+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Резисторы фото и названия

Автор admin На чтение 12 мин. Просмотров 5 Опубликовано

Что такое резистор и для чего он нужен?

При передаче электрического тока на расстояние из-за сопротивления проводов теряется часть энергии. В таких случаях сопротивление является негативным фактором и его стараются свести к минимуму.

Другое дело электрические цепи в электронных устройствах. Там резистор выполняет много полезных функций. В электронных схемах используется свойства этих пассивных компонентов для ограничения тока в многочисленных цепях. С их помощью обеспечивается нужный режим работы усилительных каскадов.

Что такое резистор?

Название этого электронного элемента произошло от латинского слова resisto — сопротивляюсь. То есть – это пассивный элемент применяемый в электрических цепях, действие которого основано на сопротивлении току. Основной характеристикой этого электронного компонента является величина его электрического сопротивления.

Пассивность данного электронного компонента означает то, что основной его функцией является поглощение электрической энергии. В отличие от активных элементов электроники, он ничего не генерирует, а только пассивно рассеивает электричество, преобразуя его в тепло. В схемах замещения сопротивление является основным параметром, в то время как ёмкость и индуктивность – паразитные величины.

Применение

Резисторы применяются во всех электрических схемах для установления нужных значений тока в цепях, с целью демпфирования колебаний в различных фильтрах, в качестве делителей напряжений и т. п.

Резисторы выполняют функции нагрузки в резистивных цепях, используются в качестве делителя напряжения (см. рисунок ниже) и тока, являются элементами фильтров, применяются для формирования импульсов, выполняют функции шунтов и многое другое. Сегодня трудно себе представить электрическую схему, в которой не задействованы несколько резистивных элементов.

Без резисторов не работает ни один электронный прибор.

Устройство и принцип работы

Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.

Устройство таких элементов можно понять из рисунка 2 ниже.

В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.

Рис. 2. Строение резистора

Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.

Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.

Для непроволочных резисторов используются следующие резистивные материалы:

Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.

Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.

Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.

Рис. 3. Регулировочные резисторы Рис. 4. Подстроечные резисторы

Принцип действия.

Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.

Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.

Рис. 5. Принцип работы

Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов) – нелинейные.

Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:

За видом резистивного материала классификация может быть следующей:

Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.

В интегральных монокристаллических микросхемах методом трафаретной печати или способом напыления в вакууме создают встроенные интегральные резисторы.

По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:

Можно классифицировать детали и по другим признакам, например по типу защиты от влаги или по способу монтажа: печатный либо навесной.

Номиналы резисторов

Элементы имеют свой допуск в отклонениях номинальных сопротивлений. В соответствии с допусками номиналы резисторов разбиты на 3 ряда, которые обозначаются: Е6, Е12, и Е24.

Компоненты ряда Е6 имеют допуск отклонения ± 20%; ряда Е12 – ± 10%, а ряда Е24 – ± 5%.

Номиналы резисторов каждого ряда представлены в справочных таблицах, которые можно найти в интернете.

Маркировка

Раньше на корпусах сопротивлений проставляли номинал, ряд, мощность и серийный номер. В связи с миниатюризацией деталей перешли на цветовую маркировку. Параметры сопротивлений кодируют с помощью цветных колец (см. рис. 8).

Рис. 8. Цветовая маркировка

Если на корпусе присутствует 3 кольца, то первые два обозначают величину сопротивления, третье – множитель, а допустимое отклонение составляет 20%.

Если на корпусе 4 кольца, то значения первых трёх из них такие же, как в предыдущем примере, а четвёртое кольцо указывает на величину отклонения.

Пять колец: первые 3 указывают величину сопротивления, на четвёртой позиции – множитель, а на пятой – допуск.

На сверхточных деталях наносятся 6 цветовых полос: три первых указывают величину сопротивления, полоса на четвёртой позиции – множитель, а пятое кольцо — допустимое отклонение.

Каждому цвету присвоена конкретная цифра (от 0 до 9). Учитывая позицию кольца и его цвет, можно с точностью определить параметры изделия. Для этого удобно пользоваться таблицей цветов (рис. 9).

Рис. 9. Таблица цветов

В некоторых случаях вместо сопротивления используют обычные перемычки. Считается что у них нулевое сопротивление. Вместо перемычек иногда устанавливают резистор с нулевым сопротивлением (по сути та же перемычка, только адаптирована под размеры резистора). На корпус такого сопротивления наносят 1 чёрную полоску.

Маркировка SMD-резисторов

Сопротивления, предназначенные для поверхностного монтажа маркируют цифрами (см. рис. 10). Кодировка сложна для запоминания. В ней учитывается количество цифр и их позиции. Цифрами кодируют типоразмеры изделий и значения основных параметров. Для расшифровки кодов данного типа маркировки существуют справочные таблицы или калькуляторы.

Рис. 10. Цифровая маркировка

Код на рисунке расшифровывается так: номинальное сопротивление 120×10 6 Ом (последняя цифра показывает количество нулей, то есть степень числа 10). Резистор из ряда Е96 с допуском 1%, типоразмер 0805 либо 1206 (значения, выделенные курсивом, определяются по справочнику).

Обозначение на схемах

Традиционно резисторы на схемах обозначают в виде прямоугольника (по ГОСТ 2.728-74) или ломаной линии (рис. 12 — в основном на схема западного образца). В прямоугольнике иногда указывают мощность, используя для этого условные обозначения в виде вертикальных, косых или горизонтальных чёрточек (см. рисунок ниже):

Возле значка проставляют букву R и номинал резистора.

Рис. 12. Обозначение на схемах

В отличие от постоянных деталей, обозначение переменных резисторов имеет особенность: над прямоугольником добавляется стрелка, указывающая, что в конструкции детали есть скользящий контакт (бегунок).

Например, УГО потенциометра выгляди так:

Характеристики и параметры

Пределы границ сопротивлений для деталей общего назначения находятся в промежутке от 10 Ом до 10 МОм. Для таких компонентов номинальная мощность рассеивания составляет 0,125 – 100 Вт.

Сопротивление высокоомных деталей составляет порядка 10 13 Ом. Такие изделия применяются в измерительных устройствах, предназначенных для малых токов. Величины номинальных мощностей на корпусах таких компонентов могут не указываться. Рабочее напряжение от 100 до 300 В.

Класс высоковольтных деталей предназначен для работы под напряжением 10 – 35 кВ. Их сопротивление достигает 10 11 Ом.

Для высокочастотных резисторов важен номинал рабочей частоты. Они способны работать на частотах свыше 10 МГц. Высокочастотные токи сильно нагревают детали. При интенсивном охлаждении номинальные мощности таких компонентов достигают величин 5, 20, 50 кВт.

В точных измерительных и вычислительных устройствах, а также в релейных системах применяются прецизионные резисторы. Они обладают высокой стабильностью параметров. Мощность рассеивания у таких деталей не превышает 2 Вт, а номинальное сопротивление лежит в пределах 1 – 10 6 Ом.

Кроме основных характеристик иногда важно знать уровень напряжений шума, зависимость сопротивления реальных резисторов от нагревания (температурный коэффициент сопротивления) и некоторые другие.

Соединение резисторов

Сопротивления можно соединять двумя способами – параллельно либо последовательно.

Для расчета последовательно и параллельно соединенных резисторов удобно воспользоваться нашими калькуляторами:

Источник

Маркировка резисторов

Визуально определить значение сопротивления резистора не представляется возможным. Ввиду очень малых размеров резисторов, полностью написать их номинал на корпус не предоставляется возможным. Поэтому и применяют маркировку резисторов, которая бывает кодовой, и цветовой, цифро-буквенной.

Цифро-буквенная маркировка резисторов

Самым простым в части оценки является советский резистор, номинал его мощности наносится прямо на корпусе маркировкой МЛТ-1 и так далее, где единица измерения – это мощность, а МЛТ – это вид наиболее ходовые в свое советское время резисторы а эта сокращение означает что резистор М- металлопленочный, Л- лакированный, Т-термоустойчивый. Мощность таких резисторов зависит от их размеров, чем больше размеры резистора – тем большую мощности он способен рассеять. Эти резисторы уже вымирающий вид, найти их можно в старой радиоэлектронной технике.

Для резисторов МЛТ типа единицей измерения сопротивления как и у других выступают Омы, обозначаются они как R и E. Точный размер мощности обозначает дополнительной буквой «К» – килоомы или буквой «М» — мегаомы, система измерения здесь достаточно проста. Например: 33E – это 33 Ома, а 47К – это 47 кОм, соответственно 1М2 – 1.2 Мегаом и так далее.


Примеры цифро-буквенной маркировки резисторов

3E9И или 3R9 означает что сопротивления 3,9 Ом, допуск 5%

2К2И означает что сопротивления 2,2 кОм,допуск 5%

5К1С означает что сопротивления 5,1 кОм,допуск 10%

Цветовая маркировка резисторов

Цветовая маркировка немного упростила процесс маркировки в масштабах массового производства, но также и запутала некоторых радиолюбителей, но на самом деле все просто.

Стартовой точкой отчета принято считать золотую полоску или же серебряную – это начальное звено, и оно не считается, необходимо повернуть сориентировать таким образом, чтобы цветные полоски начинались с левой стороны.

Далее считывает номер по полоскам:

Третья полоса в штрих коде имеет немного иное значение – она отмеряет количество нулей, которые необходимо добавить к полученному значению. Следовательно, черный – 0, коричный – 1 ноль (0), красный – 2 нуля (00) и так далее.

Чтобы упростить себе подсчеты можно воспользоваться программой на компьютере которая называется Резистор 2.2 (ссылка на скачивание программы во вложении). Она упростит подсчеты и автоматически покажет мощность резистора при вводе всех полосок. Либо же воспользоваться калькулятором цветовой маркировки резистора прямо онлайн.

Маркировка SMD резисторов

С маркировкой SMD немного сложнее, размеры SMD резисторов не позволяют нанести на них цветовые кольца либо написать номинал. Поэтому маркируются они 3 или 4 цифрами, кроме резисторов типоразмера 0402. Значения резисторов типа 0402 можно найти в таблице. Остальные имеют следующий порядок маркировки.

Резисторы с допуском до 10 % имеют в маркировке 3 цифры, где первые 2 цифры – это номинал резистора, а последняя – обозначает десятичное значение.

Пример маркировки SMD резисторов:

Резистор с 3 символами

Резистор с цифрами 222 – означает 22 * 102 = 2200 Ом или другими словами 2,2 кОм.

Резистор с 4 символами

Резисторы с 4 символами имеют допуск 1 %, подсчет проводим аналогичным образом: 4422 это 442*2 * 102 = 44,2 кОм

Бывают также smd резистор без маркировки, таких резисторов сопротивление равно 0, нужны они просто чтобы заполнить пустое пространство в плате, их еще называют нулевыми резисторами.

Использованием кодов в настоящее время – самый популярный способ маркировки SMD резисторов, основанный на табличных кодах каждого показателя.

Таблица кодов SMD резисторов и их значений

Код smd Значение Код smd Значение Код smd Значение Код smd Значение
R10 0.1 Ом 1R0 1 Ом 100 10 Ом 101 100 Ом
R11 0.11 Ом 1R1 1.1 Ом 110 11 Ом 111 110 Ом
R12 0.12 Ом 1R2 1.2 Ом 120 12 Ом 121 120 Ом
R13 0.13 Ом 1R3 1.3 Ом 130 13 Ом 131 130 Ом
R15 0.15 Ом 1R5 1.5 Ом 150 15 Ом 151 150 Ом
R16 0.16 Ом 1R6 1.6 Ом 160 16 Ом 161 160 Ом
R18 0.18 Ом 1R8 1.8 Ом 180 18 Ом 181 180 Ом
R20 0.2 Ом 2R0 2 Ом 200 20 Ом 201 200 Ом
R22 0.22 Ом 2R2 2.2 Ом 220 22 Ом 221 220 Ом
R24 0.24 Ом 2R4 2.4 Ом 240 24 Ом 241 240 Ом
R27 0.27 Ом 2R7 2.7 Ом 270 27 Ом 271 270 Ом
R30 0.3 Ом 3R0 3 Ом 300 30 Ом 301 300 Ом
R33 0.33 Ом 3R3 3.3 Ом 330 33 Ом 331 330 Ом
R36 0.36 Ом 3R6 3.6 Ом 360 36 Ом 361 360 Ом
R39 0.39 Ом 3R9 3.9 Ом 390 39 Ом 391 390 Ом
R43 0.43 Ом 4R3 4.3 Ом 430 43 Ом 431 430 Ом
R47 0.47 Ом 4R7 4.7 Ом 470 47 Ом 471 470 Ом
R51 0.51 Ом 5R1 5.1 Ом 510 51 Ом 511 510 Ом
R56 0.56 Ом 5R6 5.6 Ом 560 56 Ом 561 560 Ом
R62 0.62 Ом 6R2 6.2 Ом 620 62 Ом 621 620 Ом
R68 0.68 Ом 6R8 6.8 Ом 680 68 Ом 681 680 Ом
R75 0.75 Ом 7R5 7.5 Ом 750 75 Ом 751 750 Ом
R82 0.82 Ом 8R2 8.2 Ом 820 82 Ом 821 820 Ом
R91 0.91 Ом 9R1 9.1 Ом 910 91 Ом 911 910 Ом
Код smd Значение Код smd Значение Код smd Значение Код smd Значение
102 1 кОм 103 10 кОм 104 100 кОм 105 1 МОм
112 1.1 кОм 113 11 кОм 114 110 кОм 115 1.1 МОм
122 1.2 кОм 123 12 кОм 124 120 кОм 125 1.2 МОм
132 1.3 кОм 133 13 кОм 134 130 кОм 135 1.3 МОм
152 1.5 кОм 153 15 кОм 154 150 кОм 155 1.5 МОм
162 1.6 кОм 163 16 кОм 164 160 кОм 165 1.6 МОм
182 1.8 кОм 183 18 кОм 184 180 кОм 185 1.8 МОм
202 2 кОм 203 20 кОм 204 200 кОм 205 2 МОм
222 2.2 кОм 223 22 кОм 224 220 кОм 225 2.2 МОм
242 2.4 кОм 243 24 кОм 244 240 кОм 245 2.4 МОм
272 2.7 кОм 273 27 кОм 274 270 кОм 275 2.7 МОм
302 3 кОм 303 30 кОм 304 300 кОм 305 3 МОм
332 3.3 кОм 333 33 кОм 334 330 кОм 335 3.3 МОм
362 3.6 кОм 363 36 кОм 364 360 кОм 365 3.6 МОм
392 3.9 кОм 393 39 кОм 394 390 кОм 395 3.9 МОм
432 4.3 кОм 433 43 кОм 434 430 кОм 435 4.3 МОм
472 4.7 кОм 473 47 кОм 474 470 кОм 475 4.7 МОм
512 5.1 кОм 513 51 кОм 514 510 кОм 515 5.1 МОм
562 5.6 кОм 563 56 кОм 564 560 кОм 565 5.6 МОм
622 6.2 кОм 623 62 кОм 624 620 кОм 625 6.2 МОм
682 6.8 кОм 683 68 кОм 684 680 кОм 685 6.8 МОм
752 7.5 кОм 753 75 кОм 754 750 кОм 755 7.5 МОм
822 8.2 кОм 823 82 кОм 824 820 кОм 815 8.2 МОм
912 9.1 кОм 913 91 кОм 914 910 кОм 915 9.1 МОм

Маркировка SMD резисторов по EIA-96

SMD резисторы с более большей точностью и более малыми размерами привели к созданию компактной маркировке. Был придуман стандарт EIA-96. Этот стандарт создан для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех символов: две первые цифры это код номинала резистора, а следующий за ними символ это множитель. Берем SMD резистор смотрим первые 2 цифры и находим соответствующее сопротивление по таблице, далее смотрим на цифру и также по таблице смотри множитель на который на нужно умножиться. Все довольно просто.

Источник

«Элкопром» электронные компоненты промышленности — Кодовая и цветовая маркировка резисторов

Кодовая маркировка номиналов резистивных элементов состоит из трёх или четырёх символов, включающих две цифры и букву или три цифры и букву. Последняя буква в коде является множителем, обозначает сопротивление резистора в омах, и указывает расположение запятой десятичного знака. Кодовое обозначение отклонения номинала резистора состоит из буквы латинского алфавита см. табл. 1.

Примечание: Старое обозначение, использовавшееся в СССР указано в скобках.
Цветовая маркировка резисторов обозначается четырьмя или пятью цветовыми кольцами. Цвету каждого кольца соответствует определённому цифровому значению см. табл. 2. Первое и второе кольцо у резисторов с четырьмя цветовыми кольцами обозначает номинал в омах, третье кольцо задаёт множитель на который нужно умножить цифру полученную из двух первых колец, четвёртое кольцо процент на который может отличаться сопротивление резистора от номинала.
Цветовая маркировка отечественных резисторов.

Цветовая маркировка резисторов фирмы PHILIPS.
Маркировка может состоять из 4, 5 или 6 цветовых колец,  в коде заложена информация о номинале сопротивления в омах, классе точности и температурном коэффициенте сопротивления. Так же цвет корпуса резистора и взаимное расположение полос несут дополнительную информацию.

Нестандартная цветовая маркировка резисторов фирм Corning Glass Work и Panasonic.

Многие западные фирмы помимо стандартной  маркировки резисторов используют нестандартную внутрифирменную маркировку. Дополнительная маркировка обеспечивает возможность отличать, например, резисторы изготовленные по стандартам повышенных требований точности и безопасности, от стандартов промышленного и бытового назначения.

Кодовая маркировка отечественных резисторов.
В соответствии с требованиями ГОСТ, первые 3 или 4 символа маркировки отечественных резисторов предоставляют данные о его номинале, определяемом по базовому значению из рядов ЕЗ…Е192, и множителе. Последний символ показывает класс точности резистора. Требования ГОСТ и IEC практически ничем не отличаются от стандарта BS1852 (British Standart).

Помимо данных, показывающих номинал и класс точности резистора, может наноситься дополнительная  служебная информация о типе резистора, его мощности и дате производства.

Перемычки и резисторы с «нулевым» сопротивлением.
Многие производители электронных компонентов выпускают в качестве предохранителей или перемычек специальные резистивные элементы Jumper Wire с нормированными сопротивлением и диаметром (0,6 мм, 0,8 мм) и резисторы с нулевым сопротивлением. Они производятся в идее стандартного резистора цилиндрической формы с гибкими выводами (Zero-Ohm) или в стандартном корпусе для SMD монтажа (Jumper Chip). Реальная величина сопротивления этих резисторов составляет единиц или десятков миллиом (~ 0,005…0,05 Ом). В корпусах цилиндрической формы  маркируется черным кольцом посередине, в корпусах для SMD монтажа (0603, 0805, 1206…) цифровым кодом либо наносится код «000» (возможно «0»).

Кодовая маркировка прецизионных высокостабильных резисторов фирмы PANASONIC.

Кодовая маркировка резисторов фирмы PHILIPS.
Кодировка резисторов фирмы PHILIPS соответствует общепринятым стандартам, первые две или три цифры обозначают номинал сопротивления в омах, а последняя — множитель. В зависимости от класса точности, номинал сопротивления резистора кодируется тремя или четырьмя символами. Отличия от стандартной кодировки могут заключаться в трактовке цифр 7,8 и 9 в последнем символе.
Буква R играет роль десятичной запятой, если она стоит в конце указывает на диапазон. Единичным символом «0» обозначаются резисторы Zero-Ohm с сопротивлением равным нулю.

Кодовая маркировка резисторов фирмы BOURNS.

Первые две цифры в маркировке резисторов фирмы BOURNS указывают значения в Ом, последняя — количество нулей. Данная маркировка распространяется на резисторы серии Е-24, с классом точности 1 и 5%, типоразмерами 0603, 0805 и 1206.

Первые две цифры в маркировке резисторов фирмы BOURNS указывают значения в Ом, последняя — количество нулей. Данная маркировка распространяется на резисторы серии Е-24, с классом точности 1 и 5%, типоразмерами 0603, 0805 и 1206.

Две первые цифры, определяют значение сопротивления резистора в Ом, взятые из показанной ниже таблицы 5, последний символ — буква, показывает какой множитель необходимо пременить: S=10-2; R=10-1; А=1; В= 10; С=102; D=103; Е=104; F=105. Данная маркировка распространяется на резисторы серии Е-96, классом точности 1%. типоразмером 0603.


Чип и дип маркировка резисторов

Калькулятор маркировки резисторов – это удобный онлайн-инструмент, который поможет определить резисторное сопротивление по цветной маркировке и установить последовательность цветов по номинальному параметру.

Программа представляет собой приложение, основывающееся на данных из общепринятой таблицы цветных маркировок резисторов. Поскольку эти элементы отличаются по пределу сопротивления, мощности и погрешности, они помечаются разными цветовыми комбинациями, и определить тип резистора можно, правильно расшифровав данные.

Располагаем резистор таким образом,чтобы кольца были сдвинуты к левому краю или широкая полоса была бы слева, и выбираем соответствующие цвета в форме.
Калькулятор позволяет рассчитывать сопротивление и допуск сопротивления резисторов с цветовой маркировкой в виде 4 или 5 цветных колец.

Существуют стандартные ряды резисторов, каждый из которых отличается определенным показателем сопротивления, рассеиваемой мощностью и допустимой погрешностью. На любом современном сопротивлении находятся цветовые кольца. Они могут иметь различный цвет, от которого и зависят конкретные показатели электронного компонента. Но также встречаются цифровые и буквенные обозначения.

При использовании буквенно-цифрового кода сопротивления резисторов обозначают цифрами с указанием единицы измерения. Принято обозначать буквами: R – ом, К – килоом, М -мегаом.

Если значение сопротивления выражается целым числом, то обозначение единицы измерения ставят после числа:

Если сопротивление выражается десятичной дробью, меньшей единицы, то вместо нуля целых и запятой впереди цифры располагают обозначение единицы измерения:

Если сопротивление выражается целым числом с десятичной дробью, то после целого числа вместо запятой ставят обозначение единицы измерения:

Продолжаем изучать основы электроники и сегодня наш разговор будем посвящен одному компоненту, без которого невозможно представить ни одну электрическую цепь, а именно резистору 🙂

Резистор.

Итак, начнем с основного определения резистора. Резистор – это, в первую очередь, пассивный элемент электрической цепи, который имеет определенное значение сопротивления (оно может быть постоянным и переменным). Предназначен этот элемент для линейного преобразования силы тока в напряжения и наоборот, ведь как мы помним из закона Ома, напряжение и сила тока связаны друг с другом как раз через величину сопротивления:

Резисторы являются одними из самых широко используемых компонентов – редко можно встретить схему, в которой бы не было ни одного резистора 😉 Основным параметром резистора, как уже понятно из определения, является его электрическое сопротивление, измеряемое в Омах (Ом).

Обозначение резисторов на схеме.

Давайте рассмотрим обозначение резисторов на схемах. Существуют два возможных варианта:

Кроме того, используются немного измененные символы, которые характеризуют резисторы на схеме по величине номинальной мощности рассеивания. Тут возникает вполне закономерный вопрос – а что это за параметр такой – номинальная мощность рассеивания? При протекании тока через резистор в нем будет выделяться мощность, что приведет к нагреву резистора. И если мощность будет превышать допустимую величину, то резистор будет перегреваться и просто сгорит. Таким образом, номинальная рассеиваемая мощность – это величина мощности, которая может рассеиваться резистором без превышения предельно допустимой температуры. То есть если мощность в цепи будет меньше или равна номинальной, то с резистором все будет в порядке 🙂 Итак, вернемся к обозначению резисторов:

Вот так обозначаются наиболее часто встречающиеся на схемах резисторы в зависимости от их номинальной рассеиваемой мощности, тут даже особо нечего дополнительно комментировать =)

Сопротивление резистора на схемах указывается рядом с условным обозначением, причем единицу измерения обычно опускают. Если увидите на схеме рядом с резистором число 68, то не сомневайтесь ни секунды – сопротивление резистора равно 68 Омам. Если же величина сопротивления составляет, к примеру, 1500 Ом (1,5 КОм), то на схеме будет обозначение “1.5 К”:

С этим все просто… Несколько сложнее ситуация обстоит с цветовой маркировкой резисторов. Сейчас мы разберемся и с этим моментом 😉

Цветовая маркировка резисторов.

Большинство резисторов имеют цветовую маркировку, такую как на этом рисунке. Она представляет из себя 4 или 5 полос (чаще всего, хотя их может быть, например, и 6) определенных цветов, и каждая из этих полос несет определенный смысл. Первые две полоски абсолютно всегда обозначают первые две цифры номинального сопротивления резистора. Если полосок всего 3 или 4, то третья полоса будет означать множитель, на который необходимо умножить число, полученное из первых двух полос, для определения величины сопротивления. Если всего на резисторе 4 полосы, то 4 будет указывать на точность резистора. Если полос всего пять, то ситуация несколько меняется – первые три полосы означают три цифры сопротивления резистора, четвертая – множитель, пятая – точность. Соответствие цифр цветам приведено в таблице:

Тут есть еще один немаловажный момент – а какую именно полосу считать первой? 🙂 Чаще всего первой считается та полоса, которая находится ближе к краю резистора. Кроме того, можно заметить, что золотая и серебряная полосы не могут быть первыми, поскольку не несут информации о величине сопротивления. Поэтому если на резисторе есть полосы этого цвета и они расположены с краю, то можно точно утверждать, что первая полоса находится с противоположной стороны. Давайте рассмотрим практический пример:

Поскольку у нас здесь 5 полос, то первые три указывают на сопротивление резистора. Посмотрев нужные значения в таблице, мы получаем величину 510. Четвертая полоса – множитель – в данном случае он равен . И, наконец, пятая полоса – погрешность – 10 %. В итоге мы получаем резистор 510 КОм, 10 %.

В принципе, если нет желания разбираться с цветами и значениями, то можно обратиться к какому-нибудь автоматизированному сервису, определяющему сопротивление по цветовой маркировке, которых сейчас полно в интернете. Там нужно будет только выбрать цвета, которые нанесены на резистор и сервис сам выдаст величину сопротивления и точность.

Итак, с цветовой маркировкой резисторов мы разобрались, переходим к следующему вопросу 🙂

Кодовая маркировка резисторов.

Помимо цветовой маркировки используется так называемая кодовая – для обозначения номинала резистора в данном случае используются буквы и цифры (четыре или пять знаков). Первые знаки (все, кроме последнего) используются для обозначения номинала резистора и включают в себя две или три цифры и букву. Буква определяет положение запятой десятичного знака, а также множитель. Последний же символ определяет допустимое отклонение сопротивления резистора. Возможны следующие значения:

Для букв, обозначающих множитель возможны такие варианты:

Давайте для наглядности рассмотрим несколько примеров:

С этим типом маркировки мы разобрались, давайте теперь изучим всевозможные способы маркировки SMD резисторов.

Маркировка SMD резисторов.

Для SMD резисторов также существуют разные варианты обозначения номиналов. Итак, давайте разбираться:

  • Маркировка тремя цифрами – в данном случае первые две цифры – это величина сопротивления в Омах, а третья цифра – множитель. То есть величину в Омах нужно умножить на десять в соответствующей множителю степени.
  • Маркировка четырьмя цифрами. Тут все похоже на предыдущий вариант, вот только для обозначения номинала сопротивления в Омах используются первые три цифры, а не две. Четвертая цифра – множитель.
  • Маркировка двумя цифрами и символом. В данном случае две цифры определяют сопротивление резистора, но не напрямую, а через специальный код. Ниже я приведу таблицу всех возможных кодов. Если на резисторе указан код “02”, то из таблицы мы получаем значение 102 Ома. Но и это не является финальным значением сопротивления 🙂 Нужно еще учесть третий символ, который является множителем. Для этого символа возможны такие варианты: S=10 -2 ; R=10 -1 ; B=10; C=10 2 ; D=10 3 ; E=10 4 ;

Таблица соответствия кодов величине сопротивления:

Клик левой кнопкой мыши – для увеличения.

В первых двух вариантах маркировки возможно также использование латинской буквы “R” – она ставится для обозначения положения десятичной запятой.

По традиции рассмотрим пару примеров:

Номиналы резисторов.

Сопротивления резисторов не являются произвольными числами. Существуют специальные ряды номиналов, которые представляют из себя значения от 0 до 10. Так вот номиналы резисторов (значения сопротивления) могут иметь величины, которые определяются как значение из соответствующего ряда, умноженное на 10 в целой степени. Рассмотрим основные ряды – E3, E6, E12 и E24:

Цифра в названии ряда означает количество чисел ряда номиналов в диапазоне от 0 до 10. В ряде E3 – три числа – 1.0, 2.2, 4.7, аналогично, и в других рядах. Таким образом, если резистор из ряда E3, то его номинал (сопротивление) может быть равно 1 Ом, 2.2 Ом, 4.7 Ом, 10 Ом, 22 Ом, 47 Ом…..1 КОм……22 КОм и т. д.Также существуют номинальные ряды Е48, Е96, Е192 – их отличие от рассмотренного нами ряда состоит лишь в том, что допустимых значений еще больше 🙂

На этом мы заканчиваем нашу статью, мы рассмотрели основные моменты, которые будут важны при работе с резисторами, а в одной из следующих статей мы продолжим разговор о резисторах и на очереди будут переменные резисторы, так что следите за обновлениями и заходите на наш сайт!

Онлайн-калькулятор цветной маркировки резисторов.

Определение номинала резистора по цветовому коду

Цветовая маркировка резисторов чаще всего представляет собой набор цветных колец на корпусе резистора, причем каждому маркировочному цвету соответствует определенный цифровой код.

Предлагаемая онлайн-программа позволяет быстро и удобно определить номинал резистора по цветовой маркировке, а также найти последовательность цветовых колец по введенному номиналу. Программа предназначена для работы с маркировкой резистров, состоящей из четырех колец. Для того, чтобы определить номинал резистора с цветной маркировкой из пяти колец, можно воспользоваться специальной таблицей.

Цветная маркировка на резисторах сдвинута к одному из выводов и читается слева направо. Первая полоса при этом – ближайшая к выводу резистора. Если из-за малого размера резистора цветную маркировку нельзя сдвинуть к одному из выводов, то первый знак делается полосой с шириной приблизительно вдвое большей, чем остальные. Цветовая маркировка резисторов зарубежных производителей, которые имеют наибольшее распространение в нашей стране, состоит чаще всего из четырех цветовых колец. Сопротивление резистора определяют по первым трем кольцам. Первые два кольца – это цифры, а третье кольцо – множитель. Четвертое кольцо представляет допустимое отклонение сопротивления резистора от его номинального значения.

Сайт находится в разработке, поэтому, пожалуйста, проявите снисходительность к тому, что материалов, пока мало.

Характеристики резисторов, параметры и маркировка

Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры. Раньше резисторы назывались сопротивлениями, но в соответствии с Государственным стандартом электрическим сопротивлениям, как схемным элементам, присвоено название «резисторы».

Сделано это было с целью различать «сопротивление» как изделие (радиокомпонент) и «сопротивление», как его физическое свойство, электрическую величину.І2 Ом.

Различают следующие виды резисторов: постоянные и переменные. Переменные еще делят на регулировочные и подстроечные. У постоянных резисторов сопротивление нельзя изменять в процессе эксплуатации.

Резисторы, с помощью которых осуществляют различные регулировки в радиоэлектронной аппаратуре изменением их сопротивления, называют переменными резисторами или потенциометрами. Те резисторы, сопротивление которых изменяют только в процессе налаживания (настройки) радиоэлектронного устройства, называют подстроечными.

Основные параметры резисторов

Резисторы характеризуются такими основными параметрами: номинальным значением сопротивления, допустимым отклонением сопротивления от номинального значения, номинальной (допустимой) мощностью рассеяния, максимальным рабочим напряжением, температурным коэффициентом сопротивления, собственными шумами и коэффициентом напряжения.

Номинальное значение сопротивления R обычно обозначено на корпусе резистора. Действительное значение сопротивления резистора может отличаться от номинального в пределах допустимого отклонения (допуска, определяемого в процентах по отношению к номинальному сопротивлению).

Маркировка резисторов

На корпусе резистора, как правило, наносится краской его тип, номинальная мощность, номинальное сопротивление, допуск и дата изготовления. Для маркировки малогабаритных резисторов используют бук-венно-цифровой код. Код состоит из цифр, обозначающих номинальное сопротивление, буквы, обозначающей единицу измерения, и буквы, указывающей допустимое отклонение сопротивления. Примеры наносимого на корпус резистора буквенного кода единиц измерения номинального сопротивления старого и нового стандартов приведены в табл. 1.

Если номинальное сопротивление выражается целым числом, то буквенный код ставится после этого числа. Если же номинальное сопротивление представляет собой десятичную дробь, то буква ставится- вместо запятой, разделяя целую и дробную части. В случае, когда десятичная дробь меньше единицы, целая часть (ноль) исключается.

При маркировке резисторов код допуска ставится после кодированного обозначения номинального сопротивления. Буквенные коды допусков приведены в табл. 2.

Например, обозначение 4К7В (или 4К7М) соответствует номинальному сопротивлению 4,7 кОм с допустимым отклонением 20%. В табл. 1 и 2 приведены буквенные коды, соответствующие как старым, так и новым стандартам, так как в настоящее время встречаются оба варианта. Номинальная мощность на малогабаритных резисторах не указывается, а определяется по размерам корпуса.

Таблица 1. Обозначение номинальной величины сопротивления на корпусах резисторов.

Полное обозначение Сокращенное обозначение на корпусе
Обозначение Примеры обозначения Обозначение единиц измерения Примеры обозначения
единиц измерении Старое Новое Старое Новое
Ом Омы

13 Ом

470 0м

R Е

13R 470R (К47)

 

13Е 470Е (К47)
кОм килоОмы

1 кОм

5,6 кОм

27 кОм

100 кОм

К К

1К0

5К6

27K

100К(М10)

1К0

5К6

27K

100К(М10)

МОм мегаОмы 470 МОм

4,7 МОм

47 МОм

М

 

М

 

М47

4М7

47 М

 

М47

4М7

47М

Таблица 2. Буквенные коды допусков сопротивлений, наносимых на корпуса резисторов.

Допуск, % ±0,1 ±0,2 ±0,25 ±0,5 ±1 ±2 ±5 ±10 ±20 ±30
Обозначение старое ж У Д Р Л И С В Ф
новое в С D F G J К М N

Цветовой код маркировки резисторов

Тип маркировки, при котором на корпус резистора наносится краска в виде цветных колец или точек называют цветовым кодом (см. на рис. 1). Каждому цвету соответствует определенное цифровое значение.

Цветовая маркировка на резисторах сдвинута к одному из выводов и читается слева направо. Если маркировку нельзя разместить у одного, из выводов, то первый знак делается полосой шириной в два раза больше, чем остальные.

На резисторы с малой величиной допуска (0,1…10%), маркировка производится пятью цветовыми кольцами. Первые три кольца соответствуют численной величине сопротивления в омах, четвертое кольцо ерть множитель, а пятое кольцо — допуск (рис. 1).

Резисторы с величиной допуска 20% маркируются четырьмя цветными кольцами и на них величина допуска не наносится. Первые три кольца — численная величина сопротивления в омах, а четвертое кольцо — множитель. Иногда резисторы с допуском 20% маркируют тремя цветными кольцами.

В этом случае первые два кольца — численная величина сопротивления в омах, а третье кольцо — множитель. Незначащий ноль в третьем разряде не маркируется.

В связи с тем, что на рынке радиоаппаратуры значительное место занимают зарубежные изделия, заметим, что резисторы зарубежных фирм маркируются как цифровым, так и цветовым кодом.

При цифровой маркировке первые две цифры обозначают численную величину номинала резистора в омах, а оставшиеся представляют число нулей. Например: 150 — 15 Ом; 181 — 180 Ом; 132 — 1,3 кОм; 113—11 кОм.

Цветовая маркировка состоит обычно из четырех цветовых колец. Номинал сопротивления представляет первые три кольца, двух цифр и множителя. Четвертое кольцо содержит информацию о допустимом отклонении сопротивления от номинального значения в процентах.

Определение номиналов зарубежных резисторов по цветовому коду такое же, как и для отечественных. Таблицы цветовых кодов отечественных и зарубежных резисторов совпадают.

Многие фирмы, помимо традиционной маркировки, используют свою внутрифирменную цветовую и кодовую маркировки. Например, встречается маркировка SMD-резисторов, когда вместо цифры 8 ставится двоеточие. Так, маркировка 1:23 означает 182 кОм, a 80R6 — 80,6 Ом.

Цвет колец или точек Номинальное сопротивление, Ом Множитель Допуск, % ТКС, %/ГС
1-я цифра 2-я цифра З-я цифра 4-я цифра 5-я цифра п
Серебристый 0601 ±10
Золотистый 061 ±5
Черный 0 1
Коричневый 1 1 1 10 ±1 100
Красный 2 2 2 10^2 ±2 50
Оранжевый 3 3 3 10^3 15
Желтый 4 4 4 10^4 25
Зеленый 5 5 5 10^5 ±0,5
Синий 6 6 6 10^6 ±0,25 10
Фиолетовый 7 7 7 10^7 ±0,1 5
Серый 8 8 8 10^8 ±0,05
Белый 9 9 9 10^9 1

              

Рис. 1. Цветовая маркировка отечественных и зарубежных резисторов в виде колец или точек, в зависимости от допуска и ТКЕ.

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Резистор 470 ом маркировка. SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор. Числовая и буквенная

И как они обозначаются на электрических схемах. В этой статье речь пойдет о резисторе или как по старинке его еще называют сопротивление .

Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры и используются практически в каждом электронном устройстве. Резисторы обладают электрическим сопротивлением и служат для ограничения прохождения тока в электрической цепи. Их применяют в схемах делителей напряжения, в качестве добавочных сопротивлений и шунтов в измерительных приборах, в качестве регуляторов напряжения и тока, регуляторов громкости, тембра звука и т.д. В сложных приборах количество резисторов может достигать до нескольких тысяч штук.

1. Основные параметры резисторов.

Основными параметрами резистора являются: номинальное сопротивление, допускаемое отклонение фактической величины сопротивления от номинального (допуск), номинальная мощность рассеивания, электрическая прочность, зависимость сопротивления: от частоты, нагрузки, температуры, влажности; уровня создаваемых шумов, размерами, массой и стоимостью. Однако на практике резисторы выбирают по сопротивлению , номинальной мощности и допуску . Рассмотрим эти три основных параметра более подробно.

1.1. Сопротивление.

Сопротивление — это величина, которая определяет способность резистора препятствовать протеканию тока в электрической цепи: чем больше сопротивление резистора, тем большее сопротивление он оказывает току, и наоборот, чем меньше сопротивление резистора, тем меньшее сопротивление он оказывает току. Используя эти качества резисторов их применяют для регулирования тока на определенном участке электрической цепи.

Сопротивление измеряется в омах (Ом ), килоомах (кОм ) и мегаомах (МОм ):

1кОм = 1000 Ом ;
1МОм = 1000 кОм = 1000000 Ом .

Промышленностью выпускаются резисторы различных номиналов в диапазоне сопротивлений от 0,01 Ом до 1ГОм. Числовые значения сопротивлений установлены стандартом, поэтому при изготовлении резисторов величину сопротивления выбирают из специальной таблицы предпочтительных чисел:

1,0 ; 1,1 ; 1,2 ; 1,5 ; 2,0 ; 2,2 ; 2,7 ; 3,0 ; 3,3 ; 3,9 ; 4,3 ; 4,7 ; 5,6 ; 6,2 ; 6,8 ; 7,5 ; 8,2 ; 9,1

Нужное числовое значение сопротивления получают путем деления или умножения этих чисел на 10 .

Номинальное значение сопротивления указывается на корпусе резистора в виде кода с использованием буквенно-цифровой , цифровой или цветовой маркировки .

Буквенно-цифровая маркировка .

При использовании буквенно-цифровой маркировки единицу измерения Ом обозначают буквами «Е » и «R », единицу килоом буквой «К », а единицу мегаом буквой «М ».

а) Резисторы с сопротивлениями от 1 до 99 Ом маркируют буквами «Е » и «R ». В отдельных случаях на корпусе может указываться только полная величина сопротивления без буквы. На зарубежных резисторах после числового значения ставят значок ома «Ω »:

3R — 3 Ом
10Е — 10 Ом
47R — 47 Ом
47Ω – 47 Ом
56 – 56 Ом

б) Резисторы с сопротивлениями от 100 до 999 Ом выражают в долях килоома и обозначают буквой «К ». Причем букву, обозначающую единицу измерения, ставят на месте нуля или запятой. В некоторых случаях может указываться полная величина сопротивления с буквой «R » на конце, или только одно числовое значение величины без буквы:

К12 = 0,12 кОм = 120 Ом
К33 = 0,33 кОм = 330 Ом
К68 = 0,68 кОм = 680 Ом
360R — 360 Ом

в) Сопротивления от 1 до 99 кОм выражают в килоомах и обозначают буквой «К »:

2К0 — 2кОм
10К — 10 кОм
47К — 47 кОм
82К — 82 кОм

г) Сопротивления от 100 до 999 кОм выражают в долях мегаома и обозначают буквой «М ». Букву ставят на месте нуля или запятой:

М18 = 0,18 МОм = 180 кОм
М47 = 0,47 МОм = 470 кОм
М91 = 0,91 МОм = 910 кОм

д) Сопротивления от 1 до 99 МОм выражают в мегаомах и обозначают буквой «М »:

— 1 МОм
10М — 10 МОм
33М — 33 МОм

е) Если номинальное сопротивление выражено целым числом с дробью, то буквы Е , R , К и М , обозначающие единицу измерения, ставят на месте запятой, разделяя целую и дробную части:

R22 – 0,22 Ом
1Е5 — 1,5 Ом
3R3 — 3,3 Ом
1К2 — 1,2 кОм
6К8 — 6,8 кОм
3М3 — 3,3 МОм

Цветовая маркировка .

Цветовая маркировка обозначается четырьмя или пятью цветными кольцами и начинается слева направо. Каждому цвету соответствует свое числовое значение. Кольца сдвинуты к одному из выводов резистора и первым считается кольцо, расположенное у самого края. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, то ширина первого кольца делается примерно в два раза больше других.

Отчет сопротивления резистора ведут слева направо. Резисторы с величиной допуска ±20% (о допуске будет сказано ниже) маркируются четырьмя кольцами: первые два обозначают в Омах, третье кольцо является множителем , а четвертое — обозначает допуск или класс точности резистора. Четвертое кольцо наносится с видимым разрывом от остальных и располагается у противоположного вывода резистора.

Резисторы с величиной допуска 0,1…10% маркируются пятью цветовыми кольцами: первые три – численная величина сопротивления в Омах, четвертое – множитель, и пятое кольцо – допуск. Для определения величины сопротивления пользуются специальной таблицей.

Например. Резистор маркирован четырьмя кольцами:

красное — (2 )
фиолетовое — (7 )
красное — (100 )
серебристое — (10% )
Значит: 27 Ом х 100 = 2700 Ом = 2,7 кОм с допуском ±10% .

Резистор маркирован пятью кольцами:

красное — (2 )
фиолетовое (7 )
красное (2 )
красное (100 )
золотистое (5% )
Значит: 272 Ома х 100 = 27200 Ом = 27,2 кОм с допуском ±5%

Иногда возникает трудность с определением первого кольца. Здесь надо запомнить одно правило: начало маркировки не будет начинаться с черного, золотистого и серебристого цвета .

И еще момент. Если нет желания возиться с таблицей, то в интернете есть программы онлайн калькуляторы, предназначенные для подсчета сопротивления по цветным кольцам. Программы можно скачать и установить на компьютер или смартфон. Также о цветовой и буквенно-цифровой маркировке можно почитать в статье.

Цифровая маркировка .

Цифровая маркировка наносится на корпуса SMD компонентов и маркируется тремя или четырьмя цифрами.

При трехзначной маркировке первые две цифры обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель . Множителем является число 10 возведенное в степень третьей цифры:

221 – 22 х 10 в степени 1 = 22 Ом х 10 = 220 Ом ;
472 – 47 х 10 в степени 2 = 47 Ом х 100 = 4700 Ом = 4,7 кОм ;
564 – 56 х 10 в степени 4 = 56 Ом х 10000 = 560000 Ом = 560 кОм ;
125 – 12 х 10 в степени 5 = 12 Ом х 100000 = 12000000 Ом = 1,2 МОм .

Если последняя цифра ноль , то множитель будет равен единице , так как десять в нулевой степени равно единице:

100 – 10 х 10 в степени 0 = 10 Ом х 1 = 10 Ом ;
150 – 15 х 10 в степени 0 = 15 Ом х 1 = 15 Ом ;
330 – 33 х 10 в степени 0 = 33 Ом х 1 = 33 Ом .

При четырехзначной маркировке первые три цифры также обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель. Множителем является число 10 возведенное в степень третьей цифры:

1501 – 150 х 10 в степени 1 = 150 Ом х 10 = 1500 Ом = 1,5 кОм ;
1602 – 160 х 10 в степени 2 = 160 Ом х 100 = 16000 Ом = 16 кОм ;
3243 – 324 х 10 в степени 3 = 324 Ом х 1000 = 324000 Ом = 324 кОм .

1.2. Допуск (класс точности) резистора.

Вторым важным параметром резистора является допускаемое отклонение фактического сопротивления от номинального значения и определяется допуском (классом точности).

Допускаемое отклонение выражается в процентах и указывается на корпусе резистора в виде буквенного кода , состоящего из одной буквы. Каждой букве присвоено определенное числовое значение допуска, пределы которого определены ГОСТ 9964-71 и приведены в таблице ниже:

Наиболее распространенные резисторы выпускаются с допуском 5%, 10% и 20%. Прецизионные резисторы, применяемые в измерительной аппаратуре, имеют допуски 0,1%, 0,2%, 0,5%, 1%, 2%. Например, у резистора с номинальным сопротивлением 10 кОм и допуском 10% фактическое сопротивление может быть в пределах от 9 до 11 кОм ±10%.

На корпусе резистора допуск указывается после номинального сопротивления и может состоять из буквенного кода или цифрового значения в процентах.

У резисторов с цветовой маркировкой допуск указывается последним цветным кольцом: серебристый цвет – 10%, золотистый – 5%, красный – 2%, коричневый – 1%, зеленый – 0,5%, голубой – 0,25%, фиолетовый – 0,1%. При отсутствии кольца допуска резистор имеет допуск 20%.

1.3. Номинальная мощность рассеивания.

Третьим важным параметром резистора является его мощность рассеивания

При прохождении тока через резистор на нем выделяется электрическая энергия (мощность) в виде тепла, которое сначала повышает температуру тела резистора, а затем за счет теплопередачи переходит в воздух. Поэтому мощностью рассеивания называют ту наибольшую мощность тока, которую резистор способен длительное время выдерживать и рассеивать в виде тепла без ущерба потери своих номинальных параметров.

Поскольку слишком высокая температура тела резистора может привести его к выходу из строя, то при составлении схем задается величина, которая указывает на способность резистора рассеивать ту или иную мощность без перегрева.

За единицу измерения мощности принят ватт (Вт).

Например. Допустим, что через резистор сопротивлением 100 Ом течет ток 0,1 А, значит, резистор рассеивает мощность в 1 Вт. Если же резистор будет меньшей мощности, то он быстро перегреется и выйдет из строя.

В зависимости от геометрических размеров резисторы могут рассеивать определенную мощность, поэтому резисторы разной мощности отличаются размерами: чем больше размер резистора, тем больше его номинальная мощность, тем большую силу тока и напряжение он способен выдержать.

Резисторы выпускаются с мощностью рассеивания 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 5 Вт, 10 Вт, 25 Вт и более.

На резисторах, начиная с 1 Вт и выше, величина мощности указывается на корпусе в виде цифрового значения, тогда как малогабаритные резисторы приходится определять на «глаз».

С приобретением опыта определение мощности малогабаритных резисторов не вызывает никаких затруднений. На первое время в качестве ориентира для сравнения можно использовать обычную спичку . Более подробно прочитать про мощность и дополнительно посмотреть видеоролик можно в статье.

Однако с размерами есть небольшой нюанс, который надо учитывать при выполнении монтажа: габариты отечественных и зарубежных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев .

Резисторы можно разделить на две группы: резисторы постоянного сопротивления (постоянные резисторы) и резисторы переменного сопротивления (переменные резисторы).

2. Резисторы постоянного сопротивления (постоянные резисторы).

Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным . Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные .

Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки , нанесенной на керамическое основание.

Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций . Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.

В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).

Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.

2.2. Проволочные резисторы.

Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.

Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.

Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.

По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.

Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.

С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.

На принципиальных схемах постоянные резисторы, независимо от их типа, изображают в виде прямоугольника , а выводы резистора изображают в виде линий, проведенных от боковых сторон прямоугольника. Такое обозначение принято повсеместно, однако в некоторых зарубежных схемах используется обозначение резистора в форме зубчатой линии (пилы).

Рядом с условным обозначением ставят латинскую букву «R » и порядковый номер резистора в схеме, а также указывают его номинальное сопротивление в единицах измерения Ом, кОм, МОм.

Значение сопротивления от 0 до 999 Ом обозначают в омах , но единицу измерения не ставят:

15 — 15 Ом
680 – 680 Ом
920 — 920 Ом

На некоторых зарубежных схемах для обозначения Ом ставят букву R :

1R3 — 1,3 Ом
33R – 33 Ом
470R — 470 Ом

Значение сопротивления от 1 до 999 кОм обозначают в килоомах с добавлением буквы «к »:

1,2к — 1,2 кОм
10к — 10 кОм
560к — 560 кОм

Значение сопротивления от 1000 кОм и больше обозначают в единицах мегаом с добавлением буквы «М »:

— 1 МОм
3,3М — 3,3 МОм
56М — 56 МОм

Резистор применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора: двойной косой чертой обозначают мощность 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римскими цифрами обозначается мощность от 1 Вт и выше.

4. Последовательное и параллельное соединение резисторов.

Очень часто возникает ситуация когда при конструировании какого-либо устройства под рукой не оказывается резистора с нужным сопротивлением, но зато есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного соединения можно собрать резистор с любым номиналом.

При последовательном соединении резисторов их общее сопротивление Rобщ равно сумме всех сопротивлений резисторов, соединенных в эту цепь:

Rобщ = R1 + R2 + R3 + … + Rn

Например. Если R1 = 12 кОм, а R2 = 24 кОм, то их общее сопротивление Rобщ = 12 + 24 = 36 кОм.

При параллельном соединении резисторов их общее сопротивление уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора:

Допустим, что R1 = 11 кОм, а R2 = 24 кОм, тогда их общее сопротивление будет равно:

И еще момент: при параллельном соединении двух резисторов с одинаковым сопротивлением, их общее сопротивление будет равно половине сопротивления каждого из них.

Из приведенных примеров понятно, что если хотят получить резистор с бо́льшим сопротивлением, то применяют последовательное соединение, а если с меньшим, то параллельное. А если остались вопросы, почитайте статью , в которой способы соединения рассказаны более подробно.

Ну и в дополнении к прочитанному посмотрите видеоролик о резисторах постоянного сопротивления.

Ну вот, в принципе и все, что хотел сказать о резисторе в целом и отдельно о резисторах постоянного сопротивления . Во второй части статьи мы познакомимся с .
Удачи!

Литература:
В. И. Галкин — «Начинающему радиолюбителю», 1989 г.
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. Г. борисов — «Юный радиолюбитель», 1992 г.

Проводники оказывают электрическому току сопротивление, чем больше это сопротивление, тем сила электрического тока через проводник меньше. Сопротивление проводника зависит от материала, из которого он состоит, длины, сечения, температуры. Чем длиннее проводник, тем сопротивление больше, чем короче проводник, тем сопротивление меньше. Чем тоньше проводник, тем сопротивление больше, чем толще проводник, тем сопротивление меньше.

Сопротивление обозначается буквой R , а единица сопротивления – буквами Ом . В практике применяются также единицы электрического сопротивления килоом (кОм ) и мегаом (МОм ).

1 кОм = 1000 Ом

1 Мом = 1000000 Ом

Что бы найти сопротивление проводника в омах, надо напряжение на его концах в вольтах разделить на силу тока в амперах:

Постоянные резисторы

Резистор — это пассивный элемент электрической цепи. Служит для уменьшения силы тока, во время работы резисторы греются, потому что лишняя электрическая энергия преобразуется резисторами в тепло. На электрических принципиальных схемах резисторы отображаются в виде прямоугольника с двумя выводами или в виде ломаной линии (американский стандарт), обозначаются буквой R с порядковым номером (R1, R2, и т. д.). Рядом указывается номинал резистора.

Основным параметром резистора является сопротивление. Сопротивление резистора измеряется в омах, килоомах, мегаомах. Номинальную мощность рассеяния резистора (от 0.05 до 5 Вт) обозначают специальными знаками, помещаемыми внутри символа.

Маркировка резисторов. Согласно ГОСТ 2.702-75 сопротивления от 0 до 999 Ом указывают на схемах числом без единицы измерения (3.3; 47; 220; 750 и т. д.), от 1 до 999 кОм – числом с буквой к (47 к; 330 к; 910 к и т. д.), свыше 1 мегаома – числом с буквой М (1 М; 4.7 М и т. д.).

Согласно ГОСТ 11076 – 69 единицы сопротивления в кодированной системе обозначают буквами Е или R (Ом), К (килоом) и М (мегаом). Так 33 Ом маркируют 33Е, 1 Ом — 1R0, 47 Ом – 47Е, 10 кОм – 10К, 47 кОм – 47К и т. д.

Сопротивления от 100 до 1000 Ом и от 100 до 1000 кОм выражают в долях килоома и мегаома соответственно, причем на месте нуля и запятой ставят соответствующую единицу измерения: 150 Ом=0.15 кОм=К150; 910 Ом=0.91 кОм=К91; 180 кОм=0.18 МОм= М18; 680 кОм=0.68 МОм=М68 и т. д.

Если номинальное сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой: 3.3 Ом — 3Е3 или 3R3; 4.7 кОм – 4К7; 3.3 МОм – 3М3 и т. д.

SMD резисторы и подстроечные могут иметь маркировку состоящую из трех цифр, первые две обозначают сопротивление в омах (мантиссу), а третья — количество последующих нулей (показатель степени по основанию 10), также к маркировке для обозначения десятичной точки может добавляться буква R. Примеры:

Маркировка 513 означает 51 x 10 3 = 51000 Ом или 51 кОм

Маркировка R470 означает 0.47 Ом

Еще существует множество маркировок цветными полосками, но общего стандарта производители резисторов на данный момент не придерживаются, поэтому надежнее измерять сопротивление резисторов мультиметром.

Переменные резисторы

Переменные резисторы – это резисторы, сопротивление которых можно изменять. Применяются в качестве регуляторов усиления, громкости, тембра и т. д.

Существует две схемы включения переменных резисторов в электрическую цепь. В одном случае их используют для регулирования силы тока в цепи, и тогда регулируемый резистор называют реостатом. В другом случае их используют для регулирования напряжения, тогда резистор называют потенциометром.

Подстроечные резисторы

Разновидность переменных резисторов – подстроечные. Узел регулирования таких резисторов приспособлен для управления отверткой.

Соединение резисторов

При последовательном соединении резисторов их сопротивления складываются:

При параллельном соединении, общее сопротивление рассчитывается по формуле:

При параллельном соединении двух одинаковых резисторов, общее сопротивление будет равно половине сопротивления одного из них.

Таким образом можно получать нужные номиналы резисторов из имеющихся.

Резисторы керамические проволочные цементные – постоянные резисторы, номинальное сопротивление в зависимости от номинала составляет от 0,01 Ом до 100 кОм , рассеиваемая мощность – 5Вт, 10Вт, 15Вт, 25Вт . Предназначены для эксплуатации в цепях постоянного или переменного тока, обеспечивая ограничение силы тока и распределение напряжения.

Конструктивно проволочные резисторы выполнены в виде трубчатого основания из керамики (чистый глинозём Al 2 O 3), в качестве резистивного элемента используется проволочный проводник (медно-никелевый или хромово-никелевый сплав) с высоким удельным сопротивлением. Основание с обмоткой помещено в литой прямоугольный корпус из стеатитовой керамики и закапсулировано кремнезёмом (диоксид кремния SiO 2).

Монолитная керамическая конструкция резисторов обладает высокими характеристиками огнестойкости, влагостойкости и способностью к самозатуханию.

Вывода керамических резисторов – гибкие осевые аксиальные проволочного типа. В качестве материала выводов используется луженая медь. Монтаж осуществляется с использованием пайки по THT-технологии – вывода монтируются непосредственно в сквозные отверстия печатной платы.

Положение монтажа – любое, но следует помнить о резистивных особенностях, сопровождающихся нагревом корпуса резистора. Поэтому, не рекомендуется размещение резисторов на близком расстоянии к печатной плате или термочувствительным элементам.

Допустимое отклонение сопротивления цементных аксиальных резисторов составляет ±5% . Ряд промежуточных значений номинальных сопротивлений – Е24 E24 — один из рядов постоянных резисторов, который является результатом стандартизации номинальных сопротивлений резисторов. . При переменном токе предельное рабочее напряжение составляет 1500В , при постоянном токе – 1000В . Рабочая повышенная температура среды не превышает +275°С , пониженная – до -55°С . Сопротивление изоляции составляет не менее 1000 МОм .

При подборе необходимого номинала расчет рекомендуется проводить, используя гибкий , с помощью которого можно определить общее параллельное или последовательное сопротивление резисторов , а также сопротивление резисторов в цепи.

В представлены особенности конструкции и характеристики мощных резисторов С5-35В, С5-36В, ПЭВ, ПЭВР, RX24 и SQP.

Применяются мощные керамические резисторы в различной промышленной электронике, радио- и телевизионных приемниках, блоках питания и управления, усилителях, автомобильной электронике, а также в качестве испытательной нагрузки или нагревательных элементов (например, в видеокамерах наружного видеонаблюдения).

Более подробные характеристики представленных мощных керамических цементных резисторов , а также расшифровка маркировки, габаритные и установочные размеры приведены ниже.

Гарантийный срок работы поставляемых нашей компанией мощных резисторов составляет 2 года , что подкрепляется соответствующими документами по качеству.

Окончательная цена на мощные проволочные керамические цементные резисторы зависит от количества, сроков поставки и формы оплаты.

Прежде всего, определимся с понятием и обозначением сопротивления, как электрической величины. Согласно теории сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока. В международной системе единиц (СИ) единицей измерения сопротивления является Ом (Ω). Для электротехники это относительно небольшая величина, поэтому мы чаще будем иметь дело с килоомами (кОм) и мегаомами (МОм). Для этого нужно усвоить следующую табличку:

1 кОм = 1000 Ом;
1 Мом = 1000 кОм;

И наоборот:

1 Ом = 0.001 кОм;
1 кОм = 0.001 Мом;

Ничего сложного, но знать это надо твердо.

Теперь о номиналах (величинах). Конечно, промышленность не выпускает для радиолюбителей резисторов со всеми номиналами. Изготовление высокоточных резисторов – дело трудоемкое и используются такие резисторы лишь в специальной высокоточной аппаратуре. Вы, к примеру, не найдете в обычном магазине резистора на 1.9 кОм и в такой точности чаще всего нет необходимости – она нужна редко, а если нужна, то для этого существуют подстроечные резисторы.

Весь стандартный ряд, с которым мы будем сталкиваться, я здесь приводить не буду – он достаточно длинный и учить его специально не стоит. Лучше научимся отличать один резистор от другого. Маркировать приборы могут по-разному. Самая удобная, по моему мнению, была цифровая маркировка. Делалась она, к примеру, на самых ходовых в свое время резисторах типа МЛТ.

Одного взгляда на резистор было достаточно, чтобы узнать какое у него сопротивление

К примеру, на втором сверху резисторе читаем 2,2 и ниже К5% . Номинал этого резистора – 2.2 килоома с точностью 5%. Для мегаомных резисторов используется «М» вместо «К» а омы обозначаются буквами «R», «Е» или вообще без буквы:

470 — 470 Ом
18Е — 18 Ом

Очень часто любая из букв может стоять вместо запятой:

2к2 – 2,2 килоома
М15 – 0,15 мегаом или 150 килоом

Вот и вся хитрость. Еще один параметр – мощность резистора. Чем выше мощность, тем больший ток может выдержать резистор без разрушения (сгорания). Снова вернемся к верхнему рисунку. Здесь резисторы имеют следующую мощность (сверху вниз) 2 Вт, 1 Вт, 0.5 Вт, 0.25 Вт, 0.125 Вт. Первые три настолько велики, что на них даже нашлось место для маркировки мощности: МЛТ-2, МЛТ-1, МЛТ-0.5. Остальные на глаз. Конечно, выпускаются (но большинство, увы, выпускалось) и другие типы (и мощности) с «человеческой» маркировкой, перечислять я их не буду, а принцип обозначения у них тот же.

ПЭВР-30, к примеру, выглядит как приличных размеров цилиндр, но маркируется так же

Но эта мода уже практически отошла, взамен цифр появились цветные полоски и специальные коды и с этим придется мириться.

Что это за резистор и каков его номинал? Для этого придется обратиться к специальным таблицам, которые я здесь и привожу.

Цветовая разметка резисторов. Цветовая маркировка резисторов программа. Кодовая маркировка резисторов. Отклонения от стандарта

Одними из основных элементов построения электронных схем, несмотря на развитие микропроцессорных технологий по-прежнему остаются старые проверенные резисторы

Сопротивление или резисторы во многом за последние десятилетия претерпели ряд изменений, в том числе и существенное уменьшение габаритных размеров – нынешнее поколение вдвое меньше по размерам, чем приборы, выпускаемые 30-40 лет назад, но вместе с тем, потребность в них при создании электроники не стала меньше.

Причинами введения цветной маркировки электронных элементов было несколько:

  1. Ввиду уменьшения размеров пришлось отказаться от буквенно-цифровой маркировки приборов.
  2. Цветовая система обозначения позволяет закодировать намного больше информации об элементе, чем буквенно-цифровая.
  3. Повсеместное внедрение робототехники в сборочных линиях электронных компонентов требовало изменения подходов к маркировке составляющих деталей.
  4. В связи с развитием производства радиодеталей в странах Восточной Азии, основанной на передовых технологиях, существенно оттеснили выпуск отечественных компонентов, ввиду чего производителям пришлось перейти на западные стандарты маркировки.

Кроме того, значительное количество радиоэлементов сегодня монтируются в платы, ремонт которых нецелесообразен ввиду дороговизны самого ремонта, ведь намного дешевле купить новый радиоприемник чем отремонтировать, ввиду этого, многие фирмы практически отказались от сервисных центров и как результат, не требуют значительного количества запасных частей разного номинала.

Как определить сопротивление резистора по цвету?


В основном, сегодня, практически невозможно встретить резисторы старше 15-20 лет, хотя отдельные старые раритетные «Рекорды» и «Электроны» до сих пор радуют глаз в отдельных квартирах.

Наполненные советской электроникой старые телевизоры и радиоприемники в своем составе имели, как правило, стандартные сопротивления коричневого или зеленого цветов с буквенной маркировкой.

Понять номинальное значение элемента по его буквенно-цифровой кодировке имея под рукой раритетный макулатурный справочник особого труда не составляет, тем более что в большинстве своем это были металлопленочные, лакированные приборы, обладающие свойством теплоустойчивости – МЛТ.

В Советском Союзе бытовая электроника была побочным продуктом оборонных предприятий, но при этом собиралась из тех же деталей, что и военная техника. Такие резисторы отличались друг от друга по габаритам – чем больше элемент, тем большее сопротивление.

Нынешняя маркировка компонентов во многом отличается от того тем, что существует несколько разновидностей – простые, стандартные цилиндрические сопротивления с цветной маркировкой и SMD-элементы.

4 и 5 полосная маркировка

Четырехполосная:

Пятиполосная:

Для определения номинала элемента, кроме знания основ физических процессов, необходимо знать технологию цветового обозначения номиналов электронных компонентов.

Для начала необходимо знать правильность чтения или порядок цветового кода:

  1. На резисторах, как правило, наносятся 4 или 5 цветных колец.
  2. Испытуемый элемент нужно расположить таким образом, чтобы цветовые кольца начинались с золотистого или серебристого кольца слева.
  3. В отдельных случаях, когда отсутствуют серебристая или золотистая полоска (а такой вариант вполне возможен), элемент нужно расположить таким образом, чтобы цветовые кольца оказались слева (или справа оставалось больше места).

Количество цветов в кольцах строго ограничено количеством цветов радуги, плюс серый, белый и черный.

Каждый цвет соответствует определенному значению номинала и зависит от расположения в порядке колец.

Первое и следующее за ним второе кольцо кода обозначают номинальную величину сопротивления элемента в стандартных единицах Омах, следующее кольцо множитель, на который нужно умножать величину первых единиц, четвертое означает ту величину, на которую происходит отклонение заявленного номинала в процентах.

Для SMD резисторов маркировка несколько иная – это в основном цифровое обозначение. В основном встречаются сопротивления с 3 или 4 цифрами – первые две, из которых это номинал, а третья обозначает степень числа 10. То есть резистор 4432 имеет номинал: 443*10(2 степени) или 4400 Ом или 4,4 кОм.

Стандартная и нестандартная цветовые маркировки


Нестандартная маркировка

Кроме общепринятой, стандартной цветовой маркировки обозначений сопротивлений, существуют и нестандартные виды кодирования. Чаще всего, нестандартные маркировки встречаются в виде совмещенного кода цвета и цифр у некоторых крупных производителей электроники, имеющих свои подразделения по разработке и производству электронных компонентов.

Среди таких нестандартных цветовых кодов и буквенного обозначения, чаще всего встречаются Philips и Panasonic, эти производители маркируют радиодетали, выпущенные на внутренних предприятиях отличной от общепринятой маркировкой, для которой применяются специальные справочные издания и компьютерные программы.

Пояснение и таблица


Как уже было указано, цветовые маркерные кольца нанесены слева направо.

Первое кольцо и следующее за ним второе цветное кольцо обозначают стандартную величину сопротивления в Омах. Следующее, третье кольцо обозначает множитель, на который нужно умножать числовое значение первых двух единиц обозначения, четвертое кольцо кода указывает значение, на которое отклоняется заявленный номинал в процентах.

Для точного определения величины сопротивления каждого отдельного компонента не следует запоминать весь цветовой код, достаточно иметь под рукой таблицу определения сопротивления:

Цвет знака Номинальное сопротивление, Ом Допуск, % ТКС
Первая цифра Вторая цифра Третья цифра Множитель
Серебристый 10-2 ±10
Золотистый 10-1 ±5
Черный 0 0 1
Коричневый 1 1 1 10 ±1 100
Красный 2 2 2 102 ±2 50
Оранжевый 3 3 3 103 15
Желтый 4 4 4 104 25
Зеленый 5 5 5 105 0,5
Голубой 6 6 6 106 ±0,25 10
Фиолетовый 7 7 7 107 ±0,1 5
Серый 8 8 8 108 ±0,05
Белый 9 9 9 109 1

Кроме стандартной, общепринятой маркировки, в отдельных случаях указываются и дополнительные данные в обозначениях 4 или 5 полосного, когда более широкая полоса (она, как правило, шире в 1,5 раз от остальных) указывает на более надежный, специальный вариант элемента – как правило, срок ее службы рассчитан более чем на 1000 часов непрерывной работы.

Онлайн-калькулятор


Интерфейс программы “Резистор 2.2”

Современные технологии и сегодня во многом облегчают работу как профессионалам, так и радиолюбителям. Кроме доступной измерительной аппаратуры, сегодня в интернет-ресурсах, посвященных радиотехнике, в огромном количестве находятся онлайн-калькуляторы определения сопротивления резисторов по маркировке.

Простые, и в общем-то надежные программы, позволяют с высокой точностью определить номинал практически любой радиодетали, более продвинутые и мощные инженерные программы, используемые в пакетах для инженеров-конструкторов, позволяют не только узнать значение сопротивления, но и найти соответствующую замену и определить вариант работоспособности самой схемы.

Одной из таких программ является программа Резистор 2.2 , она проста, удобна и не требует глубоких знаний компьютерной техники. Простой интерфейс и удобные рабочие органы позволяют работать как в сети, так и без неё.

Как пользоваться?

Как и большинство прикладных инженерных программ, программа Резистор 2.2 является онлайн-калькулятором, позволяющим определять номинал сопротивления по различным наиболее распространенным видам кодировки:

  1. Стандартной 4 или 5 цветной маркировке.
  2. Фирменной маркировке Philips различных видов сопротивлений.
  3. Нестандартной цветовой кодировки фирм Panasonic, Corning Glass Work.
  4. Обычной кодовой маркировке.
  5. Обычной кодировке Panasonic, Philips, Bourns.

После распаковки архива, не требующая регистрации программа сразу готова к работе. В окне, из предложенных вариантов, выбирается нужный параметр и производится дальнейшая идентификация по имеющемуся коду на корпусе элемента.

Для удобства идентификации, в верхнем окне наглядно показывается изображение определяемой кодировки. На корпусе радиодетали наносятся цветные кольца в соответствии с теми значениями, которые указываются пользователем, таким образом, появляется возможность наглядно сравнить кодировку с реальным элементом.

Внизу сразу высвечивается числовое значение номинала элемента.

И сегодня наш разговор будем посвящен одному компоненту, без которого невозможно представить ни одну электрическую цепь, а именно резистору 🙂

Итак, начнем с основного определения резистора. Резистор – это, в первую очередь, пассивный элемент электрической цепи, который имеет определенное значение сопротивления (оно может быть постоянным и переменным). Предназначен этот элемент для линейного преобразования силы тока в напряжения и наоборот, ведь как мы помним из , напряжение и сила тока связаны друг с другом как раз через величину сопротивления:

Являются одними из самых широко используемых компонентов – редко можно встретить схему, в которой бы не было ни одного резистора 😉 Основным параметром резистора, как уже понятно из определения, является его электрическое сопротивление, измеряемое в Омах (Ом).

Обозначение резисторов на схеме.

Давайте рассмотрим обозначение резисторов на схемах . Существуют два возможных варианта:

Кроме того, используются немного измененные символы, которые характеризуют резисторы на схеме по величине номинальной мощности рассеивания . Тут возникает вполне закономерный вопрос – а что это за параметр такой – номинальная мощность рассеивания? При протекании тока через резистор в нем будет выделяться , что приведет к нагреву резистора. И если мощность будет превышать допустимую величину, то резистор будет перегреваться и просто сгорит. Таким образом, номинальная рассеиваемая мощность – это величина мощности, которая может рассеиваться резистором без превышения предельно допустимой температуры. То есть если мощность в цепи будет меньше или равна номинальной, то с резистором все будет в порядке 🙂 Итак, вернемся к обозначению резисторов:

Вот так обозначаются наиболее часто встречающиеся на схемах резисторы в зависимости от их номинальной рассеиваемой мощности, тут даже особо нечего дополнительно комментировать =)

Сопротивление резистора на схемах указывается рядом с условным обозначением, причем единицу измерения обычно опускают. Если увидите на схеме рядом с резистором число 68, то не сомневайтесь ни секунды – сопротивление резистора равно 68 Омам. Если же величина сопротивления составляет, к примеру, 1500 Ом (1,5 КОм), то на схеме будет обозначение “1.5 К”:

С этим все просто… Несколько сложнее ситуация обстоит с цветовой маркировкой резисторов. Сейчас мы разберемся и с этим моментом 😉

Цветовая маркировка резисторов.

Большинство резисторов имеют цветовую маркировку , такую как на этом рисунке. Она представляет из себя 4 или 5 полос (чаще всего, хотя их может быть, например, и 6) определенных цветов, и каждая из этих полос несет определенный смысл. Первые две полоски абсолютно всегда обозначают первые две цифры номинального сопротивления резистора. Если полосок всего 3 или 4, то третья полоса будет означать множитель, на который необходимо умножить число, полученное из первых двух полос, для определения величины сопротивления. Если всего на резисторе 4 полосы, то 4 будет указывать на точность резистора. Если полос всего пять, то ситуация несколько меняется – первые три полосы означают три цифры сопротивления резистора, четвертая – множитель, пятая – точность. Соответствие цифр цветам приведено в таблице:

Тут есть еще один немаловажный момент – а какую именно полосу считать первой? 🙂 Чаще всего первой считается та полоса, которая находится ближе к краю резистора. Кроме того, можно заметить, что золотая и серебряная полосы не могут быть первыми, поскольку не несут информации о величине сопротивления. Поэтому если на резисторе есть полосы этого цвета и они расположены с краю, то можно точно утверждать, что первая полоса находится с противоположной стороны. Давайте рассмотрим практический пример:

Поскольку у нас здесь 5 полос, то первые три указывают на сопротивление резистора. Посмотрев нужные значения в таблице, мы получаем величину 510. Четвертая полоса – множитель – в данном случае он равен . И, наконец, пятая полоса – погрешность – 10 %. В итоге мы получаем резистор 510 КОм, 10 %.

В принципе, если нет желания разбираться с цветами и значениями, то можно обратиться к какому-нибудь автоматизированному сервису, определяющему сопротивление по цветовой маркировке, которых сейчас полно в интернете. Там нужно будет только выбрать цвета, которые нанесены на резистор и сервис сам выдаст величину сопротивления и точность.

Итак, с цветовой маркировкой резисторов мы разобрались, переходим к следующему вопросу 🙂

Помимо цветовой маркировки используется так называемая кодовая – для обозначения номинала резистора в данном случае используются буквы и цифры (четыре или пять знаков). Первые знаки (все, кроме последнего) используются для обозначения номинала резистора и включают в себя две или три цифры и букву. Буква определяет положение запятой десятичного знака, а также множитель. Последний же символ определяет допустимое отклонение сопротивления резистора. Возможны следующие значения:

Для букв, обозначающих множитель возможны такие варианты:

Давайте для наглядности рассмотрим несколько примеров:

С этим типом маркировки мы разобрались, давайте теперь изучим всевозможные способы маркировки SMD резисторов.

Маркировка SMD резисторов.

Для SMD резисторов также существуют разные варианты обозначения номиналов. Итак, давайте разбираться:

  • Маркировка тремя цифрами – в данном случае первые две цифры – это величина сопротивления в Омах, а третья цифра – множитель. То есть величину в Омах нужно умножить на десять в соответствующей множителю степени.
  • Маркировка четырьмя цифрами. Тут все похоже на предыдущий вариант, вот только для обозначения номинала сопротивления в Омах используются первые три цифры, а не две. Четвертая цифра – множитель.
  • Маркировка двумя цифрами и символом. В данном случае две цифры определяют сопротивление резистора, но не напрямую, а через специальный код. Ниже я приведу таблицу всех возможных кодов. Если на резисторе указан код “02”, то из таблицы мы получаем значение 102 Ома. Но и это не является финальным значением сопротивления 🙂 Нужно еще учесть третий символ, который является множителем. Для этого символа возможны такие варианты: S=10 -2 ; R=10 -1 ; B=10; C=10 2 ; D=10 3 ; E=10 4 ;

Таблица соответствия кодов величине сопротивления:

Клик левой кнопкой мыши – для увеличения.

В первых двух вариантах маркировки возможно также использование латинской буквы “R” – она ставится для обозначения положения десятичной запятой.

По традиции рассмотрим пару примеров:

Сопротивления резисторов не являются произвольными числами. Существуют специальные ряды номиналов , которые представляют из себя значения от 0 до 10. Так вот номиналы резисторов (значения сопротивления) могут иметь величины, которые определяются как значение из соответствующего ряда, умноженное на 10 в целой степени. Рассмотрим основные ряды – E3, E6, E12 и E24:

Цифра в названии ряда означает количество чисел ряда номиналов в диапазоне от 0 до 10. В ряде E3 – три числа – 1.0, 2.2, 4.7, аналогично, и в других рядах. Таким образом, если резистор из ряда E3, то его номинал (сопротивление) может быть равно 1 Ом, 2.2 Ом, 4.7 Ом, 10 Ом, 22 Ом, 47 Ом…..1 КОм……22 КОм и т. д.Также существуют номинальные ряды Е48, Е96, Е192 – их отличие от рассмотренного нами ряда состоит лишь в том, что допустимых значений еще больше 🙂

На этом мы заканчиваем нашу статью, мы рассмотрели основные моменты, которые будут важны при работе с резисторами, а в одной из следующих статей мы продолжим разговор о резисторах и на очереди будут переменные резисторы, так что следите за обновлениями и заходите на наш сайт!

Цветными полосками используется в радиоэлектронике для определения сопротивления постоянных резисторов. Большинство электронных компонентов, в частности резисторы, очень малы по размеру, вследствие чего достаточно трудно печатать маркировку прямо на корпус. Поэтому в 1920 году был разработан стандарт для идентификации значений электронных компонентов путем нанесения на них цветового кода.

Как определить сопротивление резистора по цветным полоскам

На рисунке ниже показано расположение полос значения, множитель и допуск для постоянного резистора. При маркировке с помощью 6 цветными полосками, дополнительная полоска указывает на температурный коэффициент.

Разрыв между цветными полосками множителя и допуска определяет левую и правую сторону резистора. Ключевые моменты определения сопротивления резистора по цветным полоскам:

4-х полосный резистор — имеет 3 цветовую полоску на левой стороне и одну цветную полоску на правой стороне. Первые две полосы слева представляют собой значение сопротивления, а третья является множителем. Крайняя справа полоса определяет допустимое отклонение в процентах.

5-и полосный резистор — имеет 4 цветные полосы на левой стороне и одну цветную полосу на правой стороне. Первые 3 цветных полос определяют величину сопротивления резистора, четвертый представляет собой множитель, а пятая полоса допустимое отклонение от номинала в процентах.

6-и полосный резистор — имеет 4 цветовые полосы на левой стороне и 2 цветные полосы на правой стороне. Первые 3 цветные полосы обозначают величину самого сопротивления резистора, 4-ая полоса множитель, 5-ая процент отклонения от номинального значения сопротивления и 6-ая полоса представляет собой обозначение температурного коэффициента сопротивления, который повышает точность сопротивления резистора.

Температурный коэффициент говорит нам о поведении резистора в различных температурных условиях эксплуатации.

Примеры определения маркировки резистора по цветным полоскам

Маркировка резистора 4 цветными полосками

Рассмотрим цветовой код резистор, имеющий 4 цветные полосы: коричневый-черный-красный-золотистый. Коричневый цвет соответствует значению «1» в диаграмме цвета. Черный представляет «0», Красный представляет собой множитель «100». Таким образом, величина сопротивления составит:

10 * 100 = 1000 Ом или 1 кОм с отклонением 5%, поскольку золотая полоска представляет собой допуск +/- 5%. Таким образом, фактическое значение 1 кОм может быть между 950 Ом и 1050 Ом.

Маркировка резистора 5 цветными полосками

Рассмотрим цветовой код для резистора с 5 полосками: желтый-фиолетовый-черный-коричневый-серый. Желтый цвет соответствует значению «4» в диаграмме цвета. Фиолетовый цвет представляет «7» и черный равен «0». Коричневая полоска определяет величину множителя «10». Таким образом, величина сопротивления составит:

470 * 10 = 4700 Ом или 4,7 кОм с отклонением 0,05%, поскольку серый цвет отклонения равен +/- 0,05%.

Маркировка резистора 6 цветными полосками

В данном случае маркировка подобна как и у резистора с 5 полосками, в дополнении лишь шестая цветная полоса температурного коэффициента, для примера это синяя полоса.

Результат — резистор имеет сопротивление 4,7 кОм, с допуском +/- 0,05% и с температурным коэффициентом 10 частей на миллион / K.

Наиболее популярной деталью для электронных схем является резистор – пассивный элемент, основным параметром которого является сопротивление протекающему току. Единица измерения – Ом.

Резисторы могут быть фиксированными и регулируемыми (потенциометры). В эту группу включаются также фоторезисторы, варисторы и термисторы, в которых сопротивление определяется освещением, напряжением или температурой.

Фиксированные резисторы изготавливаются по разным технологиям. Наиболее популярные:

  • слоистые;
  • объемные;
  • проволочные.

Определение сопротивления

Производители дают только самые важные параметры в определении резистивных элементов:

  • номинальное сопротивление;
  • допуск, выраженный в процентах, соответствующих классу точности;
  • номинальная мощность.

Как определить сопротивление резистора, зависит от системы кодирования. В случае небольших элементов, где нет места, используется кодовая маркировка резисторов: символы из чисел и букв или цветные полосы. Отметки цветом применяются еще потому, что цифры легко стираются, такую надпись часто труднее разобрать.

Буквенное кодирование предусматривает два стандарта:

  1. Обозначение резисторов в системе IEK. Для множителя используют букву: R = 1, K = 1000, M = 1000000;
  2. В стандарте MIL третья цифра обозначает коэффициент, на который умножаются два первых числа.

Примеры, как узнать сопротивление резистора в разных системах:

  1. R47 – IEK, R47 –MIL, номинал резистора – 0,47 Ом;
  2. 6R8 – IEK, 6R8 – MIL, R = 6,8 Ом;
  3. 27R – IEK, 270 – MIL, говорит о значении номинального сопротивления 27 Ом;
  4. 820R, K82 – IEK, 821 – MIL, R = 820 Ом;
  5. 47K – IEK, 473 – MIL, R = 47 кОм;
  6. 100R – IEK, 101 – MIL, R = 100 Ом;
  7. 2M7 – IEK, 275 – MIL, R = 2,7 мОм;
  8. 56М – IEK, 566 – MIL, R = 56 мОм.

Цветовое кодирование

Более распространенным способом кодирования является цветовая маркировка резисторов. Все расшифровки содержатся в публикуемых таблицах.

Международную систему цветных кодов приняли много лет назад, как простой и максимально быстрый способ определения омического значения резистора вне зависимости от его размера.

Важно! Маркировка всегда читается по одной полосе поочередно, начиная от левого конца детали. Каждый цвет ассоциируется с числом, соответствующим ему в таблице.

Элемент идентифицируется цветными полосками: от 3-х до 6-ти. Определение номинала резистора по цветовой маркировке зависит от числа полос:

  1. Три полоски. Первые две – значения сопротивления резистора, третья – коэффициент, на который умножаются цифры, определяемые двумя кольцами. Допуск для таких деталей имеет общую величину 20%;
  2. Четырехполосный код. Номинал резистора считывается по цветам аналогично, четвертая полоса означает допуск. Четырехдиапазонный вариант является самым распространенным. Если четвертой отметки нет, он превращается в трехдиапазонный, где сопротивление неизменное, но погрешность 20%;
  3. Резистор с пятью полосами. Относится к точным элементам. Первые три столбца – сопротивление, четвертый – множительный коэффициент, 5-й – допуск. К примеру, красный, желтый, зеленый, синий – R = 24 x 10 = 240 Ом, ± 0,25%;
  4. Шестиполосный код используется для высокоточных деталей. Пять полос расшифровываются, как и ранее, шестая указывает температурный коэффициент (ppm/° C). Этот показатель важен для некоторых схем. Коэффициент сообщает, на сколько процентов варьируется сопротивление при температурных изменениях в 1° C. Значение ТКС может указываться в ppm/К.

По цветной маркировке нельзя узнать о мощности, которую будет рассеивать элемент. Можно классифицировать резисторы по мощности, исходя из размера детали. Коммерческие резисторы рассеивают 1/4 Вт, 1/2 Вт, 1 Вт, 2 Вт и т. д. Больший размер элемента говорит о большей рассеиваемой мощности.

Для чего служат допуски

Чем меньше значение допуска, тем ближе сопротивление к желаемому значению.

Иногда схема содержит резисторы, сопротивления которых не очень распространены, и их сложно найти на рынке. С допуском можно приблизиться к нужной величине.

На рисунке представлен образец сопротивления. Он содержит цветовую кодировку. Если расшифровать символы, получаются следующие цифры:

  1. Данное сопротивление составляет 590 Ом с допуском 5%;
  2. Значит, можно определить максимальную и минимальную величину. Таким образом, резистор обладает любым сопротивлением между 619,5 Ом и 560, 5 Ом.

Важно! У проволочных деталей существуют некоторые различия в цветовом коде. Тип такого резистора можно узнать по первоначальному расширенному белому кольцу. Остальные кольца по цвету соответствуют стандартным обозначениям, но заключительное может указывать на повышенную сопротивляемость теплу.

Для таких деталей имеется отдельная таблица данных, в которой можно заметить другие цвета и для погрешностей.

Отклонения от стандарта

  1. Надежность. Этот показатель встречается в виде исключения в кодах, где 5 полос, и показывает процент отказов за тысячечасовой временной промежуток;
  1. Одно черное кольцо. Резистор, имеющий нулевое сопротивление. Такие элементы используются для соединения трасс на печатной плате;
  2. Замена цветов. Резисторные элементы, рассчитанные на высокое напряжение, маркируются желтым на месте золотого и серым на месте серебряного. Это делают из соображений безопасности, чтобы на внешнем покрове не присутствовало частиц металла.

SMD-резисторы

Для резисторов поверхностного монтажа не используют систему цветового маркирования из-за их микроскопических размеров, но иногда кодируют цифрами. Обычно три числа соответствуют:

  • первые два – сообщают о величине сопротивления;
  • третье – коэффициент, на который она умножается.

Никаких дополнительных данных не приводится, так как невозможно вместить больше цифр.

Декодер цветовой маркировки резисторов можно найти в удобном режиме, чтобы не заниматься поиском по таблицам. Существует онлайн калькулятор, куда заносится цветная маркировка резисторов с обозначением колец, и в результате вычисляется величина сопротивления. Причем можно рассчитать, как номинал резистора, так и произвести обратную операцию: узнать по сопротивлению цветовой код.

Перед чтением кодов желательно проверить документацию производителя, если есть возможность, чтобы не было сомнений в используемом стандарте. Для контрольной проверки сопротивления служит мультиметр.

Видео

Некоторые иностранные производители (хоть это и редкость) применяют собственную, нестандартную цветовую маркировку резисторов . В этом случае придется смотреть правила цветовой маркировки у конкретной фирмы.

Возможности декодера:

Если по цветовой маркировке необходимо узнать сопротивление резистора, необходимо выполнить следующие действия: указать количество цветных полос, затем выбрать цвет каждой из них (под каждой полоской на изображении резистора расположено выпадающее меню). Под изображением резистора результат будет выведен в виде X*10 Y Ом (цифры располагаются каждая под своей полоской), а в поле результата (слева от кнопки «Реверс») уже в обычном виде (Ом, кОм, МОм).

Если необходимо узнать, каким цветовым кодом маркируется резистор заданного номинала, необходимо ввести значение в поле результата (слева от кнопки «Реверс») в виде целого числа или дробного (разделитель- точка). Затем выбрать диапазон (Ом, кОм, МОм…). Цвет полос будет пересчитан в соответствии с введенным значением. Приоритет у сопротивлений с допуском 5% (маркировка 4 полосами). Если 5% сопротивлений с таким номиналом нет, то выводится маркировка 1% резисторов, ну а если и таких не выпускают, то 0.5%. Так, например, если задать расчет для 10 кОм, то по умолчанию будет выведена маркировка для 10 кОм ± 5% (4 полоски). Чтобы узнать, какой цветовой код будет у 1% резистора, нужно задать отклонение в поле результата. Тогда будет рассчитана 5-полосная цветовая маркировка резистора 10 кОм ±1 %.

Справа выводится таблица со стандартными значениями сопротивлений из рядов Е12, Е24, Е48, Е96 и Е192. Таблица прокручивается до значений, ближайших к тому, что в данный момент задано цветовой маркировкой. Если такие значения есть, эта строка окрашивается в зеленый цвет, если таких значений нет, в желтый цвет окрашиваются строки с ближайшим большим и ближайшим меньшим значением. Если кликнуть по значению в таблице, то маркировка резистора будет пересчитана соответственно. Причем порядок сопротивления останется тот же, что и был. Если, например изначально была 4-полосная маркировка
для 10 кОм ± 5% (значение 100 из стандартного ряда Е24), и вы кликните по значению 101 из ряда Е192 в таблице, то будет рассчитана 5-полосная цветовая маркировка для резистора
10.1 кОм ±0. 5%

Над каждой цветовой полоской на резисторе располагаются кнопки «+» и «-«. Клик по ним приводит к тому, что цифровой эквивалент этой полоски (и цвет, конечно, тоже) изменяется на 1 шаг (на единицу для полосок с 1 по 4 или до ближайшего большего или меньшего для полосок, отвечающих за отклонения и ТКС)

Первая полоска цветовой маркировки обычно находится ближе к краю, но, если цветовых полос более 4-х, бывает сложно определить, какая из двух крайних первая, и хоть ее в этом случае делают толще, это не всегда помогает. Рекомендую в сомнительных случаях проверить, возможна ли обратная последовательность с помощью кнопки » Реверс «. Программа расшифровки построит зеркальное отображение полосок и соответствующее ей значение сопротивления. Если такая комбинация невозможна, программа выдаст сообщение, какая именно цветная полоска не соответствует правилам цветовой маркировки резисторов. Также программа выдаст сообщение, если допуск, соответствующий выбранной цветовой маркировки не соответствует значениям допуска соответствующего стандартного ряда. Например, сопротивление 4.07 кОм может принадлежать исключительно прецизионному ряду Е192. И если цвет 5-й полоски будет выбран золотистый (что соответствует допуску 5%), то это явная ошибка, о чем будет выдано сообщение. Еще есть дополнительная возможность вывести таблицу с ближайшими возможными номиналами к значению, заданному цветовой маркировкой резистора. Будут выведены значения от ближайшего меньшего до ближайшего большего из ряда Е24 и значения из рядов Е48, Е96, Е192 в этом же диапазоне. Полезно при разработке новой схемы при выборе номинала резистора.

Цветовая маркировка резисторов — числовые значения цветов в зависимости от расположения.

Цветовая маркировка резисторов. Общие сведения.

Цветовая маркировка резисторов обычно наносится в виде 3-х, 4-х, 5-ти, а иногда и 6 колец. В ней с помощью цвета закодирован номинал сопротивления резистора, допустимое отклонение (точность), а также может быть обозначен ТКС (изменение сопротивления резистора от температуры — важный параметр в прецизионных применениях). На первый взгляд, цветовая маркировка резисторов сложна в распознавании, так как в памяти приходится держать таблицу цветов. Но зато такой способ позволяет в любом случае прочитать номинал резистора, впаянного в плату. Кроме того, можно разобрать сопротивление выводного резистора в самом мелком габарите (0.062Вт), на корпусе которого просто не поместилась бы цифро-буквенная маркировка. Стоит отметить и то, что цветовая маркировка резисторов технологичней в производстве. В конечном счете, цветовая маркировка резисторов удобна как производителям, так и потребителям. Самый же большой недостаток цветной маркировки резисторов, на мой взгляд — сложность в различении таких цветов, как серый и серебристый, желтый и золотистый, а иногда сложно бывает различить при определенном освещении черный, коричневый и фиолетовый. Также и интенсивность оттенков тоже может быть разная в зависимости от возраста, температурных режимов, которые перенес резистор, да и производитель, наверное, колору может недосыпать. Есть и еще один недостаток: иногда производители так наносят маркировку, что просто невозможно понять, где первая полоска, а где последняя. В этом случае, если это, конечно, не цветовой аналог слова «шалаш» (хоть по-нашему читай, хоть по-арабски справа-налево…) результат будет совершенно разный. Упростить ситуацию со неоднозначным прочтением цветовой маркировки резисторов поможет программа, заложенная в этой странице. При клике по кнопке «Реверс» цветовая маркировка, набранная ранее переворачивается зеркально. В половине случаев этот код будет недопустимым (например, первым элементом цветовой маркировки не может быть серебристая полоска), а в других просто ускорится процесс дешифрования и проще будет сравнить два результата, чтобы выбрать более подходящий. Например, в обычной непрецизионной схеме вряд ли поставят резистор с точностью 0.5%, так как он дороже, а никто из производителей не будет раздувать стоимость без надобности.

Цветовая маркировка резисторов. Назначение полос.

1-я полоса цветовой маркировки резисторов может означать только цифру, не может быть нулем (т.е., иметь черный цвет)

2-я полоса цветовой маркировки резисторов тоже означает только цифру

3-е кольцо в цветовой маркировке резистора обозначает цифру, если полосок 5, или множитель к первым двум, если полосок 4.

4-е кольцо обозначает множитель к первым трем, если полосок 5, или точность, если цветных колец 4

5-я полоса цветовой маркировки резистора , если она есть, указывает на точность резистора

6-я цветная полоса маркировки, опять же, если есть, обозначает ТКС (температурный коэффициент сопротивления)

Принципы цветовой маркировки резисторов , описанные здесь, с таким же успехом применимы также для конденсаторов и дросселей с той лишь разницей, что получившееся число будет означать не Омы, а пикофарады для конденсаторов и микрогенри для дросселей. Есть, правда, еще и отличия в маркировке точности.

Цветовая маркировка резисторов — цвет и цифру соединяет рифма.

Всем известно двустишие «Каждый охотник желает знать, где сидит фазан», раскладывающее цвета радуги. Способностей выдумать такое не хватило, но если выговорить в определенном ритме «Че-Ка-Ка, О-Жэ-Зэ, Сэ-эФ-эС-Бэ», то становится не хуже, чем стихотворение из «Алисы в стране чудес» («хрюкотали зелюки, как мюмзики в мове…») и легко запоминается. Остается сопоставить это с цветами по начальным буквам «черный-коричневый-красный, оранжевый-желтый-зеленый, синий-фиолетовый-серый-белый» и последовательным цифровым рядом «0,1,2,3,4,5,6,7,8,9», — и цифры в цветовой маркировке резисторов всегда сможете раскодировать. Правда, для цветной полоски, обозначающую степень, необходимо еще запомнить «серебристый — золотистый» со значениями -2, -1, иначе резисторы с сопротивлением в единицы и доли Ома перестанут существовать. Ну а если Вы хотите запомнить, как в цветовой маркировке резисторов
5. Цветовая маркировка резисторов на сайте Чип и Дип Ссылка
6. Калькулятор цветовой маркировки на сайте Hamradio

Распиновка и маркировка советских радиодеталей

Здравствуйте посетители сайта 2 Схемы. Многие не понимают, как определить номинал советской радиодетали по коду, написанному на каком-либо радиоэлементе. А ведь многие устройства или приборы ещё тех времён успешно эксплуатируются до сих пор. Сейчас мы расскажем про определение номинала основных деталей производства СССР.

Резисторы

Начнём, конечно, с самой часто используемой детали — резистора. И начнём именно с советских резисторов. Почти на всех таких резисторах есть буквенная маркировка. Для начала изучим буквы, которые используются на данной детали:

  • Буква «Е», «R» — означает Омы
  • Буква «К» — означает Килоом
  • Буква «М» — означает Мегаом

И сама загвоздка заключается в расположении буквы между, перед или после цифры. Вообще ничего сложного нет. Если буква стоит между цифрами, например:

1К5 – это означает 1,5Килоома. Просто в Советском Союзе чтобы не возиться с запятой, вставили туда букву номинала. Если же написано 1R5 или 1Е5 — это значит что сопротивление 1,5 Ома или 1М5 — это 1,5 Мегаом. Если буква стоит перед цифрами, значит вместо буквы мы подставляем «0» и продолжаем строчку из цифр, которые стоят после буквы.

Например: К10 = 0,10 К, значит если в килооме 1000 Ом, то умножаем эту цифру (0,10) на 1000 и получаем 100 Ом. Или просто подставляем к цифрам нолик, при этом меняем в уме сопротивление на самое ближнее, меньшее этого.

И если буква стоит после цифр, значит ничего не меняется — так и вычисляем что написано на резисторе, например:

  • 100к = 100 килоом
  • 1М = 1 Мегаом
  • 100R или 100Е = 100 Ом

Можно определять номиналы вот по такой таблице:

Есть ещё и цветовая маркировка резисторов, самая основная, но при этом используют чаще всего онлайн калькуляторы или можно просто его скачать по ссылке.

Ещё на схемах где есть резисторы, на графических обозначениях резистора пишутся «палки». Эти «палки» обозначают мощность по такой таблице:

А мощность у резисторов определяется по размерам и надписям на них. На советских мощностью 1-3 Ватта писали мощность, а на современных уже не пишут. Но тут мощность определяют уже опытом или по справочникам.

Конденсаторы

Далее берём конденсаторы. В них немного другая маркировка. На современных конденсаторах идёт только цифровая маркировка, поэтому на все буквы кроме «p», «n» не обращаем внимания, все посторонние буквы обычно обозначают допуск, термостойкость и так далее. У них обычно кодовая маркировка состоит из 3 цифр. Первые три мы оставляем как есть, а третья показывает количество нулей, и эти нули мы выписываем, после чего емкость получается в пикофарадах.

Пример: 104 = 10 (выписываем 4 ноля, так как цифра после первых двух 4) 0000 Пикофарад = 100 Нанофарад или 0,1 микрофарад. 120 = 12 пикофаррад.

Но есть и с количеством менее 3 цифр (два или один). Значит емкость в указанных уже нам пикофарадах. Пример:

  • 3 = 3 пикофарада
  • 47 = 47 пикофарад

Вот фото:

Тут емкость 18 пикофарад.

Если есть буквы «n» или «p», значит емкость в пикофардах или нанофарадах, например:

  • Буква «n» — нанофарады
  • Буква «p» — пикофарады

На первом (большом) написано «2n7» — в этом случае как и на резисторе 2,7 нанофарад. На втором конденсаторе написано 58n, то есть емкость у него 58 нанофарад. Но если все-таки это не понимаете лучше купить мультиметр, например UT-61, у него есть функция измерения емкости. Там есть специальный разъём, куда вставляется конденсатор и под него нужно выбрать необходимый диапазон измерения (в пикофарадах, нанофарадах, микрофарадах). У данного мультиметра емкость измеряется до 20 микрофарад.

Транзисторы

Теперь советские транзисторы, так как их сейчас всё равно много, хоть не всех их продолжают делать. Маркировка у них обозначается цветными точками двух типов, такие:

И такие:

Есть ещё вот такие, с кодовой маркировкой:

Конечно можно не запоминать эти таблицы, а использовать программку-справочник, что в общем архиве по ссылке выше. Надеемся эти сведения об основных деталях отечественного производства вам очень пригодятся. Автор материала — Свят.

Маркировка резисторов

— буквенно-цифровые и цветовые коды

Три Преобладают методы маркировки резисторов — цветовое кодирование, кодирование числовых значений и кодирование трехзначных символов. MIL-PRF-55342 присваивает номера деталей с использованием буквенно-цифрового кодирования. Допуск, температура, тип упаковки и частота отказов интегрированы в некоторые схемы нумерации.

Когда я разместил рекомендации по новому использованию цветовых кодов на РФ Кафе Сморгасборд особенность, я пригласил посетителей вводить.Они представлены внизу страницы.

Нет ± 20%
Серебро 0,01 ± 10%
Золото 0.1 ± 5%
Черный 0 0 0 1
Коричневый 1 1 1 10 ± 1% M = 1.0
Красный 2 2 2 100 ± 2% P = 0.1
Оранжевый 3 3 3 1000 (= 1 КБ) R = 0,01
Желтый 4 4 4 10к S = 0,001
Зеленый 5 5 5 100 тыс.
Синий 6 6 6 1000 К
фиолетовый 7 7 7
Серый 8 8 8
Белый 9 9 9
6-2-3 — Серебристый
62 * 10 3 Ом, 10%
62 * 1000 Ом, 10%
62 кОм, 10%
1 — 9 — 6 — 0 — Красный
196 * 10 0 Ом, 0.1% сбоев Скорость
196 * 1 Ом, частота отказов 0,1%
196 Ом, частота отказов 0,1%

Вы также можете найти резисторы, отмеченные 4 полосами для сопротивления, где первые 3 полосы имеют значение цифры, а 4-я полоса — множитель. Пример: Резистор 20,5 Ом с допуском 1% будет отмечен как красный, черный, зеленый, золотой, коричневый. Вот такой удобный денди преобразователь цветовой полосы резистора из Digi-Key.

4 — 4 — 2 — 2
442 * 10 2 Ом
442 * 100 Ом
44200 Ом
44,2 кОм

01 100
02 102
03 105
04 107
05 110
06 113
07 115
08 118
09 121
10 124
11 127
12 130
13 133
14 137
15 140
16 143
17 147
18 150
19 154
20 158
2 162
22 165
23 169
24 174
25 178
26 182
27 187
28 191
29 196
30 200
31 205
32 210
33 215
34 221
35 226
36 232
37 237
38 243
39 249
40 255
41 261
42 267
43 274 ​​
44 280
45 287
46 294
47 301
48 309
49 316
50 324
51 332
52 340
53 348
54 357
55 365
56 374
57 383
58 392
59 402
60 412
61 422
62 432
63 442
64 453
65 464
66 475
67 487
68 499
69 511
70 523
71 536
72 549
73 562
74 576
75 590
76 604
77 619
78 634
79 649
80 665
81 681
82 698
83 715
84 732
85 750
86 768
87 787
88 806
89 825
90 845
91 866
92 887
93 909
94 931
95 953
96 976
01 100
02 110
03 120
04 130
05 150
06 160
07 180
08 200
09 220
10 240
11 270
12 300
13 330
14 360
15 390
16 430
17 470
18 510
19 560
20 620
21 680
22 750
23 820
24 910
25 100
26 110
27 120
28 130
29 150
30 160
31 180
32 200
33 220
34 240
35 270
36 300
37 330
38 360
39 390
40 430
41 470
42 510
43 560
44 620
45 680
46 750
47 820
48 910
49 100
50 120
51 150
52 180
53 220
54 270
55 330
56 390
57 470
58 560
59 680
60 820

Здесь это кафе РФ ответы посетителей на приглашение, которое я сделал для предлагаемого использования цветовой код, или для разных версий мнемоники, используемой для запоминания отношений числа-цвета.

Хорошо, так как люди просили политически некорректную мнемонику, которой меня учили в школе по электрике. профессиональные классы, вот он:

Плохие парни насилуют наших девушек, но Вайолет охотно дает
также Плохие парни насилуют наших девушек за стеной Сада Победы


Используется ли мнемоника, не относящаяся к ПК, связана с YL по имени Вайолет? Мнемоника бойскаута I узнали еще тогда, когда было «Лучше будь прав, или твое большое большое предприятие идет на запад — получите немного сейчас».Очень ранняя форма ПК я думаю.

Кевин А., Вирджиния

Примечание: Get Some Now относится к толерантности — золото = 5%, серебро = 10%, нет = 20%


Привет Кирт,

Действительно, цветовые коды исчезнут. Однако, будучи дальтоником, мне все равно. Возможно, вы захотите узнать мнемоника цветового кода на голландском языке:

Zij Bracht Rozen Op Gerrits Graf Bij Vies Grauw Weer.

черный = zwart
коричневый = bruin
красный = rood
оранжевый = oranje
желтый = geel
зеленый = groen
синий = голубой
фиолетовый = фиолетовый
серый = grijs
белый = остроумие

(Примерный перевод: она принесла розы на могилу Герритса в грязную серую погоду)

Мне любопытна английская версия, которая считается политически некорректной.

С уважением, Хьюго К., Нидерланды.


Попробуйте это: плохое пиво портит наши молодые кишки, но водка идет хорошо — купите сейчас

Troy Z., MT


Yo Kirt:

Я уверен, что не первый, кто указал, что черный ящик должен быть коричневым для вашего номера телефона. Я научился цветовой код в 9 лет … не слишком часто встречаться с собой. Раньше я мог читать цвет конденсатора и индуктора коды, но я забыл их!

Я заметил полное отсутствие аналоговых инженерных навыков у недавних сотрудников.Если у него нет клавиатуры, то что это???? Даже на уровне компонентов цифровые навыки плохие. Также шокирует отсутствие навыков устранения неполадок. Сломался? Замени все это дело! Сообществу инженеров нужна старомодная программа наставников / учеников, прежде чем старые парни уходят на пенсию; как я!

Rfcafe.com навсегда!

Увидимся, Нил


Bye Bye, Rosie, Off You Go, Бристоль Виа Грейт Вестерн.

Чистый и легкий для запоминания железнодорожным любителем.

Джо Б., старший инженер проекта


Мы можем обозначить цветом номера социального страхования …………… .. НЕТ!

73, Иоанна


Привет Кирт,

Ваша точка зрения на цветовую кодировку хорошо понята. Мне 41 год, и я был не слишком далеко в своей карьере, когда она «исчезла» когда технология SMT взяла верх. Недавно я снова столкнулся с ним и увидел, что он жив и здоров с указанием цвета провода, особенно с военными стандартами (MIL-STD-681).

Я поймал себя на том, что повторяю эту старую политически некорректную мнемонику (плохие
мальчики …) снова. 😉

С уважением, Рой А.

Таблица кодов цветов резисторов

| Код резистора SMD

Электронный цветовой код — это способ обозначения номинальных значений или значений электронных компонентов, таких как резисторы, конденсаторы, катушки индуктивности и другие. Электронный цветовой код был разработан в начале 1920-х годов Ассоциацией производителей радиооборудования.Используется цветовой код, поскольку они дешевы и могут быть напечатаны на небольших компонентах.

Цветовой код резистора используется для обозначения значения сопротивления. Стандарты для регистров цветовой кодировки определены в международных стандартах IEC 60062. Этот стандарт описывает цветовую кодировку для резисторов с осевыми выводами и числовой код для резисторов SMD. Есть несколько полос для определения значения сопротивления. В них даже указывается допуск, надежность и интенсивность отказов. Количество полос варьируется от трех до шести.В случае трехполосного кода первые два указывают значение сопротивления, а третья полоса действует как множитель.

Трехполосный резистор Цветовой код

Трехполосный цветовой код используется очень редко. Первая полоса слева указывает на первую значительную фигуру сопротивления. Вторая полоса указывает на второе значащее число. Третья полоса указывает множитель. Допуск для трех полосных резисторов обычно составляет 20%. Таблица цветовых кодов, соответствующих трем полосным резисторам, приведена ниже.

Например, если цвета на резисторе расположены в следующем порядке: желтый, фиолетовый и красный слева, то сопротивление можно рассчитать как 47 * 10 2 ± 20%. Это 4,7 кОм ± 20%.

Это означает, что значение сопротивления находится в диапазоне от 3760 Ом до 5640 Ом.

Трехполосный резистор Цветовой код

 Ссылка на ресурс изображения: www.resistorguide.com/resistor-color-code-calculator/ 

Вернуться к списку

Цветовой код четырехполосного резистора

Четырехполосный цветовой код является наиболее распространенным представлением в резисторах .Первые две полосы слева используются для обозначения первой и второй значащих цифр сопротивления. Третья полоса используется для обозначения множителя. Четвертая полоса используется для обозначения допуска. Между третьей и четвертой полосами существует значительный разрыв. Этот пробел помогает определить направление чтения. Таблица цветовых кодов для четырехполосных резисторов показана ниже.

Например, если цвета на четырехполосном резисторе расположены в следующем порядке: зеленый, черный, красный и желтый, тогда значение сопротивления рассчитывается как 50 * 10 4 ± 2% = 500 кОм ± 2%

Четырехполосный резистор Цветовой код

 Ссылка на изображение ресурса: www.resistorguide.com/resistor-color-code-calculator/ 

Вернуться к списку

Цветовой код пяти полосных резисторов

Высокоточные резисторы имеют дополнительную полосу, которая используется для обозначения третьего значимого значения сопротивления. Остальные полосы обозначают то же, что и цветовой код четырех полос. Поэтому первые три полосы используются для обозначения первых трех значимых значений сопротивления. Четвертая и пятая полосы используются для обозначения множителя и допуска соответственно.

Есть исключение, когда четвертая полоса — это золото или серебро. В этом случае первые две полосы указывают две значащие цифры сопротивления. Третья полоса используется для указания множителя, четвертая полоса используется для допуска, а пятая полоса используется для обозначения температурного коэффициента с единицами измерения ppm / K. Таблица цветовых кодов пятиполосных резисторов приведена ниже.

Пятиполосный резистор, цветовой код

Ссылка на изображение
: www.resistorguide.com/resistor-color-code-calculator/ 

Например, если цвета на пятиполосном резисторе расположены в следующем порядке: красный, синий, черный, оранжевый и серый, тогда значение сопротивления рассчитывается как 260 * 10 3 ± 0.05 = 260 кОм ± 0,05%.

Вернуться к списку

Шесть полосных резисторов

Цветовой код

В случае высокоточных резисторов есть дополнительная полоса для обозначения температурного коэффициента. Остальные полосы такие же, как у пяти полосных резисторов. Чаще всего для шестой полосы используется черный цвет, который соответствует 100 ppm / K. Это означает, что при изменении температуры на 10 0 ° C может произойти изменение значения сопротивления на 0,1%. Обычно шестая полоса представляет собой температурный коэффициент.Но в некоторых случаях это может означать надежность и частоту отказов.

Таблица цветовых кодов для шестиполосных резисторов показана ниже

Шестиполосный резистор Цветовой код

Ссылка на изображение
: www.resistorguide.com/resistor-color-code-calculator/ 

Например, если цвета на шестиполосном резисторе находятся в следующем порядке: оранжевый, зеленый, белый, синий, золотой и черный, тогда сопротивление рассчитывается как 359 * 10 6 ± 5% 100 ppm / K = 359 МОм ± 5% 100 частей на миллион / к.

Вернуться к списку

Буквенное обозначение допусков для резисторов

Буквенный код для допуска показан ниже.

  • B = 0,1%
  • C = 0,25%
  • D = 0,5%
  • F = 1%
  • G = 2%
  • J = 5%
  • K = 10%
  • M = 20%

К и М не следует путать с кило и мегаомами.

Вернуться к списку

Код резистора SMD

Существует три типа систем кодирования, используемых для маркировки резисторов SMD.Их

  • Трехзначное кодирование
  • Четырехзначное кодирование
  • Кодирование EIA 96

В трехзначном кодировании первые два числа указывают значащее значение сопротивления, а третье число указывает множитель.

Резистор SMD с трехзначной кодировкой показан ниже

Некоторые примеры трехзначных кодов:

450 = 45 * 10 0 = 45 Ом

221 = 22 * ​​10 1 = 220 Ом

105 = 10 * 10 5 = 1 МОм

Если сопротивление меньше 10 Ом, то для обозначения положения десятичной точки используется буква R.Например, 3R3 = 3,3 Ом

Для более точных резисторов на них нанесен четырехзначный код. Расчет аналогичен трехзначному коду. Первые три числа указывают значимое значение сопротивления, а четвертое число указывает множитель.

Резистор SMD с четырехзначной кодировкой показан ниже.

Некоторые примеры в этой системе:

4700 = 470 * 10 0 = 470 Ом

1001 = 100 * 10 1 = 1 кОм

7992 = 799 * 10 2 = 79.9 кОм

Для резисторов менее 100 Ом R используется для обозначения положения десятичной точки.

Например, 15R0 = 15,0 Ом

Система кодирования EIA 96 используется для высокоточных резисторов с допуском 1%.

В системе маркировки EIA 96 существует отдельная система кодирования. В этой системе для маркировки используются три цифры. Первые две — это цифры, обозначающие три значащие цифры значения сопротивления.Третья цифра — это буква, обозначающая множитель.

Маркировка EIA 96 на резисторе SMD
 

Кодовая схема EIA 96 для множителей показана ниже

0,001

0

0,01

0009

Код

Множитель

Z

0,001

X или S

0.1

A

1

B или H

10

C

100

9 9 1000

E

10000

F

100000

Кодовая схема EIA 96 для значимых значений сопротивления показана ниже

Некоторые примеры системы кодирования EIA 96:

92Z = 887 * 0.001 = 0,887 Ом

38C = 243 * 100 = 24,3 кОм

Вернуться к списку

Таблица кодирования цветов

Полная таблица цветовой кодировки приведена ниже.

 Ссылка на ресурс изображения: static1.resistorguide.com/pictures/600x609xresistor_color_codes_chart.png.pagespeed.ic.RbewMY1OSb.png 

Вернуться к списку

Базовые резисторы для начинающих и новичков

Базовые резисторы для начинающих новички Цветовые коды резисторов

HTML от: http: // www.btinternet.com/~dtemicrosystems/beginner.htm


ЦВЕТОВЫЕ КОДЫ И ИХ ОБЩЕЕ ИСПОЛЬЗОВАНИЕ

ПРИЗНАННЫЕ СТАНДАРТЫ

Есть десять международно признанных стандартов цвета, используемые для обозначения значений ряда электронных компонентов. Каждый присвоено числовое значение от 0 (ноль) до 9 (девять) в следующем порядке; черный коричневый, красный, оранжевый, желтый, зеленый, синий, фиолетовый, серый, белый.

Поскольку они чаще всего используются для определения номиналов резисторов, этот диапазон цвета часто (неправильно) называют «цветовой кодировкой резистора». В На практике они могут применяться к различным другим электронным компонентам, хотя в настоящее время это в значительной степени было заменено печатными сокращениями, которые будут объяснены позже.

Два других цвета также широко используются; золото и серебро, обычно в качестве знаков допуска на резисторах (наряду с некоторыми другими цветами), но они также удваиваются как деление маркировка коэффициентов для сопротивлений ниже 10 Ом.Их присвоенные значения допусков составляют 5%. для золота и 10% для серебра. В качестве коэффициентов деления их значения равны 10 и 100. соответственно.

Это будет звучать немного запутанно (мягко говоря!), Если вы не знакомы с любым из этих цветовых кодов, но, надеюсь, вскоре они станут понятнее.

ЦВЕТОВЫЕ КОДЫ РЕЗИСТОРА

ОБРАТИТЕ ВНИМАНИЕ:


Прежде всего, мы должны отметить, что следующая информация не относится к современным устройство поверхностного монтажа (SMD) или чип-резисторы, которые не используют цветовую кодировку, а вместо этого проштампован код сопротивления.Мы объясним это позже, но пока концентрируясь только на стандартных типах с цветовой кодировкой, помня, что этот раздел предназначен для новички. Несмотря на то, что он достаточно прост для понимания, прежде чем читать это переход на резисторы, вы, наверное, никогда не догадались бы самого принципиального компонент в электронике может быть так задействован.

Наиболее распространенные типы резисторов с цветовой кодировкой поставляются с четырьмя или пятью цветные полосы. Вы также найдете шесть типов цветных полос, включая температуру диапазон коэффициентов, но, чтобы вас не запутать, мы пока будем игнорировать их быть и сконцентрироваться в основном на типе четырех полос, после чего следует краткое объяснение пятидиапазонный тип, поскольку это просто расширение четырех диапазонов.

КРАТКИЙ УРОК ИСТОРИИ

Раньше резисторы выглядели как субминиатюрные. реостаты, что-то вроде керамической трубки с ножками, похожими на заостренные метки припоя, приваренные близко к концы трубки. При пайке они стояли примерно на восьмую дюйма (3,175 мм) над монтажной платой. Весь корпус резистора окунул в бирюзу. цветной краской, а ценность была определена по чудесному сочетанию точек, пятен и числа, которые в половине случаев разошлись по печатной машине на мили! Как углеродная пленка и резисторы из углеродного состава стали более популярными, цветные кольца или полосы вокруг всего тело стало «нормой» для идентификации.

Вот очень специфический аспект изготовления резисторов этого типа; в свое время они у всех было только четыре цветных полосы, обычно напечатанных на корпусе бордового цвета, и физически достаточно большой, чтобы можно было легко видеть и читать все цвета. В наши дни то же самое резисторы меньше четверти размера, имеют разный цвет корпуса и содержат больше цветные кольца, чем Сатурн! Это делает практически невозможным определение некоторых значений. человеческими глазами, даже со зрением 20:20.Даже опытные дизайнеры признаются в подключив некоторые из них к мультиметру, чтобы подтвердить значение.

Люди, которые привыкли к считыванию цветовых кодов резисторов, как правило, смогут взгляните на тело и скажите вам в течение двух секунд, каково значение этого резистора, без использования каких-либо таблиц преобразования. Хотите верьте, хотите нет, но вы тоже примете это как вторая натура после некоторого опыта.

КОНВЕНЦИИ

«R» = Ом.«K» = килом. «M» = мегом.

Чтобы избежать необходимости писать или работать с большим количеством цифр, приняты определенные соглашения применяются к тому, как записываются значения резисторов, когда они достигают различных величин. Каждые 1000 Ом — это килом (килограмм = одна тысяча) и сокращенно обозначается заглавной буквой. буква «К». Каждые 1000000 Ом называют Мегаомом (Мега = один миллион), сокращенно до заглавной буквы «М». В качестве пары примеров; 4700 Ом резистор будет записан как 4.7K или 4K7, а 5600000 Ом будет записано как 5.6М или 5М6. Для полноты таким же образом можно записать значения ниже 10 Ом; Например, 3,9 Ом можно записать как 3R9.

Не существует жесткого правила, определяющего сокращенный метод их записи. используемый. Первоначально они писались с десятичной точкой посередине, но когда схема диаграммы начали появляться в массовом порядке, особенно в журналах для любителей, стало очевидно что из-за технологии печати и использования низкокачественной бумаги десятичная точка была очень часто воспроизводится не очень точно.Это привело к неправильному толкованию напечатанного ценности и конструкторы строят схемы, которые не работают. И проблема не в ограничен журналами для любителей, множеством коммерческих схем и технических руководств также были допущены те же упущения. Из-за этого многие схемы стали изготовленные, номиналы резисторов которых были записаны буквой в середине.

ЧТО ПРОИЗОШЛО С OMEGA?

Еще одним символом, который также использовался для обозначения сопротивления, был сам знак Омега, но теперь он в значительной степени заменен заглавной буквой. «Р».Зачем? Поскольку принципиальные схемы изначально были нарисованы на бумаге рисовальщики используют трафареты, содержащие различные электронные символы и символы. С участием появление широко доступных CAD-машин для создания принципиальных схем, и текстовых процессоров, чтобы набрать письменную документацию, они внезапно поняли, что Омега символ не был стандартным типографским знаком. В «старые времена» при покупке пишущей машинки * вы указывали, какие специальные символы (если есть) должны быть включены для обслуживания вашего конкретного направления бизнеса.Но с новым цифровым системы, вы должны были обойтись тем, что было доступно, и буква «R», казалось, наиболее логично использовать для сопротивления, поэтому R = Ом.

4-ПОЛОСНЫЕ ЦВЕТОВЫЕ КОДЫ РЕЗИСТОРА

ОБЫЧНО ИСПОЛЬЗУЕТСЯ НА РЕЗИСТОРАХ УГЛЕРОДНОЙ ПЛЕНКИ
Рисунок на Слева показан резистор с четырехцветной полосой вместе с таблицей преобразования, чтобы вы чтобы вычислить значение любого из этого типа. Все цвета должны быть преобразованы в их присвоенные значения для расчета сопротивления, и результат всегда получается в Ом.

НЕПРАВИЛЬНЫЕ ЦВЕТА:
Обратите внимание, как некоторые цвета были опущены в первом и третьем столбцах. Это потому что первый столбец никогда не будет черным, а третий столбец никогда не будет иметь цвет с присвоенным значением выше 6, так как номиналы основных резисторов колеблются от 1 Ом — коричневый, черный, золотой, до 10 МОм — коричневый, черный, синий. В нашем примере 27K сопротивление равно рассчитывается следующим образом;

ЗНАЧИМЫЕ ЦИФРЫ и МНОЖЕСТВЕННЫЕ ПОЛОСЫ:
Первые два цвета представляют два числовых значения, известных как значащие цифры, которые просто записываются по мере появления, т.е. «2» и «7».Далее полоса множителя указывает, сколько нулей нужно записать после первых двух цифр, и здесь нам нужно их три — «000». Это оно! Теперь у вас есть сопротивление значение этого резистора в Ом — 27000 Ом. Поскольку каждые 1000 Ом представляют собой килом или «1K», значение в примере составляет 27K.
ЗОЛОТАЯ или СЕРЕБРЯНАЯ ПОЛОСА МНОЖИТЕЛЯ:
Независимо от номинала, эти резисторы ДОЛЖНЫ иметь четыре цветных полосы. Однако только значения от 10 Ом и выше могут быть представлены с помощью «обычная» цветовая гамма от черного до белого, поскольку минимально допустимый цвет Последовательность Коричневый, Черный, Черный — 10 Ом.На рисунке справа показано, как значения ниже Представлено 10 Ом. Здесь для ленты множителя используется золото или серебро, только сейчас это означает, что рассчитанное значение сопротивления должно быть РАЗДЕЛЕННО на 10 или 100 соответственно. В В нашем примере показан резистор 5,6 Ом, но то же самое относится ко всем значениям ниже 10 Ом. Если бы полоса умножителя была серебряной, это значение было бы 0,56 Ом. Однако это очень маловероятно, что в настоящее время вы встретите такие типы резисторов с серебряным умножителем. группа.

ПОЛОСА ДОПУСКА:
Возвращаясь к нашему примеру 27K, четвертая полоса указывает на допуск этого сопротивление в процентах.Если полоса допуска — золото, сопротивление будет в пределах 5% выше или ниже 27K, что соответствует допуску в 1350 Ом (5% от 27000 = 1350). Это означает, что фактическое сопротивление может составлять от 25650 Ом до 28350 Ом. Ом. Золотая полоса допуска, вероятно, является наиболее распространенной на стандартном углероде. пленочные резисторы. Если полоса допуска красная, сопротивление будет в пределах 2% от 27К, или в пределах 1%, если используется коричневый цвет. Если вам не удастся раздобыть несколько очень старых резисторов, серебро, которое представляет собой 10% допуск, редко (если вообще когда-либо) будет рассматриваться как допуск группа.Но он по-прежнему является частью стандарта цветовой кодировки, поэтому был включен в остальные из них.

5 ЦВЕТОВЫЕ КОДЫ РЕЗИСТАТОРА

, ОБЫЧНО ИСПОЛЬЗУЕМЫЕ НА РЕЗИСТОРАХ ИЗ МЕТАЛЛИЧЕСКОЙ ПЛЕНКИ
Рисунок на Слева показан резистор с пятицветной полосой вместе с таблицей преобразования цветов в позволяют рассчитать значение любого из этого типа. Как и в случае с 4 типами полос, все цвета должны быть преобразованы в их назначенные значения для расчета сопротивления, и снова результат всегда выражается в Омах.

НЕДОПУСТИМЫЕ ЦВЕТА:
Как и в приведенной выше 4-полосной диаграмме, в этой тоже есть определенные цвета, отсутствующие в различных столбцы, опять же там, где их вряд ли можно будет найти. Первый столбец никогда не будет черным, а в четвертом столбце никогда не будет цвета с присвоенным значением выше 4 — желтый. Металл Номиналы пленочного резистора варьируются от 10 Ом — коричневый, черный, черный, золотой, до 1 МОм — коричневый, черный, черный, желтый. Расчет значения очень похож на метод, описанный для 4 типа полос.Используя наш пример 15K слева, это достигается следующим образом;

ЗНАЧИМЫЕ ЦИФРЫ и МНОЖЕСТВЕННЫЕ ПОЛОСЫ:
Первые три цвета представляют три числовых значения, известные как значащие цифры, которые просто записываются по мере появления, т.е. «1», «5» и «0». Затем полоса множителя указывает, сколько нулей нужно записать после первые три цифры, а здесь нам нужны две из них — «00». Это оно! Теперь у вас есть значение сопротивления этого резистора в Ом — 15000 Ом, а поскольку каждые 1000 Ом представляет килом или «1 кОм», значение в примере составляет 15 кОм.

ЗОЛОТАЯ или СЕРЕБРЯНАЯ ПОЛОСА МНОЖИТЕЛЯ:
ДОЛЖНЫ быть представлены значения этих резисторов. пятью цветными полосами. Однако только значения от 100 Ом и выше могут быть представлены с помощью «обычная» цветовая гамма от черного до белого, поскольку минимально допустимый цвет Последовательность Коричневый, Черный, Черный, Черный — 100 Ом. На рисунке справа показано, как представлены значения ниже 100 Ом. Используя золото в качестве полосы множителя, рассчитанное сопротивление должно быть РАЗДЕЛЕННО на 10. В этом примере показан резистор 47 Ом.Если полоса умножителя была серебряной, значение стало бы 4,7 Ом, но это всего лишь гипотеза, так как эти типы резисторов обычно не имеют значений ниже 10 Ом, поэтому очень маловероятно, что вы когда-нибудь найдете такой с серебряной лентой множителя.

ПОЛОСА ДОПУСКА:
Возвращаясь к нашему примеру 15K, пятая полоса указывает допуск этого сопротивления. в процентах. Если полоса допуска красная, сопротивление будет в пределах 2% выше или ниже 15K, что соответствует допуску в 300 Ом (2% от 15000 = 300).Это означает фактическое сопротивление может составлять от 14 700 Ом до 15 300 Ом. Если полоса допуска коричневая, сопротивление будет в пределах 1%. Золотые или серебряные полосы допуска вряд ли когда-нибудь увидишь на этих резисторах. Но они по-прежнему являются частью цветового кода. стандартные, поэтому были включены с остальными.

ЦВЕТОВЫЕ КОДЫ 6-ПОЛОСНОГО РЕЗИСТОРА

ИСПОЛЬЗУЕТСЯ НА РЕЗИСТОРАХ ИЗ МЕТАЛЛИЧЕСКОЙ ПЛЕНКИ
Рисунок на Слева показан резистор с шестицветной полосой — в нашем примере 620К.Прежде чем вы сделаете запрос сопротивление, да, это стандартное значение, доступное для данного диапазона резисторов. Эти рассчитывается точно так же, как и пять указанных выше типов с полосами. Единственная разница добавление шестой полосы, указывающей температурный коэффициент резистора, который указывается в миллионных долях на градус Цельсия — PPM /.

В большинстве случаев вы столкнетесь с коричневой шестой полосой, так как это является наиболее распространенной производимой версией, так как она обеспечивает достаточно стабильную резистор в широких условиях эксплуатации.Однако можно получить «специальные» с температурным коэффициентом ближе, чем 100 ppm / C, они используются в более точных или более критичных к температуре приложениях, поэтому не удивляйтесь, если вы встречаются с ними время от времени.

ЧТО ОЗНАЧАЕТ ТЕРМИН «PPM / C»?

УСТОЙЧИВОСТЬ РЕЗИСТОРА ОТ ТЕМПЕРАТУРЫ

Определяет температурный коэффициент диапазона резистора. Не путайте это с номиналом резистора, это относится к составу резистора, будь то углеродная пленка, металлическая пленка, намотанная или что-то еще.Термин «ppm / C» не относится к резисторы, он применяется практически ко всем электронным компонентам, когда-либо производившимся, и мера того, насколько будет дрейфовать стабильность этого компонента в ответ на изменение температура. Обычно это измеряется в частях на миллион на градус. по Цельсию — ppm / C. Значение «частей» — это единицы, из которых Компонент измеряется, вот оно Ом. Если бы мы имели в виду конденсаторы, то единицы быть фарадами, микрофарадами или пикофарадами и т. д. Стабильность частоты осциллятора будет выражаться компании Hertz

Интересно, что большинство типов резисторов имеют указанные характеристики вплоть до рабочая температура около 70С.При этом необходимо учитывать не только окружающую среду. температуры, но также и любые факторы нагрева, влияющие на компонент в результате работы сам контур. Это может принять форму рассеяния мощности, что нормальный самоиндуцированный нагрев или вторичный нагрев, вызванный близостью других более горячие компоненты, такие как трансформаторы, силовые транзисторы и т. д.

Для упрощения расчетов мы будем использовать Пример углеродного пленочного резистора 1 МОм — 1000000 Ом (показан слева).Мы будем также предположим, что его температурный коэффициент составляет 400 ppm / C, что довольно общий для углеродных пленочных резисторов.

На каждое изменение температуры на 1 ° С наш резистор 1 МОм может сместиться на величину до 400 Ом выше или ниже указанного значения. Этот дрейф не зависит от других спецификации, установленные для резистора любого типа, к которому он относится. Другими словами, нет независимо от допуска или диапазона рабочих температур, пока он эксплуатируется в указанном температурном диапазоне сопротивление все еще может изменяться ppm / C указано.

В нашем примере выше, не считая допуска в 5%, что позволяет нашему 1 МОм резистор в диапазоне от 950 000 Ом до 1050 000 Ом при температуре до 70 ° C (5% от 1000000 = 50000 или 50K), его температурный коэффициент 400 ppm / C также позволяет дрейфовать вверх до 400 Ом на каждый 1С изменения температуры. В большинстве случаев сопротивление будет падать при повышении температуры, поэтому повышение температуры на 1 ° C может означают падение сопротивления до 400 Ом. И это касается каждого увеличения 1С в температура.

Не забывайте, что все эти допуски и температурные коэффициенты допустимые пределы для любого конкретного диапазона резисторов. Это не значит, что они будут изменить на указанные суммы, только то, что им разрешено, оставаясь в пределах их спецификации. Вы можете легко подключить два, казалось бы, одинаковых резистора. через мультиметр и дают разные результаты для каждого из них. Но пока они оба находятся в этих пределах, то с ними все в порядке.

С точки зрения разработчиков, в критически важных приложениях, таких как аналогово-цифровой (A / D) схемы преобразования и измерения температуры, спецификация ppm является одной из наиболее важные факторы, определяющие тип используемых резисторов, в сочетании с Разработчики предусмотрели диапазон рабочих температур готовой схемы.

Я ПРАВИЛЬНО ЧИТАЮ РЕЗИСТОР?

ИЛИ КАК Я ЗНАЮ, ЧТО Я ЧИТАЮ ПРАВИЛЬНО?

Ответ на этот вопрос прост — опыт! Учитывая все эти типы резисторов, с их различными методами идентификации легко неверно истолковать ценность некоторых резисторы, и это довольно часто случается.Однако по мере того, как вы становитесь более знакомыми используя цветовые коды, вы начнете понимать, что только определенные последовательности и значения резисторов доступны, и скоро вы привыкнете к тому, что они находятся.

В качестве экономии, вы всегда можете попытаться вычислить значение, а затем проверить свое сравните с таблицей номиналов резистора, чтобы увидеть, указан ли он там. Если это не так, попробуйте прочтите его снова, начиная с другого конца, затем проверьте еще раз. Обычно это только проблема с пяти- и шестиполосными металлопленочными резисторами, потому что стандартные четыре Типы углеродной пленки с полосами почти всегда будут иметь золотую полосу допуска на одном конце, чтобы вы знали, что это нужно читать с другого конца.

ДЛЯ ЧЕГО ИСПОЛЬЗУЮТСЯ КОДЫ РЕЗИСТОРОВ?

С развитием технологий размеры резисторов значительно уменьшились по сравнению с их оригинального размера, и устройства для поверхностного монтажа (SMD) или чип-резисторы в настоящее время используются во многих количества по производителям оборудования. Они действительно крошечные по сравнению с сегодняшними резисторы средней (скажем) ватт, что делает использование цветовой кодировки непрактичным, не только с производственной точки зрения, но также и для бедных конечных пользователей, которым нужно попробовать читать их!

БУКВЕННО-ЦИФРОВАЯ КОДИРОВКА:
Для решения этой проблемы вместо этого используется кодирование цифрами и буквами.Этот способ фактически уже несколько лет используется на различных компонентах. Фигура слева показывает однопроводную (SIL) резисторную сеть, подобные которой были лет, и современный резистор для поверхностного монтажа. Обратите внимание, они не показаны в масштабе, некоторые из резисторов SMD настолько малы, что могут поместиться между двумя контактами Сеть SIL!
КАК РАБОТАЕТ ЭТО КОДИРОВКА?
В основном эта кодировка состоит из трех цифр, иногда за которыми следует одна буква.Три числа на самом деле являются прямым отображением их эквивалентной цветовой полосы. значения, т.е. 1 — коричневый, 2 — красный, 3 — оранжевый и так далее. Где буква следует за цифрами, это означает, что обычно является диапазоном допуска, которым присвоены следующие значения; M = 20%, K = 10%, J = 5%, G = 2%, F = 1%

Изучив их, вы сможете увидеть взаимосвязь между буквенно-цифровые коды и цветные полосы. Многим людям их легче читать и понять, чем их цветовые эквиваленты.Это всего лишь два примера того, где вы найдете этот тип кодирования. Регулярно используются и многие другие, в частности на резисторах высокой точности и других компонентах, где объем доступного пространства (или его отсутствие) делает цветовое кодирование непрактичным.

Нажмите здесь, чтобы вернуться

ЧТО ТАКОЕ (ИЛИ БЫЛО) ПИСАТЕЛЬ?

* ПИСАТЕЛЬ: Для младших читатели, это был своего рода механический текстовый процессор / принтер, сделанный в основном из чугуна, это было изобретено до электричества, и всегда казалось, что он весит около полтонны, даже легкие модели! Чтобы использовать старую машинку сколько угодно времени, требуются мышцы как Рэмбо, пара наушников (наушников) и обычная способность тянуть машина возвращается на расстояние до клавиатуры, после вибрации «рации» подальше от вас во время набора текста!

Один лист бумаги был вставлен за пластину и вручную повернут на место готов к вводу прямо на.Печать на этих машинах осуществлялась несколько иначе. к сегодняшним принтерам, так как печатающая головка оставалась неподвижной, а каретка тянулась справа налево тканевой лентой, прикрепленной к подпружиненному барабану. Когда бумага поля выставлены правильно, предупреждающее устройство в виде одиночного «звона» звонка сообщил вам, что вы достигли правого края бумаги и что вы только осталось около 10 символов, прежде чем все внезапно остановилось! Возврат каретки и перевод строки был вызван оператором вручную с помощью одной простой, но быстрой операции, которая включал резкий щелчок по самому большому рычагу, за который они могли ухватиться, и скольжение каретку в крайнее правое положение, пока она не остановится резко, рычаг сломался, или вся машинка перевернулась на бок! Однако последняя особенность был доступен только в стандартной комплектации на моделях с широкой тележкой! В качестве дополнительной опции на узких вагонов, это было достигнуто за счет скольжения каретки назад на гораздо более высокой скорости !.

У этих машин не было экрана VDU, памяти, масштабируемых шрифтов или графики. Тем не менее, жирный шрифт можно было получить, просто повернув каретку до слов, которые вы нужно выделить жирным шрифтом, а затем снова набрать все это поверх того, что уже было напечатаны, просто молясь, чтобы вы не нажали не ту клавишу по пути! Это тоже не позировало большая проблема, так как исправление ошибок обычно происходило всего в нескольких дюймах в виде крошечной бутылки, содержащей что-то вроде кисти для лака для ногтей с завинчивающейся крышкой, которая был погружен в раствор, который напоминал белую шелковую виниловую эмульсионную краску, но пах как химический завод! Известная как корректирующая жидкость, ее просто закрашивали поверх неправильного символа (ов) до тех пор, пока он не станет напоминать ссылку на трехмерную карту мини-кольцевой развязки или островок безопасности.Этому дали высохнуть в течение нескольких секунд, и правильные символы затем набирались поверх нарисованного «горба», что не только удаляло излишки «краски» и заменил его на требуемый символ, но также имел эффект изменения появление этого символа примерно в следующие десять или около того раз, когда он был напечатан!

Чтобы решить эту проблему, версия этой коррекции ошибок на пленке с сухим переносом была изобретена техника, известная как корректирующая бумага, которая значительно облегчила жизнь бедным машинистка.Все, что здесь требовалось, — это чтобы пленка держалась над неправильные символы, а затем введите эти символы снова. Идея заключалась в том, чтобы применить только количество корректирующего средства, необходимое для «скрытия» неправильных символов. К сожалению, любой участок пленки можно было использовать только один раз, и из-за отсутствия механическая точность пишущей машинки, возможно, необходимо было перепечатали несколько раз, прежде чем исходный отпечаток был стерт. После такого лечения смотреть спереди напечатанного документа было неплохо, но, к сожалению, наоборот напоминало то, что мог бы прочитать слепой!

Вернемся к самой машинке.Как правило, эти машины были монохромными, хотя также был доступен полный диапазон серых шкал, основанный на износе ленты и количество силы, приложенной во время набора текста. Полноцветные черные, красные и синие версии могут быть имелся за дополнительную плату, но единовременно был доступен только один цвет. Широкие модели вагонов пишущей машинки также были доступны до 24 дюймов, что, откровенно говоря, было улучшение ограничений сегодняшних современных принтеров! К сожалению, размер тела машинка с широкой кареткой не соответствовала ширине каретки, а удлиненные ножки на болтах должен был быть установлен, чтобы уравновесить вес каретки, когда она была на своего путешествия.

Печатание документов в этих системах требовало отталкивания «клавиатуры» со всеми ваша сила, чтобы создать приемлемое изображение персонажа на бумаге. Это часто было проклят как причину повреждения нежных женских ногтей, которые в настоящее время ногти были исключительно длинными. Ущерб нанесен ногтями ловя клавишу над той, которую они пытались напечатать. Возможно, это был всего лишь один из причины, по которым машинистки, которые привыкли пользоваться пишущими машинками, сказали, что близкие близость клавиш на современных компьютерных клавиатурах никогда не прижилась бы и была бы совершенно непригоден для набора текста, только на этот раз проблема будет не в повреждении ногтей, но типографских ошибок, вызванных ногтем, набирающим символ над тем, который должен печатать палец.Странно как ничего изменилось!

Нажмите здесь, чтобы вернуться

Калькулятор цветового кода резистора

• Калькуляторы электрических, радиочастотных и электронных устройств • Онлайн-преобразователи единиц

Определения и расчеты

Резистор и сопротивление

Резистор — это пассивный электрический компонент, который создает электрическое сопротивление в электронных схемах. Резисторы можно встретить практически во всех электрических цепях. Они используются для различных целей, например, для ограничения электрического тока, в качестве делителей напряжения, для обеспечения смещения активных элементов схемы, для завершения линий передачи, в цепях резистор-конденсатор в качестве компонента синхронизации… Список бесконечен.

Блок прецизионных декадных резисторов

Электрическое сопротивление резистора или электрического проводника является мерой сопротивления потоку электрического тока. Единицей измерения сопротивления в системе СИ является ом. Любой материал показывает некоторое сопротивление, кроме сверхпроводников, у которых сопротивление нулевое. Дополнительная информация об сопротивлении, удельном сопротивлении и проводимости.

Допуск резистора

Конечно, можно сделать резистор с очень точным сопротивлением, но это будет безумно дорого.Кроме того, резисторы высокой точности используются относительно редко. Для измерений используются очень дорогие резисторы. Здесь мы поговорим о недорогих резисторах, используемых в электрических схемах, не требующих высокой точности. Во многих случаях достаточно точности ± 20%. Для резистора 1 кОм это означает, что подходит любой резистор с номиналом в диапазоне от 800 Ом до 1200 Ом. Для некоторых критических компонентов допуск может быть указан как ± 1% или даже ± 0,05%. В то же время 20% резисторы сегодня найти сложно — они были обычным явлением в начале эры транзисторного радио.Резисторы 5% и 1% сегодня очень распространены. Раньше они были относительно дорогими, но сейчас это не так.

Сравнение резисторов SMD 0,1 Вт в корпусах 1608 (1,6 × 0,8 мм) с керамическим резистором 10 Вт 1 Ом

Рассеиваемая мощность

Когда электрический ток проходит через резистор, он нагревается, и электрическая энергия преобразуется в тепловая энергия, которую он рассеивает. Эта энергия должна рассеиваться резистором без чрезмерного повышения его температуры. И не только его температура, но и температура компонентов, окружающих этот резистор.Мощность, потребляемая резистором, рассчитывается как

, где В, в вольтах — это напряжение на резисторе с сопротивлением R в Ом, а I — ток в амперах, протекающий через него. Мощность, которую резистор может безопасно рассеивать в течение неопределенного периода времени без ухудшения своих характеристик, называется номинальной мощностью резистора или номинальной мощностью резистора в ваттах. Как правило, чем больше размер резистора, тем больше мощности он может рассеять.Выпускаются резисторы разной мощности, чаще всего от 0,01 Вт до сотен ватт. Угольные резисторы обычно производятся с номинальной мощностью от 0,125 до 2 Вт.

Резисторы с цветовой кодировкой 1/8 Вт, 1/4 Вт, 1/2 Вт и 1 Вт в блоке питания компьютера

Предпочтительные значения

Хотя можно изготавливать резисторы любого номинала, более полезно делать ограниченное количество компонентов, особенно с учетом того, что любой изготовленный резистор подлежит определенному допуску.Стоимость более точных резисторов намного выше, чем их менее точных аналогов. Общая логика подсказывает выбрать логарифмическую шкалу значений, чтобы все значения были равномерно распределены по логарифмической шкале и соответствовали допуску диапазона. Например, для допуска ± 10% имеет смысл охватить декаду (интервал от 1 до 10, от 10 до 100 и т. Д.) В 12 шагов: 1,0, 1,2, 1,5, 1,8, 2,2, 2,7, 3,3. , 3.9, 4.7, 5.6, 6.8, 8.2, затем 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82. Эти значения называются предпочтительными и стандартизированы как E series предпочтительных чисел, которые используются не только для резисторов, но также для конденсаторов, катушек индуктивности и стабилитронов.Каждая серия E (E3, E6, E12, E24, E48, E96 и E192) делит декаду на 3, 6, 12, 24, 48, 96 и 192 шага. Отметим, что серия E3 устарела и почти не используется.

Списки значений серии E

Современный керамический резистор 10 Вт 8,6 Ом (вверху) и резистор VZR 2 Вт 3,3 кОм, произведенные в Советском Союзе в 1969 году

Значения E6 (допуск 20%):

1 , 0; 1,5; 2,2; 3,3; 4,7; 6,8.

E12 значения (допуск 10%):

1,0; 1,2; 1,5; 1,8; 2,2; 2,7; 3,3; 3,9; 4,7; 5,6; 6,8; 8,2.

E24 значения (допуск 5%):

1,0; 1,1; 1,2; 1,3; 1,5; 1,6; 1,8; 2,0; 2,2; 2,4; 2,7; 3,0; 3,3; 3,6; 3,9; 4,3; 4,7; 5,1; 5,6; 6,2; 6,8; 7,5; 8,2; 9,1.

E48 значения (допуск 2%):

1,00; 1,05; 1,10; 1,15; 1,21; 1,27; 1,33; 1,40; 1,47; 1,54; 1,62; 1,69; 1,78; 1,87; 1,96; 2,05; 2,15; 2,26; 2,37; 2,49; 2,61; 2,74; 2,87; 3,01; 3,16; 3,32; 3,48; 3,65; 3,83; 4,02; 4,22; 4,42; 4,64; 4,87; 5,11; 5,36; 5,62; 5,90; 6,19; 6,49; 6,81; 7,15; 7,50; 7,87; 8,25; 8,66; 9,09; 9,53.

E96 значения (допуск 1%):

1,00; 1,02; 1,05; 1,07; 1,10; 1,13; 1,15; 1,18; 1,21; 1,24; 1,27; 1,30; 1,33; 1,37; 1,40; 1,43; 1,47; 1,50; 1,54; 1,58; 1,62; 1,65; 1,69; 1,74; 1,78; 1,82; 1,87; 1,91; 1,96; 2,00; 2,05; 2,10; 2,15; 2,21; 2,26; 2,32; 2,37; 2,43; 2,49; 2,55; 2,61; 2,67; 2,74; 2,80; 2,87; 2,94; 3,01; 3,09; 3,16; 3,24; 3,32; 3,40; 3,48; 3,57; 3,65; 3,74; 3,83; 3,92; 4,02; 4,12; 4,22; 4,32; 4,42; 4,53; 4,64; 4,75; 4,87; 4,99; 5,11; 5,23; 5,36; 5,49; 5,62; 5,76; 5,90; 6,04; 6,19; 6,34; 6,49; 6,65; 6,81; 6,98; 7,15; 7,32; 7,50; 7,68; 7,87; 8,06; 8,25; 8,45; 8,66; 8,87; 9,09; 9,31; 9,53; 9,76.

E192 значения (допуск 0,5% и ниже):

1,00; 1,01; 1,02; 1,04; 1,05; 1,06; 1,07; 1,09; 1,10; 1,11; 1,13; 1,14; 1,15; 1,17; 1,18; 1,20; 1,21; 1,23; 1,24; 1,26; 1,27; 1,29; 1,30; 1,32; 1,33; 1,35; 1,37; 1,38; 1,40; 1,42; 1,43; 1,45; 1,47; 1,49; 1,50; 1,52; 1,54; 1,56; 1,58; 1,60; 1,62; 1,64; 1,65; 1,67; 1,69; 1,72; 1,74; 1,76; 1,78; 1,80; 1,82; 1,84; 1,87; 1,89; 1,91; 1,93; 1,96; 1,98; 2,00; 2,03; 2,05; 2,08; 2,10; 2,13; 2,15; 2,18; 2,21; 2,23; 2,26; 2,29; 2,32; 2,34; 2,37; 2,40; 2,43; 2,46; 2,49; 2,52; 2,55; 2,58; 2,61; 2,64; 2,67; 2,71; 2,74; 2,77; 2,80; 2,84; 2,87; 2,91; 2,94; 2,98; 3,01; 3,05; 3,09; 3,12; 3,16; 3,20; 3,24; 3,28; 3,32; 3,36; 3,40; 3,44; 3,48; 3,52; 3,57; 3,61; 3,65; 3,70; 3,74; 3,79; 3,83; 3,88; 3,92; 3,97; 4,02; 4,07; 4,12; 4,17; 4,22; 4,27; 4,32; 4,37; 4,42; 4,48; 4,53; 4,59; 4,64; 4,70; 4,75; 4,81; 4,87; 4,93; 4,99; 5,05; 5,11; 5,17; 5,23; 5,30; 5,36; 5,42; 5,49; 5,56; 5,62; 5,69; 5,76; 5,83; 5,90; 5,97; 6,04; 6,12; 6,19; 6,26; 6,34; 6,42; 6,49; 6,57; 6,65; 6,73; 6,81; 6,90; 6,98; 7,06; 7,15; 7,23; 7,32; 7,41; 7,50; 7,59; 7,68; 7,77; 7,87; 7,96; 8,06; 8,16; 8,25; 8,35; 8,45; 8,56; 8,66; 8,76; 8,87; 8,98; 9,09; 9,20; 9,31; 9,42; 9,53; 9,65; 9,76; 9,88.

Цветовая кодировка резистора

Маркировка резистора

Большие резисторы, как показано на рисунке, обычно маркируются цифрами и буквами, и их легко читать. Однако значение не может быть легко напечатано даже с использованием современной технологии печати на небольших резисторах (и других электронных компонентах), особенно если они имеют цилиндрическую форму. Поэтому в течение последних 100 лет для маркировки компонентов использовались цветные полосы. Электронный цветовой код для этой цели был введен в начале 1920 года.Цветовые коды используются не только для резисторов, но и для конденсаторов, диодов, катушек индуктивности и других электронных компонентов.

Цветовой код резистора

Для резисторов используется до шести цветовых полос. Наиболее распространенным является четырехполосный цветовой код, в котором первая и вторая полосы представляют первую и вторую значащие цифры значения сопротивления, третья полоса представляет собой десятичный множитель, а четвертая полоса указывает допуск. Между третьей и четвертой полосой есть небольшой, иногда плохо различимый зазор, который помогает различать левую и правую стороны симметричного компонента.Резисторы 20% обычно маркируются всего тремя полосами — у них нет полосы допуска. Их полосы означают цифру, цифру, множитель.

Для резисторов с точностью 2% или более используются пять или более полос, а первые три полосы представляют значение сопротивления. Последняя полоса в 6-полосной маркировке представляет температурный коэффициент в ppm / K (частей на миллион на кельвин). На рисунке выше представлен принцип цветовой маркировки.

Полосы читаются слева направо. Обычно они сгруппированы ближе к левому краю.Если есть видимый зазор между последней цветной полосой и другими полосами, значит, это показывает правую сторону резистора. Кроме того, серебряные или золотые полосы (если есть) всегда на правой стороне. Когда вы определили значение по цветным полосам, сравните его с предпочтительными диаграммами значений. Если его там нет, попробуйте прочитать с другого конца. Обратите внимание на , что в этом калькуляторе цветовая маркировка выполнена в соответствии с международным стандартом IEC 60062: 2016 .

Щелкните ссылки, чтобы просмотреть примеры цветовой маркировки:

10 кОм ± 20%, 12 Ом ± 20%, 15 МОм ± 1%, 18 МОм ± 2%, 22 кОм ± 10%, 27 Ом ± 5%, 33 кОм ± 5%, 39 МОм ± 0.5%, 0,47 Ом ± 0,25%, 0,56 Ом ± 0,1%, 68 Ом ± 0,05%, 0,82 Ом ± 20%

Цифровая маркировка

Числовые значения напечатаны на резисторах для поверхностного монтажа (SMT — технология поверхностного монтажа или SMD — устройство поверхностного монтажа) больших размеров и на более крупных резисторах с осевыми выводами. Поскольку место для маркировки очень мало, иногда бывает непросто прочитать и понять номинал резистора. Маркировка в основном используется для обслуживания, потому что во время производства резисторы подаются в машины для поверхностного монтажа в лентах с соответствующей маркировкой.Многие, особенно малые резисторы SMD, вообще не имеют маркировки, и после того, как они сброшены с лент, единственный способ определить их сопротивление — это измерить.

39 × 10⁰ = 39 Ом 0,1 Вт SMD резисторы в 1608 (1,6 × 0,8 мм) корпусах

Для маркировки используется несколько систем: трех- или четырехзначное, двухзначное с буквой, трехзначное с буквой, код РКМ , и другие системы. Если вы видите только три цифры, они представляют значащие цифры, а третья — множитель. Например, 103 на резисторе SMD представляет 10 × 10³ = 10 кОм.

Четырехзначная система используется для резисторов с высокими допусками, например, для резисторов серии E96 или E192. Например, 2743 = 274 × 10³ = 274 кОм.

Для резисторов меньшего размера можно использовать другую систему. Например, для серии E96 используются две цифры плюс одна буква. Эта система может сохранить один символ по сравнению с четырехзначной системой. Это связано с тем, что E96 содержит менее 100 значений, которые могут быть представлены двумя числами, если они пронумерованы последовательно, то есть 01-100, 02-102, 03-105 и т. Д.Буква представляет множитель. Обратите внимание, что производители часто используют собственные системы. Поэтому лучший способ определить сопротивление — всегда измерить его мультиметром.

В Кодексе RKM, также называемом «нотацией R», вместо десятичного разделителя помещается буква, обозначающая единицу сопротивления, которая может не печататься надежно или просто исчезать на компонентах или дублированных документах. К тому же этот метод позволяет использовать меньше символов. Например, R22 или E22 означает 0,22 Ом, 2K7 означает 2.7 кОм и 1М5 означает 1,5 МОм.

Измерение резистора 3,3 МОм 0,5 Вт с помощью осциллографа-мультиметра

Измерение сопротивления

Сопротивление можно измерить с помощью аналогового (с помощью иглы) или цифрового омметра или мультиметра с функцией измерения сопротивления. Чтобы измерить сопротивление, подключите щупы к выводам резистора и прочтите значение. Иногда можно измерить сопротивление, не удаляя резистор из цепи. Однако перед подключением мультиметра к измеряемой цепи необходимо отключить питание схемы и разрядить все конденсаторы.

Мультиметр может использоваться не только для измерения сопротивления резисторов, но и контактного сопротивления различных компонентов переключения, таких как реле или переключатели. Например, вы можете определить, нуждается ли кнопка мыши в замене, измерив ее сопротивление, предпочтительно аналоговым мультиметром или цифровым измерителем с аналоговой полосой. Аналоговая гистограмма полезна при диагностике или настройке. Гистограмма действует как стрелка в аналоговом измерителе и может показывать колеблющееся сопротивление, когда цифровой дисплей с мигающими цифрами будет совершенно бесполезен.С помощью этого типа измерителя вы можете легко найти множество периодически возникающих проблем, например, дребезг контактов вибрирующего реле.

В заключение приведу несколько примеров:

Резистор 2,7 кОм ± 5%: красный, фиолетовый, красный, золотой

Резистор 100 кОм ± 5%: коричневый, черный, желтый, золотой.

Резистор 220 кОм ± 5%: красный, красный, желтый, золотой.

Резистор 330 кОм ± 5%: оранжевый, оранжевый, желтый, золотой.

Резистор 390 кОм ± 5%: оранжевый, белый, желтый, золотой.

Резистор 430 кОм ± 5%: желтый, оранжевый, желтый, золотой

Резистор 470 кОм ± 5%: желтый, фиолетовый, желтый, золотой

Резистор 510 кОм ± 5%: зеленый, коричневый, желтый, золотой

Резистор 560 кОм ± 5%: зеленый, синий, желтый, золотой

Резистор 750 кОм ± 5%: фиолетовый, зеленый, желтый, золотой

Резистор 910 кОм ± 5%: белый, коричневый, желтый, золотой

Рассчитать 2 %, 5%, 10% резистор SMD: x10

Рассчитайте резистор SMD 2%, 5%, 10%: x10

Резисторы:

Конденсаторы и индукторы:


Вычислить 2%, 5%, 10% резистор SMD: x10

Введите значение резистора, чтобы получить код:

Выберите код для получения значения резистора SMD: Первый символ должен быть A / B / C / D / E / F / X / Y / Z / R / S

Стандартные значения резистора SMD — декада от 100 до 1000 Ом

Допуск 2% Допуск 5% Допуск 10%
100 Ом, 110 Ом, 120 Ом, 130 Ом
150 Ом, 160 Ом, 180 Ом, 200 Ом
220 Ом, 240 Ом, 270 Ом, 300 Ом
330 Ом, 360 Ом, 390 Ом, 430 Ом
470 Ом , 510 Ом, 560 Ом, 620 Ом
680 Ом, 750 Ом, 820 Ом, 910 Ом
100 Ом, 110 Ом, 120 Ом, 130 Ом
150 Ом, 160 Ом, 180 Ом, 200 Ом
220 Ом, 240 Ом, 270 Ом, 300 Ом
330 Ом, 360 Ом, 390 Ом, 430 Ом
470 Ом , 510 Ом, 560 Ом, 620 Ом
680 Ом, 750 Ом, 820 Ом, 910 Ом
100 Ом, 120 Ом
150 Ом, 180 Ом
220 Ом, 270 Ом
330 Ом, 390 Ом
470 Ом, 560 Ом
680 Ом, 820 Ом

Другие декады сопротивления:
0.1 — 1 Ом, 1 — 10 Ом, 10 — 100 Ом, 100 — 1000 Ом, 1 — 10 кОм, 10 — 100 кОм, 100 — 1000 кОм, 1 — 10 МОм, 10 — 100 МОм

SMD резисторы с 2 Допуск%, 5% или 10% можно обозначить в формате A11 (буква, за которой следуют две цифры). Буква указывает множитель. Цифры (числа) варьируются от 01 до 60. Они имеют двойную функцию: они указывают значение и допуск одновременно. Числовые комбинации от 01 до 24 обозначают 24 значения таблицы E24 и допуск 2%. Комбинации от 25 до 48 снова указывают на 24 значения таблицы E24, но с допуском 5%.Наконец, комбинации от 49 до 60 указывают 12 значений таблицы E12 с допуском 10%. Использование буквы предотвращает путаницу с 3-значной системой маркировки. Буква находится в начале, чтобы избежать путаницы с маркировкой EIA-96 для резисторов +/- 1%. Код «D03», например, обозначает резистор 120 кОм. Число 03 указывает на 3-е значение таблицы E24 (120), а D указывает на умножение на 1000. Тогда значение будет 120 x 1000 = 120 000 Ом или 120 кОм.Число находится в диапазоне 01–24, поэтому допуск составляет 2%. Код «D27» означает то же значение (120 кОм), но с допуском 5%, потому что диапазон 25–48 означает 5%. Число 27 является третьим в этом диапазоне, что указывает на третье значение таблицы E24 — значение 120. Буква D означает умножение на 1000, как и в предыдущем примере. Код «D51» — резистор 150 кОм. Терпимость составляет 10%, потому что число находится в диапазоне от 49 до 60. Число 51 является 3-м в этом диапазоне, указывая на 3-е значение E12 — значение 150.Буква D как всегда умножается на 1000. Обратите внимание, что резисторы 2% и 5% имеют 24 возможных значения на декаду, а резисторы 10% имеют только 12 возможных значений на декаду.

Это простой онлайн-калькулятор для маркировки цветных полос резисторов, цветных полос индукторов, маркировка керамического или танталового конденсатора 3 цифрами и резистора SMD 3 цифра, 4 цифры, 10%, 5%, 2% и маркировка кода допуска 1% EIA-96 (E96).


Этот инструмент только для справки. Я не гарантирую правильность предоставленной информации. Вы используете этот сайт на свой страх и риск.

Резисторы поверхностного монтажа

  • Изучив этот раздел, вы сможете:
  • • Определите номиналы резисторов для поверхностного монтажа (SMT).
  • 3-х и 4-х значные коды.
  • Код EIA E-96.

Определение номиналов резисторов для поверхностного монтажа

Резисторы

для поверхностного монтажа (SMT) доступны в различных стандартных корпусах (форма и размер), согласованных Альянсом электронной промышленности (EIA) через Ассоциацию твердотельных технологий, ранее известную как Объединенный совет по разработке электронных устройств (JEDEC).

Этим упаковкам даны идентификационные номера, основанные на (приблизительном) размере «посадочного места» компонента, измеряемом в дюймах, т.е.е. площадь, которую компонент занимает на печатной плате. Пакеты, перечисленные ниже, обычно используются для резисторов и конденсаторов.

Таблица 2.3.1 Пакеты SMT

Поскольку резисторы для поверхностного монтажа очень малы, для полос цветовой кодировки недостаточно места. Маркировка, используемая для обозначения номинала резистора, состоит из 3 или 4 букв или цифр, которые легче читать с помощью увеличительного стекла.

Чтение кодов усложняется из-за использования ряда различных кодов.Чаще всего используется трехзначный код, который работает аналогично полосам цветового кода на резисторах с проводным концом.

Первые два числа дают первые две цифры номинала резистора, а третья цифра дает количество нулей (или коэффициент умножения).

Рис. 2.3.1 SMT резисторы


с трехзначным кодом

Например:

Резистор с маркировкой 332 — 3300 или 3,3 кОм (или 3K3 с буквой K вместо десятичной точки). Резистор с маркировкой 475 равен 4700000 или 4.7 МОм (или 4M7 с буквой M вместо десятичной точки).

Для резисторов менее 100 Ом последняя цифра будет 0, что означает НЕТ нулей. Следовательно, 33 Ом будет иметь маркировку 330 (то есть тридцать три и без нулей), хотя некоторые резисторы могут иметь маркировку 33R (чтобы избежать путаницы!).

Резистор на 330 Ом будет обозначен как 331 (тридцать три с одним нулем).

Что делать, если значение еще ниже, например 4,7 Ом?

Затем десятичная точка заменяется буквой R, чтобы получить 4R7.

Существует также 4-значный код, используемый для резисторов с низкими допусками +/- 1% или меньше, который дает 3 цифры значения и использует четвертую цифру для количества нулей (множитель).

Используя этот код, резистор на 10 Ом будет обозначен как 10R0, 100 Ом — на отметке 1000, а 1 кОм — на 1001 и т. Д.

Схема кодирования EIA-96

Альтернативной схемой для 3- и 4-значных кодов является код EIA-96, который использует две цифры и букву для обозначения любого из 96 стандартных значений в диапазоне E96.

Каждый двузначный цифровой код относится к одному из 96 значений в диапазоне допуска E96 +/- 1% для резисторов, показанных в таблице 2.3.2. За этими цифрами следует буква, обозначающая один из восьми множителей, показанных в таблице 2.3.3 буквенных множителей EIA_96.

Таблица 2.3.2 Цифровые коды SMT E96

Таблица 2.3.3 Буквенные коды умножителей EIA-96

Рис. 2.3.2 Кодировка EIA-96


1M58 +/- 1% Резистор

Например, резистор, показанный на рис./ как [YWF> r Jk Չ ‘% uH.c ᓟ, p]} 9xE2_ конечный поток endobj 11 0 объект > / XObject >>> / Аннотации [8 0 R 9 0 R] / Родитель 5 0 R / MediaBox [0 0 612 792] >> endobj 13 0 объект > / Подтип / Ссылка / C [0 0 1] / Граница [0 0 0] / Прямоугольник [63 3,34 103,45 10,74] >> endobj 14 0 объект > / Подтип / Ссылка / C [0 0 1] / Граница [0 0 0] / Прямоугольник [63 3,34 103,45 10,74] >> endobj 15 0 объект > / Подтип / Ссылка / C [0 0 1] / Граница [0 0 0] / Прямоугольник [63 3,34 103,45 10,74] >> endobj 16 0 объект > поток x10Ew⏰i: @ VDI% D ڥ i # 3 ‘얖 tk ֎ BA) `v-YlWEL & = Sj \ FqyHU] CUox5 |] wa5Y۳Bȥ ) 0su & HI / KT ޿ sk0N8> H конечный поток endobj 17 0 объект > / XObject >>> / Аннотации [13 0 R 14 0 R 15 0 R] / Родительский 5 0 R / MediaBox [0 0 612 792] >> endobj 19 0 объект > / Подтип / Ссылка / C [0 0 1] / Граница [0 0 0] / Прямоугольник [63 3.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *