливо-Добровольский).
Очевидно, что электрическую нагрузку в такой системе можно подключать двояко: либо между любой выбранной фазой и «землёй» (нейтралью), либо между фазными проводами (попутно отметим, что «истинно трёхфазные», симметричные потребители электроэнергии вроде асинхронных электродвигателей могут работать в подобной системе вовсе без нейтрали).
Важно то, что при этом действующее на нагрузку напряжение будет существенно различаться (~в 3 раз): если между отдельной фазой и нейтралью переменное напряжение составляет ~220 вольт, то между фазными проводами будет ~380 вольт. Напряжение синусоидальной формы между любой из фаз и выделенной нейтралью здесь называется «фазным», а между любыми двумя фазами — «линейным».
Сходства/отличия
Итак, резюмируем:
- Как фазное, так и линейное напряжения являются синусоидальными и сосуществуют рядом в вышеописанной промышленной трёхфазной системе с выделенной нейтралью.
- Фазное напряжение замеряется между фазой и нейтралью (в штатно функционирующей, без перекоса фаз трёхфазной системе фазные напряжения разных фаз практически идентичны по величине).
- Линейное напряжение замеряется между соседними фазами (и также в случае отсутствия перекоса фаз практически идентично в любой из выбранных пар).
- Порядковая величина различия между фазным/линейным напряжением в существующей трёхфазной системе весьма существенна — линейное больше фазного в √3 раз.
Разница между линейным и фазным напряжениями с решенными примерами
Линейное напряжение в трехфазной системе — это разность потенциалов между любыми двумя линиями или фазами, присутствующими в системе, обозначенная как V line или V L-L. Присутствующие здесь фазы являются проводниками или обмотками катушки. Если R, Y и B — три фазы (красная фаза, желтая фаза, синяя фаза), то разница напряжений между R и Y, Y и B или B и R образует линейное напряжение.С другой стороны, фазовое напряжение — это разность потенциалов между одной фазой (R, Y или B) и точкой соединения нейтрали, обозначенная как V фаза = VR (напряжение в красной фазе) = VY (напряжение в желтой фазе) = VB ( напряжение в синей фазе).
(изображение будет загружено в ближайшее время)
Точно так же линейный ток — это ток в одной фазе, а фазный ток — это ток внутри трехфазного соединения.
Чтобы понять соотношение линейного напряжения и фазного напряжения, первое, что нам нужно понять, это различные типы трехфазных систем подключения.
Соотношение между линейным напряжением и фазным напряжением при соединении звездой
Рассмотрим три катушки провода или обмотки трансформатора, соединенные общей точкой соединения. Три провода, идущие от каждой катушки к нагрузке, называются линейными проводами, а сами проводники являются фазами. Эта система представляет собой типичную трехфазную трехпроводную систему соединения звездой. Если нейтральный провод присоединяется к общей средней точке, это называется трехфазной четырехпроводной системой соединения звездой.
Термины линейное напряжение и фазное напряжение уже объяснялись ранее, и они связаны следующим образом:
\ [V_ {line} = \ sqrt {3} V_ {phase} \];
Пока линейный ток = фазный ток.
(изображение будет загружено в ближайшее время)
(изображение будет загружено в ближайшее время)
Соотношение между линейным напряжением и фазным напряжением при соединении треугольником
При соединении треугольником все три конца фаз соединены в замкнутый треугольник шлейф, и у него нет общей нейтральной точки, как при соединении звездой.Здесь линейное и фазное напряжение связаны следующим образом:
\ [V_ {line} = V_ {phase} \];
Пока линейный ток = √3 × фазный ток.
(изображение будет загружено в ближайшее время)
Разница между фазным напряжением и линейным напряжением определяется следующим образом:
Разница между линейным напряжением и фазным напряжением
Sl No. | Напряжение сети | Напряжение фазы |
1. | Напряжение сети выше, чем напряжение фазы при соединении звездой. | Фазное напряжение меньше линейного напряжения при соединении звездой. |
2. | Линейное напряжение — это разность потенциалов между двумя фазами или линиями. | Фазное напряжение — это разность потенциалов между фазой и нейтралью. |
3. | При соединении звездой линейное напряжение в √3 раз больше фазного напряжения. | При соединении звездой фазное напряжение в 1 / √3 раза больше линейного напряжения. |
При соединении треугольником линейное и фазное напряжение равны.
(изображение будет загружено в ближайшее время)
Решенные примеры
1. Рассчитайте фазное напряжение, если линейное напряжение составляет 460 вольт, учитывая, что система представляет собой трехфазную сбалансированную систему, соединенную звездой.
Ответ: Мы знаем,
Vphase = Vline / √3 = 460 / √3 = 265.59 вольт.
2. В какой из следующих цепей линейное и фазное напряжение равны? А как насчет соотношения линейного напряжения и фазного напряжения в другой цепи?
(изображение скоро будет загружено)
Ответ: Как мы знаем, при соединении треугольником (второй рисунок) линейное и фазное напряжение равны. В то время как для соединения звездой линейное напряжение выше, чем фазное напряжение, которое определяется соотношением: Vline = √3 Vphase.
Интересные факты
В любой проблеме или вопросе обычно указывается напряжение сети.В случае фазного напряжения следует упомянуть. Если не указано иное, считайте это линейным напряжением.
Наш бытовой трехфазный источник питания или 440 вольт — это сетевое напряжение.
Однофазный источник переменного тока 230 В — это разность напряжений между фазой и нейтральным переходом или, скорее, фазное напряжение.
Многофазная система, в которой все линейные напряжения и линейные токи равны, известна как трехфазная сбалансированная система.В случае несимметричных нагрузок система, как правило, неуравновешенная.
Линейное напряжение к фазному напряжению Отношение линейного тока к фазному току
Обновление:
В трехфазной сбалансированной системе напряжение на фазе по отношению к другой фазе всегда равно величине напряжения и фазового угла, а векторная сумма трех фаз всегда равна нулю.
Напряжение в сети или фазное напряжение выше 440 В можно измерить с помощью трансформатора напряжения.Измеритель потенциала снижает напряжение с более высокого уровня до низкого уровня, обычно со 110 вольт до 63,5 вольт.
В то же время линейный ток или фазный ток выше 25 А, трансформатор тока используется для понижения уровня тока с высокого до низкого, как правило, 1 А или 5 А.
Что такое линейное напряжение:
В трехфазной системе питания разность потенциалов между двумя фазами называется линейным напряжением (обычно между фазами). Обозначается V L-L . Напряжение между R и Y или Y с B или B с R.В энергосистеме под системным напряжением понимается линейное напряжение. См. Схему,
Пример: наш внутренний источник питания трехфазный, 440 В. Здесь 440 вольт означает, что межфазное напряжение равно 440.
Примечание: Если они упоминают однофазное 230 вольт, это означает, что разность потенциалов между фазой и нейтралью составляет 230 вольт.
В звездообразном соединении:
Напряжение сети = 1,732 фазного напряжения.
Соединение треугольником:
Напряжение сети = фазное напряжение.
Что такое линейный ток:
Измерение тока в одной фазе перед соединением компонента по схеме звезды или треугольника называется линейным током (обычно входным током в двигателе или выходным током в генераторе). В трехфазной сбалансированной системе это может быть ток фазы R, ток фазы Y или ток фазы B.
Обозначается I L ампер.
В звездообразном соединении:
Линейный ток = фазный ток.(мы получаем это, применяя текущее правило Кирхгофа.)
Соединение треугольником:
Линейный ток = фазный ток. (мы получаем его, применяя правило Кирхгофа по напряжению.)
Что такое фазное напряжение:
В трехфазной системе разность потенциалов между одной фазой и естественной точкой называется фазным напряжением. Обозначается V ph вольт
Звездное соединение:
Фазное напряжение = Линейное напряжение делится на 1.732
Соединение треугольником:
Фазный ток:
Фазный ток — это величина тока внутри соединения звездой или треугольником трехфазной системы. Обозначается I ph .
В звездообразном соединении:
Фазный ток = Линейный ток
Соединение треугольником:
Примечание: Значение √ 3 = 1,732.
Общие сведения о трехфазном напряжении | Тихоокеанский источник энергии
Однофазное переменное напряжение
Большинство из нас знакомы с однофазным напряжением в наших домах, обеспечиваемым местными коммунальными предприятиями. Для США это обычно 120 В. Для однофазного напряжения напряжение выражается как напряжение между фазой и нейтралью между двумя силовыми проводниками (плюс защитное заземление). Нейтральный проводник обычно имеет потенциал земли, а линейный провод — синусоидальное переменное напряжение со среднеквадратичным значением 120 В переменного тока.Это означает, что пик переменного напряжения меняется от + 169,7 В до -169,7 В каждые 16,667 мс на частоте сети 60 Гц в США. Для многих других стран эти номинальные значения составляют 230 В среднеквадратического значения при 50 Гц (20 мс).
Рисунок 1: Форма волны синусоидального напряжения 120 В среднеквадратического значения для однофазной сети
Пауэр Лимитед
Однофазное напряжение может выдавать только столько мощности, сколько вся мощность должна передаваться через линейный и нейтральный проводники. Это не проблема для домашнего использования, но для промышленного использования может потребоваться больший ток для работы машин, двигателей, освещения и других мощных нагрузок.В таких ситуациях часто бывает желательно увеличить как напряжение, так и ток, чтобы получить более высокую мощность. Один из вариантов — использовать две фазы, как в некоторых домах в США, для работы электрических сушилок. Это называется соединением с разделением фаз, когда две фазы 120 В среднеквадратического значения разнесены по фазе на 180 °, обеспечивая удвоенное межфазное напряжение 120 В или 240 В. Это удваивает доступную мощность. Разделенная фаза обычно не используется в Европе или Азии, поскольку нормальное напряжение однофазной сети уже составляет от 220 В до 240 ЛН.
Трехфазное переменное напряжение
Если пойти дальше, то мощные нагрузки обычно получают питание от трех фаз.Это распределяет ток по трем проводам, а не по одному набору проводов, что позволяет использовать проводку меньшего размера и, следовательно, менее дорогую. Три источника напряжения сдвинуты по фазе на 120 ° друг относительно друга, чтобы уравновесить токи нагрузки. Это показано на Рисунке 2.
Рисунок 2: Кривые трехфазного напряжения с разным вращением
Фазовый сдвиг на 120 ° между каждой формой сигнала может быть выполнен в одном из двух чередований фаз — A -> B -> C или A -> C -> B. Чередование фаз не влияет на большинство нагрузок, за исключением трехфазных двигателей переменного тока, которые будут поверните в обратном направлении, если чередование фаз изменилось.Изменить чередование фаз можно, поменяв местами любые два из трех фазных соединений. При использовании программируемого источника питания переменного тока, такого как серия AFX, фазовые углы для фаз B и C можно запрограммировать на 120 ° и 240 ° или 240 ° и 120 ° соответственно, чтобы изменить чередование фаз. AFX также позволяет программировать фазовый дисбаланс для изучения влияния фазовых изменений на тестируемое устройство.
Осторожно при определении межфазных напряжений
В то время как «нормальное» соотношение трехфазного треугольника и звездочки легко уловить в простой формуле, это применимо только к равным линейным и нейтральным напряжениям, идеальному фазовому балансу и синусоидальным напряжениям.В этом идеальном случае соотношение между линейным и нейтральным среднеквадратичным напряжением и линейным среднеквадратичным напряжением может быть выражено следующей формулой:
Это соотношение между фазой и нейтралью и линейным напряжением показано на фазовой диаграмме на Рисунке 3.
Рисунок 3: Трехфазная фазовая диаграмма
На рисунке 4 ниже показаны два типичных примера трехфазных конфигураций напряжения электросети, используемых в Соединенных Штатах. В Европе и Азии вместо этого обычно используются конфигурации 220/380 В или 230/400 В.120VLN на фазу эквивалентно векторной сумме 208VLL:
В LL = 120 В LN * 1,732 = 207,84 В LL
Обратите внимание, что конфигурация сети, соединенная треугольником 480 В, не имеет нейтрального соединения и называется соединением 3 провода + земля треугольник. Чтобы смоделировать этот тип сети с источником питания переменного тока, трехфазная нагрузка подключается по схеме треугольника только между тремя выходными фазами без подключения к выходной клемме нейтрали.
Рисунок 4: Типичные конфигурации трехфазного напряжения, используемые в США
Это соотношение √3 важно при использовании программируемого трехфазного источника переменного тока, поскольку все источники переменного тока типа T&M программируются только на линейное и нейтральное напряжение.Таким образом, если какое-либо из указанных условий не выполняется, вы не можете просто полагаться на эту формулу для определения межфазного напряжения:
- Одинаковые напряжения VLN на всех трех фазах
- Сбалансированные углы фаз на фазах B и C
- Низкие искажения, чистый синусоидальный сигнал
Небольшой фазовый сдвиг на одной или нескольких из трех фаз может иметь значительное влияние на напряжения V LL , что также приводит к дисбалансу тока нагрузки.
Искаженное напряжение, вызванное нелинейной нагрузкой на одной или нескольких фазах, также может сбрасывать линейные напряжения.
Почему это важно?
Программируемые трехфазные источники питания переменного тока имеют регулируемые углы фаз и часто поддерживают сигналы произвольной формы. Это означает, что соотношение между фазой и нейтралью и линейным напряжением не обязательно «фиксированное». Как правило, все трехфазные программируемые источники питания переменного тока программируются на среднеквадратичное значение от линии до нейтрали, независимо от типа нагрузки (треугольник или звезда). Таким образом, может потребоваться фактически измерить результирующее межфазное напряжение, поскольку его расчет недействителен, если эти условия не выполняются.
Заключение
При тестировании трехфазных нагрузок обращайте особое внимание на параметры напряжения и фазы, когда делаете предположения о напряжениях между фазами, приложенных к тестируемому устройству.
Трехфазная терминология: фаза против линии?
«Фаза» и «Линия» — как они определяются
© L A Waygood
, 2019 г.Два основных термина, которые часто вызывают путаницу при изучении трехфазных систем переменного тока : « фаза » и « линия ».В этом нет ничего удивительного, ведь зачастую термины употребляются совершенно неправильно, не только в полевых условиях, но, к сожалению, очень часто, к сожалению, и в учебниках!
Часто, например, мы слышим, как кто-то называет три проводника, свисающие с распределительной линии, « фазными проводниками » или « фазами ». Это совершенно неверно . Правильная терминология — « линейных проводника » или « линий ».
Три находящихся под напряжением проводов , которые подключают трехфазную нагрузку к трехфазному источнику питания, называются «линиями ».Напряжение между любыми двумя линейными проводниками называется «линейным напряжением », а ток, который проходит по каждому линейному проводнику, называется «линейным током ». Клеммы трехфазного источника (генератора или трансформатора) или трехфазной нагрузки, к которым подключены линейные проводники, называются « линейные клеммы ».
‘ Фазы ‘, , с другой стороны, подключены между любой парой линейных клемм (соединение «треугольник»), или между любыми отдельными линейными клеммами и нейтралью («звезда» или «звезда» связь’). Независимо от того, подключены ли они по схеме «треугольник» или «звезда» (звезда), три обмотки генератора или трансформатора и три нагрузки с полным сопротивлением являются «фазами , ». Напряжение, возникающее на любой фазе, называется «фазным напряжением », а ток, проходящий через любую фазу, называется «фазным током ».
В системе , соединенной треугольником, , даже несмотря на то, что линейное напряжение численно равно соответствующему фазному напряжению , мы должны всегда сохранять правильные значения , в соответствии с ГДЕ эти напряжения измеряются.
В системе , соединенной звездой , даже несмотря на то, что линейный ток численно равен соответствующему фазному току , мы всегда должны сохранять правильные значения, в соответствии с ГДЕ эти токи измеряются — как показано ниже:
Идентификационные линии
Линейные проводники и линейные клеммы (НЕ фазы) идентифицируются в соответствии с национальными стандартами. Например, в Европе цвета коричневый , черный и серый используются для обозначения линий и линейных клемм.В других странах используются другие цвета. Однако на международном уровне обычно используются буквы A , B и C — например, на принципиальных схемах (как указано выше). Использование букв имеет дополнительное преимущество, заключающееся в том, что линии высокого напряжения (или клеммы ) могут быть идентифицированы с использованием заглавных букв : A , B и C, , а низковольтные линии (или клеммы ) могут быть идентифицированы с помощью строчных букв : a , b и c .
Британский стандарт, касающийся трансформаторов, например, использует буквы A , B и C для обозначения клемм высоковольтных трансформаторов и строчные буквы a , b и c , для обозначения клемм низкого напряжения.
Важно понимать, что эти цвета или буквы используются для обозначения линии ( проводников) или клемм , НЕ фаз.
Определение фаз
Фазные обмотки или , сопротивление нагрузки сами по себе не идентифицируются. Вместо этого они обозначены в терминах линейных клемм , между которыми они соединены. Например, в случае соединения треугольником фазная обмотка, подключенная между линейными выводами A, и B , обозначается как ‘ Phase A-B ‘ ; фазная обмотка, подключенная между линейными выводами B и C , обозначена как ‘ Phase B-C ‘ ; фазная обмотка, подключенная между линейными выводами C и A , обозначается как ‘ Phase C-A ‘ .То же самое применимо, если мы используем цвета вместо букв: например, «Фаза коричнево-черная» и др.
В случае соединения звездой каждая фаза идентифицируется с точки зрения линейного вывода, к которому она подключена, и нейтральной точки, то есть ‘ Phase AN ‘, ‘ Phase BN ‘, и ‘ Фаза CN ‘ .
Нет никакого смысла ссылаться, например, на ‘ коричневая фаза ‘ или ‘ фаза A ‘ и т. Д., поскольку эти цвета или буквы обозначают линии (или клеммы ), не фаз.
что такое фазное и линейное напряжение? в линейном напряжении, как получается 415в?
What_is_mean_by_negative_dc_voltage? почему мы используем -48В кроме + 48в в системах питания постоянного тока.
2 ответа АПЕЛ, БСЭС,
Определите минимальный размер кабеля для однофазной 28A последняя подсхема, исходящая от распределительного щита питание от трехфазной сети.Длина маршрута заключительная подсхема 54 м. Предположим, что падение напряжения в цепи составляет 1%. сеть потребителя. Технические характеристики вспомогательного оборудования: Кабель: 50 мм2 4 сердечник В75 медь; Длина трассы 42м; Максимальное потребление 135 А на фаза
1 ответов
Какие защиты используются для генератора, трансформаторов.
2 ответа Адани,
направленное реле максимального тока в действии и как оно работает
3 ответа NCC, ThyssenKrupp,
Степень защиты IP55 означает
1 ответов Hofincons,
привет, кто-нибудь может мне помочь? пожалуйста, пришлите мне бумагу для размещения IOCL Electric streem…. отправьте плз …. срочно ….
0 ответов
проблема в том, что я подключаю однофазную нагрузку к вторичный трансформатор, подключенный по схеме треугольник, но я получаю нейтраль от другого трансформатора в системе?
0 ответов
почему коэффициент ТТ составляет 50/5, 100/5, 25/5.
11 ответов ABB, Ramky,
Что такое координация класса 2?
2 ответа
Как выбрать номинал конденсатора или катушки индуктивности в система?
0 ответов
что такое импеданс трансформатора? как я могу его рассчитать?
1 ответов
У меня два процессора ПЛК.Я хочу общаться как процессор друг с другом. Как я могу это сделать?
0 ответов IHG InterContinental Hotels Group,
Трехфазное питание, значения напряжения и тока
Трехфазное соединение звездой: линия, фазный ток, напряжения и мощность в конфигурации Y Что такое соединение звездой (Y)?Звездное соединение ( Y ) Система также известна как Трехфазная четырехпроводная система ( 3-фазная 4-проводная ), и это наиболее предпочтительная система для распределения мощности переменного тока, а для передачи — Delta соединение обычно используется.
В системе соединения Star (также обозначается как Y ) начальные или конечные концы (аналогичные концы) трех катушек соединяются вместе, образуя нейтральную точку. Или
Звездообразное соединение получается путем соединения вместе одинаковых концов трех катушек, либо «Пуск», либо «Завершение». Остальные концы присоединяются к линейным проводам. Общая точка называется нейтральной или звездной точкой , которая представлена N .(Как показано на рис. 1)
Звездное соединение также называется трехфазной 4-проводной (3-фазной, 4-проводной) системой.
Также читайте:
Если сбалансированная симметричная нагрузка подключена к трехфазной системе параллельно, то три тока будут течь по нейтральному проводу, количество которых будет одинаковым, но они будут отличаться на 120 ° (не в фазе) , следовательно, векторная сумма этих трех токов = 0. т.е.
I R + I Y + I B = 0 …………….Victorially
Напряжение между любыми двумя клеммами или напряжение между линией и нейтралью (точка звезды) называется фазным напряжением или напряжением звезды, обозначенным как V Ph . Напряжение между двумя линиями называется линейным напряжением или линейным напряжением и обозначается V L .
Соединение звездой (Y) Трехфазное питание, значения напряжения и тока Значения напряжения, тока и мощности при соединении звездой (Y)Теперь мы найдем значения линейного тока, линейного напряжения, фазного тока, фазы Напряжения и мощность в трехфазной системе переменного тока звездой.
Линейные напряжения и фазные напряжения при соединении звездойМы знаем, что линейное напряжение между линией 1 и линией 2 (из рис. 3a) составляет
В RY = V R — V Y …. (Разность векторов)
Таким образом, чтобы найти вектор V RY , увеличьте вектор V Y в обратном направлении, как показано пунктирной линией на рисунке 2 ниже. Аналогичным образом на обоих концах вектора V R и Vector V Y образуют перпендикулярные пунктирные линии, которые выглядят как параллелограмм, как показано на рис. (2).Диагональная линия, разделяющая параллелограмм на две части, показывает значение V RY . Угол между векторами V Y и V R составляет 60 °.
Следовательно, если
V R = V Y = V B = V PH
, то
V RY = 2 x V PH x Cos (60 ° / 2)
= 2 x V PH x Cos 30 °
= 2 x V PH x (√3 / 2) …… Так как Cos 30 ° = √3 / 2
V RY = √3 V PH
Аналогично,
V YB = V Y — V B
V YB = √3 V PH
And = V B — V R
V BR = √3 V PH
Следовательно, доказано, что V RY = V YB = V BR is линейные напряжения (V L ) при соединении звездой , следовательно, при соединении звездой;
V L = √3 V PH или V L = √3 E PH
Линейные и фазовые напряжения при соединении звездойИз рисунка 2 видно, что;
- Линейные напряжения отстоят друг от друга на 120 °
- Линейные напряжения на 30 ° опережают соответствующие фазные напряжения
- Угол Ф между линейными токами и соответствующими линейными напряжениями составляет (30 ° + Ф), т.е.е. каждый линейный ток отстает (30 ° + Ф) от соответствующего сетевого напряжения.
Связанный пост: Осветительные нагрузки, соединенные звездой и треугольником
Линейные токи и фазные токи при соединении звездойИз рис. (3a) видно, что каждая линия соединена последовательно с отдельной фазной обмоткой, поэтому значение Линейный ток такой же, как и в фазных обмотках, к которым подключена линия. т.е.
- Ток в линии 1 = I R
- Ток в линии 2 = I Y
- Ток в линии 3 = I B
Поскольку текущие токи во всех трех линиях одинаковы, и поэтому индивидуальный ток в каждой строке равен соответствующему фазному току;
I R = I Y = I B = I PH ….Фазный ток
Линейный ток = Фазный ток
I L = I PH
Проще говоря, значения линейных токов и фазных токов одинаковы в Star Connection .
Соединение звездой (Y): значения линейных токов и напряжений и фазных токов и напряжений Мощность при соединении звездойВ трехфазной цепи переменного тока общая истинная или активная мощность является суммой трехфазной мощности.Или сумма всех трех фазных мощностей — это полная активная или истинная мощность.
Следовательно, полная активная или истинная мощность в трехфазной системе переменного тока;
Полная истинная или активная мощность = 3-фазная мощность
Или
P = 3 x V PH x I PH x CosФ … .. уравнение… (1)
Мы знаем, что значения фазного тока и фазного напряжения при соединении звездой;
I L = I PH
V PH = V L / √3 ….. (От В L = √3 В PH )
Ввод этих значений в уравнение мощности ……. (1)
P = 3 x (V L / √3) x I L x CosФ …….…. (V PH = V L / √3)
P = √3 x√3 x (V L / √3) x I L x CosФ….… {3 = √3x√3 }
P = √3 x V L x I L x CosФ
Следовательно, доказано;
Питание в звездообразном соединении ,
P = 3 x V PH x I PH x CosФ или
P = √3 x V L x I L x CosФ
То же самое объясняется в MCQ трехфазной цепи с пояснительным ответом (MCQ No.1)
Аналогично,
Общая реактивная мощность = Q = √3 x V L x I L x SinФ
Где Cos Φ = коэффициент мощности = фазовый угол между фазным напряжением и фазным током, а не между линейным током и линейным напряжением.
Полезная информация : Реактивная мощность индуктивной катушки принимается как положительная (+), а у конденсатора — как отрицательная (-).
Также полная полная мощность трех фаз;
Полная полная мощность = S = √3 x V L x I L Или,
S = √ (P 2 + Q 2 )
Также считывается:
Расчет Линейное напряжение при измерении между фазой и нейтралью с помощью модуля ввода напряжения серии NI 9225 C
Схема подключения, показанная выше на рисунке 1, может использоваться для косвенного измерения линейных напряжений в системах с Y-соединением.Линейное напряжение является векторной суммой линейных напряжений. Так, например, если мы знаем V и , V bn и V cn (определено, как на диаграмме ниже), мы можем найти линейные напряжения следующим образом:
Следующая векторная диаграмма (диаграмма 1) поможет визуализировать математические вычисления векторов, необходимые для преобразования линейного напряжения в линейное в линейное.
Диаграмма 1. Векторы линейных вычислений
Начнем с примера, показывающего, как измерить V ab .Как было описано выше, линейное напряжение представляет собой векторную сумму линейных напряжений, поэтому
Номинально каждая фаза в трехфазной системе разнесена точно на 120 градусов. Однако, поскольку наша цель — провести измерения в системе, мы не можем считать ее идеальной. Из-за этого, вместо предположения 120 градусов разделения между фазами, мы просто будем использовать Θ xx для обозначения угла между двумя фазами. V и , как определено выше, имеют нулевую фазу, а V bn имеет фазу ab .
Разделение V млрд на прямоугольные составляющие дает следующее:
Вычитание синфазной составляющей V млрд из V и :
По прямоугольным компонентам мы можем вычислить величину линейного напряжения:
Чтобы вычислить фазовый угол Θ ab , мы теперь находим фазу прямоугольного вектора, вычисленного выше:
Чтобы проиллюстрировать вышеизложенное, мы предполагаем, что напряжение между фазой и нейтралью составляет 240 В, а угол между фазой составляет 240 В.