+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Частота асинхронного генератора. Формулы. Расчёт. Теория

Частота асинхронного генератора при холостом ходе и нагрузке

Разница между частотой вращения магнитного поля и ротора в асинхронных генераторах определяется коэффициентом s, называемым скольжением, который выражается соотношением:

s = (n — nr )/n .

Здесь:
n — частота вращения магнитного поля.
nr — частота вращения ротора.

Связь между угловой частотой вращения магнитного поля ω и угловой частотой вращения ротора ωr асинхронной машины можно выразить следующим образом:

ω = ωr /(1 — s) ,

что следует из определения скольжения.
В общем случае угловая частота вращения магнитного поля

ω = 2πn .

Так как частота генерируемых колебаний

f = pn ,

где р — число пар полюсов, то

ω = 2πf/p .

Аналогично угловая частота вращения ротора

ωr = 2πnr или ωr = 2πfr /p ,

где fr = pnr — электрическая частота вращения ротора.
Электрическая угловая частота вращения ротора

ωr p = 2πfr

В режиме автономного асинхронного генератора частота вращения магнитного поля, определяющая частоту генерируемых колебаний, зависит от частоты вращения ротора и от нагрузки, характеризуемой скольжением. Если нагрузка отсутствует, а включенная емкость и частота вращения ротора остаются постоянными, т.е. C = cоnst и ωr = cоnst, то частоту генерируемых колебаний можно выразить через параметры колебательного контура, который образуется собственной индуктивностью статорной обмотки и емкостью конденсатора.

При отмеченных условиях уравнение электрического равновесия, выраженное через мгновенные значения напряжений на синхронном индуктивном сопротивлении

XL = ωL и на конденсаторе XC = ωC, принимает вид:

uL + uC = 0 .

После подстановок:

uL = Ldi/dt и di/dt = C d 2u/dt 2

где

i = C duC /dt ,

и преобразований, уравнение примет вид

d 2uC /dt 2 + uC /LC = 0

Примем, что напряжение на конденсаторе изменяется по синусоидальному закону:

uC = UC sinωt ,

тогда

d 2uC /dt 2 = -ω 2UC sinωt ,

С учетом последних соотношений из дифференциального уравнения находим:

ω = 1/√LC ,

откуда

f = 1/2π√LC

Таким образом, частота генерируемых колебаний при холостом ходе автономного асинхронного генератора определяется из условия резонанса емкости конденсатора и собственной индуктивности обмотки статора.
Если принять, что при холостом ходе скольжение s = 0, то получим

ω ≈ ωr

Тогда

f ≈ pnr = fr

Последнее выражение можно представить в виде

fr1/2π√LC

Следовательно, при холостом ходе асинхронного самовозбуждающегося генератора параметры колебательного контура автоматически настраиваются на частоту, равную электрической частоте вращения ротора.

Изменение значения включенной емкости при ωr = cоnst или частоты вращения ротора при С = cоnst не нарушает вышеописанных равенств, если генератор остается в области устойчивой работы. В первом случае мы имеем одну характеристику намагничивания машины, соответствующую данному значению частоты вращения и семейство вольтамперных характеристик возбуждающей емкости, причем каждая из характеристик составляет с положительным направлением оси абсцисс угол

αk = arctg(1/ωCk

) ,

где k = 1, 2, 3 . .. Произведение собственных индуктивностей статорной обмотки и емкости конденсаторов остается практически постоянным, т.е.

LkCk = cоnst ,

так как вследствие нелинейности кривой намагничивания происходит соответствующее изменение индуктивности. Так с увеличением емкости ток холостого хода и степень насыщения магнитной цепи возрастают, а индуктивность уменьшается. Значение установившегося напряжения определяется точкой пересечения кривой намагничивания и вольтамперной характеристики конденсаторов.

Во втором случае, т.е. при переходе к новым значениям установившихся частот вращения с емкостью С = cоnst, мы имеем семейство кривых намагничивания и семейство вольтамперных характеристик возбуждающей емкости. Углы наклона последних к положительному направлению оси абсцисс находятся теперь по соотношению

αk = arctg(1/ωC) ,

Значение установившегося напряжения в каждом случае определяется точкой пересечения кривой намагничивания и вольтампер ной характеристики конденсаторов для данной угловой частоты ωk .

Получим теперь выражение для частоты генерируемых колебаний при нагрузке, полагая, что емкость конденсаторов и частота вращения ротора не изменяются. Выполнив необходимые преобразования из вышеописанных формул, получим:

f = fr /(1 — s ) ,

или

f = pnr /(1 — s ) ,

Заметим, что частота вращения ротора в большинстве случаев выражается в об/мин а не в сек/мин, тогда запишем

f = pnr /60(1 — s ) ,

Частота генерируемых колебаний при постоянной частоте вращения ротора и возрастающей нагрузке несколько уменьшается, так как на устойчивой части механической характеристики асинхронной машины скольжение пропорционально нагрузке. С другой стороны, уменьшение частоты f при С = cоnst объясняется увеличением собственной индуктивности фазы статора вследствие возрастания коэффициента взаимоиндукции. Последнее вызывается размагничивающим действием тока ротора.

Продолжение следует.

Ещё статьи для ознакомления:
Синхронный и асинхронный генератор. Отличия.
Асинхронный генератор. Характеристики.

Дизель-генераторы.


Замечания и предложения принимаются и приветствуются!

Регулирование частоты вращения асинхронных двигателей

Страница 17 из 51

Асинхронные двигатели являются основой современного электропривода переменного тока. Эффективность работы этого электропривода во многом определяется возможностями регулирования частоты вращения.
Возможности асинхронных двигателей в отношении регулирования частоты вращения ротора определяются выражением
.
Из этого выражения следует, что частоту вращения можно регулировать тремя способами: путем изменения частоты , числа пар полюсов p и скольжения s. Рассмотрим каждый из этих способов подробнее.

Регулирование частоты вращения изменением частоты подводимого напряжения

Этот способ является в настоящее время наиболее перспективным.

Изменение частоты осуществляется с помощью полупроводникового преобразователя частоты (рис. 4.28, а). Одновременно с изменением частоты регулируют и напряжение , так чтобы обеспечить постоянство магнитного потока . Из выражения, связывающего напряжение с потоком Ф,
,
следует, что напряжение необходимо регулировать пропорционально частоте

.
Отклонение от этого закона приводит к изменению потока Ф, что нежелательно. Действительно, при увеличении потока возрастает насыщение магнитной цепи, растут потери в стали и намагничивающий ток. Уменьшение потока вызывает уменьшение максимального момента двигателя и ряд других нежелательных явлений.
При механические характеристики двигателя имеют показанный на рис. 4.28, б вид. При снижении частоты пусковой момент двигателя возрастает, а максимальный несколько снижается. Рабочее скольжение двигателя остается небольшим, что характеризует экономичный режим работы двигателя.

Однако стоимость этого способа регулирования частоты вращения двигателя весьма высока, так как преобразователь частоты должен быть выполнен на полную мощность двигателя.

Регулирование частоты вращения изменением числа пар полюсов

Этот способ регулирования в отличие от предыдущего позволяет осуществить изменение частоты вращения только ступенями. Он используется в таких механизмах, как воздуходувки, транспортеры, подъемники, лифты. Двигатели с переключением числа пар полюсов называют многоскоростными. Обычно многоскоростные асинхронные двигатели выполняются с двумя, тремя и четырьмя ступенями скоростей. Двухскоростные двигатели изготавливаются с одной обмоткой, если числа пар полюсов соответствуют следующему отношению:

.
Трех- и четырехскоростные двигатели выпускаются с двумя обмотками. В трехскоростных двигателях только одна обмотка выполняется с переключением числа пар полюсов , а в четырехскоростных обе обмотки выполняются как двухскоростные. Обмотка ротора многоскоростных двигателей выполняется короткозамкнутой. Для нее не требуется переключения схемы соединения, так как необходимое число пар полюсов обмотки ротора образуется автоматически полем статора.
Изменение числа полюсов осуществляется путем изменения схемы соединения секций обмотки статора. На рис. 4.29 показаны три варианта соединения секций.

Вариант «а» соответствует последовательному согласному включению секций, при этом образуется магнитное поле с полюсами. В варианте «б» вторая секция включается встречно-последовательно. Результирующее поле имеет полюса. Мощность обмотки остается неизменной, , а момент, развиваемый двигателем, снижается в два раза, . В варианте «в» вторая секция включается встречно-параллельно. Результирующее поле также будет иметь полюса, но мощность обмотки возрастает в два раза, а момент двигателя остается постоянным .

Таким образом, для изменения числа пар полюсов в отношении необходимо, чтобы каждая фаза обмотки состояла из двух одинаковых частей. Когда обе части обтекаются токами одинакового направления, число полюсов , при изменении направления тока в одной из них число полюсов уменьшается вдвое, . При переключении числа полюсов с на полюсное деление уменьшается в два раза, при этом величина фазной зоны трехфазной обмотки меняется с 60° на 120° (рис. 4.30).

Так как чередование фаз для обеих скоростей должно оставаться одинаковым, то кроме изменения направления токов в зонах необходимо поменять местами две фазы обмотки. При большем числе полюсов обмотка выполняется с диаметральным шагом . Тогда при меньшем числе полюсов .
Малый шаг приводит к ухудшению использования обмотки и, следовательно, к некоторому снижению технико-экономических показателей двигателя.
Многоскоростные двигатели проектируются для различных режимов работы. Наиболее часто встречаются режимы с постоянным моментом и с постоянной мощностью . Регулирование частоты вращения с постоянным моментом обеспечивается при переключении обмотки со звезды на схему двойной звезды (рис. 4.31).
При таком переключении в два раза возрастает потребляемый из сети ток, а следовательно, и мощность двигателя , момент же при этом не меняется.

Если до переключения обмотка статора была соединена в треугольник (рис. 4.32), то после переключения ее на двойную звезду мощность двигателя практически не изменится, а момент уменьшится в два раза из-за увеличения частоты вращения.

Регулирование частоты вращения изменением скольжения

Изменять скольжение асинхронного двигателя можно разными способами: изменением подводимого к статору напряжения, введением сопротивления в цепь ротора или введением в цепь ротора дополнительной ЭДС.
При изменении напряжения статора механическая характеристика двигателя изменяется, как показано на рис. 4.33. Снижение напряжения приводит к уменьшению жесткости механической характеристики и росту скольжения. При этом частота вращения ротора снижается,
.
Регулирование частоты вращения таким способом возможно в ограниченном диапазоне изменения скольжения
.
Основным недостатком этого способа регулирования частоты вращения является низкий КПД из-за роста потерь в обмотке ротора пропорционально частоте скольжения
.

Поэтому он применяется только для двигателей малой мощности, работающих в системах автоматического управления.
В двигателях с фазным ротором изменить частоту вращения можно путем изменения сопротивления в роторе (рис. 4.34).
Преимущество данного способа регулирования частоты состоит в том, что максимальный момент остается неизменным. Важно также отметить, что часть потерь двигателя выносится в резистор, тем самым облегчается тепловой режим двигателя. В остальном способ аналогичен предыдущему и характеризуется низким КПД., малым диапазоном регулирования, зависящим от нагрузки, и «мягкой» механической характеристикой.

Чтобы повысить КПД двигателя при регулировании частоты вращения путем изменения скольжения, необходимо мощность скольжения использовать для совершения полезной работы или возвратить обратно в сеть. Схемы, реализующие эту идею, называются каскадными. Одной из распространенных схем данного типа является схема асинхронно-вентильного каскада (рис. 4.35).
Схема включает асинхронный двигатель с фазным ротором (АД), диодный выпрямитель (Д), сглаживающий дроссель (Др), тиристорный инвертор (И) и сетевой согласующий трансформатор (Тр). Регулирование частоты вращения осуществляется посредством изменения напряжения инвертора. Это приводит к соответствующему изменению напряжения обмотки ротора, а следовательно, и частоты вращения ротора. Мощность частоты скольжения, извлекаемая из роторной обмотки двигателя, передается в сеть через согласующий трансформатор.
Достоинством каскадных схем регулирования частоты вращения асинхронных двигателей по сравнению с частотными схемами управления в статорной цепи (рис. 4.28) является то, что полупроводниковый преобразователь выполняется на мощность скольжения, а не на полную мощность двигателя. Это обстоятельство особенно важно для мощных и сверхмощных приводов насосов, прессов, конвейеров, подъемных механизмов и др. , где требуется ограниченный диапазон регулирования частоты вращения (2:1 и менее).
Асинхронно-вентильный каскад с неуправляемым выпрямителем допускает регулирование только вниз от синхронной частоты вращения. Если использовать управляемый выпрямитель, то можно осуществить регулирование частоты вращения вверх от синхронной. В этом случае направление передачи мощности скольжения меняется на противоположное.

 Рабочие характеристики асинхронного двигателя — зависимости потребляемого тока I1 и мощности Р1, КПД, cos φ и скольжения s от полезной механической мощности P2. Эти характеристики определяются при постоянном напряжении U1 и частоте f1 сети.

Рабочие характеристики асинхронного двигателя могут быть получены экспериментально (опытным путем) и рассчитаны с помощью схемы замещения.

Ниже приводится расчет рабочих характеристик асинхронного двигателя по схеме замещения.

По обмотке статора асинхронной машины протекает многофазная система токов, обычно трехфазная, которая создает в воздушном зазоре машины вращающееся магнитное поле (магнитный поток Ф).

 Вращающееся магнитное поле в свою очередь индуктирует (наводит) в проводниках обмотки ротора ЭДС, под действием которой в замкнутой накоротко обмотке ротора протекает ток I2. Этот ток, взаимодействуя с магнитным потоком Ф, создает механическую силу, стремящуюся привести ротор во вращение в сторону вращения магнитного поля.

Определим, с какой частотой вращения магнитное поле машины пересекает проводники ротора. Эта частота равна, об/мин:

             (9)

Определим частоту ЭДС f2, которая наводится магнитным полем асинхронной машины в проводниках ротора, Гц:

f2=р n2/60.            (10)

Если учесть, что n2=n1s [см. формулу (9)], то можно записать

       (11)

Из формулы (11) видно, что если ротор машины неподвижен (n=0, s=l), то частота ЭДС, наводимой в роторе, равна частоте сети. По мере увеличения частоты вращения ротора ЭДС понижается и при синхронной частоте будет равна нулю. На рис. 13 показаны изменения скольжения, частоты и ЭДС в роторе в зависимости от частоты вращения ротора.

Рис. 13. Зависимость скольжения s, частоты f2 и ЭДС, наводимой в роторе, E2 от частоты вращения асинхронного двигателя n

Из закона электромагнитной индукции следует, что при гармоническом изменении магнитного поля наводимая в обмотке ЭДС равна:

E=4,44fwkобФmax,             (12)

где f — электрическая частота, Гц; w — число последовательно соединенных витков фазы; kоб — обмоточный коэффициент; Фmax — максимальное значение рабочего потока, сцепленного с обмоткой, Вб.

Знание частоты f2 в роторе дает возможность определить ЭДС ротора Е2 при произвольной частоте вращения (скольжении), В, в виде

E2=4,44f2w2kоб2Фmax,           (13)

где w2 — число последовательно  соединенных витков обмотки ротора; kоб2 — обмоточный   коэффициент   ротора.

Подстановка f2  из формулы (11) дает, В,

E2s=4,44f s w2kоб2Фmax=sE2,     (   14)

где Е2 — ЭДС, наводимая в неподвижной обмотке ротора потоком Фmax, В.

Осветим теперь важный для анализа работы асинхронных двигателей вопрос о зависимости вращающегося магнитного потока двигателя от режима работы машины. Для этого, чтобы представить себе эту зависимость, определим вначале, какую ЭДС Е1 наводит этот поток в каждой фазе обмотки статора, В:

E1=4,44fw1kоб1Фmax,     (15)

где w1 — число витков одной фазы статора; kоб1 —обмоточный коэффициент обмотки статора.

Напряжение U1, приложенное к статору, уравновешивается ЭДС E1 и падением напряжения I1z1 на внутреннем сопротивлении z1=r1+jx1 обмотки статора (х1— индуктивное сопротивление обмотки, определяемое потоком рассеяния) . При изменении нагрузки двигателя от нуля (холостой ход) до номинальной падение напряжения составляет 5—10 % приложенного. Таким образом, с достаточной для качественного анализа точностью можно полагать, что напряжение U1 полностью компенсируется ЭДС Е1 т. е. .

U1≈E1         (16)

Учитывая формулу (15), нетрудно заключить, что ЭДС и вращающийся магнитный поток двигателя зависят от приложенного к двигателю напряжения. При постоянном напряжении поток Фmах остается приблизительно постоянным независимо от изменения нагрузки двигателя.

Рассмотрим вначале явления, происходящие в машине с заторможенным ротором и замкнутой накоротко обмоткой ротора. Асинхронный двигатель в этом режиме подобен трансформатору с короткозамкнутой вторичной обмоткой. Отличие состоит в том, что вторичная магнитная цепь отделена от первичной воздушным зазором, первичная обмотка (статора) и вторичная обмотка (ротора) равномерно распределены по окружности, а магнитное поле вращающееся.

Как видно из формулы (14) и рис. 13, ЭДС, наводимая в обмотке ротора, когда он неподвижен, является максимальной. В силу этого и ток, проходящий по обмоткам статора и ротора, также будет наибольшим. Этот режим называется режимом короткого замыкания (КЗ). Ток статора в этом режиме называется током короткого замыкания и превышает его номинальный ток в 4—7 раз. Асинхронный двигатель в таких условиях нельзя длительно оставлять под полным напряжением из-за перегрева обмоток, который может привести к аварии.

Для определения тока короткого замыкания двигателя делают опыт КЗ. Этот опыт заключается в том, что к двигателю с заторможенным (неподвижным) ротором подводят пониженное напряжение, регулируя которое, устанавливают номинальный ток. Напряжение, подводимое к двигателю в опыте КЗ, оказывается малым (15— 20%) по сравнению с номинальным. На базе этого опыта можно в безопасных для двигателя условиях определить величину тока короткого замыкания /к при номинальном напряжении, А:

       (17)

где Uном — номинальное напряжение, В; Uк — напряжение в опыте КЗ при номинальном токе, В; Iном — номинальный ток, А.

Замеряя в этом опыте по ваттметру мощность короткого замыкания Рк, подводимую к одной фазе двигателя,  находят также  коэффициент  мощности в режиме  КЗ

      (18)

и эквивалентное активное сопротивление статора и ротора двигателя гк в режиме КЗ на одну фазу, Ом,

rк=Pк/Iном2              (19) 

Это эквивалентное активное сопротивление равно сумме активного сопротивления статора и приведенного активного сопротивления ротора. Понятие о приведенном активном и реактивном сопротивлении ротора будет дано ниже.

Определив угол φк по значению cosφк из формулы (18), легко найти и эквивалентное реактивное сопротивление двигателя в режиме короткого замыкания, Ом:

хк=rкctgφк (20)

Индуктивное сопротивление хк равно сумме индуктивного сопротивления статора и приведенного индуктивного сопротивления ротора.

Поскольку частота вращения ротора двигателя в этом режиме равна нулю, его механическая мощность также равна нулю. Потери в стали во время опыта короткого замыкания очень малы, так как мал вращающийся магнитный поток. Поэтому мощность Рк, которая подводится к машине, почти вся идет на нагрев проводников обмоток статора и ротора. То же самое можно сказать о режиме КЗ при полном напряжении.

Теперь представим себе, что обмотка ротора разомкнута, а обмотка статора включена в сеть. Ток по роторной обмотке при этом не проходит и асинхронный двигатель подобен трансформатору, но уже в режиме холостого хода (XX). Так как ток в проводниках ротора отсутствует, то механическая сила не возникает и ротор остается неподвижным.

По обмотке статора при этом проходит ток холостого хода I0, который создает магнитодвижущую силу (МДС), необходимую для создания магнитного потока Фmax. Поскольку в магнитной цепи асинхронного двигателя имеется зазор, то для создания магнитного потока требуется относительно больший ток, чем в трансформаторе. В двигателях большой и средней мощности ток XX составляет 25—35, а в двигателях малой мощности — 35—60% номинального тока.

Наводимая в неподвижном роторе ЭДС может быть определена по формуле (14), если учесть, что скольжение в этом режиме равно 1. Отношение ЭДС в обмотке статора к ЭДС в обмотке ротора называется коэффициентом трансформации ЭДС и может быть определено по формуле

           (21)

Мощность, потребляемая двигателем в режиме XX при неподвижном роторе, расходуется на потери в проводниках статора двигателя, потери на перемагничивание и вихревые токи в стали статора и в стали ротора.

Важно заметить, что режим XX при неподвижном роторе очень близок к режиму, который возникает, когда  асинхронный двигатель не выполняет полезной работы и вращается на холостом ходу. В этом случае частота вращения ротора двигателя почти равна синхронной, а  скольжение примерно равно нулю [см. формулы (4), (9) и рис. 13]. Электродвижущая сила в роторе будет близкой к нулю, и, следовательно, подобно режиму XX при неподвижном роторе практически равен  нулю ток в роторе. При холостом ходе вращающегося двигателя ток в обмотке статора, как и в случае холостого хода неподвижного двигателя, определяется в основном МДС, необходимой для создания магнитного потока Фmax.

При вращении ротора в двигателе появляются потери, которых нет в случае неподвижного ротора; это механические потери на трение и вентиляционные. Однако когда частота вращения ротора примерно равна синхронной, исчезают потери в стали ротора двигателя, поскольку магнитное поле теперь очень медленно перемещается относительно ротора и его сталь почти не перемагничивается. Таким образом, потери и, следовательно, мощность в двух режимах холостого хода оказываются близкими.

Асинхронная машина в режиме холостого хода может быть представлена схемой замещения, показанной на рис. 14. Для определения параметров и характеристик двигателя помимо опыта КЗ выполняют опыт XX, во время которого замеряют ток обмотки статора I0 (А) и потребляемую мощность Р0 (Вт). Это позволяет определить сопротивления в схеме замещения двигателя на холостом ходу, а также коэффициент мощности XX:

cosφ0=P0/(UI0).            (22)

Рис. 14. Схема замещения первичной цепи (статора)   асинхронного  двигателя,  работающего  в режиме холостого хода

Перейдем теперь к рассмотрению общего случая режима нагрузки, когда ротор вращается с частотой, меньшей частоты XX. Определим, какой ток будет проходить по обмотке ротора во всем диапазоне рабочих режимов. Наводимая вращающимся магнитным потоком ЭДС в обмотке ротора зависит при постоянном напряжении только от скольжения и может быть найдена по (14). Ток ротора будет, очевидно, зависеть от ЭДС, наводимой в роторе, и сопротивления обмотки ротора, при этом полное сопротивление цепи в случае переменного тока определяется не только активным сопротивлением проводников обмотки, но и ее индуктивным сопротивлением. Индуктивное сопротивление обмотки ротора изменяется так же, как и ЭДС ротора E2s, Ом:

x2s=2πf2L2=s2πf1L2 =sx2,      (23)

где L2 — индуктивность обмотки ротора, Гн; х2— индуктивное сопротивление рассеяния обмотки неподвижного ротора при s=l, Ом.

Теперь, используя закон Ома для цепей переменного тока, найдем ток ротора, А:

      (24)

Учитывая (14) и (23), формулу (24) можно записать иначе:

           (25)

Таким образом, можно видеть, что при скольжении, равном нулю или близком к нему (это соответствует синхронной или близкой к синхронной частоте вращения ротора), ток ротора равен нулю или очень мал. Это совпадает с тем, что было сказано выше относительно режима XX при вращающемся роторе. По мере уменьшения частоты вращения двигателя, т. е. при увеличении скольжения, ток возрастает за счет увеличения ЭДС ротора, однако рост тока ограничивается увеличением индуктивного сопротивления ротора.

Если разделить числитель и знаменатель выражения (25) для тока ротора I2 на s, то получим следующую формулу:

           (26)

Из этого следует, что если мы примем, что ротор неподвижен, а его активное сопротивление меняется обратно пропорционально скольжению, то по его обмотке будет проходить точно такой же ток, как и при вращающемся роторе. Удобство такого преобразования состоит в том, что оно позволяет вместо вращающегося ротора (вращающаяся вторичная электрическая цепь) рассматривать неподвижный ротор (неподвижная вторичная цепь).

Однако изучение процессов, происходящих в асинхронной машине, и расчет ее характеристик можно сделать более удобными, если заменить реальную обмотку ротора эквивалентной с числом витков в фазе и числом фаз, равным им у первичной обмотки (обмотки статора), т. е. вместо обмотки ротора с числом фаз m2, числом витков в фазе w2 и обмоточным коэффициентом kоб2 будем полагать, что обмотка ротора имеет число фаз ти число витков в фазе w1 и обмоточный коэффициент kоб1. Эта замена называется приведением обмотки ротора к обмотке статора. Нетрудно видеть, что магнитный поток Ф в этом случае будет наводить в эквивалентной (приведенной) обмотке ротора ЭДС, равную ЭДС обмотки статора E2‘=E1 (штрихом будем обозначать приведенные величины).

Замена обмотки ротора не должна привести к изменению потребляемой мощности, потерь, магнитодвижущей силы и фазы тока обмотки. Из этого условия определяются приведенные величины тока, активного и индуктивного сопротивлений обмотки ротора .

В соответствии с (13) имеем, В

           (27)

Из формул (27) вытекает отношение между ЭДС приведенной и реальной обмоток заторможенного ротора, которое называется коэффициентом трансформации ЭДС или напряжений. Он равен:

          (28)

Из условия неизменности магнитодвижущих сил F2‘ =F2 следует, что

   

откуда вытекает отношение между токами, которое называется коэффициентом трансформации токов. Он равен:

          (29)

Из условия неизменности потерь в обмотке ротора при приведении следует, что

   

откуда

           (30)

или r2‘=krr2,

где kr=kIkU — коэффициент приведения сопротивлений.

Из условия неизменности фазы тока обмотки ротора следует

           (31)

Процесс приведения цепи ротора показан на рис. 15. От схемы замещения обмотки вращающегося ротора (рис. 15,а) переходим к схеме замещения неподвижного ротора (рис. 15,б), а затем приводим обмотку ротора к обмотке статора (рис. 15, в).

Рис. 15. Схемы замещения: а — обмотки вращающегося ротора; б — неподвижного ротора; в — обмотки ротора, приведенной к обмотке статора

Поскольку теперь ЭДС Е1 первичной обмотки равна ЭДС Е2‘ вторичной обмотки, мы можем соединить электрически соответствующие точки схемы замещения обмотки статора и ротора. В результате получим схему замещения асинхронного двигателя, показанную на рис. 16. Здесь активное сопротивление rm отражает наличие потерь в стали двигателя. Для двигателей средней и большой мощности удобнее пользоваться упрощенной схемой замещения, приведенной на рис. 17.

Рис. 16. Т-образная схема замещения  асинхронного двигателя

Рис. 17. Упрощенная Г-образная схема замещения  асинхронного двигателя

Используя последнюю схему, легко найти токи и ЭДС в обмотках, подводимую и полезную мощность, а также мощность потерь при любой частоте вращения двигателя. Для этого следует лишь найти скольжение, соответствующее заданной частоте n, по формуле (4) и вычислить сопротивление r2‘/s в схеме по рис. 17. После этого нетрудно найти ток намагничивания I0 и приведенный ток I2‘ в роторной цепи, А:

              (32)

Это дает возможность вычислить электрические потери в обмотке статора трехфазного двигателя (m1=3), Вт:

               (33)

Электрические потери в обмотке ротора (Вт) можно найти, предварительно рассчитав по (30) приведенное сопротивление ротора r2‘  (Ом):

              (34)

Суммарная активная мощность, передаваемая со статора на ротор, как видно из схемы (рис. 17), будет равна, Вт:

               (35)

Эта мощность передается на ротор электромагнитным путем и поэтому называется электромагнитной мощностью.

Если из электромагнитной мощности вычесть мощность электрических потерь в обмотке ротора, то получим полную механическую мощность двигателя, Вт:

               (36)

Полная механическая мощность расходуется на вращение приводного механизма (полезная механическая мощность) и на покрытие механических Рмх.п и добавочных Рд.п потерь самого двигателя. Поэтому полезная механическая мощность Р2 будет равна, Вт:

               (37)

Коэффициент полезного действия двигателя по определению равен отношению отдаваемой (полезной механической) мощности к потребляемой (активной электрической) мощности. Разность между этими мощностями составляют потери в двигателе, равные, Вт:

 

где Pм.п=m1I02rm — магнитные потери или потери в стали. Таким образом, КПД двигателя равен:

              (38)

Использование первого или второго выражения для КПД определяется тем, какая из мощностей — P1 или Р2— известна. На практике наиболее часто применяется первое выражение (38).

Используя схему замещения, можно определить также ток, потребляемый двигателем из сети, т. е. ток статора, который равен сумме двух токов. Первый из них — это ток XX, который протекает по цепи 1 (рис. 17) и не изменяется при изменении частоты вращения ротора, второй — ток ротора I2‘, который определяется по (32). Складывая геометрически эти два тока, можно получить ток статорной обмотки. Такое геометрическое сложение показано на рис. 18. Углы φ2‘, φ0, необходимые для построения, можно найти с помощью схемы замещения (см. рис. 17):

Таким образом, знание параметров схемы замещения (r1, x1, r2‘, х2‘, rm, хm) и приложенного напряжения U1 (напряжение сети) позволяет с помощью приведенных выше формул определить полезную мощность, токи, потери, КПД, коэффициент мощности двигателя при различных скольжениях (частоте вращения).

Рис. 18. Диаграмма токов асинхронного двигателя  

Зависимости потребляемого тока I1 и мощности Р1, КПД, cosφ и скольжения s от полезной механической мощности P2 носят название рабочих характеристик двигателя. Эти характеристики определяются при постоянном напряжении U1 и частоте f1 сети. Пример рабочих характеристик приведен на рис. 19.

Рис. 19. Рабочие характеристики асинхронного двигателя 

Рассмотрим рабочие характеристики асинхронного двигателя. При холостом ходе (полезная мощность Р2—0) скольжение s также равно нулю (частота вращения ротора n практически равна синхронной), сопротивление r2/’s равно бесконечности (см. рис. 17) и ток I2‘==0. По обмотке статора протекает ток холостого хода I0. Коэффициент полезного действия η равен нулю, так как равна нулю полезная мощность Р2, а коэффициент мощности равен коэффициенту мощности для тока холостого хода (cosφ1=cosφ0).

При увеличении нагрузки частота вращения ротора уменьшается и увеличивается скольжение s. За счет увеличения s уменьшается сопротивление цепи 2 (см. рис. 17) и увеличивается ток ротора, а следовательно, и ток статоpa. Поскольку увеличивается полезная мощность, растет, КПД двигателя, а также коэффициент мощности.

Обычно номинальная мощность на валу двигателя достигается уже при небольшом понижении частоты вращения ротора и вся область рабочих режимов находится в диапазоне скольжений от 0 до 2—5%.

Поэтому скоростная характеристика n=f(P2) у асинхронного двигателя имеет небольшой наклон к оси абсцисс. Характеристики такого вида принято называть жесткими. Соответственно характеристика s=f(P2) имеет слабый подъем при возрастании нагрузки. В асинхронном двигателе частота вращения ротора меньше частоты вращения поля, за счет чего обеспечивается наведение ЭДС, а также создание тока 1% в обмотке ротора и вращающего электромагнитного момента, под действием которого ротор приходит во вращение.

Характеристика cosφ=f(P2) лежит в области значений, меньших 1, так как асинхронный двигатель всегда потребляет ток I0, почти не зависящий от нагрузки в диапазоне мощностей от Р0 до Р2≈Рном. При XX обычно  φ0<0,2, т. е. он содержит большую реактивную составляющую. При увеличении нагрузки cosφ быстро возрастает и достигает максимального значения при мощности Р2≈Р2ном. При увеличении нагрузки выше номинальной cosφ  несколько снижается.

Коэффициент полезного действия достигает своего максимального значения при Р2≈ (0,6÷0,8)Р2ном и снижается при дальнейшем росте нагрузки. Поскольку двигатель обычно работает при переменной нагрузке, изменяющейся в пределах (0,6—1)Р2ном, то КПД в этом диапазоне изменения нагрузки должен быть достаточно высок.

§81. Регулирование частоты вращения асинхронных двигателей

Частота вращения асинхронного двигателя

n = n1 (1 – s) = (60f1/p) (1-s) (85)

Из этого выражения видно, что ее можно регулировать, изменяя частоту f1 питающего напряжения, число пар полюсов р и

Рис. 266. Схема переключения катушек обмотки статора (одной фазы) для изменения числа полюсов: а — при четырех полюсах; б — при двух полюсах

скольжение s. Последнее при заданных значениях момента на валу Мвн и частоты f1 можно изменять путем включения в цепь обмотки ротора реостата.

Регулирование путем изменения частоты питающего напряжения. Этот способ требует наличия преобразователя частоты, к которому должен быть подключен асинхронный двигатель. На основе управляемых полупроводниковых вентилей (тиристоров) созданы статические преобразователи частоты и построен ряд опытных электровозов и тепловозов с асинхронными двигателями, частота вращения которых регулируется путем изменения частоты питающего напряжения. Такой способ регулирования частоты вращения ротора асинхронного двигателя является весьма перспективным.

Регулирование путем изменения числа пар полюсов. Этот способ позволяет получить ступенчатое изменение частоты вращения. Для этой цели отдельные катушки 1, 2 и 3, 4, составляющие одну фазу (рис. 266), переключаются так, чтобы изменялось соответствующим образом направление тока в них (например, с последовательного согласного соединения на встречное). При согласном включении катушек (рис. 266, а) число полюсов равно четырем, при встречном включении (рис. 266, б) — двум. Катушки двух других фаз, сдвинутые в пространстве на 120°, соединяются таким же образом. Такое же уменьшение числа полюсов можно осуществить при переключении катушек с последовательного на параллельное соединение. При изменении числа полюсов изменяется частота вращения n1 магнитного поля двигателя, а следовательно, и частота вращения n его ротора. Если нужно иметь три или четыре частоты вращения n1, то на статоре располагают еще одну обмотку, при переключении которой можно получить еще две частоты. Существуют двигатели, которые обеспечивают изменение частоты вращения n1 при постоянном наибольшем моменте или при приблизительно постоянной мощности (рис. 267).

В асинхронном двигателе число полюсов ротора должно быть равно числу полюсов статора. В короткозамкнутом роторе это условие выполняется автоматически и при переключении обмотки статора никаких изменений в обмотке ротора выполнять не требуется.

Рис. 267. Механические характеристики двухскоростных асинхронных двигателей с постоянным наибольшим моментом (а) и постоянной мощностью (б)

Рис. 268. Механические характеристики асинхронного двигателя при регулировании частоты вращения путем включения реостата в цепь обмотки ротора

Рис. 269. Схемы подключения асинхронного двигателя к сети при изменении направления его вращения

В двигателе же с фазным ротором в этом случае надо было бы изменять число полюсов обмотки ротора, что сильно усложнило бы его конструкцию, поэтому такой способ регулирования частоты вращения используется только в двигателях с коротко-замкнутым ротором. Такие двигатели имеют большие габаритные размеры и массу по сравнению с двигателями общего применения, а следовательно, и большую стоимость. Кроме того, регулирование осуществляется большими ступенями; при частоте f1 = 50 Гц частота вращения поля n1 при переключениях изменяется в отношении 3000:1500:1000:750.

Регулирование путем включения в цепь ротора реостата. При включении в цепь обмотки ротора реостата с различным сопротивлением (Rп4, RпЗ, Rп2 и т. д.) получаем ряд реостатных механических характеристик 4, 3 и 2 двигателя. При этом некоторому нагрузочному моменту Мном (рис. 268) будут соответствовать меньшие частоты вращения n4, n3, n2 и т. д., чем частота nе при работе двигателя на естественной характеристике 1 (при Rп = 0). Это способ регулирования может быть использован только для двигателей с фазным ротором. Он позволяет плавно изменять частоту вращения в широких пределах. Недостатками его являются большие потери энергии в регулировочном реостате, поэтому его используют только при кратковременных режимах работы двигателя (при пуске и пр.).

Изменение направления вращения. Для изменения направления вращения двигателя нужно изменить направление вращения магнитного поля, создаваемого обмотками статора. Это достигается изменением порядка чередования тока в фазах обмотки статора. Например, если максимумы токов поступают в фазы обмотки статора 1 (рис. 269, а) в следующем порядке: фаза А — фаза В — фаза С, то ротор 2 двигателя будет вращаться по часовой стрелке. Если же подавать их в такой последовательности: фаза В — фаза А — фаза С, то ротор начнет вращаться против часовой стрелки. Для этой цели необходимо изменить схему соединения обмоток статора с сетью, переключив две любые фазы (провода). Например, зажим А обмотки статора, который ранее был соединен с линейным проводом Л1, нужно переключить на провод Л2, а зажим В этой обмотки, соединенный ранее с Л2, переключить на провод Л1 (рис. 269,б). Такое переключение можно осуществить обычным переключателем.

Информационная статья «Асинхронный электродвигатель»

Асинхронный двигатель состоит из неподвижной части статора 1 (рис. 1, а), на котором расположены обмотка 2 статора, и вращающейся части — ротора 3 с обмоткой 4. Между ротором и статором имеется воздушный зазор, который для улучшения магнитной связи между обмотками делают по возможности малым. Обмотка 2 статора представляет собой трехфазную или в общем случае многофазную обмотку, катушки которой размещают равномерно вдоль окружности статора. Фазы этой обмотки А-Х, B-Y и C-Z размещены равномерно по окружности статора; они соединяются «звездой» (рис. 1,б) или «треугольником» и подключаются к сети трехфазного тока.

Рис. 1. Электромагнитная схема асинхронного двигателя (а), схема включения его обмоток (б) и пространственное распределение вращающего магнитного поля (в) в двухполюсной машине

Обмотку 4 размещают равномерно вдоль окружности ротора. При работе двигателя она замкнута накоротко.

При подключении обмотки статора к сети создается синусоидально распределенное вращающееся магнитное поле 5 (рис. 1, в). Оно индуцирует в обмотках статора и ротора э. д. с. e1 и е2. Под действием э. д.с. е2 по проводникам ротора будет проходить электрический ток i2. На рис. 1, а показано согласно правилу правой руки направление э. д. с. е2, индуцированной в проводниках ротора при вращении магнитного потока Ф, по часовой стрелке (при этом проводники ротора перемещаются относительно потока Ф против часовой стрелки). Если ротор неподвижен или частота его вращения п меньше синхронной частоты n1, активная составляющая тока ротора совпадает по фазе с индуцированной э. д. с. е2, при этом условные обозначения (крестики и точки) показывают одновременно и направление активной составляющей тока i2.

На проводники с током, расположенные в магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарная сила Fрез, приложенная ко всем проводникам ротора, образует электромагнитный момент М, увлекающий ротор за вращающимся магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение и его установившаяся частота вращения соответствует равенству электромагнитного момента М тормозному, приложенному к валу от приводимого во вращение механизма и внутренних сил трения.

Э.д.с, индуцированная в проводниках обмотки ротора, зависит от частоты их пересечения вращающимся полем, т. е. от разности частот вращения магнитного поля n1 и ротора n. Чем больше разность n1— n, тем больше э. д. с. е2. Следовательно, необходимым условием для возникновения в асинхронной машине электромагнитного вращающего момента является неравенство частот вращения n1 и n. Только при этом условии в обмотке ротора индуцируется э. д. с. и возникает ток i и электромагнитный момент М. По этой причине машина называется асинхронной (ротор ее вращается несинхронно с полем). Иногда ее называют индукционной ввиду того, что ток в роторе возникает индуктивным путем, а не подается от какого-либо внешнего источника.

Для характеристики отставания частоты вращения ротора двигателя от частоты вращения магнитного поля служит скольжение, его выражают в относительных единицах или процентах:

s = (n1— n) /n1 или s = [(n1— n) /n1] 100% (81)

Если, например, четырехполюсный двигатель имеет s = 4%, то частота вращения его ротора равна 1440 об/мин (частота вращения поля при частоте 50 Гц составляет 1500 об/мин, а отставание ротора от частоты поля равно 4 % от 1500 об/мин, т. е. 60 об/мин). В двухполюсном двигателе при s = 4% частота вращения ротора составляет 2880 об/мин (3000—0,04*3000 = 2880).

Частота вращения ротора, выраженная через скольжение,

По своей конструкции различают двигатели с фазным ротором (с контактными кольцами) и с короткозамкнутым ротором. Они имеют одинаковую конструкцию статора и отличаются выполнением ротора. Пусковые свойства этих двигателей различны.

%d1%81%d0%ba%d0%be%d0%bb%d1%8c%d0%b6%d0%b5%d0%bd%d0%b8%d0%b5%20%d1%80%d0%be%d1%82%d0%be%d1%80%d0%b0 — со всех языков на все языки

Все языкиАбхазскийАдыгейскийАфрикаансАйнский языкАканАлтайскийАрагонскийАрабскийАстурийскийАймараАзербайджанскийБашкирскийБагобоБелорусскийБолгарскийТибетскийБурятскийКаталанскийЧеченскийШорскийЧерокиШайенскогоКриЧешскийКрымскотатарскийЦерковнославянский (Старославянский)ЧувашскийВаллийскийДатскийНемецкийДолганскийГреческийАнглийскийЭсперантоИспанскийЭстонскийБаскскийЭвенкийскийПерсидскийФинскийФарерскийФранцузскийИрландскийГэльскийГуараниКлингонскийЭльзасскийИвритХиндиХорватскийВерхнелужицкийГаитянскийВенгерскийАрмянскийИндонезийскийИнупиакИнгушскийИсландскийИтальянскийЯпонскийГрузинскийКарачаевскийЧеркесскийКазахскийКхмерскийКорейскийКумыкскийКурдскийКомиКиргизскийЛатинскийЛюксембургскийСефардскийЛингалаЛитовскийЛатышскийМаньчжурскийМикенскийМокшанскийМаориМарийскийМакедонскийКомиМонгольскийМалайскийМайяЭрзянскийНидерландскийНорвежскийНауатльОрокскийНогайскийОсетинскийОсманскийПенджабскийПалиПольскийПапьяментоДревнерусский языкПортугальскийКечуаКвеньяРумынский, МолдавскийАрумынскийРусскийСанскритСеверносаамскийЯкутскийСловацкийСловенскийАлбанскийСербскийШведскийСуахилиШумерскийСилезскийТофаларскийТаджикскийТайскийТуркменскийТагальскийТурецкийТатарскийТувинскийТвиУдмурдскийУйгурскийУкраинскийУрдуУрумскийУзбекскийВьетнамскийВепсскийВарайскийЮпийскийИдишЙорубаКитайский

 

Все языкиАбхазскийАдыгейскийАфрикаансАйнский языкАлтайскийАрабскийАварскийАймараАзербайджанскийБашкирскийБелорусскийБолгарскийКаталанскийЧеченскийЧаморроШорскийЧерокиЧешскийКрымскотатарскийЦерковнославянский (Старославянский)ЧувашскийДатскийНемецкийГреческийАнглийскийЭсперантоИспанскийЭстонскийБаскскийЭвенкийскийПерсидскийФинскийФарерскийФранцузскийИрландскийГалисийскийКлингонскийЭльзасскийИвритХиндиХорватскийГаитянскийВенгерскийАрмянскийИндонезийскийИнгушскийИсландскийИтальянскийИжорскийЯпонскийЛожбанГрузинскийКарачаевскийКазахскийКхмерскийКорейскийКумыкскийКурдскийЛатинскийЛингалаЛитовскийЛатышскийМокшанскийМаориМарийскийМакедонскийМонгольскийМалайскийМальтийскийМайяЭрзянскийНидерландскийНорвежскийОсетинскийПенджабскийПалиПольскийПапьяментоДревнерусский языкПуштуПортугальскийКечуаКвеньяРумынский, МолдавскийРусскийЯкутскийСловацкийСловенскийАлбанскийСербскийШведскийСуахилиТамильскийТаджикскийТайскийТуркменскийТагальскийТурецкийТатарскийУдмурдскийУйгурскийУкраинскийУрдуУрумскийУзбекскийВодскийВьетнамскийВепсскийИдишЙорубаКитайский

Частота — вращение — магнитное поле — статор

Частота — вращение — магнитное поле — статор

Cтраница 2


Частота вращения ротора при холостом ходе двигателя мало отличается от частоты вращения магнитного поля статора и скольжение при этом режиме составляет доли процента.  [17]

При стандартной частоте переменного тока ( / 50 Гц) частота вращения магнитного поля статора двухполюсной асинхронной машины п 50 60 3000 об / мин. На практике в большинстве случаев требуются двигатели с меньшей частотой вращения. Это достигается применением многополюсных обмоток статора.  [18]

При стандартной частоте переменного тока ( / 50 Гц) частота вращения магнитного поля статора двухполюсной асинхронной машины и 50 60 3000 об / мин. На практике в большинстве случаев требуются двигатели с меньшей частотой вращения. Это достигается применением многополюсных обмоток статора.  [19]

Электрическую машину переменного тока, у которой частота вращения ротора меньше частоты вращения магнитного поля статора и зависит от нагрузки, называют асинхронной. Асинхронные двигатели бывают коллекторные и бесколлекторные. Преимущественное распространение получили бесколлекторные асинхронные элект рические машины, применяемые там, где не требуется постоянная частота вращения. Асинхронные бесколлекторные электродвигатели бывают двух исполнений — с короткозамкнутым и фазным роторами.  [20]

В процессе установившейся работы частота вращения синхронного электродвигателя постоянна, равна частоте вращения магнитного поля статора и не зависит от момента статических сопротивлений на валу двигателя. Поэтому графически механическая характеристика синхронного электродвигателя изображается прямой линией, параллельной оси моментов в пределах от холостого хода до выпадения из синхронизма.  [21]

Асинхронный электродвигатель — двигатель, в котором частота вращения ротора не равна частоте вращения магнитного поля статора, т.е. асинхронна.  [22]

У асинхронных электродвигателей частота вращения якоря на 2 — 7 % отстает от частоты вращения магнитного поля статора. Действительная частота вращения асинхронного электродвигателя будет определяться следующими величинами: 2940 — 2820, 1470 — 1410, 980 — 930, 735 — 710, 580 — 565 об / мин. Следует отметить, что частота вращения асинхронного электродвигателя практически не зависит от степени нагрузки электродвигателя и возрастает при холостом ходе машины не более чем на 2 — 3 %, поэтому при установке колес на валу электродвигателя или соединении валов муфтой частота вращения будет ограничена приведенными выше значениями.  [23]

Асинхронной называют электрическую машину переменного тока, у которой частота вращения ротора меньше частоты вращения магнитного поля статора и зависит от нагрузки. Асинхронные двигатели делятся на коллекторные и бесколлекторные. Преимущественное распространение получили бесколлекторные асинхронные электрические машины, применяемые там, где не требуется постоянная частота вращения. Асинхронные бесколлекторные электродвигатели бывают двух исполнений по ротору: с короткозамкнутым и фазным.  [24]

Асинхронной называют электрическую машину переменного тока, у которой частота вращения ротора меньше частоты вращения магнитного поля статора и зависит от нагрузки. Асинхронные двигатели делятся на коллекторные и бесколлекторные. Преимущественное распространение получили бесколлекторные асинхронные электрические машины, применяемые там, где не требуется постоянная частота вращения. Эти машины бывают двух исполнений по ротору: с короткозамкнутым и фазным.  [25]

Для пуска синхронного двигателя необходимо его ротор вращать с частотой, близкой к частоте вращения магнитного поля статора, что осуществляют с помощью вспомогательного двигателя или путем асинхронного пуска. Ротор снабжают дополнительной короткозамкну-той пусковой обмоткой.  [26]

При соединении обмотки статора в треугольник изменятся только значения фазных и линейных токов, частота вращения магнитного поля статора останется неизменной.  [28]

Найти число пар полюсов асинхронного двигателя, питающегося от сети переменного тока с частотой 50 Гц, при частоте вращения магнитного поля статора п 1000 об / мин.  [29]

Найти число пар полюсов асинхронного двигателя, питающегося от сети переменного тока с частотой 50 Гц, при частоте вращения магнитного поля статора и 1000 об / мин.  [30]

Страницы:      1    2    3

Скорость ротора — обзор

Две стратегии атаки

Увеличение скорости ротора: Вирус сработал, сначала заставив зараженную иранскую центрифугу IR-1 увеличиться с нормальной рабочей скорости 1064 Гц до 1410 Гц в течение 15 мин, прежде чем вернуться к нормальной частоте. Двадцать семь дней спустя вирус снова начал действовать, замедляя зараженные центрифуги до нескольких сотен герц на полные 50 минут. Напряжения от чрезмерных, а затем более низких скоростей заставляли алюминиевые центробежные пробирки расширяться, часто заставляя части центрифуг приходить в достаточный контакт друг с другом, чтобы разрушить машину.

Нарушение давления газа: После тщательного анализа мы можем теперь подтвердить, что код атаки устройства с программируемым логическим контроллером (ПЛК) 417 изменяет состояние клапанов, используемых для подачи UF6 (газ гексафторида урана) в систему обогащения урана. центрифуги. Атака по существу закрывает клапаны, вызывая нарушение потока и, возможно, разрушение центрифуг и связанных с ними систем. Кроме того, код будет делать снимки нормального рабочего состояния системы, а затем воспроизводить нормальные рабочие значения во время атаки, чтобы операторы не знали, что система не работает нормально.Это также предотвратит изменение состояний клапана в случае, если оператор попытается изменить какие-либо настройки в ходе цикла атаки. Природный уран состоит из трех изотопов; большая часть (99,274%) — это U-238, примерно 0,72% — это делящийся U-235, а оставшиеся 0,0055% — это U-234. Если природный уран обогащен до 3% по U-235, его можно использовать в качестве топлива для легководных ядерных реакторов. Если он будет обогащен до 90% урана-235, его можно будет использовать в ядерном оружии.

Затем вирус-червь распространяется по сети, сканируя программное обеспечение Siemens Step 7 на компьютерах, управляющих ПЛК.При отсутствии обоих критериев Stuxnet бездействует внутри компьютера. Если оба условия выполняются, Stuxnet вводит зараженный руткит в ПЛК и в программное обеспечение Step 7, изменяя коды и давая неожиданные команды ПЛК, возвращая пользователям цикл обратной связи с обычными операционными значениями системы. Вот еще немного подробностей для наших опытных читателей:

Теперь, когда Stuxnet работает без ведома пользователя; он может двигаться дальше к своим целям. Машины Windows в системе диспетчерского управления и сбора данных (SCADA) взаимодействуют с ПЛК с помощью программы WinCC / PS7 или Step 7.Эта программа по существу переводит пользовательские команды в полезные команды для ПЛК с помощью набора библиотек. Когда установлен Stuxnet, он нацелен на одну из этих библиотек (s7otbxdx.dll), которая, помимо прочего, содержит переводы для чтения и записи новых процессов для ПЛК. Он использует эксплойт нулевого дня в базе данных WinCC (черный пароль, который поставляется вместе с программным обеспечением), чтобы предоставить себе доступ к библиотекам базы данных. Stuxnet переименовывает s7otbxdx.dll в s7otbxsx.dll и заменяет исходную библиотеку модифицированной версией.Эта модифицированная библиотека содержит почти все, что есть в оригинале, но некоторые команды намеренно переведены неправильно. На рис. 4.5 показана схема атаки и замены исходного кода Step 7 кодом Stuxnet.

Рисунок 4.5. Программное обеспечение Step-7 было скомпрометировано путем замены исходного управляющего файла Windows и имплантации 7otbxdx.dll (динамическая библиотека ссылок), в которую был загружен вредоносный код Stuxnet. Исходный контрольный файл был деактивирован, и Stuxnet взял на себя работу центрифуг .

Из библиотеки MERIT CyberSecurity.

Сейчас U-235 — единственная разновидность или изотоп урана, который взорвался. Другими словами, только U-235 может использоваться в ядерном оружии или ядерном реакторе. Но U-235 и U-238 химически идентичны. Как их разделить? Вы объединяете уран с невероятно химически активным газом фтором, чтобы получить новый газ — гексафторид урана. Затем вы закачиваете этот радиоактивный газ в центрифугу и вращаете неделю за неделей.

Когда-либо так медленно, газ с более тяжелым U-238 постепенно выбрасывается к внешней стенке вращающейся центрифуги, тогда как газ с менее тяжелым U-235 остается в центре.Но в этот центральный газ по-прежнему примешано много более тяжелого газа U-238, поэтому вы берете этот центральный газ и загружаете его в другую центрифугу, вращаете его еще несколько недель или месяцев и повторяете снова и снова. Конечно, чтобы быть действительно эффективной, центрифуга должна вращаться очень быстро, настолько быстро, что от самоуничтожения остается всего несколько процентов. К апрелю 2008 года на подземном заводе по производству урановых центрифуг в Натанзе, Иран, было запущено и вращалось около 6000 центрифуг.

Электроиндукционные электродвигатели со скольжением

Асинхронный электродвигатель переменного тока (переменного тока) состоит из статора и ротора и взаимодействия токов. течет в стержнях ротора, и вращающееся магнитное поле в статоре создает крутящий момент, который вращает двигатель.При нормальной работе с нагрузкой скорость ротора всегда отстает от скорости магнитного поля, позволяя стержням ротора разрезать магнитные силовые линии и создавать полезный крутящий момент.

Разница между синхронной скоростью магнитного поля электродвигателя и скоростью вращения вала составляет скольжение — измеряется в оборотах в минуту или частоте.

Скольжение увеличивается с увеличением нагрузки, обеспечивая больший крутящий момент.

Обычно скольжение выражается как отношение скорости вращения вала к скорости синхронного магнитного поля.

s = (n s — n a ) 100% / n s (1)

где

s = скольжение

n s = синхронная скорость магнитного поля (об / мин, об / мин)

n a = скорость вращения вала (об / мин, об / мин)

Когда ротор не вращается, скольжение 100% .

Проскальзывание при полной нагрузке варьируется от менее 1% для двигателей с высокой мощностью до более 5–6% для двигателей с малой мощностью.

2,5
Размер двигателя
(л.с.)
0,5 5 15 50 250
Типичное скольжение
(%)
5 1,7 0,8

Число полюсов, частоты и скорость синхронного асинхронного двигателя

No.магнитных полюсов Частота (Гц)
50 60
2 3000 3600
4 1500 1000 1200
8 750 900
10 600 720
12 500 600
20 300 360

Скольжение и напряжение

Когда двигатель начинает вращаться, скольжение составляет 100% , а ток двигателя максимальный.Скольжение и ток двигателя уменьшаются, когда ротор начинает вращаться.

Частота скольжения

Частота уменьшается при уменьшении скольжения.

Скольжение и индуктивное сопротивление

Индуктивное реактивное сопротивление зависит от частоты и скольжения. Когда ротор не вращается, частота скольжения максимальна, как и индуктивное сопротивление.

Двигатель имеет сопротивление и индуктивность, и когда ротор вращается, индуктивное сопротивление низкое, а коэффициент мощности приближается к на .

Полное сопротивление скольжения и ротора

Индуктивное реактивное сопротивление будет изменяться со скольжением, поскольку полное сопротивление ротора является суммой фаз постоянного сопротивления и переменного индуктивного реактивного сопротивления.

Когда двигатель начинает вращаться, индуктивное реактивное сопротивление высокое, а полное сопротивление в основном индуктивное. Ротор имеет низкий коэффициент мощности. Когда скорость увеличивается, индуктивное реактивное сопротивление уменьшается до уровня сопротивления.

Классификация асинхронных двигателей

Электрические асинхронные двигатели предназначены для различных применений в отношении таких характеристик, как момент срабатывания, тяговый момент, скольжение и т. Д. — проверьте классификацию асинхронных электродвигателей NEMA A, B, C и D.

Электрические машины — Кривая скорости крутящего момента асинхронного двигателя

Уравнение крутящего момента Тевенина было использовано выше для построения кривой крутящего момента асинхронной машины. Поскольку крутящий момент задается только как функция скольжения, можно использовать это уравнение, чтобы найти скольжение, при котором крутящий момент является максимальным. Однако математически более простой и интуитивно понятный Ответ можно найти, рассматривая поток мощности в эквиваленте Тевенина на рис. 2. Анализируя полную эквивалентную схему, было замечено, что

\ [ \ tau = \ frac {P_ {gap}} {\ omega_s} \]

Следовательно, поскольку синхронная скорость постоянна, максимальный крутящий момент возникает на такое же скольжение, как и максимальная мощность воздушного зазора.{0.5} \ right)} \]

Обсуждение

Из уравнений для крутящего момента и проскальзывания видно, что

  • Скольжение, при котором возникает максимальный крутящий момент, пропорционально сопротивлению ротора
  • Величина максимального крутящего момента не зависит от сопротивления ротора

Если все остальные параметры остаются постоянными, увеличение сопротивления ротора будет:

  1. Уменьшите скорость, при которой достигается максимальный крутящий момент
  2. Увеличьте пусковой крутящий момент (до \ (s_ {po} = 1 \))
  3. Увеличение скольжения для заданного крутящего момента
  4. Уменьшите скорость для заданного крутящего момента
  5. Увеличить потери ротора при заданном крутящем моменте

Последний пункт выше можно показать, учитывая, что уравнение крутящего момента

\ [ \ tau = \ frac {3I_2 ^ 2R_2} {s \ omega_s} \]

— это фактически потеря меди в роторе, деленная на скорость скольжения.Если проскальзывание увеличивается, потери должны увеличиваться для поддержания крутящего момента.

На приведенной ниже диаграмме показаны кривые крутящего момента и скорости для 6-полюсного двигателя 230 В, 60 Гц, Y-соединения с различными значениями \ (R_2 \). Следующие параметры схемы являются постоянными: \ (R_1 = 0.50 \ Omega \), \ (X_1 = 0.75 \ Omega \), \ (X_2 = 0.50 \ Omega \), \ (X_m = 100 \ Omega \), \ (f = 60 Гц \), \ (p = 6 \), \ (V_ {LL} = 230 В \)

Рис. 5. Изменение кривых крутящего момента и скорости в зависимости от сопротивления ротора.

Привод с регулируемой скоростью: обзор асинхронного двигателя

Обзор индукционной машины

Индукционные машины имеют обмотку статора, подключенную к источнику переменного тока, и обмотку ротора.В зависимости от конструкции машины обмотка ротора может быть короткозамкнута, чтобы образуют клеточную обмотку или наматываются аналогично обмотке статора и соединяются с контактными кольцами. Машины с клетьевым ротором не имеют электрического соединения с ротором. Машины с фазным ротором могут иметь ротор с короткозамкнутым или подключенным к внешней цепи. Мы будем рассматривать только трехфазные индукционные машины в этом курсе, но теория машин и теория управления применимы к машины с другим количеством фаз.(В настоящее время ведутся исследования по созданию 5, 9 или 15 фазных индукционные машины для использования с частотно-регулируемыми приводами).

Подробное описание принципов работу асинхронных машин можно найти в EE 332 Теория электрических машин.

Обмотка статора машины переменного тока производит вращающийся ммс, который вращается с синхронная скорость:

, где ω с — синхронная скорость в радианах в секунду, а n с — синхронная скорость в оборотах в минуту (об / мин), p количество полюсов в машине.Если воздушный зазор между ротором и статором имеет одинаковую длину по окружности машины, результирующая волна плотности потока будет иметь ту же форму, что и волна ммс.

Когда волна плотности потока статора проходит мимо проводников ротора, возникают напряжения и токи. в контуре ротора. Токи ротора создают вторую волну плотности потока, которая взаимодействует со статором. плотность потока для создания силы и крутящего момента.

Если ротор ускоряется до точки, в которой он вращается с той же скоростью, что и плотность магнитного потока статора, больше не будет изменения магнитного потока в проводниках ротора, что приведет к нулевым наведенным напряжениям и токам и отсюда нулевой крутящий момент.Для создания крутящего момента ротор должен вращаться со скоростью, отличной от синхронной. Если внешняя механическая система приводит в движение ротор выше синхронной скорости, индукционная машина действует как генератор. Если ротор вращается со скоростью ниже синхронной, асинхронная машина является двигателем. Связь между скоростью ротора и Синхронная скорость определяется с помощью терминов скольжение и скорость скольжения.

Скольжение определяется как

, где в приведенных выше уравнениях ω м , n м являются механическими частота вращения ротора в радианах в секунду и об / мин соответственно, ω e — электрическое питание частота, в радианах в секунду, а ω r — это скорость ротора в электрических радианах в секунду и определяется как

.

Модель эквивалентной схемы

Если индукционная машина подключена к источнику питания с фиксированной частотой, стандартная модель эквивалентной схемы для каждой фазы cam может использоваться для анализа производительности.Модель схемы, показанная ниже, основана на модели эквивалентной схемы для трансформатора, с переменным сопротивлением из-за скольжения.

На диаграмме выше R 1 , X 1 используются для обозначения сопротивления статора. и реактивное сопротивление соответственно. R 2 , X 2 используются для обозначения сопротивления ротора. и реактивное сопротивление соответственно, а X м используется для обозначения намагничивающего реактивного сопротивления.

Анализируя эквивалентную схему, можно найти мощность воздушного зазора и преобразователь мощности в механическая система:

Вычитая потери ротора из мощности воздушного зазора:

Для определения электромагнитного момента, развиваемого машиной (без учета механических потерь)

Крутящий момент — Кривая скорости

Анализ эквивалентной схемы и вычисление крутящего момента, знакомая кривая крутящего момента / скорости для индукционного машины получено:

При работе асинхронной машины с приводом цель состоит в том, чтобы получить желаемый крутящий момент при заданном скорость.Обычно это включает работу в узком диапазоне по обе стороны от синхронной скорости (двигательная или генерирующая) и изменение частоты для перемещения синхронной скорости вверх и вниз по желанию.

Что такое «скольжение» в асинхронном двигателе переменного тока?

AutoQuiz редактирует Джоэл Дон, менеджер сообщества ISA по социальным сетям.

Этот вопрос викторины по автоматизации исходит из программы сертификации ISA Certified Automation Professional (CAP).Сертификация ISA CAP обеспечивает непредвзятую, стороннюю, объективную оценку и подтверждение навыков профессионала в области автоматизации. Экзамен CAP ориентирован на направление, определение, проектирование, разработку / применение, развертывание, документацию и поддержку систем, программного обеспечения и оборудования, используемых в системах управления, производственных информационных системах, системной интеграции и операционном консалтинге. Щелкните эту ссылку для получения дополнительной информации о программе CAP.

«Скольжение» в асинхронном двигателе переменного тока определяется как:

a) синхронная скорость минус скорость холостого хода
b) разница между скоростью поля статора и скоростью ротора
c) номинальная скорость плюс синхронная скорость
d) скорость, при которой двигатель развивает крутящий момент
e) ничего из вышеперечисленного

Скольжение обычно выражается в процентах и ​​варьируется в зависимости от двигателя от номинального нуля.От 5 процентов для очень больших двигателей до примерно 5 процентов для небольших специализированных двигателей. Если n s — электрическая скорость статора, а n r — механическая скорость ротора, скольжение S определяется как:

S = (n с — n r ) / n с

Вращение двигателя в асинхронном двигателе переменного тока развивается под действием движущегося магнитного поля. Когда скорость ротора падает ниже скорости статора или синхронной скорости, скорость вращения магнитного поля в роторе увеличивается, вызывая больший ток в обмотках ротора и создавая больший крутящий момент.

Для создания крутящего момента требуется скольжение. Под нагрузкой скорость ротора падает, а скольжение увеличивается настолько, чтобы создать достаточный дополнительный крутящий момент для поворота нагрузки. Очень эффективный способ контролировать скольжение — использовать частотно-регулируемый привод

.

Правильный ответ — B , «разница между скоростью поля статора и скоростью ротора».

Ссылка : Николас Сэндс, П.Е., Кэп и Ян Верхаппен, П.Энг., КАП. , Справочник по автоматизации.Чтобы прочитать краткие вопросы и ответы с авторами, а также бесплатно загрузить 116-страничный отрывок из книги, щелкните по этой ссылке.

О редакторе
Джоэл Дон — менеджер сообщества ISA и независимый консультант по контент-маркетингу, социальным сетям и связям с общественностью. До своей работы в области маркетинга и PR Джоэл работал редактором региональных газет и национальных журналов по всей территории США. Он получил степень магистра в школе Медилл Северо-Западного университета со специализацией в области науки, техники и биомедицинских маркетинговых коммуникаций, а также степень бакалавра. ученой степени Калифорнийского университета в Сан-Диего.

Связаться с Джоэлем

Что такое двигатель с фазным ротором и как он работает?

Электродвигатели — машины, преобразующие электричество в механическую энергию — повсеместно используются в мире машиностроения. Они являются краеугольным камнем инженерных достижений, таких как лифты, насосы и даже электромобили, благодаря способности использовать эффект электромагнитной индукции. Эти так называемые асинхронные двигатели используют переменный ток и электромагнетизм для создания вращательного движения и имеют множество конфигураций.Особый тип асинхронного двигателя переменного тока, известный как двигатели с фазным ротором, будет в центре внимания этой статьи. Хотя эти двигатели используются только в особых случаях, они имеют явное преимущество перед другими популярными вариантами (с короткозамкнутым ротором, синхронными двигателями и т. Д.) Благодаря своим уникальным характеристикам. Будут изучены анатомия и принцип действия этих двигателей, а также специфические характеристики, которые делают их столь важными для приложений, где другие, более популярные асинхронные двигатели не могут быть реализованы.

Что такое двигатели с фазным ротором?

Двигатели с фазным ротором представляют собой специализированный тип двигателей переменного тока и работают во многом так же, как и другие асинхронные двигатели.Они состоят из двух основных компонентов: внешнего статора и внутреннего ротора, разделенных небольшим воздушным зазором. Статор, как правило, одинаков для всех асинхронных двигателей и состоит из металлических пластин, удерживающих на месте обмотки из медной или алюминиевой проволоки. В статоре есть три отдельные катушки, которые питаются трехфазным переменным током, что просто означает, что каждая из них питается от отдельного переменного тока. Это не всегда так, поскольку некоторые двигатели являются однофазными двигателями, но двигатели с фазным ротором обычно всегда трехфазные.Тем не менее, эти три фазы создают магнитное поле, которое смещается вместе с переменными токами. Это создает вращающееся магнитное поле (RMF), которое действует на ротор. В двигателях с фазным ротором ротор «намотан» проводом, похожим на статор, а их концевые выводы соединены с 3 контактными кольцами на выходном валу. Эти контактные кольца прикреплены к щеткам и блокам резисторов переменной мощности, где операторы могут изменять скорость двигателя, изменяя сопротивление через катушки ротора. Эти контактные кольца позволяют регулировать скорость и крутящий момент и являются определяющей особенностью двигателей с фазным ротором (именно поэтому эти двигатели часто называют двигателями с фазным ротором).

Как работают двигатели с обмоткой ротора?

Мы рекомендуем прочитать нашу статью об асинхронных двигателях, чтобы понять основные законы, общие для всех асинхронных машин, но эта статья кратко объяснит науку, лежащую в основе работы двигателя с фазным ротором.

Эти двигатели классифицируются как асинхронные, в которых существует несоответствие (известное как «скольжение») между скоростью RMF статора (синхронная скорость) и выходной скоростью (номинальная скорость). При создании необходимого тока, напряжения и магнитной силы в обмотках ротора двигатель всегда будет испытывать скольжение между вращающимся полем и ротором.Не стесняйтесь посетить нашу статью о типах двигателей переменного тока, чтобы узнать больше.

Двигатели с фазным ротором различаются по способу взаимодействия ротора со статором. Обмотки ротора подключены к вторичной цепи, содержащей контактные кольца, щетки и внешние резисторы, и питаются от отдельного трехфазного переменного тока. При запуске внешнее сопротивление, передаваемое этой вторичной цепи, приводит к тому, что ток ротора снижает силу RMF статора (он работает более «синфазно» с RMF статора).Это означает, что скорость вращения можно контролировать, изменяя сопротивление, когда двигатель достигает 100% скорости, что позволяет операторам выбирать пусковой момент и рабочие характеристики. Это приводит к плавному запуску, высокому начальному крутящему моменту, низкому начальному току и способности регулировать скорость вращения, чего нельзя достичь с помощью более простых конструкций, таких как двигатели с короткозамкнутым ротором (более подробную информацию об этой конструкции можно найти в нашей статье на двигателях с короткозамкнутым ротором).

Технические характеристики двигателя с обмоткой ротора

Спецификации двигателя с фазным ротором включают понимание спецификаций всех асинхронных двигателей, которые можно просмотреть в нашей статье об асинхронных двигателях.В этой статье будут освещены важные концепции двигателей с фазным ротором, которые необходимо понять перед покупкой одного из них, но помните, что это не все.

Пусковой ток

Статор RMF вращается на полной скорости при запуске трехфазного асинхронного двигателя, в то время как ротор изначально находится в состоянии покоя. Ротор испытывает индуцированный ток, когда через него проходит RMF статора, и единственным ограничивающим фактором этого тока является сопротивление обмоток ротора (ток = напряжение / сопротивление).Это приводит к увеличению тока в роторе, что увеличивает потребность в токе статора и, следовательно, вызывает «бросок» пускового тока в двигатель. Этот ток может быть в два-семь раз выше номинального тока, указанного на паспортной табличке, и может вызвать серьезные проблемы при высоком напряжении. Когда двигатель достигает своей номинальной скорости, ротор генерирует в статоре «обратную ЭДС», которая снижает ток статора до номинального уровня. Пусковой ток — это то, что минимизируется в двигателях с фазным ротором за счет увеличения сопротивления обмоток ротора (I = V / R, где R увеличивается), и почему они имеют такие плавные пусковые характеристики.

Крутящий момент двигателя и кривая крутящего момента-скорости

Самая важная спецификация для двигателей с фазным ротором — это то, как они работают после включения, и это визуализируется с помощью графиков крутящего момента-скорости. Асинхронные двигатели могут значительно превышать как их номинальный крутящий момент, так и ток, когда они не работают на 100% скорости; Кривые крутящего момента / скорости отображают это переходное поведение, а на Рисунке 1 показана общая кривая крутящего момента / скорости для асинхронных двигателей с обозначенными важными точками.

Рисунок 1: Кривая крутящий момент-скорость для асинхронных двигателей.

Пусковой крутящий момент — это крутящий момент, возникающий при начальном броске тока, который всегда превышает номинальный крутящий момент. Вытягивающий момент — это максимальный крутящий момент, достигнутый до установившегося режима, а номинальный крутящий момент — это то, что обеспечивается, когда двигатель достигает 100% скорости. Эта связанная скорость не совсем равна синхронной скорости RMF, и это скольжение показано на рисунке 1.

Двигатели

, в которых используются популярные конструкции с короткозамкнутым ротором, имеют ограниченный контроль над кривыми крутящего момента-скорости (подробнее см. В нашей статье о двигателях с короткозамкнутым ротором).Стержни ротора с короткозамкнутым ротором закорочены; это приводит к невозможности изменить сопротивление ротора, что означает, что единственный способ повлиять на скорость вращения — это изменить напряжение (I = V / R, где R является постоянным). Это может вызвать проблемы в больших двигателях, где необходимый входной ток может стать опасно высоким. Двигатели с фазным ротором решают эту проблему, изменяя сопротивление ротора с помощью вторичной цепи, присоединенной к блоку сопротивления переменной мощности и контактным кольцам. За счет увеличения сопротивления в роторе через контактные кольца, тяговый момент может быть достигнут на гораздо более низких скоростях, что обеспечивает более высокий начальный крутящий момент и более низкий пусковой ток.При достижении синхронной скорости сопротивление ротора также может быть закорочено, в результате чего двигатель с фазным ротором ведет себя так, как будто это двигатель с короткозамкнутым ротором. На рис. 2 показано влияние увеличения сопротивления ротора на выходной крутящий момент.

Рис. 2. Как изменение сопротивления ротора влияет на пусковой и отрывной крутящий момент.

Из этого графика видно, что двигатель с фазным ротором обеспечивает управление током, крутящим моментом и скоростью намного лучше, чем другие конструкции. Изменяя сопротивление, этим двигателям потребуется меньший начальный пусковой ток для компенсации, они будут иметь более сильный пусковой крутящий момент и могут максимизировать свой пусковой крутящий момент, также сделав его крутящим моментом отрыва (пример кривой R2 на рисунке 2).Такой подход приводит к созданию двигателя с регулируемой скоростью, высоким пусковым моментом и низким пусковым током, с возможностью изменять эти характеристики по желанию оператора.

Заявки и критерии выбора

Двигатели с фазным ротором могут справиться с тем, что другие асинхронные двигатели не могут, а именно с регулированием скорости, тока и крутящего момента. Способность увеличивать сопротивление ротора при запуске двигателя позволяет плавно разгонять тяжелые нагрузки до номинальной скорости. Когда необходимо минимизировать пусковой ток или имеется ограничение пускового тока ниже, чем могут выдержать двигатели с короткозамкнутым ротором / синхронные двигатели, рассмотрите возможность использования двигателя с фазным ротором.

У двигателей с фазным ротором есть недостатки, и они являются следствием их сложной конструкции. Вторичный контур создает больше возможностей для ошибки, а щетки с контактным кольцом могут представлять угрозу безопасности, если не проверять их регулярно (изношенные щетки могут вызвать искрение и увеличить риск возгорания). Эти двигатели также дороги в обслуживании, что увеличивает их и без того дорогостоящую цену. Их сложность также снижает общий КПД двигателя, и двигатель с короткозамкнутым ротором следует выбирать, если эффективность является основной проблемой или конструктивным ограничением.

Несмотря на то, что двигатель с фазным ротором и его регулируемые характеристики крутящего момента и скорости являются дорогостоящими и менее эффективными, они отлично подходят для управления большими шаровыми мельницами, большими прессами, насосами с регулируемой скоростью, кранами, подъемниками и другими высокоинерционными нагрузками. Они также отлично подходят для любого приложения, которому нужен плавный запуск и возможность изменять скорость. Они охватывают основы, недоступные для других асинхронных двигателей, и неоценимы для разработчиков, которым необходим абсолютный контроль над скоростью и крутящим моментом.

Резюме

В этой статье представлено понимание того, что такое двигатели с фазным ротором, как они работают и каковы их основные характеристики, определяющие, когда они должны быть указаны по сравнению со стандартными асинхронными двигателями.Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:

  1. https://geosci.uchicago.edu
  2. http://hyperphysics.phy-astr.gsu.edu/hbase/mintage/indmot.html
  3. http://www.egr.unlv.edu/~eebag/Induction%20Motors.pdf
  4. https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/163595/T17123-130.pdf? sequence = 1 & isAllowed = y
  5. http://www.animations.physics.unsw.edu.au/jw/electricmotors.html
  6. https://scholar.cu.edu.eg

Прочие изделия из двигателей

Больше от Machinery, Tools & Supplies

2-3-3. Характеристики асинхронных двигателей

Как описано в главе 1, синхронная скорость вращения двигателя с магнитным полем определяется по следующей формуле:

N S : синхронная скорость вращения (оборотов в минуту) [об / мин] N 0 : синхронная скорость вращения (оборотов в секунду) [об / сек]

f: Частота источника питания [Гц] p: Число полюсов двигателя

Накладка

Когда мы думаем об асинхронных двигателях, это важный момент.То есть катушка должна пересекать магнитное поле, чтобы через катушку протекал ток.

Для этого должна быть относительная разница скоростей между магнитным полем и катушкой.

Из-за этой разницы скоростей двигатель вращается со скоростью, немного меньшей, чем синхронная скорость.

Это отличие скорости от синхронной скорости называется скольжением и обозначается символом s. Скольжение s выражается следующей формулой:

N: Скорость вращения ротора [об / мин] N S : Синхронная скорость вращения [об / мин]

Скольжение обычно выражается в процентах.Скольжение силового асинхронного двигателя составляет от 2 до 3%, когда двигатель работает при номинальной нагрузке. Вышеуказанное значение становится несколько больше для небольших однофазных двигателей.

Скорость вращения и крутящий момент

На рис. 2.40 показаны характеристики асинхронных двигателей. Когда двигатель спроектирован таким образом, что сопротивление алюминиевого проводника ротора уменьшается, его эффективность увеличивается в диапазоне высоких скоростей. И с другой стороны, когда двигатель спроектирован так, чтобы иметь высокое сопротивление, он имеет повышенный крутящий момент в диапазоне низких скоростей.

В области справа от максимального крутящего момента на характеристической кривой увеличение нагрузки не так сильно снижает скорость низкоомных двигателей. Крутящий момент увеличивается и становится стабильным.

А именно, скорость этих двигателей остается практически неизменной, несмотря на изменения нагрузки.

На рис. 2.41 показаны характеристики этих двигателей с учетом крутящего момента по горизонтальной оси и скорости вращения по вертикальной оси с добавлением тока и эффективности.

Сравнивая этот график с приведенными выше характеристиками двигателей постоянного тока, вы обнаружите следующие характеристики асинхронных двигателей.

  • ● Изменения нагрузки не сильно влияют на их скорость, хотя их крутящий момент изменяется.
  • ● Связь между крутящим моментом и током не линейна.
рисунок> Рис. 2.40 Крутящий момент и частота вращения асинхронного двигателя с короткозамкнутым ротором (характеристики N-T) Рис. 2.41 Нагрузочные характеристики асинхронного двигателя с короткозамкнутым ротором (Пример) .
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *