+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как определить полярность светодиода?

Светодиод, как и обычный диод, имеет два вывода: анод и катод.

Выводы светодиода на схеме указываются таким образом, что стрелка диода обозначает прямое направление тока, от анода (+) к катоду (-), следовательно, анод подключается к положительному полюсу, а катод к отрицательному.

 

Как определить где катод, а где анод? Это можно сделать несколькими способами, самый простой – визуально. Обычно длинная ножка светодиода указывает на то, что это анод, его подключаем к “+” источника питания.

Если же это SMD светодиод, то метка указывает на сторону, где расположен катод светодиода. Зачастую в SMD светодиодах расположено несколько кристаллов, поэтому вывод может быть не один, а к примеру 3 как на светодиоде 5050.

С помощью батарейки

Если светодиод не новый, по ножкам определить уже нельзя, но есть еще один простой способ — воспользоваться батарейкой CR2032, которую можно найти в брелоке от сигнализации или материнской плате компьютера.

Ее напряжение 3 В, этого вполне хватит практически для всех маломощных светодиодов.

Необходимо поочередно приложить выводы диода к полюсам батарейки, в том положении, в котором он засветится к “+” батарейки приложен анод, соответственно к “-“ – катод.

С помощью мультиметра

Определить полярность светодиода можно также с помощью мультиметра. Необходимо просто поставить в режим прозвонки диодов (или измерения сопротивления) и поочередно приложить к выводам.

Когда красный щуп мультиметра будет приложен к аноду, диод начнет светиться.

Этот способ крайне полезен, когда светодиод имеет очень малые размеры (SMD) или смонтирован на плате. Также с помощью мультиметра можно проверить исправность светодиода, если он не начнет светиться при любом положении щупов, вероятно, он вышел из строя.

  • Просмотров:
  • как определить где плюс и минус (схема цоколевки)

    Как и любой полупроводниковый прибор с односторонней проводимостью, светодиод критичен к правильности включения в цепь постоянного тока. Для нормальной работы анод и катод светодиода должны подключаться к соответствующим полюсам источника напряжения согласно принципиальной схеме. Чтобы определить цоколевку светоизлучающего элемента, существует несколько способов.

    Определение мультиметром

    Как и любой диод, выполненный на основе p-n перехода, светоизлучающий диод можно проверить мультиметром, используя свойство проводить ток только в одну сторону. У современных цифровых тестеров есть специальный режим проверки диодов, при котором измерительное напряжение оптимально для данной процедуры.

    Чтобы определить расположение выводов светодиода, надо произвольным образом подключить его ножки к щупам мультиметра и определить результат по показаниям дисплея.

    Неправильная полярность подключения LED к тестеру.

    Если элемент подключен неверно, то результатом измерения будет зашкаливание значения сопротивления (OL — overload, перегрузка). Надо поменять местами зажимы мультиметра.

    Правильная полярность подключения LED к тестеру.

    Если светодиод исправен и подключен правильно, то будет индицироваться какое-то сопротивление (конкретное значение зависит от типа излучающего элемента). В этом случае анодом будет вывод, присоединенный к плюсу мультиметра (красный провод), а катодом – к минусу (черный провод).

    Некоторые тестеры в режиме проверки диодов выдают напряжение, достаточное для зажигания светоизлучающего элемента. В этом случае правильное подключение можно контролировать по свечению.

    Свечение светодиода АЛ307 при проверке тестером.

    Если в обоих вариантах подключения на дисплее будет индицироваться overload, это может означать:

    • неисправность светодиода;
    • измерительного напряжения не хватает для открытия p-n перехода (тестер рассчитан на «прозвонку» кремниевых диодов, а большинство светоизлучающих элементов делаются на основе арсенида галлия).

    В первом случае полупроводниковый прибор можно утилизировать. Во втором – попробовать другой способ.

    Читайте также

    Проверка светодиода на исправность

     

    Цоколевка светодиода путем подачи питания

    Преимущество этого метода в том, что его можно использовать для светоизлучающих диодов с любыми параметрами (падение напряжения и номинальный ток). Для такой проверки лучше использовать источник питания с установкой ограничения тока, или хотя бы с его индикацией для контроля. В противном случае можно вывести чувствительный полупроводниковый прибор из строя.

    Неправильная полярность подключения LED к источнику напряжения – свечения нет.

    Если имеется регулируемый источник, надо произвольным образом подключить светодиод к его выходу и подать напряжение, постепенно увеличивая его от нуля. Выше 2-3 В питание поднимать не следует, чтобы элемент не сгорел. Если он не зажегся, надо снять напряжение и переключить выводы противоположным образом.

    Правильная полярность подключения LED к источнику напряжения – светодиод зажегся.

    Постепенно поднимая напряжение, можно визуально определить момент зажигания светодиода. В этом случае плюсовой вывод источника присоединен к аноду, а минусовой – к аноду излучающего элемента.

    Если регулируемого источника нет, то можно попытаться использовать нерегулируемый блок питания с напряжением заведомо выше напряжения питания светодиода. В этом случае испытания проводить только через резистор 1-3 кОм, включенный последовательно с полупроводниковым прибором.

    Если и в том, и в другом случае светодиод не загорается, можно попробовать провести проверку с увеличенным напряжением. Если элемент неисправен, ему это вреда не принесет, а если он рассчитан на повышенное напряжение, то появится вероятность узнать правильное расположение выводов.

    Рекомендуем: Как узнать на сколько вольт светодиод

    При помощи батарейки

    Если источник питания отсутствует, можно попытаться определить расположение выводов от гальванического элемента, но следует иметь в виду особенности такой проверки:

    • батарейка может выдавать напряжение, недостаточное для открытия p-n перехода.
    • бытовые гальванические элементы имеют небольшую мощность, и выдаваемый ток нагрузки невелик – он зависит от начальной мощности батарейки и от остаточного заряда.

    В таблице приведены параметры некоторых отечественных светодиодов. Очевидно, что распространенные полуторавольтовые химические источники тока не смогут зажечь ни один прибор из списка.

    Тип прибораПрямое падение напряжения, ВРабочий ток, мА
    АЛ102А2,85
    АЛ307А210
    АЛ307В2,820

    Чтобы увеличить напряжение, можно соединить батарейки последовательно. Для увеличения мощности – параллельно (только для элементов одного напряжения!). В итоге может получиться громоздкая конструкция, не гарантирующая конечного результата. Поэтому пользоваться таким методом лучше в тех случаях, когда других путей нет.

    По внешнему виду

    Иногда можно определить полярность по внешнему виду. У некоторых типов светодиодов на корпусе есть ключ – выступ или метка. Чтобы определить, какой вывод помечен ключом, лучше ознакомиться со справочными материалами.

    Ключ у катода светоизлучающего диода АЛ102.

    Внешний вид расположения выводов у светодиода АЛ307.

    У бескорпусных светодиодов производства СССР можно выяснить цоколевку, присмотревшись к внутреннему устройству прибора сквозь слой компаунда. Вывод катода имеет большую площадь и сделан в виде флажка. Этот принцип мог стать стандартом, но сейчас производители его строго не соблюдают, поэтому данный способ ненадежен, особенно для элементов от неизвестного производителя. Поэтому использовать такое определение выводов можно только для предварительной ориентировки.

    Цоколевку отечественных светодиодов можно узнать по длине ножек – вывод анода делается более коротким. Но это верно только для элементов, не бывших в употреблении – при установке на место выводы могут быть обрезаны произвольно.

    Для наглядности рекомендуем к просмотру видео.

    С помощью техдокументации

    Другие способы определения выводов можно поискать в техдокументации на элементы – в справочниках или онлайн-источниках. Для этого как минимум необходимо знать тип светодиода или его производителя. В документации может содержаться информация о габаритах и цоколевке прибора.

    Но даже если данных сведений в спецификации не найдется, напрасно усилия не пропадут. Техдокументация может стать источником информации о предельных параметрах электронного прибора. Эти знания помогут правильно выбрать режим работы, а также не допустить выхода светодиода из строя при проверке расположения выводов.

    Полярность SMD-светодиода

    На текущий момент все более популярными становятся безвыводные элементы для непосредственного монтажа на плату (SMD – surface mounted device). Такие радиоэлементы, в отличие от обычных, имеют преимущества:

    • в процессе изготовления печатной платы не надо сверлить отверстия – технология становится дешевле и быстрее;
    • электронные устройства получаются меньших размеров;
    • упрощается конструирование ВЧ-устройств – отсутствие выводов сводит к минимуму паразитные наводки.

    Но стремление к миниатюризации имеет оборотную сторону – определить выводы СМД-светодиода сложнее. К нему трудно подключить щупы тестера или источника питания. Поэтому важно нанесение понятной маркировки прямо на корпус элемента для исключения ошибок при монтаже. Такое обозначение выполняется в виде метки на корпусе (скоса или углубления) или в виде мнемонического рисунка.

    Цоколевка SMD-LED типоразмера 5730.

    Цоколевка SMD-LED типоразмера 0805.

    А самым простым случаем является включение светоизлучающего диода в цепь переменного тока. В этом варианте полярность светодиода значения не имеет.

    Анод и катод — что это и как правильно определить? Куда течет ток или где же этот чертов катод

    Только в одном направлении. Когда-то давно применялись ламповые диоды . Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

    Условное обозначение
    диода на схеме

    На рисунке показано условное обозначение диода на схеме . Буквами А и К соответственно обозначены анод диода и катод диода . Анод диода — это вывод, который подключается к положительному выводу , непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к , то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

    Как проверить диод мультиметром


    Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на

    m.katod-anod.ru

    Назначение диода, анод диода, катод диода, как проверить диод мультиметром

    Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

    Условное обозначениедиода на схеме

    На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

    Как проверить диод мультиметром

    Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.

    katod-anod.ru

    Определяем полярность светодиода. Где плюс и минус у LED

    Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

    Вы можете встретить два обозначения LED на принципиальной электрической схеме.

    Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

    Цоколевка 5мм диодов

    Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

    На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

    Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

    Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

    Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

    Как определить анод и катод у диодов 1Вт и более

    В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

    Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

    Как узнать полярность SMD?

    SMD активно применяются практических в любой технике:

    • Лампочки;
    • светодиодные ленты;
    • фонарики;
    • индикация чего-либо.

    Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

    Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

    Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

    Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

    Как определить плюс на маленьком SMD?

    В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

    Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

    Определяем полярность мультиметром

    При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

    Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

    Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

    Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

    Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

    Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

    В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

    Другие способы определения полярности

    Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

    Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

    Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.


    Схема самодельного пробника

    При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

    Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

    И последний способ изображен на фото ниже.

    Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

    Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

    Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

    Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

    svetodiodinfo.ru

    Обозначение светодиодов и других диодов на схеме

    Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.

    Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.

    Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.

    УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.

    Диоды, какие они бывают?

    Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.

    Обозначение диодного моста

    Например, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.

    Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.

    Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.


    Специфичные диоды

    Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.


    Обозначение стабилитрона (диод Зенера)

    Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.

    Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.

    Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.

    Варикап — обозначение на схеме и внешний вид

    Динистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.

    Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.

    Обозначение динистора

    Светодиоды и оптоэлектроника

    Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.


    В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.

    Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.

    Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:


    Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.

    Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:


    Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.

    В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.

    Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.

    Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.

    Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.

    Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!

    svetodiodinfo.ru

    Как проверить диод мультиметром — Практическая электроника

    В радиоэлектронике в основном применяются два типа диодов — это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.

    На фото ниже у нас простой диод и светодиод.

    Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?.

    Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному — катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет.

    Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.

    Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. 436 миллиВольт — это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.

    Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.

    А как же проверить светодиод? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус.

    Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.

    Меняем щупы местами. Светодиодик не загорелся.

    Выносим вердикт — вполне работоспособный светодиод!

    А как же проверить диодные сборки, диодные мосты и стабилитроны? Диодные сборки — это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.

    www.ruselectronic.com

    Маркировка диодов: таблица обозначений

    Содержание:
    1. Маркировка импортных диодов
    2. Маркировка диодов анод катод

    Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

    Характеристики и параметры диодов

    В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

    В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.

    Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

    Обозначения и цветовая маркировка диодов

    Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

    Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

    Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

    Маркировка импортных диодов

    В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

    В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

    Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

    Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

    По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

    Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

    Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

    Маркировка диодов анод катод

    Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

    Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

    • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
    • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

    electric-220.ru

    ДИОДЫ

    Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

    На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.

    Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

    В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

    Анод — это электрод прибора, который присоединяется к положительному полюсу необходимого источника питания. При этом электрический потенциал анода является положительным по отношению к потенциалу указанного катода. Во всех процессах электролиза анод — это электрически положительный полюс, на котором происходят окислительно-восстановительные реакции. Получается, что результатом этих операций может быть разрушение анода. Это используется, например, при электрорафинировании металлов.

    Самые популярные аноды

    В металлургии используется анод для гальваники для того, чтобы наносить на поверхность изделий слой металла электрохимическим способом или для электрорафинирования. При этом процессе металл с примесями полностью растворяется на аноде, а потом осаждается в чистом виде на катоде.

    В основном распространены аноды из цинка, которые могут быть литыми, сферическими, катаными. Причем последние используются чаще всего. Кроме того, берут аноды из никеля, меди, олова, бронзы, кадмия, сплава сурьмы и свинца, серебра, платины и золота. А вот из кадмия аноды почти не используют, что обуславливается их экологической вредностью. Анод из драгоценных металлов используют для того, чтобы повысить коррозионную стойкость, улучшить эстетические свойства предметов, а также для других целей. Кроме того, они пригодятся и для того, чтобы повысить электропроводность изделий.

    В вакуумных электронных приборах анод — это специальный электрод, который способен притягивать к себе любые летящие электроны, которые испущены катодом. В рентгеновских трубках и электронных лампах он имеет такую конструкцию, когда полностью поглощает все электроны. В электронно-лучевых трубках аноды являются элементами электронной пушки, которые поглощают только часть летящих электронов, формируя при этом электронный луч после себя. В полупроводниковых приборах электроды, которые подключаются к положительному источнику тока, когда прибор открыт, то есть он имеет небольшое сопротивление, называют анодом, а тот, что подключен к отрицательному полюсу, соответственно, — катодом.

    Знак анода и катода

    В специальной литературе часто можно встретить самое разное обозначение знака анода: «+» или «-». Это определяется особенностями рассматриваемых процессов. К примеру, в электрохимии считают, что катод — это электрод, на котором протекает процесс восстановления, а анод — это электрод, на котором протекает процесс окисления. При активной работе электролизера внешний источник тока обеспечивает на одном электроде избыток электронов и здесь происходит восстановление металла. Этот электрод является катодом. А на другом электроде, в свою очередь, обеспечивается недостаток электронов и происходит окисление металла, и его называют анодом.

    При работе гальванического элемента, на одном из электродов избыток электронов обеспечивается уже не внешним источником тока, а именно реакцией окисления металла, то есть здесь отрицательным будет уже анод. Электроны, которые проходят через внешнюю цепь, будут расходоваться на протекание реакции восстановления, то есть катодом можно назвать положительный электрод.

    Исходя из такого толкования, для аккумулятора аноды и катоды меняются местами в зависимости от того, как направлен ток внутри аккумулятора. В электротехнике анодом называют положительный электрод. Так электрический ток течет от анода к катоду, а электроны — наоборот.

    Определить, какой из электродов является анодом, а какой – катодом, на 1-й взор кажется легко. Принято считать, что анод имеет негативный заряд, катод – правильный. Но на практике могут появиться путаницы в определении.

    Инструкция

    1. Анод – электрод, на котором протекает реакция окисления. А электрод, на котором происходит поправление, именуется катодом.

    2. Возьмите для примера гальванический элемент Якоби-Даниэля. Он состоит из цинкового электрода, опущенного в раствор сульфата цинка, и медного электрода, находящегося в растворе сульфата меди. Растворы соприкасаются между собой, но не смешиваются – для этого между ними предусмотрена пористая перегородка.

    3. Цинковый электрод, окисляясь, отдает свои электроны, которые по внешней цепи двигаются к медному электроду. Ионы меди из раствора СuSO4 принимают электроны и восстанавливаются на медном электроде. Таким образом, в гальваническом элементе анод заряжен негативно, а катод – одобрительно.

    4. Сейчас разглядите процесс электролиза. Установка для электролиза представляет собой сосуд с раствором либо расплавом электролита, в тот, что опущены два электрода, подключенные к источнику непрерывного тока. Негативно заряженный электрод является катодом – на нем происходит поправление. Анод в данном случае электрод, подключенный к правильному полюсу. На нем происходит окисление.

    5. Скажем, при электролизе раствора СuCl2 на аноде происходит поправление меди. На катоде же происходит окисление хлора.

    6. Следственно учтите, что анод – не неизменно негативный электрод, так же как и катод не во всех случаях имеет правильный заряд. Фактором, определяющим электрод, является происходящий на нем окислительный либо восстановительный процесс.

    Диод имеет два электрода, называемые анодом и катодом. Он горазд проводить ток от анода к катоду, но не напротив. Маркировка, объясняющая предназначение итогов, имеется не на всех диодах .

    Инструкция

    1. Если маркировка имеется, обратите внимание на ее внешний вид и расположение. Она выглядит как стрелка, упирающаяся в пластину. Направление стрелки совпадает с прямым направлением тока, происходящего через диод. Иными словами, стрелке соответствует анодный итог, а пластине – катодный.

    2. Аналоговые многофункциональные измерительные приборы имеют разную полярность напряжения, приложенного к щупам в режиме омметра. У некоторых из них она такая же, как в режиме вольтметра либо амперметра, у других – противоположная. Если она вам незнакома, возьмите диод, имеющий маркировку, переключите прибор в режим омметра, позже чего подключите к диоду вначале в одной, а потом в иной полярности. При варианте, в котором стрелка отклоняется, запомните, какой электрод диода был подключен к какому из щупов. Сейчас, подключая щупы в разной полярности к иным диодам, вы сумеете определять расположение их электродов.

    3. У цифровых приборов в большинстве случаев полярность подключения щупов во всех режимах совпадает. Переключите мультиметр в режим проверки диодов – рядом с соответствующим расположением переключателя имеется обозначение этой детали. Алый щуп соответствует аноду, черный – катоду. В верной полярности будет показано прямое падение напряжения на диоде, в неправильной же индицируется бесконечность.

    4. Если под рукой измерительного прибора нет, возьмите батарейку от материнской платы, светодиод и резистор на один килоом. Объедините их ступенчато, подключив светодиод в такой полярности, дабы светодиод светился. Сейчас включите в обрыв этой цепи проверяемый диод, экспериментально подобрав такую полярность, дабы светодиод засветился вновь. Итог диода, обращенный к плюсу батарейки – анодный.

    5. Если при проверке обнаружится, что диод непрерывно открыт либо непрерывно закрыт, и от полярности ничего не зависит, значит он неисправен. Замените его, заранее удостоверясь в том, что его выход из строя не обусловлен неисправностью других деталей. В этом случае вначале замените и их.

    Обратите внимание!
    Все перепайки исполняйте при обесточенной аппаратуре и разряженных конденсаторах. Диод проверяйте в выпаянном виде.

    Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.

    Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

    А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

    Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

    Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

    Теперь, когда мы отпугнули слабых, продолжаем…


    Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.

    Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «А ткуда» (от Анода) и «К уда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.


    Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

    Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом ». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

    Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

    Катод и анод в теории и практике. Назначение диода

    Про анод и катод источника питания необходимо знать тем, кто занимается практической электроникой. Что и как называют? Почему именно так? Будет углублённое рассмотрение темы с точки зрения не только радиолюбительства, но и химии. Наиболее популярное объяснение звучит следующим образом: анод — это положительный электрод, а катод — отрицательный. Увы, это не всегда верно и неполно. Чтобы уметь определить анод и катод, необходимо иметь теоретическую базу и знать, что да как. Давайте рассмотрим это в рамках статьи.

    Анод

    Обратимся к ГОСТ 15596-82, который занимается химическими Нас интересует информация, размещённая на третьей странице. Согласно ГОСТу, отрицательным электродом является именно анод. Вот так да! А почему именно так? Дело в том, что именно через него электрический ток входит из внешней цепи в сам источник. Как видите, не всё так легко, как кажется на первый взгляд. Можно посоветовать внимательно рассматривать представленные в статье картинки, если содержимое кажется слишком сложным — они помогут понять, что же автор хочет вам донести.

    Катод

    Обращаемся всё к тому же ГОСТ 15596-82. Положительным электродом химического источника тока является тот, при разряде из которого он выходит во внешнюю цепь. Как видите, данные, содержащиеся в ГОСТ 15596-82, рассматривают ситуацию с другой позиции. Поэтому при консультировании с другими людьми насчет определённых конструкций необходимо быть очень осторожным.

    Возникновение терминов

    Их ввёл ещё Фарадей в январе 1834 года, чтобы избежать неясности и добиться большей точности. Он предлагал и свой вариант запоминания на примере с Солнцем. Так, у него анод — это восход. Солнце движется вверх (ток входит). Катод — это заход. Солнце движется вниз (ток выходит).

    Пример радиолампы и диода

    Продолжаем разбираться, что для обозначения чего используется. Допустим, один из данных потребителей энергии у нас имеется в открытом состоянии (в прямом включении). Так, из внешней цепи диода в элемент по аноду входит электрический ток. Но не путайтесь благодаря такому объяснению с направлением электронов. Через катод во внешнюю цепь из используемого элемента выходит электрический ток. Та ситуация, что сложилась сейчас, напоминает случаи, когда люди смотрят на перевёрнутую картину. Если данные обозначения сложные — помните, что разбираться в них таким образом обязательно исключительно химикам. А сейчас давайте сделаем обратное включение. Можно заметить, что полупроводниковые диоды практически не будут проводить ток. Единственное возможное здесь исключение — обратный пробой элементов. А электровакуумные диоды (кенотроны, радиолампы) вообще не будут проводить обратный ток. Поэтому и считается (условно), что он через них не идёт. Поэтому формально выводы анод и катод у диода не выполняют свои функции.

    Почему существует путаница?

    Специально, чтобы облегчить обучение и практическое применение, было решено, что диодные элементы названия выводов не будут менять зависимо от своей схемы включения, и они будут «прикреплены» к физическим выводам. Но это не относится к аккумуляторам. Так, у полупроводниковых диодов всё зависит от типа проводимости кристалла. В электронных лампах этот вопрос привязан к электроду, который эмитирует электроны в месте расположения нити накала. Конечно, тут есть определённые нюансы: так, через такие как супрессор и стабилитрон, может немного протекать обратный ток, но здесь существует специфика, явно выходящая за рамки статьи.

    Разбираемся с электрическим аккумулятором

    Это по-настоящему классический пример химического источника электрического тока, что является возобновляемым. Аккумулятор пребывает в одном из двух режимов: заряд/разряд. В обоих этих случаях будет разное направление электрического тока. Но обратите внимание, что полярность электродов при этом меняться не будет. И они могут выступать в разных ролях:

    1. Во время зарядки положительный электрод принимает электрический ток и является анодом, а отрицательный его отпускает и именуется катодом.
    2. При отсутствии движения о них разговор вести нет смысла.
    3. Во время разряда положительный электрод отпускает электрический ток и является катодом, а отрицательный принимает и именуется анодом.

    Об электрохимии замолвим слово

    Здесь используют немного другие определения. Так, анод рассматривается как электрод, где протекают окислительные процессы. И вспоминая школьный курс химии, можете ответить, что происходит в другой части? Электрод, на котором протекают восстановительные процессы, называется катодом. Но здесь нет привязки к электронным приборам. Давайте рассмотрим ценность окислительно-восстановительных реакций для нас:

    1. Окисление. Происходит процесс отдачи частицей электрона. Нейтральная превращается в положительный ион, а отрицательная нейтрализуется.
    2. Восстановление. Происходит процесс получения частицей электрона. Положительная превращается в нейтральный ион, а потом в отрицательный при повторении.
    3. Оба процесса являются взаимосвязанными (так, количество электронов, что отданы, равняется присоединённому их числу).

    Также Фарадеем для обозначения были введены названия для элементов, что принимают участие в химических реакциях:

    1. Катионы. Так называются положительно заряженные ионы, что двигаются в в сторону отрицательного полюса (катода).
    2. Анионы. Так называются отрицательно заряженные ионы, что двигаются в растворе электролита в сторону положительного полюса (анода).

    Как происходят химические реакции?

    Окислительная и восстановительная полуреакции являются разделёнными в пространстве. Переход электронов между катодом и анодом осуществляется не непосредственно, а благодаря проводнику внешней цепи, на котором создаётся электрический ток. Здесь можно наблюдать взаимное превращение электрической и химической форм энергии. Поэтому для образования внешней цепи системы из проводников разного рода (коими являются электроды в электролите) и необходимо пользоваться металлом. Видите ли, напряжение между анодом и катодом существует, как и один нюанс. И если бы не было элемента, что мешает им напрямую произвести необходимый процесс, то ценность источников химического тока была бы весьма низка. А так, благодаря тому, что заряду необходимо пройтись по той схеме, была собрана и работает техника.

    Что есть что: шаг 1

    Теперь давайте будем определять, что есть что. Возьмём гальванический элемент Якоби-Даниэля. С одной стороны он состоит из цинкового электрода, который опущен в раствор сульфата цинка. Затем идёт пористая перегородка. И с другой стороны имеется медный электрод, который расположен в растворе Они соприкасаются между собой, но химические особенности и перегородка не дают смешаться.

    Шаг 2: Процесс

    Происходит окисление цинка, и электроны по внешней цепи двигаются к меди. Так получается, что гальванический элемент имеет анод, заряженный отрицательно, и катод — положительный. Причем данный процесс может протекать только в тех случаях, когда электронам есть куда «идти». Дело в том, что попасть напрямую от электрода к другому мешает наличие «изоляции».

    Шаг 3: Электролиз

    Давайте рассмотрим процесс электролиза. Установка для его прохождения является сосудом, в котором имеется раствор или расплав электролита. В него опущено два электрода. Они подключены к источнику постоянного тока. Анод в этом случае — это электрод, который подключен к положительному полюсу. Здесь происходит окисление. Отрицательно заряженный электрод — это катод. Здесь протекает реакция восстановления.

    Шаг 4: Напоследок

    Поэтому при оперировании данными понятиями всегда необходимо учитывать, что анод не в 100% случаев используется для обозначения отрицательного электрода. Также катод периодически может лишаться своего положительного заряда. Всё зависит от того, какой процесс на электроде протекает: восстановительный или окислительный.

    Заключение

    Вот таким всё и является — не очень сложно, но не скажешь, что и просто. Мы рассмотрели гальванический элемент, анод и катод с точки зрения схемы, и сейчас проблем с соединением источников питания с наработками у вас быть не должно. И напоследок нужно оставить ещё немного ценной для вас информации. Всегда приходится учитывать разницу, которую имеет анода. Дело в том, что первый всегда будет немного большим. Это из-за того, что коэффициент полезного действия не работает с показателем в 100 % и часть зарядов рассеивается. Именно из-за этого можно увидеть, что аккумуляторы имеют ограничение на количество раз заряда и разряда.

    Катод – это электрод устройства, который подключен к отрицательному полюсу источнику тока. Анод – противоположность ему. Это электрод прибора, подключенный к положительному полюсу источника тока.

    Обратите внимание! Чтобы легче запомнить разницу между ними, используют шпаргалку. В словах «катод»-«минус», «анод»-«плюс» одинаковое число букв.

    Применение в электрохимии

    В этом разделе химии катод – это отрицательно заряженный электрический проводник (электрод), притягивающий к себе положительно заряженные ионы (катионы) во время процессов окисления и восстановления.

    Электролитическое рафинирование – это электролиз сплавов и водных растворов. Большинство цветных металлов подвергаются такой очистке. При помощи электролитической очистки получается металл с высокой чистотой. Так, степень чистоты меди после рафинирования достигает 99,99%.

    На положительном электрическом проводнике во время рафинирования или очистки проходит электролитический процесс. Во время него металл с примесями помещают в электролизер и делают анодом. Такие процессы проводятся при помощи внешнего источника электрической энергии и называются реакциями электролиза. Осуществляются в электролизерах. Он выполняет функцию электронасоса, нагнетающего отрицательно заряженные частицы (электроны) в отрицательный проводник и удаляющего его из анода. Откуда исходит ток, неважно.

    На катоде очищается металл от посторонних примесей. Простой катод изготавливается из вольфрама, иногда – из тантала. Достоинством вольфрамового отрицательного электрода является стойкость его изготовления. Из недостатков – имеет низкую эффективность и неэкономичность. Сложные катоды имеют разное устройство. У многих таких типов проводников на чистый металл сверху наносится специальный слой, который активирует получение большей производительности при относительно низких температурах. Они очень экономичны. Их недостаток состоит в небольшой устойчивости производительности.

    Готовый чистый металл тоже называется катодом. Например, цинковый или платиновый катод. На производстве отрицательный проводник отделяют от катодной основы при помощи катодосдирочных машин.

    При удалении отрицательно заряженных частиц из электрического проводника на нем создается анод, а при нагнетании отрицательно заряженных частиц на электрический проводник – катод. При электролизе очищаемого металла его положительные ионы притягивают к себе отрицательно заряженные частицы на отрицательном проводнике, и происходит восстановительный процесс. Чаще всего используют такие аноды:

    • цинковые;
    • кадмиевые;
    • медные;
    • никелевые;
    • оловянные;
    • золотые;
    • серебряные;
    • платиновые.

    Чаще всего на производстве используют цинковые аноды. Они бывают:

    • катанные;
    • литые;
    • сферические.

    Больше всего применяют катанные цинковые аноды. Еще используют никелевые и медные. А вот кадмиевые почти не используются из-за их токсичности для экологии. Бронзовые и оловянные аноды применяют при изготовлении радиоэлектронных печатных плат.

    Гальванизация (гальваностегия) – процесс нанесения тонкого слоя металла на другой предмет с целью предотвращения коррозии изделия, окисления контактов в электронике, износостойкости, декорации. Суть процесса такая же, как при рафинировании.

    Цинк и олово используют для повышения стойкости изделия при коррозии. Цинкование бывает холодным, горячим, гальваническим, газотермическим и термодиффузионным. Золото используют в основном в защитно-декоративных целях. Серебро повышает стойкость контактов электроприборов к окислению. Хром – для увеличения износостойкости и защиты от коррозии. Хромирование придает изделиям красивый и дорогой вид. Используется для нанесения на ручки, краны, колесные диски и т.д. Процесс хромирования токсичен, поэтому строго регламентируется законодательством разных стран. Ниже на картинке представлен метод гальванизации при помощи никеля.

    Применение в вакуумных электронных приборах

    Здесь катод выступает источником свободных электродов. Они образуются в ходе их выбивания из металла при высоких температурах. Положительно заряженный электрод притягивает электроны, выпущенные отрицательным проводником. В разных аппаратах он в разной степени собирает их в себя. В электронных трубках он полностью притягивает отрицательно заряженные частицы, а в электронно-лучевых приборах – частично, формируя в завершении процесса электронный луч.

    m.katod-anod.ru

    Назначение диода, анод диода, катод диода, как проверить диод мультиметром

    Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

    Условное обозначениедиода на схеме

    На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

    Как проверить диод мультиметром

    Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.

    katod-anod.ru

    Определяем полярность светодиода. Где плюс и минус у LED

    Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

    Вы можете встретить два обозначения LED на принципиальной электрической схеме.

    Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

    Цоколевка 5мм диодов

    Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

    На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

    Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

    Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

    Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

    Как определить анод и катод у диодов 1Вт и более

    В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

    Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

    Как узнать полярность SMD?

    SMD активно применяются практических в любой технике:

    • Лампочки;
    • светодиодные ленты;
    • фонарики;
    • индикация чего-либо.

    Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

    Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

    Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

    Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

    Как определить плюс на маленьком SMD?

    В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

    Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

    Определяем полярность мультиметром

    При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

    Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

    Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

    Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

    Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

    Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

    В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

    Другие способы определения полярности

    Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

    Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

    Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.


    Схема самодельного пробника

    При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

    Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

    И последний способ изображен на фото ниже.

    Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

    Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

    Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

    Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

    svetodiodinfo.ru

    Обозначение светодиодов и других диодов на схеме

    Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.

    Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.

    Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.

    УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.

    Диоды, какие они бывают?

    Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.

    Обозначение диодного моста

    Например, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.

    Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.

    Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.


    Специфичные диоды

    Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.


    Обозначение стабилитрона (диод Зенера)

    Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.

    Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.

    Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.

    Варикап — обозначение на схеме и внешний вид

    Динистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.

    Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.

    Обозначение динистора

    Светодиоды и оптоэлектроника

    Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.


    В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.

    Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.

    Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:


    Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.

    Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:


    Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.

    В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.

    Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.

    Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.

    Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.

    Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!

    svetodiodinfo.ru

    Как проверить диод мультиметром — Практическая электроника

    В радиоэлектронике в основном применяются два типа диодов — это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.

    На фото ниже у нас простой диод и светодиод.

    Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?.

    Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному — катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет.

    Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.

    Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. 436 миллиВольт — это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.

    Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.

    А как же проверить светодиод? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус.

    Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.

    Меняем щупы местами. Светодиодик не загорелся.

    Выносим вердикт — вполне работоспособный светодиод!

    А как же проверить диодные сборки, диодные мосты и стабилитроны? Диодные сборки — это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.

    www.ruselectronic.com

    Маркировка диодов: таблица обозначений

    Содержание:
    1. Маркировка импортных диодов
    2. Маркировка диодов анод катод

    Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

    Характеристики и параметры диодов

    В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

    В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.

    Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

    Обозначения и цветовая маркировка диодов

    Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

    Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

    Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

    Маркировка импортных диодов

    В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

    В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

    Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

    Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

    По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

    Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

    Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

    Маркировка диодов анод катод

    Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

    Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

    • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
    • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

    electric-220.ru

    ДИОДЫ

    Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

    На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.

    Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

    В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

    Анод в электрохимии

    Аноды — множественное число слова «анод»; эта форма применяется преимущественно в металлургии, где применяются аноды для гальваники, используемые для нанесения на поверхность изделия слоя металла электрохимическим способом, либо для электрорафинирования, где металл с примесями растворяется на аноде и осаждается в очищенном виде на катоде . Основное распространение получили аноды из цинка (бывают сферические, литые и катаные, чаще используются последние), никеля, меди (среди которых отдельно выделяют медно-фосфористые, марки АМФ), кадмия (применение которых сокращается из-за экологической вредности), бронзы, олова (применяются при производстве печатных плат в радиоэлектронной промышленности), сплава свинца и сурьмы, серебра, золота и платины. Аноды из недрагоценных металлов применяются для повышения коррозионной стойкости, повышения эстетических свойств предметов и др. целей. Аноды из драгоценных металлов применяются гальваническим производством для повышения электропроводности изделий и др.

    Анод в вакуумных электронных приборах

    Знак анода и катода

    В литературе встречается различное обозначение знака анода — «+» или «-», что определяется, в частности, особенностями рассматриваемых процессов.

    В электрохимии принято считать, что катод — электрод, на котором происходит процесс восстановления, а анод — тот, где протекает окисление . При работе электролизера (например, при рафинировании меди) внешний источник тока обеспечивает на одном из электродов избыток электронов (отрицательный заряд), здесь происходит восстановление металла, это катод. На другом электроде обеспечивается недостаток электронов и окисление металла, это анод.

    В электротехнике анод — положительный электрод, ток течет от анода к катоду, электроны , соответственно, наоборот.

    См. также

    • Мнемонические правила запоминания знака анода

    Литература

    Ссылки

    • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). — СПб. , 1890-1907.
    • Рекомендации ИЮПАК по выбору знака для величин анодного и катодного токов

    Wikimedia Foundation . 2010 .

    Синонимы :

    Смотреть что такое «Анод» в других словарях:

      — (греч. anodos восходящая дорога). В гальваническом элементе, одна из двух пластинок или проволок, по которой вступает или выходит из жидкости электрический ток. Противоположность катоду. Словарь иностранных слов, вошедших в состав русского языка … Словарь иностранных слов русского языка

      анод — а, м. anode f., англ. anode <гр. anodos путь вверх, восхождение. физ. Положительно заряженный электрод. В действии таких приборов, как гальваническая батарея, полярности нет и быть не может.. <положительный и отрицательный полюс..… … Исторический словарь галлицизмов русского языка

      Отрицательный электрод Словарь русских синонимов. анод сущ., кол во синонимов: 1 электрод (10) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

      анод — электровакуумного прибора; анод; отрасл. коллектор Электрод, основным назначением которого обычно является прием основного потока электронов при электрическом разряде … Политехнический терминологический толковый словарь

      анод — (устройства) электрод, через который электрический ток входит в среду, имеющую удельную проводимость, отличную от удельной проводимости анода [СТ МЭК50(151) 78] анод EN anode electrode capable of emitting positive charge… … Справочник технического переводчика

      — (от греческого anodos движение вверх, восхождение), электрод электронного или электротехнического прибора (например, электронной лампы, гальванического элемента, электролитической ванны), характеризующийся тем, что движение электронов во внешней… … Современная энциклопедия Толковый словарь Ожегова

      — (от греч. anodos движение вверх), 1) электрод электронного или ионного прибора, соединяемый с положит. полюсом источника. 2) Положит. электрод источника электрич. тока (гальванич. элемента, аккумулятора). 3) Положит. электрод электрич. дуги.… … Физическая энциклопедия

    Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.

    Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

    А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

    Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

    Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

    Теперь, когда мы отпугнули слабых, продолжаем…


    Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.

    Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «А ткуда» (от Анода) и «К уда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.


    Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

    Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом ». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

    Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

    Светодиоды анод. Что такое диод. Обозначение светодиодов и других диодов на схеме

    Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

    Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

    Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
    Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

      * Низкое электропотребления – в 10 раз экономичней лампочек
      * Долгий срок службы – до 11 лет непрерывной работы
      * Высокий ресурс прочности – не боятся вибраций и ударов
      * Большое разнообразие цветов
      * Способность работать при низких напряжениях
      * Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

    Маркировка светодиодов

    Рис. 1. Конструкция индикаторных 5 мм светодиодов

    В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
    Затем свет проходит через корпус из эпоксидной смолы. Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

    Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
    Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

    Рис. 2. Виды корпусов светодиодов

    Цвета светодиодов

    Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
    Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

    Таблица 1. Маркировка светодиодов

    Многоцветные светодиоды

    Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

    Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

    При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

    Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

    Напряжение питания

    Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА, так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

    Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
    Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
    Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

    Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

    Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

    R
    Uпит — напряжение источника питания в вольтах.
    Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
    I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
    0,75 — коэффициент надёжности для светодиода.

    Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

    P — мощность резистора в ваттах.
    Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
    Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
    R — сопротивление резистора в омах.

    Расчет токогораничивающего резистора и его мощности для одного светодиода

    Типичные характеристики светодиодов

    Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

    Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
    Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

    Таблица падения напряжений светодиодов в зависимости от цвета

    По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

    Последовательное и параллельное включение светодиодов

    При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

    При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

    Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

      * Nmax – максимально допустимое количество светодиодов в гирлянде
      * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
      * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
      * При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

    При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

    Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

    Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.

    Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.

    Параллельное включение светодиодов с общим резистором — плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

    Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.

    Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).

    А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.

    Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.

    Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).

    Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

    Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
    Тоже важно! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.

    Как запитать светодиод от сети 220 В.

    Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
    Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

    Еще один вариант подключения светодиода к электросети 220в:

    Или же поставить два светодиода встречно-параллельно.

    Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
    Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
    Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

    Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

    Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
    А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

    Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

    На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
    Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

    Наиболее распространённые ошибки при подключении светодиодов

    1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

    2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

    3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

    4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

    5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

    6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

    Мигающие светодиоды

    Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
    Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

    Отличительные качества мигающих сеетодиодое:

      Малые размеры
      Компактное устройство световой сигнализации
      Широкий диапазон питающего напряжения (вплоть до 14 вольт)
      Различный цвет излучения.

    В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
    Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

    Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

    Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
    Чип генератора размещён на основании анодного вывода.
    Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

    Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
    Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
    Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
    Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

    Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

    Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
    Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

    Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

    Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

    Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
    Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

    В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
    светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
    Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

    Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.

    Подробно о полярностях светодиодных ламп

    Несоблюдение полярности и неправильное включение может привести к поломке светодиода

    Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.

    Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «-»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.

    Способы выявления полярности

    Определение полярности светодиода по внешнему виду

    Выделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.

    Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.

    Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.

    Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.

    Использование мультиметра

    Определение полярности светодиода при помощи мультиметра

    Если определить светодиод – анод/катод – визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:

    • На аппарате устанавливают режим измерения сопротивления.
    • Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
    • Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.

    Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.

    Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:

    • Выставляют нужный режим.
    • Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.

    Если минус светодиода подключен к коллектору, лампочка даст свет.

    Метод подачи напряжения

    Определение полярности светодиода методом подачи напряжения

    Чтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.

    Действуют таким образом:

    • ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
    • Если полярности элемента соблюдены правильно, светодиод даст колер.
    • Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.

    При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.

    Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.

    Определение полярности с помощью техдокументации

    Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:

    • масса;
    • цоколевка светодиодов;
    • габариты;
    • электрические параметры:
    • иногда распиновка (схема подключения).

    При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.

    Когда требуется определение полярностей LED-лампочек

    Применение светодиодов в декорировании улицы

    Маленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:

    • уличное освещение: рекламные вывески, парковые подсветки;
    • бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
    • индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
    • детские игрушки;
    • пульты ДУ и многое другое.

    При выходе из строя лампочки мастер прибегает к её замене. При этом требуется определить анод и катод светодиода. В противном случае элемент просто не выдаст освещения.

    На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:

    • Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
    • Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.

    Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.

    Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.

    Имеет два вывода: анод и катод.

    Выводы светодиода на схеме указываются таким образом, что стрелка диода обозначает прямое направление тока, от анода (+) к катоду (-), следовательно, анод подключается к положительному полюсу, а катод к отрицательному .

    Как определить где катод, а где анод? Это можно сделать несколькими способами, самый простой – визуально. Обычно длинная ножка светодиода указывает на то, что это анод , его подключаем к “+” источника питания.

    Если же это SMD светодиод, то метка указывает на сторону, где расположен катод светодиода. Зачастую в SMD светодиодах расположено несколько кристаллов, поэтому вывод может быть не один, а к примеру 3 как на светодиоде 5050.

    С помощью батарейки

    Если светодиод не новый, по ножкам определить уже нельзя, но есть еще один простой способ — воспользоваться батарейкой CR2032, которую можно найти в брелоке от сигнализации или материнской плате компьютера. Ее напряжение 3 В, этого вполне хватит практически для всех маломощных светодиодов.

    Необходимо поочередно приложить выводы диода к полюсам батарейки, в том положении, в котором он засветится к “+” батарейки приложен анод, соответственно к “-“ – катод.

    С помощью мультиметра

    Определить полярность светодиода можно также с помощью мультиметра. Необходимо просто поставить в режим прозвонки диодов (или измерения сопротивления) и поочередно приложить к выводам. Когда красный щуп мультиметра будет приложен к аноду, диод начнет светиться.

    Этот способ крайне полезен, когда светодиод имеет очень малые размеры (SMD) или смонтирован на плате. Также с помощью мультиметра можно проверить исправность светодиода, если он не начнет светиться при любом положении щупов, вероятно, он вышел из строя.

    Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится. Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.
    Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.
    Но как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?

    Определяем зрительно

    Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.

    Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.

    Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.

    Применяем источник питания

    Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.

    Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.

    Если мощности элемента питания для светодиода не хватает, и прибор не светится, как вы его не подключаете, то можно соединить несколько элементов в батарею. Напоминаем, сто элементы соединяются последовательно плюс к минусу, а минус к плюсу.

    Применение мультиметра

    Существуют прибор, который называется мультиметром. Его с успехом можно использовать, чтобы узнать, куда подключать плюс, а куда минус. На это уходит ровным счетом одна минута. В мультиметре выбирают режим измерения сопротивления и прикасаются щупами к контактам светодиода. Красный провод указывает на подключение к плюсу, а черный – к минусу. Желательно, чтобы касание было кратковременным. При обратном включении прибор ничего не покажет, а при прямом включении (плюс к плюсу, а минус к минусу) прибор покажет значение в районе 1,7 кОм.

    Можно также включать мультиметр на режим проверки диода. В этом случае при прямом включении светодиодная лампочка будет светиться.

    Данный способ самый эффективный для лампочек, излучающих красный и зеленый свет. Светодиод, дающий синий или белый свет рассчитан на напряжение, большее 3 вольт, поэтому не всегда при подключении к мультиметру он будет светиться даже при правильной полярности. Из этой ситуации можно легко выйти, если использовать режим определения характеристик транзисторов. На современных моделях, таких как DT830 или 831, он присутствует.

    Диод вставляют в пазы специальной колодки для транзисторов, которая обычно расположена в нижней части прибора. Используется часть PNP (как для транзисторов соответствующей структуры). Одну ножку светодиода засовывают в разъем С, который соответствует коллектору, вторую ножку – в разъем Е, соответствующий эмиттеру. Лампочка засветится, если катод (минус), будет подключен к коллектору. Таким образом, полярность определена.

    В механике есть такие устройства, которые пропускают воздух или жидкость только в одном направлении. Вспомните, как вы накачивали колесо велосипеда или автомобиля. Почему, когда вы убирали шланг насоса, воздух не выходил из колеса? Потому что на камере, в пипочке, куда вы вставляете шланг насоса, есть такая интересная штучка – . Вот он как раз пропускает воздух только в одном направлении, а в другом направлении блокирует его прохождение.

    Электроника – эта та же самая гидравлика или пневматика. Но весь прикол заключается в том, что в электронике вместо жидкости или воздуха используется электрический ток. Если провести аналогию: бачок с водой – это заряженный конденсатор , шланг – это провод, катушка индуктивности – это колесо с лопастями


    которое невозможно сразу разогнать, а потом невозможно резко остановить.

    Тогда что такое ниппель в электронике? А ниппелем мы будем называть радиоэлемент – . И в этой статье мы познакомимся с ним поближе.

    Полупроводниковый диод представляет из себя элемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. Это своеобразный ниппель;-).

    Некоторые диоды выглядят почти также как и резисторы:



    А некоторые выглядят чуточку по другому:

    Есть также и SMD исполнение диодов:


    Диод имеет два вывода , как и резистор, но у этих выводов, в отличие от резистора, есть определенные названия – анод и катод (а не плюс и минус, как говорят некоторые неграмотные электронщики). Но как же нам определить, что есть что? Есть два способа:

    1) на некоторых диодах катод обозначают полоской , отличающейся от цвета корпуса



    2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

    Если подать на анод плюс, а на катод минус, то у нас диод “откроется” и электрический ток спокойно по нему потечет. А если же на анод подать минус, а на катод – плюс, то ток через диод не потечет. Своеобразный ниппель;-). На схемах простой диод обозначают вот таким образом:

    Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки;-).


    Характеристики диода

    Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”


    Для объяснения параметров диода, нам также потребуется его


    1) Обратное максимальное напряжение U обр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток I обр – сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.

    2) Максимальный прямой ток I пр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.

    3) Максимальная частота F d , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

    Виды диодов

    Стабилитроны

    Представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение . Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

    Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца . Главный параметр стабилитрона – это напряжение стабилизации (Uст) . Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (I min , I max) . Измеряется в Амперах.

    Выглядят стабилитроны точно также, как и обычные диоды:


    На схемах обозначаются вот так:

    Светодиоды

    Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

    Предельное обратное напряжение (U обр) может достигать 10 Вольт. Максимальный ток (I max ) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.



    Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.



    Очень большим спросом пользуются светодиодные ленты, состоящие из множества светодиодов. Смотрятся очень красиво.


    На схемах светодиоды обозначаются так:

    Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления


    Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах


    Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое , которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

    Как проверить светодиод можно узнать из этой статьи.

    Тиристоры

    Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – I ос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (U у ), которое подается на управляющий электрод и при котором тиристор полностью открывается.


    а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:

    На схемах триодные тиристоры выглядят вот таким образом:

    Существуют также разновидности тиристоров – динисторы и симисторы . У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

    Диодный мост и диодные сборки

    Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки . Диодные мосты – одна из разновидностей диодных сборок.


    На схемах диодный мост обозначается вот так:

    Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

    где плюс и минус на светодиоде (анод и катод)

    Светодиоды довольно часто используют в электротехнике, например, в качестве индикаторов. Для того чтобы диод работал и излучал свет, необходимо его правильно включить в электрическую цепь. А для этого нужно определить полярность светодиода. Рассмотрим способы, которые помогут это сделать.

    Использование технической документации. Обозначение светодиода на схеме.

    При покупке крупной партии LED устройств стоит запросить у продавца техническую документацию. Это поможет точно узнать многие характеристики изделия, не исключая полярность. На небольшое количество светодиодов паспорт обычно не дают. Но по точному названию марки элемента найти в интернете технические характеристики не составит труда.

    На электрической схеме светодиоды изображают двумя способами.

    Треугольником обозначают анод, вертикальной чертой – катод. Две стрелочки символизируют свечение.

    Визуальное определение.

    Если техническая документация недоступна, то для начала элемент стоит внимательно рассмотреть. Часто это помогает понять, где плюс у светодиода. У наиболее распространенного типа LED устройств – цилиндрического диода размером не менее 3,5 мм – один контакт длиннее. Такое конструктивное решение придумано для индикации полярности. Длинный вывод  является положительным анодом.

    Распознать плюс и минус можно, если удастся рассмотреть, что у светодиода внутри. Сквозь прозрачную оболочку заметно, что площадь анода (положительного контакта) меньше, чем у катода (отрицательного).

    Если на корпусе светодиода имеется скос, то это признак катода. 

    Чем выше типоразмер и мощность LED изделия, тем больше шансы определить полярность «на глаз».

    Находим анод и катод у LED элементов мощностью свыше 1Вт.

    Мощные светодиоды используются в электротехнике. Как быстро определить их полярность? Довольно просто. Достаточно внимательно рассмотреть диод. При изготовлении контакты элементов мощностью свыше 0,5 Вт маркируют. Анод помечается знаком «+».

    Распознаем полярность у светодиода в корпусе SMD.

    Если светодиод выполнен в корпусе SMD, то рассмотреть, что же у него внутри невозможно. Как правило, производители заботятся об электротехниках и делают определенные пометки. Полярность можно распознать по срезу на корпусе, теплоотводу или пиктограмме. Первые два способа больше подходят для больших типоразмеров.

    На корпусе таких диодов можно найти конструктивный срез. Именно он указывает на отрицательный контакт (катод). С противоположной стороны, соответственно, будет расположен положительный анод.

    Теплоотвод с обратной стороны корпуса также подсказывает полярность. Он смещен к аноду.

    На небольшие SMD диоды (например, типоразмер 1206) в качестве подсказки наносят специальные пиктограммы.  Они имеют форму треугольника, буквы П или Т. Выступ обозначает катод.

    Распознавание с помощью мультиметра.

    Самый надежный способ распознания полярности − использование специальных приборов. При помощи обычного мультиметра можно обозначить контакты у диодов с высокой степенью точности. Попутно обнаружится исправность элемента и цвет свечения. Воспользоваться тестером можно 3-мя путями.

    Во-первых, проверить LED устройство на режиме «проверка сопротивления – 2 кОм». При этом следует прикоснуться щупами мультиметра к контактам светодиода. Если красный положительный щуп тестера коснется анода диода, а черный отрицательный – катода, то экран покажет значение 1600-1800 Ом. В противоположном случае тестер выдаст единицу. Значит, щупы нужно поменять местами. Если и это не помогло, значит, элемент неисправен. Узнать цвет свечения таким методом не получится.

    Во-вторых, можно установить мультиметр в режим «прозвонка, проверка диода». Если красный провод дотронется до анода, а черный – до катода, то элемент будет светиться. Экран покажет число от 500 до 1200 мВ.

    В-третьих, многие тестеры позволяют проводить измерения вовсе без щупов. Мультиметр должен обладать специальным отделом для проверки PNP и NPN транзисторов. В них есть разъемы, обозначенные буквами «Е» и «С». При проверке элемента в PNP-зоне, если катод вставить в гнездо «С», а анод − в «Е», то светодиод начнет излучать свет. Следовательно, полярность определена верно. При работе в NPN-отсеке свечение появится при противоположном размещении контактов: катод в «Е», а анод в «С». Пожалуй, это самый скорый способ определения распиновки. Кстати, если у изучаемого светодиода нет длинных выводов, то можно в разъемы поместить иголки, и LED элемент аккуратно присоединять к ним.

    Распознавание полярности источником питания.

    Следующим наглядным методом для распознания катода и анода будет присоединение к источнику питания. Данный способ, как и предыдущий, позволяет узнать еще и исправность LED элемента.

    Естественно, что для опыта необходим источник напряжения. Отлично подойдет блок питания с плавной регулировкой. Светодиод следует присоединить и постепенно увеличивать напряжение. Если при подаче 3-4 В элемент еще не светится, значит, с полярностью не угадали.

    Если такого блока питания под рукой нет, то можно применить батарейку или аккумулятор от мобильного телефона. Поскольку напряжение на них может достигать 12 В, то напрямую светодиод присоединять нельзя. Для предупреждения поломки следует включить в цепь резистор. Выбрать подходящее по величине сопротивление вам поможет статья «Расчет резистора (сопротивления) для светодиода».

    Резистор стоит подпаять к одному из контактов LED элемента. Полученной конструкцией коснуться выводов источника питания. Если полярность предположена верно, то диод начнет излучать свет. В ином случае, надо поменять контакты местами.

    Если под рукой есть плоская севшая батарейка от часов или с материнской платы (тип CR2032), то можно обойтись без резистора. Напряжением таких источников питания не превышает 6 В, что безопасно для светодиода. Батарейку зажимают между выводами диода и по свечению или его отсутствию определяют полярность.

    Итоги.

    Описанные методы имеют свои сильные и слабые стороны. По технической документации и визуально невозможно проверить работоспособность светодиода. Проверка с помощью подачи напряжения требует особенной осторожности. А мощный светодиод не всегда удастся прозвонить мультиметром. Для успешной работы электротехнику стоит освоить все методы и применять их по необходимости.


     

    где плюс, а где минус (анод, катод)

    Хотя диодами называют радиоэлектронные устройства, имеющие всего два вывода, их нельзя подключать как придется. Полярность диода должна обязательно соблюдаться. Если этого не сделать, в лучшем случае схема не будет работать, в худшем диод может выйти из строя.

    Для опытных радиолюбителей определить полярность прибора не составит труда, поэтому статья написана для малознакомых с радиотехникой людей. Поэтому прежде чем научиться определять полярность диода, разберем его устройство и принцип действия.

    Устройство диода

    Назначение диода пропускать ток в одном направлении и задерживать его в обратном. Чтобы этого добиться используют полупроводниковые материалы с разной проводимостью. Всего есть два способа передачи энергии:

    • с помощью электронов;
    • с помощью дырок.

    Про электроны многие знают. У атома любой материи есть ядро и электроны. В металлах основным носителем энергии служат электроны, поскольку их достаточно легко можно оторвать от ядер. В диодах применяется другой материал — полупроводник.

    До полупроводников применялись вакуумные лампы, где основным носителем также были электроны.

    Этот материал отличается от металлов и диэлектриков тем, что в обычном состоянии он является диэлектриком – почти не пропускает через себя ток. При нагревании появляются освободившиеся электроны, которые могут участвовать в переносе заряда, то есть принимают свойства металлов, хотя и не в полной мере.

    Хотя для создания диода могут использоваться разные материалы, например, металл, диэлектрик и подобные, мы поговорим о широко используемых диодах, состоящих из двух полупроводников. Материалом может служить:

    • кремний;
    • германий;
    • соединения галлия и индия.

    Это лишь некоторые материалы, но их чаще всего используют. Далее к полупроводнику добавляют другой химический элемент, который при соединении с полупроводником либо отдает ему электрон (в этом случае говорят, что примесь донорная), либо забирает (тогда примесь называется акцепторной.).

    В первом случае в полупроводнике наблюдается избыток электронов, во втором случае их недостает. Чтобы определить полярность диода, важно знать, какой тип полупроводника находится с одной и с другой стороны.

    Всего существует два типа:

    N-тип называют полупроводник с примесью, в котором основными носителями служат электроны, поскольку в этом материале их избыток. P-тип – полупроводник с недостатком электронов. Такую проводимость называют дырочной. Если эти два типа соединить вместе, то получим диод.

    Как работает диод

    Основа работы диода заключается в разной проводимости двух полупроводников (в этой статье речь только о них), соединенных вместе.

    Полупроводник типа n пропускает электроны, а p-типа – дырки. Если полярность диода соблюдена, то есть на n-тип подается минус, а на p-тип – плюс, то на каждый тип подается прямое напряжение и диод открыт. Если знаки питания поменять местами, то есть подать обратное напряжение, то диод будет закрыт. Почему такое происходит?

    В месте соединения двух полупроводников разной проводимостью образуется небольшая область смещения. Это когда электроны с n-типа частично переходят в область p-типа. В этом месте нет свободных электронов и дырок. Во время подключения прямого напряжения недостаток электронов и дырок восполняется источником питания, то есть закрытая для перехода носителей заряда зона почти исчезает.

    Электроны, под действием электродвижущей силы, действующей в источнике питания, перепрыгивая из дырки в дырку, проходят участок p-типа и попадают на проводник.

    Что будет, если поменять полярность питания: к участку n-типа подключить плюс, а к p-типа – минус? В этом случае электроны на участке n-типа отодвинутся к источнику питания, расширяя закрытую зону, тем самым увеличив внутреннее сопротивление диода. В этом случае диод будет закрыт.

    Конечно, если повысить напряжение на диоде, то электроны смогут проскочить насыщенную область и через диод пойдет ток. Некоторые диоды работают именно в таком режиме, их называют стабилитронами.

    Но выпрямительные диоды не «любят» такие условия и могут выйти из строя. Да и для стабилитронов оговаривается не только обратное напряжение, но и ток, при котором они могут работать. Если превысить указанные значения, то может произойти необратимый процесс – тепловой пробой и прибор выйдет из строя.

    Катод и анод: где плюс и минус

    Хотя у прибора всего два вывода необходимо знать, как определить полярность диода, чтобы не поставить его в обратном направлении? У диода имеется:

    Слово, переведенное с греческого как анод, может означать вверх или от него. Вакуумные диоды на схемах изображаются в виде вытянутого круга, вверху которого располагается анод в виде перевернутой буквы «Т». Катод располагается внизу и обозначается горизонтальной круглой скобкой с отводом.

    Электроны отрываются от катода и летят вверх, в сторону анода. Попадая на анод, они выходят во внешнюю цепь «от него». В этом случае анод должен быть подключен к положительному полюсу источника питания, а катод – к отрицательному. Про диод говорят, что он открыт и пропускает ток через себя. Когда полярность меняется, то есть на анод подается отрицательное напряжение, а на катод положительное – диод закрывается.

    В полупроводниковых диодах анодом называется вывод от полупроводника p-типа, а катодом – вывод от полупроводника n-типа. В остальном принцип работы остается тем же самым.

    Способы определения полярности диодов

    Чтобы определить полярность диода, существует несколько способов:

    • с помощью маркировки на корпусе;
    • практическим путем;
    • используя прибор;
    • по таблицам и справочникам.

    Кстати, производители оставляют за собой право использовать тот или иной метод, поэтому самым надежным будет ознакомление с технической документацией. Однако этот способ пока оставим и разберем самый простой.

    Как узнать полярность диода по маркировке

    Обычно производители дают подсказку, делая маркировку полярности диода. На крупных приборах могут быть проставлены значки диода – треугольник, упирающийся вершиной в короткий отрезок.

    Вывод со стороны основания треугольника является анодом, он должен быть подключен к плюсу питания. Другой вывод, расположенный со стороны вершины треугольника с отрезком, будет катодом. К нему, соответственно, нужно будет подключить минус питания.

    Если это выпрямительный диод, то он ставится в схему с переменным током. В этом случае на его аноде будет отрицательное напряжение, а на катоде — положительное. Помним, что электроны движутся относительно цепи питания от анода к катоду, а знак диода показывает направление движение дырок.

    Это вызывает у новичков путаницу. Дело в том, что когда только начинали познавать электрический ток, считали, что заряд имеет положительный знак, значит, ток идет от положительно заряженного электрода к отрицательному.

    Позднее разобрались, что основными носителями заряда являются электроны, а они имеют знак «—», но чтобы не переделывать схемы, которых к тому времени набралось немалое количество, оставили все как есть.

    В большинстве случаев не имеет значения, каким способом переносится заряд.

    Что касается мелких деталей, то на их корпусе со стороны вывода катода рисуется круговая полоска или ставится точка. На прямоугольных диодах обозначение полярности диода осуществляется полоской, которая может быть нарисована только на одной стороне прибора.

    Как определить полярность диода мультиметром или тестером

    Иногда бывает из-за старения или долгого хранения маркировка стирается и невозможно на вид определить, где анод, а где катод.

    Совет. Не будет лишним даже новые диоды проверять на полярность. Это поможет сохранить полярность диода, даже если на заводе произошла ошибка с маркировкой.

    Проверить полярность можно с помощью мультиметра. В новых конструкциях часто встречается режим проверки диода. Отыскать его можно с помощью значка диода, нарисованного на панели прибора.

    Прежде чем приступать к измерениям, проверяют правильность подключения щупов: черный должен быть подключен к земле или общему проводу – это будет минус. Красный подключают к другому зажиму, возле него должно быть нарисовано несколько символов. По красному проводу будет идти «плюс» питания.

    Включают прибор, устанавливают галетный переключатель на знак проверки диода. Щупами касаются двух выводов диода. Если слышен звуковой сигнал или прибор показывает небольшое сопротивление, значит, диод находится в открытом состоянии.

    Это означает, что красный провод с положительным питанием подключен к аноду, а черный к катоду. Если звукового сигнала нет, а прибор показывает большое сопротивление, значит, диод закрыт. В этом случае на анод подается отрицательное напряжение (черный провод), а на катод положительное (красный провод).

    Внимание! Некоторые диоды имеют малое обратное сопротивление, как правило, это мощные диоды. Поэтому чтобы определить полярность диода, нужно опираться на показания прибора. В том случае, когда сопротивление минимальное, это указывает на открытое состояние диода, в противном случае он закрыт. Если прямое и обратное сопротивления равны или бесконечно большие, это говорит о неисправности прибора.

    При отсутствии режима проверки диода пользуются режимом проверки сопротивления. В этом случае показания снимаются только визуально.

    С помощью источника питания (батарейки)

    При отсутствии прибора можно воспользоваться источником постоянного тока с небольшим напряжением. Обычно это батарейка. Собирают следующую схему:

    • источник питания;
    • диод;
    • лампочка, рассчитанная на напряжение немного меньше выбранного питания;
    • переменный резистор с небольшим сопротивлением, зависит от напряжения питания и составляет от десятков Ом до 1 кОм.
    Вместо лампочки можно выбрать светодиод, но это для тех, кто имеет опыт в таких проверках.

    Собирают схему с помощью проводов. Лампочку удобнее использовать в патроне. К диоду и резистору провода припаивают, причем к резистору припаивают один провод к одному крайнему выводу, вторым замыкают средний и другой крайний вывод.

    При пайке маломощных диодов, выполненных в небольшом стеклянном или пластиковом корпусе, необходимо пользоваться теплоотводом. В качестве теплоотвода могут подойти небольшие плоскогубцы, круглогубцы и подобные инструменты. Кто может работать паяльником, обходятся без теплоотвода.

    Провода к источнику питания прижимают пальцами одной руки, второй рукой вращают ручку резистора.

    Первоначально резистор устанавливают в положение, соответствующее максимальному сопротивлению. Постепенно уменьшая сопротивление, добиваются появления накала на нити лампочки. Если этого не происходит, меняют провода на источнике питания.

    При появлении накала источник питания отключают, предварительно отмечая, к какому выводу диода поступает положительное питание, это и будет анодом.

    Осторожно! Таким способом можно проверять мощные диоды, способные выдерживать большой прямой ток. Маломощные диоды можно проверять с помощью светодиодов или, лучше всего, с помощью прибора.

    По технической документации

    К сожалению, по внешнему виду некоторые диоды похожи на стабилитроны, работающие в обратном направлении. Чтобы не ошибиться с полярностью диода на схеме, необходимо удостовериться с помощью справочников, таблиц или прилагаемых к партии поясняющих документов.

    В любом случае прежде чем устанавливать диод на схему, необходимо точно определить полярность диода.

    Похожие материалы на сайте:

    Понравилась статья — поделись с друзьями!

     

    NTE Electronics NTE5827 Кремниевый выпрямительный диод, корпус анода, прессовая посадка 0,5 дюйма, номинальный ток 50 А, 400 В: Электронные микропроцессоры: Amazon.com: Industrial & Scientific


    • Убедитесь, что это подходит введя номер вашей модели.
    • Силиконовая конструкция
    • Корпус анода
    • 0,5 «прессовая посадка
    • Номинальный ток 50А
    • 400 вольт
    ]]>
    Характеристики данного продукта
    Фирменное наименование NTE Electronics
    Текущий рейтинг 50 ампер
    Ean 0768249253617
    Глобальный торговый идентификационный номер 00768249253617
    Вес изделия 0.320 унций
    Материал Кремний
    Номер модели NTE5827
    Количество контактов 2
    Кол-во позиций 1
    Номер детали NTE5827
    Диапазон температур -65-195 градусов Цельсия
    Код UNSPSC 32111500
    UPC 768249253617
    Напряжение 400 вольт

    Чрезвычайно эффективные гибкие органические светодиоды с модифицированным графеновым анодом

  • 1

    Bonaccorso, F., Сан, З., Хасан, Т., Феррари, А.С. Графеновая фотоника и оптоэлектроника. Nature Photon. 4 , 611–622 (2010).

    ADS Статья Google ученый

  • 2

    Роджерс, Дж. А. Электронные материалы: создание графена для макроэлектроники. Nature Nanotech. 3 , 254–255 (2008).

    ADS Статья Google ученый

  • 3

    Ву, Дж.и другие. Органические светодиоды на прозрачных графеновых электродах, обработанных на твердый раствор. САУ Нано 4 , 43–48 (2010).

    Артикул Google ученый

  • 4

    Sun, T. et al. Многослойный графен используется в качестве анода органических светоизлучающих устройств. Заявл. Phys. Lett. 96 , 133301 (2010).

    ADS Статья Google ученый

  • 5

    Новоселов, К.S. et al. Эффект электрического поля в атомарно тонких углеродных пленках. Наука 306 , 666–669 (2004).

    ADS Статья Google ученый

  • 6

    Гейм А. К., Новоселов К. С. Возникновение графена. Nature Mater. 6 , 183–191 (2007).

    ADS Статья Google ученый

  • 7

    Чжан Ю., Тан Ю., Стормер Х.Л. и Ким, П. Экспериментальное наблюдение квантового эффекта Холла и фазы Берри в графене. Nature 438 , 201–205 (2005).

    ADS Статья Google ученый

  • 8

    Kim, K. S. et al. Крупномасштабный рост графеновых пленок для растягиваемых прозрачных электродов. Nature 457 , 706–710 (2009).

    ADS Статья Google ученый

  • 9

    Ли Ю.и другие. Масштабный синтез и перенос графеновых пленок. Нано. Lett. 10 , 490–493 (2010).

    ADS Статья Google ученый

  • 10

    Bae, S. et al. Производство 30-дюймовых графеновых пленок для прозрачных электродов с рулона на рулон. Nature Nanotech. 5 , 574–578 (2010).

    ADS Статья Google ученый

  • 11

    Li, X.и другие. Синтез качественных и однородных пленок графена на медных фольгах на большой площади. Наука 324 , 1312–1314 (2009).

    ADS Статья Google ученый

  • 12

    Reina, A. et al. Площадь слоя, многослойные пленки графена на произвольных подложках методом химического осаждения из газовой фазы. Nano Lett. 9 , 30–35 (2009).

    ADS Статья Google ученый

  • 13

    Еда, Г., Fanchini, G. & Chhowalla, M. Ультратонкие пленки большой площади из восстановленного оксида графена как прозрачный и гибкий электронный материал. Nature Nanotech. 3 , 270–274 (2008).

    Артикул Google ученый

  • 14

    Матыба П. и др. Графен и подвижные ионы: ключ к полностью пластиковым светоизлучающим устройствам, обработанным на основе растворов. САУ Нано 4 , 637–642 (2010).

    Артикул Google ученый

  • 15

    Arco, L.G. D. et al. Непрерывные, очень гибкие и прозрачные графеновые пленки путем химического осаждения из газовой фазы для органических фотоэлектрических элементов. САУ Нано 4 , 2865–2873 (2010).

    Артикул Google ученый

  • 16

    Yin, Z. et al. Органические фотоэлектрические устройства, использующие очень гибкие пленки восстановленного оксида графена в качестве прозрачных электродов. САУ Нано 4 , 5263–5268 (2010).

    Артикул Google ученый

  • 17

    Ву, Дж.и другие. Органические солнечные элементы с прозрачными графеновыми электродами, обработанными на основе раствора. Заявл. Phys. Lett. 92 , 263302 (2008).

    ADS Статья Google ученый

  • 18

    Choe, M. et al. Эффективные фотоэлектрические элементы с объемным гетеропереходом и прозрачными многослойными графеновыми электродами. Org. Электрон. 11 , 1864–1869 (2010).

    Артикул Google ученый

  • 19

    Ван Х., Zhi, L. & Müllen, K. Прозрачные проводящие графеновые электроды для сенсибилизированных красителями солнечных элементов. Nano Lett. 8 , 323–327 (2008).

    ADS Статья Google ученый

  • 20

    Кумар А. и Чжоу К. Гонка за замену оксида индия, легированного оловом: какой материал победит? АСУ Нано 4 , 11–14 (2010).

    Артикул Google ученый

  • 21

    Чой, Пн.и другие. Композиции растворимых самолегированных проводящих полимеров с настраиваемой работой выхода в качестве слоев инжекции / извлечения дырок в органической оптоэлектронике. Angew. Chem. Int. Эд. 50 , 6274–6277 (2011).

    Артикул Google ученый

  • 22

    Li, J. et al. Органические светодиоды с анодами из углеродных нанотрубок. Nano Lett. 6 , 2472–2477 (2006).

    ADS Статья Google ученый

  • 23

    Чиен, Й-М., Лефевр, Ф., Шин, И. и Искьердо, Р. Раствор, обработанный верхним излучением OLED с помощью прозрачных электродов из углеродных нанотрубок. Нанотехнологии 21 , 134020 (2010).

    ADS Статья Google ученый

  • 24

    Helender, M. G. et al. Электроды из хлорированного оксида индия и олова с высокой работой выхода для совместимости с органическими устройствами. Наука 332 , 944–947 (2011).

    ADS Статья Google ученый

  • 25

    Поплавский, д., Su, W. & So, F. Исследования биполярного переноса заряда, инжекции и захвата в модельном сополимере полифлуорена с зеленым излучением. J. Appl. Phys. 98 , 014501 (2005).

    ADS Статья Google ученый

  • 26

    Кэмпбелл, А. Дж., Брэдли, Д. Д. С. и Антониадиск, Х. Количественная оценка эффективности электродов для инжекции положительного носителя в поли (9,9-диоктилфлуорен) и типичные сополимеры. Дж.Прил. Phys. 89 , 3343–3351 (2001).

    ADS Статья Google ученый

  • 27

    Cheung, C.H., Kwok, K.C., Tse, S.C. & So, S.K. Определение подвижности носителей в фениламине методами времени пролета, темновой инъекции и тонкопленочных транзисторов. J. Appl. Phys. 103 , 093705 (2008).

    ADS Статья Google ученый

  • 28

    Хардинг, М.Дж., Поплавский Д., Чунг В. Е., Со, Ф. и Кэмпбелл А. Дж. Вариации инжекции дырок из-за быстрых и медленных межфазных ловушек в полимерных светодиодах с прослойками. Adv. Функц. Матер. 20 , 119–130 (2010).

    Артикул Google ученый

  • 29

    Джонг, М.П.Д., Айзендорн, Л.Дж.В. и Фойгт, М.Дж.А.Д. Стабильность границы раздела между оксидом индия-олова и поли (3,4-этилендиокситиофеном) / поли (стиролсульфонатом) в полимерных светодиодах. Заявл. Phys. Lett. 77 , 2255–2257 (2000).

    ADS Статья Google ученый

  • 30

    Sekitani, T. et al. Органический светодиодный дисплей с растягивающейся активной матрицей и эластичными проводниками с возможностью печати. Nature Mater. 8 , 494–499 (2009).

    ADS Статья Google ученый

  • p-n диод или переходной диод

    Перекресток Диод

    А диод двухконтактное электронное устройство, состоящее из одинарный p-n переход.Этот p-n-переход обычно создается на единственном блоке кремния путем легирования. блок с донорной и акцепторной легирующими добавками на противоположных концах. Диод — это выпрямитель позволяя току проходить в одном направлении, но не в противоположном направление.

    Когда анод (сторона p-типа) диода подключен к положительному клемма батареи, диод, как говорят, находится в прямое смещение, позволяющее ток, чтобы пройти через него. Говорят, что диод находится в обратное смещение, если его катод (n-тип сторона) — это тот, который подключен к положительной клемме аккумулятора. Диод не проводит ток при обратном смещении.



    А диод становится смещенным в прямом направлении только тогда, когда потенциал на аноде больше потенциала катода на 0.7 В, потенциал барьер. При этом условии потенциальный барьер эффективно « преодолевается » приложенным напряжением, позволяя носителям диода двигаться через перекресток. Это означает, что электроны со стороны n-типа теперь могут переходить в стороне p-типа так же, как отверстия на стороне p-типа могут теперь переходим к стороне n-типа.

    В ток через диод увеличивается экспоненциально как прямое смещение напряжение на диоде увеличивается. Таким образом, увеличение тока, протекающего через диод, очень велико. резкое, как только диод начинает проводить. С физической точки зрения увеличение напряжения прямого смещения вводит больше электронов на стороне n-типа диода. Эти электроны сразу пересечь переход при отсутствии потенциального барьера. Как только они достигают материала p-типа, они возвращаются в положительный полюс аккумуляторной батареи снова. Отверстия на стороне p-типа также перемещаются таким же образом под условие прямого смещения, хотя и в противоположном направлении, как электроны. Этот непрерывный поток зарядов через диод будет продолжаться. пока диод находится в прямом смещении.

    Когда диод поставлен под обратное смещение, отверстия стороны p-типа тянутся к отрицательной клемме батареи, в то время как электроны на стороне n-типа тянутся к положительному выводу аккумулятор. По сути, мобильные заряды отводятся от стыка. в противоположных направлениях, препятствуя прохождению зарядов через диод. Это тоже по сути расширение потенциальный барьер диода, что затрудняет перевозчики перемещаться по перекрестку.



    В в действительности, однако, очень небольшое количество тока все еще течет через обратносмещенный диод. Этот ток, известный как обратный ток насыщения, происходит из-за тепловая генерация дырок и электронов вблизи стыка диод. Следовательно, это зависит только от температуры, а не от потенциальный барьер диода.

    См. Также: Что такое полупроводник ?; p-n переход; Биполярный транзистор;

    МОП-транзистор; JFET; Производство ИС

    ГЛАВНАЯ

    авторское право 2001-2006 гг. www.EESemi.com . Все права защищены.

    Что такое диод? — Определение с сайта WhatIs.com

    Диод — это специализированный электронный компонент с двумя электродами, которые называются анодом и катодом. Большинство диодов изготовлено из полупроводниковых материалов, таких как кремний, германий или селен. Некоторые диоды состоят из металлических электродов в камере, откачанной или заполненной чистым элементарным газом при низком давлении.Диоды могут использоваться как выпрямители, ограничители сигналов, регуляторы напряжения, переключатели, модуляторы сигналов, смесители сигналов, демодуляторы сигналов и генераторы.

    Основным свойством диода является его способность проводить электрический ток только в одном направлении. Когда катод заряжен отрицательно относительно анода при напряжении, превышающем определенный минимум, называемый прямым переключением , тогда ток течет через диод. Если катод положительный по отношению к аноду, имеет то же напряжение, что и анод, или отрицательный на величину, меньшую, чем напряжение прямого переключения, то диод не проводит ток.Это упрощенное представление, но верно для диодов, работающих как выпрямители, переключатели и ограничители. Напряжение прямого переключения составляет примерно шесть десятых вольта (0,6 В) для кремниевых устройств, 0,3 В для германиевых устройств и 1 В для селеновых устройств.

    Невзирая на вышеприведенное общее правило, если катодное напряжение является положительным по отношению к анодному напряжению на достаточно большую величину, диод будет проводить ток. Напряжение, необходимое для возникновения этого явления, известное как лавинное напряжение , сильно варьируется в зависимости от природы полупроводникового материала, из которого изготовлено устройство.Напряжение лавины может составлять от нескольких вольт до нескольких сотен вольт.

    Когда аналоговый сигнал проходит через диод, работающий в точке прямого размыкания или около нее, форма сигнала искажается. Эта нелинейность позволяет осуществлять модуляцию, демодуляцию и смешивание сигналов. Кроме того, сигналы генерируются на гармониках или целых кратных входной частоте. Некоторые диоды также имеют характеристику, которая неточно названа отрицательным сопротивлением .Диоды этого типа при приложении напряжения нужного уровня и полярности генерируют аналоговые сигналы на микроволновых радиочастотах.

    Полупроводниковые диоды могут быть разработаны для выработки постоянного тока (DC), когда на них попадает энергия видимого света, инфракрасного (ИК) или ультрафиолетового (УФ) излучения. Эти диоды известны как фотоэлектрические элементы и являются основой для систем солнечной энергии и фотосенсоров. Еще одна форма диодов, обычно используемых в электронном и компьютерном оборудовании, излучает видимый свет или инфракрасную энергию, когда через них проходит ток.Таким устройством является привычный светодиод (LED).

    P-N переходный полупроводниковый диод — диод

    Что такое полупроводниковый диод с p-n переходом?


    А диод с p-n переходом — двухполюсный или двухэлектродный полупроводниковый прибор, который пропускает электрический ток только в одном направлении в то время как блокирует электрический ток в обратном или обратном направлении направление.Если диод смещен в прямом направлении, это позволяет электрический ток. С другой стороны, если диод с обратным смещением, он блокирует прохождение электрического тока. P-N переходный полупроводниковый диод также называется p-n переходом полупроводниковый прибор.

    В n-тип полупроводники, бесплатно электроны являются основными носителями заряда, тогда как в р-тип полупроводники, отверстия являются основными носителями заряда.Когда n-тип полупроводник соединен с полупроводником p-типа, p-n стык образуется. P-n переход, который образуется при соединении полупроводников p-типа и n-типа называется p-n переходным диодом.

    П-П переходной диод изготовлен из полупроводниковых материалов. такие как кремний, германий и арсенид галлия.Для при разработке диодов кремний более предпочтителен, чем германий. Диоды с p-n переходом из кремния полупроводники работают при более высоких температурах по сравнению с с диодами p-n-перехода из германия полупроводники.

    основной символ p-n-переходного диода при прямом смещении и Обратное смещение показано на рисунке

    ниже.

    В На рисунке выше стрелка диода указывает на условное направление электрического тока, когда диод смещен в прямом направлении (от положительной клеммы к отрицательная клемма).Отверстия, которые движутся от положительного клемма (анод) к отрицательной клемме (катод) условное направление тока.

    Свободные электроны, движущиеся от отрицательной клеммы (катод) к положительной клемме (анод) на самом деле переносят электрический ток. Однако из-за условию мы должны предположить, что текущее направление от положительной клеммы к отрицательной.

    Смещение полупроводниковый диод p-n переход

    процесс подачи внешнего напряжения на p-n переход полупроводниковый диод называется подмагничивающим. Внешнее напряжение на диод с p-n переходом применяется любым из двух способов: прямое смещение или обратное смещение.

    Если диод p-n перехода смещен в прямом направлении, это позволяет электрический ток.В условиях прямого смещения Полупроводник p-типа подключается к положительной клемме батареи тогда как; полупроводник n-типа подключен к отрицательный полюс аккумуляторной батареи.

    Если диод p-n перехода имеет обратное смещение, он блокирует электрический ток. В условиях обратного смещения Полупроводник p-типа подключается к отрицательной клемме батареи тогда как; полупроводник n-типа подключен к положительный полюс аккумуляторной батареи.

    Клеммы pn переходного диода

    Как правило, Терминал относится к точке или месту, в котором любой объект начинается или заканчивается. Например, автовокзал или конечная остановка — это место, в котором все автобусы начинаются или заканчиваются. Точно так же в диод с p-n переходом, клемма означает точку, в которой носители заряда начинается или заканчивается.

    П-н переходной диод состоит из двух выводов: положительного и отрицательный.В положительный полюс, все свободные электроны закончатся, и все отверстия начнутся, тогда как на отрицательной клемме все свободные электроны начнутся, и все дырки закончатся.

    • Клеммы диода при прямом смещении


    В диод с прямым смещением p-n перехода (p-тип подключен к положительный терминал и n-тип подключен к отрицательному клемма), клемма анода является положительной клеммой, тогда как катодная клемма — отрицательная клемма.

    Анод клемма — положительно заряженный электрод или проводник, который поставляет отверстия в p-n переход. Другими словами, анодный или анодный вывод или положительный вывод является источником положительных носителей заряда (дырок) положительный заряд носители (отверстия) начинают свой путь от анодного терминала и проходит через диод и заканчивается на катодном выводе.


    Катод отрицательно заряженный электрод или проводник, который поставляет свободные электроны в p-n переход. Другими словами, катодный вывод или отрицательный вывод является источником свободного электроны, отрицательные носители заряда (свободные электроны) начинает свое путешествие с катодного терминала и проходит через диод и заканчивается на анодном выводе.

    свободные электроны притягиваются к анодному выводу или положительный вывод, а отверстия притягиваются к катодный вывод или отрицательный вывод.

    • Клеммы диода обратного смещения


    Если диод имеет обратное смещение (p-тип подключен к отрицательному клемма и n-тип, подключенный к положительной клемме), клемма анода становится отрицательной клеммой, тогда как катодная клемма становится положительной клеммой.

    Анод клемма или отрицательная клемма поставляет свободные электроны на p-n переход. Другими словами, анодный вывод — это источник свободных электронов, свободные электроны начинают свой путь на отрицательном или анодном выводе и заполняет большое количество дырки в полупроводнике p-типа. Отверстия в р-образном полупроводник притягивается к отрицательному выводу.Свободные электроны с отрицательной клеммы не могут двигаться к положительной клемме, потому что широкое истощение область на p-n-переходе сопротивляется или противодействует потоку свободные электроны.

    Катод терминал или положительный терминал обеспечивает отверстия для p-n соединение. Другими словами, катодный вывод является источником дыры, дыры начинают свой путь на положительном или катодном терминал и занимает позицию электронов в n-типе полупроводник.Свободные электроны в n-типе полупроводник притягивается к положительному выводу. Отверстия от положительного вывода не могут двигаться в сторону отрицательная клемма, потому что широкая область истощения на p-n переход препятствует потоку дырок.

    Кремний и германиевые полупроводниковые диоды


    • Для при разработке диодов кремний более предпочтителен, чем германий.
    • г. Диоды с p-n переходом из кремниевых полупроводников работают при более высокой температуре, чем германий полупроводник диоды.
    • Нападающий напряжение смещения для кремниевого полупроводникового диода составляет примерно 0,7 вольт, тогда как для германия полупроводниковый диод примерно 0.3 вольта.
    • Кремний полупроводниковые диоды не пропускают электрический ток расход, если напряжение на кремниевом диоде меньше чем 0,7 вольт.
    • Кремний полупроводник диоды начинают пропускать ток, если напряжение приложенный на диоде достигает 0,7 вольт.
    • Германий полупроводниковые диоды не пропускают электрический ток потока, если напряжение, приложенное к германиевому диоду, равно меньше 0.3 вольта.
    • Германий полупроводниковые диоды начинают пропускать ток, если напряжение на германиевом диоде достигает 0,3 вольт.
    • г. Стоимость кремниевых полупроводников невысока по сравнению с германиевые полупроводники.

    Преимущества диода p-n перехода

    П-н переходный диод — самая простая форма из всех полупроводниковых устройств.Однако диоды играют важную роль во многих электронные устройства.

    ОСНОВЫ ФОТОДИОДОВ — длинноволновая электроника

    Что такое фотодиод?

    Фотодиод — это полупроводниковый прибор с P-N переходом, который преобразует фотоны (или свет) в электрический ток. В слое P много дырок (положительно), а в слое N — электронов (отрицательно). Фотодиоды могут быть изготовлены из различных материалов, включая, помимо прочего, кремний, германий и арсенид индия, галлия.Каждый материал имеет разные свойства, обеспечивающие экономическую выгоду, повышенную чувствительность, диапазон длин волн, низкий уровень шума или даже скорость отклика.

    На рисунке 1 показано поперечное сечение типичного фотодиода. Область обеднения образуется в результате диффузии электронов из слоя N в слой P и диффузии дырок из слоя P в слой N. Это создает область между двумя слоями, где отсутствуют свободные носители. Это создает встроенное напряжение для создания электрического поля в области истощения.Это позволяет току течь только в одном направлении (от анода к катоду). Фотодиод может быть смещен в прямом направлении, но генерируемый ток будет течь в противоположном направлении. Вот почему большинство фотодиодов имеют обратное смещение или вообще не смещены. Некоторые фотодиоды не могут быть смещены вперед без повреждения
    .

    Фотон может ударить атом внутри устройства и высвободить электрон, если у фотона достаточно энергии. Это создает пару электрон-дырка (e- и h +), где дырка — это просто «пустое пространство» для электрона.Если фотоны поглощаются слоями P или N, пары дырок электронов будут рекомбинированы в материалах в виде тепла, если они находятся достаточно далеко (по крайней мере, на одну длину диффузии) от обедненной области. Фотоны, поглощенные в области истощения (или около нее), будут создавать пары электронных дырок, которые будут перемещаться к противоположным концам из-за электрического поля. Электроны будут двигаться к положительному потенциалу на катоде, а дырки будут двигаться к отрицательному потенциалу на аноде. Эти движущиеся носители заряда образуют ток (фототок) в фотодиоде. На рисунке 1 показаны различные слои фотодиода (P-N переход), а также несколько точек подключения сверху и снизу.

    Рисунок 1. Поперечное сечение фотодиода P-N

    Область истощения создает емкость в фотодиоде, где границы области действуют как пластины конденсатора с параллельными пластинами. Емкость обратно пропорциональна ширине обедненной области. Напряжение обратного смещения также влияет на емкость области.

    Ключевые рабочие характеристики

    Существует четыре основных параметра, используемых при выборе правильного фотодиода, а также при выборе обратного смещения фотодиода.

    • Отклик (скорость / время) фотодиода определяется емкостью P-N перехода. Это время, необходимое носителям заряда, чтобы пересечь P-N переход. На это напрямую влияет ширина обедненной области.
    • Чувствительность — это отношение фототока, генерируемого падающим светом, к мощности падающего света.Обычно это выражается в единицах A / W (превышение тока над мощностью). Типичная кривая чувствительности фотодиода показывает зависимость A / W от длины волны. Это называется квантовой эффективностью.
    • Темновой ток — это ток в фотодиоде при отсутствии падающего света. Это может быть одним из основных источников шума в фотодиодной системе. Фототок от фонового излучения также может быть включен в это измерение. Фотодиоды обычно помещаются в корпус
      , который не позволяет свету попадать на фотодиод для измерения темнового тока.Поскольку ток, генерируемый фотодиодом, может быть очень небольшим, уровни темнового тока могут скрывать ток, создаваемый падающим светом при низких уровнях освещенности. Темновой ток увеличивается с температурой. Без смещения темновой ток может быть очень низким. Идеальный фотодиод не имел бы темнового тока.
    • Напряжение пробоя — это наибольшее обратное напряжение, которое может быть приложено к фотодиоду до экспоненциального увеличения тока утечки или темнового тока. Фотодиоды должны работать ниже этого максимального приложенного обратного смещения, иначе может произойти повреждение фотодиода.Напряжение пробоя уменьшается с повышением температуры.

    Другие важные параметры включают материал, размер фотодиода и активной области, а также стоимость. При поиске фотодиодов для исследования или приложения необходимо внимательно отнестись к этому вопросу. Фотодиоды, изготовленные из разных материалов (кремний, германий, фосфид арсенида галлия индия или арсенид галлия индия), имеют разные уровни чувствительности, а также разные скорости и темновой ток. Кремний, например, обеспечивает чувствительность для длин волн от ~ 400 до 1000 нм.Однако он имеет самую высокую чувствительность на более высоких длинах волн (~ 900 нм). Германий, с другой стороны, обеспечивает чувствительность для длин волн от ~ 800 до 1600 нм (с пиком ~ 1400 нм). Материал фотодиода имеет решающее значение при выборе подходящего фотодиода для включения в вашу систему лазерных диодов.

    Типы фотодиодов
    СОЕДИНЕНИЕ P-N

    Это самый простой фотодиод. Физика работы фотодиода на P-N-переходе была рассмотрена ранее.Фотодиоды PIN и APD являются вариациями от P-N перехода.

    Область истощения содержит несколько свободных носителей заряда, и шириной области истощения можно управлять, добавляя смещение напряжения.

    Ток, проходящий через фотодиод, может течь только в одном направлении в зависимости от материалов, легированных P и N. При обратном смещении ток не будет проходить через фотодиод без падающего света, создающего фототок.

    ПИН-ФОТОДИОД

    PIN-фотодиод похож на P-N переход с одним существенным отличием.Вместо того, чтобы размещать слои P и N вместе для создания обедненной области, внутренний слой помещается между двумя легированными слоями. Этот слой показан на рис. 2 . Этот внутренний слой обладает высоким сопротивлением и увеличивает напряженность электрического поля в фотодиоде. У добавленного внутреннего слоя есть много преимуществ, поскольку область истощения значительно увеличивается.

    Емкость перехода уменьшилась, и поэтому скорость фотодиода увеличилась. Увеличенный слой также позволяет увеличить объем преобразования фотонов в электронно-дырочные и повысить квантовую эффективность.

    Рис. 2. Поперечное сечение контактного фотодиода

    Фотодиоды

    PIN также обладают высокой частотной характеристикой. Основным преимуществом фотодиода с PIN-кодом по сравнению с P-N переходом является высокая скорость отклика от области повышенного обеднения.

    ФОТОДИОД ЛАВИНЫ

    Лавинные фотодиоды (APD) используют ударную ионизацию (лавинный эффект) для создания внутреннего усиления материала. Для APD требуется высокое обратное смещение (близкое к обратному напряжению пробоя).Каждый фото-сгенерированный носитель создает больше пар и, таким образом, умножается на лавинный пробой. Это создает внутреннее усиление фотодиода, что, в свою очередь, увеличивает эффективную чувствительность (больший ток
    , генерируемый на фотон). На рис. 3 показано поперечное сечение ЛФД.

    Типичный диапазон спектрального отклика составляет около 300 — 1100 нм. Текущий шум в APD выше, чем в фотодиоде PIN, но усиление сигнала намного больше, что делает отношение сигнал / шум большим в APD.APD обычно имеют более высокую скорость отклика и способность обнаруживать или измерять свет на более низких уровнях.

    Рисунок 3. Поперечное сечение APD

    Режимы работы
    РЕЖИМ «ФОТОЭЛЕКТРИЧЕСКИЙ» БЕЗ ПРЕДВАРИТЕЛЬНОЙ РАБОТЫ
    Фотодиоды

    могут работать без смещения напряжения. APD предназначены для обратного смещения, поэтому этот раздел будет иметь отношение к фотодиодам P-N и PIN. Без добавления напряжения на переходе темновой ток может быть чрезвычайно низким (близким к нулю).Это снижает общий шумовой ток системы. Таким образом, несмещенные фотодиоды P-N или PIN лучше подходят для приложений с низким уровнем освещенности по сравнению с работой со смещением обратного напряжения. (ЛФД с обратным смещением по-прежнему обеспечивает более высокую чувствительность, чем фотодиоды P-N или PIN для приложений с низким освещением.) Фотодиоды без смещения также могут хорошо работать для низкочастотных приложений (до 350 кГц). Несмещенный режим (где V = 0) можно увидеть на рисунке 4 между режимом прямого смещения (зеленым) и режимом обратного смещения (синим).График показывает очень слабый темновой ток, если он вообще отсутствует, без смещения, что можно увидеть по отсутствию тока на пересечении кривой ВАХ при V = 0.

    Когда светится фотодиод, электрическое поле в обедненной области увеличивается. Это создает фототок, который увеличивается с увеличением потока фотонов. Это чаще всего наблюдается в солнечных элементах, где генерируемое напряжение измеряется между двумя клеммами.

    По сравнению с режимом смещения, фотоэлектрический режим имеет меньшее изменение чувствительности фототока в зависимости от температуры.

    Основным недостатком объективных фотодиодов является низкая скорость отклика. Без смещения к системе емкость фотодиода максимальна, что приводит к снижению скорости.

    РЕЖИМ «ФОТОПРОВОДНИК» ОБРАТНОЕ СМЕЩЕНИЕ

    Когда фотодиод смещен в обратном направлении, на переход P-N подается внешнее напряжение. Отрицательный вывод подключается к положительному слою P, а положительный вывод подключается к отрицательному слою N. Это заставляет свободные электроны в слое N тянуться к положительному выводу, а дырки в слое P — к отрицательному выводу.Когда на фотодиод подается внешнее напряжение, свободные электроны начинаются с отрицательного вывода и сразу заполняют дырки в P-слое электронами. Это создает в атомах отрицательные ионы с дополнительными электронами. Затем заряженные атомы противодействуют потоку свободных электронов к P-слою. Точно так же дырки производят положительные ионы примерно так же, но в противоположном направлении. При обратном смещении ток будет течь только через фотодиод, а падающий свет будет создавать фототок.

    Обратное смещение приводит к увеличению потенциала в области истощения и увеличению ширины области истощения. Это идеально подходит для создания большой площади для поглощения максимального количества фотонов.

    Время отклика сокращается за счет обратного смещения за счет увеличения размера обедненного слоя. Эта увеличенная ширина уменьшает емкость перехода и увеличивает скорость дрейфа носителей в фотодиоде. Время доставки перевозчиков сокращается, улучшая время отклика.

    К сожалению, увеличение тока смещения увеличивает темновой ток. Этот шум может быть проблемой для очень чувствительных систем, использующих фотодиоды P-N или PIN. Это мешает работе в условиях низкой освещенности. При использовании ЛФД отношение сигнал / шум будет большим независимо от коэффициента усиления фотодиода. Поскольку фотон идеально поглощается в обедненной области, слой P может быть очень тонким. Это можно сбалансировать с помощью обратного смещения, чтобы создать оптимальный фотодиод с более быстрым временем отклика при сохранении как можно более низкого уровня шума.

    Еще одним преимуществом работы с обратным смещением является линейный выход (прямая линия в синей части на рис. 4 , ) фотодиода по отношению к освещению. Это просто означает, что напряжение и ток изменяются линейно (прямо пропорционально) с увеличением оптической мощности. Также можно увидеть нелинейность участка прямого смещения (зеленого цвета).

    Рисунок 4 показывает участок обратного смещения (синий) с напряжением пробоя рядом с ним (красным).Фотодиоды не должны работать сверх напряжения пробоя. Это повредит фотодиод.

    Рис. 4. ВАХ фотодиодов. I 0 — Темновой ток. I P — фототок. P показывает ток при разных уровнях освещенности (P 0 — отсутствие падающего света).

    Интеграция с лазерным диодом

    Контрольный фотодиод часто интегрируется в корпус лазерного диода производителем лазерного диода. Он производит ток, частично пропорциональный выходной оптической мощности лазерного диода.Если в качестве обратной связи используется ток фотодиода, система управления будет пытаться поддерживать постоянный ток фотодиода (и, следовательно, оптическую мощность лазерного диода). Выходной сигнал регулируемого источника тока будет изменяться, чтобы поддерживать уровень оптической мощности одинаковым (это называется режимом постоянной мощности (CP)). Ток фотодиода и выходная мощность лазерного диода связаны передаточной функцией, приведенной в техническом описании лазерного диода.

    Фотодиоды могут не только контролировать выходную мощность постоянного или непрерывного излучения лазера, подавая ток обратно в лазерную систему, они также могут проверять форму лазерного импульса и регистрировать пиковую мощность лазерного импульса.

    Информация в таблицах данных для фотодиодов включает четыре основных компонента, обсуждавшихся ранее, тип фотодиода, длины волн пиковой чувствительности и, самое главное, размер и стоимость.

    Фотодиоды, которые уже встроены в систему лазерных диодов, могут иметь ограниченные возможности и информацию. В технических паспортах лазеров обычно указывается максимальное обратное напряжение, а иногда и чувствительность фотодиода.

    Если характеристики фотодиода чрезвычайно важны для конструкции вашего лазера, для удовлетворения ваших потребностей могут потребоваться специальные сборки или сборки.

    Сводка

    Когда вы принимаете решение об обратном смещении вашего фотодиода или нет, все сводится к уравновешиванию скорости и шума и принятию решения о том, что является наиболее важным. Если ваше приложение зависит от чрезвычайно низкого уровня шума и низкого темнового тока, вам следует отказаться от смещения фотодиода. Если скорость является вашей главной заботой, вам следует выбрать обратное смещение вашего фотодиода, поскольку время отклика улучшается. Другими словами, если ваше приложение
    основано на точности, фотоэлектрический режим лучше подойдет вам.Если ваше приложение основано на скорости (высокой), режим фотопроводимости или режим с обратным смещением лучше подходят для этой области.

    Обратное смещение фотодиода будет намного более чувствительным, чем режим без смещения. При работе в фотоэлектрическом режиме может потребоваться усиление отклика.

    Тип фотодиода также может повлиять на ваше решение о смещении. Некоторые типы фотодиодов могут иметь только обратное смещение, а другие могут иметь усиление отклика внутри системы. ЛФД будут эффективны в условиях низкой освещенности, когда чувствительность критична, но они дороги, фотодиоды P-N представляют собой самую простую конструкцию и не используются широко, а фотодиоды с PIN-кодом являются наиболее распространенными и самыми дешевыми фотодиодами с очень низким уровнем шума.Как обсуждалось ранее, материалы, размер и стоимость также влияют на тип фотодиода, необходимого для данного приложения. Таблица 1 показывает упрощенную диаграмму, сравнивающую три разных фотодиода.

    Таблица 1. Сравнительная таблица

    P-N PIN APD
    ФОТОВОЛЬТАЦИЯ Лучшее Хорошо Плохо
    ОБРАТНОЕ СМЕЩЕНИЕ Хорошо Лучшее Хорошо
    СЛАБОЙ СВЕТ Плохо Хорошо Лучшее
    СТОИМОСТЬ Лучшее Хорошо Плохо
    НИЗКИЙ ШУМ Хорошо Лучшее Плохо

    Вакуумная трубка »Электроника

    Диодный клапан или вакуумная трубка могут использоваться в качестве выпрямителя, и в дополнение к этому его работа составляет основу работы, на которой построены другие формы клапана или трубки.


    Вакуумные трубки / термоэлектронные клапаны Включает:
    Основы Как работает трубка Электроды для вакуумных трубок Диодный клапан / трубка Триод Тетроде Луч Тетрод Пентод Эквиваленты Штыревые соединения Системы нумерации Патрубки / основания клапанов Лампа бегущей волны


    Диодный вентиль или трубка до сих пор широко используются, и в минувшие годы использовалось огромное количество этих устройств.

    Диодный элемент является самым основным из всех термоэмиссионных или вакуумных ламповых устройств, имеющих только два активных электрода, тем не менее, он по-прежнему является важным компонентом, работу которого необходимо понимать, если нужно понимать другие формы вакуумных ламп или термоэмиссионных клапанов.

    Современный ламповый усилитель

    Основы диодного клапана

    Самой простой формой диодного клапана или вакуумной лампы является диод. Он состоит из двух проводящих электродов, помещенных в вакуумированную стеклянную колбу. Они называются катодом и анодом.

    Катод нагревается, и обнаруживается, что электроны «выкипают» из электрода в результате энергии, которую они имеют в результате нагрева.

    Отрицательно заряженные электроны оставляют на катоде положительный заряд, который имеет тенденцию втягивать их обратно, и в результате вокруг катода существует облако электронов, интенсивность которого уменьшается по мере увеличения расстояния от катода.Те электроны, которые летят дальше всех, обладают наибольшей энергией.

    Тем не менее обнаружено, что если резистор помещен между катодом и анодом, будет видно, что ток действительно течет в результате электронов, испускаемых катодом.

    Если резистор помещен между анодом и катодом диодного клапана, тогда будет течь ток.

    Если электрон имеет достаточно энергии, чтобы достичь анода, он останется там, если у него не будет достаточно энергии для выхода, но они могут течь обратно в катод через внешний резистор.

    Можно видеть, что электронный ток может течь от катода к аноду в результате выхода электронов с катода, но электроны не могут покинуть анод.

    В результате ток может течь только в одном направлении. Следовательно, если на диодный клапан или диодную трубку подается переменный сигнал, то он пропускает только половину цикла, тем самым выпрямляя сигнал.

    Если схему немного изменить и к аноду приложить положительный потенциал, то он будет притягивать дополнительные электроны, и ток будет протекать через батарею.И снова ток может течь только в одном направлении.

    Основные операции диодного клапана или трубки

    Эта функция может использоваться для выпрямления входной мощности линии или сети, позволяя создавать постоянный ток, мощность постоянного тока, создаваемую из переменного тока, вход переменного тока. Его также можно использовать для обнаружения радиосигналов, и фактически он был первым, который использовали для термоэмиссионных клапанов или электронных ламп. Именно Амброуз Флеминг из Университетского колледжа Лондона первым придумал обнаруживать сигналы с помощью диодного клапана.

    Выпрямительный клапан Early Marconi U5

    Диодный клапан непрямого нагрева

    В ранних диодных лампах использовался катод с прямым нагревом. Он состоял из нагревательного элемента, который также действовал как катод. Это существенно ограничивало работу этих устройств. Использование переменного тока для нагревателей позволило трансформатору обеспечить питание нагревателя непосредственно от входящей сети, тем самым снизив эксплуатационные расходы, поскольку батареи прослужили недолго и были дорогими:

    • Индуцированный гул: Когда переменный ток использовался для питания клапанов с прямым нагревом, было обнаружено, что переменный ток влияет на работу клапана, и некоторое количество переменного тока может накладываться на выходной сигнал.
    • Катод с прямым нагревом подключен к источнику питания нагревателя: Катод с прямым нагревом означает, что катод подключен к напряжению нагревателя, и это предотвращает использование общего источника питания нагревателя для нескольких клапанов, которым могут потребоваться разные катодные напряжения.

    Решением обеих проблем было использование электрически разделенного нагревательного элемента, который использовался для нагрева катода. Этот метод, известный как косвенный нагрев, почти повсеместно используется для всех вентилей, будь то диодные вентили, триоды или что-то еще.

    Полупериодный диодный вентильный выпрямитель

    Простейшей формой выпрямителя с диодным вентилем является однополупериодный выпрямитель. Это требует только использования выпрямителя с одним диодным вентилем. Однако он не так эффективен, как некоторые другие формы выпрямителя.

    Клапан / ламповый полупериодный выпрямитель

    Можно видеть, что если переменная форма волны приложена к диодному клапану или диодной лампе, она проводит больше половины формы волны, а не другую. Это означает, что при выпрямлении сигналов переменного тока эффективность составляет только 50%, так как половина сигнала используется, а другая половина отбрасывается.

    Двухполупериодный диодный вентильный выпрямитель

    Чтобы использовать обе половины цикла альтернативной формы сигнала, можно использовать двухполупериодный выпрямитель. Точно так же, как это может быть реализовано с полупроводниковыми диодами, то же самое может быть достигнуто с помощью диодных вентилей. Фактически, двухполупериодные выпрямительные диодные клапаны доступны с одним устройством, содержащим два выпрямителя.

    Двухполупериодный выпрямитель с клапаном / лампой

    В схеме двухполупериодного выпрямителя разные диоды в выпрямителе обрабатывают разные половины формы волны.Таким образом используются обе половины сигнала. Кроме того, тот факт, что время между пиками короче, означает, что сглаживание формы волны намного проще.

    Как видно на схеме, в наличии имеются двухполупериодные выпрямительные клапаны / лампы. Они содержали два анода и один катод, что позволяло выполнять двухполупериодное выпрямление с помощью одного клапана.

    Следует также отметить, что выпрямительные диоды источника питания часто использовали отдельный источник питания 5 В, тогда как общий стандарт для нагревателей, используемых для самого оборудования, составлял 6.3 вольта, хотя часто использовались и другие напряжения.

    Детектор сигнала диодного клапана

    Амброуз Флеминг изобрел первый диодный клапан, исследуя обнаружение или демодуляцию радиосигналов. Фактически детектор с диодным вентилем может использоваться для сигналов с амплитудной модуляцией.

    Действие выпрямителя с диодным вентилем можно увидеть ниже, где демодулируется амплитудно-модулированный сигнал, состоящий из несущей переменной амплитуды. Чтобы восстановить модуляцию, сигнал выпрямляется, а затем несущая удаляется с использованием конденсатора в качестве высокочастотного фильтра.

    Обнаружение / демодуляция сигнала

    Это очень простая, но эффективная форма демодуляции AM, хотя у нее есть свои недостатки. Уровни искажения могут быть высокими, потому что характеристика диода не будет полностью линейной, и этот вид диодного детектора также подвержен искажениям в результате избирательного замирания — проблема, которая очевидна в полосах частот, обычно используемых для передачи с амплитудной модуляцией.

    Другие электронные компоненты:
    Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
    Вернуться в меню «Компоненты».

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *