+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Формула частоты в физике

Определение

Частота — это физический параметр, которые используют для характеристики периодических процессов. Частота равна количеству повторений или свершения событий в единицу времени.

Чаще всего в физике частоту обозначают буквой $\nu ,$ иногда встречаются другие обозначения частоты, например $f$ или $F$.

Частота (наряду со временем) является самой точно измеряемой величиной.

Формула частоты колебаний

При помощи частоты характеризуют колебания. В этом случае частота является физической величиной обратной периоду колебаний $(T).$

\[\nu =\frac{1}{T}\left(1\right).\]

Частота, в этом случае — это число полных колебаний ($N$), совершающихся за единицу времени:

\[\nu =\frac{N}{\Delta t}\left(2\right),\]

где $\Delta t$ — время за которое происходят $N$ колебаний.

Единицей измерения частоты в Международной системе единиц (СИ) служат в герцы или обратные секунды:

\[\left[\nu \right]=с^{-1}=Гц.\]

Герц — это единица измерения частоты периодического процесса, при которой за время равное одной секунде происходит один цикл процесса. Единица измерения частоты периодического процесса получила свое наименование в честь немецкого ученого Г. Герца.

Частота биений, которые возникают при сложении двух колебаний, происходящих по одной прямой с разными, но близкими по величине частотами (${\nu }_1\ и\ {\nu }_2$) равна:

\[{\nu =\nu }_1-\ {\nu }_2\left(3\right).\]

Еще одно величиной характеризующей колебательный процесс является циклическая частота (${\omega }_0$), связанная с частотой как:

\[{\omega }_0=2\pi \nu \left(4\right).\]

Циклическая частота измеряется в радианах, деленных на секунду:

\[\left[{\omega }_0\right]=\frac{рад}{с}.\]

Частота колебаний тела, имеющего массу$\ m,$ подвешенного на пружине с коэффициентом упругости $k$ равна:

\[\nu =\frac{1}{2\pi \sqrt{{m}/{k}}}\left(5\right).\]

Формула (4) верна для упругих, малых колебаний. Кроме того масса пружины должна быть малой по сравнению с массой тела, прикрепленного к этой пружине.

Для математического маятника частоту колебаний вычисляют как: длина нити:

\[\nu =\frac{1}{2\pi \sqrt{{l}/{g}}}\left(6\right),\]

где $g$ — ускорение свободного падения; $\ l$ — длина нити (длина подвеса) маятника.

Физический маятник совершает колебания с частотой:

\[\nu =\frac{1}{2\pi \sqrt{{J}/{mgd}}}\left(7\right),\]

где $J$ — момент инерции тела, совершающего колебания относительно оси; $d$ — расстояние от центра масс маятника до оси колебаний.

Формулы (4) — (6) приближенные. Чем меньше амплитуда колебаний, тем точнее значение частоты колебаний, вычисляемых с их помощью.

Формулы для вычисления частоты дискретных событий, частота вращения

дискретных колебаний ($n$) — называют физическую величину, равную числу действий (событий) в единицу времени. Если время, которое занимает одно событие обозначить как $\tau $, то частота дискретных событий равна:

\[n=\frac{1}{\tau }\left(8\right).\]

Единицей измерени

Частота колебаний | Все формулы

Частота колебаний — величина, обратная периоду колебаний, т. е. равная числу периодов колебаний (числу колебаний), совершаемых в единицу времени.


Разновидность частот колебаний :

Циклическая частота

Частота колебаний физического маятника

Частота пружинного маятника

Частота математического маятника

Частота электромагнитных колебаний

Частота колебаний крутильного маятника

В Формуле мы использовали :

— Частота колебаний

— Циклическая частота

— Период колебаний маятника

— Масса груза, или масса маятника

— Жесткость пружины

— Длина подвеса

— Ускорение свободного падения

— Момент инерции маятника относительно оси вращения

— Расстояние от оси вращения до центра масс

— Момент инерции тела

— Вращательный коэффициент жёсткости маятника

Формула циклической частоты колебаний в физике

Определение и формула циклической частоты колебаний

Определение

Циклическая частота — это параметр, характеризующий колебательные движения. Обозначают эту скалярную величину как $\omega $, иногда ${\omega }_0$.

Напомним, что уравнение гармонических колебаний параметра $\xi $ можно записать как:

\[\xi \left(t\right)=A{\cos \left({\omega }_0t+{\varphi }_0\right)\ }\left(1\right),\]

где $A={\xi }_{max}$ — амплитуда колебаний величины $\xi $; $\left({\omega }_0t+{\varphi }_0\right)$=$\varphi $ — фаза колебаний; ${\varphi }_0$ — начальная фаза колебаний.

Циклическую частоту при гармонических колебаниях определяют как частную производную от фазы колебаний ($\varphi $) по времени ($t$):

\[{\omega }_0=\frac{?\varphi }{\partial t}=\dot{\varphi }\left(2\right).\]

Циклическая частота колебаний связана с периодом ($T$) колебаний формулой:

\[{\omega }_0=\frac{2\pi }{T}\left(3\right).\]

Циклическую частоту с частотой $?$$?$ связывает выражение:

\[{\omega }_0=2\pi \nu \ \left(4\right).\]

Формулы для частных случаев нахождения циклической частоты

Пружинный маятник совершает гармонические колебания с циклической частотой равной:

\[{\omega }_0=\sqrt{\frac{k}{m}}\left(5\right),\]

$k$ — коэффициент упругости пружины; $m$ — масса груза на пружине.

Гармонические колебания физического маятника происходят с циклической частотой равной:

\[{\omega }_0=\sqrt{\frac{mga}{J}}\left(6\right),\]

где $J$ — момент инерции маятника относительно оси вращения; $a$ — расстояние между центром масс маятника и точкой подвеса; $m$ — масса маятника.

Частным случаем физического маятника является математический маятник (физический маятник, масса которого сосредоточена в точке), циклическая частота его колебаний может быть найдена как:

\[{\omega }_0=\sqrt{\frac{g}{l}}\left(7\right),\]

где $l$ — длина подвеса, на которой находится материальная точка.

Частота колебаний в электрическом контуре равна:

\[{\omega }_0=\frac{1}{\sqrt{LC}}\left(8\right),\]

где $C$ — емкость конденсатора, который входит в контур; $L$ — индуктивность катушки контура.

Если колебаний являются затухающими, то их частоту находят как:

\[\omega =\sqrt{{\omega }^2_0-{\delta }^2}\left(9\right),\]

где $\delta $ — коэффициент затухания; в случае с затуханием колебаний, ${\omega }_0$ называют собственной угловой частотой колебаний.

Примеры задач с решением

Пример 1

Задание. В электрический колебательный контур (рис.1) входит соленоид, длина которого $l$, пло

Колебания и волны | Все Формулы

    \[ \]

Свободные колебания в реальных условиях не могут продолжаться вечно. Для механических систем всегда имеет место сопротивление среды, вследствие чего энергия движения объекта рассеивается при трении. В электромагнитных контурах колебания затухают за счет сопротивления проводников.

Уравнение затухающих колебаний описывает движение реальных колебательных систем. В дифференциальной форме оно записывается следующим образом:

    \[\frac{\partial^2 x}{\partial t^2} +2\beta \frac{\partial x}{\partial t} +\omega_0^2 x=0\]

Из этого выражения можно получить еще одну каноническую форму:

    \[x=Ae^{-\beta t} \cos (\omega t +\varphi_0 )\]

либо

    \[x=Ae^{-\beta t} \sin (\omega t +\varphi_0 )\]

.

Здесь x и t – координаты пространства и времени, А – первоначальная амплитуда.

    \[\beta\]

– коэффициент затухания, который зависит от сопротивления среды r и массы колеблющегося объекта m:

    \[\beta = \frac{r}{2m} \]

Чем больше сопротивление среды, тем больше энергии рассеивается при вязком трении. И наоборот – чем больше масса (а значит, инерционность) тела, тем дольше оно будет продолжать движение.

Циклическая частота свободных колебаний (такой же системы, но без трения) \omega_0 учитывает силу упругости в системе (например, жесткость пружины k):

    \[\omega_0 =\frac{k}{m} \]

Строго говоря, в случае затухающих колебаний нельзя говорить про период – время между повторяющимися движениями системы постоянно увеличивается. Однако если колебания затухают медленно, для них с достаточной точностью можно определить период Т:

    \[T=\frac{2\pi}{\sqrt{\omega_0^2 -\beta^2}} \]

Циклическая частота затухающих колебаний
Еще одна характеристика затухающих колебаний – циклическая частота:

    \[\omega =\sqrt{\omega_0^2 -\beta^2} \]

Время релаксации – это коэффициент, показывающий, за какое время амплитуда колебаний уменьшится в е раз:

    \[\tau = \frac{1}{\beta} \]

Отношение амплитуды изменяющейся величины в двух последовательных периодах называют декрементом затухания:

    \[D= \frac{A(t)}{A(t+T)} =e^{\beta T} \]

Эту же характеристику при расчетах часто представляют в виде логарифма:

    \[\lambda =lnD=\beta T\]

Добротность Q характеризует, насколько силы упругости системы превышают силы сопротивления среды, препятствуя диссипации энергии:

    \[Q= \frac{\sqrt{mk}}{r} \]

Формула частоты колебаний пружинного маятника в физике

Частота колебаний

Определение

Частота колебаний ($\nu$) является одним из параметров, которые характеризуют колебания Это величина обратная периоду колебаний ($T$):

\[\nu =\frac{1}{T}\left(1\right).\]

Таким образом, частотой колебаний называют физическую величину, равную числу повторений колебаний за единицу времени.

\[\nu =\frac{N}{\Delta t}\left(2\right),\]

где $N$ — число полных колебательных движений; $\Delta t$ — время, за которые произошли данные колебания.

Циклическая частота колебаний (${\omega }_0$) связана с частотой $\nu $ формулой:

\[\nu =\frac{{\omega }_0}{2\pi }\left(3\right).\]

Единицей измерения частоты в Международной системе единиц (СИ) является герц или обратная секунда:

\[\left[\nu \right]=с^{-1}=Гц.\]

Пружинный маятник

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать горизонтальные движения груза (рис.1), то он движется под действием силы упругости, если систему вывели из состояния равновесия и предоставили самой себе. При этом часто считают, что силы трения можно не учитывать.

Уравнения колебаний пружинного маятника

Пружинный маятник, который совершает свободные колебания — это пример гармонического осциллятора. Пусть он выполняет колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза запишем как:

\[\ddot{x}+{\omega }^2_0x=0\left(4\right),\]

где ${\omega }^2_0=\frac{k}{m}$ — циклическая частота колебаний пружинного маятника. Решение уравнения (4) это функция синуса или косинуса вида:

\[x=A{\cos \left({\omega }_0t+\varphi \right)=A{\sin \left({\omega }_0t+{\varphi }_1\right)\ }\ }\left(5\right),\]

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний пружинного маятника, $A$ — амплитуда колебаний; ${(\omega }_0t+\varphi )$ — фаза колебаний; $\varphi $ и ${\varphi }_1$ — начальные фазы колебаний.

Частота колебаний пружинного маятника

Из формулы (3) и ${\omega }_0=\sqrt{\frac{k}{m}}$, следует, что частота колебаний пружинного маятника равна:

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(6\right).\]

Формула (6) справедлива в случае, если:

  • пружина в маятнике считается невесомой;
  • груз, прикрепленный к пружине, является абсолютно твердым телом;
  • крутильные колебания отсутствуют.

Выражение (6) показывает, что частота колебаний пружинного маятника увеличивается с уменьшением массы груза и увеличением коэффициен

Механические колебания — материалы для подготовки к ЕГЭ по Физике

 


Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания — это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания — это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия — это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела — это величина его наибольшего отклонения от положения равновесия.

Период колебаний — это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний — это величина, обратная периоду: . Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

Гармонические колебания.

 

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой . Положению равновесия отвечает значение . Основная задача механики в данном случае состоит в нахождении функции , дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них — синус и косинус — являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на , можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

Гармонические колебания — это колебания, при которых координата зависит от времени по гармоническому закону:

(1)

Выясним смысл входящих в эту формулу величин.

Положительная величина является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому — амплитуда колебаний.

Аргумент косинуса называется фазой колебаний. Величина , равная значению фазы при , называется начальной фазой. Начальная фаза отвечает начальной координате тела: .

Величина называется циклической частотой. Найдём её связь с периодом колебаний и частотой . Одному полному колебанию отвечает приращение фазы, равное радиан: , откуда

(2)

(3)

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1):

.

График функции (1), выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1.

x=Acos(\frac{\displaystyle 2\pi t }{\displaystyle T}+ \alpha), x=Acos(2 \pi \nu t + \alpha)
Рис. 1. График гармонических колебаний

 

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае , поэтому можно положить . Мы получаем закон косинуса:

.

График гармонических колебаний в этом случае представлен на рис. 2.

x=Acos \omega t
Рис. 2. Закон косинуса

 

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае , так что можно положить . Получаем закон синуса:

.

График колебаний представлен на рис. 3.

x=Asin \omega t
Рис. 3. Закон синуса

 

Уравнение гармонических колебаний.

 

Вернёмся к общему гармоническому закону (1). Дифференцируем это равенство:

. (4)

Теперь дифференцируем полученное равенство (4):

. (5)

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем :

. (6)

Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:

. (7)

C математической точки зрения уравнение (7) является дифференциальным уравнением. Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными ;

-никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6), (7) описывают гармонические колебания с циклической частотой и только их. Две константы определяются из начальных условий — по начальным значениям координаты и скорости.

Пружинный маятник.

 

Пружинный маятник — это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу , жёсткость пружины равна .

Координате отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

x=0
Рис. 4. Пружинный маятник

 

В горизонтальном направлении на груз действует только сила упругости со стороны пружины. Второй закон Ньютона для груза в проекции на ось имеет вид:

. (8)

Если (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и . Наоборот, если , то . Знаки и всё время противоположны, поэтому закон Гука можно записать так:

Тогда соотношение (8) принимает вид:

или

.

Мы получили уравнение гармонических колебаний вида (6), в котором

.

Циклическая частота колебаний пружинного маятника, таким образом, равна:

. (9)

Отсюда и из соотношения находим период горизонтальных колебаний пружинного маятника:

. (10)

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10).

Математический маятник.

 

Математический маятник — это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.
T=2 \pi \sqrt{\frac{\displaystyle m}{\displaystyle k}}
Рис. 5. Математический маятник

 

Найдём период малых колебаний математического маятника. Длина нити равна . Сопротивлением воздуха пренебрегаем.

Запишем для маятника второй закон Ньютона:

,

и спроектируем его на ось :

.

Если маятник занимает положение как на рисунке (т. е. ), то:

.

Если же маятник находится по другую сторону от положения равновесия (т. е. ), то:

.

Итак, при любом положении маятника имеем:

. (11)

Когда маятник покоится в положении равновесия, выполнено равенство . При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство . Воспользуемся им в формуле (11):

,

или

.

Это — уравнение гармонических колебаний вида (6), в котором

.

Следовательно, циклическая частота колебаний математического маятника равна:

. (12)

Отсюда период колебаний математического маятника:

. (13)

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

Свободные и вынужденные колебания.

 

Говорят, что система совершает свободные колебания, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6).

T=2\pi \sqrt{\frac{\displaystyle l}{\displaystyle g}}
Рис. 6. Затухающие колебания

 

Вынужденные колебания — это колебания, совершаемые системой под воздействием внешней силы , периодически изменяющейся во времени (так называемой вынуждающей силы).

Предположим, что собственная частота колебаний системы равна , а вынуждающая сила зависит от времени по гармоническому закону:

.

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой

вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7.

\omega
Рис. 7. Резонанс

 

Мы видим, что вблизи частоты наступает резонанс — явление возрастания амплитуды вынужденных колебаний. Резонансная частота приближённо равна собственной частоте колебаний системы: , и это равенство выполняется тем точнее, чем меньше трение в системе. При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, , а амплитуда колебаний возрастает до бесконечности при .

 

Колебания — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Гармонические колебания

К оглавлению…

В технике и окружающем нас мире часто приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными. Колебаниями называют изменения физической величины, происходящие по определенному закону во времени. Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения.

Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Примерами простых колебательных систем могут служить груз на пружине или математический маятник. Для существования в системе гармонических колебаний необходимо, чтобы у нее было положение устойчивого равновесия, то есть такое положение, при выведении из которого на систему начала бы действовать возвращающая сила.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными. Свободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными.

Простейшим видом колебательного процесса являются колебания, происходящие по закону синуса или косинуса, называемые гармоническими колебаниями. Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω0 задаётся следующим образом:

Формула Уравнение колебательного процесса

Решение предыдущего уравнения является уравнением движения для гармонических колебаний, которое имеет вид:

Формула Закон движения для гармонических колебаний

где: x – смещение тела от положение равновесия, A – амплитуда колебаний, то есть максимальное смещение от положения равновесия, ω – циклическая или круговая частота колебаний (ω = 2Π/T), t – время. Величина, стоящая под знаком косинуса: φ = ωt + φ0, называется фазой гармонического процесса. Смысл фазы колебаний: стадия, в которой колебание находится в данный момент времени. При t = 0 получаем, что φ = φ0, поэтому φ0 называют начальной фазой (то есть той стадией, из которой начиналось колебание).

Минимальный интервал времени, через который происходит повторение движения тела, называется периодом колебаний T. Если же количество колебаний N, а их время t, то период находится как:

Формула Период колебаний

Физическая величина, обратная периоду колебаний, называется частотой колебаний:

Формула Частота колебаний

Частота колебаний ν показывает, сколько колебаний совершается за 1 с. Единица частоты – Герц (Гц). Частота колебаний связана с циклической частотой ω и периодом колебаний T соотношениями:

Формула Циклическая частота колебаний

Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

Формула Зависимость скорости от времени при гармонических механических колебаниях

Максимальное значение скорости при гармонических механических колебаниях:

Формула Максимальное значение скорости при гармонических механических колебаниях

Максимальные по модулю значения скорости υm = ωA достигаются в те моменты времени, когда тело проходит через положения равновесия (x = 0). Аналогичным образом определяется ускорение a = ax тела при гармонических колебаниях. Зависимость ускорения от времени при гармонических механических колебаниях:

Формула Зависимость ускорения от времени при гармонических механических колебаниях

Максимальное значение ускорения при механических гармонических колебаниях:

Формула Максимальное значение ускорения при механических гармонических колебаниях

Знак минус в предыдущем выражении означает, что ускорение a(t) всегда имеет знак, противоположный знаку смещения x(t), и, следовательно, возвращает тело в начальное положение (x = 0), т.е. заставляет тело совершать гармонические колебания.

Следует обратить внимание на то, что:

  • физические свойства колебательной системы определяют только собственную частоту колебаний ω0 или период T.
  • Такие параметры процесса колебаний, как амплитуда A = xm и начальная фаза φ0, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени, т.е. начальными условиями.
  • При колебательном движении тело за время, равное периоду, проходит путь, равный 4 амплитудам. При этом тело возвращается в исходную точку, то есть перемещение тела будет равно нулю. Следовательно, путь равный амплитуде тело пройдет за время равное четверти периода.

Чтобы определить, когда в уравнение колебаний подставлять синус, а когда косинус, нужно обратить внимание на следующие факторы:

  • Проще всего, если в условии задачи колебания названы синусоидальными или косинусоидальными.
  • Если сказано, что тело толкнули из положения равновесия – берем синус с начальной фазой, равной нулю.
  • Если сказано, что тело отклонили и отпустили – косинус с начальной фазой, равной нулю.
  • Если тело толкнули из отклоненного от положения равновесия состояния, то начальная фаза не равна нолю, а брать можно и синус и косинус.

 

Математический маятник

К оглавлению…

Математическим маятником называют тело небольших размеров, подвешенное на тонкой, длинной и нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. Только в случае малых колебаний математический маятник является гармоническим осциллятором, то есть системой, способной совершать гармонические (по закону sin или cos) колебания. Практически такое приближение справедливо для углов порядка 5–10°. Колебания маятника при больших амплитудах не являются гармоническими.

Циклическая частота колебаний математического маятника рассчитывается по формуле:

Формула Циклическая частота колебаний математического маятника

Период колебаний математического маятника:

Формула Период колебаний математического маятника

Полученная формула называется формулой Гюйгенса и выполняется, когда точка подвеса маятника неподвижна. Важно запомнить, что период малых колебаний математического маятника не зависит от амплитуды колебаний. Такое свойство маятника называется изохронностью. Как и для любой другой системы, совершающей механические гармонические колебания, для математического маятника выполняются следующие соотношения:

  1. Путь от положения равновесия до крайней точки (или обратно) проходится за четверть периода.
  2. Путь от крайней точки до половины амплитуды (или обратно) проходится за одну шестую периода.
  3. Путь от положения равновесия до половины амплитуды (или обратно) проходится за одну двенадцатую долю периода.

 

Пружинный маятник

К оглавлению…

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению. Таким свойством обладает сила упругости.

Таким образом, груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно, составляют систему, способную совершать в отсутствие трения свободные гармонические колебания. Груз на пружине называют пружинным маятником.

Циклическая частота колебаний пружинного маятника рассчитывается по формуле:

Формула Циклическая частота колебаний пружинного маятника

Период колебаний пружинного маятника:

Формула Период колебаний пружинного маятника

При малых амплитудах период колебаний пружинного маятника не зависит от амплитуды (как и у математического маятника). При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x0, равную:

Положение равновесия вертикального пружинного маятника

А колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω0 и периода колебаний T справедливы и в этом случае. Таким образом, полученная формула для периода колебаний груза на пружине остается справедливой во всех случаях, независимо от направления колебаний, движения опоры, действия внешних постоянных сил.

При свободных механических колебаниях кинетическая и потенциальная энергии периодически изменяются. При максимальном отклонении тела от положения равновесия его скорость, а, следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на пружине потенциальная энергия – это энергия упругой деформации пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. Тело проскакивает положение равновесия по инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией (как правило, потенциальную энергию в положении равновесия полагают равной нулю). Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и так далее.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот. Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной. При этом, максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

Формула Максимальное значение кинетической энергии при механических гармонических колебаниях

Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

Формула Максимальное значение потенциальной энергии при механических гармонических колебаниях

Взаимосвязь энергетических характеристик механического колебательного процесса (полная механическая энергия равна максимальным значениям кинетической и потенциальной энергий, а также сумме кинетической и потенциальной энергий в произвольный момент времени):

Формула Взаимосвязь энергетических характеристик колебательного процесса

 

Механические волны

К оглавлению…

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной.

Механические волны бывают разных видов. Если при распространении волны частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, такая волна называется поперечной. Если смещение частиц среды происходит в направлении распространения волны, такая волна называется продольной.

Как в поперечных, так и в продольных волнах не происходит переноса вещества в направлении распространения волны. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.

Характерной особенностью механических волн является то, что они распространяются в материальных средах (твердых, жидких или газообразных). Существуют немеханические волны, которые способны распространяться и в пустоте (например, световые, т.е. электромагнитные волны могут распространяться в вакууме).

  • Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных.
  • Поперечные волны не могут существовать в жидкой или газообразной средах.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой ν и длиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ.

Длиной волны λ называют расстояние между двумя соседними точками, колеблющимися в одинаковых фазах. Расстояние, равное длине волны λ, волна пробегает за время равное периоду T, следовательно, длина волны может быть рассчитана по формуле:

Формула Длина волны

где: υ – скорость распространения волны. При переходе волны из одной среды в другую длина волны и скорость ее распространения меняются. Неизменными остаются только частота и период волны.

Разность фаз колебаний двух точек волны, расстояние между которыми l рассчитывается по формуле:

Формула Разность фаз колебаний двух точек волны

 

Электрический контур

К оглавлению…

В электрических цепях, так же, как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свободные колебания, является последовательный LC-контур. В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими. Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

Формула Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре

Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

Формула Период гармонических колебаний в электрическом колебательном контуре

Циклическая частота колебаний в электрическом колебательном контуре:

Формула Циклическая частота колебаний в электрическом колебательном контуре

Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

Формула Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре

Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

Формула Зависимость электрического тока протекающего через катушку индуктивности от времени

Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

Формула Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре

Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

Формула Максимальное значение силы тока при гармонических колебаниях в электрическом контуре

Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

Формула Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре

Все реальные контура содержат электрическое сопротивление R. Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в теплоту, выделяющуюся на резисторе, и колебания становятся затухающими.

 

Переменный ток. Трансформатор

К оглавлению…

Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими синусоидальное напряжение. Они позволяют наиболее просто и экономно осуществлять передачу, распределение и использование электрической энергии.

Устройство, предназначенное для превращения механической энергии в энергию переменного тока, называется генератором переменного тока. Он характеризуется переменным напряжением U(t) (индуцированной ЭДС) на его клеммах. В основу работы генератора переменного тока положено явление электромагнитной индукции.

Переменным током называется электрический ток, который изменяется с течением времени по гармоническому закону. Величины U0, I0 = U0/R называются амплитудными значениями напряжения и силы тока. Значения напряжения U(t) и силы тока I(t), зависящие от времени, называют мгновенными.

Переменный ток характеризуется действующими значениями силы тока и напряжения. Действующим (эффективным) значением переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделил бы в единицу времени такое же количество теплоты, что и данный переменный ток. Для переменного тока действующее значение силы тока может быть рассчитано по формуле:

Формула Действующее значение силы тока

Аналогично можно ввести действующее (эффективное) значение и для напряжения, рассчитываемое по формуле:

Формула Действующее значение напряжения

Таким образом, выражения для мощности постоянного тока остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:

Формула Мощность в цепи переменного тока

Обратите внимание, что если идет речь о напряжении или силе переменного тока, то (если не сказано иного) имеется в виду именно действующее значение. Так, 220В – это действующее напряжение в домашней электросети.

Конденсатор в цепи переменного тока

Строго говоря, конденсатор ток не проводит (в том смысле, что носители заряда через него не протекают). Поэтому, если конденсатор подключен в цепь постоянного тока, то сила тока в любой момент времени в любой точке цепи равна нулю. При подключении в цепь переменного тока из-за постоянного изменения ЭДС конденсатор перезаряжается. Ток через него по-прежнему не течет, но ток в цепи существует. Поэтому условно говорят, что конденсатор проводит переменный ток. В этом случае вводится понятие сопротивления конденсатора в цепи переменного тока (или емкостного сопротивления). Это сопротивление определяется выражением:

Формула емкостного сопротивления

Обратите внимание, что емкостное сопротивление зависит от частоты переменного тока. Оно в корне отличается от привычного нам сопротивления R. Так, на сопротивлении R выделяется теплота (поэтому его часто называют активным), а на емкостном сопротивлении теплота не выделяется. Активное сопротивление связано со взаимодействием носителей заряда при протекании тока, а емкостное – с процессами перезарядки конденсатора.

Катушка индуктивности в цепи переменного тока

При протекании переменного тока в катушке возникает явление самоиндукции, и, следовательно, ЭДС. Из-за этого напряжение и сила тока в катушке не совпадают по фазе (когда сила тока равна нулю, напряжение имеет максимальное значение и наоборот). Из-за такого несовпадения средняя тепловая мощность, выделяющаяся в катушке, равна нулю. В этом случае вводится понятие сопротивления катушки в цепи переменного тока (или индуктивного сопротивления). Это сопротивление определяется выражением:

Формула индуктивного сопротивления

Обратите внимание, что индуктивное сопротивление зависит от частоты переменного тока. Как и емкостное сопротивление, оно отличается от сопротивления R. Как и на емкостном сопротивлении, на индуктивном сопротивлении теплота не выделяется. Индуктивное сопротивление связано с явлением самоиндукции в катушке.

Трансформаторы

Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы. Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции. Простейший трансформатор состоит из сердечника замкнутой формы, на который намотаны две обмотки: первичная и вторичная. Первичная обмотка подсоединяется к источнику переменного тока с некоторым напряжением U1, а вторичная обмотка подключается к нагрузке, на которой появляется напряжение U2. При этом, если число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:

Формула Соотношение для трансформатора

Коэффициент трансформации вычисляется по формуле:

Формула Коэффициент трансформации

Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

Формула Соотношение для идеального трансформатора

В неидеальном трансформаторе вводится понятие КПД:

Формула КПД трансформатора

 

Электромагнитные волны

К оглавлению…

Электромагнитные волны – это распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы электрической напряженности и магнитной индукции перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Электромагнитные волны распространяются в веществе с конечной скоростью, которая может быть рассчитана по формуле:

Формула Скорость электромагнитной волны в некоторой среде

где: ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10–12 Ф/м, μ0 = 1,25664·10–6 Гн/м. Скорость электромагнитных волн в вакууме (где ε = μ = 1) постоянна и равна с = 3∙108 м/с, она также может быть вычислена по формуле:

Формула Скорость электромагнитной волны в вакууме

Скорость распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных. Если электромагнитная волна распространяется в какой-либо среде, то скорость ее распространения также выражается следующим соотношением:

Формула Связь скорости света в вакууме и веществе

где: n – показатель преломления вещества – физическая величина, показывающая во сколько раз скорость света в среде меньше чем в вакууме. Показатель преломления, как видно из предыдущих формул, может быть рассчитан следующим образом:

Формула Показатель преломления

  • Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии.
  • Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. А вот цепи, в которых протекает переменный ток, т.е. такие цепи в которых носители заряда постоянно меняют направление своего движения, т.е. двигаются с ускорением – являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.

Формула частоты

Частота — это количество циклов в единице времени. «Циклы» могут быть движениями чего-либо с периодическим движением, такими как пружина, маятник, что-то вращающееся или волна. Частота равна 1, деленному на период, который является временем, необходимым для одного цикла.

Производная единица СИ для частоты — герц, названная в честь Генриха Рудольфа Герца (символ hz). Один Гц — один цикл в секунду.

f = частота, циклы в единицу времени

T = период, время, необходимое для одного цикла

N = количество циклов

t = количество времени

Частота Формула Вопросы:

1) Длинный маятник занимает 5.00 с для завершения одного цикла вперед-назад. Какова частота движения маятника?

Ответ: Маятнику требуется 5,00 с для завершения одного цикла, поэтому это его период, т. Частота может быть найдена с помощью уравнения:

f = 0,20 циклов / с

Частота маятника составляет , 0,20 циклов / с, . Единицы циклов / с часто записываются как «герц» с символом «Гц».Таким образом, частота этого маятника также может быть установлена ​​как 0,20 Гц.

2) Тахометр в автомобиле измеряет обороты в минуту шин (обороты и циклы — это одно и то же). Автомобиль движется с постоянной скоростью, а тахометр показывает 2400 оборотов в минуту. Какова частота вращения шин, измеренная в циклах в секунду? Какой период в секундах?

Ответ: Количество рассматриваемых циклов (оборотов) составляет 2400 . Это количество циклов, которые происходят за одну минуту, что равно 60 секундам.Таким образом, частоту можно найти с помощью уравнения:

f = 40 циклов / с

Частота вращения шин составляет 40 циклов / с , что также можно записать как 40 Гц. Чтобы найти из этого период, измените уравнение, связывающее период и частоту:

T = 0,025 с

Период вращения шин составляет 0,025 секунд.

Частота, Период Времени И Угловая Частота

    • Классы
      • Класс 1 — 3
      • Класс 4 — 5
      • Класс 6 — 10
      • Класс 11 — 12
    • КОНКУРСЫ
      • BBS
      • 000000000 Книги
        • NCERT Книги для 5 класса
        • NCERT Книги Класс 6
        • NCERT Книги для 7 класса
        • NCERT Книги для 8 класса
        • NCERT Книги для 9 класса
        • NCERT Книги для 10 класса
        • NCERT Книги для 11 класса
        • NCERT Книги для 12-го класса
      • NCERT Exemplar
        • NCERT Exemplar Class 8
        • NCERT Exemplar Class 9
        • NCERT Exemplar Class 10
        • NCERT Exemplar Class 11
        • NCERT Exemplar Class 12
        • 9000al Aggar Agard Agard Agard Agard Agulis Class 12
          • RS Решения Aggarwal класса 10
          • RS Решения Aggarwal класса 11
          • RS Решения Aggarwal класса 10
          • 90 003 Решения RS Aggarwal класса 9
          • Решения RS Aggarwal класса 8
          • Решения RS Aggarwal класса 7
          • Решения RS Aggarwal класса 6
        • Решения RD Sharma
          • Решения класса RD Sharma
          • Решения класса 9 Шарма 7 Решения RD Sharma Class 8
          • Решения RD Sharma Class 9
          • Решения RD Sharma Class 10
          • Решения RD Sharma Class 11
          • Решения RD Sharma Class 12
        • ФИЗИКА
          • Механика
          • 000000 Электромагнетизм
        • ХИМИЯ
          • Органическая химия
          • Неорганическая химия
          • Периодическая таблица
        • МАТС
          • Теорема Пифагора
          • Отношения и функции
          • Последовательности и серии
          • Таблицы умножения
          • Детерминанты и матрицы
          • Прибыль и убыток
          • Полиномиальные уравнения
          • Делительные дроби
        • 000 ФОРМУЛЫ
          • Математические формулы
          • Алгебровые формулы
          • Тригонометрические формулы
          • Геометрические формулы
        • КАЛЬКУЛЯТОРЫ
          • Математические калькуляторы
          • S000
          • S0003
          • Pегипс Класс 6
          • Образцы документов CBSE для класса 7
          • Образцы документов CBSE для класса 8
          • Образцы документов CBSE для класса 9
          • Образцы документов CBSE для класса 10
          • Образцы документов CBSE для класса 11
          • Образец образца CBSE pers for Class 12
        • CBSE Документ с вопросами о предыдущем году
          • CBSE Документы за предыдущий год Class 10
          • CBSE Вопросы за предыдущий год Class 12
        • HC Verma Solutions
          • HC Verma Solutions Класс 11 Физика
          • Решения HC Verma Class 12 Physics
        • Решения Lakhmir Singh
          • Решения Lakhmir Singh Class 9
          • Решения Lakhmir Singh Class 10
          • Решения Lakhmir Singh Class 8
        • Примечания
        • CBSE
        • Notes
            CBSE Класс 7 Примечания CBSE
          • Класс 8 Примечания CBSE
          • Класс 9 Примечания CBSE
          • Класс 10 Примечания CBSE
          • Класс 11 Примечания CBSE
          • Класс 12 Примечания CBSE
        • Примечания пересмотра
        • CBSE Редакция
        • CBSE
        • CBSE Class 10 Примечания к пересмотру
        • CBSE Class 11 Примечания к пересмотру 9000 4
        • Замечания по пересмотру CBSE класса 12
      • Дополнительные вопросы CBSE
        • Дополнительные вопросы CBSE 8 класса
        • Дополнительные вопросы CBSE 8 по естественным наукам
        • CBSE 9 класса Дополнительные вопросы
        • CBSE 9 дополнительных вопросов по науке CBSE
        • 9000 Класс 10 Дополнительные вопросы по математике
        • CBSE Класс 10 Дополнительные вопросы по науке
      • Класс CBSE
        • Класс 3
        • Класс 4
        • Класс 5
        • Класс 6
        • Класс 7
        • Класс 8
        • Класс 9
        • Класс 10
        • Класс 11
        • Класс 12
      • Решения для учебников
    • Решения NCERT
      • Решения NCERT для класса 11
          Решения NCERT для физики класса 11
        • Решения NCERT для класса 11 Химия
        • Решения для класса 11 Биология
        • NCERT Решения для класса 11 Математика
        • 9 0003 NCERT Solutions Class 11 Бухгалтерия
        • NCERT Solutions Class 11 Бизнес исследования
        • NCERT Solutions Class 11 Экономика
        • NCERT Solutions Class 11 Статистика
        • NCERT Solutions Class 11 Коммерция
      • NCERT Solutions для класса 12
        • NCERT Solutions для Класс 12 Физика
        • Решения NCERT для 12 класса Химия
        • Решения NCERT для 12 класса Биология
        • Решения NCERT для 12 класса Математика
        • Решения NCERT Класс 12 Бухгалтерский учет
        • Решения NCERT Класс 12 Бизнес исследования
        • Решения NCERT Класс 12 Экономика
        • NCERT Solutions Class 12 Бухгалтерский учет Часть 1
        • NCERT Solutions Class 12 Бухгалтерский учет Часть 2
        • NCERT Solutions Class 12 Микроэкономика
        • NCERT Solutions Class 12 Коммерция
        • NCERT Solutions Class 12 Макроэкономика
      • NCERT Solutions Для Класс 4
        • Решения NCERT для математики класса 4
        • Решения NCERT для класса 4 EVS
      • Решения NCERT для класса 5
        • Решения NCERT для математики класса 5
        • Решения NCERT для класса 5 EVS
      • Решения NCERT для класса 6
        • Решения NCERT для класса 6 Maths
        • Решения NCERT для класса 6 Science
        • Решения NCERT для класса 6 Общественные науки
        • Решения NCERT для класса 6 Английский
      • Решения NCERT для класса 7
        • Решения NCERT для класса 7 Математика
        • Решения NCERT для 7 класса Science
        • Решения NCERT для 7 класса Общественные науки
        • Решения NCERT для 7 класса Английский
      • Решения NCERT для 8 класса Математические решения
        • для 8 класса Математика
        • Решения NCERT для класса 8 Science
        • Решения NCERT для класса 8 Общественные науки
        • NCERT Solutio ns для класса 8 Английский
      • Решения NCERT для класса 9
        • Решения NCERT для класса 9 Общественные науки
      • Решения NCERT для класса 9 Математика
        • Решения NCERT для класса 9 Математика Глава 1
        • Решения NCERT Для класса 9 Математика 9 класса Глава 2
        • Решения NCERT для математики 9 класса Глава 3
        • Решения NCERT для математики 9 класса Глава 4
        • Решения NCERT для математики 9 класса Глава 5
        • Решения NCERT для математики 9 класса Глава 6
        • Решения NCERT для Математика 9 класса Глава 7
        • Решения NCERT для математики 9 класса Глава 8
        • Решения NCERT для математики 9 класса Глава 9
        • Решения NCERT для математики 9 класса Глава 10
        • Решения NCERT для математики 9 класса Глава 11
        • Решения NCERT для Математика 9 класса Глава 12
        • Решения NCERT для математики 9 класса Глава 13
        • Решения NCERT для математики 9 класса Глава 14
        • Решения NCERT для математики класса 9 Глава 15
      • Решения NCERT для науки 9 класса
          Решения NCERT 9000 для науки 9 класса Глава 1 Решения NCERT
        • для науки 9 класса Глава 2
        • Решения NCERT
        • для класса 9 Наука Глава 3
        • Решения NCERT для 9 класса Наука Глава 4
        • Решения NCERT для 9 класса Наука Глава 5
        • Решения NCERT для 9 класса Наука Глава 6
        • Решения NCERT для 9 класса Наука Глава 7
        • Решения NCERT для 9 класса Научная глава 8
        • Решения NCERT для 9 класса Научная глава
        • Решения NCERT для 9 класса Научная глава 10
        • Научные решения NCERT для 9 класса Научная глава 12
        • Научные решения NCERT для 9 класса Научная глава 11
        • Решения NCERT для 9 класса Научная глава 13
        • Решения NCERT для 9 класса Научная глава 14
        • Решения NCERT для класса 9 Science Глава 15
      • Решения NCERT для класса 10
        • Решения NCERT для класса 10 Общественные науки
      • Решения NCERT для математики класса 10
        • Решения NCERT для математики класса 10 Глава 1
        • Решения NCERT для математики класса 10 Глава 2
        • решения NCERT для математики класса 10 глава 3
        • решения NCERT для математики класса 10 глава 4
        • решения NCERT для математики класса 10 глава 5
        • решения NCERT для математики класса 10 глава 6
        • решения NCERT для математики класса 10 Глава 7
        • решения NCERT для математики класса 10 глава 8
        • решения NCERT для математики класса 10 глава 9
        • решения NCERT для математики класса 10 глава 10
        • решения NCERT для математики класса 10 глава 11
        • решения NCERT для математики класса 10 Глава 12
        • Решения NCERT для математики класса 10 глава 13
        • Sol NCERT Решения для математики класса 10 Глава 14
        • Решения NCERT для математики класса 10 Глава 15
      • Решения NCERT для науки 10 класса
        • Решения NCERT для науки 10 класса Глава 1
        • Решения NCERT для науки 10 класса Глава 2
        • Решения NCERT для науки 10 класса, глава 3
        • Решения NCERT для науки 10 класса, глава 4
        • Решения NCERT для науки 10 класса, глава 5
        • Решения NCERT для науки 10 класса, глава 6
        • Решения NCERT для науки 10 класса, глава 7
        • Решения NCERT для науки 10 класса, глава 8
        • Решения NCERT для науки 10 класса, глава 9
        • Решения NCERT для науки 10 класса, глава 10
        • Решения NCERT для науки 10 класса, глава 11
        • Решения NCERT для науки 10 класса, глава 12
        • Решения NCERT для 10 класса Science Глава 9
        • Решения NCERT для 10 класса Science Глава 14
        • Решения NCERT для науки 10 класса Глава 15
        • Решения NCERT для науки 10 класса Глава 16
      • Программа NCERT
      • NCERT
    • Коммерция
      • Класс 11 Коммерческая программа Syllabus
      • Учебный курс по бизнес-классу 11000
      • Учебная программа по экономическому классу
    • Учебная программа по коммерческому классу
      • Учебная программа по 12 классу
      • Учебная программа по 12 классу
      • Учебная записка по 12-му классу
      • 000000 000000
      • Образцы коммерческих документов класса 11
      • Образцы коммерческих документов класса 12
    • Решения TS Grewal
      • Решения TS Grewal Класс 12 Бухгалтерский учет
      • Решения TS Grewal Класс 11 Бухгалтерский учет
    • Отчет о движении денежных средств
    • eurship
    • Защита потребителей
    • Что такое фиксированный актив
    • Что такое баланс
    • Формат баланса
    • Что такое акции
    • Разница между продажами и маркетингом
  • P000S Документы ICSE
  • ML Решения Aggarwal
    • ML Решения Aggarwal Class 10 Maths
    • ML Решения Aggarwal Class 9 Математика
    • ML Решения Aggarwal Class 8 Maths
    • ML Решения Aggarwal Class 7 Математические решения
    • ML 6 0004
    • ML 6
  • Selina Solutions
    • Selina Solution для класса 8
    • Selina Solutions для класса 10
    • Selina Solution для класса 9
  • Frank Solutions
,
Формула частоты период время частота цикла в секунду Герц Гц амплитуда длительность периодический период времени к угловой частоте Формулярная длина волны Акустическое уравнение Соотношение длины волны Гц Миллисекунды мс Расчет вычисления калькулятор t = 1 / f Гц Герц к мс T к f рабочему листу
Формула частоты период время частота цикл в секунду герц Гц амплитуда длительность периодический период времени к угловой частоте формулярная длина волны акустическое уравнение отношение длина волны Гц миллисекунда мс расчет вычислить калькулятор t = 1 / f Гц герц до мс T to f рабочий лист — sengpielaudio Sengpiel Berlin


Заполните серое поле выше и нажмите на панель расчета соответствующего столбца.

Частота означает колебания (циклы) в секунду в Гц = герц = 1 / с.
1 секунда = 1 с = 1000 мс | 1 мс = 0,001 с | 1 мкс = 0,000001 с
cps = циклов в секунду


Чтобы использовать калькулятор, просто введите значение.
Калькулятор работает в обоих направлениях знака × .

Осциллограф: Ввод коробок (Div.) и время (Y) дают частоту.

Формула для периода (продолжительность цикла) T

Физическая ценность символ блок аббревиатура формула
Продолжительность цикла T = 1 / f секунда с T = λ / c
Частота f = 1 / T герц Гц = 1 / с f = c / λ
Длина волны λ метр м λ = с / ф
Скорость волны с метра в секунду м / с c = λ × f

Преобразование времени — со временем

Формулы и уравнения для частоты и длины волны

Формула для частоты: f (частота) = 1/ T (период).
f = c / λ = скорость волны c (м / с) / длина волны λ (м).
Формула для времени: T (период) = 1/ f (частота).
Формула для длины волны составляет λ (м) = с / ф
λ = c / f = скорость волны c (м / с) / частота f (Гц).

Единица герц (Гц) когда-то называлась cps = циклов в секунду.


c = λ × f λ = c / f = c × T f = c / λ
дифференцировать скорость среды:
Скорость звука или скорость света

Выберите: Скорость звука в воздухе при температуре 20 ° C: c = 343 м / с
или скорость радиоволн и света в вакууме: с = 299 792 458 м / с.

Скорость распространения электрических сигналов по оптоволокну составляет около 9/10
скорость света, то есть ≈ 270 000 км / с.
Скорость распространения электрических сигналов по медным кабелям составляет около 2/3
скорость света, то есть ≈ 200 000 км / с.

Скорость звука c = 343 м / с также равна 1235 км. / ч, 767 миль в час, 1125 фут / с.

Волна состоит из четырех частей:
длина волны, период, частота и амплитуда

Изменение частоты (герц, Гц) никогда не меняет амплитуду и наоборот

Угловая частота составляет ω = 2 π × f

Дано уравнение: у = 50 грех (5000 т)
Определите частоту и амплитуду.
Ответ: амплитуда 50 и ω = 5000.
Таким образом, частота составляет f = 1/ T = ω /2 π = 795,77 Гц.

Чтобы использовать калькулятор, просто введите значение.
Калькулятор работает в обоих направлениях знака × .

Преобразование : частота в длину волны и наоборот


Синусоида или синусоида и период T
В физике и электротехнике для синусоидального процесса часто используется
угловая частота ω вместо частоты f .Скорость или частота вращения
размер при — предпочтительно механических — вращающихся движениях, указывающий частоту
революций. Например, это важная функция для двигателей. Это будет дано в
1 / мин, в оборотах в минуту или в об / мин.


На оси и показано звуковое давление p (амплитуда звукового давления).
Если график показывает на оси x время t , мы видим период T = 1/ f .
Если график показывает на оси x расстояние d , мы видим длину волны λ .
Наибольший прогиб или удлинение называется амплитудой и .


Амплитуда абсолютно не связана с частотой…
тоже ничего с длиной волны.


● Волновые графики ●
Волны могут быть изображены как функция времени или расстояния. Одна частота
волна будет выглядеть как синусоида (синусоида) в любом случае. С расстояния
На графике можно определить длину волны. Из графика времени, период
и частота может быть получена. От обоих вместе, скорость волны может быть
определяется.Источник:
http://hyperphysics.phy-astr.gsu.edu/hbase/sound/wavplt.html


В акустике выражение для синусоиды записано в виде
y = A sin (2 πf T + φ ). Где ω = 2 π f и A — амплитуда и
где f — частота волны, измеренная в герцах.
Сравнение математической формы y = A sin ( B T + φ ):
С этой акустической формой мы видим, что | B | = 2 π f . Отсюда у нас
частота ф = | B | / 2 и период T = 2 / | B | = 1/ f .


СИ кратных для герц (Гц)
Значение Символ Наименование Значение Символ Наименование
10 -1 Гц дГц децигерц 10 1 Гц дГц декагерц
10 -2 Гц кГц сантигерц 10 2 Гц Гц гектогерц
10 −3 Гц МГц миллигерц 10 3 Гц кГц килогерц
10 −6 Гц мкГц микрогерц 10 6 Гц МГц мегагерц
10 −9 Гц НГц наногерц 10 9 Гц ГГц гигагерц
10 −12 Гц pHz пикогерц 10 12 Гц ТГц терагерц
10 −15 Гц ФГц фемтогерц 10 15 Гц Фц петахерц
10 −18 Гц Гц аттогерц 10 18 Гц Гц exahertz
10 −21 Гц зГц Цептогерц 10 21 Гц ZHz Цеттахерц
10 −24 Гц Гц йогерц 10 24 Гц ГГц йоттагерц
Общие префиксные единицы выделены жирным шрифтом.

Типичный вопрос: какова связь между длиной волны, температурой и частотой?

Объясните связь между расстоянием, временем и частотой при определении
длина волны или: каково уравнение с частотой, расстоянием и временем?

Скорость = расстояние / время
Скорость = длина волны × частота
следовательно,
Длина волны × частота = расстояние / время
следовательно,
Длина волны = расстояние / (время × частота)

Калькулятор Masterclock (тактовая частота)

Чтобы использовать калькулятор, просто введите значение.
Калькулятор работает в обоих направлениях знака × .

Калькулятор с опорной частотой

Для настройки вниз можно изменить опорную частоту и настройку фортепиано.

100 центов эквивалентны полутону (полутону).

Названия нот: английская и немецкая системы для сравнения

Расчеты гармоник по основной частоте


,

Расчет среднего значения по частотной таблице

Среднее значение легко вычислить:

Суммируйте всех чисел,
, затем делите на количество .

Пример: что означает среднее число этих чисел?

6, 11, 7

  • Добавьте цифры: 6 + 11 + 7 = 24
  • Разделите на , сколько чисел (есть 3 числа): 24 ÷ 3 = 8

Среднее значение 8

Но иногда у нас нет простого списка чисел, это может быть таблица частот, подобная этой («частота» говорит о том, как часто они встречаются):

Оценка Частота
1 2
2 5
3 4
4 2
5 1

(в нем говорится, что оценка 1 произошла 2 раза, оценка 2 произошла 5 раз и т. Д.)

Мы могли бы перечислить все числа, как это:

Среднее = 1 + 1 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 4 + 4 + 5 (сколько чисел)

Но вместо того, чтобы делать много сложений (например, 3 + 3 + 3 + 3), проще использовать умножение:

Среднее = 2 × 1 + 5 × 2 + 4 × 3 + 2 × 4 + 1 × 5 (сколько номеров)

И вместо того, чтобы сосчитать, сколько чисел существует, мы можем сложить частоты:

Среднее = 2 × 1 + 5 × 2 + 4 × 3 + 2 × 4 + 1 × 5 2 + 5 + 4 + 2 + 1

А теперь посчитаем:

Среднее = 2 + 10 + 12 + 8 + 5 14
= 37 14 = 2.64 …

И вот как рассчитать среднее значение из таблицы частот!

Вот еще один пример:

Пример: парковочные места на дом на Хэмптон-стрит

Изабелла пошла вверх и вниз по улице, чтобы узнать, сколько парковочных мест у каждого дома. Вот ее результаты:

Парковка
Места
Частота
1 15
2 27
3 8
4 5

Какое среднее количество парковочных мест?

Ответ:

Среднее = 15 × 1 + 27 × 2 + 8 × 3 + 5 × 4 15 + 27 + 8 + 5

= 15 + 54 + 24 + 20 55

= 2.05 …

Среднее значение 2,05 (до 2 десятичных знаков)

(намного проще, чем добавлять все номера отдельно!)

Обозначение

Теперь вы знаете, как это сделать, давайте повторим последний пример, но с использованием формул.

Этот символ (называемый Сигма) означает «подводить итоги»
(подробнее на Sigma Notation)

Таким образом, мы можем сказать «сложить все частоты» следующим образом:


(где f — частота)

И мы можем использовать это так:

Точно так же мы можем добавить «частоту умножения» следующим образом:


(где f — частота, а x — оценка соответствия)

И формула для вычисления среднего значения из таблицы частот:

«Х с чертой сверху» означает «среднее значение х»

Итак, теперь мы готовы сделать наш пример выше, но с правильными обозначениями.

Пример: вычисление среднего значения этой таблицы частот

И вот оно:

x = Σfx Σf = 15 × 1 + 27 × 2 + 8 × 3 + 5 × 4 15 + 27 + 8 + 5
= 2,05 …

Вот, пожалуйста! Вы можете использовать сигма-нотацию.

Рассчитать в таблице

Часто лучше сделать Расчеты в табл.

Пример: (продолжение)

Из предыдущего примера вычислите f × x в правом столбце, а затем выполните итоги:

x f fx
1 15 15
2 27 54
3 8 24
4 5 20
ИТОГО: 55 113

А значит тогда легко:

Среднее = 113 55 = 2.05 …

,
Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о