+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Устройство Генератора Переменного Тока и Принцип Действия

Мощный тяговый генератор переменного тока – строение

Здравствуйте, ценители мира электрики и электроники. Если вы частенько заглядываете на наш сайт, то наверняка помните, что совсем недавно у нас вышел достаточно объемный материал про то, как устроен и работает генератор постоянного тока. Мы подробно описали его строение от самых простых лабораторных прототипов, до современных рабочих агрегатов. Обязательно почитайте, если еще этого не сделали.

Сегодня мы разовьем эту тему, и разберемся, в чем заключается принцип действия генератора переменного тока. Поговорим о сферах его применения, разновидностях и много еще о чем.

Теоретическая часть

Основной принцип работы альтернатора

Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.

Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.

Базовые принципы

Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.

  • Работают такие устройства за счет электромагнитной индукции, когда при вращении в магнитном поле катушки из токопроводящего материала (обычно медная проволока), в ней возникает электродвижущая сила (ЭДС).
  • Ток начинает образовываться в тот момент, когда проводники начинают пересекать магнитные линии силового поля.

Строение простейшего электромагнитного генератора

  • Причем пиковое значение ЭДС в проводнике достигается при прохождении им главных полюсов магнитного поля.
    В те моменты, когда они скользят вдоль силовых линий, индукция не возникает и ЭДС падает до нуля. Взгляните на любую схему из представленных – первое состояние будет наблюдаться, когда рамка примет вертикальное положение, а второе – когда горизонтальное.

Генератор переменного тока — как устроен

  • Для лучшего понимания протекающих процессов нужно вспомнить правило правой руки, изучавшееся всеми в школе, но мало кем помнящееся. Суть его заключается в том, что если расположить правую руку так, чтобы силовые линии магнитного поля входили в нее со стороны ладони, большой палец, отведенный в сторону, укажет направление движения проводника, а остальные пальцы будут указывать на направление возникающей в нем ЭДС.
  • Взгляните на схему выше, положение «а». В этот момент ЭДС в рамке равно нулю. Стрелочками показано направление ее движения – часть рамки А двигается в сторону северного полюса магнита, а Б – южного, достигнув которых ЭДС будет максимальным. Применяя описанное выше правило правой руки, мы видим, что ток начинает течь в части «Б» в нашу сторону, а в части «А» – от нас.
  • Рамка вращается дальше и ток в цепи начинает падать, пока рамка снова не займет горизонтальное положение (в).
  • Дальнейшее вращение приводит к тому, что ток начинает течь в обратном направлении, так как части рамки поменялись местами, если сравнивать с начальным положением.

Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.

Переменный ток

В его честь была названа частота тока

Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.

Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.

Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.

Мощнейшие генераторы, установленные на Пушкинской ГЭС

Строение генератора переменного тока

Как устроен генератор переменного тока, в принципе, понятно, но вот, сравнивая его с собратом для выработки постоянного, не сразу можно уловить разницу.

Основные рабочие части и их подключение

Если вы прочли предыдущий материал, то наверняка помните, что рамка в простейшей схеме была соединена с коллектором, разделенным на изолированные контактные пластины,  а тот, в свою очередь, был связан со щетками, скользящими по нему, через которые и была подключена внешняя цепь.

За счет того, что пластины коллектора постоянно меняются щетками, не происходит смены направления тока – он просто пульсирует, двигаясь в одном направлении, то есть коллектор является выпрямителем.

Устройство и принцип действия генератора переменного тока

  • Для переменного тока такого приспособления не нужно, поэтому его заменяют контактные кольца, к которым привязаны концы рамки. Вся конструкция вместе вращается вокруг центральной оси. К кольцам примыкают щетки, которые также по ним скользят, обеспечивая постоянный контакт.
  • Как и в случае с постоянным током, ЭДС, возникающие в разных частях рамки, будут суммироваться, образуя результирующее значение этого параметра. При этом во внешней цепи, подключенной через щетки (если подсоединить к ней резистор нагрузки RH), будет протекать электрический ток.
  • В рассмотренном выше примере «Т» равняется полному обороту рамки. Отсюда можно сделать логичный вывод, что частота тока, вырабатываемая генератором, напрямую зависит от скорости вращения якоря (рамки), или другими словами ротора, в секунду.
    Однако это касается только такого простейшего генератора.

Трехфазные генераторы переменного тока и устройство их

Если увеличить число пар полюсов, то в генераторе пропорционально возрастет и число полных изменений тока за один оборот якоря, и частота его будет измерять иначе, по формуле: f = np, где f – это частота, n – число оборотов в секунду, p – количество пар магнитных полюсов устройства.

  • Как мы уже писали выше, течение переменного тока графически изображается синусоидой, поэтому такой ток еще называется и синусоидальным. Сразу можно выделить основные условия, задающие постоянство характеристик такого тока – это равномерность магнитного поля (постоянная его величина) и неизменная скорость вращения якоря, в котором он индуктируется.
  • Для того чтобы сделать устройство достаточно мощным, в нем применяются электрические магниты. Обмотка ротора, в которой индуцируется ЭДС, в действующих агрегатах тоже не является рамкой, как мы показывали в схемах выше.
    Применяется очень большое количество проводников, которые соединены друг с другом по определенной схеме

Интересно знать! Образование ЭДС происходит не только тогда, когда проводник смещается относительно магнитного поля, но и наоборот, когда двигается само поле относительно проводника, чем активно и пользуются конструкторы электродвигателей и генераторов.

  • Данное свойство позволяет размещать обмотку, в которой индуктируется ЭДС, не только на вращающейся центральной части устройства, но и на неподвижной части. При этом в движение приводится магнит, то есть полюсы.

Синхронный генератор электрического тока и принцип действия этого устройства

  • При таком строении внешняя обмотка генератора, то есть силовая цепь, не нуждается ни в каких подвижных частях (кольцах и щетках) – соединение выполняется жесткое, чаще болтовое.
  • Да, но можно резонно возразить, мол, эти же элементы потребуется установить на обмотке возбуждения. Так и есть, однако сила тока, протекающая здесь, будет намного меньше итоговой мощности генератора, что значительно упрощает организацию подвода тока. Элементы будут малы по размерам и массе и очень надежны, что делает именно такую конструкцию самой востребованной, особенно для мощных агрегатов, например, тяговых, устанавливаемых на тепловозах.
  • Если же речь идет о маломощных генераторах, где токосъем не представляет каких-то сложностей, поэтому часто применяется «классическая» схема, с вращающейся якорной обмоткой и неподвижным магнитом (индуктором).

Совет! Кстати, неподвижная часть генератора переменного тока называется статором, так как она статична, а вращающаяся – ротором.

Вращать легче центральную часть

Виды генераторов переменного тока

Классифицировать и отличить генераторы можно по нескольким признакам. Давайте назовем их.

Трехфазные генераторы

Отличаться они могут по количеству фаз и быть одно-, двух- и трехфазными. На практике наибольшее распространение получил последний вариант.

Схема трехфазного генератора

  • Как видно из картинки выше, силовая часть агрегата имеет три независимые обмотки, расположенные на статоре по окружности, со смещением друг относительно друга на 120 градусов.
  • Ротор в данном случае представляет собой электромагнит, который, вращаясь, индуктирует в обмотках переменные ЭДС, которые сдвинуты друг относительно друга во времени на одну третью периода «Т», то есть такта. По сути, каждая обмотка представляет собой отдельный однофазный генератор, который питает переменным током свою внешнюю цепь R. То есть мы имеет три значения тока I(1,2,3) и такое же количество цепей. Каждая такая обмотка вместе с внешней цепью получила название фазы.

Смещение синусоид на 1/3 такта

  • Чтобы сократить число проводов, ведущих к генератору, три обратных провода, ведущих к нему от потребителей энергии, заменяют одним общим, по которому будут проходить токи от каждой фазы. Такой общий провод называют нулевым
  • Соединение всех обмоток такого генератора, когда их концы соединяются друг с другом, называется звездой. Отдельные три провода, соединяющие начала обмоток с потребителями электроэнергии называются линейными – по ним и идет передача.
  • Если нагрузка всех фаз будет одинаковой, то необходимость в нулевом проводе полностью отпадет, так как общий ток в нем будет равен нулю. Как так получается, спросите вы? Все предельно просто – для понятия принципа достаточно сложить алгебраические значения каждого синусоидального тока, сдвинутых по фазе на 120 градусов. Схема выше поможет понять этот принцип, если представить, что кривые на нем – это изменение тока в трех фазах генератора.
  • Если же нагрузка в фазах будет неодинаковой, то нулевой провод начнет пропускать ток. Именно поэтому распространена 4-х проводная схема подключения звездой, так как она позволяет сохранять электрические приборы, включенные в этот момент в сеть.

Варианты соединения обмоток у трехфазного генератора

  • Напряжение между линейными проводами называется линейным, тогда как напряжение на каждой фазе – фазным. Токи, протекающие в фазах, являются и линейными.
  • Схема подключения звездой не является единственной. Существует и другой вариант последовательного подключения трех обмоток, когда конец одной соединен с началом второй, и так далее, пока не образуется замкнутое кольцо (см. схему выше «б»). Исходящие от генератора провода подключаются в местах соединения обмоток.
  • В таком случае фазовые и линейные напряжения будут одинаковыми, а ток линейного провода будет больше фазного, при их одинаковой нагрузке.
  • Такое соединение также не нуждается в нулевом проводе, в чем и заключается основное преимущество трехфазного генератора. Наличие меньшего количества проводов делают его проще, и цена его ниже, из-за меньшего количества используемых цветных металлов.

Принципиальная схема генератора тока

Еще одной особенностью трехфазной схемы подключения является появление вращающегося магнитного поля, что позволяет создавать простые и надежные асинхронные электродвигатели.

Но и это не все. При выпрямлении однофазного тока на выходе выпрямителя получается напряжение с пульсациями от нуля до максимального значения. Причина, думаем, ясна, если вы поняли основной принцип работы такого устройства. Когда же присутствует сдвиг по времени фаз, пульсации сильно уменьшаются, не превышая 8%.

Различие по виду

Отличаются генераторы и по виду, которых существует 2:

Синхронный генератор

  • Синхронный генератор переменного тока – главная особенность такого агрегата заключается в жесткой связи частоты переменной ЭДС, которая наведена в обмотке и синхронной частотой вращения, то есть вращения ротора.

Принцип действия и устройство синхронного генератора.

  1. Взгляните на схему выше. На ней мы видим статор с трехфазной обмоткой, соединенной по треугольной схеме, которая мало чем отличается от той, что стоит на асинхронном двигателе.
  2. На роторе генератора располагается электромагнит с обмоткой возбуждения, питающаяся от постоянного тока, который может быть подан на него любым известным способом – об этом подробнее будет расписано далее.
  3. Вместо электромагнита может быть применен постоянный, тогда необходимость в скользящих частях схемы, в виде щеток и контактных колец, отпадает вовсе, на такой генератор не будет достаточно мощным и не сможет нормально стабилизировать выходные напряжения.
  4. К валу ротора подключается привод – любой двигатель, создающий механическую энергию, и он приводится в движение с определенной синхронной скоростью.
  5. Так как магнитное поле главных полюсов вращается вместе с ротором, начинается индукция переменных ЭДС в обмотке статора, которые можно обозначить как Е1, Е2 и Е3. Эти переменные будут одинаковыми по значению, но как уже не раз говорилось, смещенными на 120 градусов по фазе. Вместе эти значения образуют трехфазную систему ЭДС, которая симметрична.
  6. К точкам С1,С2 и С3 подключается нагрузка, и на фазах обмотки в статоре появляются токи I1,I2,и I В это время каждая фаза статора сама становится мощным электромагнитом и создает вращающееся магнитное поле.
  7. Частота вращения магнитного поля статора будет соответствовать частоте вращения ротора.

Асинхронный электрический двигатель

  • Асинхронные генераторы – их отличает от описанного выше примера то, что частоты ЭДС и вращения ротора жестко не привязаны друг к другу. Разница между этими параметрами называется скольжением.
  1. Электромагнитное поле такого генератора в обычном рабочем режиме оказывает под нагрузкой тормозной момент на вращение ротора, поэтому частота изменения магнитного поля будет меньшим.
  2. Эти агрегаты не требуют для создания сложных узлов и применения дорогих материалов, поэтому нашли широкое применение, как электрические двигатели для транспорта, из-за легкого обслуживая и простоты самого устройства. Данные генераторы устойчивы к перегрузкам и коротким замыканиям, однако на устройствах сильно зависящих от частоты тока они неприменимы.

Способы возбуждения обмотки

Последнее различие моделей, которое хотелось бы затронуть, связано со способом запитки возбуждающей обмотки.

Тут можно выделить 4 типа:

  1. Питание на обмотку подается через сторонний источник.
  2. Генераторы с самовозбуждением – питание берется от самого генератора, при этом напряжение выпрямляется. Однако находясь в неактивном состоянии, такой генератор не сможет выработать достаточного напряжения, чтобы стартовать, для чего в схеме применяется аккумулятор, который будет задействован во время старта.
  3. Вариант с обмоткой возбуждения, питающейся от другого генератора меньшей мощности, установленного с ним на одном валу. Второй генератор уже должен стартовать от стороннего источника, например, того же аккумулятора.
  4. Последняя разновидность вообще не нуждается в подаче питания на обмотку возбуждения, так как ее у него нет, ведь применяется в устройстве постоянный магнит.

Применение генераторов переменного тока на практике

Промышленное производство мощных генераторов

Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.

Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.

Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.

Автомобильные генераторы

На фото — электрический генератор для автомобиля

Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.

Принципиальная схема автомобильного генератора

Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.

Для выпрямления трехфазного тока используется несколько диодов.

Генератор на жидком топливе

Бензиновый генератор

Устройство бензинового генератора переменного тока, ровно, как и дизельного, мало чем отличается от того, что установлен в вашем автомобиле, за исключением нюанса, что ток он будет выдавать, как положено, переменный.

Из особенностей можно выделить то, что ротор агрегата всегда должен вращаться с одной скоростью, так как при перепадах выработка электроэнергии становится хуже. В этом кроется существенный недостаток подобных устройств – подобный эффект происходит при износе деталей.

Интересно знать! Если к генератору подключить нагрузку, которая будет ниже рабочей, то он не будет использовать свою мощность на полную, съедая часть жидкого топлива впустую.

Панель управления генератора

На рынке представлен большой выбор подобных агрегатов, рассчитанных на разную мощность. Они пользуются большой популярность за счет своей мобильности. При этом инструкция по пользованию предельно проста – заливаем своими руками топливо, запускаем двигатель поворотом ключа и подключаемся…

На этом, пожалуй, закончим. Мы разобрали назначение и общее устройство этих приборов  максимально просто. Надеемся, генератор переменного тока и принцип его действия стали к вам чуточку ближе, и с нашей подачи вы захотите погрузиться в увлекательный мир электротехники.

Автомобильный генератор — как работает, из чего состоит и устройство

Генератор — основной источник электроэнергии машины. Расскажем подробно как работает, из чего состоит и его устройство внутри. Информация подойдет для начинающих и опытных автолюбителей.

Как работает

При пуске двигателя автомобиля основным потребителем электроэнергии является стартер, сила тока достигает сотен ампер, что вызывает значительное падение напряжения аккумулятора. В этом режиме потребители питаются только от аккумулятора, который интенсивно разряжается. Сразу после пуска двигателя генератор становится основным источником электроснабжения. Генератор авто является источником постоянной подзарядки аккумуляторной батареи во время работы двигателя. Если он не будет работать, аккумулятор быстро разрядиться. Он обеспечивает требуемый ток для заряда АКБ и работы электроприборов. После подзарядки аккумулятора, генератор снижает зарядный ток и работает в штатном режиме.

При включении мощных потребителей (например, обогревателя заднего стекла, фар) и малых оборотов двигателя суммарный потребляемый ток может быть больше, чем способен отдать генератор. В этом случае нагрузка ляжет на аккумулятор, и он начнет разряжаться.

Привод и крепление

Привод осуществляется от шкива коленчатого вала ременной передачей. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток. На современных машинах привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра и, следовательно, получать высокие передаточные отношения. Натяжение поликлинового ремня осуществляется натяжными роликами при неподвижном генераторе.

Устройство и из чего состоит

Любой генератор автомобиля содержит статор с обмоткой, зажатый между двумя крышками — передней, со стороны привода, и задней, со стороны контактных колец. Генераторы крепятся в передней части двигателя болтами на специальных кронштейнах. Крепежные лапы и натяжная проушина находятся на крышках. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором. Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, а «компактной» конструкции — еще на цилиндрической части над лобовыми сторонами обмотки статора. На крышке со стороны контактных колец крепятся щеточный узел, который объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности.

Статор генератора

1 — сердечник, 2 — обмотка, 3 — пазовый клин, 4 — паз, 5 — вывод для соединения с выпрямителем

Статор набирается из стальных листов толщиной 0.8…1 мм, но чаще выполняется навивкой «на ребро». При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой наружной поверхности.

Необходимость экономии металла привела к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками. Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда.

Ротор генератора

а — в сборе; б — полюсная система в разобранном виде; 1,3- полюсные половины; 2 — обмотка возбуждения; 4 — контактные кольца; 5 — вал

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами — полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.

Валы роторов выполняются из мягкой автоматной стали. Но при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива.

Во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от поворота при затяжке гайки крепления шкива, или при разборке генератора, когда необходимо снять шкив и вентилятор.

Щеточный узел

Это конструкция, в которой размещаются щетки т.е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов — меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными. Они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин.

Выпрямительные узлы

Применяются двух типов. Это пластины-теплоотводы, в которые запрессовываются диоды силового выпрямителя или конструкции с сильно развитым оребрением и диоды припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы или в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками.

Наиболее опасным является замыкание пластин теплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи и возможен пожар.


Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы

Это радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами. Посадка шариковых подшипников на вал со стороны контактных колец — обычно плотная, со стороны привода — скользящая, в посадочное место крышки наоборот — со стороны контактных колец — скользящая, со стороны привода — плотная. Охлаждение генератора авто осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места — к выпрямителю и регулятору напряжения.
Система охлаждения: а — устройства обычной конструкции; б — для повышенной температуры в подкапотном пространстве; в — устройства компактной конструкции. Стрелками показано направление воздушных потоков На автомобилях с плотной компоновкой подкапотного пространства применяют генераторы со специальным кожухом, через который в него поступает холодный забортный воздух. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Для чего нужен регулятор напряжения

Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, встроенными внутрь корпуса. Схемы их исполнения и конструктивное оформление могут различаться, но принцип работы одинаков.

Регуляторы напряжения обладают свойством термокомпенсации — изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С. Некоторые модели выносных регуляторов имеют ручные переключатели уровня напряжения (зима/лето).

Генератор. Его специфика и принцип работы

Генератор – это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в исходную электрическую энергию.

Необходимо знать, что генератор вовсе не “производит” электрическую энергию. На самом деле прибор применяет механическую энергию, которая подается к нему, чтобы направить электрические заряды, движущиеся в проводе, через внешнюю электрическую цепь. Эта совокупность электрических зарядов составляет выходной электрический ток, подаваемый генератором. Рабочий механизм такого устройства понятен, если учитывать то, что генератор является аналогом водяного насоса, что способствует потоку воды, однако не «производит» воду, которая движется сквозь него.

Нововведенные генераторы выполняют свою работу исходя из принципа электромагнитной индукции, впервые исследованной Майклом Фарадеем. Изобретатель сделал открытие, согласно которому заряженный электрический поток может быть спровоцирован переносом непосредственного руководителя электроэнергии, такого как проволока с электрическим зарядом, к центру магнитного поля. Это перемещение генерирует различное напряжение между двумя концами проволоки или электропроводника, что провоцирует электрические заряды, которые в дальнейшем будут производить электрический ток.

Основные составляющие генератора:

  1. Двигатель
  2. Генератор переменного тока
  3. Топливная система
  4. Регулятор напряжения
  5. Системы охлаждения и выхлопа
  6. Смазочная система
  7. Зарядное устройство
  8. Панель управления
  9. Каркас

1. Двигатель является основой механической энергии, поставляемой к генератору. Размер двигателя прямо пропорционален максимальному объёму выходной энергии, которую способен обеспечить генератор. К тому же, топливо, используемое в двигателях, зависит от габаритов самого устройства. Двигатели малой емкости функционируют на дизельном топливе, а большие двигатели – на природном газе, бензине, а также на пропане в сжиженной или газообразной форме.

Кроме того, внутри цилиндра двигателя есть специальный чехловой рукав в качестве своеобразной обшивки, что, в свою очередь, предотвращает износ внутренней конструкции.

Ученые создали еще один вид двигателя с расположением клапанов сверху. Такая конструкция не похожа на другие виды двигателей, поскольку впускные и выпускные клапаны расположены в передней части цилиндра. Такие двигатели удобны в использовании благодаря компактному дизайну, легкому принципу работы, массивности каркаса, низких уровнях шума и загрязнения окружающей среды в процессе работы. Однако, стоимость двигателей такого качества значительно выше других.

2. Генератор переменного тока – это один из элементов генератора, который преобразует механическую входную энергию двигателя в электрическую выходную. В нем содержатся стойкие и движущиеся детали, что в дальнейшей работе вызывает движение между магнитным и электрическим полями, которые создают электрическую энергию, а его металлический корпус обеспечивает долговечность устройства.

Примером неподвижной детали есть статор. В нем содержится скопление проводников электроэнергии, намотанных на катушки. Ротор – движущийся компонент, который вращается внутри магнитного поля благодаря индукции магнитов источника постоянного тока.

3. Топливная система. Стандартный топливный бак с достаточной емкостью и мощностью может обеспечить работу генератора на протяжении 6-8 часов. Трубы топливного бака и двигателя соединены между собой. По ним топливо поступает из бака к двигателю (линия подачи), а затем из двигателя в резервуар (линия отдачи). Вентиляционная труба предотвращает накопление давления или вакуума установки. Переливная труба в качестве посредника между топливным баком и дренажной трубой не позволяет переполнять бак при заправке и предупреждает попадание жидкости на генератор. Электрический топливный насос поставляет топливо из резервуара к дневному баку. Фильтр очищает топливо от воды и примесей во избежание коррозии и загрязнения. Распылитель топлива распределяет необходимый объём топлива в камеру сгорания двигателя.

4. Регулятор напряжения настраивает выходное напряжение генератора и превращает его переменный ток в постоянный. Затем регулятор напряжения направляет этот постоянный ток на подборку вторичных обмоток в статоре, которые в свою очередь провоцируют поток переменного тока. В данных обмотках содержатся выпрямители тока, которые отвечают за конвертирование тока в постоянный. Этот поток постоянного тока подается к ротору (установке) для создания переменного тока соответственно.

Этот цикл длится до момента производства генератором выходного напряжения, равного его полной рабочей способности. В условиях большей емкости генератора, регулятор напряжения генерирует меньший поток переменного тока. Когда генератор работает на полную мощность, этот регулятор вызывает достаточный поток постоянного тока для поддержания генератора при полном ходе работы.

5. Система охлаждения. При непрерывном процессе работы генератора (обязательно в хорошо проветриваемом помещении), его составляющие в определенной степени нагреваются. Для этого и необходима система охлаждения и вентиляции, чтобы удалить тепло, которое накопилось во время рабочего цикла. Для охлаждения обычно применяют пресную воду или водород, которые изымают тепло из генератора и транспортируют его по теплообменнику ко вторичной обмотке, в ней содержится химическая формула Н2О с минералами в качестве охладителя.

Система выхлопа. Выхлопные газы, выделяемые генератором, подобные тем, что возникают в дизельных или газовых двигателях и содержат ядовитые токсичные вещества. Поэтому, необходимо обеспечить дизельный генератор выхлопной системой высокого качества для утилизации опасных газов во избежание смерти на предприятиях в результате удушения чадным газом. Составляющие элементы стандартных выхлопных труб – это чугун, кованое железо или сталь для большей безопасности.

6. Смазочная система. Так как внутри генератора имеются движущиеся детали, для этого них необходима регулярная смазка специальными маслами для долговечности и плавного скольжения по внутренней конструкции генератора.

7. Зарядное устройство. Запуск генератора осуществляется при помощи батареек, а его зарядка – при помощи автоматического аккумулятора. Если напряжение при зарядке выше нормы, это сокращает продолжительность работы аккумулятора. Нержавеющая сталь, из которой изготавливаются такие зарядные устройства, останавливает процесс коррозии.

8. На панели управления отображаются различные приложения, датчики параметров двигателя, которые включают в себя давление масла, температуру теплоносителя, напряжение аккумулятора, скорость вращения двигателя и срок службы, датчики генератора, а именно счетчики для измерения выходного тока и напряжения, рабочей частоты, а также автоматический включение и отключение. Другие элементы управления представляют собой переключатель фазового селектора, частотный выключатель и переключатель управления двигателем на ручной или автоматический режим.

9. Каркас. Дизельные генераторы покрыты заземленным прочным корпусом для обеспечения крепления всех частей.

Преимущества дизельных генераторов

Дизельные генераторы устанавливают непрерывный равномерный поток напряжения на других устройствах, позволяют регулировать колебания.

Они изготавливаются для стабильного использования и имеют меньшее количество подвижных частей в отличие от других типов генераторов. А значит, для них не обязательное постоянное техническое обслуживание и ремонт.

Дизельные генераторы экономнее бензиновых. Это обеспечивает более длинную продолжительность рабочего цикла при одинаковой мощности.

Дизельное топливо дешевле, чем бензин, потому дизельные генераторы дешевле в использовании. Частично это связано с тем, что дизельные двигатели не содержат в себе свечи зажигания или карбюраторы. Главным постоянным требованием к обслуживанию дизельного двигателя является регулярная смена масла.

Также одним из преимуществ таких видов генератора является его долговечность. В отличие от бензинового генератора, дизельный работает на 3 года дольше. Кроме того, дизельное топливо менее легковоспламеняющееся по сравнению с бензином.

Во избежание потенциальных убытков

Одной из самых распространенных причин повреждения дизельных генераторов является их недостаточная загруженность. То есть, дизельные генераторы работают более продуктивно именно при полной мощности. Во время выполнения задач на низкой мощности они способны выделять углекислый газ. В результате сажа и остатки от неиспользованного топлива могут скапливаться, что негативно влияет на поршневые кольца генератора. Во избежание этого, необходимо использовать генератор примерно на 70% от максимальной нагрузки. Хотя эти генераторы составляют высокую стоимость, однако они являются надежным источником электроэнергии, что значительно улучшит работу на предприятии.

Использование дизельных генераторов в промышленности:

  1. для энергообеспечения населенных пунктов, заводов, аэродромов и аэропортов;
  2. для обеспечения электроснабжением водного, железнодорожного видов транспорта и с/х техники;
  3. в качестве вспомогательного источника энергии для карьерных самосвалов.

Устройство, принцип действия и конструкция синхронного генератора, режимы работы

Синхронным генератором (СГ) называют устройство, выполняющее функцию трансформации механической энергии в электрическую. Принцип работы и устройство синхронного генератора достаточно просты и надежны. Такое энергетическое оборудование востребовано для использования в мобильных авторемонтных мастерских, для ремонта и обслуживания станков-качалок, спецмашин нефтегазовой отрасли, на ГЭС, ТЭС, АЭС, в транспортных системах.

Основные конструктивные элементы

Основные части синхронного генератора: неподвижная — статор, вращающаяся — ротор, представляющая собой электромагнит, и две основные обмотки.
  1. Одна обмотка статора («обмотка возбуждения») запитывается от источника постоянного тока, функцию которого выполняет электронный регулятор напряжения. Регулятор используется в генераторах с самовозбуждением. Принцип самовозбуждения основан на том, что первоначальное возбуждение осуществляется с использованием остаточного магнетизма магнитопровода СГ. При этом энергия переменного тока поступает от обмотки статора СГ. Комплекс из понижающего трансформатора и полупроводникового выпрямителя-преобразователя трансформирует ее в энергию постоянного тока.
  2. Ток, протекающий в обмотке возбуждения статора, наводит ЭДС на обмотке возбуждения якоря генератора. Статор возбудителя, как конструкционный элемент может отсутствовать, и тогда его функции выполняют постоянные магниты.
  3. Обмотка ротора, в которой индуцируется ЭДС, называется обмоткой возбуждения якоря, или якорем возбудителя.
  4. Переменное напряжение, возникающее на обмотке якоря возбудителя, выпрямляется в блоке вращающихся диодов, которые так же называются словосочетанием «диодный мост», и превращает силовую обмотку ротора во вращающийся электромагнит, который наводит ЭДС в силовой обмотке статора СГ.
  5. Силовые обмотки и обмотки возбуждения монтируются в пазы якоря и ротора.
  6. Генераторы по типу выходного напряжения делятся на одно-, или трехфазные. Основное распространение в промышленности имеют трехфазные синхронные генераторы, а в быту — однофазные.

В конструкцию статора входит корпус, внутри которого расположен сердечник, или пакет, собираемый из листов электротехнической стали особой формы. На качество электрического тока влияют такие факторы как: цельность листов в пакете (бывают цельными или составными), качество и материал обмотки. Для обмотки применяется медный эмаль-провод, а в дешевых устройствах возможна замена меди на алюминий.

Роторы изготавливаются явнополюсными или неявнополюсными.

  • Явнополюсные роторы предназначены для синхронных генераторов, работающих с двигателями внутреннего сгорания с низкой частотой вращения — 1500 и 3000 об/мин.
  • Неявнополюсные роторы востребованы в высокоскоростных (более 3000 об/мин) механизмах переменного электрического тока высокой мощности. Обычно их размещают на одном валу с паровыми турбинами. Такие СГ называют «турбогенераторы».

Определение скорости вращения

Понятие «синхронный» означает, что число оборотов находится в прямой математической зависимости от частоты тока. Эта зависимость определяется по формуле n = 60*f/p, где:

  • n — скорость вращения, об/мин;
  • f — частота, в бытовой электрической сети она равна 50 Гц;
  • p — количество пар полюсов.

Принцип работы СГ

Принцип действия машины в режиме синхронного генератора:

  1. При пропускании через обмотку возбуждения постоянного тока образуется стабильное во времени магнитное поле с чередующейся полярностью.
  2. При вращении магнитного поля относительно проводников обмотки якоря возбуждаются переменные ЭДС.
  3. Переменные ЭДС суммируются, образуя ЭДС фаз. Трехфазная система образуется тремя одинаковыми обмотками, размещаемыми на якоре под электрическим углом друг к другу, равным 120°.

В случаях, если централизованное электроснабжение имеет недостаточную мощность или отсутствует, как, например, на удаленных стройплощадках, нефтегазодобывающих объектах, морских и воздушных судах, СГ в составе с двигателем внутреннего сгорания функционируют в автономном режиме. При необходимости создания мощных источников питания синхронные двигатели включают на параллельную работу. Такой способ включения позволяет более полно использовать мощность каждой машины и при необходимости выводить отдельные СГ в ремонт без прекращения эффективного электроснабжения потребителей.

Второй режим работы синхронной машины — выполнение функций электродвигателя. Обычно СГ востребован в качестве двигателя в высокомощных установках более 50 кВт. Для работы в режиме электродвигателя обмотку статора подключают к электросети, а обмотку ротора — к источнику постоянного тока. Вращающий момент возникает при взаимодействии вращающегося магнитного поля СГ с постоянным током обмотки возбуждения.

Устройство бензинового генератора, принцип работы бензинового генератора

Бензиновые генераторы остаются довольно востребованными портативными источниками питания среди многих слоев населения. Однако, несмотря на свое удобство, устройство требует соблюдения определённых правил в ходе своей эксплуатации, о которых вы сможете узнать ниже.

 

Устройство бензинового генератора

Перед началом процесса установки и эксплуатации настоятельно рекомендуем ознакомиться с устройством бензинового генератора. Архитектура большинства бензиновых источников питания включает в себя:

  1. Датчики и индикаторы:
    • Вольтметр. Показывает уровень выходной мощности производимого электричества. В зависимости от модели генератора, бывает как аналоговым, так и электронным. Последние могут предоставлять более широкий спектр данных, включая общий уровень потребляемой энергии от разных устройств. Подлежит замене и может быть приобретен отдельно.
    • Датчик уровня топлива. Отображает количество заправленного бензина. Включает в себя индикатор с поплавком, который замеряет уровень оставшегося топлива. Существуют также цифровые версии датчиков, выводящие данные об остатке бензина в процентах.
    • Контрольная лампочка. Сигнализирует об исправности работы генератора.
  1. Переключатели на контрольной панели:
    • Кнопка включения 12 V. Включает подачу тока через розетку на 12 V.
    • Выключатель двигателя. В зависимости от типа стартера, выключатель представляет из себя либо кнопку запуска двигателя (при внешнем стартере), либо переключатель режима (при встроенном или автоматическом).
    • Предохранитель (прерыватель цепи). Обеспечивает экстренное и безопасное отключение генератора в случае короткого замыкания, защищая устройство от перегрева и аварии.
  1. Контакты и выходы для потребителей:
    • Розетка 12 V. Выход постоянного тока, пригодный для подпитки неэнергоёмких устройств.
    • Розетка 220 V. Стандартный выход постоянного тока, используемый для подключения генератора к сети потребителей.
    • Клемма заземления. При соединении с рамой корпуса и заземлителем обеспечивает устройству надежное заземление.
  1. Корпус устройства:
    • Рама. Основа, на которой установлен бензиновый генератор.
    • Топливный бак. Резервуар для топлива, за счет которого осуществляется работа бензинового генератора.
    • Рукоятка ручного стартера. С помощью нее производится зажигание двигателя и запуск источника питания.
    • Воздушный фильтр. Обеспечивает очистку топливных выхлопов от вредных химических веществ. Нуждается в регулярной чистке и подлежит замене.
    • Топливный кран. Отвечает за начало и прекращение подачи бензина в камеру сжигания.
    • Крышка и щуп для масла. Для проверки уровня масла в генераторе.
    • Пробка для слива масла. Закрывает резервуар для слива масла.
    • Защитный экран глушителя.

 

Особенности обслуживания и работы бензинового генератора

Заземление

Обязательным условием эксплуатации бензинового генератора является его заземление. В случае отсутствия или неправильной установки последнего использовать источник электропитания строго запрещается, ведь есть высокий риск поражения пользователя током в ходе эксплуатации генератора. В качестве заземлителей чаще всего используется лист оцинкованного железа достаточных размеров (минимум 1000 х 500 мм) либо стержень из металла не менее 1,5 см в диаметре.

На каждом генераторе обязательно присутствует клемма заземления, которая соединяется с заземлителем, погруженным в землю до уровня влажных слоев грунта, посредством крепко закрепленного провода. Минимальное сопротивление, необходимое контуру для обеспечения надежного заземления равняется 4 Ом.

Для проведения заземления обязательно требуется привлечь специалиста, который имеет при себе необходимое оборудование и защиту для безопасного завершения работ.

Проверка уровня масла и заправка устройства

Топливный генератор нуждается в определенном уходе, как и любое другое устройство. В первую очередь, речь идет о своевременной замене масла и дозаправке. Если без бензина источник питания не способен работать, то нехватка масла в картере двигателя может привести к серьезной поломке оборудования и способствует быстрому выходу его из строя. Проверка уровня масла осуществляется посредством щупа, установленного в крышку горловины. Предварительно протерев его, опустите щуп в маслоналивную горловину до упора, а затем посмотрите, до какого уровня тот покрылся маслом. Стоит отметить, что данная процедура выполняется исключительно при выключенном и остывшем двигателе (не раньше, чем через пять минут после отключения генератора) и желательно проводить её перед каждым запуском бензинового генератора.

Перед тем, как заправить устройство бензином, убедитесь, что используете марку топлива, указанную разработчиком генератора в соответствующей инструкции. В зависимости от типа двигателя, назначается разный состав топлива. Так, двухтактные двигатели работают на основе маслобензиновой смеси в строгих пропорциях (обычно они также указываются в инструкции), в то время как четырёхтактные заправляются чистым и неразбавленным топливом. Тем не менее, слабо этилированный бензин запрещается использовать в любых генераторах.

Запуск бензинового генератора

Процедура запуска бензинового генератора включает в себя ряд действий, выполнять которые следует в следующей строгой последовательности:

  1. Убедитесь, что к топливному генератору не подключены никакие энергопотребители, а сам он обеспечен достаточным объемом бензина и масла.
  2. Переведите предохранитель в выключенное состояние.
  3. Обеспечьте подачу бензина к двигателю посредством топливного крана.
  4. Если мотор был неактивен несколько часов и успел остыть (или вовсе не запускался ранее), закройте соответствующей ручкой воздушную заслонку. В обратном случае, оставьте её открытой.
  5. Предварительно переведя выключатель двигателя в положение «On», запускайте генератор посредством стартера (если он не автоматический). Для этого требуется потянуть на себя его ручку и резко дернуть вверх, когда почувствуете сопротивление.
  6. В течение 3-5 минут дайте двигателю прогреться, после чего откройте воздушную заслонку. Пропустите этот пункт, если на этапе 4 заслонка не закрывалась.

Отключение генератора

Так же, как и запуск, отключение топливного источника питания происходит по определенной схеме:

  1. Сначала отключаются устройства-потребители.
  2. Выключается предохранитель.
  3. Затем отключается зажигание.
  4. В последнюю очередь топливным краном прекращается подача бензина.

Тут же стоит подметить, что в тех случаях, когда электрогенератор работал на высоких нагрузках, перед его выключением следует дать двигателю поработать несколько минут в штатном режиме.

принцип работы, классификация, как выбрать

В некоторых ситуациях невозможно обойтись без автономного источника электроэнергии. Для частного дома или дачи наиболее приемлемый вариант хороший бензогенератор. При достаточной мощности последнего от него может быть запитан даже котел отопления. Не менее актуально наличие бензинового генератора на строительных площадках для питания сварочного инвертора или другого оборудования. Собранная нами информация поможет подобрать наиболее оптимальное устройство для этих целей.

Принцип работы и конструктивные особенности

Принцип действия бензиновых и дизельных электростанций построен на преобразовании механической энергии в электрическую. Соответственно, в конструкции таких устройств имеется ДВС (двигатель внутреннего сгорания), вращающий электромашину, вырабатывающую электричество. Об устройстве и принципе действия последней, можно найти информацию на нашем сайте. Основные узлы автономного генератора представлены на рисунке ниже.

Устройство бензогенератора

Обозначения:

  • А – Электронный блок, отвечающий за управление генератором и стабилизацию напряжения.
  • В – Генератор электроэнергии, в этом качестве используется синхронная или асинхронна электро машина.
  • С – Контрольные приборы электронного блока.
  • D – Крепежная рама, которая также играет роль защитного каркаса.
  • E – Горловина топливного бака.
  • F –Топливный бак.
  • G – двух- или четырехтактный карбюраторный или инжекторный ДВС.

О силовом приводе генераторной установки необходимо рассказать подробней.

ДВС бензогенератора

В качестве привода в таких установках могут использоваться двух и четырехтактные бензиновые двигатели. Расскажем об особенностях каждого из них.

Двухтактный бензогенератор

К числу несомненных преимуществ таких механизмов можно отнести невысокую стоимость, компактные размеры, небольшой вес и низкий уровень шума. Существенные минусы:

  1. Малый ресурс (вдвое меньше, чем у четырехтактных моделей).
  2. Необходимость заливать моторное масло в бензин. Поскольку у такой смеси срок хранения ограничен двумя неделями, готовить ее придется непосредственно перед запуском. Помимо этого наличие масла в бензине существенно повышает токсичность выхлопа. Именно поэтому запрещен монтаж генератора в гараже или других закрытых помещениях, без системы отвода выхлопных газов. Нарушение этого требования может привести к печальным последствиям, содержащиеся в выхлопе токсичные вещества вредны для человека и животных.
  3. Топливная смесь в ДВС данного типа не сгорает полностью, что повышает ее расход.
Переносной 2-х тактный мини генератор марки SRGE 650 (220 вольт, 0,65 кВт, однофазный)

Такие дешевые генераторы идеальный вариант автономного источника питания для отдыха на природе. Собственно, для этой цели имеет смысл не приобретать установку, а взять в аренду.

Четырехтактная установка

Основные преимущества таких установок меньший расход топлива, чем у предыдущего типа (до 30-35%) и вдвое больший ресурс. Достигается это за счет раздельной системы смазки двигателя. Но за эти преимущества придет заплатить более высокую цену по сравнению с двухтактными моделями. С другой стороны, если принимать в расчет двукратное увеличение ресурса, то переплата будет несущественной. Вес установки и ее габариты несколько ограничивают сферу применения, например, для похода и пикника она не подходит.

4-х тактный генератор Ямаха (Yamaha)

Такая станция, как показана на рисунке выше, может служить в качестве аварийного источника электроэнергии для загородного дома, дачи. Помимо этого имеется возможность подключить электроинструмента на строительной площадке, где нет подвода электричества..

Тип электромашины

В качестве генератора автономной электростанции может использоваться синхронная или асинхронная электромашина. Подробное описание конструкции и принципа действия этих установок можно найти на нашем сайте.

Станции с асинхронными электромашинами за счет простой конструкции отличаются простотой конструкции, соответственно, бесщеточные генераторы стоят значительно дешевле и обладают большим ресурсом, чем синхронные установки. Но, следует учесть, что у последних проще реализовать регулировку выходного напряжения, делается это путем управления числом оборотов. Именно поэтому синхронные генераторы более эффективны при резком изменении нагрузки. Чтобы снизить «проседание » напряжения в установках с асинхронными машинами, в их конструкции применяются системы, позволяющие кратковременно повысить мощность.

Система зажигания

Что касается системы запуска, то она бывает ручной и автоматической. В первом варианте установка включается ручным или электрическим стартером непосредственно на месте. В последнем случае имеется возможность организовать удаленный запуск после небольшой переделки (если эта функция не была предусмотрена производителем).

Во втором варианте исполнения генератор начинает работать при отключении централизованного энергоснабжения. Станции с автозапуском самый надежный вариант аварийного электроснабжения для дачи или загородного дома.

Инверторные установки

Частота трехфазной и однофазной сети переменного тока 50 Гц, этот параметр должен быть стабилизирован в генераторе, в противном случае подключенное к нему оборудование может выйти из строя. Чтобы обеспечить это условие вал электромашины должна вращаться с определенной частотой оборотов. В результате, даже при низкой нагрузке ДВС должен работать на полную мощность, что существенно снижает эффективность станции.

Проблему с бессмысленным расходом топлива можно решить путем установки специального электронного блока на выход генератора. В таком устройстве переменное напряжение, поступающее с электромашины, преобразуется в постоянный ток. После этого производится обратное преобразование, но уже с заданной частотой.

Такие инверторные установки самые экономичные, поскольку при низкой нагрузке позволяют снижать частоту оборотов ДВС, тем самым регулируя мощность электрогенератора, а, следовательно, и расход топлива. В качестве примера можно привести инверторные агрегаты Redverg, Honda, сварочный Чемпион(Champion), Eurolux, Inforce и т.д.

Генератор инверторный Honda

Классификация бензоэлектростанций

В зависимости от ресурса установок и мощности их принято разделять на бытовые, профессиональные и стационарные. Первые, как правило, рассчитаны на работу не более 3-х часов в сутки (например, Navigator SPG 2700, а также модельный ряд таких производителей, как Ergomax, Technic, Wester, Megavolt, Genctab и т.д.).

), вторые могут беспрерывно функционировать не менее 8-ми часов. Для повышения ресурса в цилиндры двигателя устанавливаются чугунные гильзы. При более восьмичасовой эксплуатации использовать бензиновые установки не целесообразно, дешевле перейти на станции с дизельным приводом.

Бытовой генератор Firman SPG3800

Бытовые аппараты ограничены мощностью 4 кВт, но встречаются и более мощные генераторы этого класса. В качестве примера можно привести Fubag bs 6600, Ultra PG 3200, Kipor KDE6500E3.

Мощность профессиональных агрегатов, как правило, не превышает 15 -16 кВт, такие станции можно встретить в модельном ряде Shtenli, Etalon, Genset, Skat, ТНГ и т.д. Пример такой установки представлен ниже.

Электростанция Robin Субару (Subaru) EB 14,0/230-SLE 14 кВт 380в (3 фазы)

Более мощные установки (до 30кВт) выпускаются в стационарном исполнении. Как правило, такие модели запускаются как автоматически, так и вручную. На электростанциях с мощностью от 30 кВт устанавливать бензиновый двигатель нерентабельно ввиду малого ресурса работы и большого расхода топлива. Именно поэтому мощные генераторы приводятся в действие дизельным двигателем.

Стационарная бензиновая электростанция Вепрь АБП 20-Т400/230 ВК-БС (20 кВт, с автозапуском, 400/230 В, 3-х фазный, производство Россия)

Как сделать правильный выбор?

В первую очередь необходимо определиться с задачами, возложенными на установку. В зависимости от этого подбирается мощность станции. Это очень важный момент, поскольку при неправильном выборе возникнут следующие проблемы:

  • Мощность меньше необходимой ведет к перегрузке установки, что может вызвать ее остановку. Помимо этого следует учитывать, что длительное функционирование в нештатном режиме снижает ресурс станции, при этом потребляется больше топлива.
  • Сильно завышенная мощность установки ведет к нецелевому расходу бензина.

Чтобы не допустить описанные выше ситуации, следует рассчитать мощность. Делается это следующим образом:

  1. Определяемся, какие приборы будут запитаны от автономного источника.
  2. Суммируем мощность нагрузки.
  3. Добавляем 25-30% для запаса.

Несмотря на кажущуюся простоту процесса, есть важный нюанс – пусковая мощность, то есть, при включении оборудования она будет кратковременно выше номинальной. Это необходимо учитывать, в противном случае подключенное устройство может просто не заработать. Поэтому необходимо производить расчет для пусковой мощности, по следующей формуле PП = PНОМ * k,

  • PП – пусковая мощность;
  • PНОМ— номинальная;
  • k – коэффициент запаса мощности (табличная величина).

Таблица 1. Зависимость пусковой мощности от номинальной, с учетом коэффициента k.

Название прибора PНОМ (кВт) Коэффициент запаса мощности (k) PП (кВт)
Бытовые холодильники 0,70 3,50 2,45
Микроволновые печи 0,80 2,0 1,60
Стиральные машины 2,0 1,0 2,0
Ударные и безударные дрели, а также перфораторы 1,0 1,2 1,2
Углошлифовальные машинки 2,2 1,3 2,86
Насосы для скважин 1,0 3,0-5,0 5,0
Миксеры для бетона 1,0 3,5 3,5

Приведем пример расчета. Допустим, в случае аварийного отключения электросети, от автономного источника планируется запитывать холодильник и стиральную машину, в этом случае суммарная пусковая мощность будет 4,45 кВт. Добавляем, на всякий случай, запас 20%, получаем – 5,34 кВт. В этом случае можно констатировать, что мощности станций Зубр ЗЭСБ 3500 и Fubag TI 3000 будет недостаточно (3,5 кВт и 3,0 кВт). Ударник УБГ 8200 и Fubag BS 7500 также не подходят, поскольку их мощность существенно выше (8,2 кВт и 7,5 кВт, соответственно). Установка Fogo FH 5001 не отвечает требованию о необходимости 20% запаса, а вот Fubag BS 5500 идеально подходит для решения поставленной задачи.

Генератор Fubag BS 5500 со встроенным стабилизатором напряжения

Определившись с мощностью, выбираем устройство с учетом его технических характеристик. При этом необходимо учитывать, какое напряжение выдает станция, количество фаз, наличие дополнительного питания 12 В, например, чтобы иметь возможность подключить компрессор автомобиля. Такие модели можно встретить у следующих производителей: DDE, Workmaster, Sturm, Forte, Элитеч и т.д.

Следует определиться с необходимостью наличия автозапуска, если станция будет использоваться в качестве аварийного автономного источника, то такая система необходима.

Генератор Элемакс с АВР (система автоматического ввода резерва)

Для установок на строительных площадках, которые предназначены для работы со сварочным аппаратом или другим электроинструментом в такой автоматике нет необходимости. С данной задачей вполне справится такой аппарат, как Мakita EG 2850a или Фирман (Firman) FPG 7800, последний можно завести вручную и удаленно.

Если планируется установка мощного стационарного генератора для дома или дачи, имеет смысл рассмотреть вариант исполнения с водяным охлаждением, такие аппараты имеют больший ресурс.

Важно прочитать на бензогенератор описание, где указаны характеристики аппарата. Причем желательно получить информацию с паспорта устройства. Те, кто писал описание, могли сделать ошибку или сознательно завысить некоторые параметры в маркетинговых целях.

Расход топлива

Не менее важным фактором является расход бензина, например китайский Матрикс (Matrix) и Вепрь российского производства мощностью 3 кВт потребляют около 1,5 литров топлива в час. Японские изделия Hitachi и Mitsui Power ECO, а также корейской фирмы Хундай, при той же мощности в 3 киловатта потребляют около 1,2 литра бензина в час.

Следует отметить, что существуют генераторы, использующие газ в качестве топлива, такие системы стоят несколько дороже однотипных бензиновых устройств. Но если принять в учет разницу в стоимости газа и бензина, то приобретение такой станции будет оправданным.

Советы по выбору производителя от эксперта

  • Здесь все как обычно, продукция известных брендов отличается качеством, выше которого может быть только стоимость таких изделий. Если принято решение установить такой бензиновый генератор, то имеет смысл ознакомиться с рейтингом лучших производителей, где приводится топ 10 компаний. Учитывая современные реалии, не забудьте поинтересоваться у продавца о наличии сервисного центра.
  • Поскольку у бензогенератора относительно небольшой ресурс, обеспокоиться о доступности запчастей лучше заранее, потому, что от неработающей электростанции толку мало. С этой же точки зрения, имеет смысл рассмотреть модели, у которых реализована система самодиагностики, с выводом кодов ошибок на информационный дисплей.
  • Неплохо зарекомендовали себя военные отечественные модели, которые неприхотливы в работе, но отличаются «прожорливостью».
  • Бывают случаи, когда под видом брендовой продукции продаются контрафактные изделия, поэтому всегда проверяйте сертификат соответствия.

Часто задаваемые вопросы от читателей

Есть однофазный генератор бензиновый Fubag BS 6600 A ES 6 кВт. В дом заходит 3 фазы. Будет ли работать этот генератор с 3-х фазным блоком автоматики Startmaster BS 6600 D 400V для бензиновых станций BS 6600 DA ES FUBAG 838221, если на шине подключения входа генератора в блоке автоматики поставить перемычки? Удастся ли тем самым обмануть 3-х фазную автоматику, подключив к ней однофазный генератор?

Нет, однофазный бензиновый генератор Fubag BS 6600 A ES может работать с однофазным блоком автоматики Startmaster BS 6600 230V. Конструкция последнего позволяет подключить однофазный генератор к однофазной электрической системе. Блок автоматики в этом случае функционирует следующим образом:

— В автоматическом режиме осуществляет непрерывный контроль наличия напряжения в основном источнике – внешняя распределительная сеть. Если разность потенциалов присутствует, об этом будет сигнализировать контрольная лампа.

— При обнаружении отсутствия напряжения в электрической цепи, блоком автоматики Startmaster BS 6600 он подает управляющий сигнал на запуск бензинового генератора.

— В случае успешного старта бензинового генератора, загорается лампа контроля работы и указывает на подачу напряжения от независимого источника. Блок автоматики Startmaster BS 6600 осуществляет постоянный контроль наличия питающего напряжения на выходе и проверяет возобновление питания от «центральной сети».

— После восстановления напряжения питания в электрической цепи поступает управляющий импульс на отключение генератора. Который выводится из работы и отключается от электрической цепи.

Если рассмотреть этот процесс в описанном вами формате, то блок автоматики Startmaster BS 6600 D для трехфазной электрической системы не сможет проконтролировать наличие трехфазного напряжения на выходе от однофазного генератора. Поэтому он отключит Fubag BS 6600 A ES из-за несоблюдения трехфазного режима, и закорачивание выводов в этой ситуации никак не поможет.

Список использованной литературы

  • Варламов Г.Б., Вольчин И.А., Казанский С.А. «Познание и опыт — путь к современной энергетике» 2012 – 2013
  • Кашкаров А. П. «Современные био-, бензо-, и дизель-генераторы и другие полезные конструкции» 2011
  • В. Балагуров, Ф. Галтеев «Электрические генераторы с постоянными магнитами» 1988

Avtodovidka


Автомобільний генератор — електрична машина, яка перетворює механічну енергію в електричний струм. В автомобілі генератор використовується для зарядки акумуляторної батареї та живлення електрообладнання при працюючому двигуні. В якості автомобільного генератора застосовується генератор змінного струму.

Можна виділити наступну будову автомобільного генератора, що включає ротор, статор, щітковий вузол, випрямний блок, регулятор напруги. Всі елементи поміщені в корпус.

Основне призначення ротора — Створення обертового магнітного поля. Для цього на валу ротора знаходиться обмотка збудження, яка розміщена в дві полюсні половини. Кожна з полюсних половин має по шість виступів — дзьобів. 

На валу ротора розташовані два контактних кільця, через які здійснюється живлення обмотки збудження. Кільця, як правило, мідні, рідше сталеві або латунні. Виводи обмотки збудження припаяні безпосередньо до кілець.

Залежно від конструкції на валу ротора розміщується одна або дві крильчатки вентилятора, а також закріплюється ведений приводний шків. Підшипниковий вузол ротора представлений двома кульковими підшипниками. На валу з боку контактних кілець також може встановлюватися роликовий підшипник.

Статор служить для створення змінного електричного струму. Конструктивно він об’єднує металеве шихтоване осердя та обмотки. Осердя  набирається з сталевих пластин. Для вкладання обмоток в осерді є 18 пазів. У пази вкладається три однакових обмотки,які утворюють трифазне з’єднання. З’єднання обмоток між собою може здійснюватися за двома схемами: схема «зірка» (одні кінці обмоток з’єднані в одній точці, інші є виводами) та схема «трикутник» (послідовне кільцеве з’єднання кінців обмоток, виводи виходять з точок з’єднання).

В корпусі розміщується більшість конструктивних елементів генератора. Корпус являє собою дві кришки — передню (з боку приводного шківа) і задню (з боку контактних кілець). Кришки стягнуті між собою за допомогою болтів. Кришки виготовляються, як правило, з алюмінієвого сплаву — легкого, немагнітного і легко розсіює тепло. На поверхні кришок виконані вентиляційні вікна, а також кріпильні лапи одна або дві.

Щітковий вузол забезпечує передачу струму збудження на контактні кільця генератора. Вузол включає дві графітні щітки, пружини які їх притискають до кілець та  щіткотримач.

На сучасних генераторах щіткотримач об’єднаний з регулятором напруги в єдиний нерозбірний вузол.

Випрямний блок служить для перетворення трифазної синусоїдальної напруги, що виробляється генератором, в напругу постійного струму бортової мережі автомобіля. Випрямний блок являє собою алюмінієві пластини, що виконують роль тепловідводів, на яких змонтовані діоди. Блок містить шість силових напівпровідникових діодів, по два на кожну фазу, один на «позитивний», інший — на «негативний» вивід генератора.

На деяких генераторах обмотка збудження підключена через окрему групу, що складається з трьох  діодів. Дані випрямлячі перешкоджають протіканню струму розряду акумуляторної батареї через обмотку при непрацюючому двигуні. При з’єднанні обмоток за схемою «зірка» на нульовому виводі встановлюється два додаткових силових діода, які дозволяють збільшити потужність генератора до 15%.

Підключення випрямного блоку в схему генератора проводиться в  спеціальних монтажних точках за допомогою пайки, зварювання або болтового з’єднання.

Регулятор напруги призначений для підтримки напруги генератора в певних межах. Сучасні генератори оснащуються напівпровідниковими електронними (інтегральними) регуляторами напруги.

Стабілізація напруги, яка необхідна при зміні частоти обертання колінчастого вала двигуна і навантаження, здійснюється автоматично за рахунок впливу на струм в обмотці збудження. Регулятор управляє частотою імпульсів струму та їх тривалістю.

Регулятор напруги здійснює регулювання напруги, яка підводиться для зарядки акумуляторної батареї, залежно від температури повітря. Чим нижче температура повітря, тим більша напруга підводиться до акумуляторної батареї.


Свяжитесь с нами | PRONIX — поставка генераторных установок по Чехии

Требуется аварийное питание?

Мы там.

Свяжитесь с нами

Мы готовы ответить на ваши вопросы по мощности.

Свяжитесь с нами, используя форму ниже

Области формы, отмеченные *, являются обязательными.

Головной офис

Office Park Hloubětín, budova D
Poděbradská 55/88
198 00 Praha 9
Чешская Республика

Тел .: +420 284 810 258
Факс: +420 266314 117

Часы работы
Пн 8.00:00 — 16:30
Вт 8.00 — 16.30
ср 8.00 — 16.30
чт 8.00 — 16.30
пт 8.00 — 16.30
сб Закрыт
Солнце Закрыт

Посмотреть большую карту

Компания

Предоставляет вам больше, чем просто мощность.Узнайте больше о нас и о том, как мы можем вам помочь.

Читать далее

Продукты

Обширный ассортимент генераторов, корпусов и панелей управления FG Wilson, мы сможем удовлетворить любые ваши потребности в электроэнергии.

Посмотреть продукты

Запасные части и обслуживание

Экспертная послепродажная поддержка генераторов FG Wilson.

Читать далее

@ slovensko / register-adries — npm

@SlovenskoRegisterAdries.Будова Апи budovaControllerCastObce GET / Budova / {id} / castObce Vráti castObce, do ktorého Budova patrí
@ SlovenskoRegisterAdries.BudovaApi budovaControllerGet GET / Будова Враты все Будовы
@ SlovenskoRegisterAdries.BudovaApi budovaControllerGetById GET / Будова / {id} Vráti Budova с прямым идентификатором
@SlovenskoRegisterAdries.Будова Апи budovaControllerObec GET / Budova / {id} / obec Vráti obec, do ktorého Budova patrí
@ SlovenskoRegisterAdries.BudovaApi budovaКонтроллерВходы GET / Будова / {id} / vchody Vráti všetky vchody ktoré sa nachádzajú v Budova
@ SlovenskoRegisterAdries.BytApi bytControllerGet GET / Байт Враты все быты
@SlovenskoRegisterAdries.BytApi bytControllerGetById GET / Byt / {id} Vráti Byt с прямым идентификатором
@ SlovenskoRegisterAdries.BytApi bytControllerVchody GET / Byt / {id} / vchody Vráti vchody, do ktorého Byt patrí
@ SlovenskoRegisterAdries.CastObceApi castObceControllerBudovy GET / CastObce / {id} / budovy Врата все будовые люди в начале в CastObce
@SlovenskoRegisterAdries.CastObceApi castObceControllerGet ПОЛУЧИТЬ / CastObce Vráti všetky castiObce
@ SlovenskoRegisterAdries.CastObceApi castObceControllerGetById GET / CastObce / {id} Vráti CastObce с прямым идентификатором
@ SlovenskoRegisterAdries.CastObceApi castObceControllerObec GET / CastObce / {id} / obec Vráti obec, do ktorého CastObce patrí
@SlovenskoRegisterAdries.CastObceApi castObceControllerUlice GET / CastObce / {id} / ulice Vráti všetky ulice ktoré sa nachádzajú v CastObce
@ SlovenskoRegisterAdries.DefaultApi searchControllerSearch ПОЛУЧИТЬ / search / {search}
@ SlovenskoRegisterAdries.KrajApi krajControllerGet GET / Kraj Vráti všetky kraje
@SlovenskoRegisterAdries.КрайАпи крайКонтроллерGetById GET / Kraj / {id} Vráti Kraj s príslušným identifikátorom
@ SlovenskoRegisterAdries.KrajApi крайКонтроллер Окресы GET / Kraj / {id} / okresy Vráti všetky okresy ktoré sa nachádzajú v Kraj
@ SlovenskoRegisterAdries.ObecApi obecControllerBudovy GET / Obec / {id} / budovy Vráti všetky budovy ktoré sa nachádzajú v Obec
@SlovenskoRegisterAdries.ObecApi obecControllerCastiObce GET / Obec / {id} / castiObce Vráti všetky castiObce ktoré sa nachádzajú v Obec
@ SlovenskoRegisterAdries.ObecApi obecControllerGet GET / Obec Vráti všetky obce
@ SlovenskoRegisterAdries.ObecApi obecControllerGetById GET / Obec / {id} Vráti Obec с прямым идентификатором
@SlovenskoRegisterAdries.ObecApi obecControllerMestskeCasti GET / Obec / {id} / mestskeCasti Vráti všetky mestskeCasti ktoré sa nachádzajú v Obec
@ SlovenskoRegisterAdries.ObecApi obecControllerOkres GET / Obec / {id} / okres Vráti okres, do ktorého Obec patrí
@ SlovenskoRegisterAdries.ObecApi obecControllerUlice GET / Obec / {id} / ulice Vráti všetky ulice ktoré sa nachádzajú v Obec
@SlovenskoRegisterAdries.ОкресАпи okresControllerGet GET / Okres Враты все окресы
@ SlovenskoRegisterAdries.OkresApi okresControllerGetById GET / Okres / {id} Vráti Okres s príslušným identifikátorom
@ SlovenskoRegisterAdries.OkresApi okresController Край GET / Okres / {id} / kraj Vráti kraj, до ktorého Okres patrí
@SlovenskoRegisterAdries.ОкресАпи okresControllerObce GET / Okres / {id} / obce Vráti všetky obce ktoré sa nachádzajú v Okres
@ SlovenskoRegisterAdries.UlicaApi ulicaControllerCastiObce GET / Ulica / {id} / castiObce Vráti všetky castiObce ktoré sa nachádzajú v Ulica
@ SlovenskoRegisterAdries.UlicaApi ulicaControllerGet GET / Ulica Vráti všetky ulice
@SlovenskoRegisterAdries.Улица Апи ulicaControllerGetById GET / Ulica / {id} Vráti Ulica s príslušným identifikátorom
@ SlovenskoRegisterAdries.UlicaApi ulicaControllerVchody GET / Ulica / {id} / vchody Vráti všetky vchody ktoré sa nachádzajú v Ulica
@ SlovenskoRegisterAdries.VchodApi vchodControllerБудова GET / Vchod / {id} / budova Vráti budova, do ktorého Vchod patrí
@SlovenskoRegisterAdries.ВходАпи vchodControllerByty GET / Vchod / {id} / byty Vráti všetky byty ktoré sa nachádzajú v Vchod
@ SlovenskoRegisterAdries.VchodApi vchodControllerGet GET / Vchod Vráti všetky vchody
@ SlovenskoRegisterAdries.VchodApi vchodControllerGetById GET / Vchod / {id} Vráti Vchod s príslušným identifikátorom
@SlovenskoRegisterAdries.ВходАпи vchodControllerUlica GET / Vchod / {id} / ulica Vráti ulica, do ktorého Vchod patrí

Офис в аренду в Bárdošova Офис 83101 Bratislava, Bárdošova 2

Здание находится в нескольких метрах от троллейбуса на Три-стрит.

Всего в доме один подвал и 7 этажей. В подвале расположены складские помещения и строительная техника, а также размещенное там помещение, ранее использовавшееся как серверное (с кондиционером мощностью прибл.20кВт). Он расположен в подвале дизель-генератора на ок. 100 кВт, что в случае отключения электроэнергии безопасно для бесперебойной работы здания.

На первом этаже используются гостиные и фитнес-центр.

К первому-шестому этажам отведены офисы. Размеры офисов варьируются, каждый этаж имеет измененную планировку в соответствии с потребностями арендаторов. Сдается в аренду площадь 40 м2, на одном этаже ок. 460 м2 арендуемой площади.Сдается помещение с лестницей, лифтами и помещениями перед лифтами, а также с учетом входной зоны рецепции.

Дом находится под круглосуточной охраной и доступен для арендаторов.

В здание, которое мы привезли с оптической проводкой на крыше, может использоваться резервная радиосвязь.

В здании построена качественная структурированная кабельная разводка, доступная арендаторам. В аренду не входит стоимость активных сетевых устройств (коммутаторов).

Все офисы централизованно кондиционированы, и для каждого офиса установлена ​​индивидуальная температура.
Для большего комфорта на всей южной стороне здания сделан внешний щит.

Здание поддерживается на высоком уровне качества, только за последние несколько лет были переделаны все производство с полностью оборудованными ванными комнатами, полами в коридорах и офисах, системой видеонаблюдения, карточной системой доступа, заменена дверь в офис. ряд других мелких и капитальных реконструкционных работ.

В собственности 43 парковочных места, что означает аренду 6 мест на этаже (460 м2).

Часто задаваемые вопросы о пенополиуретане

3 ноября 2020 г.

Что такое эластичный пенополиуретан?

Пенополиуретан эластичный применяется двух видов — блочный (поролон) и формованный.
Поролон — это пенополиуретан, получаемый свободным вспениванием путем смешивания большого количества компонентов. Полученные блоки сырья затем разрезаются на листы различной толщины или фигурной резки на готовые детали.
В настоящее время пенополиуретан этого типа является основным материалом для заполнения элементов мягкой мебели.
Формованный полиуретан получается путем естественного вспенивания тех же компонентов, но в разных пропорциях, в готовых формах. Результат идентичен по форме стандартным изделиям, отличающимся внешним видом от поролона.
Формованный пенополиуретан дороже блочного, потому что он более прочный. Срок службы поролона — 10 лет, формованного пенополиуретана — более 14 лет.
Области использования:

  • Мебельная промышленность, потому что эти типы пенополиуретана имеют открытую пористую структуру и обладают хорошими теплоудерживающими свойствами и восстанавливаемостью.
  • Спортивный инвентарь
  • Автомобильная промышленность

Цены на пенополиуретан (ППУ)?

Полиуретан, наносимый распылением, не является готовым продуктом и не может быть приобретен в магазине.Производится непосредственно на теплоизоляционном предприятии. При напылении толщина слоя устанавливается расчетом, согласно теплотехническим требованиям. Цены рассчитываются при определении трудоемкости выполняемых теплоизоляционных работ: места расположения, высоты объекта и толщины слоя пенополиуретана, а также общего объема работ.

Основное назначение жесткого пенополиуретана?

Изоляция из пенополиуретана давно и прочно заняла свое место в жизни человека, но основное применение — изоляция из пенополиуретана путем нанесения теплоизоляционного покрытия на строительную площадку путем напыления.
Пенополиуретан — легкий, прочный, экологически чистый гидротермальный изоляционный материал с своеобразной структурой, благодаря которой он имеет самый низкий коэффициент теплопроводности и самое низкое водопоглощение по сравнению с другими теплоизоляционными материалами.

Насколько эффективен пенополиуретан в качестве утеплителя?

Очевидно, что пенополиуретан имеет самый низкий коэффициент, и его использование в качестве утеплителя дает ощутимый эффект даже при минимальной толщине 25-30 мм.

Если пенополиуритан — это настолько высокоэффективный, надежный, перспективный и т. Д. Утеплитель, почему его доля на рынке еще не 100%?

Рассмотрим отдельно ППУ в листах и ​​ППУ напыляемое.

Листы пенополиуретана можно приобрести в магазине как продукт. Кроме того, его цена за м2 сравнительно выше, чем у листов пенопласта или рулонов минаутики. «Высокоэффективный, надежный и перспективный» не может быть дешевым! Транспортная составляющая «Плюс» и наценка на каждом этапе: опт — мелкий опт — розница.На строительной площадке листы пенополиуритана или пенопласта или ваты необходимо прикрепить к стене специальными клеями или гвоздями, т.е. стоимость работ примерно одинакова. Производительность монтажа очень низкая (бригада из 3 человек качественно смонтирует 40-50 м2 за смену).

Напротив, распыленный ППУ практически лишен транспортной составляющей, так как компоненты поставляются оптом в компактной таре — 200 л бочках напрямую от производителя или крупного оптового импортера.Для монтажа не требуется специальных дорогостоящих клеев. Производительность в 10-15 раз выше, при тех же затратах человеко-часа (бригада из 3 человек качественно обработает от 500 до 1000 м2 в одну смену). В результате мы получили законченную теплоизоляцию в м2 по более низкой цене.

Теперь ответ на ваш вопрос очевиден:

ППУ в листах не очень интересен ни для магазинов, ни для торгово-посреднических баз, ни для покупателей из-за более высокой цены, чем вата или полистирол.В настоящее время он поставляется в торговые сети в виде готовых сэндвич-панелей, но этот товар уже из другой категории.

Пенополиуретан с напылением нельзя покупать и продавать в магазине. Эту услугу выполняют узкоспециализированные предприятия, имеющие соответствующее дорогостоящее оборудование. Если все прямые потребители теплоизоляции перейдут на использование напыляемого пенополиуретана, то магазины … и посреднические организации …

Вывод очевиден!

Оборудование для пенополиуритана с помощью чего применяется пенополиуритан?
Какое оборудование для напыления пенополиуретана считается самым качественным?

Мы используем оборудование Graco для производства пенополиуретана.
Graco — мировой лидер в производстве оборудования высокого давления для обработки полиуретана, пенополиуретана, полимочевины. Пипетки Reactor® предназначены для использования с пеной, полиуретаном и другими средами, требующими точной температуры и давления.

Зачем нужны оболочки из пенополиуретана?

Не секрет, что значительную долю в общем объеме тепловых потерь составляет его транспортировка по трубопроводам. Оболочки производятся специально для изоляции трубопроводов.Их свойства точно такие же, как у обычного напыляемого пенополиуретана. Недостатком является то, что на цену за единицу сильно влияют транспортные расходы. При замене трубопровода можно взвесить рациональность применения скорлупы ППУ и ​​напыления, а при реконструкции целесообразность применения метода напыления очевидна.

Как можно использовать пенополиуретан в интерьере?

Изделия из жесткого формованного полиуретана могут быть самых разнообразных.Например, карнизы бывают гладкие и с орнаментом, лепниной, пилястрами, оформление дверных проемов с загрунтованной поверхностью, что позволяет в дальнейшем окрашивать любыми красками без предварительной подготовки.
Изделия из эластичного интегрального пенополиуретана: накладки на рули, подлокотники, сиденья мотоциклов. Продукция отличается хорошим внешним видом, прочностью, высокой устойчивостью к истиранию и старению.

Из чего сделан ППУ?

ЖИДКИЕ КОМПОНЕНТЫ «А» И «Б»

Пенополиуретан образуются при взаимодействии жидких компонентов: «А» — полиэфирный компонент и «В» — полиизоцианат.
Компонент «А» представляет собой гидроксилсодержащий компонент, который при взаимодействии с компонентом «В» создает полимерную основу из пенополиуретана и представляет собой темную жидкость, состоящую из смеси нескольких химических соединений, таких как полиэфиры, амульгаторы, пенообразователи и сшивающие агенты. . Компонент «А» малотоксичен, невзрывоопасен, его необходимо хранить в сухом проветриваемом помещении при температуре не ниже 0 ° С. Во время хранения компонент «А» имеет тенденцию расслаиваться и, следовательно, перед использованием, его необходимо тщательно перемешать, перекатывая и переворачивая бочку в течение 5-10 минут.Компонент «А» транспортируется в бочках из углеродистой стали, внутренняя поверхность которых покрыта защитным покрытием, емкостью не менее 200 литров. всеми видами транспорта, обеспечивающими сохранность продукта и тары.
Компонент «В» представляет собой полиизоцианат марки «В» высшего сорта и представляет собой смесь 50-60% диизоцианатных и полиизоцианатных групп не менее 30%. Компонент «Б» — темная жидкость со специфическим запахом. Он токсичен, ПДК его паров в воздухе производственных помещений 0.2 мг / м3, температура вспышки 175 ° C, температура воспламенения 215 ° C. Компонент «B» легко реагирует с атмосферной влагой и водой, образуя при этом осадок твердого полимерного материала, который нельзя использовать для обработки. Поэтому бочки с компонентом «В» должны быть герметично закрытыми и защищенными от контакта с водой и атмосферной влагой.

Можно ли распылять ППУ с помощью парогенератора?

Нет!

Парогенераторы используются при производстве изделий из полистирола (пенопласта)

1/72 PT-109 Лодочная палубная установка (дымогенератор, вентиляционные воронки)

  1. Дом
  2. Интернет-магазин
  3. КОРАБЛИ — комплекты моделей
  4. Комплект палубы лодки PT-109 1/72 (дымогенератор, вентиляционные воронки)

Сопутствующие товары

30,2 € купить