+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Частотник для трехфазного электродвигателя-принцип работы

Создание трёхфазного асинхронного электродвигателя пришлось на конец XIX века. С тех пор, никакие промышленные работы не являются возможными без его использования. Наиболее значимый момент в рабочем процессе — плавный пуск и торможение двигателя. Это требование в полной мере выполняется при помощи частотного преобразователя.

Существует несколько вариантов названий частотника для трёхфазного электродвигателя. В том числе, он может называться:

  • Инвертором;
  • Преобразователем частоты переменного тока;
  • Частотным преобразователем;
  • Частотно регулируемым приводом.

С помощью инвертора осуществляется регуляция вращательной скорости асинхронного электродвигателя, предназначенного для преобразования электрической энергии в механическую. Осуществляемое при этом движение можно трансформировать в движение другого типа.

Специально разработанная схема частотного преобразователя позволяет доводить КПД двигателя до уровня в 98%.

Наиболее значимо использование преобразователя в конструкции электрического двигателя большой мощности. Частотник позволяет осуществлять изменения пусковых токов и задавать для них требуемую величину.

Принцип работы частотного преобразователя

Использование ручного управления пускового тока чревато излишними энергозатратами и уменьшением срока эксплуатации электрического двигателя. При отсутствии преобразователя также наблюдается превышение номинального значения напряжения в несколько раз. Из-за работы в таком режиме, также наблюдается негативное влияние.

Кроме того, частотный преобразователь обеспечивает плавность управления функционированием двигателя, ориентируясь на балансировку значений напряжения и частоты, и снижает энергопотребление вдвое.

Весь приведённый перечень положительных моментов возможен благодаря принципу двойного преобразования напряжения. Действует он следующим образом:

  1. Сетевое напряжение регулируется через выпрямление и фильтрование в звене прямого тока.
  2. Выполнение электронного управления, которое формирует определённую частоту, в соответствии с предварительно обозначенным режимом, и трёхфазное напряжение.
  3. Происходит продуцирование прямоугольных импульсов с последующей корректировкой амплитуды при помощи обмотки статора.

Как правильно подобрать преобразователь частот

Наиболее значимо при покупке частотника — не жалеть денег. В случае с преобразователем, дешёвый всегда означает малофункциональный, а это делает покупку бесполезной.

Также следует обратить внимание на тип управления преобразователя:

Высокоточная установка величины тока.

Рабочий режим ограничен заданным выходным соотношением частоты и напряжения. Данный тип управления уместен только для бытовых приборов простейшего типа.

Далее следует обратить внимание на мощность преобразователя частоты. Тут всё просто: чем больше, тем лучше.

Питающая сеть должна обеспечивать достаточно широкий диапазон напряжений. Это снижает риск поломки при резких скачках. Чрезмерно высокое напряжение может спровоцировать взрыв конденсаторов.

Показатели частоты должны удовлетворять производственным потребностям. Их нижний порог определяет широту возможностей для управления приводной скорости. Максимальный частотный диапазон возможен только при векторном управлении.

Число входящих/выходящих управляющих разъёмов должно быть немного больше минимально необходимого. Но это, конечно, отражается на повышении цены и возникновении затруднений при установке устройства.

Наконец, требуется обратить внимание на совпадение характеристик управляющей шины и параметров частотника. Это определяется по соответствию числа разъёмов.

Важно отметить способность переносить перегрузки. Запас мощности преобразователя частоты должен на 15% превосходить мощность двигателя.

Комплектация регулируемого привода

Частотный преобразователь формируется из трёх компонентов:

  1. Управляемый, либо неуправляемый выпрямитель, отвечающий за формирование напряжения ПТ (постоянного тока), поступающего от питания.
  2. Фильтр (в виде конденсатора), осуществляющий дополнительное сглаживание напряжения.
  3. Инвертор, моделирующий напряжение нужной частоты.

Самостоятельное подключение преобразователя

Перед тем, как приступать к подключению устройства следует воспользоваться обесточивающим автоматом, он обеспечит отключение всей системы в случае короткого замыкания на любой из фаз.

Существует две схемы соединения электродвигателя с частотным преобразователем:

  1. «Треугольник».

Схема актуальна, если требуется управлять однофазным приводом. Уровень мощности преобразователя в схеме при этом составляет до трёх киловатт, а мощность не теряется.

  1. «Звезда».

Способ, подходящий для подключения клемм трёхфазных частотников, питаемых промышленными трёхфазными сетями.

На рисунке схема подключения частотника 8400 Vector

Для ограничения пускового тока и снижения пускового момента при запуске электрического двигателя по мощности превосходящего 5 кВт, применяется переключение «звезда-треугольник».

Когда на статор пускается напряжение, то фигурирует подключение устройства по типу «звезда». Как только значение скорости двигателя начинает соответствовать номинальному, поступление питания осуществляется по схеме «треугольник». Но этот приём используется, только когда технические возможности позволяют подключаться по двум схемам.

В объединённой схеме «звезды» и «треугольника» наблюдаются резкие скачки токов. При переходе на второй тип подключения показания по вращательной скорости значительно уменьшаются. Для восстановления прежнего режима работы и частоты оборотов следует осуществить увеличение силы тока.

Наиболее активно применяются частотники в конструкции электрического двигателя с уровнем мощности 0,4 — 7,5 кВт.

Сборка преобразователя частот своими руками

Одновременно с промышленным производством частотных преобразователей, остаётся актуальной сборка подобного устройства своими руками. Особенно этому способствует относительная простота процесса. В результате работы инвертора производится преобразование одной фазы в три.

Применение в бытовых условиях электрических двигателей, имеющих в комплектации подобное устройство, не вызывает никаких дополнительных затруднений. Поэтому можно смело браться за дело.

На рисунке структурная схема частотных преобразователей со звеном постоянного тока.

Схемы частотного преобразователя, используемые при сборке, состоят из выпрямительного блока, фильтрующих элементов (отвечающих за отсечение переменной составляющей тока и конструируемых из IGBT-транзисторов). По стоимости покупка отдельных компонентов преобразователя и выполнение сборки своими руками обходится дешевле, чем приобретение готового устройства.

Применять самосборные частотные преобразователи можно в электродвигателях имеющих мощность 0,1 — 0,75 кВт.

В то же время, современные заводские частотники имеют расширенную функциональность, усовершенствованные алгоритмы и улучшенный контроль безопасности рабочего процесса ввиду того, что при их производстве используются микроконтроллеры.

Сферы применения преобразователей:

  • Машиностроение;
  • Текстильная промышленность;
  • Топливно-энергетические комплексы;
  • Скважинные и канализационные насосы;
  • Автоматизация управления технологическим процессом.

Стоимость электродвигателей находится в прямой зависимости от того, есть ли в его комплектации преобразователей.

Самодельный частотный преобразователь 220-380V собственной сборки


Watch this video on YouTube

chistotnik.ru

Частотный преобразователь для электродвигателя — устройство, принцип работы

Для несведущего человека словосочетание «частотный преобразователь для электродвигателя» звучит совершенно непонятно. Что это такое, какие частоты и во что он преобразовывает — даже и не хочется задумываться. А ведь подобные устройства занимают не последнее место по важности практически на любом производстве.

Да что промышленность, некоторые приборы и в быту не смогли бы так облегчать жизнь, как они это делают, не будь изобретен частотный преобразователь. Самый яркий тому пример — стиральная машина-автомат. Ведь все изменения скорости вращения барабана при стирке, полоскании или отжиме — это заслуга подобного устройства.

А электромоторы современных автомобилей — ведь и в них за скорость вращения отвечают преобразователи частоты. Кстати, тем, кто ездит на работу на таком виде транспорта, как трамвай и троллейбус, наверное, тоже будет интересно понять, как развивает обороты подобная техника. А значит, необходимо разобраться, что же такое частотный преобразователь, как он устроен и по какому принципу работает, и как сделать подобное устройство так, чтобы оно было понятно даже для чайников.

Внешний вид частотного преобразователя

Что такое частотник?

Под этим термином подразумевается частотный преобразователь для двигателя, то есть сложное техническое устройство, которое обладает возможностью преобразовывать входной переменный ток 50 Гц, меняя на выходе частоту. Если брать характеристики современных преобразователей, то параметры их работы могут колебаться в диапазоне от 1 до 800 Гц.

Многие могут спросить, для чего нужно такое преобразование частоты. Все просто — для плавного запуска и изменения оборотов любого электродвигателя. Как раз по этой причине и появляется разница в скорости вращения барабана современных стиральных машин.

Все преобразователи можно разделить на три основных типа – это однофазный аппарат, трехфазный и высоковольтный. Схема частотника любого из этих типов схожа, за исключением небольших нюансов.

Принцип работы высокочастотного преобразователя заключается в создании экономичного режима, при помощи которого появляется возможность управлять такими характеристиками, как привод, скорость и крутящий момент агрегата, согласовываясь с заданными параметрами и характером циклов.

Вместе с выполняемой основной работой, на жидкокристаллический экран, которым снабжен современный частотный преобразователь для асинхронного двигателя, выводится информация о параметрах; выходное значение частот, скоростей, мощностей, а так же крутящих моментов. Так же на нем отображается и информация о продолжительности функционирования.

Схема, отображающая принцип частотного преобразователя

Преобразователь частоты для асинхронных двигателей по назначению, которое может быть:

  • Промышленным, с мощностями, не превышающими 315 кВт, с тремя фазами;
  • Частотники векторного управления, с мощностями, не превышающими 500 кВт, так же с тремя фазами;
  • С управлением аппаратами насосно-вентиляторного типа, с нагрузкой до 315 кВт;
  • Для работы с кранами и другими механизмами подъемного типа;
  • Применяемые во взрывоопасных областях;
  • Частотные преобразователи, монтируемые непосредственно на двигатели.

Строение современного преобразователя

Общая схема частотного преобразователя состоит из двух составляющих — это управляющая и силовая. Обычно вторая выполнена с использованием транзисторов или тиристоров. Основную работу по контролю выполняют микропроцессоры, которые посредством работы ключа, который замыкает, либо размыкает цепь, работая как привод. Он решает многие задачи, связанные не только с контролем работы двигателя, но и с защитой при возникновении внештатной ситуации, и с диагностикой оборудования.

Так же преобразователи частоты можно разделить на два типа по принципам их работы — с промежуточным звеном или без него.

Область применения каждого из типов и видов частотных преобразователей как раз и обусловлена преимуществами и недостатками, которыми они обладают.

Теперь, когда в общих чертах стал понятен принцип действия частотного преобразователя, имеет смысл разобраться с вопросом выбора подобного электропривода для частных целей.

Конечно, если известна электрическая схема преобразователя частоты, то вполне реально собрать подобный частотник своими руками, но это очень трудоемкий процесс, который под силу только профессионалу. Любитель, не знакомый со спецификой подобной работы не соберет самодельный инвертор.

Полная схема частотного преобразователя

Конечно, производитель заинтересован в снижении себестоимости изготавливаемой продукции, так сохраняется его конкурентоспособность и увеличивается прибыль. А потому он старается минимизировать затраты за счет уменьшения возможностей частотных преобразователей, в результате чего производятся агрегаты с минимальным функционалом, но по меньшей цене.

Как раз набор встроенных функций и может играть главную роль при выборе подобных устройств, так как от этого может зависеть и долговечность приобретаемого частотного преобразователя. А потому необходимо понять, какие функции будут важны, а какими можно поступиться в угоду кошельку.

Способ управления

По этому параметру асинхронный преобразователь частоты может быть скалярным или векторным. Вторые в наше время более распространены, но и стоимость их выше. Главное достоинство векторных частотных преобразователей в их регулировке, которая очень точна. У скалярных частотников простейшее управление, не способное к изменению частот в процессе работы двигателя, а, следовательно, и его скорости. Поэтому оптимальной станет установка подобных устройств на маломощные двигатели, например, вентиляторы. Он вполне обеспечит плавный пуск, минимизирует расход электроэнергии и продлит срок службы двигателя, но это все, на что он способен.

По мощности

Не возникает вопросов в том, что лучше агрегаты с большей мощностью. Хотя для бытового использования подобный показатель не слишком важен, главное, чтобы хватило для двигателя, на который будет устанавливаться приобретаемый частотный преобразователь.

Основное внимание следует обратить на марку агрегата. Идеальным будет вариант приобретения устройства, сделанного именно тем производителем, который выпустил и двигатель. От этого будет зависеть эффективность рабочего тандема. Да и присутствие поблизости фирменного центра обслуживания играет немаловажную роль.

Схема блока питания для частотного преобразователя.

Напряжение в сети

Здесь, конечно же, главный критерий — широта рабочего диапазона напряжений. Все знают, как работает наша электросеть, где перепады временами бывают очень существенными, а потому подумать о безопасности оборудования при подобных неприятностях стоит заранее. Конечно, понижение в сети не доставит больших неприятностей, максимум – отключится частотник для трехфазного электродвигателя, а вот резкое повышение может привести к очень серьезным последствиям. Электролитические конденсаторы, скорее всего, не выдержат и взорвутся, что, естественно, приведет к выходу из строя устройства на долгое время.

Частотная регулировка

В этом вопросе решать придется каждому самому, исходя из области применения частотного преобразователя. К примеру, если частотник пойдет на шлифовальную машину, то, скорее всего, необходимый диапазон регулируемых частот составит 10–100 Гц. Особенность этого параметра в том, что если требуется действительно широкодиапазонный агрегат, то необходимо устройство векторного типа.

Дискретные входы

Для обеспечения формирования необходимой команды с блока управления в частотниках имеются специальные входы, называемые дискретными. Посредством их происходят все рабочие процессы в двигателе, то есть именно они управляют запуском, остановкой, разгоном и торможением, реверсом и т.п. Обратная связь, при помощи которой происходят операции контроля за состоянием и настройки, производится посредством аналоговых входов. По сути, большее количество подобных функций улучшает качество устройства, но в то же время и усложняет его настройки, и увеличивает ценовую категорию.

Варианты подключения электродвигателя

Соотношение цены и количества выводов

Конечно, необходимо присутствие выводов, как аналоговых, так и дискретных, без них невозможна работа частотного преобразователя и взаимодействие его с двигателем. К тому же большее их количество обеспечивает и лучшее взаимодействие агрегатов, но ведь и ценовую политику никто не отменял. Сложности в вопросе, как настроить инвертор, не столь существенны, так как при неспособности одного человека их произвести, всегда может найтись тот, кто выполнит подобную работу.

В общем, в этом вопросе каждый сам решает по мере своих финансовых возможностей.

Перегрузки и ШУ

ШУ или шина управления выбирается согласно схеме подключения устройства. Необходимо понимать, что входы и выходы должны быть в равных количествах, но, при этом, оптимальным будет небольшой запас, ведь оборудование, возможно, будет совершенствоваться.

При подборке частотного преобразователя желательно наличие документов по техническим характеристикам двигателя. Агрегат по номиналу должен быть мощнее двигателя как минимум на 10 %. Ну при отсутствии документации, если gпоказатели не известны, конечно, придется «угадывать» параметры приемлемого частотного преобразователя.

Области применения

Благодаря тому, что множество моделей современных частотников выполнены с применением высоких технологий, с внедрением в их схему микроконтроллеров увеличилось и количество выполняемых ими функций, практически вся работа по управлению и безопасности легла на них, с чем они вполне успешно справляются.

И тому подтверждение — практически во всех отраслях производств задействован именно векторный частотник для трехфазного электродвигателя на микроконтроллерах. Область применения подобных агрегатов:

  • Водоснабжение, теплоснабжение с изменением темпов передачи воды, как горячей, так и холодной. Теперь не требуется постоянное участие человека в регулировании этих процессов, так как встроенный микроконтроллер справляется со всем сам. Человеку остается лишь контроль.
  • Заводские условия машиностроения. Станки с числовым программным управлением прекрасно себя зарекомендовали.
  • Легкая текстильная промышленность так же постепенно наращивает количество станков, контролируемых подобными устройствами.
  • Энергетика и производство топлива.
  • Технологические процессы управленческой автоматики.
  • Насосы для водоотведения.

Для управления частотным преобразователем существуют специально созданные программы, которые поддерживают непрерывную связь с основным компьютером через беспроводные сети. Здесь же, на монитор, работающий с ними в связке, выводятся и все показатели, которые касаются состояния агрегата, проделанную работу и так далее, отсюда и осуществляется полное управление циклами, будь то запуск или остановка двигателя, ускорение, замедление или реверс. Естественно, что все данные архивируются и сохраняются на сервере и могут быть использованы по мере надобности.

Подобный обмен производится поэтапно, следуя алгоритму «идентификация – инициализация – управление». Такой принцип работы частотных преобразователей и обеспечивает им популярность.

И даже цены на устройства, обеспечивающие бесперебойное питание в наше время, зависят от наличия или отсутствия в них таких устройств, а потому, скорее всего и экономика, и энергетика должны показать более высокий и быстрый рост именно благодаря новейшим и высокотехнологичным разработкам частотных преобразователей.

Похожие статьи:

domelectrik.ru

Принцип работы преобразователя частоты для электродвигателя

Главной технологической задачей является повышение скорости любого производственного процесса.

Сначала в промышленности для форсирования использовались коробки передач, редукторы, вариаторы. Однако эти механизмы не обеспечивали плавный пуск оборудования и требуемое убыстрение. Используя электромашины постоянного тока, которые уже позволяли гибко регулировать вращение. Но они имели недостатки: высокая стоимость и эксплуатационная сложность.

Потом, для передачи движения большинству механизмов и машин начали применять асинхронные двигатели. Простые по конструкции, надёжные в управлении и низкой стоимости. Это определило их преимущество в электрорегулируемых приводах.

Однако, для его использования в технологических процессах необходимо было создать дополнительное устройство, позволяющее исполнять плавный пуск, остановку, то есть, управление скоростью двигателя. Эта функцию выполняет преобразователь частоты ПЧ, решающий главную задачу — регулирование скоростью привода.

Внедрение полупроводниковых материалов, использование тиристорных преобразователей началось в середине двадцатого века. Потом появились транзисторные устройства, отличающиеся надёжностью, компактностью, простыми в эксплуатации и недорогой ценой.

Их применение в конструкциях преобразователей частоты обеспечивает приводам выполнять многие технологических задач в промышленности, перерабатывающей отрасли, объектов ЖКХ, в автоматизации технологических процессов.

Состав частотника

Компоновка частотно-управляемого привода включает в себя: двигатель синхронного или асинхронного типа и преобразователя частоты ПЧ. Первые, превращают энергию в механическое движение технологического узла. А функции управления осуществляет электронное статическое устройство, которое на своём выходе формирует напряжение с варьируемой амплитудой и частотой.

Назначение

Преобразователь частоты преобразует переменное напряжение (ток) одной частоты в другую, отличающуюся от источника питания более широким диапазоном. Эти характеристики устройства регулируют вращение двигателя, выполняют плавный пуск и остановку. Они обладают электромагнитной совместимостью с источником питания от сети.

Есть два вида управления преобразователя частоты. Векторный и скалярный. Первый работает так, чтобы момент вращения двигателя был постоянен к нагрузке и не изменялся на всём диапазоне управления скоростью. Контролируется не только напряжение и частота, но и ток (момент).

Второй — более простой. Особенность работы заключается в сохранении и контроле постоянства отношения напряжения и частоты.

Характеристики, понятия, глоссарий ПЧ

Диапазон величин наладки

Его расширение позволяет гибко подстраивать устройство под требуемые цели и задачи.

Выходная частота

Это границы или линейка её изменений. Можно продемонстрировать на таком примере. Двигатель, подключённый к сети 50 Гц, показывает скорость вращения 1,5 тыс. об/мин, то при подаче 100 Гц он повысит её в два раза до 3 тыс.

Векторное управление

Метод регулировки электродвигателя, превосходящий точность простого частотного корректирования.

Области применения

Там, где необходимо поддерживать неизменную скорость при импульсной загрузке: станки, транспортёры, лифты, мельницы. А также при необходимости на малых оборотах электродвигателя поддерживать момент.

Напряжение источника питания

Некоторые модели преобразователей частоты предназначены для однофазной энергии переменного тока 200—240 вольт (2,2 кВт). Более мощные типы преобразователей обеспечиваются трёхфазным током 380—480 В. Колебание величин от номинального, стандартного напряжения составляет от — 15 + 10 процентов.

ПИД-регулятор

Прибор, работающий по алгоритму, поддерживающий величины производственного процесса в пределах, установленных датчиком. Это температура, скорость, давление. Он упрощает систему, и не требует комплектации дополнительными устройствами.Наличие сигнальных входов/выходов, аналоговых/дискретных, необходимые для связи преобразователя частоты с системой управления. Достаточное их количество упрощает соединение с другими средствами регулирования.

Юстировка скорости

Такая подгонка необходима при подключении к работающему двигателю преобразователя частоты, который, как правило, свой запуск начинает со стартовой частоты и за время разгона достигает номинального режима. Во вращающимся двигателе может произойти недопустимый рывок. Оснащённый преобразователь функцией юстировки учитывает данные машины и согласовывает с частотой, на которой она находилась в текущий момент. Это необходимо для подхвата работающего электродвигателя при отключении или смене сетевого питания.

Динамическое торможение

Этот процесс выполняется подачей постоянного тока на одну фазу электродвигателя. Взаимодействие её магнитного поля и ротора останавливает вращение быстрее, чем это можно сделать другими способами. Например, понижением напряжения (управляемый выбег) или механическим торможением.

Режим использования многих скоростей

Возможность их установки, выбирают путём подключения сигнальных входов частотного преобразователя, что соответствует значительному числу потребителей. Которым заранее определены фиксированные скорости. В производственных процессах эту функцию используют повсеместно.

Опции

В конструкцию преобразователя включены добавочные модули, расширяющие его возможности управления электроприводом.

Пример: линейка преобразователей частоты Веспер

  1. EI-7011.  Используется для общепромышленных процессов.
  2. EI-P 7012.  Устанавливается в приводах насосного оборудования.
  3. EI-9011 векторного исполнения. Гибкий выбор требуемой скорости до 0,02% с диапазоном 1:1000.Регулируемый максимальный момент. Монтируется в производственных линиях, кранах, лифтах. В них увеличен изменяемый диапазон нагрузки начиная от запуска и до остановки.
  4. E3—9100. Является многофункциональным, векторным преобразователем. Компактный, недорогой заменяет ПЧ марки EI-7011, 9011. Точность регулировки 0,2%. При частоте в один Гц стартовый момент достигает 150%. Применяют в подъемных кранах, транспортёрах экструдерах, насосах, вентиляторах.
  5. EI — 7011, P 7012, 9011 в исполнении IP 54. Устанавливают во влажной среде, запылённости. Брызгозащитная конструкция предохраняет от влияния неблагоприятных внешних условий.
  6. E2—8300. Векторный малогабаритный с логическим контроллером. Применяют в приводах с быстро меняющейся или постоянной (вентиляторной) нагрузкой. В транспортёрах, конвейерах, мельницах, компрессорах, насосах.
  7. E3—8100. Общепромышленного назначения. Используется в маломощных приводах. Компактный, небольшие габариты.
  8. E2 — mini Корпус IP 20. Оборудован пультом управления, фильтром для уменьшения электромагнитных помех и рядом других функций. Применяется в регулировании вентиляторов, швейных машин, насосов, транспортёров.
  9. E2 — mini выполненный IP 65 Повышенная защита. Герметическая конструкция ограждает от попадания воды, пыли. Естественная система охлаждения. На лицевой панели расположены дополнительные ручки управления. Применяется в металлургической, химической, пищевой и перерабатывающей отрасли.


Устройство плавного запуска Софт-стартер Отличается снижением на машину и источник питания предельных колебаний нагрузок. Исключено повреждение ходовых узлов, продлевающих сроки службы оборудования.

Преимущества частотного преобразователя

  1. Расширенный диапазон регулировки оборотов.
  2. Удержание необходимой скорости с минимальными отклонениями от номинальной.
  3. Пуск и остановка привода без перегрузок.
  4. Управляемый момент вращения двигателя.
  5. Вероятность дистанционного регулирования.
  6. Доступ подключения с другим контроллером.
  7. Простота монтажа электропривода с АСУ.
  8. Понижение шума работающих двигателей.
  9. Исключение пиковой нагрузки на электросеть.
  10. Защита двигателя от короткого замыкания при скачках напряжения.
  11. Эффективность применения преобразователя частоты как фактор оптимизации затрат
  12. Экономия энергоресурсов за счёт исключения непроизводительных потерь может составить до 50%. В системе теплоснабжения она достигает 10%. Водопотребление снижается на 20 процентов.
  13. Ограничение пусковых токов, исключение, динамических нагрузок повышает эксплуатационный срок оборудования.
  14. Снижение себестоимости продукта изготовителя за счёт внедрения энергосберегающей технологии.
  15. Уменьшение вероятности аварийных обстоятельств.

Рекомендуемый выбор частотного преобразователя

Учитывают задачи, стоящие перед использованием электропривода. Для их решения определяют:

  • Мощность и тип двигателя, который может быть стандартным, асинхронным или специальным.
  • Электрическая совместимость с нагрузкой.
  • Применение преобразователя частоты с одной машиной или с несколькими.
  • Границы регулируемой скорости.
  • Точность выполнения команд по удержанию момента вращения.

Особенности конструкции преобразователя частоты:

  • Габариты устройства.
  • Внешний вид.
  •  Вероятность подключения дополнительного пульта регулирования.

Преобразователь частоты подходящей мощности должен соответствовать данным асинхронного двигателя. Для большого пускового момента, укороченного разгона или быстрой остановки преобразователя частоты заказывают уровнем выше стандартного. Используя синхронные, высокоскоростные, и другие типы электромашин, руководствуются номинальным током ПЧ. Его величина должна быть выше потребляемого уровня. А также учитывают тонкости наладки данных электропривода.

Полезно знать покупателю

С особенностями выбора можно ознакомиться в поставщика. Там же квалифицированно обсуждают специальные требования заказчика в том числе:

Предпродажная оценка состояния объекта покупателя, обеспечивающая правильный подбор преобразователя частоты. В него входит уточнение технических условий для внедрения решения. Выявление рисков и их минимизации. Составление оптимальной схемы монтажа оборудования в производственный процесс.

Выделение отдельного консультанта, обеспечивающего сотрудничество с продавцом начиная с подбора преобразователя частоты, оформление заказа, до отгрузки со склада на площадку монтажа. Он поможет решить вопрос по обслуживанию и в дальнейшем устранять возникающие проблемы эксплуатации.

Замена ПЧ устаревшего образца или импортного производства.

Компания может оказать услугу по передаче персоналу покупателя навыков и опыт использования частотных преобразователей.

chistotnik.ru

Частотник для однофазного электродвигателя, принцип действия

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне.

Принцип работы однофазной асинхронной машины

В основе работы асинхронного двигателя лежит взаимодействие вращающегося магнитного поля статора  и токов, наводимых им в роторе двигателя. При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью частотного преобразователя.

Электродвигатель по факту может считаться двухфазным, но у него только одна рабочая обмотка статора, вторая, расположенная относительно главной под углом в 90о является пусковой.

Пусковая обмотка занимает в конструкции статора 1/3 пазов, на главную обмотку приходится 23 паза статора.

Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться.

Рис.№1 Схематический рисунок двигателя, демонстрирующий принцип работы однофазного асинхронного двигателя.

Основные виды однофазных электроприводов

Кондиционеры воздуха, холодильные компрессоры, электрические вентиляторы, обдувочные агрегаты, водяные, дренажные и фекальные насосы, моечные машины используют в своей конструкции асинхронный трехфазный двигатель.

Все типы частотников преобразуют переменное сетевое напряжение в постоянное напряжение. Служат для формирования  однофазного напряжения с регулируемой частотой и заданной амплитудой для управления вращения асинхронных двигателей.

Управление скоростью вращения однофазных двигателей

Существует несколько способов регулирования скорости вращения однофазного двигателя.

  1. Управление скольжением двигателя или изменением напряжения. Способ актуален для агрегатов с вентиляторной нагрузкой, для него рекомендуется использовать двигатели с повышенной мощностью. Недостаток способа – нагрев обмоток двигателя.
  2. Ступенчатое регулирование скорости вращения двигателя с помощью автотрансформатора.

Рис.№2. Схема регулировки с помощью автотрансформатора.

Достоинства схемы – напряжение выхода имеет чистую синусоиду. Способность трансформатора к перегрузкам имеет большой запас по мощности.

Недостатки – автотрансформатор имеет большие габаритные размеры.

Использование тиристорного регулятора оборотов двигателя. Применяются тиристорные ключи, подключенные встречно-параллельно.

Рис. №3.Схема тиристорного регулирования однофазного асинхронного электродвигателя.

При использовании для регулирования скорости вращения однофазных асинхронных двигателей, чтобы избежать негативного влияния индукционной нагрузки производят модификацию схемы.  Добавляют LRC-цепи для защиты силовых ключей, для корректировки волны напряжения используют конденсатор, минимальная мощность двигателя ограничивается, так гарантируется старт двигателя. Тиристор должен иметь ток выше тока электродвигателя.

Транзисторный регулятор напряжения

В схеме используется широтно-импульсная модуляция (ШИМ) с применением выходного каскада, построенного на использовании полевых или биполярных IGBT транзисторах.

Рис. №4. Схема использования ШИМ для регулирования однофазного асинхронного электродвигателя.

Частотное регулирование асинхронного однофазного электродвигателя считается основным способом регулирования частоты электродвигателя, мощности, эффективности использования, скорости и показателей энергосбережения.

Рис. №5. Схема управления электродвигателем без исключения из конструкции конденсатора.

Частотный преобразователь: виды, принцип действия, схемы подключения

Частотный преобразователь разрешает своему владельцу снизить энергопотребление и автоматизировать процессы в управлении оборудованием и производством.

Основные компоненты частотного преобразователя: выпрямитель, конденсатор, IGBT-транзисторы, собранные в выходной каскад.

Благодаря способности управлением параметрами выходной частоты и напряжения достигается хороший энергосберегающий эффект. Энергосбережение выражается в следующем:

  1. В двигателе поддерживается неизменный текущий момент ращения вала. Это обусловлено взаимодействием выходной частоты инверторного преобразователя с частотой вращения двигателя и соответственно, зависимостью напряжения и крутящего момента на валу двигателя. Значит, что преобразователь дает возможность автоматически регулировать напряжение на выходе при обнаружении превышающего норму значения напряжения с определенной рабочей частотой нужно для поддержания требуемого момента. Все инверторные преобразователи с векторным управлением имеют функцию поддержания постоянного вращающего момента на валу.
  2. Частотный преобразователь служит для регулировки действия насосных агрегатов (см. страницу). При получении сигнала, поступающего с датчика давления, частотник снижает производительность насосной установки. При снижении оборотов вращения двигателя уменьшается потребление выходного напряжения. Так, стандартное потребление воды насосом требует 50Гц промышленной частоты и 400В напряжения. Руководствуясь формулой мощности можно высчитать соотношение потребляемых мощностей.

Уменьшая частоту до 40Гц, уменьшается величина напряжения до 250В, означает, что уменьшается количество оборотов вращения насоса и потребление энергии снижается в 2,56 раз.

Рис. №6. Использование частотного преобразователя Speedrive для регулирования насосных агрегатов по систем CKEA MULTI 35.

Для повышения энергетической эффективности использования частотного преобразователя в управлении электродвигателем необходимо сделать следующее:

  • Частотный преобразователь должен соответствовать параметрам электродвигателя.
  • Частотник подбирается в соответствии с типом рабочего оборудования, для которого он предназначен. Так, частотник для насосов функционирует в соответствии с заложенными в программу параметрами для управления работой насоса.
  • Точные настройки параметров управления в ручном и автоматическом режиме.
  • Частотный преобразователь разрешает использовать режим энергосбережения.
  • Режим векторного регулирования позволяет произвести автоматическую настройку управления двигателем.

 Преобразователь частоты однофазный

Компактное устройство преобразования частоты служит для управления однофазными электродвигателями для оборудования бытового предназначения. Большинство частотных преобразователей обладает следующими конструктивными возможностями:

  1. Большинство моделей использует в своей конструкции новейшие технологии векторного управления.
  2. Они обеспечивают улучшенный вращающий момент однофазного двигателя.
  3. Энергосбережение введено в автоматический режим.
  4. Некоторые модели частотных преобразователей используют съемный пульт управления.
  5. Встроенный PLC контроллер (он незаменим для создания устройств сбора и передачи данных, для создания систем телеметрии, объединяет устройства с различными протоколами и интерфейсами связи в общую сеть).
  6. Встроенный ПИД регулятор (контролирует и регулирует температуру, давление и технологические процессы).
  7. Напряжение выхода регулируется в автоматическом режиме.

Рис.№7. Современный преобразователь Optidrive с основными функциональными особенностями.

Важно: Однофазный преобразователь частоты, питаясь от однофазной сети напряжением 220В, выдает три линейных напряжения, величина каждого из них по 220В. То есть, линейное напряжение между 2 фазами находится в прямой зависимости от величины выходного напряжения самого частотника.

Частотный преобразователь не служит для двойного преобразования напряжения, благодаря наличию в конструкции ШИМ-регулятора, он может поднять величину напряжения не более чем на 10%.

Главная задача однофазного преобразователя частоты – обеспечить питание как одно- так и трехфазного электродвигателя. В этом случае ток двигателя будет соответствовать параметрам подключения от трехфазной сети, и оставаться постоянным

Частотное регулирование однофазных асинхронных электродвигателей

Первое на что обращаем внимание при выборе частотника для своего оборудования – это соответствие сетевого напряжения и номинального значения тока нагрузки, на который рассчитан двигатель. Способ подключения выбирается относительно рабочего тока.

Главным в схеме подключения является наличие фазосдвигающего конденсатора, он служит для сдвига напряжения, поступающего на пусковую обмотку. Она служит для пускового включения двигателя, иногда после того, как двигатель заработал, пусковая обмотка вместе с конденсатором отключается, иногда остается включенной.

Схема подключения однофазного двигателя с помощью однофазного частотного преобразователя без использования конденсатора

Выходное линейное напряжение устройства на каждой фазе равно выходному напряжению частотника, то есть на выходе будет три напряжения линии, каждое по 220В. Для запуска может использоваться только пусковая обмотка.

Рис. №8. Схема присоединения однофазного асинхронного двигателя через конденсатор

Фазосдвигающий конденсатор не может обеспечить равномерный фазовый сдвиг в пределах границ частот инвертора. Частотник обеспечит равномерный сдвиг фаз. Для того, чтобы исключить из схемы конденсатор, нужно:

  1. Конденсатор стартера С1 удаляется.
  2. Вывод обмотки двигателя присоединяем к точке выхода напряжения частотника (используется прямая проводка).
  3. Точка А присоединяется к СА; В соединяется с СВ; W соединяется к СС, таким образом электродвигатель присоединится напрямую.
  4. Для включения в обратном направлении (обратная проводка) необходимо В присоединить к СА; А присоединить к СВ; W соединить с СС.

Рис. №9. Схема подключения однофазного асинхронного двигателя без использования конденсатора.

На видео — Частотный преобразователь. Подключение трехфазного двигателя в однофазную сеть 220В.

Частотный преобразователь. Подключение трехфазного двигателя в однофазную сеть 220В.


Watch this video on YouTube

chistotnik.ru

Преобразователи частоты для асинхронных двигателей

До появления частотных преобразователей на рынке современной энергетики, электромонтёрам приходилось применять для подключения асинхронного двигателя стартовый или фазосдвигающий конденсатор большой ёмкости.

Двигатель при этом работал, но существенно терял мощность. Также, применение конденсаторов сильно разогревало обмотки двигателя, что сильно снижало его ресурс работы, и двигатели часто приходилось «перематывать». Учитывая, что обмотки асинхронного двигателя делаются из медной проволоки, то такие ремонты приносили большой ущерб.

Так как асинхронный двигатель является составной частью почти каждого современного привода, то вопрос создания частотного регулирования вставал на особый уровень. И вот, частотники уже повсеместно применяются для подключения электрического двигателя к сети и его управление.

По сути, частотный инвертор, это прибор, изменяющий частоту поданного на обмотки напряжения с ШИМ-регулированием. Благодаря частотнику, получилось подключить асинхронный двигатель к сети без ущерба его ресурсу, без перегрева, и ещё дать массу возможностей по управлению скоростью вращения вала.

Также, применяя различные интерфейсы передачи данных и команд, применение частотников позволило объединить все приводы большого предприятия в одно диспетчерскую систему управления и контроля параметров.

В мир современной автоматизации технологических процессов, это весомый аргумент.

Устройство частотных преобразователей

Современный частотный инвертер состоит из двух принципиальных блоков. Первый блок полностью сглаживает напряжение и на выходе выдаёт постоянное. Постоянное напряжение подаётся на силовой блок генерации частоты. После преобразования, на выходе из второго блока частота напряжения уже будет такая, какая задана настройкой.

За возможность изменять частоту напряжения отвечает микропроцессор, который встроен в частотник. Используя заданную программу, процессор следит за выходной частотой напряжения, а также за параметрами работы электрического двигателя.

По сути, частотные преобразователи для асинхронных двигателей принцип работы которых заключён в простом вырабатывании нужной частоты переменного тока, это модуляторы нужной природы напряжения, которая необходима для того или иного оборудования. Именно это и снизило негативное влияние на работу электрического двигателя, которое имело место быть при использовании конденсатов.

Электрический двигатель получает именно такое напряжение, которое положено ему для нормальной и полноценной работы.

Считаем нужным отметить, что и при наличии линии трёхфазного напряжения, не всегда рационально подключать электрический двигатель к сети просто через выключатель. В таком случае, двигатель будет работать, но регулировать его работу не получится. Не получится и следить за состоянием обмоток.

В промышленном исполнении можно встретить два основных типа частотных преобразователей:

  • Специальные.
  • Универсальные.

Специальный частотный преобразователь для асинхронного двигателя, схема которого несколько отличается от универсального, изготавливается под конкретное оборудование по конкретным потребностям. Как правило, это очень урезанные версии, не способные на работу с любым оборудованием.

Универсальные частотные инвертера могут работать, как и в специальном оборудовании, так и во всех остальных вариантах применения. На то они и универсальные, что их можно настраивать и программировать под любые нужды.

Поэтому, выбор частотного преобразователя для асинхронного двигателя должен быть не столько продиктован конкретными необходимостями производства, но и возможностью модернизации оборудования.

Практически во всех частотниках сегодня реализована возможность установки и контроля режима работы электрического двигателя с пульта управления. Первый интерфейс управления встроен в сам корпус частотника. Там же есть и ручка регулирования скорости вращения двигателя.

Но можно и применять выносные пульты управления. Которые можно располагать как в диспетчерской, так и непосредственно на станке, который приводится в движение электрическим двигателем.
Такое чаще встречается в ситуациях, когда станок с двигателем находится в помещении, где не рекомендуется установка частотного инвертора. И его устанавливают вдали от оборудования.

Большая часть инвертеров частоты позволяют программировать работу оборудования. Но, задать программу просто с пульта управления не получится. Для этого используется интерфейс передачи данных и настройки, который, при помощи компьютера позволяет задать нужную программу работы.

Разница типов сигналов управления

При проектировании цеха очень важно учитывать, что общение частотных преобразователей с диспетчерским пультом будет происходить при помощи электрических импульсов по проводам связи. Пи этом, не стоит забывать, что разные стандарты связи по-разному влияют друг на друга. Посему, переда данных одним способом, может существенно снижать качество передачи данных другим способом.
Поэтому, расчет частотного преобразователя для асинхронного двигателя должен производиться не только по его электротехническим показателям, но и по показателям совместимости с сетью.

Выбор мощности частотного преобразователя

Вопрос мощности частотника, скорее всего, стоит на первом плане, при расчете привода для любого станка или агрегата. Дело в том, что большинство частотных инвертеров способны выдерживать большие перегрузки до 200 – 300 %. Но, это совсем не означает, что для питания электрического двигателя можно смело покупать частотник сегментом ниже, чем требуется по планированию.

Выбор мощности частотного преобразователя осуществляется с обязательным запасом в 20 – 30%. Игнорирование этого правила может повлечь за собой выход из строя частотного преобразователя и простой оборудования.

Также важно учитывать пиковые нагрузки, которые может выдерживать частотник. Дело в том, что при старте электрического двигателя его пусковые токи могут сильно превышать номинальные. В некоторых случаях, пусковой ток превышает номинальный в шесть раз! Частотик должен быть рассчитан на такие изменения.

Каждый электрический двигатель оборудован вентилятором охлаждения. Это лопасти, которые установлены в задней части двигателя и по мере вращения вала прогоняют через корпус мотора воздух.

Если электрический двигатель работает на пониженных оборотах, то мощности потока воздуха может не хватить для охлаждения.

В этом случае, нужно выбирать частотник с датчиками температуры двигателя. Или организовать дополнительное охлаждение.

Электромагнитная совместимость преобразователей частоты

При расчёте и подключении частотника к сети и электрическому двигателю, следует помнить, что он очень подвержен помехам. Также, преобразователь частоты может и сам стать источником помех для другого оборудования. Именно поэтому, все подключения к частотнику и от него выполняются экранированными кабелями и выдерживанием дистанции в 10 см друг от друга.

По своей сути, применение частного преобразователя для питания асинхронного электрического двигателя позволило существенно продлить жизнь электрического двигателя, дало возможность регулировать работу двигателя и хорошо экономить на расходе электрической энергии.

Частотник, частотный преобразователь1ф 220 — 3ф220 для асинхронного электродвигателя


Watch this video on YouTube

chistotnik.ru

Основные способы управления частотным электроприводом

Согласно последним данным статистики примерно 70% всей выработанной электроэнергии в мире потребляет электропривод. И с каждым годом этот процент растет.

При правильно подобранном способе управления электродвигателем возможно получение максимального КПД, максимального крутящего момента на валу электромашины, и при этом повысится общая производительность механизма. Эффективно работающие электродвигатели потребляют минимум электроэнергии и обеспечивают максимальную экономичность.

Для электродвигателей, работающих от преобразователя частоты ПЧ, эффективность во многом будет зависеть от выбранного способа управления электрической машиной. Только поняв достоинства каждого способа, инженеры и проектировщики систем электроприводов смогут получить максимальную производительность от каждого способа управления.
Содержание:

Способы контроля

Многие люди, работающие в сфере автоматизации, но не сталкивающиеся вплотную с процессами разработки и внедрения систем электроприводов полагают, что управление электродвигателем состоит из последовательности команд, вводимых с помощью интерфейса от пульта управления или ПК. Да, с точки зрения общей иерархии управления автоматизированной системой это правильно, однако есть еще способы управления самим электродвигателем. Именно эти способы и будут оказывать максимальное влияние на производительность всей системы.

Для асинхронных электродвигателей, подключенных к преобразователю частоты, существует четыре основных способа управления:

  • U/f – вольт на герц;
  • U/f с энкодером;
  • Векторное управление с разомкнутым контуром;
  • Векторное управление с замкнутым контуром;

Все четыре метода используют широтно-импульсную модуляцию ШИМ, которая изменяет ширину фиксированного сигнала путем изменения длительности импульсов для создания аналогового сигнала.

Широтно-импульсная модуляция применяется к преобразователю частоты путем использования фиксированного напряжения шины постоянного тока. Транзисторы с изолированным затвором (IGBT) путем быстрого открытия и закрытия (правильней сказать коммутации) генерируют выходные импульсы. Варьируя ширину этих импульсов на выходе получают «синусоиду» нужной частоты. Даже если форма выходного напряжения транзисторов импульсная, то ток все равно получается в виде синусоиды, так как электродвигатель имеет индуктивность, которая влияет на форму тока. Все методы управления основываются на ШИМ модуляции. Разница между методами управления заключается лишь в методе вычисления подаваемого напряжения на электродвигатель.

В данном случае несущая частота (показана красным) представляет собой максимальную частоту коммутации транзисторов. Несущая частота для инверторов, как правило, лежит в пределах 2 кГц – 15 кГц. Опорная частота (показана синим) представляет собой сигнал задания выходной частоты. Для инверторов применимых в обычных системах электроприводов, как правило, лежит в пределах 0 Гц – 60 Гц. При накладывании сигналов двух частот друг на друга, будет выдаваться сигнал открывания транзистора (обозначен черным цветом), который подводит силовое напряжение к электродвигателю.

Способ управления U/F

Управление вольт-на-герц, наиболее часто называемое как U/F, пожалуй, самый простой способ регулирования. Он часто используется в несложных системах электропривода из-за своей простоты и минимального количества необходимых для работы параметров. Такой способ управления не требует обязательной установки энкодера и обязательных настроек для частотно-регулируемого электропривода (но рекомендовано). Это приводит к меньшим затратам на вспомогательное оборудование (датчики, провода обратных связей, реле и так далее). Управление U/F довольно часто применяют в высокочастотном оборудовании, например, его часто используют в станках с ЧПУ для привода вращения шпинделя.

Модель с постоянным моментом вращения имеет постоянный вращающий момент во всем диапазоне скоростей при одинаковом соотношении U/F. Модель с переменным соотношением вращающего момента имеет более низкое напряжение питания на низких скоростях. Это необходимо для предотвращения насыщения электрической машины.

U/F  — это единственный способ регулирования скорости асинхронного электродвигателя, который позволяет регулирование нескольких электроприводов от одного преобразователя частоты. Соответственно все машины запускаются и останавливаются одновременно и работают с одной частотой.

Но данный способ управления имеет несколько ограничений. Например, при использовании способа регулирования U/F без энкодера нет абсолютно никакой уверенности, что вал асинхронной машины вращается. Кроме того, пусковой момент электрической машины при частоте 3 Гц ограничивается 150%. Да, ограниченного крутящего момента более чем достаточно для применения в большинстве существующего оборудования. Например, практически все вентиляторы и насосы используют способ регулирования U/F.

Данный метод относительно прост из-за его более «свободной» спецификации. Регулирование скорости, как правило, лежит в диапазоне 2% — 3% максимальной выходной частоты. Отклик по скорости рассчитывается на частоту свыше 3 Гц. Скорость реагирования частотного преобразователя определяется быстротой его реакции на изменение опорной частоты. Чем выше скорость реагирования – тем быстрее будет реакция электропривода на изменение задания скорости.

Диапазон регулирования скорости при использовании способа U/F составляет 1:40. Умножив это соотношение на максимальную рабочую частоту  электропривода, получим значение минимальной частоты, на которой сможет работать электрическая машина. Например, если максимальное значение частоты 60 Гц, а диапазон составляет 1:40, то минимальное значение частоты составит 1,5 Гц.

Паттерн U/F определяет соотношение частоты и напряжения в процессе работы частотно-регулируемого электропривода. Согласно ему, кривая задания скорости вращения (частота электродвигателя) будет определять помимо значения частоты еще и значения напряжения, подводимого к клеммам электрической машины.

Операторы и технические специалисты могут выбрать необходимый шаблон регулирования U/F одним параметром в современном частотном преобразователе. Предустановленные шаблоны уже оптимизированы под конкретные применения. Также существуют возможности создания своих шаблонов, которые будут оптимизироваться под конкретную систему частотно-регулируемого электропривода или электродвигателя.

Такие устройства как вентиляторы или насосы имеют момент нагрузки, который зависит от скорости их вращения. Переменный крутящий момент (рисунок выше) шаблона U/F предотвращает ошибки регулирования и повышает эффективность. Эта модель регулирования уменьшает токи намагничивания на низких частотах за счет снижения напряжения на электрической машине.

Механизмы с постоянным крутящим моментом, такие как конвейеры, экструдеры и другое оборудование используют способ регулирования с постоянным моментом. При постоянной нагрузке необходим полный ток намагничивания на всех скоростях. Соответственно характеристика имеет прямой наклон во всем диапазоне скоростей.


Способ управления U/F с энкодером

Если необходимо повысить точность регулирования скорости вращения в систему управления добавляют энкодер. Введение обратной связи по скорости с помощью энкодера позволяет повысить точность регулирования до 0,03%. Выходное напряжение по-прежнему будет определятся заданным шаблоном U/F.

Данный способ управления не получил широкого применения, так как представляемые им преимущества по сравнению со стандартными функциями U/F минимальны. Пусковой момент, скорость отклика и диапазон регулирования скорости – все идентично со стандартным U/F. Кроме того, при повышении рабочих частот могут возникнуть проблемы с работой энкодера, так как он имеет ограниченное количество оборотов.

Векторное управление без обратной связи

Векторное управление (ВУ) без обратной связи используется для более широкого и динамичного регулирования скорости электрической машины. При пуске от преобразователя частоты электродвигатели могут развивать пусковой момент в 200% от номинального при частоте всего 0,3 Гц. Это значительно расширяет перечень механизмов, где может быть применен асинхронный электропривод с векторным управлением. Этот метод также позволяет управлять моментом машины во всех четырех квадрантах.

Ограничение вращающего момента осуществляется двигателем. Это необходимо для предотвращения повреждения оборудования, машин или продукции. Значение моментов разбивают на четыре различных квадранта, в зависимости направления вращения электрической машины (вперед или назад) и в зависимости от того, реализует ли электродвигатель режим рекуперативного торможения. Ограничения могут устанавливаться для каждого квадранта отдельно или же пользователь может задать общий вращающий момент в преобразователе частоты.

Двигательный режим асинхронной машины будет при условии, что магнитное поле ротора отстает от магнитного поля статора. Если магнитное поле ротора начнет опережать магнитное поле статора, то тогда машина войдет в режим рекуперативного торможения с отдачей энергии, проще говоря – асинхронный двигатель перейдет в генераторный режим.

Например, машина по закупорке бутылок может использовать ограничение момента в квадранте 1 (направление вперед с положительным моментом) для предотвращения чрезмерного затягивания крышки бутылки. Механизм производит движение вперед и использует положительный момент для того, чтобы закрутить крышку бутылки. А вот устройство, такое как лифт, с противовесом тяжелее, чем пустая кабина, будет использовать квадрант 2 (обратное вращение и положительный момент). Если кабина подымается на верхний этаж, то крутящий момент будет противоположен скорости. Это необходимо для ограничения скорости подъема и недопущения свободного падения противовеса, так как он тяжелее, чем кабина.

Обратная связь по току в данных преобразователях частоты ПЧ позволяет устанавливать ограничения по моменту и току электродвигателя, поскольку при увеличении тока растет и момент. Выходное напряжение ПЧ может изменятся в сторону увеличения, если механизм требует приложения большего крутящего момента, или уменьшатся, если достигнуто его предельно допустимое значение. Это делает принцип векторного управления асинхронной машиной более гибким и динамичным по сравнению с принципом U/F.

Также частотные преобразователи с векторным управлением и разомкнутым контуром имеют более быстрый отклик по скорости – 10 Гц, что делает возможным его применение в механизмах с ударными нагрузками. Например, в дробилках горной породы нагрузка постоянно меняется и зависит от объема и габаритов обрабатываемой породы.

В отличии от шаблона управления U/F векторное управление использует векторный алгоритм, для определения максимально эффективного напряжения работы электродвигателя.

Векторное управления ВУ решает данную задачу благодаря наличию обратной связи по току двигателя. Как правило, обратная связь по току формируется внутренними трансформаторами тока самого преобразователя частоты ПЧ. Благодаря полученному значению тока преобразователь частоты проводит вычисления вращающего момента и потока электрической машины. Базовый вектор тока двигателя математически расщепляется на вектор тока намагничивания (Id) и крутящего момента (Iq).

Используя данные и параметры электрической машины ПЧ вычисляет векторы тока намагничивания (Id) и крутящего момента (Iq). Для достижения максимальной производительности, преобразователь частоты должен держать Id и Iq разведенными на угол 900. Это существенно, так как sin 900 = 1, а значение 1 представляет собой максимальное значение крутящего момента.

В целом векторное управление асинхронным электродвигателем осуществляет более жесткий контроль. Регулирование скорости составляет примерно ±0,2% от максимальной частоты, а диапазон регулирования достигает 1:200, что позволяет сохранять вращающий момент при работе на низких скоростях.

Векторное управление с обратной связью

Векторное управление с обратной связью использует тот же алгоритм управления, что и ВУ без обратной связи. Основное различие заключается в наличии энкодера, что дает возможность частотно-регулируемому электроприводу развивать 200% пусковой момент при скорости 0 об/мин. Этот пункт просто необходим для создания начального момента при трогании с места лифтов, кранов и других подъемных машин, чтоб не допустить просадки груза.

Наличие датчика обратной связи по скорости позволяет увеличить время отклика системы более 50 Гц, а также расширить диапазон регулирования скорости до 1:1500. Также наличие обратной связи позволяет управлять не скоростью электрической машиной, а моментом. В некоторых механизмах именно значение момента имеет большую важность. Например, мотальная машина, механизмы закупорки и другие. В таких устройствах необходимо регулировать момент машины.

elenergi.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *