+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Лекция 3 Диод.Биполярный транзистор

1. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ

В современной электронной технике широко применяются полупроводниковые приборы, в которых используются примесные полупроводниковые материалы. Они создаются при введении в материал IV группы периодической системы (в основном, германия и кремния) примеси из элементов III или V группы. В зависимости от вида примеси, получающиеся полупроводниковые материалы обладают либо электронной, либо дырочной проводимостью. В полупроводнике с электронной проводимостью (типа n) концентрация электронов, которые являются основными носителями заряда, существенно превышает концентрацию неосновных носителей, дырок. В полупроводнике с дырочной проводимостью (типа p) основными носителями заряда являются дырки. Их концентрация существенно превышает концентрацию электронов, неосновных носителей зарядов.

1.1.Полупроводниковый диод

Простейшим полупроводниковым прибором является диод. Он снабжен двумя электродами, называемыми анодом и катодом, и использует свойство односторонней проводимости (или вентильности) электрического перехода. В качестве такого перехода наибольшее распространение получил p-n переход, образующийся в кристалле полупроводника на границе двух слоев, один из которых характеризуется дырочной проводимостью (р-слой), а другой – электронной (n-слой). На границе слоев устанавливаются условия, препятствующие взаимному проникновению основных носителей заряда из одного слоя в другой. Это объясняется тем, что при диффузии дырок, основных носителей заряда р-слоя, в n – слой и электронов, основных носителей заряда n-слоя, в р-слой по обе стороны границы образуются нескомпенсированные заряды неподвижных ионов: пришедшие в n-слой дырки нейтрализуются электронами этого слоя, в результате чего создается избыток положительных зарядов, а пришедшие в р-слой электроны нейтрализуются дырками этого слоя, в результате чего создается избыток отрицательных зарядов. Таким образом, нескомпенсированный положительный заряд в n-слое препятствует дальнейшей диффузии дырок из р-слоя, а нескомпенсированный отрицательный заряд в р-слое препятствует диффузии электронов из n-слоя, то есть в p-n переходе создается потенциальный барьер.

Рис.1.1. Полупроводниковый диод: а— структурная схема,

б— схемное обозначение

В диоде с p-n переходом анодный электрод соединен с р- слоем, катодный — с n- слоем, как показано на рис.1.1,а. Схемное обозначение полупроводникового диода представлено на рис. 1.1,б. Вентильное свойство диода отражает его вольт-амперная характеристика, изображенная на рис. 1.2,а. При положительном напряжении (анод находится под более высоким потенциалом, чем катод) диод открыт: под действием приложенного напряжения носители заряда преодолевают потенциальный барьер и через p-n переход протекает ток, который обусловлен переносом, главным образом, основных носителей заряда р-слоя, дырок. Падение напряжения на открытом диоде (участок I на рис.1.2,а) мало и обычно не превышает одного вольта.

Рис.1.2. Вольт-амперная характеристика полупроводникового диода:

а— при различном масштабе токов и напряжения для прямого и обратного направлений, б— при одинаковом масштабе

При отрицательном напряжении (потенциал анода ниже потенциала катода) ток диода связан с переносом неосновных носителей заряда, концентрация которых мала. Величина тока на несколько порядков меньше тока открытого диода, а напряжение в сотни раз больше. Этот факт отражен на рис.1.2,а разными масштабами на осях токов и напряжений для положительных и отрицательных значений параметров. Пренебрежимо малые токи при отрицательном напряжении свидетельствуют о закрытом состоянии диода (участок II на рис. 1.2,а).

На рис.1.2,б участки I и II вольт-амперной характеристики диода представлены в одинаковом масштабе, когда можно пренебречь падением напряжения в открытом состоянии и протеканием тока – в закрытом. В первом приближении можно считать, что величина сопротивления открытого диода равна нулю, а закрытого — бесконечности.

Участок II вольт-амперной характеристики диода (рис.1.2,а) при увеличении отрицательного напряжения переходит в участок III, где имеет место сильный рост тока при незначительном увеличении напряжения. На этом участке в p-n переходе происходит электрический пробой, то есть лавинообразное увеличение тока. Характерной чертой такого пробоя является обратимость: при снятии напряжения и последующем его увеличении ход вольт-амперной характеристики не изменяется, прибор сохраняет свою работоспособность. Участок электрического пробоя вольт-амперной характеристики переходит в участок IV, где происходит тепловой пробой p-n перехода, при котором нагрев кристалла приводит к разрушению перехода, в результате чего диод выходит из строя.

Участки I и II вольт-амперной характеристики на рис.1.2,а используются с целью выпрямления переменного напряжения, принцип которого можно проиллюстрировать на примере схемы, приведенной на рис.1.3,а. На вход схемы подается переменное напряжение , которое представлено синусоидой на рис.1.3,б временной диаграммы. В интервале фаз на анод диода подается положительное напряжение, а на катод – отрицательное. Диод находится в открытом состоянии, и через последовательно включенную с ним нагрузку протекает ток. Если считать нулевым сопротивление открытого диода, то все подводимое к нему напряжение оказывается приложенным к нагрузке, что отражено на рис.1.3,в. При отрицательном полупериоде входного напряжения (интервал фаз ) диод закрыт и через него в нагрузку напряжение не проходит. Таким образом, к нагрузке подводится только положительное напряжение , временная зависимость которого представлена на рис.1.3,в. Поскольку оно действует в течение одного полупериода входного напряжения, схема на рис.1.3,а является однополупериодной.

Рис.1.3. Однополупериодный выпрямитель: а – схема выпрямителя;

б, в – временные диаграммы, иллюстрирующие его работу

Необходимо иметь в виду, что переход диода из закрытого состояния в открытое и наоборот происходит с задержкой во времени, что объясняется инерционностью процессов накопления необходимой концентрации заряда в области p-n перехода при его открытии и рассасыванием этого заряда при закрытии.

Рис.1.4. а. Схема замещения полупроводникового диода.

б. Схема, иллюстрирующая образование

двойного электрического слоя в закрытом pn переходе

На рис.1.4,а приведена схема замещения p-n перехода, основного элемента диода, работающего на участках I и П вольт-амперной характеристики. Наличие в схеме ключа К отражает возможность пребывания перехода в двух состояниях. Положение «а» ключа соответствует открытому состоянию, в котором переход характеризуется весьма малой величиной сопротивления. Положение «б» ключа соответствует закрытому состоянию, в котором переход эквивалентен параллельному соединению активного сопротивления очень большой величины и емкости, получившей наименование «барьерной». Эта емкость отражает факт образования двойного электрического слоя в закрытом p-n переходе, что иллюстрируется рис.1.4,б, которым обусловлен потенциальный барьер, препятствующий диффузии основных носителей заряда через переход.

Надежная работа выпрямительного диода обеспечивается лишь в том случае, если он работает при электрических параметрах, величины которых не превышают допустимые значения. Эти значения приводятся в справочных данных. Такими параметрами выпрямительного диода обычно считаются:

  • максимальное обратное напряжение, приложенное к закрытому диоду, предшествующее развитию пробоя в приборе

  • максимально допустимые значения среднего и импульсного токов, при которых не происходит перегрева прибора в открытом состоянии.

По уровню мощности диоды подразделяются на приборы маломощные, средней и большой мощности. В маломощных диодах величина среднего тока не превышает 0,3А, в диодах средней мощности величины тока находятся в пределах 0,3 10А, а в диодах большой мощности величина тока может достигать 1000А и выше.

В режиме электрического пробоя при низких напряжениях диод может пребывать в течение длительного времени. Поэтому участок III на вольт-амперной характеристике полупроводникового диода на рис.1.2,а можно использовать для цели стабилизации напряжения. Такой режим реализуется в специальных диодах, получивших название стабилитронов. В этих приборах обеспечивается достаточно широкий интервал анодных токов, в котором величина напряжения практически не изменяется.

1.3. Биполярный транзистор и принципы его работы

Биполярный транзистор содержит два p-n перехода, которые образуются тремя слоями полупроводниковых материалов с чередующимися типами проводимостей, как условно показано на рис.1.5. Каждый из слоев снабжен электродом, необходимым для подключения к внешней цепи, и которые называются эмиттер, база и коллектор. P-n переход на границе эмиттерного слоя называется эмиттерным, а p-n переход на границе коллекторного слоя называют коллекторным. Возможны два типа транзисторов (p-n-p и n-p-n) в соответствии с основными носителями заряда в полупроводниковых материалах, используемых в крайних слоях, эмиттерном и коллекторном, а также в среднем, базовом слое. На рис.1.5 также представлены схемные обозначения обоих типов транзисторов.

Назначением эмиттерного слоя является формирование рабочих носителей заряда транзистора. Вид этих носителей определяется проводимостью материала эмиттерного слоя. Следовательно, в транзисторе типа p-n-p

рабочими носителями заряда являются дырки, а в транзисторе типа n-p-n – электроны.

Рис.1.5. Схемы структуры биполярных транзисторов

типа npn и pnp и их схемные обозначения

В коллекторном слое осуществляется сбор рабочих носителей заряда, которые при переносе от эмиттера к коллектору проходят базовый слой. В базовом слое часть рабочих носителей заряда нейтрализуется основными зарядами материала этого слоя, что схематически представлено на рис.1.6 для транзистора типа n-p-n. Биполярные транзисторы изготовляются так, что концентрация основных носителей заряда в эмиттерном слое много больше концентрации основных носителей заряда базового слоя. Кроме того, базовый слой делается тонким. В результате в этом слое нейтрализуется лишь малая часть носителей заряда, поступающая из эмиттера, а более 90% рабочих носителей заряда доходят до коллектора.

Рис.1.6. Распределение токов в транзисторе npn

Для обеспечения описанного процесса переноса рабочих носителей заряда в биполярном транзисторе необходимо между его электродами подать напряжения соответствующей полярности от источников ЭДС. Одна из схем включения транзистора приведена на рис.1.6. Чтобы рабочие носители заряда (электроны) из эмиттерного слоя поступали в базовый, эмиттерный переход должен быть открыт, т.е. к эмиттерному электроду должен быть подан “минус”, а к базовому – “плюс”. Чтобы эти носители заряда из базового слоя достигли коллектора, к нему должен быть подан “плюс” относительно базы. Таким образом, для основных носителей заряда базового и коллекторного слоев коллекторный переход оказывается закрытым.

Перенос рабочих носителей заряда в транзисторе обусловливает протекание тока во внешней цепи. Поскольку техническое направление тока соответствует направлению переноса положительного заряда, то эмиттерный ток для транзистора типа n-p-n направлен от эмиттера, а коллекторный ток – к коллектору (см. рис.1.6).

Основная часть коллекторного тока обусловлена потоком рабочих носителей заряда. Однако следует учитывать перенос через закрытый коллекторный переход неосновных носителей заряда базового и коллекторного слоев и связанное с этим протекание в коллекторной цепи обратного тока I (см. рис.1.6). Таким образом, если ввести в рассмотрение коэффициент передачи тока , обусловленного рабочими носителями заряда, то величина коллекторного тока транзистора может быть определена как

I = I + I. (1.1)

При низких температурах величина обратного тока мала. Однако при работе температура транзистора повышается, из-за чего возрастает концентрация неосновных носителей заряда в базовом и коллекторном слоях и существенно увеличивается обратный ток, значение которого удваивается через каждые 8 — 10 С.

Восполнение дырок в базовом слое, которые нейтрализуют электроны, поступающие из эмиттерного слоя, осуществляется за счет источников ЭДС внешней цепи. Это обусловливает протекание базового тока, величина которого значительно меньше тока эмиттера, вследствие малой доли рабочих носителей заряда, которые нейтрализуются в базовом слое. В транзисторе типа n-p-n ток базы направлен к этому электроду. Функция базового электрода – управление потоком рабочих носителей заряда. Малая величина базового тока обусловливает малый уровень мощности, потребляемой транзистором на управление.

Токи транзистора должны удовлетворять первому закону Кирхгофа

I= I + I. (1.2)

Поскольку ток базы мал, часто при расчетах полагают, что I≈ I.

Рис.1.7. Схемы включения биполярного транзистора

а — с общей базой, б — с общим эмиттером

На рис.1.6 и 1.7,а представлено включение транзистора по схеме с общей базой (ОБ), в которой входным электродом является эмиттер, выходным – коллектор, а база входит в состав и входной, и выходной цепей. Поскольку I≈ I, эта схема является усилителем напряжения. Наибольшее распространение получила схема с общим эмиттером (ОЭ), приведенная для транзистора типа n-p-n на рис.1.7,б. В этой схеме входным электродом является база, выходным – коллектор, а эмиттер является общим как для входной, так и выходной цепей. Входной, базовый ток много меньше выходного, коллекторного. Выходное напряжение, между коллектором и эмиттером, много больше входного, между базой и эмиттером. В связи с этим схема ОЭ осуществляет усиление и тока и напряжения, а поэтому ею обеспечивается наибольшая величина коэффициента усиления по мощности.

Полярность напряжений источников ЭДС и направления токов, показанные на рис.1.7, приведены для транзистора типа n-p-n. В случае транзистора типа p-n-p в связи с изменением типа рабочего носителя заряда полярности напряжений источников ЭДС и направления токов должны быть изменены на противоположные.

Принцип работы и схема биполярного транзистора.

На нашем сайте вышел обновленный курс по электронике! Мы рады предложить Вам новые статьи по этой теме:

Всем доброго времени суток! Мы продолжаем изучать основы электроники и сегодня пришло время разобраться как работает транзистор и что это вообще за зверь такой. Сразу отметим, что они делятся на два больших класса – биполярные и полевые, так вот в этой статье речь пойдет исключительно о биполярных транзисторах. Полевые пока немного подождут, но и до них мы доберемся 🙂

Итак, приступаем!

Биполярный транзистор является одним из самых важных и основных активных компонентов. Основная цель работы биполярного транзистора заключается в увеличении сигнала по мощности. Естественно, мощность не может появиться просто из воздуха, законы физики никто не отменял, поэтому в транзисторе увеличение мощности входного сигнала достигается за счет внешнего источника питания. Еще раз повторюсь и уточню, что усиление заключается именно в увеличении мощности, в отличие от трансформатора, который может усиливать по напряжению, но при этом происходит ослабление тока, и мощность на выходе равна мощности на входе.

Двигаемся дальше. Биполярники бывают двух типов – n-p-n и p-n-p. Какого бы типа не был биполярный транзистор, он имеет три вывода (электрода), которые называются:

  • коллектор
  • эмиттер
  • база

Схема биполярного транзистора.

Мы будем все обсуждать на примере n-p-n БТ, но в принципе для p-n-p все правила и законы точно такие же, но надо учитывать, что полярности напряжений должны быть изменены на противоположные.

Переходы база-эмиттер и база-коллектор представляют собой не что иное, как диоды (вот, кстати, статья о диодах), и в обычном рабочем режиме диод база-эмиттер открыт, а диод база-коллектор закрыт. Давайте посмотрим на визуальное представление схемы биполярного транзистора в виде комбинации диодов. Но тут необходимо уточнить, что в реальности биполярный транзистор не эквивалентен двум диодам. Представление транзистора в виде пары диодов используется только для облегчения понимания принципа его работы.

Теперь давайте на основе диодной модели, составим основные правила работы биполярного транзистора. Как уже упоминалось, диод база-эмиттер должен быть открыт, а, следовательно, напряжение на базе должно превышать напряжение на эмиттере на значение прямого напряжения диода (0.6 – 0.8 В). Таким образом:

U_б = U_э + 0.6\medspaceВ

Кстати, совсем забыл уточнить. Когда мы говорим «напряжение на коллекторе/эмиттере/базе», то подразумевается напряжение на соответствующем электроде, взятое по отношению к потенциалу земли(!). Ну и, соответственно, если мы говорим о напряжении U_{бэ}, например, то имеется в виду напряжение между базой и эмиттером, то же самое относится к U_{бк} и U_{кэ} .

Возвращаемся обратно к работе биполярного транзистора!

С диодом база-эмиттер разобрались, теперь диод коллектор-база. Он должен быть смещен в обратном направлении для нормальной работы транзистора, поэтому потенциал коллектора должен быть более положительным, чем потенциал базы (для p-n-p полярности должны быть противоположными). Таким образом, если выполнены эти условия, то биполярный транзистор находится в режиме нормальной работы, при котором ток коллектора:

I_k = h_{21э}\medspace I_b

Величина h_{21э} – это коэффициент усиления по току. Вот мы и пришли к основному принципу работы транзистора, а именно: большой ток коллектора управляется небольшим значением тока базы.

С устройством БТ разобрались, уделили внимание схеме биполярного транзистора, давайте теперь рассмотрим парочку схем посложнее!

Схема ключа на биполярном транзисторе.

Вот такая вот несложная, но безумно полезная схема! Будем разбираться, как она работает.

Пусть нагрузка у нас потребляет ток 100 мА при 12 В. Если на входе у нас ничего нету, то потенциал базы равен потенциалу эмиттера и равен нулю. При таком раскладе у нас диод база-эмиттер закрыт и, следовательно, тока на выходе тоже нет. Транзистор тут находится в режиме отсечки (это значит, что оба перехода – база-коллектор и база-эмиттер – закрыты).

Подаем на вход положительное напряжение (ну, например, с ножки контроллера) и сразу же начинается движуха 🙂 Напряжение на базе составит около 0.6 В (диод база-эмиттер открыт) и в схеме начинает протекать ток базы. И к чему же это приведет? А вот к чему. Так как диод база-эмиттер открыт, а диод база-коллектор закрыт, то БТ находится в режиме усиления, а значит, через нагрузку потечет коллекторный ток. Соответственно, на нагрузке появится напряжение.

А это в свою очередь приведет к тому, что напряжение на коллекторе будет уменьшаться (смотрите сами, напряжение коллектора + напряжение на нагрузке в сумме должны составлять 12 В, если увеличивается одно из этих значений, второе уменьшается, чистая математика 🙂 ). В итоге, когда ток коллектора увеличится до 100 мА, падение напряжения на нагрузке составит около 12 В (таковы параметры нагрузки у нас), и соответственно напряжение на коллекторе станет меньше, чем на базе. А это значит, что диод база-коллектор откроется и биполярный транзистор перейдет в режим насыщения (оба диода открыты), и дальнейшего роста тока не будет происходить.

Короче, пока на входе ничего нет – режим отсечки, подаем сигнал, транзистор, очень быстро минуя режим усиления, переходит в режим насыщения. В этом и заключается принцип работы биполярного транзистора в качестве ключа.

Есть тут, кстати, еще одна важная фишка. Пусть, к примеру, резистор в цепи базы имеет сопротивление 1 КОм. Пусть на базу подается 10 В. Тогда на этом резисторе будет напряжение 9.4 В (10 В минус прямое напряжение диода база-эмиттер). Рассчитаем ток базы – делим 9.4 В на 1 КОм и получаем 9.4 мА. Пусть коэффициент усиления транзистора равен 50. Находим коллекторный ток: 9.4 мА * 50 = 470 мА. Вот такой получили расчет. Вроде бы все верно, но на самом деле все совсем не так и таким образом рассчитывать нельзя! Давайте разбираться, в чем тут ошибка.

Вспоминаем, что при значении тока коллектора 100 мА напряжение на нем становится мало относительно базы и биполярный транзистор насыщается. А значит дальнейшего роста тока быть не может! Таким образом, рассчитанные 470 мА на нагрузке мы не увидим, просто образуется так называемый избыток тока базы.

Итак, сегодня мы обсудили суть работы биполярного транзистора и его схему. Хотел я еще рассказать в этой статье про эмиттерный повторитель, но как то получилось объемно, а про повторитель надо поговорить обстоятельно и обширно, так что через пару дней в новой статье обязательно вернемся к биполярникам. До скорой встречи, следите за новостями 🙂

Диоды в комбинированных цифро-импульсных узлах

 

Кроме описанных выше диодных схем в современной схемотехнике находят широкое применение различные импульсные устройства, построенные на основе биполярных и полевых транзисторов, а также цифровых микросхем. Несмотря на то, что основным коммутирующим элементом этих схем выступает транзистор (или логический элемент микросхемы), диоды могут играть в них вспомогательную роль, обеспечивая коммутацию дополнительных цепей улучшающих характеристики узлов. Пример диодно-транзисторной ключевой схемы приведен на рис. 3.1-10.

 

Рис. 3.1-10. Импульсный усилитель мощности с замыкающим диодом

 

Это импульсный усилитель мощности, который обеспечивает коммутацию активно-индуктивной нагрузки. Здесь специальный шунтирующий диод \(VD1\) фактически превращает последовательную транзисторную схему коммутации в последовательно-параллельную. Через него протекает ток дросселя на интервале времени, когда транзистор закрыт, т.е. независимо от состояния транзисторного ключа постоянно существует цепь для протекания тока нагрузки, что принципиально необходимо для нормального функционирования нагрузок, содержащих индуктивность.

В традиционные схемы транзисторных ключей диоды часто вводятся не только для обеспечения дополнительной коммутации (как это было описано выше). Благодаря своим ограничительным свойствам (см. Диодные ограничители в составе различных узлов аппаратуры) они могут использоваться для улучшения характеристик быстродействия этих ключей. Дело в том, что существенную долю времени выключения биполярного транзистора, особенно при пассивном запирании, составляет время его рассасывания.

Для исключения этого временного интервала необходимо предотвратить переход транзистора в состояние глубокого насыщения, что может быть достигнуто путем фиксации минимального напряжения коллекторного перехода транзистора. Такое решение реализовано в схеме на рис. 3.1‑11.

 

Рис. 3.1-11. Схема ненасыщенного ключа на биполярном транзисторе с фиксацией напряжения \(U_{КБ}\) с помощью диода и базового резистора

 

Если в схеме на рис. 3.1-11 вместо обычного кремниевого диода использовать диод Шоттки, имеющий малое падение напряжения в проводящем состоянии, то резистор \(R_б\) может быть исключен, а схема преобразуется в представленную на рис. 3.1-12(а).

Такая схема нашла широчайшее применение в цифровых ИС (логика ТТЛШ), где диод Шоттки и транзистор сразу выполняются совмещенными, благодаря особой компоновке полупроводниковой структуры, в которой металлический вывод базы дополнительно имеет контакт и с коллекторной областью, образуя дополнительный переход Шоттки.

Изготовленный описанным образом интегральный элемент принято называть биполярным транзистором Шоттки (Schottky-clamped transistor) или просто транзистором Шоттки (не путать с Полевым транзистором Шоттки) и обозначать как показано на рис. 3.1-12(б).

 

Рис. 3.1-12. Транзисторно-диодный ключ с диодом Шоттки (а) и биполярный транзистор Шоттки (б)

 

Иногда для исключения накопления избыточного заряда в базовой области биполярного транзистора, вместо напряжения \(U_{КБ}\) фиксируется напряжение \(U_{КЭ}\). При этом используется схема, приведенная на рис. 3.1-13, в которой между выводами эмиттера и коллектора транзистора включены последовательно соединенные диод и источник фиксирующего напряжения. Однако из-за значительного технологического разброса параметров транзисторов величина \(U_{фикс}\) должна выбираться с достаточным запасом, что ведет к большому остаточному напряжению на замкнутом ключе.

 

Рис. 3.1-13. Схема ненасыщенного ключа на биполярном транзисторе с фиксацией напряжения \(U_{КЭ}\) с помощью диода и дополнительного напряжения фиксации

 

При применении в усилителях мощности схема на рис. 3.1‑13 вырождается и сводится к прямому шунтированию транзистора обратным диодом. Такое включение транзисторов обычно называют “стойкой” (пример на рис. 3.1-14).

 

Рис. 3.1-14. Импульсный усилитель мощности с включающим и замыкающим ключами

 

На рис. 3.1-15 представлена простая схема, демонстрирующая возможный вариант использования диодно-емкостной цепочки в в сочетании с цифровым логическим элементом ТТЛ и предназначенная для задержки фронта импульса.

 

Рис. 3.1-15. Схема задержки фронта импульса (а) и временны’е диаграммы, поясняющие ее работу (б)

 

В исходном состоянии, когда на вход схемы подан сигнал логического нуля, диод \(VD1\) открыт, а на конденсаторе \(C1\) поддерживается напряжение равное падению напряжения на прямосмещенном диоде \(VD1\) (это происходит из-за особенностей внутренней схемотехники логического элемнта ТТЛ). При поступлении на вход устройства сигнала логической единицы диод \(VD1\) сразу же закрывается, а конденсатор \(C1\) начинает медленно подзаряжаться за счет тока, протекающего через эмиттерный переход входного транзистора ТТЛ элемента. Когда напряжение на конденсаторе превысит порог срабатывания логического элемента, на выходе появится инвертированный задержанный фронт входного импульса. При прохождении среза вход снова замкнется на общий провод, а конденсатор \(C1\) за очень короткое время (учитывая малое выходное сопротивление типового элемента ТТЛ, с которого поступает импульсный сигнал) разрядится через диод \(VD1\), и устройство перейдет в исходное состояние.

Если необходимо задержать не фронт, а срез имипульса достаточно подать на описанную схему предварительно проинвертированный сигнал. Тогда на ее выходе будет получен исходный сигнал (а не его инверсия) с задержанными срезами импульсов. Для задержки всего импульса требуется использовать два одинаковых каскада (рис. 3.1-16), один из которых отвечает за задержку фронта, а другой — среза (здесь также на выходе будет получен неинвертированный задержанный сигнал).

 

Рис. 3.1-16. Схема задержки импульса (а) и временны’е диаграммы, поясняющие ее работу (б)

 

Недостатком такого устройства является то, что оно способно нормально обрабатывать только импульсы, длительность которых не меньше времени задержки.

Описанный простейший узел задержки фронта импульса может быть использован и в составе различных формирователей. Например, на его базе может быть построена схема формирования импульсов заданной длительности (рис. 3.1-17). В этой схеме на один вход логического элемента 2И-НЕ исходный сигнал подается непосредственно, а на другой — с задержкой фронта и с инверсией. Выходным сигналом является импульс логического нуля, длительность которого равна времени задержки фронта входного импульса.

Включив на выходе такого формирователя интегрирующую цепь, которая будет выделять постоянную составляющую импульсного сигнала, можно получить простейший преобразователь частота – напряжение (принцип работы преобразователя заключается в том, что постоянная составляющая периодического импульсного сигнала обратно пропорциональна скважности этого сигнала, а следовательно, при постоянной длительности прямо пропорциональна частоте).

 

Рис. 3.1-17. Формирователь импульсов заданной длительности

 

Два других примера применения схемы задержки — автоколебательный (рис. 3.1-18) и ждущий (рис. 3.1-19) мультивибраторы.

 

Рис. 3.1-18. Автоколебательный мультивибратор

 

Рис. 3.1-19. Ждущий мультивибратор

 

 

< Предыдущая   Следующая >

Основы на пальцах. Часть 3

Диод
Так работает диод

  Это такая хитрая фиговина, пропускающая ток только в одну сторону. Его можно сравнить с ниппелем. Применяется, например, в выпрямителях, когда из переменного тока делают постоянный. Или когда надо отделить обратное напряжение от прямого. Погляди в схему программатора (там где был пример с делителем). Видишь стоят диоды, как думаешь, зачем? А все просто. У микроконтроллера логические уровни это 0 и 5 вольт, а у СОМ порта единица это минус 12 вольт, а ноль плюс 12 вольт. Вот диод и отрезает этот минус 12, образуя 0 вольт. А поскольку у диода в прямом направлении проводимость не идеальная (она вообще зависит от приложенного прямого напряжения, чем оно больше, тем лучше диод проводит ток), то на его сопротивлении упадет примерно 0.5-0.7 вольта, остаток, будучи поделенным резисторами надвое, окажется примерно 5.5 вольт, что не выходит за пределы нормы контроллера.
Выводы диода называют анодом и катодом. Ток течет от анода к катоду. Запомнить где какой вывод очень просто: на условном обозначнеии стрелочка и палочка со стороны катода как бы рисуют букву К вот, смотри —К|—. К= Катод! А на детали катод обозначается полоской или точкой.

  Есть еще один интересный тип диода – стабилитрон. Его я юзал в одной из прошлых статей. Особенностью его является то, что в прямом направлении он работает как обычный диод, а вот в обратном его срывает на каком либо напряжении, например на 3.3 вольта. Подобно ограничительному клапану парового котла, открывающемуся при превышении давления и стравливающему излишки пара. Стабилитроны используют когда хотят получить напряжение заданной величины, вне зависимости от входных напряжений. Это может быть, например, опорная величина, относительно которой происходит сравнение входного сигнала. Им можно обрезать входящий сигнал до нужной величины или используют его как защиту. В своих схемах я часто ставлю на питание контроллера стабилитрон на 5.5 вольт, чтобы в случае чего, если напряжение резко скакнет, этот стабилитрон стравил через себя излишки. Также есть такой зверь как супрессор. Тот же стабилитрон, только куда более мощный и часто двунаправленный. Используется для защиты по питанию.

Транзистор.
Транзистор на пальцах

  Жуткая вещь, в детстве все не мог понять как он работает, а оказалось все просто.
В общем, транзистор можно сравнить с управляемым вентилем, где крохотным усилием мы управляем мощнейшим потоком. Чуть повернул рукоятку и тонны дерьма умчались по трубам, открыл посильней и вот уже все вокруг захлебнулось в нечистотах. Т.е. выход пропорционален входу умноженному на какую то величину. Этой величиной является коэффициент усиления.
Делятся эти девайсы на полевые и биполярные.
В биполярном транзисторе есть эмиттер, коллектор и база (смотри рисунок условного обозначения). Эмиттер он со стрелочкой, база обозначается как прямая площадка между эмиттером и коллектором. Между эмиттером и коллектором идет большой ток полезной нагрузки, направление тока определяется стрелочкой на эмиттере. А вот между базой и эмиттером идет маленький управляющий ток. Грубо говоря, величина управляющего тока влияет на сопротивление между коллектором и эмиттером. Биполярные транзисторы бывают двух типов: p-n-p и n-p-n принципиальная разница только лишь в направлении тока через них.

  Полевой транзистор отличается от биполярного тем, что в нем сопротивление канала между истоком и стоком определяется уже не током, а напряжением на затворе. Последнее время полевые транзисторы получили громадную популярность (на них построены все микропроцессоры), т.к. токи в них протекают микроскопические, решающую роль играет напряжение, а значит потери и тепловыделение минимальны.

Обозначение транзисторов или камень преткновения всех студентов. Как запомнить тип биполярного транзистора по его условной схеме? Представь что стрелочка это направление твоего движения на машине… Если едем в стенку то дружный вопль «Писец Нам Писец

  Короче, транзистор позволит тебе слабеньким сигналом, например с ноги микроконтроллера, управлять мощной нагрузкой типа реле, двигателя или лампочки. Если не хватит усиления одного транзистора, то их можно соединять каскадами – один за другим, все мощней и мощней. А порой хватает и одного могучего полевого MOSFET транзистора. Посмотри, например, как в схемах сотовых телефонов управляется виброзвонок. Там выход с процессора идет на затвор силового MOSFET ключа.

Биполярные транзисторы. Назначение, виды, характеристики

Транзисторы предназначены  для решения задач усиления  и переключения электрических сигналов. Время бурного развития транзисторов –  50 –  80 годы прошлого столетия. В настоящее время следует признать, что транзисторы как отдельные компоненты используются в схемах не так часто. Массово они применяются только внутри интегральных схем.

Различают  транзисторы  двух  видов:  биполярные  и  униполярные  (полевые).

В  биполярных транзисторах  в создании токов участвуют как электроны (отрицательно  заряженные  частицы),  так  и  дырки  (положительно  заряженные частицы). Отсюда название вида транзисторов.

Биполярные транзисторы устроены сложнее полупроводниковых диодов, они имеют два pn-перехода и три вывода,  называемых  база,  эмиттер  и  коллектор.  Различают  два  вида  БТ:  NPN и PNP.

Устройство, особенности и схемотехнику  будем рассматривать на при-мере  NPN-транзисторов  –  наиболее  используемых  в  современной  практике, для  PNP-транзисторов рассуждения аналогичны и различия заключаются толь-ко в подключении питающих напряжений.

Устройство и принцип действия биполярных транзисторов

Устройство и принцип действия  NPN-транзисторов  показаны  на  рисунке 2.19.

NPN-транзистор  имеет  три  микроэлектронные  области:  две  –  с  N-проводимостью и одну  –  с  P  –  проводимостью. Каждая область имеет вывод с указанными на рисунке названиями.

Структуру  NPN-БТ можно также представить в уже более понятных обозначениях: как два диода, соединённых анодами в области базы.

На рисунке  2.20   показан наиболее распространённый способ использования биполярных транзисторов, когда на базу и коллектор подаются положительные (+) потенциалы  по отношению  к  эмиттеру.  При  этом  положительный  потенциал  коллектора выше потенциала базы!  Другими словами, коллекторный  pn-переход  смещён в обратном направлении  (смотрите,  коллекторный диод формально  закрыт), а базовый – в прямом.

При этом если в базу задать ток, то в силу структурной особенности кристалла  биполярного транзистора,  этот  базовый  ток  Iб будет  «подсасывать»  из  коллекторной  области электроны и формировать коллекторный ток

Iк= β*Iб ,  (2.7)

где β> 1 называется коэффициентом усиления тока базы.

Типовые паспортные значения β = 20÷500. Ток эмиттера, таким образом, в соответствии с первым законом Кирхгофа

Iэ = (β +1)*Iб   (2.8)

Линейный режим работы биполярных транзисторов

В линейном режиме работы биполярный транзистор усиливает входные сигналы.

Простейшие транзисторные схемы, с помощью которых можно усиливать малые напряжения  показаны на рисунке 2.21.  Схемы  такой конфигурации  принято называть схемами (каскадами) с общим эмиттером (схемы ОЭ), т.к. один из выводов БТ  –  эмиттер,  используется для  формирования как входного, так и выходного сигнала  –  является общим для них.  Поясним работу такого усилителя.

Пусть  усиливаемый  сигнал  –  переменное  синусоидальное  напряжение, которое  подаётся  на  вход  схемы  общего эмиттера.  Усиленный  сигнал  снимается  с  выхода схемы ОЭ.  Усиленный сигнал имеет ту же форму синусоиды, но следует в противофазе с входным: когда входная синусоида возрастает, выходная синусоида спадает.

Основная  характеристика  усилителя  –  коэффициент  усиления  входного напряжения, который рассчитывается как

Кус=ΔUвых/ΔUвх ≈ R2/rэ,   (2.9)

где  rэ  –  сопротивление  эмиттера.  Сопротивление  эмиттера  можно  подсчитать по формуле:

rэ= ϕт/Iэ = k*T/q*Iэ ≈ k*T/q*Iк,    (2.10)

где  k — постоянная Больцмана,

Т – температура в кельвинах,

q – заряд электрона.

При температуре +25ºС (300 К) ϕт = 26 мВ.

Примечания

  1. Существует графический  способ  оценки  rэ.  Для  этого  требуется  знание  входной вольт-амперной характеристики выбранного биполярного транзистора;
  2. Коэффициент усиления сигнала по напряжению, как видно из формулы, зависит от температуры. В том случае, когда диапазон работы усилительной схемы широк, применяют чуть более сложные модификации схемы объединенных эмиттеров, более устойчивые к изменению температуры.

Следует иметь в виду, что выражение для  Кус приблизительное и оно будет тем более справедливо, чем больше β, хорошо, если β >100.

Расчёт схемы ОЭ по постоянному току

На этом этапе нам необходимо рассчитать значения  R1и  R2, которые  задают  режим по постоянному току, а  R2кроме  того входит в выражение для Кус.

Работа биполярного транзистора описывается входными и выходными характеристиками (показано  на  рисунке  2.22).  Входная  характеристика  Iб=ʄ(Uэ),  как  и  следовало  ожидать,  аналогична  характеристике  п/п  диода.  Однако  у  транзистора  поведение этой  характеристики  зависит  (несильно)  ещё  и  от  напряжения  Uкэ.  Поэтому  в технических  описаниях  на  выбранный  транзистор  даются  семейства  входных характеристик, где параметром является  Uкэ. Выходная характеристика ‒ также семейство зависимостей типа Iк= ʄ (Uкэ), параметром для которых является базовый ток Iб.

Оба семейства имеют принципиально нелинейное поведение, однако, это не мешает их использовать для режима линейного усиления. Для этого надо построить  нагрузочную прямую  на выходном семействе,  рассчитать положение на ней рабочей точки (РТ) и определить из графика начальный ток базы.

Нагрузочная прямая строится, как и раньше для диода, между двумя аналогичными точками: 

Iк=  Eпит/R2  и  Uкэпит. В нашем расчёте  мы задались  значениями  Епит=15 В и  Iк =  Eпит/R2  =30 мА. Тогда  R2=15/0,03 = 500 Ом. Строим прямую и выбираем положение РТ  –  это середина  линейного участка    (показано  на  рисунке  2.22). Линейным участком  будем называть участок нагрузочной прямой  между  напряжением  насыщения  и  напряжением  отсечки.  Параметры РТ в нашем примере соответствуют следующим значениям (показано  на рисунке 2.23): 

Uкэ.рт  ≈ 7 В,  Iк.рт  ≈ 16 мА,  Iб.рт ≈ 0,3 мА.

Далее: выбираем из семейства входных ту характеристику, которая соответствует найденному значению Uкэ≈ 7,0 В, задаём Iб = 0,3 мА, и определяем Uбэ≈ 0,65 В. Строим актуальный участок входной нагрузочной прямой и рассчитываем R1= (15-0,65) В/ 0,3 мА = 45 кОм.

Примечание   –  На практике расчёт проводиться несколько сложнее.

Рассчитаем коэффициент усиления каскада при t°=25 °С.

Кус = Iэ R2/ ϕт = 16 мА × 500 Ом/ 26 мВ ≈ 308.

Важно  теперь  проверить:  не  превышает  ли  мощность,  рассеиваемая  на коллекторе, номинальное паспортное значение выбранного биполярного транзистора.

Расчёт ведётся в рабочей точке:  Uкэ.рт  ×Iк.рт  = 7 В×16 мА=112 мВт. Это значение постоянно и не меняется в режиме усиления входного сигнала, когда напряжения и токи коллектора меняются в широком диапазоне. Это объясняется тем, что напряжение и ток коллектора меняются в этой схеме в  противофазе: когда ток увеличивается, напряжения уменьшается, и наоборот.

Расчёт схемы ОЭ по переменному току

Пример формирования выходных сигналов схемы с ОЭ под воздействием изменения тока базы показан на рисунке 2.23. Под воздействием синусоидально изменяющегося тока базы (синусоида, изображённая пунктиром)  РТ смещается вдоль нагрузочной прямой  сначала вверх до своего максимума, а затем вниз до своего минимума.

По рисунку видим, что при изменении тока базы в диапазоне  от  0,05  до 0,55  мА  с  амплитудой  (0,55-0,05)/2  =  250  мкА,  ток  коллектора  изменяется  в диапазоне примерно от 3 мА до 29 мА с амплитудой (29-3)/2 =  13 мА. Имеем отсюда следующее значение коэффициента усиления по току:

Кi= 13 000/250 = 52

Напряжение коллектора изменяется в диапазоне примерно от 0,5 В до 13 В с амплитудой (13-0,5)/2 = 6,25 В. Ещё раз подчеркнём, что изменение напряжения коллектора осуществляется в противофазе  с изменением входного (усиливаемого) тока: при увеличении тока базы увеличивается коллекторный ток и уменьшается коллекторное напряжение!

Пока мы ничего не говорили о конденсаторах  С1и  С2.  Это  так называемые    разделительные конденсаторы. Они не пропускают  постоянные составляющие усиливаемых напряжений  и пропускают только переменные. Их значения  должны  быть  достаточно  большими:  чем  больше  значения  ёмкостей,  тем меньше  ʄн –  минимальная  усиливаемая  частота.  Обычно  эти  конденсаторы имеют значения от 1 до 100 мкФ.

Ключевой режим работы биполярных транзисторов

Смотрим на выходные характеристики БТ.  При  подаче большого тока  в базу (>0,3 мА) напряжение  Uкэ уменьшается до своего минимального значения (типовое  значение  0,2  В).  Говорят  «транзистор  переходит  в  режим  насыщения».

С  другой  стороны,  если  в  базу  ток  не  подавать  (Iб ~ 0),  то  коллекторный ток прерывается и напряжение на выходе каскада будет равно напряжению питания Епит ‒ биполярный транзистор будет находится в «режиме отсечки».

Собственно эти два состояния БТ и описывают  ключевой режим его работы:  ключ (транзистор) включён или выключен, нагрузка подключена к питанию или отключена. Простейшие  ключевые схемы  на БТ показаны на рисунке 2.24.  На  представленных  принципиальных  схемах  показано,  что  управление схемами осуществляется с помощью цифровых сигналов: логического нуля  («0»)и  логической единицы  («1»). В современной практике такие сигналы формируются чаще всего микроконтроллерами.

Обращаем внимание, что оба вида БТ используется в схемах с плюсовым (положительным) питанием (+Епит) и нагрузка  в обоих случаях расположена в коллекторной  цепи  БТ.  При  этом:  логическая  единица  в  одном  из  случаев (NPN-транзистор) замыкает ключ, а в другом (PNP-транзистор) – размыкает.

Условие замыкания ключа: Iб  *  β  >Iк.нас  ≈  Епит/Rнагр. Ток базы приближённо можно рассчитать для обоих случаев так: Iб= (Епит-0,6)/R1.

Зная  напряжение  питания,  сопротивление  нагрузки  и  коэффициент  усиления тока базы β, можно рассчитать по указанным формулам R1.

Конструктивные разновидности биполярных транзисторов

Конструктивные разновидности биполярных транзисторов показаны на рисунке 2.25.

Проверка работоспособности биполярных транзисторов

Многие  мультиметры  позволяют  измерять  коэффициент  усиления  тока базы (β; h21) транзисторов  с гибкими выводами.  На рисунке  2.26    показано типовое решение этой задачи. В специальный разъём, соблюдая указанный на лицевой панели порядок, подключается транзистор.  Значение  β  высвечивается на дисплее.

Примечания 

  1. NPN- и PNP-транзисторы имеют раздельные гнёзда для подключения.
  2. Для обоих типов транзисторов предусмотрено по два гнезда для подключения эмиттера. Это связано с возможными конструктивными различиями в цоколёвках транзисторов.

Что такое биполярный транзистор и как его проверить

Добрый день, друзья!

Сегодня мы продолжим знакомиться с электронными «кирпичиками» компьютерного «железа». Мы уже рассматривали с вами, как устроены полевые транзисторы, которые обязательно присутствуют на каждой материнской плате компьютера.

Усаживайтесь поудобнее – сейчас мы сделаем интеллектуально усилие и попытаемся разобраться, как устроен

Биполярный транзистор

Биполярный транзистор – это полупроводниковый прибор, который широко применяется в электронных изделиях, в том числе и компьютерных блоках питания.

Слово «транзистор» (transistor) образовано от двух английских слов – «translate» и «resistor», что означает «преобразователь сопротивления».

Слово «биполярный» говорит о том, что ток в приборе вызывается заряженными частицами двух полярностей – отрицательной (электронами) и положительной (так называемыми «дырками»).

«Дырка» — это не жаргон, а вполне себе научный термин. «Дырка» — это не скомпенсированный положительный заряд или, иными словами, отсутствие электрона в кристаллической решетке полупроводника.

Биполярный транзистор представляет собой трехслойную структуру с чередующимися видами полупроводников.

Так как существуют полупроводники двух видов, положительные (positive, p-типа) и отрицательные (negative, n-типа), то может быть два типа такой структуры – p-n-p и n-p-n.

Средняя область такой структуры называется базой, а крайние области – эмиттером и коллектором.

На схемах биполярные транзисторы обозначаются определенным образом (см рисунок). Видим, что транзистор представляет собой, по существу, да p-n перехода, соединенных последовательно.

Вопрос на засыпку – почему нельзя заменить транзистор двумя диодами? Ведь в каждом из них есть p-n переход, не так ли? Включил два диода последовательно – и дело в шляпе!

Нет! Дело в том, что базу в транзисторе во время изготовления делают очень тонкой, чего никак нельзя достичь при соединении двух отдельных диодов.

Принцип работы биполярного транзистора

Основной принцип работы транзистора заключается в том, что небольшой ток базы может управлять гораздо бОльшим током коллектора — в диапазоне практически от нуля до некоей максимально возможной величины.

Отношение тока коллектора к току базы называется коэффициентом усиления по току и может составлять величину от нескольких единиц до нескольких сотен.

Интересно отметить, что у маломощных транзисторов он чаще всего больше, чем у мощных (а не наоборот, как можно было бы подумать).

Это напоминает работу полевого транзистора (ПТ).

Разница в том, что в отличие от затвора ПТ, при управлении ток базы всегда присутствует, т.е. на управление всегда тратится какая-то мощность.

Чем больше напряжение между эмиттером и базой, тем больше ток базы и, соответственно, больше ток коллектора. Однако любой транзистор имеет максимально допустимые значения напряжений между эмиттером и базой и между эмиттером и коллектором. За превышение этих параметров придется расплачиваться новым транзистором.

В рабочем режиме обычно переход база-эмиттер открыт, а переход база-коллектор закрыт.

Биполярный транзистор, подобно реле, может работать и в ключевом режиме. Если подать некоторый достаточный ток в базу (замкнуть кнопку S1), транзистор будет хорошо открыт. Лампа зажжется.

При этом сопротивление между эмиттером и коллектором будет небольшим.

Падение напряжения на участке эмиттер – коллектор будет составлять величину в несколько десятых долей вольта.

Если затем прекратить подавать ток в базу (разомкнуть S1), транзистор закроется, т.е. сопротивление между эмиттером и коллектором станет очень большим.

Лампа погаснет.

Как проверить биполярный транзистор?

Так как биполярный транзистор представляет собой два p-n перехода, то проверить его цифровым тестером достаточно просто.

Надо установить переключатель работы тестера в положение проверки диодов, присоединив один щуп к базе, а второй – поочередно к эмиттеру и коллектору.

По сути, мы просто последовательно проверяем исправность p-n переходов.

Такой переход может быть или открыт, или закрыт.

Затем надо изменить полярность щупов и повторить измерения.

В одном случае тестер покажет падение напряжение на переходах эмиттер – база и коллектор – база 0,6 – 0,7 В (оба перехода открыты).

Во втором случае оба перехода будут закрыты, и тестер зафиксирует это.

Следует отметить, что в рабочем режиме чаще всего один из переходов транзистора открыт, а второй закрыт.

Измерение коэффициента передачи биполярного транзистора по току

Если в тестере имеется возможность измерения коэффициента передачи по току, то проверить работоспособность транзистора можно, установив выводы транзистора в соответствующие гнезда.

Коэффициент передачи по току – это отношение тока коллектора к току базы.

Чем больше коэффициент передачи, тем большим током коллектора может управлять ток базы при прочих равных условиях.

Цоколевку (наименование выводов) и другие данные можно взять из data sheets (справочных данных) на соответствующий транзистор. Data sheets можно найти в Интернете через поисковые системы.

Тестер покажет на дисплее коэффициент передачи (усиления) тока, который нужно сравнить со справочными данными.

Коэффициент передачи тока маломощных транзисторов может достигать нескольких сотен.

У мощных транзисторов он существенно меньше – несколько единиц или десятков.

Однако существуют мощные транзисторы с коэффициентом передачи в несколько сотен или тысяч. Это так называемые пары Дарлингтона.

Пара Дарлингтона представляет собой два транзистора. Выходной ток первого транзистора является входным током для второго.

Общий коэффициент передачи тока – это произведение коэффициентов первого и второго транзисторов.

Пара Дарлингтона делается в общем корпусе, но ее можно сделать и из двух отдельных транзисторов.

Встроенная диодная защита

Некоторые транзисторы (мощные и высоковольтные) могут быть защищены от обратного напряжения встроенным диодом.

Таким образом, если подключить щупы тестера к эмиттеру и коллектору в режиме проверки диодов, то он покажет те же 0,6 – 0,7 В (если диод смещен в прямом направлении) или «запертый диод» (если диод смещен в обратном направлении).

Если же тестер покажет какое-то небольшое напряжение, да еще в обоих направлениях, то транзистор однозначно пробит и подлежит замене. Закоротку можно определить и в режиме измерения сопротивления – тестер покажет малое сопротивление.

Встречается (к счастью, достаточно редко) «подлая» неисправность транзисторов. Это когда он поначалу работает, а по истечению некоторого времени (или по прогреву) меняет свои параметры или отказывает вообще.

Если выпаять такой транзистор и проверить тестером, то он успеет остыть до присоединения щупов, и тестер покажет, что он нормальный. Убедиться в этом лучше всего заменой «подозрительного» транзистора в устройстве.

В заключение скажем, что биполярный транзистор – одна из основных «железок» в электронике. Хорошо бы научиться узнавать – «живы» эти «железки» или нет. Конечно, я дал вам, уважаемые читатели, очень упрощенную картину.

В действительности, работа биполярного транзистора описывается многими формулами, существуют многие их разновидности, но это сложная наука. Желающим копнуть глубже могу порекомендовать чудесную книгу Хоровица и Хилла «Искусство схемотехники».

До встречи на блоге!


Биполярный транзистор

Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный, поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки. Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей. Это похоже на два диода, соединенных лицом к лицу или наоборот.

У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.

Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.

Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.

В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE, и большой — от коллектора к эмиттеру ICE.

Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы IB, сильно меняется ток коллектора IС. Так и происходит усиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзистором.

β = IC / IB

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.

2. Расчет входного тока базы I

b

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно — Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Посчитаем Ibmax и Ibmin с помощью закона Ома:

2. Расчет выходного тока коллектора I

С

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).

3. Расчет выходного напряжения V

out

Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи — это напряжение на коллекторе VC.

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.

Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

  • Режим отсечки (cut off mode).
  • Активный режим (active mode).
  • Режим насыщения (saturation mode).
  • Инверсный ражим (reverse mode ).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзисторов.

β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).

Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.

BJT подключен как диод [Analog Devices Wiki]

Цель:

Целью этого мероприятия является исследование характеристик прямого и обратного тока в зависимости от напряжения биполярного переходного транзистора (BJT), подключенного как диод.

Материалы:

ADALM2000 Active Learning Module
Макетная плата без пайки
Резистор 1 — 1 кОм (или любое аналогичное значение)
1 — NPN-транзистор с малым сигналом (2N3904)

Направление:

Текущий vs.Характеристики напряжения перехода база-эмиттер NPN-транзистора можно измерить с помощью оборудования ADALM2000 Lab и следующих подключений. Установите макетную плату с генератором сигналов W1, прикрепленным к одному концу резистора R 1 . Также подключите сюда вход осциллографа 2+. Подсоедините основание и коллектор Q 1 к противоположному концу R 1 , как показано на схеме. Эмиттер Q 1 заземлен. Подключите вход осциллографа 2- и вход осциллографа 1+ к узлу база-коллектор Q 1 .(Вход осциллографа 1- также может быть дополнительно заземлен).

Рисунок 1 Схема подключения NPN диода

Настройка оборудования:

Генератор сигналов должен быть настроен на треугольную волну 100 Гц с размахом амплитуды 6 В и смещением 0. Дифференциальный канал осциллографа 2 (2+, 2-) измеряет ток в резисторе (и в транзисторе). Канал осциллографа 1 (1+) подключен для измерения напряжения на диодном транзисторе. Ток, протекающий через транзистор, равен разности напряжений 2+ и 2- (что является напряжением канала 2), деленной на номинал резистора (1 кОм).

Рисунок 2 Схема макетной платы NPN-диода

Процедура:

Загрузите захваченные данные в программу для работы с электронными таблицами, такую ​​как Excel, и вычислите ток. Постройте график зависимости тока от напряжения на транзисторе ( В, , , BE, ). В обратном направлении ток не течет. В области прямой проводимости соотношение напряжения и тока является логарифмическим. Если ток нанесен на логарифмическую шкалу, линия должна быть прямой.

Рисунок 3 XY-график NPN-диода

Рис.4 Форма сигнала диода NPN

Вопросы:

Вывести математическое выражение для тока I C , учитывая напряжение на транзисторе В BE ?

Цель:

Целью этого мероприятия является исследование характеристик напряжения обратного пробоя эмиттерного базового перехода биполярного переходного транзистора (BJT), подключенного как диод.

Материалы:

1 — Резистор 100 Ом
1 — Малосигнальный PNP-транзистор (2N3906)

Направление:

Установите макет так, чтобы выход генератора сигналов был присоединен к одному концу последовательно подключенного резистора 100 Ом R 1 , а также базы и коллектора Q 1 , как показано на рисунке 2. Эмиттер подключен к отрицательному 5-вольтовому фиксированному источнику питания. . Канал осциллографа 1 (1+) подключен к узлу база — коллектор, а 1- подключен к узлу эмиттера.Канал осциллографа 2 измеряет напряжение на R 1 и, следовательно, ток на Q 1 . PNP 2N3906 выбран вместо NPN 2N3904, потому что напряжение пробоя базы эмиттера PNP меньше, чем максимальное значение +10 В , которое может быть создано с помощью ADALM2000, в то время как NPN, вероятно, будет выше 10 В .

Рисунок 5 Конфигурация базы эмиттера PNP с обратным пробоем

Настройка оборудования:

Генератор сигналов должен быть настроен на треугольную волну 100 Гц с размахом амплитуды 10 вольт и смещением 0 вольт.Канал осциллографа 1 (1+) используется для измерения напряжения на транзисторе. Установка должна быть сконфигурирована так, чтобы канал 2 был подключен через резистор R 1 (2+, 2-). Оба канала должны быть установлены на 1 В на деление. Ток, протекающий через транзистор, представляет собой разницу напряжений между 2+ и 2-, деленную на номинал резистора (100 Ом).

Рисунок 6 Схема макетной платы эмиттера PNP

Процедура:

Аппаратные блоки питания Lab ограничивают максимальное доступное напряжение до менее 10 вольт.Напряжение обратного пробоя эмиттерной базы многих транзисторов больше этого значения. В показанной конфигурации можно измерять напряжения от 0 до 10 вольт (размах от пика до пика W1).

Рисунок 7 Форма волны излучателя PNP

Захватите осциллограммы и экспортируйте их в программу для работы с электронными таблицами, такую ​​как Excel. Для 2N3906 PNP, используемого в примере, напряжение пробоя эмиттерного базового перехода составляет около 8,5 В.

Вопросы:

Отсоедините коллектор Q 1 и оставьте его открытым.Как это изменит напряжение пробоя? Теперь подключите коллектор к эмиттеру. Как это изменит напряжение пробоя?

Попробуйте измерить напряжение обратного пробоя базы эмиттера NPN 2N3904. Вы также можете проверить напряжение пробоя базы эмиттера для двух силовых транзисторов, TIP31 и TIP32, которые входят в комплект аналоговых деталей ADALP2000. Они выше или ниже, чем у PNP 2N3906, и ниже, чем +10 вольт, которые вы можете измерить с помощью этой настройки? Если оно выше, что вы могли бы добавить к настройке, чтобы вы могли измерять более высокие напряжения пробоя?

Цель:

Целью этой работы является исследование конфигурации схемы с меньшими характеристиками прямого напряжения, чем у биполярного переходного транзистора (BJT), подключенного как диод.

Материалы:

1 — Резистор 1 кОм
1 — Резистор 150 кОм (или 100 кОм последовательно с 47 кОм)
1 — малосигнальный транзистор NPN (2N3904)
1 — малосигнальный транзистор PNP (2N3906)

Направление:

Установите макет с генератором сигналов W1, прикрепленным к одному концу последовательно подключенного резистора R 1 , коллектора NPN Q 1 и базы PNP Q 2 , как показано на схеме. Эмиттер Q 1 заземлен.Коллектор Q 2 подключен к Vn (-5V). Первый конец резистора R 2 подключен к Vp (+ 5В). Второй конец R 2 соединен с базой Q 1 и эмиттером Q 2 . Несимметричный вход канала осциллографа 2 (2+) подключен к коллектору Q 1 .

Рисунок 8 Конфигурация для снижения эффективного прямого падения напряжения на диоде

Настройка оборудования:

Генератор сигналов должен быть настроен на треугольную волну 100 Гц с размахом амплитуды 8 В и смещением 2 В.Канал осциллографа 2 (2+) используется для измерения напряжения на транзисторе. Ток, протекающий через транзистор, представляет собой разницу напряжений между входами осциллографа 1+ и 1-, деленную на номинал резистора (1 кОм).

Рисунок 9 Нижнее эффективное прямое падение напряжения диодно-макетной схемы

Процедура:

Напряжение включения «диода» теперь составляет около 100 мВ по сравнению с 650 мВ для простого подключения диода в первом примере. Постройте график V CE из Q 1 как W1 по траектории.

Рисунок 10 Нижнее эффективное прямое падение напряжения на диоде — форма волны

Вопросы:

Может ли коллектор PNP Q 2 быть подключен к другому узлу, например к земле? И каков будет эффект?

Значение 2 рэндов устанавливает ток в 2 рэндов. Каков эффект увеличения или уменьшения стоимости R 2 ?

Цель:

Теперь, когда мы увидели способ эффективно уменьшить размер V BE , цель этого действия — сделать V BE больше.Более высокие характеристики прямого напряжения, чем у одиночного биполярного переходного транзистора (BJT), подключенного как диод.

Материалы:

2 — 2,2 кОм Резисторы
1 — 1 кОм Резисторы
1 — 5 кОм Переменный резистор, потенциометр
1 — малосигнальный NPN-транзистор (2N3904)

Направление:

Установите макет с генератором сигналов W1, прикрепленным к одному концу резистора R 1 , как показано на рисунке 4. Эмиттер Q 1 подключен к земле.Резисторы R 2 , R 3 и R 4 образуют делитель напряжения со скребком потенциометра R 3 , подключенным к базе Q 1 . Коллектор Q 1 подключен ко второму концу R 1 и верхней части делителя напряжения на R 2 . Прицел канал 2 (2+) подключен к коллектору Q 1 .

Рисунок 11 V BE Конфигурация умножителя

Настройка оборудования:

Генератор сигналов должен быть настроен на треугольную волну 100 Гц с размахом амплитуды 4 В и смещением 2 В.Несимметричный вход канала осциллографа 2+ используется для измерения напряжения на транзисторе. Установка должна быть сконфигурирована с подключением канала 1+ для отображения выхода генератора W1 и канала 2+, подключенного для отображения напряжения коллектора Q 1 . Ток, протекающий через транзистор, представляет собой разность напряжений между W1, измеренную входом осциллографа 1+ и входом осциллографа 2+, деленная на номинал резистора (1 кОм).

Рисунок 12 В BE Макетная схема умножителя

Процедура:

Начиная с потенциометра R 3 , установленного в середине его диапазона, напряжение на коллекторе Q 2 должно быть примерно в 2 раза больше В BE .Если R 3 установлен на минимум, напряжение на коллекторе должно быть в 9/2 (или 4,5) раза больше В BE . Если R 3 установлен на максимальное значение, напряжение на коллекторе должно быть в 9/7 раз больше В BE .

Рисунок 13 V BE Форма сигнала макетной платы умножителя

Вопросы:

Как соотносятся характеристики напряжения и тока этого умножителя В, BE с характеристиками простого транзистора с диодным подключением?

Помимо положения грязесъемника, влияют ли значения R 2 , R 3 и R 4 на форму кривой I vs V ? Чтобы получить ответ, попробуйте использовать значения намного большие и намного меньшие, чем перечисленные выше.

Вернуться к лабораторной работе Содержание

университет / курсы / электроника / электроника-лаборатория-3.txt · Последнее изменение: 25 июня 2020 г., 22:07 (внешнее редактирование)

5.1 Биполярный транзистор — введение

5.1 Биполярный транзистор — введение

Содержание — 1 2 3 4 5 6 7 8 9 R S — ®


В разделе:

  1. Введение
  2. Структура

Биполярный переходной транзистор был изобретен в 1948 году Бардином, Бриттеном и Шокли.Он состоит из трехслойной структуры с чередующимися областями n-типа и p-типа, как показано ниже. Эти три области называются эмиттером, базой и коллектором и контактируют с омическим контактом.

Первое рассмотрение структуры показывает, что она содержит два p-n диода, один между базой и эмиттером, а другой — между базой и коллектором.

Однако тонкая базовая область между двумя p-n-диодами позволяет транспортировать неосновные носители через эту область.Это перенос неосновных носителей заряда, которые вводятся из эмиттера в базу, что приводит к току коллектора. Этот ток коллектора почти не зависит от напряжения, приложенного между базой и коллектором, В BC , пока диод база-коллектор имеет обратное смещение. Это заставляет диод база-коллектор действовать как источник тока 1 , значение которого регулируется напряжением база-эмиттер, В BE .

Правильная конструкция трехслойной структуры также дает ток коллектора, который очень близок по величине к току эмиттера.Ток, который необходимо подать на базу, I B = I E I C — полученный с использованием закона тока Кирхгофа и приведенного ниже соглашения о знаках — может быть значительно меньше. чем ток эмиттера или коллектора. Это приводит к усилению тока между коллектором и базой: небольшое изменение тока базы вызывает большее изменение тока коллектора. Отношение двух, dI C / dI B , называется текущим усилением b.

Читатель должен заметить, что определение коэффициента усиления по току начинается с вычисления тока коллектора и эмиттера как функции напряжения база-эмиттер. Прямой расчет тока коллектора как функции приложенного тока базы невозможен, хотя такой подход может показаться более логичным, особенно для тех, кто использовал биполярный переходной транзистор в качестве элемента схемы.


Структура устройства, условные обозначения и принципиальная схема показаны на рисунке 5.1. Устройство состоит из трех чередующихся областей n-типа и p-типа. Показана структура NPN, которая будет использоваться в этом тексте для объяснения работы устройства и вывода уравнений устройства. В качестве альтернативы можно также построить и проанализировать структуру PNP.


bjt2.gif

Рис. 5.1 Структура (слева) и обозначение схемы (вверху справа) биполярного переходного транзистора NPN (BJT). Также показаны два p-n диода (внизу справа) внутри биполярного транзистора.

Физическая ширина эмиттера, базы и коллектора указана на рисунке соответствующими символами: w E , w B и w C . В трехслойной структуре существуют два p-n-диода, а именно диод база-эмиттер и диод база-коллектор. Диоды показаны в правом нижнем углу рисунка 5.1. Следует отметить, что два диода не представляют собой полную эквивалентную схему биполярного транзистора, поскольку не учитывается транспортировка неосновных носителей заряда через базу.

Два диода смещены соответствующими источниками напряжения. Знаковое соглашение, указанное на рисунке, таково, что диоды направлены вперед при приложении положительного напряжения. Коллекторный и базовый токи считаются положительными, когда ток протекает через выводы, в то время как ток эмиттера считается положительным, если ток вытекает из вывода эмиттера.

Эти «квазинейтральные» области нейтральны только в тепловом равновесии. Однако при приложении напряжения обнаруживается, что плотности заряда и электрическое поле в этих областях значительно меньше, чем в областях обеднения.Поэтому мы будем относиться к этим регионам как к нейтральным и называть их «квазинейтральными».


1 p-n-диод аналогичным образом действует как источник тока при освещении светом, при условии, что диод имеет обратное смещение. Таким образом, p-n-диод, освещенный светом, является источником тока с управляемым светом. Комбинация светодиода, который представляет собой источник света с регулируемым током, и фотодиода или солнечного элемента дает устройство с внешними характеристиками, которые очень похожи на характеристики биполярного переходного транзистора.


5. ® 5.2

© Барт Дж. Ван Зегбрук, 1996, 1997


Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie.Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie.Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Разница между диодом и транзистором (со сравнительной таблицей)

Одно из основных различий между диодом и транзистором состоит в том, что диод преобразует переменный ток в постоянный, в то время как транзистор передает входные сигналы от цепи с низким сопротивлением к цепи с высоким сопротивлением. Другие различия между ними поясняются ниже в табличной форме.

Диод также известен как кристаллический диод, потому что он состоит из кристаллов (кремния или германия).Это двухконтактное устройство, которое начинает проводить ток, когда положительный вывод источника питания подключается к области p-типа, а отрицательный вывод подключается к n-области диода.

Транзистор имеет три области: эмиттер, коллектор и базу. Эмиттер сильно легирован, поэтому он может переносить тяжелую заряженную частицу на базу. База транзистора меньше по размеру и слегка легирована, поэтому носитель заряда легко перемещается от базы к области коллектора.Коллектор — это самая большая область транзистора, потому что он может рассеивать тепло, выделяемое на переходе база-коллектор.

Содержание: диод против транзистора

  1. Сравнительная таблица
  2. Определение
  3. Ключевые отличия

Сравнительная таблица

Основа для сравнения Диод Транзистор
Определение Полупроводниковый прибор, в котором ток течет только в одном направлении. Полупроводниковое устройство, которое передает слабый сигнал от цепи с низким сопротивлением к цепи с высоким сопротивлением.
Символ
Использует Выпрямитель Регулятор, усиление и выпрямление
Клемма Два (анод и катод) Три (эмиттер, база и коллектор)
Коммутатор Неуправляемый Управляемый
Типы Переходный диод, светоизлучающий диод, фотодиоды, диоды Шоттки, туннельный, Veractor и стабилитрон. Биполярный транзистор и полевой транзистор.
Область P-область и N-область Излучатель, коллектор и база
Область истощения Один Два

Определение диода

Диод представляет собой устройство с двумя выводами, которое позволяет току течь в одном направлении. Диод изготовлен из полупроводникового материала и в основном используется для выпрямления.Проводимость в цепи возникает при прямом смещении диода.

Прямое смещение означает, что материал P-типа подключен к положительной клемме батареи, а материал N-типа подключен к отрицательной клемме батареи. Блок-схема диода представлена ​​на рисунке ниже.

Определение транзистора

Транзистор — это трехконтактное устройство, которое используется для усиления электрических сигналов. Он состоит из полупроводникового материала.Эмиттер, коллектор и база — это три вывода батареи. Эмиттерный переход имеет прямое смещение и имеет небольшое сопротивление, тогда как коллекторный переход имеет обратное смещение и имеет высокое сопротивление. Когда слабый сигнал вводится в цепь с низким сопротивлением транзистора, он передает сигнал из цепи с высоким сопротивлением.


Ключевые различия между диодом и транзистором

  1. Диод представляет собой полупроводниковое устройство, которое позволяет току течь только в одном направлении, тогда как транзистор передает сопротивление из области с низким сопротивлением в область с высоким сопротивлением.
  2. Диод используется для преобразования переменного тока в постоянный или для выпрямления, тогда как транзистор в основном используется для усиления и в качестве регулятора.
  3. Диод имеет две клеммы, а именно анод и катод. Анод является положительной клеммой, а катод — отрицательной клеммой диода. Транзистор имеет три вывода; они эмиттер, коллектор и база.
  4. Диод — это тип неуправляемого переключателя, тогда как транзистор — это управляемый переключатель.
  5. Транзисторы в основном подразделяются на два типа, т.е.е., биполярный переходной транзистор и полевой транзистор. BJT использует как электроны, так и дырку в качестве носителя заряда, а полевой транзистор представляет собой униполярный транзистор. Диод бывает многих типов, например, фотодиоды, стабилитрон, туннельный диод, варакторный диод и т. Д.
  6. P-тип и N-тип — это две области диода. Дырка является основным носителем заряда P-области, а электроны — основным носителем заряда N-области диода. Транзистор имеет три области: эмиттер, базу и коллектор.Среди трех областей база является самой маленькой областью, а коллектор — самой большой областью транзистора.
  7. Диод имеет только один обедненный слой между P-типом и N-типом, тогда как транзистор имеет два обедненных слоя, один находится между эмиттером и базой, а другой — между базой и коллектором.

Считается, что транзистор состоит из двух диодов с PN переходом. Но два дискретных диода, соединенных спина к спине, никогда не работают как транзистор.

Биполярный транзистор

(BJT): что это такое и как он работает?

Что такое BJT?

Биполярный переходной транзистор (также известный как BJT или BJT-транзистор) представляет собой трехконтактное полупроводниковое устройство, состоящее из двух p-n переходов, которые могут усиливать или усиливать сигнал. Это устройство, управляемое током. Три вывода BJT — это база, коллектор и эмиттер. BJT — это тип транзистора, в котором в качестве носителей заряда используются электроны и дырки.

Сигнал небольшой амплитуды, поданный на базу, доступен в усиленной форме на коллекторе транзистора. Это усиление, обеспечиваемое BJT. Обратите внимание, что для выполнения процесса усиления требуется внешний источник питания постоянного тока.

Есть два типа транзисторов с биполярным переходом — транзисторы NPN и транзисторы PNP. Схема этих двух типов транзисторов с биполярным переходом приведена ниже.
Из рисунка выше видно, что каждый BJT состоит из трех частей: эмиттера, базы и коллектора.J E и J C представляют собой соединение эмиттера и соединение коллектора соответственно. Теперь нам изначально достаточно знать, что эмиттерный переход смещен в прямом направлении, а переходы коллектор-база — в обратном направлении. В следующей теме будут описаны два типа этих транзисторов.

Биполярный переходной транзистор NPN

В биполярном транзисторе npn (или npn-транзисторе) один полупроводник p-типа находится между двумя полупроводниками n-типа, как показано на схеме ниже npn-транзистора

Теперь I E , I C — ток эмиттера и ток сбора соответственно, а V EB и V CB — напряжение эмиттер-база и напряжение коллектор-база соответственно.Согласно условию, если для тока эмиттера, базы и коллектора I E , I B и I C ток идет в транзистор, знак тока принимается положительным, и если ток выходит из транзистора, то знак принимается отрицательным. Мы можем свести в таблицу различные токи и напряжения внутри транзистора n-p-n.

9048 —
Тип транзистора I E I B I C V EB V CB V CE
+ + + +

Биполярный транзистор PNP

Аналогично для биполярного перехода pnp транзистор (или полупроводниковый полупроводниковый транзистор типа nnp) andu Полупроводники p-типа.Схема транзистора p-n-p показана ниже.

Для транзисторов p-n-p ток входит в транзистор через вывод эмиттера. Как и любой транзистор с биполярным переходом, переход эмиттер-база смещен в прямом направлении, а переход коллектор-база — в обратном направлении. Мы можем табулировать ток эмиттера, базы и коллектора, а также напряжение эмиттер-база, база коллектора и напряжение коллектор-эмиттер для p-n-p транзисторов.

— p
Тип транзистора I E I B I C V EB V CB V CE
+ +

Принцип работы BJT

На рисунке показан npn-транзистор, смещенный в активной области (см. Смещение транзистора), переход смещен в прямом направлении, тогда как переход CB имеет обратное смещение.Ширина обедненной области BE-перехода мала по сравнению с шириной CB-перехода.

Прямое смещение в BE-переходе снижает барьерный потенциал и заставляет электроны течь от эмиттера к базе. Поскольку основание тонкое и слегка легированное, оно состоит из очень небольшого количества дырок, поэтому некоторые электроны из эмиттера (около 2%) рекомбинируют с дырками, присутствующими в области базы, и вытекают из вывода базы.

Это составляет базовый ток, он течет из-за рекомбинации электронов и дырок (обратите внимание, что направление обычного тока противоположно направлению потока электронов).Оставшееся большое количество электронов пересечет коллекторный переход с обратным смещением и составит ток коллектора. Таким образом, по KCL,

Базовый ток очень мал по сравнению с током эмиттера и коллектора.

Здесь большинство носителей заряда — электроны. Транзистор p-n-p работает так же, как и транзистор n-p-n, с той лишь разницей, что большинство носителей заряда — это дырки, а не электроны. Лишь небольшая часть тока протекает из-за основных носителей заряда, а большая часть тока течет из-за неосновных носителей заряда в BJT.Следовательно, они называются устройствами неосновных носителей.

Эквивалентная схема BJT

p-n переход представлен диодом. Поскольку транзистор имеет два p-n перехода, он эквивалентен двум диодам, соединенным спина к спине. Это называется двухдиодной аналогией BJT.

Характеристики биполярных переходных транзисторов

Биполярный транзистор состоит из трех частей: коллектор, эмиттер и база. Прежде чем узнать о характеристиках биполярного переходного транзистора , мы должны знать о режимах работы для этого типа транзисторов.Режимы:

  1. Режим Common Base (CB)
  2. Режим Common Emitter (CE)
  3. Режим Common Collector (CC)

Все три типа режимов показаны ниже

Теперь, перейдя к характеристикам BJT, есть разные характеристики для разных режимов работы. Характеристики — это не что иное, как графические формы отношений между различными переменными тока и напряжения транзистора. Характеристики p-n-p транзисторов приведены для разных режимов и разных параметров.

Характеристики общей базы

Входные характеристики

Для транзистора p-n-p входным током является ток эмиттера (I E ), а входным напряжением — напряжение базы коллектора (В CB ).

Поскольку переход эмиттер-база смещен в прямом направлении, график зависимости I E от V EB аналогичен прямым характеристикам p-n диода. I E увеличивается для фиксированного V EB , когда увеличивается V CB .

Выходные характеристики

Выходные характеристики показывают соотношение между выходным напряжением и выходным током I C — это выходной ток и напряжение коллектор-база, а ток эмиттера I E — это входной ток и работает как параметры. На рисунке ниже показаны выходные характеристики p-n-p транзистора в режиме CB.

Как мы знаем, для p-n-p транзисторов I E и V EB положительные, а I C , I B , V CB — отрицательные.Это три области на кривой, область насыщения активной области и область отсечки. Активная область — это область, в которой транзистор работает нормально.

Здесь эмиттерный переход имеет обратное смещение. Теперь область насыщения — это область, где оба перехода эмиттер-коллектор смещены в прямом направлении. И, наконец, область отсечки — это область, где и эмиттерный, и коллекторный переходы смещены в обратном направлении.

Характеристики общего эмиттера

Входные характеристики

I B (ток базы) — входной ток, В BE (напряжение базы — эмиттер) — входное напряжение для режима CE (общий эмиттер).Таким образом, входные характеристики для режима CE будут отношениями между I B и V BE с V CE в качестве параметра. Характеристики показаны ниже.

Типичные входные характеристики CE аналогичны характеристикам прямого смещения p-n диода. Но с увеличением V CB ширина основания уменьшается.

Выходные характеристики

Выходные характеристики для режима CE — это кривая или график между током коллектора (I C ) и напряжением коллектор-эмиттер (V CE ), когда базовый ток I B является параметром.Характеристики показаны ниже на рисунке.

Как и выходные характеристики транзистора с общей базой, режим CE также имеет три области: (i) активная область, (ii) области отсечки, (iii) область насыщения. Активная область имеет обратное смещение коллекторной области и прямое смещение эмиттерного перехода.

В области отсечки эмиттерный переход немного смещен в обратном направлении, и ток коллектора не отсекается полностью. И, наконец, для области насыщения как коллектор, так и эмиттерный переход смещены в прямом направлении.

История BJT

В 1947 году Дж. Барден, У. Браттерин и У. Шокли изобрели транзистор. Термин транзистор был дан Джоном Р. Пирсом. Хотя изначально он назывался твердотельной версией вакуумного триода, термин «транзистор» сохранился. В этой статье мы рассматриваем транзистор Bipolar Junction Transistor (BJT) .

Слово «транзистор» образовано от слов «переход» и «резистор» и описывает работу BJT i.е. передача входного сигнала от цепи с низким сопротивлением к цепи с высоким сопротивлением. Этот тип транзистора состоит из полупроводников.

Транзисторы используются в создании интегральных схем (ИС). Количество транзисторов, которые мы смогли уместить в ИС, быстро увеличилось с момента их создания, удваиваясь примерно каждые 2 года (известный как закон Мура).

Итак, почему это называется переходным транзистором? Ответ кроется в конструкции.Мы уже знаем, что такое полупроводники p-типа и n-типа.

Теперь, в этом типе транзистора, любой один тип полупроводников зажат между другим типом полупроводников. Например, n-тип может быть зажат между двумя полупроводниками p-типа, или аналогично один p-тип может быть зажат между двумя полупроводниками n-типа.

Они называются pnp-транзисторами и npn-транзисторами соответственно, как обсуждалось выше. Теперь, когда есть два перехода разных типов полупроводников, это называется переходным транзистором.Это называется биполярным, потому что проводимость происходит за счет как электронов, так и дырок.

Применение BJT

BJT используются в дискретной схеме, разработанной из-за наличия многих типов, и, очевидно, из-за его высокой крутизны и выходного сопротивления, которое лучше, чем у MOSFET. BJT также подходят для высокочастотного применения.

Вот почему они используются в радиочастоте для беспроводных систем. Другим применением BJT можно назвать усилитель слабого сигнала, металлический фотоэлемент приближения и т. Д.

Усилитель с биполярным переходом

Чтобы понять концепцию усилителя с биполярным переходом , мы должны сначала просмотреть схему p-n-p транзистора.


Теперь, когда входное напряжение немного изменяется, скажем, ΔV i напряжения эмиттер-база изменяет высоту барьера и ток эмиттера на ΔI E . Это изменение тока эмиттера вызывает падение напряжения ΔV O на сопротивлении нагрузки R L , где

ΔV O дает выходное напряжение усилителя.Существует отрицательный знак из коллекторного тока дает падение напряжения на R L с полярностью, противоположной полярности задания. Коэффициент усиления по напряжению A В для усилителя задается отношением выходных напряжений ΔV O к входному напряжению ΔV i , поэтому


называется коэффициентом усиления транзистора по току. Из приведенной выше диаграммы видно, что увеличение напряжения эмиттера уменьшает прямое смещение на переходе эмиттера, таким образом, уменьшает ток коллектора.

Указывает, что выходное напряжение и входное напряжение совпадают по фазе. Теперь, наконец, коэффициент усиления Ap транзистора представляет собой соотношение между выходной мощностью и входной мощностью

TVS-диод Биполярный 1,5KE15CA | GM electronic COM

TVS-диод Биполярный 1,5KE15CA | GM электронный COM

Для правильной работы и отображения веб-страницы, пожалуйста, включите JavaScript в вашем браузере

TVS-диод биполярный, 15В / 1500Вт, DO201 Ubr = 15В Pmax = 1500 Вт Case = DO201

Брендовое название ТАЙВАНСКИЙ ПОЛУПРОВОДНИК Код товара 222-213 Kód výrobce 1.5KE15CA Вес 0,00103 кг

Твоя цена € 0,43

Склад В наличии (332 кс)

Пражский филиал В наличии (11 комплект)

Брненский филиал в наличии 10 шт.

Остравский филиал В наличии (38 шт.)

Пльзенский филиал в наличии 10 шт.

Филиал в Градец Кралове В наличии (21 шт.)

Братиславский филиал в наличии 6 шт.

Код товара 222-213
Вес 0.00103 кг
Provedení: THT —
П: 1500 Вт
Unipolární / Bipolární: Bipolární —
Поуздро: DO201 —
Значка: Тайваньский полупроводник —
Ubr: 15 В

TVS-диод биполярный, 15В / 1500Вт, DO201

Ubr = 15В
Pмакс = 1500 Вт
Case = DO201

Код товара 222-213
Вес 0.00103 кг
Provedení: THT —
П: 1500 Вт
Unipolární / Bipolární: Bipolární —
Поуздро: DO201 —
Значка: Тайваньский полупроводник —
Ubr: 15 В

Похожие товары

В наличии

TVS диод 600W 16V UNIDIRECT SMB Обратный стенд…

0,36 € Цена нетто € 0,43

Код 975-068

0,32 € Цена нетто 0,39 €

Код 222-338

В наличии

TVS-диод биполярный, 36В / 1500Вт, DO201 Ubr = 36В П…

0,36 € Цена нетто € 0,43

Код 222-198

В наличии

TVS-диод униполярный, 22В / 1500Вт, DO201 Ubr = 22В …

0,32 € Цена нетто 0,39 €

Код 222-216

В наличии

TVS-диод биполярный, 400 В / 1500 Вт, DO201 Ubr = 400В…

0,36 € Цена нетто € 0,43

Код 222-259

В наличии

TVS-диод униполярный, 36В / 1500Вт, SMC Ubr = 36В Вечера…

0,30 € Цена нетто € 0,36

Код 975-048

В наличии

TVS-диод униполярный, 56В / 1500Вт, DO201 Ubr = 56В …

0,29 € Цена нетто € 0,35

Код 222-122

В наличии

TVS-диод униполярный, 30В / 1500Вт, DO201 Ubr = 30В …

0,32 € Цена нетто 0,39 €

Код 222-291

Nejprodávanější výrobci

Введите имя пользователя и пароль или зарегистрируйтесь для новой учетной записи.

% PDF-1.4 % 6 0 obj > эндобдж xref 6 79 0000000016 00000 н. 0000002196 00000 н. 0000002292 00000 н. 0000002909 00000 н. 0000003037 00000 н. 0000003171 00000 п. 0000003311 00000 н. 0000003447 00000 н. 0000003560 00000 н. 0000003671 00000 н. 0000003696 00000 н. 0000004346 00000 п. 0000004371 00000 п. 0000004964 00000 н. 0000006461 00000 н. 0000007930 00000 п. 0000008064 00000 н. 0000008198 00000 н. 0000008332 00000 н. 0000009580 00000 н. 0000011229 00000 п. 0000012572 00000 п. 0000012706 00000 п. 0000012840 00000 п. 0000013436 00000 п. 0000013570 00000 п. 0000014803 00000 п. 0000015097 00000 п. 0000015464 00000 п. 0000016789 00000 п. 0000016858 00000 п. 0000016986 00000 п. 0000044445 00000 п. 0000044705 00000 п. 0000045350 00000 п. 0000045419 00000 п. 0000045537 00000 п. 0000069232 00000 п. 0000069498 00000 п. 0000070128 00000 п. 0000070240 00000 п. 0000081845 00000 п. 0000103768 00000 н. 0000103837 00000 п. 0000103940 00000 н. 0000121844 00000 н. 0000122119 00000 н. 0000122457 00000 н. 0000122482 00000 н. 0000122896 00000 н. 0000122965 00000 н. 0000123065 00000 н. 0000138363 00000 н. 0000138635 00000 н. 0000138892 00000 н. 0000138917 00000 н.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *