медь с алюминием | Советы электрика
16 Апр 2012 Советы специалиста
Очень часто в старых домах приходится при ремонте электропроводки соединять алюминиевые провода старой проводки с медными— вновь проложенными.
Кто незнаком с этой темой и делает ремонт своими руками- просто тупо скручивают их между собой и закрывают в распредкоробке, не понимая какую головную боль они себе приобретут в дальнейшем…
С этой темой- соединение меди с алюминием- сталкиваются не отлько при монтаже внутренней электропроводки, но и при замене ввода в дом
Дело в том, что провода воздушной линии (ВЛ)- алюминиевые и если вы делаете вводной кабель медный, то просто так накрутить на алюминиевый провод жилу кабеля- нельзя!
А ведь делают же! Сколько раз сам видел… А потом удивляются- “Почему это у меня свет в доме моргает?!”
Да, действительно, а почему? А вот из-за чего.
Немного химии. Алюминий- очень активный метал, попробуйте его спаять простым методом как медный провод, ничего не получится.
Алюминий активно реагирует на воздух, вернее даже не на сам воздух, а на влагу в воздухе, быстро образуя на своей поверхности тонкую пленку окиси.
Эта пленка оказывает высокое сопротивление электрическому току- появляется так называемое “переходное сопротивление” в месте соединения проводов.
Но медный провод тоже окисляется, однако не так сильно и интенсивно как алюминий и пленка окиси на поверхности меди оказывает гораздо меньшее сопротивление протеканию тока.
Получается что при соединении медного и алюминиевого провода они контактируют своими оксидными пленками.
Так же у этих двух металлов разное линейное расширение, поэтому при изменении температуры в помещении или величины тока, протекающего через скрутку медь-алюминий контакт между ними со временем
Переходное сопротивление в скрутке итак “тормозило” электрический ток, да еще ослабление контакта еще более увеличивало величину переходного сопротивления.
Это приводит к тому, что скрутка начинает греться, чем дальше- тем больше, греется изоляция провода. разрушается от нагрева даже может загореть.
Сами знаете сколько домов сгорело из-за неисправностей в электропроводке и зачастую виновато в этом именно переходное сопротивление или плохой контакт.
Кстати о переходном сопротивлении.
Это
Что бы понять что это такое- представтье что два провода соединены между собой нихромовой проволокой и по ним протекает электрический ток, который раскаляет нихром докрасна.
Вот внутри скрутки медного и алюминиевого провода и находится такая раскаленная докрасна нихромовая нить. А оно вам надо?!
Запомните- переходное сопротивление- аналог раскаленной нихромовой нити.
Так, химии достаточно. Теперь как выйти из положения если надо соединить медный провод с алюминиевым
Тут суть вот в чем: главное что бы эти два металла не соприкасались между собой. Между ними должен быть нейтральный по отношению к ним материал, естественно токопроводящий.
Это может быть свинцовый припой, дюралюминий,сталь, нержавейка, покрытие из хрома.
Кстати интересно- нельзя: цинк, углерод (графит) и серебро с золотом и платиной.
Хотя я себе не представляю кто может себе позволить такое удовольствие- соединять медь с алюминием через платину)))
В такм случае если денег море- лучше совсем провода полностью из платины сделать, потери напряжения исчезнут напрочь)))
Итак, соединяем медь с алюминием:
-С помощью клемных зажимов;
-Болтовое соединение через шайбы
-Слой из нейтрального материала
Клемные зажимы- это ответвительные сжимы (так называемые “орехи”), wago, клемники в изоляции и т.п.
Ну болтовое соединение итак понятно- делается петля на проводе, вставляется болт, а между медью и алюминием- стальные шайбы.
Такое соединение гораздо надежнее всех клемников и зажимов, единственный минус- большие габариты, в распредкоробке много метса занимают.
Я так сам делал например на вводе в дом- когда надо было соединить медный кабель с алюминиевым вводом от ВЛ. Да еще кабель был четырехжильным, а сеть- 220.
Тогда сделал на фазу и ноль по две жилы кабеля, соединил через болтовое соединение с обрезком алюминиевого провода, и уже этот обрезок был подключен энергетиками на ввод.
Уже второй год прошел- замечаний нет))) Это при наличии электроплиты в доме и всего прочего- электротитан, чайник, утюг, микроволновка и т.д.
Сейчас про слой из нейтрального материала. Я имею ввиду- свинцово-оловянный припой.
Как это делается покажу на фото:
Это хороший выход из положения когда нет под рукой зажимов или не хочется их использовать, а болтовое соединение не помещается в коробку.
Тогда надо покрыть медный провод припоем и сделать скрутку с алюминием- соединение будет надежным! Хотя и по ПУЭ- неправильным…
Там требуется или пайка-сварка или клемники-болты, чистая скрутка по ПУЭ- вне закона…
Хотя я лично однажды вскрыл распредкоробку освещения в старом доме- там с выключателя медный провод шел, а на лампочку- алюминиевый. Скрутка была чисто медь с алюминием без вских клемников, припоя и т.д.
Так состояние- как будто только что скрутили!
Все чистенько, никакого окисла и подгара. Я думаю это потому, что в квартире было всегда сухо и к тому же распредкоробка была наглухо запечатана в стене- то есть воздух в нее не проникал.
А поэтому и алюминий не окислялся и к тому же нагрузка на скрутку была минимальная- всего одна лампочка подцеплена.
Поэтому если через соединение медь-алюминий будет проходить большой ток, то лучше сделать болтовое соединение как самое простое, посложнее- пайка.
А вот ваговский зажим в таком случае я бы не рекомендовал использовать, лучше другие клемники где провода хотя бы винтом зажимаются.
Итак, сейчас вы знаете как соединять медный провод с алюминиевым и если вам придется это делать- уверен, вы сделаете правильный выбор!
Качественное алюминиевое остекление балконов не дорого.
Узнайте первым о новых материалах сайта!
Просто заполни форму:
Теги: медь с алюминием, соединение проводов
Сплавы алюминия и сплавы меди
Сплавы алюминия. Сплавы алюминия с медью, цинком, марганцем, кремнием и др. обладают лучшими технологическими свойствами и более высокой прочностью, чем чистый алюминий, и поэтому находят широкое применение в технике. В коррозионном отношении все алюминиевые сплавы обладают значительно меньшей стойкостью, чем чистый алюминий.Алюминий образует с кремнием, медью, магнием, цинком, марганцем и другими металлами два типа сплавов — деформируемые и литейные. Из деформируемых сплавов наиболее распространены дуралюмины — сплавы алюминия с медью, марганцем и магнием. Они применяются для изготовления методами прокатки и штамповки изделий различного профиля (листы, стержни, панели, трубы, проволока, емкости и др.).
Лезвийная и абразивная обработка чугунов, сталей, сплавов алюминия и меди [c.404]
В настоящее время алюминий получают электролитическим методом, так как попытка восстановления глинозема углем при высокой температуре ведет к образованию карбида. Восстановлением руд в мощных электропечах получают не чистый алюминий, а сплавы алюминия с медью и железом, кремнием, марганцем и другими металлами. [c.477]
Дюралюминия — сплав алюминия с медью ( 3— 5%), марганцем ( 1%), магнием ( 1%). [c.282]
Задача Н-11. 12,8 г сплава меди с алюминием обработали избытком соляной кислоты. Остаток промыли и растворили в концентрированной азотной кислоте. Сухой остаток, полученный при выпаривании раствора, прокалили, в результате осталось 4 г твердого вещества. Определить массовую долю меди в сплаве.
Дуралюмин (дюралюминий, дюраль)—сплав алюминия, содержащий медь (массовая доля 1,4—13%) и небольшие количества магния, марганца и других компонентов. Дуралюмины — легкие прочные и коррозионно-стойкие сплавы. Используются как конструкционный материал в авиа- и машиностроении. [c.230]
Для измерения толщины лакокрасочных покрытий на немагнитных металлах и сплавах (алюминий, свинец, медь и др.) приходится прибегать к мето-дал разрушающего контроля, снятию пленок с подложки. В научных лабораториях применяют более сложный и точный оптический метод с помощью двойного микроскопа МИС-11.
Следует учитывать, что нет единого метода испытания для всех сплавов, так как процесс коррозии различных металлов в данной коррозионной среде при определенном методе испытания, протекает с различной скоростью. Так, например, железо и его сплавы, а также сплавы алюминия с медью весьма чувствительны к периодическому смачиванию электролитами. Коррозия же кадмия и чистого алюминия при этом виде испытания ускоряется в меньшей степени. [c.18]
Титрование с ксиленоловым оранжевым описано для определения алюминия в сталях [712], в титановых сплавах [1173], ферротитане [63], магниевых сплавах [429], алюминиевой бронзе [260], в сплавах никеля с алюминием [263], в бинарных сплавах алюминия с медью [345], с цирконием [434], железом [345], с титаном [665], в тройных сплавах с цирконием и никелем [295], в бокситах, нефелиновых рудах и концентратах [16, 71, 558, 877], каолине [147, 680], в различных минералах, рудах и горных породах [23, 71, 166, 229,
Анодные процессы при электролизе расплавов. Процессы электролиза расплавленных сред осуществляются с растворимыми и нерастворимыми анодами. Растворимые аноды применяют при электролитическом рафинировании и получении чистых металлов (алюминий, магний, титан). При электрорафинировании алюминия и магния в качестве анодов используют металл-сырец, к которому добавляют утяжелитель. Это делается для того, чтобы в ванне можно было создать три слоя в соответствии с плотностями нижний— жидкий анод (сплав алюминия и меди), средний — электролит и верхний — катод (чистый алюминий). При электрорафинировании магния в качестве утяжелителя магниевого анода применяют цинк, медь или свинец. При электрорафинировании титана берут твердый растворимый титановый анод. [c.215]
Сплав Деварда. Сплав меди, алюминия и цинка в массовом соотношении 1 0,9 0,1. Белый хрупкий металл в виде палочек или серого порошка. ТУ 6-09-3671-74. [c.128]
Хорошим примером могут служить сплавы алюминия с медью (основа так называемого дюралю гания). При высоких температурах алюминий растворяет медь. Максимальное содержание меди при 548° С равно 5,65%. При комнатной температуре эта величина падает приблизительно до 0,2%. Однако с помощью закалки можно сохранить большое содержание меди и при низких температурах. При этом выяснилось, что если закалка проведена при температуре ниже 100° С, то такой сплав начинает со временем изменять свои свойства прочность его возрастает. [c.294]
Различают пластичные ( НВ 100) подшипниковые сплавы. К пластичным материалам относятся баббиты, антифрикционные сплавы алюминия с медью, никелем и сурьмой, свинцовые бронзы. Их применяют в высокоскоростных опорах, рассчитанных на работу в режиме жидкостной смазки. Эти материалы не обладают высокой прочностью и их наносят наплавкой или заливкой тонким слоем на твердую и прочную основу — подложку из стали, чугуна или бронзы. Выпускают биметаллические вкладыши, трубы и ленту с антифрикционным покрытием из пластичных материалов. Толщина слоя заливки вкладышей составляет от десятых долей миллиметра до 2-3 мм. Пластичные подшипниковые материалы обладают высокими антифрикционными свойствами, хорошей прирабатываемостью и износостойкостью, удовлетворительно работают в режимах полужидкостного и даже полусухого трения. [c.99]
Дюралюмин — сплав алюминия с медью, силумин — сплав алюминия с кремнием, электрон — сплав алюминия с магнием. Сплавы марок А1, А2 и АЗ применяют для изготовления труб и арматуры. [c.37]
Сплавы алюминия с медью при неправильной терми- [c.59]
По сравнению с чистым алюминием его сплавы имеют более высокие механические свойства, но, как правило, более низкую коррозионную стойкость. Особенно это относится к сплавам алюминия с медью, в меньшей степени к сплавам с кремнием и еще в меньшей с цинком, магнием и марганцем. Все эти компоненты, как известно, наиболее часто входят в промышленные сплавы. Однако исходя из характеристик прочности, в авиационной промышленности, например, применяют именно алюминиевые сплавы и гораздо реже чистый алюминий. [c.266]
Интенсивность МКК алюминиевых сплавов, легированных магнием, зависит от термической обработки. В случае обжатия при прокатке на 10 % и закалке с 430 °С в воду максимальная интенсивность МКК наблюдается после отпуска в течение 2 ч в области температур 150. .. 200 °С. При этом по границам зерен выпадает р-фаза. В случае отжига при более высокой температуре включения Р-фазы коагулируют. При этом сплав становится стойким к МКК. В случае сплавов алюминия с медью дополнительное легирование магнием резко снижает склонность сплава к МКК- Хорошие результаты дает плакирование чистым алюминием и применение цинковых протекторов. [c.484]
Действие на металлы. При обычных температурах химически чистые фреоны не действуют на железо и его сплавы, алюминий, олово, медь, бронзу, латунь и сталь. С фреоном-113 не рекомендуется применять цинк. В присутствии незначительного количества влаги фторированные углеводороды действуют на магний, его сплавы и сплавы алюминия с 2% магния. Не рекомендуется применять свинец, если препарат содержит масла и фреон-11. [c.60]
Железо и его сплавы, как и сплавы алюминия с медью, весьма чувствительны к периодическому смачиванию электролитами. Коррозия же кадмия и чистого алюминия при этом виде испытания ускоряется в меньшей степени. [c.9]
Сплавы алюминия с медью подвергаются коррозионному растрескиванию под напряжением при наличии на их поверхности анодной пленки, а также если в изделиях возникала склонность к межкристаллитной коррозии, например вследствие замедленного охлаждения с температуры закалки или применения искусственного старения, случайного нагрева нри различных технологических операциях или в процессе эксплуатации в интервале опасных температур. Коррозионное растрескивание этих сплавов происходит по границам зерен благодаря возникновению гальванического элемента, состоящего из большого по площади катода (тело зерна) и малого анода (граница зерна) [1,34—36]. Согласно другой точки зрения [22], склонность к коррозионному растрескиванию под напряжением объясняется способностью самого интерметаллического соединения разрушаться избирательно. [c.269]
Легирование алюминия магнием увеличивает склонность сплава к КРН, особенно, если содержание Mg превышает 4,5 %. Для ослабления воздействия, по-видимому, необходимо проводить медленное охлаждение (50 °С/ч) сплава от температуры гомогенизации, чтобы произошла коагуляция Р-фазы (AlgMga) последний процесс ускоряется при введении в сплав 0,2 % Сг [29]. Эделеану [30] показал, что катодная защита приостанавливает рост трещин, которые уже возникли в сплаве при погружении в 3 % раствор Na l. При старении сплава при низких температурах максимальная склонность к КРН отмечалась перед тем, как была достигнута наивысшая твердость. Эти данные аналогичны приведенным выше для дуралюмина. Поэтому Эделеану предположил, что склонный к КРН металл вдоль границ зерен не является равновесной р-фазой, ответственной за твердость сплава. По его мнению, склонность к КРН в области границ зерен связана с сегрегацией атомов магния, и этот процесс предшествует образованию интерметаллического соединения. По мере старения склонность к КРН уменьшается, так как выделение Р-фазы в области границ зерен идет с потреблением металла, содержащего сегрегированные атомы магния. Сходным образом, вероятно, можно объяснить поведение сплавов алюминия-с медью. [c.353]
Значительно более обширно применение алюминия в виде раз-личных сплавов, наряду с хорошими механическими качествами характеризующихся своей легкостью. Особенно важен так называемый дуралюминий—сплав алюминия с медью (до 5%), магнием (до 2%) и марганцем (до 1%). Он ценен тем, что при равной прочности изделия из него почти в три раза легче стальных. Не говоря уже об авиационной промышленности, для которой легкость материала особенно важна, облегчение металлических конструкций имеет громадное значение для ряда областей техники. Это становится особенно наглядным, если принять во внимание, что, например, в груженом товарном вагоне около трети всей массы приходится на материалы, из которых изготовлен сам вагон, а в пассажирских вагонах иа их собственную массу падает до 90% всей нагрузки. Очевидно, что даже частичная замена стали дуралюминием дает громадный технико-экономический эффект. В связи с этим, а также ввиду наличия в природе практически неисчерпаемых запасов алюминия, его иногда называют металлом будущего . Возможность широкой частичной замены им основного металла современной техники — железа — ограничивается главным образом сравнительно высокой стоимостью алюминия. [c.351]
В последнее время широко используются нихромы — сплавы на основе N1, например Х20Н80, в которых вообще отсутствует железо. Упрочненные нихромы (Мо, Т1, В, 5 ) представляют собой конструкционные материалы, сохраняющие работоспособность до температур 1100—1200°С. Хром входит в состав медных сплавов, например, сплав БрХ0,8 — хромистая бронза — представляет собой упрочняемый сплав, сохраняющий электропроводность чистой меди из него изготовляются электроды контактных сварочных машин, трущиеся контакты и другие подобные специальные изделия. Наконец, хром входит в состав сплавов на основе титана, алюминия и специальных сплавов, применяемых в электропромышленности. Широко используются антикоррозионные, декоративные и упрочняющие поверхностный слой покрытия из хрома. [c.356]
Электролитическое рафинирование проводят в электролизере с анодом из сплава алюминия с медью (медь добавляют для утяжеления материала анода), имеющем плотность 3,5- 10 кг/м , находящемся в нижней части электролизера. Расплав электролита — смесь, содержащая, в % (масс.) 23 AIF3, 12—17 NaF, 4—Na l, 60 ВаСЬ имеющая плотность -2,7- 103 кг/м , заполняет среднее пространство электролизера. В верхней части электролизера собирается выделившийся на графитовом катоде алюминий, плотность которого при температуре электролиза 740—760°С составляет 2,3-10 кг/м [c.235]
Сплавы алюминия с медью и магнием (типа дуралюминий) принадлежат к тройной системе А1—Си—М . Упрочняющими фазами в них являются соединения СиА1г и АЬСиМе. Обычным видом термической обработки дуралю-минов является закалка и старение. В табл. 161 приводится химический состав н механические свойства некоторых марок дюралюминия после термической обработки. [c.169]
Из материалов, используемых в конструкции приборов, наиболее стойкими оказались высокохромистые и хромоникелевые нержавеющие сплавы, алюминий, бронза, медь и медные сплавы. Когда в конструкции и медь, и медные сплавы находились в контакте со сталью, алюминием, свинцом, эловом и его сплавами, то наблюдалась коррозия последних сплавов. В таких случаях необходимо применять специальные меры защиты от контактной коррозии, а также специальные покрытия. [c.79]
Чистый алюминий —мягкий, ковкий и тягучий металл. Однако для некоторых целей необходимы сплавы алюминия, обладаюшие большей прочностью, вязкостью и меньшей тягучестью. Алюминиевые сплавы с такими свойствами можно получить, вводя в их состав небольшое количество других металлов, например меди или магния. Добавление примерно 4%-меди и 0,5% магния вызывает образование твердых хрупких кристаллов интерметаллического соединения Mg u2, что придает прочность алюминию. Чрезвычайно мелкие кристаллы такого состава, внедренные в кристаллы алюминия, весьма эффективно предотвраша -ют скольжение плоскостей в металлическом алюминии, в результате чего механические свойства сплава оказываются значительно выше соответствующих свойств чистого металла. [c.510]
Значительное увеличение скорости коррозии алюминия наблюдается при контакте со сплавами на основе меди. Даже в отсутствие непосред-ствениого электрического контакта наличие корродирующего медного сплава вблизи поверхности алюминия может вызвать питтинговую коррозию последнего. Ионы меди мигрируют к поверхности алюминия, осаждаются на ней в виде металлической меди и образуют локальные [c.141]
Дуралюмин (дюралюминий, дюраль, от нем. Duren — город, где было начато производство сплава) — легкий высокопрочный сплав алюминия с медью, магнием, марганцем, кремнием и железом. Общее содержание элементов, помимо А1, 6—8 %. Д. используют для обшивки самолетов, автобусов и т. д. [c.50]
Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]
Алюминий для увеличения механической прочности и литейных качеств сплавляют с другими металлами. Наибольшее распространение нашли сплавы алюминия с медью, магнием и марганцем, называемые дюралюминами, а также сплавы с кремнием—силумины. [c.338]
Широкое применение при гидрировании кратных С==С-связей нашли сплавы меди с никелем, палладием, алюминием. В настоящее время считается признанным, что каталитическая и хемосорбционная активность в реакциях окислительновосстановительного типа связана с электронной конфигурацией переходных металлов, с незаполненностью их -уровней [291, 292]. При сплавлении переходных металлов с другими металлами, дающими твердые растворы, можно получить набор катализаторов, отличающихся электронной структурой. Например, медь и никель дают непрерывный ряд твердых растворов, в которых -зона никеля постепенно заполняется электронами меди, что должно изменять каталитическую активность. -Уровень никеля полностью заполняется при содержании меди 60%. В согласии с теорией Даудена можно ожидать, что при достижении этого критического состава активность сплава должна резко упасть. [c.98]
Деформируемые сплавы обрабатывают давлением на прессах, в штампах или на прокатных станах. Среди них особенгю широко распространены сплавы алюминия с медью и магнием (дюралюминий). [c.116]
В настоящее время этим путем в промышленных масштабах производятся метил- и этилалюминийсесквигалогениды. В качестве исходного алюминия применяются алюминиевые порошки и стружка, а также смеси и сплавы алюминия и магния. Из галогеналкилов используются производные хлора, брома и иода. Для активирования алюминия рекомендуются иод, бром, алкилалюминийгалоге-ниды, галогениды ртути, титана и алюминия, алкилиодиды и алкил-бромиды, а также используется алюминий, легированный литием, медью, кальцием и цинком. [c.29]
Такая чувствительность сплавов алюминия с медью к температурным воздействиям обусловлена тем, что повышение температуры способствует искусственному старению, сопровождающемуся распадом пересыщенного твердого раствора и по шлением по границам зерен интерметаллического соединения U.4I2. В связи с последним технологическая обработка дуралюмина при повышенных температурах не должна выполняться при температурах свыше 100°. [c.294]
ЛИГАТУРА (лат. ligatura — связка) — вспомогательный сплав, добавляемый в жидкие металлы или сплавы, чтобы изменить их хим. состав и улучшить свойства. Легирующий элемент усваивается из Л. лучше, чем при введении его в чистом виде. Л. получают сплавлением необходимых компонентов или восстановлением их из руд, концентратов или окислов. Наибольшее применение Л. находят в черной металлургии, гл. обр. для модифицирования и легирования сталей и чугунов. Использование в качестве модификаторов спец. Л. (преим. кремний — магний — железо и кремний — кальций — магний— церий — железо) дает возможность получать высокопрочный чугун с шаровидным графитом, значительно превосходящий по физико-мех. св-вам обычный серый чугун с пластинчатым графитом и не уступающий сталям некоторых марок. Л. добавляют непосредственно в плавильные агрегаты или в ковш. Большое значение имеют Л. в произ-ве алюминия сплавов, меди сплавов, цинка сплавов, магния сплавов, бронз, латуней и др. цветных сплавов, где служат промежуточными сплавами, вводимыми в осн. сплав в процессе плавки. Так, кремний, марганец, медь и др. элементы вводят в расплавленный алюминиевый (основной) сплав в виде предварительно сплавленных Л., напр. алюминий — кремний (20—25% Si), алюминий — марга- [c.700]
Методы испытаний необходимо разрабатавать и выбирать для каждой группы сплавов в отдельдости. Так, согласно ГОСТ 9020—74 магниевые сплавы испытывают во влажной камере или при полном погружении в 0,001- и 3 %-ные растворы хлористого натрия. Алюминиевые сплавы рекомендуется испытывать при полном погружении в 3 %-ный раствор хлористого натрия, содержащий 0,1 % Н2О2, при переменном погружении в 3%-ный раствор хлористого натрия, в камере соляного тумана или просто во Влажной камере при повышенной температуре и периодической конденсации влаги. Не может быть единого метода испытания для всех сплавов и тем более единых коэффициентов пересчета результатов лабораторных испытаний на длительную эксплуатацию, так как данные коррозионная среда и вид испытаний не в одинаковой степени ускоряют процесс коррозии различных металлов. Периодическая конденсация влаги увеличивает коррозию цинка и стали, а коррозию никеля ускоряет незначительно (если атмосфера не содержит промышленных загрязнений). Железо и его сплавы, как и сплавы алюминия с медью, весьма чувствительны к периодическому смачиванию электролитами, коррозия же кадмия и чистого алюминия при этом ускоряется в меньшей степени. [c.7]
Применение. Сочетание легкости, механической прочности, высокой тепло- и электропроводности, стойкости к действию воздуха, воды, некоторых кислот и органических соединений обусловило широкое применение алюминия в технике. Используют его преимущественно в виде сплавов в машино- и моторостроении. Основные потребители алюминиевых сплавов — авиа- и автопромышленность. Особое значение имеет сплав алюминия с медью, магнием, марганцем и кремнием, называемый дуралюминием. [c.162]
В 1909 г. немецкий химик А. Вильм получил один из первых основных сплавов алюминия — дуралюмин (3,4— 4% меди, 0,5% —магния, 0,5% — марганца плотностью 2,85). Через 11 лет был создан другой основной сплав алюминия — силумин (12—13% кремния, плотность 2,6). Оба эти сплава благодаря малой плотности, хорошим литейным и механическим свойствам широко применяются в самолетостроении. Сейчас количество алюминиевых сплавов резко возрасло, лишь в СССР их используют около 100. Промышленность СССР полностью обеспечивает потребность нашей Родины в крылатом металле . [c.205]
Чистый алюминий — мягкий, ковкий и пластичный металл. Однако для некоторых целей необходимы сплавы алюминия, обладающие большей прочностью, упругостью и меньшей пластичностью. Обладающие такими свойствами алюминиевые сплавы можно получить, если ввести в их состав небольшие количества других металлов, например меди или магпия. Добавление приблизительно 4% меди и 0,5% магния может придать прочность алюминию благодаря образованию твердых, хрупких кристаллов интерметаллического соединения Mg u2. Эти чрезвычайно мелкие кристаллы, внедренные в кристаллы алюминия, могут столь эффективно предотвращать скольжение плоскостей в металлическом алюминии, что механические свойства сплава повышаются по сравпеиию со свойствами чистого металла. [c.405]
Большинство составляющих алюминиевых сплавов легко определяется методом атомной абсорбции. В ранних работах Гидли и сотрудников [31, 53], а также других авторов содержатся методики определения некоторых составляющих сплавов алюминия. В работе Белла [325] дана общая методика исследования алюминиевых сплавов. Белл не обнаружил никаких помех от различных компонентов сплава при определении Си, Мп, Mg, 2п, Ре, Сг, d, N1. Медь, по-видимому, увеличивает абсорбцию цинка в присутствии алюминия, но в недавней работе [326] отмечается, что этот эффект отсутствует, если использовать пламя воздух — ацетилен и трехщелевую горелку, Содержание магния и кальция в алюминии следует определять в присутствии лантана, который добавляют в качестве буфера. Образцы весом I г растворяют в 50% (по объему) НС1. Полученный раствор затем разбавляют таким образом, чтобы определяемый металл находился в оптимальном диапазоне концентраций. Если в растворе присутствует медь, то в него в процессе нагревания добавляют несколько капель 30%-ной Н2О2. Кремний отфильтровывают, если его концентрация превышает 1 % или если требуется произвести очень точное определение магния или меди. Отфильтрованный кремний удаляют с помощью НР и НЫОз, а остаток вновь растворяют в НС и добавляют к анализируемому раствору. При определении магния содержание алюминия в исследуемых и эталонных растворах поддерживается на уровне 1000 мкг/мл. В работе Белла при использовании двухлучевого прибора величина коэффициента вариации при определении цинка в различные дни составляла 0,7%. [c.178]
Поэтому, например, сплавы АЛ4 и АЛ4В предназначаются для изготовления деталей, работающих в контакте с коррозион1 оактивными средами. Широко известны деформируемые сплавы алюминия с медью и небольшими добавками кремния, магния, марганца и никеля так называемый дюралюминий (Д1, Д16) и сплавы АМг и АМг-б — алюмомагниев1ые, с содержанием 1—6% магния. По коррозионной стойкости дюралюминий значительно уступает чистому алюминию, особенно после термической обработки. [c.112]
на рынке кабелей обострилась конкуренция :: Екатеринбург :: РБК
По словам заместителя технического директора «Холдинга Кабельный Альянс» Андрея Боева, алюминий не выдерживает конкуренции с медью в плане стойкости к токам перегрузки.
«Это очень пластичный металл. Со временем он начинает растекаться, и необходимо постоянно подтягивать контакт, которым токопроводящие жилы скрепляются между собой или с каким-либо устройством. При ослабленном контакте риск возникновения пожара очень велик. Температура плавления у алюминиевого сплава осталась та же, что и у алюминия — меньше 700 °С, то есть испытание огнем алюминиевые жилы не пройдут. Также у алюминия крайне невысокая коррозийная стойкость, и во влажной среде срок его службы значительно уменьшается. И он не прощает ошибок, которые может допустить монтажник», — поясняет Андрей Боев.
Читайте на РБК Pro
Фото: 66.ru
В РУСАЛе парируют, что современная алюминиевая проводка обладает негорючей и нетоксичной изоляцией, которая гарантирует ее безопасность.
«В новых алюминиевых сплавах с изменением кристаллической решетки и добавлением железа и других легирующих элементов была достигнута повышенная гибкость и надежное контактное соединение с оконечными устройствами. Эксплуатационные характеристики провода полностью соответствуют традиционно применяемым аналогам, но имеют ряд существенных преимуществ — они дешевле и легче почти в два раза, а также защищены от контрафакта, т. к. уменьшать диаметр кабеля экономически нецелесообразно. Срок службы кабелей из алюминиевых сплавов составляет 30 лет, такой же, как и у медных», — рассказывает директор РУСАЛа по развитию потребления алюминия в России и странах СНГ Юрий Шивилов.
В Алюминиевой ассоциации делают упор на то, что алюминиевые сплавы перед разрешением к использованию прошли множественные проверки.
«К работе над разработкой новых кабелей с алюминиевыми сплавами были привлечены ведущие НИИ: ВНИИКП, ВНИИ пожарной обороны МЧС России, Росэлектромонтаж, ведущие технические комитеты в данных областях, крупнейшие отечественные производители кабелей. Результаты работ проверялись и контролировались в Аппарате Правительства РФ, Совете Безопасности РФ, Минпромторге, Ростехнадзоре, Росстандарте. Были доказаны преимущества алюминиевых сплавов и их полная безопасность применения в проводке», — заявил председатель Алюминиевой ассоциации Валентин Трищенко.
Между тем участники кабельного рынка опасаются, что решение Минпромторга будет иметь непредвиденные последствия. «Отличить по внешнему виду инновационный сплав от обычного алюминия потребитель не сможет. Поэтому есть большая опасность того, что под видом проводки с алюминиевым сплавом в наших квартирах будут монтировать традиционный алюминиевый кабель», — считает заместитель технического директора «Холдинга Кабельный Альянс» Андрей Боев.
Фото: 66.ru
Перспективы алюминиевого сплава
Алюминиевые кабели, по словам экспертов, при одинаковой проводимости с медными «явно предпочтительнее по цене». Но пока снижения по потреблению меди не зафиксировано.
«Напротив, по нашим оценкам, потребление меди в РФ в 2018 году выросло до 290 тыс. тонн (+5 тыс. тонн к уровню прошлого года)», — рассказывает директор группы корпоративных рейтингов ACRA Максим Худалов.
В дальнейшем, по прогнозам экспертов, продолжится рост потребления меди. Также увеличится потребление алюминия в России — до 1–1,3 млн тонн в 2020–2023 годах, по данным ACRA.
По мнению представителей производства кабелей, сейчас идет активная фаза внедрения продукции с жилами из алюминиевых сплавов на рынок.
«Пик, на мой взгляд, придется на середину — конец 2020 года. В свободной продаже в строительных магазинах они появятся, скорее всего, в 2021 году. Связано это с необходимостью подготовить покупателей», — говорит гендиректор ГК «Москабельмет» Павел Моряков.
Фото: 66.ru
Конкуренция между токопроводящими жилами из разных металлов пойдет на пользу покупателю, так как он сможет выбирать из большей номенклатуры, считает Дмитрий Баранов. Это, в свою очередь, положительно скажется на отрасли. Производители для сохранения своей доли рынка будут разрабатывать новые виды кабельно-проводной продукции: с «лучшей работоспособностью, долговечностью, огнестойкостью, минимальным уровнем вреда».
«Вероятней всего, конкуренция развернется в создании наилучшей изоляции (оплетки). Применение новых материалов может позволить создать новые кабели и провода с увеличенным рабочим ресурсом, причем их стоимость может быть относительно невысокой. Не стоит забывать, что кабельно-проводная продукция применяется не только при новом строительстве, но и при проведении ремонтно-строительных работ, а это значит, что рынок ее сбыта практически неограниченный», — резюмирует Дмитрий Баранов.
Андрей Боев рассказывает, что практически все комплектующие и фурнитура на рынке приспособлены под медные провода. А при замене уже существующего провода на алюминиевый сплав необходимо менять и марку соединителей, и марку розеток.
Кроме того, кабель из алюминиевого сплава при одинаковой с медным кабелем нагрузке имеет увеличенное сечение. Соответственно, его диаметр больше. «Как это будет соотноситься с размерами уже спроектированных и построенных шахт и стояков в жилых домах, пока непонятно», — комментирует эксперт.
В мире алюминиевые сплавы в проводке жилых зданий применяются уже десятки лет, говорит Валентин Трищенко. Он поясняет, что в США, Европе и Китае доля проводки из алюминиевых сплавов на рынке составляет порядка 30%.
«Опыт Соединенных Штатов Америки, где такие сплавы производят уже около двадцати лет, показывает, что массового спроса на них нет. То есть вытеснить медь алюминиевому сплаву не удалось», — говорит Андрей Боев.
Алюминий с медью — Энциклопедия по машиностроению XXL
Реже, кроме силуминов, в качестве литейных алюминиевых сплавов применяют сплавы алюминия с медью, магнием и цинком. [c.590]Сплавы алюминия с медью (системы А1—Си, содержащие 4,5— [c.18]
Наиболее распространенные литейные сплавы (табл. 25, 26) — силумины (сплавы алюминия с кремнием) и сплавы алюминия с медью, магнием и цинком. [c.36]
Деформируемые сплавы марок АМц, АМг и др. (термически неупрочняемые), а также термически упрочняемые сплавы алюминия с медью и магнием (дуралюмины Д1, Д16 и др.) имеют Ов = 350 -г 430 МПа и используются для изготовления обработкой давлением и резанием корпусов, трубопроводов, заклепок, сепараторов подшипников и других деталей машин (в особенности транспортных). [c.276]
При высокой температуре пайки ряда разнородных металлов (например, титана с медью и никелем, магния со сталью, алюминия с медью и др.) невозможно получить пластичные и прочные соединения без нанесения на них барьерных покрытий, предохраняющих разнородные металлы от активного взаимодействия и, как следствие, возникновения в паяном шве хрупких интерметаллидов. [c.480]
В табл. 6 приведены механические свойства сплавов алюминия с медью, закристаллизованных под давлением 0,5 МН/м в автоклаве и в обычных условиях. [c.63]
Контактная коррозия наблюдается при контакте алюминия с более благородными металлами в электролитах. В этом виде коррозии существенную роль играют состояние поверхности контактируемых металлов, площадь контакта, аэрация и степень деформации. Значительная контактная коррозия наблюдается при контакте алюминия с медью, ее сплавами и сталью известны случаи контактной коррозии алюминия с алюминиевыми сплавами. Скорость коррозии алюминия при контакте с нержавеющей сталью значительно повышается в водных растворах хлорида натрия и в меньшей степени в спиртовых растворах. [c.124]
Следует учитывать, что нет единого метода испытания для всех сплавов, так как процесс коррозии различных металлов в данной коррозионной среде при определенном методе испытания, протекает с различной скоростью. Так, нанример, железо и его сплавы, а также сплавы алюминия с медью весьма чувствительны к периодическому смачиванию электролитами. Коррозия же кадмия и чистого алюминия при этом виде испытания ускоряется в меньшей степени. [c.18]
Сплавы алюминия с медью. Сплавы этого типа могут подвергаться термической обработке— закалке и искусственному или естественному старению. Для сплава АЛ7 применяется закалка с 515+ °С, выдержка 10— 15 час., охлаждение в воде температурой 20° С с последующим старением. [c.557]
Деформируемые сплавы обрабатывают давлением на прессах, в штампах или на прокатных станах. Среди них особенно широко распространены сплавы алюминия с медью и магнием (дюр,алюминий). [c.232]
Сплавы алюминия с медью, кремнием, магнием, цинком и другими элементами называют алюминиевыми сплавами. В зависимости от химического состава сплавы алюминиевые литейные (ГОСТ 2685—75 ) разделяют на пять групп на основе алюминий — кремний, алюминий — кремний — медь, алюминий — медь, алюминий — магний, алюминий — прочие компоненты. Каждая группа имеет свои марки. Алюминиевые сплавы, предназначенные для ковки, штамповки и проката, изготовляют по ГОСТ 4784—74. [c.138]
Пайка алюминия с медью Остатки флюса не удаляют [c.128]
Пайка алюминия с медью и ее сплавами может быть также осуществлена нанесением защитных покрытий типа цинк, серебро и их сплавов на поверхность меди. При этом используют припои на основе олова, кадмия, циика. Через серебряное покрытие на меди может быть осуществлена кон- [c.267]
Из рис. 4.19 видно, что при использовании сплава алюминия с медью содержание СО в отходящих газах достигает значения, полученного в случае чистого алюминия, и остается постоянным при более высоких скоростях перемешивания. Таким образом, приведенные результаты могут рассматриваться как подтверждение мнения об определяющей роли стадии взаимодействия растворенного металла с углекислым газом при больших скоростях транспорта металла. [c.139]
Легкие ставы на основе алюминия или магния имеют плотность не более 3,5 кг/см , высокую удельную прочность. Их подразделяют на литейные и деформируемые. Алюминиевые сплавы делятся на силумины (алюминий с кремнием, например АЛ4) и дюралюмины (алюминий с медью и марганцем, например МЛ5). Алюминиевые сплавы применяют для быстровращающихся и движущихся с большим ускорением деталей, в быстроходных транспортных машинах, а также для корпусных деталей, а в самолетах для несущих элементов. [c.13]
Способ позволяет получать соединения разнородных материалов, например алюминия с медью, меди со сталью и т.п. Ультразвуковую сварку применяют в приборостроении, радиоэлектронике, авиационной промышленности. Особенно широкое применение она находит при сварке пластмасс. [c.267]
Отсутствие нагрева позволяет сваривать холодной сваркой термически разупрочняемые металлы, герметизировать емкости, нагрев которых не допустим. Холодная сварка обладает малой энергоемкостью, гигиенична (не выделяется газ, нет брызг, излучений, шума). Обеспечивается надежное соединение разнородных металлов, например алюминия с медью, без образования хрупкой интерметаллидной прослойки. Недостатки холодной сварки возможность соединения только пластичных металлов, глубокие вмятины при нахлесточном соединении, ограничения в форме и размерах свариваемых деталей, малая универсальность (она не применима в труднодоступных местах, для соединения деталей сложной формы, мелких деталей). [c.265]
При стыковой холодной сварке (рис. 137, г) детали 1 надо установить в зажимах 3 так, чтобы вылеты и k концов деталей были равными 1…1,2 диаметра или толщины свариваемых прутков или полос. Если свариваю 5ся разнородные металлы, то вылет и усилие зажатия деталей в зажимах 3 со стороны более прочного металла делают больше. Например, при сварке алюминия с медью вылет медного конца устанавливают на 30…50 % больше, алюминиевую деталь зажимают усилием в 0,5, а медную — в 0,8 усилия осадки. После зажатия деталей торцы их обрезают ножом 4, удаляя загрязнения и пленки с торцевых поверхностей и обеспечивая их параллельность. Затем детали сближают, сдавливают и производят сварку. Погрешности установки вылета концов деталей и непараллельность их торцов можно компенсировать при сварке увеличением осадки вплоть до ее удвоения. [c.267]
НЫХ сплавов алюминия с медью, марганцем, кремнием, железом и цинком образуется оксидная пленка, по структуре аналогичная пленке на чистом алюминии. [c.256]
Дюралюминий — это деформируемый сплав алюминия с медью (4…5 %), магнием (0,5 %), марганцем, кремнием и железом. Обозначение марок дюралюминия (Д1 Д6 Д16 и т.д.) не связано с его химическим составом. [c.31]
Обычно сварку выполняют вольфрамовым электродом в аргоне и по слою флюса. Для улучшения процесса сварки на медь после ее очистки необходимо наносить слой покрытия, который активирует поверхность более тугоплавкого металла, улучшает смачиваемость поверхности меди алюминием. Наилучшим является цинковое покрытие толщиной 50. .. 60 мкм, наносимое гальваническим методом. Технология сварки алюминия с медью такая же, как и алюминия со сталью, т.е. дугу смещают на более теплопроводный металл, в данном случае на медь, на 0,5. .. 0,6 толщины свариваемого металла (табл. 13.4). [c.509]
Рекомендуемые режимы сварки алюминия с медью [c.510]
Рассмотренные факторы могут играть роль и при порообразовании, происходящем в алюминиевых сплавах при изотермической и термоциклических обработках. Однако из-за малой растворимости использованных примесей в твердом алюминии вклад их, вероятно, невелик. Изложенные ниже результаты опытов, выполненных автором совместно с В. Ф. Мовчан, И. А. Чернышевой, О. В. Лебедевым и В. В. Ященко, получены при исследовании сплавов алюминия с медью и кремнием. Оба элемента образуют с алюминием эвтектические системы и больше растворяются в нем. Максимальная растворимость имеет место при эвтектической температуре по данным работы [69], при 548 С медь растворяется в твердом алюминии в количестве 5,6 вес. %, а кремний при 577″» С — 1,65 вес. %. [c.114]
Обсуждение причин роста алюминиевых сплавов при термоциклировании с оплавлением будет неполным, если не указать еще на одно обстоятельство. Сопоставляя данные о поведении алюминиевых сплавов при изотермической обработке, обратили внимание на чувствительность объемных изменений к фазовому состоянию сплава. Образцы сплавов алюминия с медью, например, во время отжига [c.126]
Кроме описанной нормальной или прямой ликвации, наблюдается еще обратная ликвация, вызываемая побочными причинами. При обратной ликвации, наоборот, у стенок изложницы располагается наиболее легкоплавкая часть сплава. Это объясняется выдавливанием изнутри остатков жидкости в сплавах, затвердевающих с расширением, или в сплавах, выделяющих при затвердевании газы. Обратная ликвация может произойти также вследствие переохлаждения, если система не находится в состоянии равновесия. На поверхности слитка, где переохлаждение больше, может затвердевать не только тугоплавкая, но и легкоплавкая часть сплава. При медленном охлаждении обратная ликвация не обнаруживается. Обратной ликвации особенно подвержены сплавы алюминия с медью и магнием. [c.96]
Двойные сплавы алюминия с медью, например АЛ7, уступают по качеству силуминам и в настоящее время в значительной мере вытеснены последними. [c.434]
Ультразвуковой сваркой можно получать точечные и шовные соединения внахлестку, а также соединения по замкнутому контуру. При сварке по контуру, например, по кольцу, в волновод вставляют конический штифт, имеющий форму трубки. При равномерном под-жатии заготовок к свариваемому штифту получают герметичное соединение по всему контуру (рис. 5.43). Ультразвуковой сваркой можно гваривать заготовки толщиной до 1 мм и ультратонкие заготовки Т0Л1ЦИ1ЮЙ до 0,001 мм, а также приваривать тонкие листы и фольгу к заготовкам неограниченной толщины. Снижение требований к качеству свариваемых поверхностей позволяет сваривать плакированные и оксидированные поверхности и металлические изделия, покрытые различными изоляционными пленками. Этим способом можно сваривать металлы в однородных и разнородных сочетаниях, например алюминий с медью, медь со сталью и т. п. Ультразвуковым способом сваривают и пластмассы, однако в отличие от сварки металлов к заготовкам подводятся поперечные ультразвуковые колебания. [c.224]
Сплавы алюминия. Сп.тавы алюминия с медью, цинко.м, марганцем, кремнием и др. обладают лучшими технологическими свойствами и более высоко прочностью, чем чистый алюмишй , и поэтому находят широкое применение в технике. В коррозионном отношении все алюминиевые сплавы обладают значительно мспыие стойкостью, чем чистый алюмипи . [c.271]
Легирование алюминия магнием увеличивает склонность сплава к КРН, особенно, если содержание Mg превышает 4,5 %. Для ослабления воздействия, по-видимому, необходимо проводить медленное охлаждение (50 °С/ч) сплава от температуры гомогенизации, чтобы произошла коагуляция -фазы (AlgMga) последний процесс ускоряется при введении в сплав 0,2 % Сг [29]. Эделеану [30] показал, что катодная защита приостанавливает рост трещин, которые уже возникли в сплаве при погружении в 3 % раствор Na l. При старении сплава при низких температурах максимальная склонность к КРН отмечалась перед тем, как была достигнута наивысшая твердость. Эти данные аналогичны приведенным выше для дуралюмина. Поэтому Эделеану предположил, что склонный к КРН металл вдоль границ зерен не является равновесной р-фазой, ответственной за твердость сплава. По его мнению, склонность к КРН в области границ зерен связана с сегрегацией атомов магния, и этот процесс предшествует образованию интерметаллического соединения. По мере старения склонность к КРН уменьшается, так как выделение Р-фазы в области границ зерен идет с потреблением металла, содержащего сегрегированные атомы магния. Сходным образом, вероятно, можно объяснить поведение сплавов алюминия-с медью. [c.353]
В работах, выполненных под руководством А. А. Бочвара [68], исследовано влияние давления на свойства сплавов алюминия с медью (0—14% Си), меди с оловом (О—157о Sn), а также других сплавов (силуминов, кремнистых бронз и т. п.). Показано, что все исследованные сплавы (за очень небольшим исключением) имеют более высокие показатели механических свойств при кристаллизации под давлением, чем литые в атмосферных условиях. [c.63]
Растворы для травления 46—50 пригодны для сплавов алюминия с медью и магнием (дуралюминов). [c.266]
Остановимся на важнейшем двухкомпонентном сплаве сплаве алюминия с медью. Добавка меди к алюминию дает твердый раствор. Он насыщается при 5,77о Си. Медь определяет поведение сплава при термической обработке, его физические и технологические свойства. При большом содержании меди появляется эвтектика, состоящая из твердого раствора и химического соединения СиАЬ. На основе этого сплава разработаны различные марки дюралюминия. [c.52]
Как уже говорилось, для протекания биметаллической коррозии необходимо присутствие электролита. Если поверхность металла суха, то биметаллической коррозии не будет. На наружных конструкциях для протекания биметаллической коррозии достаточно присутствия пленки влаги. Если говорить о комбинациях алюминия с медью, сталью, или нержавеющей сталью, то существенная, с точки зрения практики, биметаллическая коррозия протекает в первую очередь в морской атмосфере и редка в городской или сельской атмосфере. Причина этого в том, что морская атмосфера содержит высокую концентрацию хлоридов, обеспечивающих хорошую электропроводность и, кроме того, способных ослаблять защитное действие оксидных покрытий, существующих бычно на алюминии. В согласии с этим находится опасность биметаллической коррозии при загрязнении поверхности, например дорожной солью. Вероятность биметаллической коррозии для некоторых комбинаций металлов в различных атмосферах сопоставляется в Приложении 1. [c.40]
Б о ч в а р А. А., Игнатьев Н. П., Влияние давления во время кристаллизации на свойства снлавов алюминия с медью, сборник Структура м литьё спла BOB цветных металлов , Металлургиздат. 1945. [c.198]
Теория Гинье — Престона в настоящее время считается общепризнанной. Ею объясняют старения всех алюминиевых сплавов. Но не надо забывать, что эта теория была установлена на данных исследований сплавов алюминия с медью. Промыщленные же сплавы содержат, кроме меди, еще магний, марганец, кремний и другие элементы. Поэтому кинетика старения их гораздо сложнее, хотя механизм распада твердого раствора и образования выделений, видимо, остается тот же. [c.96]
Разработан ряд технологических процессов, обеспечивающих надежное соединение алюминия с медью и ее сплавами, со сталью, никелевыми и другими сплавами. Основные трудности при осуществлении процесса пайки алюминия с указанными материалами заключаются в следующем в выборе флюса или газовой среды, обеспечивающей удаление окислов с поверхностей столь разнородных материалов в образовании хрупких соединений из-за возникновения интерметаллидов в зоне шва в наличии большой разности ТКЛР алюминия и перечисленных материалов. Первые две задачи успешно решаются предварительным нанесением на поверхности соединяемых материалов защитных металлических покрытий. Пайку алюминия с медью можно осуществить по никелевому покрытию, нанесенному иа алюминий химическим способом. Пайку производят в водороде лрипоем состава, % [c.267]
Флюс для сварки алюминия с медью. Gel—5—10 Sn l2—до 100%. (Повышенная пластичность и «коррозионная стойкость сварного соединения). [c.125]
Дуралюмины являются сплавами алюминия с медью, магнием и марганцем. Отличаясь небольшой плотностью эти сплавы по своим механическим характеристикам близки к некоторым сортам мягких сталей, а по удельной прочности, выражающейся отношением предела прочности к плотности сплава, близки к высококачественным сталям. Из дуралюминовых сплавов В основном изготавливают листы, профили, прутки, проволоку, трубы и заклепки. Листы часто выпускают плакированными чистым алюминием, что повышает их стойкость к атмосферной коррозии и способствует широкому использованию в современной авиации в качестве обшивки самолетов. [c.317]
Сплавы алюминия с медью (до 5,3 % Си) и марганцем (до 1 % Мп) обладают повышенной прочностью (сплавы АМц4К1, АМц5К). Их применяют для литья деталей, работающих при достаточно высоких нафузках (кронштейны, арматура и др.). [c.23]
Таким образом, при термоциклировании сплавов алюминия с медью, кремнием и цинком происходит необратимое увеличение объема и развитие пористости. Одним из необходимых условий образования пор является оплавление. Ускорение охлаждения, как и в случае малорастворимых примесей, способствует возрастанию объема. Результаты исследования влияния различных факторов на реет алюминиевых сплавов при термоциклировании с оплавлением в общем согласуются с данными работ [210—212], полученными на анизотропном в отношении термического расшкреиия кадмии с примесями. Вместе с тем вследствие различной склонности сплавов к росту и отсутствия напряжений термической анизотропии необходим обстоятельный анализ влияния оплавления. В качестве независимых факторов, вызывающих увеличение объема и развитие пористости, могут служить термические напряжения, газы и чередую- [c.119]
Как варить алюминий и медь
Конструкции из разнородных металлов сейчас встречаются как никогда прежде и детали из таких металлов изготавливаются в промышленных объемах. Это обусловливается значительными экономическими и техническими преимуществами техники и ее деталей, которые применяются в судостроения, ракетной промышленности, радиоэлектроники, в энергетических установках и криогенной технике.
В конструкциях или их элементах используются разные комбинации ил меди, стали, алюминия, титана, молибдена, тантала, ниобия и их сплавов. Для каждой пары металла при сваривании используется своя технология и способ сваривания.
В большинстве случаев, пары свариваемых разнородных металлов отличаются друг от друга температурой плавления, плотностью, коэффициентами линейного расширения и теплофизическими свойствами. Также отличаются металлы друг от друга кристаллографическими характеристиками – типом и параметрами металлической решетки.
При сваривании металлов стоит помнить, что при поглощении газов ухудшаются свойства сварочных соединений. В большинстве случаев при ограниченной взаимной растворимости для некоторых основных пар свариваемых металлов сложно избежать образования стойких интерметаллических фаз, которые обладают высокой твердостью и в тот же момент очень хрупки.
Сваривание алюминия с медью является интересным сварочным процессом, имеющим свои особенности и нюансы. Помимо значительной разницы физико-химических свойств меди и алюминия, сваривание этих двух металлов затрудняется образованием хрупкой неметаллидной фазы. Обычно сваривание производится с помощью вольфрамового электрода в среде инертного газа аргона или по слою флюса.
Для того чтобы улучшить процесс сваривания, на медь после очистки наносится слой покрытия, который активирует поверхность металла, который имеет большую тугоплавкость, что позволяет улучшить смачиваемость поверхности алюминия и меди.
Одним из наилучших вариантов является нанесение цинкового покрытия толщиной 50 – 60 мкм, которое наносится гальваническим методом. Технология сваривания меди с алюминием приблизительно такая же, как и сваривание алюминия со сталью. Это означает, что сварочную дугу смещают на металл, который имеет большую теплопроводность.
В нашем случае таким металлом выступает медь, которую смещают на 0,5 или 0,6 толщины свариваемого металла. Для того чтобы обеспечить стабильную прочность сварочных соединений, необходимо производить по свариваемой кромке меди скос под углом от 45 до 60 градусов.
При сваривании алюминия и меди следует проводить весь процесс сваривания в оптимальном режиме, что позволит избегать ненужного перегрева поверхности свариваемого металла. Если сварочный процесс алюминия и меди производится с учетом особенностей обоих металлов, то в результате работы Вы получите долговечный сварочный шов и изделие с особыми свойствами, которое можно будет применять в своих целях.
Алюминий — Медь « Калужский завод по обработке цветных металлов
ТУ 24.42.24-010-75479902-2017 Ленты из алюминия и алюминиевых сплавов, плакированные медью (АПМ). Технические условияОписаниеЛента марки АПМ, изготавливается из алюминия, с односторонним (АПМ1) или двухсторонним (АПМ2) медным покрытием.
Состав- Основа – алюминий А5 с химическим составом по ГОСТ 13726.
- Покрытие – медь марки М1 с химическим составом по ГОСТ 859.
Толщина плакирующего слоя h составляет от 8 до 12% от номинальной толщины готовой ленты.
Классификация и сортаментПо виду покрытия:
- одностороннее медное покрытие – АПМ1
- двухстороннее медное покрытие – АПМ2
По состоянию материала:
- мягкое (отожженное)
По виду кромок:
- с обрезной кромкой
Сорт | Толщина H, мм | Допуск по толщине, мм | Ширина B, мм | Допуск по ширине, мм | Длина, мм | Внутренний диаметр рулона Øвнутр., мм | Масса рулона, кг |
Лента | 0,50 | (±0,03) | 40 – 200 | (±0,5) | немерная | 400 / 500 | 40 – 300 |
1,00 | (±0,05) | ||||||
1,50 | (±0,10) |
Возможно изготовление других типоразмеров по согласованному допуску.
Механические свойстваСостояние ленты | Временное сопротивление разрыву σB, МПа | Относительное удлинение δ, % |
Отожжённое (М) | ≥90 | ≥8 |
Для изготовления заземляющих контактов и других изделий в электротехнической промышленности.
Сварка алюминия и меди
Сеть профессиональных контактов специалистов сварки
Диаграмма состояния алюминий — медь свидетельствует, что в этой системе существует ряд устойчивых при комнатной температуре химических соединений: Θ-фаза (AI2Cu), η-фаза (AICu), ε2-фаза, δ-фаза (AI2Cu3), γ2-фаза (AlCu2), γ-фаза (AI4CU9), Они характеризуются высокой твердостью и низкой пластичностью. При комнатной температуре медь обладает сравнительно малой растворимостью в алюминии, несмотря на сходство в кристаллическом строении этих металлов.
Другие страницы, по теме
Сварка алюминия и меди
:
В сравнении с сочетанием алюминия с другими металлами (например, никелем, железом) для взаимодействия алюминия с медью характерны большие скорости роста прослоек интерметаллидов и малая продолжительность латентного периода. Температурная зависимость последнего имеет вид
τп = 3,8 * 10-8 ехр(130 / RT).
Кинетика роста промежуточных фаз описывается уравнением
у =9,1*105 ехр(100 / RT)τ — 3,46 * 102 ехр(30 / RT).
Эта зависимость хорошо согласуется с экспериментальнымиданными.
Наличие латентного периода позволяет получать высококачественное соединение непосредственно алюминия с медью, такими методами сварки давлением, которые используют относительно невысокие температуры при малой продолжительности воздействия. Отмеченные закономерности возникновения и роста интерметаллидных прослоек ведут к тому, что для каждого способа существует достаточно узкий диапазон значений технологических параметров режимов сварки и температурновременных условий эксплуатации биметаллического соединения. Работа биметалла Аl + Cu допускается при температуре, не превышающей 400oС, во избежание интенсивного роста диффузионного слоя и резкого ухудшения механических свойств. При нагреве выше указанной температуры в соединении алюминий + Л96 по мере ее роста и увеличения продолжительности выдержки образца идет образование δ-фазы, которая диффундирует в латунь, в результате чего появляются γ2-фаза и α-твердый раствор. Насыщение δ-фазы с другой стороны алюминия ведет к образованию Θ-фазы.
В связи с тем что существуют достаточно пластичные сплавы системы Аl — Cu, содержащие до 7 % Cu, и бронзы с содержанием до, 10% Аl перспективно такое ведение процесса сварки плавлением, когда содержание меди в сварном шве не будет превышать 6 … 8 %.
Хорошей растворимостью в рассматриваемых материалах обладают серебро, цинк, кремний. Их бинарные диаграммы состояния достаточно просты. При нормальной температуре алюминий с цинком и кремнием являются двухфазными, образуя эвтектику. В системе AI — Ag установлено существование α-, β-, γ-, δ-фаз и соединения Ag3Al. Серебро хорошо растворимо как в алюминии, так и в меди. Содержание цинка в алюминии при 275oС составляет 31,6 %, в меди — 38 % (454oС). Растворимость кремния в алюминии 1,65 % (577oС), в меди — 5,2 % (548oС).
Склонность к образованию химических соединений — основной осложняющий фактор при сварке алюминия с медью. Особенности сочетания физических свойств меди и алюминия таковы, что в большинстве случаев не вызывают дополнительных осложнений. Так, разница в 1,5 раза коэффициентов термического расширения не при водит к опасности разрушения соединения, так как оба материала высокопластичны. При изменении температуры оба материала проявляют одинаковые тенденции к изменению механических свойств, при низких температурах сохраняют высокую пластичность. Коэффициент тепло- и температуропроводности меди с повышением температуры в диапазоне 0 …600oС несколько снижается, а для алюминия возрастает почти в 2 раза в диапазоне 150…600oС. При 500oС значение коэффициента теплопроводности выравнивается, а при дальнейшем росте температуры значение этого параметра для алюминия становится выше.
Оксиды меди менее химически стойки. Упругость паров диссоциации для Cu2O при 727oС составляет 1,8 . 10-1 Па, для CuО при 900oС равна 1,18 . 10-3 Па, для АI2O3 при 727oС 1,5 . 10-15 Па. Толщина оксидной пленки на меди в 1,5 — 2 раза больше, чем на алюминии. На воздухе при нагреве СuО стремится перейти в Сu2O.
Сварка алюминия и меди проводится различными методами сварки давлением и плавлением.
Сварка давлением осуществляется методами холодной сварки, прокаткой, трением, ультразвуком, диффузионной, магнитно-импульсной, взрывом.
Холодная сварка алюминия и меди применяется главным образом для местного плакирования алюминиевых деталей медью (токоведущие элементы трансформаторов, шинопроводы, токоподводы к электролизерам) точечной сваркой, получения стыковых соединений проводов, шин и других элементов компактных сечений. Материал заготовок — технически чистая медь и алюминий.
Методом холодной прокатки получают биметаллические листы, полосы (карточная и рулонная прокатка). Степень обжатия при сварке прокаткой 60 … 75 %.
В связи с необходимостью создания в зоне соединения направленного течения металла эта специфика процесса налагает определенные ограничения на соотношения толщин исходных заготовок. В связи с этим получить листовой материал при толщине >4 мм и малой толщине плакирующего слоя затруднительно или невозможно. Для электротехнической промышленности получают слоистый материал с минимальной толщиной медного покрытия 0,1 … 0,8мм.
При местном плакировании медью алюминиевых деталей точечной холодной сваркой глубина вдавливания пуансона в 2 — 3 раза превышает толщину плакирующей меди. Особых ограничений на толщину алюминиевых деталей в этом случае нет. Недостаток метода наличие вмятин от инструмента на поверхности детали.
Принципиальных ограничений на размеры сечений при сварке встык, кроме возможностей самого оборудования, нет. Реально сваривают элементы с площадью сечения до 1000 мм 2. Техника подготовки и сварки не отличается от общих технологических закономерностей холодной сварки.
При этом способе сварки образование интерметаллидов исключено, так как процесс идет без предварительного нагрева.
Более широкая номенклатура толшин и материалов заготовок для изготовления слоистых листов может быть получена горячей прокаткой. Заготовки при этом нагревают до 450°С. Для защиты металла (меди) от окисления используют двухстадийный процесс: предварительное обжатие при первом проходе на 65 …80 % от суммарного обжатия для уменьшения контакта с воздухом рабочей поверхности медной заготовки; прокатку нагретого пакета в вакууме, вакуумированных конвертах, аргоне.
Распространен способ горячей про катки, когда нагреву подвергается только алюминиевая заготовка, а холодные плакирующие медные листы накладываются непосредственно перед операцией обжатия. Такой прием снижает степень окисления. Обжатие ведется двухстадийно: на первом проходе 40.. .45 %. Суммарное обжатие 75 %.
Горячей прокаткой получают плакированный алюминий при толщине медного слоя 1,5 … 2,5 мм. Для улучшения механических свойств (повышения предела прочности >100 МПа и угла загиба до 110… 180°) многослойные листы подвергаются термической обработке при температуре 250…270оС в течение 2 … 8 ч.
Положительные результаты дает использование барьерного слоя из аустенитной стали (12Х18Н10Т), позволяющего избежать охрупчивание и сохранить прочность алюмомедного листа даже после нагрева до 500оС.
При сварке трением и ультразвуковой номенклатура свариваемых алюминиевых и медных сплавов шире. Основная особенность, присущая этим методам, состоит в том, что в силу их специфики из зоны соединения непрерывно идет эвакуация нежелательных продуктов взаимодействия материалов (интерметаллидов). При сварке трением меди со сплавом АМц на шлифах наблюдается прерывистая узкая (1,5 мкм) зона интерметаллидов.
Сварка трением налагает ограничения на конфигурацию сечения заготовок.
Для получения высококачественного соединения необходимыми условиями являются перпендикулярность поверхности торца к оси заготовки и предварительное снятие наклепа путем отжига, удаления окалины и обезжиривания трущихся поверхностей. Алюминиевую заготовку размещают в осадочной матрице, что позволяет компенсировать различия в пластических свойствах свариваемых материалов. Цикл давления — ступенчатый. Проковка дает дополнительные возможности разрушения и частичной эвакуации из плоскости стыка интерметаллидной прослойки. Для диаметров заготовок 20 … 30 мм давление при нагреве и осадке соответственно 30.. .40 и 110…200 МПа. Суммарная осадка 14 …20 мм. Получаемое соединение при испытаниях разрушается по алюминию.
При ультразвуковой сварке соединение выполняется внахлестку точками или непрерывным швом. В силу специфики процесса толщина заготовки, со стороны которой подводятся колебания, ограничена величиной порядка 1,2 … 1,5 мм из-за гистерезисных потерь в толще материала.
Диффузионная сварка меди с алюминием и некоторыми его сплавами дает доброкачественные соединения при максимально возможном ограничении температуры нагрева, времени сварки и при использовании барьерных подслоев и покрытий. В качестве материала таких слоев можно использовать цинк, серебро, никель.
При сварке взрывом из-за кратковременности взаимодействия материалов при высоких температурах интерметаллиды не успевают образоваться или их количество незначительно. Сварные швы обладают высокими механическими свойствами. Прочность соединения при этом выше прочности основного материала в результате наклепа и большей протяженности поверхности сцепления из-за ее волнистости. Процесс позволяет получать нахлесточные соединенная в различных вариантах по практически любой площади. Ограничения налагаются на максимальную толщину метаемой заготовки из-за опасности ее разрушения при образовании второго перегиба в процессе деформирования под воздействием продуктов разложения взрывчатых веществ (ВВ). Ограничения на минимальную толщину заготовки связано с появлением нестабильности процесса детонации при чрезмерном уменьшении толщины слоя ВВ.
Магнитно-импульсная сварка алюминия и меди имеет схожую со сваркой взрывом при роду образования соединения, что позволяет получать доброкачественные соединения с минимальным количеством интерметаллидной фазы. Наиболее просто свариваются телескопические соединенная. Толщина и диметр заготовок ограничены возможностями оборудования (главным образом емкостью конденсаторных батарей, долговечностью индуктора). Реально сваривают трубные заготовки диаметром до 40 мм при толщине стенки порядка 1,0 … 0,2 мм.
Сварка плавлением может осуществляться только в том случае, когда обеспечивается в основном плавление алюминия. Это может позволить получать в шве металл с ограниченным (6 … 8 %) содержанием меди, что обеспечивает оптимальное сочетание свойств соединений. Основные пути решения задачи: применение рюмкообразной разделки кромок, снижение опасности перегрева металла в корне шва, легирование металла шва рением, цинком, использованиебарьерных подслоев.
Нанесение на медную кромку электролитическим путем слоя цинка толщиной порядка 60 мкм при аргонодуговой сварке позволяет снизить содержание меди в шве до 1% и в 3 — 5 раз уменьшить протяженность интермегаллидной прослойки со стороны меди (до 10 … 15 мкм). Кромка медной заготовки при этом разделывается под углом 60°. Введение цинка через присадку при аргонодуговой сварке под флюсом при водит к тому, что содержание меди ≤12 %, а количество цинка в шве может достигать 30%. Соединения, получаемые в таких случаях, разрушаются при испытании по алюминию вдали от шва.
Электролитическое нанесение на медную кромку слоя олова или цинка при сварке металла малой толщины (3 … 8 мм) позволяет получать хорошие соединения, так как слой покрытия, выполняющий роль барьера, кроме того создает перед движущейся волной жидкого металла прослойку, облегчающую смачивание поверхности расплавом алюминия.
Есть опыт создания более сложных покрытий: нанесение электролитическим путем на медную заготовку слоя никеля толщиной порядка 50 мкм и затем алитирование в расплаве алюминия (Т = 810 …820оС, время 10 … 20 с). Возможно покрытие поверхности меди оловом или свинцово-оловянистым припоем методом лужения.
Легирование шва кремнием при аргонодуговой сварке проводят через присадочный металл (проволока типа АК5).
Применение более жестких режимов сварки, чем необходимо для сварки алюминия, способствует получению удовлетворительного качества соединения. С уменьшением скорости сварки увеличивается переход меди в шов, растет время пребывания зоны контакта материалов при температуре интенсивного роста интерметаллидов. Рекомендуется выбирать погонную энергию из соотношения: q / V = (18,8 … 20,9)δ, где δ — толщина свариваемого материала.
Смещение электрода в сторону более теплопроводной меди должно составлять (0,5 — 0,6) δ.
Copyright. При любом цитировании материалов Cайта, включая сообщения из форумов, прямая активная ссылка на портал weldzone.info обязательна.
Гальваническая совместимость алюминия и меди
С 1989 года: образование, Алоха и
самое интересное, что вы можете получить в отделке
Проблема? Решение? Звоните прямо!
(один из очень немногих в мире сайтов без регистрации)
Текущий вопрос:
24 сентября 2021 г.
Я хочу создать несколько картин маслом на больших тонких листах меди, и я пытаюсь придумать решение, чтобы сделать эти листы достаточно прочными для рисования (и снабдить их проволокой для подвешивания).
2001
В. Я также думаю о контакте меди и алюминия, на этот раз в установке антенны. Каждый комментарий выше я могу относиться и понимать, пока У. Карл Эриксон не говорит о серебре.
Единственные гальванические таблицы, которые я могу найти, относятся к коррозии в морской воде, но они по-прежнему ранжируют металлы от наиболее анодных до наиболее катодных. Например: www.eaa1000.av.org/technicl/corrosion/galvanic.htm
.На этой странице автор перечисляет некоторые правила проектирования, включая необходимость иметь низкий коэффициент C / A (следствие IV).
2004
A. Взгляните на эту ссылку www.corrosionsource.com/handbook/galv_series.htm, чтобы увидеть гальваническую серию. При использовании стандартного водородного электрода разница между медью и алюминием составляет -50 вольт.
Несмотря на все отзывы здесь. Коррозия алюминия / меди довольно сложна. Почему? Поскольку алюминий имеет оксид на поверхности, стабильность оксида определяет его характеристики. Гальванический ряд не всегда предсказывает реакцию в абсолютном выражении, поскольку нам необходимо учитывать площадь двух металлов.
22 июня 2010 г.
В. Привет! Меня интересует эта тема, поскольку я собираюсь соединить медную трубу с алюминиевой частью (резьбовое соединение, ниппель на алюминии с гайкой крокса для медной трубы или подобное). Вода, протекающая через систему, является чистой (питьевой). Есть ли проблема с этим суставом? Поможет ли я вставить между ними отрезок трубы из ПВХ?
Все змеевики теплопередачи по всему миру построены с алюминиевыми ребрами, механически закрепленными на медной трубе, и все они очень хорошо работают в течение многих лет на крышах и в различных средах без коррозии.
7 марта 2013 г.
A. Привет, Роберт. Ваше понимание этого явления может быть глубже моего, и я могу неправильно понять вопрос, но я бы сказал «нет».
Давайте начнем с рассмотрения одного металла, не связанного ни с каким другим металлом. Он состоит из атомов с положительно заряженными ядрами (хорошо, «ядра», мисс Крэбэппл), которые окружены электронами, которые уравновешивают заряды, и все в порядке. Затем предположим, что эти атомы подвергаются воздействию агрессивной среды (похитителя электронов).Агрессивные среды крадут электрон. Теперь этот атом больше не атом, а положительно заряженный ион в поисках электрона; поэтому он растворяется в среде в поисках электрона, чтобы уравновесить его. Итак, что на самом деле вызывает коррозию, так это потеря электронов из металла.
Металлы электропроводны, т. Е. Электроны могут проходить через них из одного места в другое так же, как они проходят через провод. Итак, если два разных металла механически связаны каким-либо образом без электрического изолятора между ними, электроны могут проходить через них.
Теперь возьмите кусок двух разных металлов, соединенных вместе, и поместите их в агрессивную среду, которая крадет электроны.
16 июня 2013 г.
А.
16 июня 2014 г.
В. У меня есть связанный вопрос по этой теме. Мы исследуем возможность использования меди в бытовых приборах. У меня есть толстая медная пластина (чистота 99,9%) и на нее ставится алюминиевая сковорода. Когда я нагрел пластину (газовое пламя внизу), мы получили чешуйчатое черное окисление на поверхности меди в местах соприкосновения двух металлов. Также потребовалось больше времени для закипания воды (по сравнению с обычной чугунной пластиной). Однако медь должна иметь более высокую теплопроводность. Так как же могло закипеть медленнее? Мы думаем, что между ними возник гальванический отклик, и черное окисление действовало как изолятор и замедляло передачу тепла.
августа 2014
А. Привет, Ганс. Нет, мне это кажется неправдоподобным. Гальваническая коррозия включает два электрических пути: металлический путь, по которому могут проходить электроны, и ионный путь (жидкость), по которому могут проходить ионы. Если одного пути не существует (в данном случае жидкостного пути), я не думаю, что у вас может быть гальваническая коррозия.
Гальваническая коррозия, конечно, не единственный возможный вид коррозии.
С уважением,
Тед Муни, P.E.
Стремление к жизни Алоха
отделка.
августа 2014
А. Привет, Карлос. Гальваническая коррозия обычно не является такой проблемой в благоприятной среде, в которой обычно находятся электронные устройства. Я не очень хорошо знаком с этой проводящей лентой, но я считаю, что клей является проводящим, поскольку чистый алюминий не будет должным образом служить контактной поверхностью этот тип. Что произойдет, если батареи необходимо заменить, если один конец из них склеен лентой? (Я думаю, что контакты на обоих концах батарей должны быть покрыты никелем или никелированным методом химического восстановления, а не алюминиевой лентой).
Декабрь 2014
A. Привет, Дэвид. Я не уверен, что понимаю, что вы описываете, но для гальванического воздействия требуется токопроводящий металлический путь между двумя металлами. Если алюминиевый поддон не касается медного поддона и столовых приборов, значит, гальванической коррозии не происходит.
Апрель 2015
А.Привет, Брюс. Не может быть гальванической коррозии, если части не соприкасаются, но это не обязательно означает, что медь и алюминий могут полностью противостоять коррозии. Цинковые аноды не защитят алюминий в пресной воде — вам понадобятся магниевые аноды.
Хотя я не очень хорошо знаком с «ионизаторами» меди, похоже, что они созданы для того, чтобы помещать ионы меди в воду. Эта медь попытается приклеиться к алюминию, и это может быть проблемой (я знаю, что медная пыль очень агрессивна по отношению к алюминию), но, надеюсь, магниевый анод защитит ее.
13 ноября 2015
В. Я ничего не знаю обо всех технических материалах, которые публикуют люди, но я надеюсь узнать, возникнет ли проблема с установкой моих новых ограждений водостока, сделанных из алюминия с финишной отделкой, на наши медные водостоки. У них также есть сетка из нержавеющей стали, но не думаю, что она будет соприкасаться. Компания сказала, что я могу нанести покрытие на алюминий, но это звучит как большая дополнительная работа.
Декабрь 2015
А.
Оцинкованные гвозди для обрамления и медный сайдинг
8 сентября 2016 г.В. Привет, весь мой дом облицован медью с переплетением листов 4×2. Мы строим пристройку, и вместо того, чтобы удалять медь, подрядчик прибивал каркас непосредственно к медным листам с помощью горячеоцинкованных гвоздей. Нужно ли мне беспокоиться о коррозии и разваливании моего дополнения? Вокруг гвоздей образовалась такая масса меди, что я не знал, что к ней чувствую. Я вижу это горячее окунание.
Сентябрь 2016
А. Привет, Бретань. Как домовладелец, я не ожидал, что на снятие сайдинга уйдет много времени; а медный сайдинг имеет хорошую стоимость лома. Мне кажется немного странным оставить старый медный сайдинг на месте, а не снимать его. Но я не строитель, и я полагаю, что он, возможно, не думал, что было практично прикреплять теперь свободный конец сайдинга к дому, если он разрезал его вместо того, чтобы просто оставить прикрепленными целые листы.
Гальваническая коррозия — проблема во влажной среде, поэтому, если бы вы сказали мне, что он разрезал листы и прибил края гальванизированными гвоздями, я бы, вероятно, ожидал сильных пятен на шляпках гвоздей.
(Вы находитесь на 1-й странице этой темы) Следующая страница>
finish.com стало возможным благодаря …
этот текст заменяется на bannerText
Заявление об ограничении ответственности: на этих страницах невозможно полностью диагностировать проблему отделки или опасности операции. Вся представленная информация предназначена для общего ознакомления и не отражает профессионального мнения или политики работодателя автора. Интернет в основном анонимный и непроверенный; некоторые имена могут быть вымышленными, а некоторые рекомендации могут быть вредными.
Если вы ищете продукт или услугу, связанную с отделкой металлов, посетите следующие каталоги:
О нас / Контакты — Политика конфиденциальности — © 1995-2021 finish.com, Pine Beach, New Jersey, USA
Будет ли оно присоединено: Copper and Алюминий
Сварка трениемстала лучшим выбором для компаний, желающих соединить разнородные металлы. Поскольку сварка трением — это процесс соединения в твердом состоянии, который не требует плавления, он позволяет соединять два металла, таких как медь и алюминий, которые невозможно соединить с помощью более традиционных методов сварки.
При использовании таких процессов сварки плавлением, как MIG и TIG, соединение разнородных металлов может оказаться сложной задачей, поскольку они часто существенно различаются по составу, а также физическим, механическим и металлургическим свойствам.
Медь и алюминий имеют совершенно разные температуры плавления. Медь имеет температуру плавления 1984 ° F; Алюминий имеет температуру плавления 1221 ° F. Это означает, что если вы соедините два материала с помощью процессов плавления, вы рискуете перегреться и ослабить алюминий.Фактически, с процессами плавления вы всегда будете изменять свойства материала одного или обоих материалов из-за плавления. Несмотря на то, что это иногда делается в промышленности, сварка TIG алюминия с медью не считается жизнеспособным процессом.Итак, как нам более эффективно соединить эти два материала?
Сварка трением — это наиболее эффективная из имеющихся технологий биметаллического соединения. При сварке трением сварные швы имеют кованое качество, а материалы пластифицируются, а не расплавляются, что создает более прочные сварные швы, чем процессы плавления.Кроме того, правильно выполненный сварной шов трением не вызовет гальванической коррозии, также известной как биметаллическая коррозия, вокруг соединения.
Вот три распространенных способа сварки трением комбинаций меди с алюминием:
1. Линейная сварка трением медно-алюминиевой пластины теплообменника
Используя линейную сварку трением, MTI соединяет медь с алюминием, формируя пластины теплообменника для транспортных средств. В то время как медь передает тепло быстрее, чем почти любой другой металл, медь не очень хорошо или очень жестко крепится к другим поверхностям.Итак, медь приваривается к алюминию, что позволяет использовать алюминий в качестве монтажной поверхности.
2. Сварка трением медных и алюминиевых электрических компонентов при вращении
MTI использует ротационную сварку трением для соединения алюминиевых сплавов с медными сплавами для электрических соединителей. Таким образом, мы получаем преимущества теплопередачи меди в сочетании с экономией алюминия.
3. Сварка трением медных и алюминиевых кабелей аккумуляторных батарей
MTI также использует ротационную сварку трением для соединения меди с алюминием в кабелях аккумуляторных батарей.В этом случае медь и алюминий идеально подходят по разным причинам. Медь обеспечивает высокую электропроводность при небольшом сопротивлении, в то время как алюминий — гораздо более легкий металл. Заменяя алюминий на более тяжелые металлы, когда это применимо, мы можем снизить вес конечного автомобиля, что называется облегчением. Вот почему сочетание алюминия с другими материалами стало критически важным аспектом автомобильного производства.
Другие биметаллические комбинации
Загляните в наш Центр решений вместе с Дуэйном Нойербургом из MTI, чтобы увидеть некоторые из других популярных биметаллических комбинаций MTI и узнать, почему переход на биметаллическую деталь может сэкономить время и деньги компании:
Почему MTI
MTI имеет многолетний опыт работы с биметаллическими приложениями.Наш главный металлург с более чем 30-летним опытом работы вместе с инженерами-технологами разрабатывает технологию сварки. Как специалисты по сварке трением, MTI обладает знаниями, ноу-хау и сертификатами качества для решения ваших производственных проблем, а также имеет более чем 300-летний опыт комбинированной сварки трением. Мы построим машину, которая сделает вашу деталь, мы сделаем деталь для вас или поможем сделать вашу деталь еще лучше.
Алюминиево-медные сплавы — обзор
4.11.3.4 Медное покрытие
Гальваническая медь используется как в декоративных, так и в инженерных целях. К основным металлам относятся железо и сталь, цинк и цинковые отливки под давлением, алюминий, магний, медь и никелевые сплавы и даже пластмассы после активации и химического нанесения никеля. Области применения включают производство печатных схем, электрических соединителей, декоративную или функциональную обшивку в автомобилях, бытовую технику, сантехнику, ручки и различные товары. Медь также используется в качестве грунтовки для некоторых других металлических покрытий.Медь используется для обработки стали, потому что ее легче полировать полировкой, чем сталь ( 32 ).
Для гальваники меди обычно используются три типа ванн: сульфатная кислота, пирофосфат меди и цианид меди. Все они используются в нескольких областях. Кислотные сульфатные растворы являются наиболее распространенными в промышленности печатных плат, но в других областях их коррозионная природа может быть профилактической, в то время как пирофосфат используется, когда требуются хорошая макророзийная способность и менее коррозионный раствор ( 33 ).Растворы цианида меди используются в течение длительного времени, но они стали менее популярными после разработки никеля и других методов, обеспечивающих необходимую яркость и другие свойства.
Кислотно-сульфатная ванна состоит из сульфата меди, который растворяется как CuSO 4 · 5H 2 O в растворе серной кислоты. Количество сульфата меди составляет 150–250 г на л –1 , а концентрированной серной кислоты 30–75 г на литр — 1 в обычном растворе.Можно добавлять хлориды в виде NaCl 30–150 мг л — 1 для ускорения растворения анода и поверхностно-активных веществ для хорошего смачивания. Существует ряд запатентованных добавок для улучшения белизны, твердости, мелкозернистой структуры, сглаживания поверхности и т.п. ( 34 ). Плотность катодного тока находится в диапазоне 1–20 Adm –2 , но большая часть гальванических покрытий выполняется с помощью 2–3 Adm –2 . Эксплуатация осуществляется при комнатной температуре, но также обычны температуры до 45 ° C. Более высокие концентрации и повышенная температура позволяют использовать плотности тока на верхнем пределе диапазона.Ванна проста в обслуживании, а КПД по току близок к 100%, что делает ее подходящим выбором для толстых отложений. При использовании добавок кислотно-сульфатные ванны могут обладать хорошей способностью к микробеску для выравнивания шероховатых поверхностей. Кроме того, меньшее содержание меди и более концентрированная серная кислота увеличивают метательную мощность, но снижают КПД по току. Кислотные сульфатные ванны могут образовывать отложения с плохой адгезией на стальных, цинковых и алюминиевых подложках в результате реакции обмена, если не наносится удар меди.Это можно сделать из цианистой ванны.
Содержание хлоридов должно быть в установленных пределах. Слишком много хлорида приведет к матовым отложениям, а очень большое количество — к осаждению хлорида меди на анодах, которые будут поляризованы. Сульфат меди является очень коррозионным раствором для многих металлов, поэтому анодные корзины и крючки должны быть из титана. Аноды изготовлены из меди высокой чистоты с содержанием фосфора 0,02–0,08% для обеспечения растворения. Рекомендуется использовать аноды в мешках и фильтровать раствор, особенно если производится блестящее покрытие.При высокой производительности требуется перемешивание воздуха. Методики импульсного тока применялись для нанесения покрытия из кислого сульфатного меди для улучшения механических и физических свойств покрытия, например, более мелкозернистой структуры, повышенной твердости, пониженной пористости и улучшенного выравнивания. Методы импульсного тока также применялись для гальваники сквозных отверстий при производстве печатных плат.
Пирофосфатные медные ванны состоят из меди (ii) пирофосфата Cu 2 P 2 O 7 · 3H 2 O и пирофосфата калия (или натрия) K 4 P 2 O 7 , аммиак и цитраты или оксалаты.Медь представляет собой пирофосфатный комплекс. Отношение содержания меди к пирофосфату имеет решающее значение. Количество металлической меди составляет 22–38 г л — 1 , пирофосфат-иона (P 2 O 7 4-) 150–250 г л — 1 , а типичное массовое отношение пирофосфата к меди составляет 7–8 ( 34 , 35 ). Избыток пирофосфата необходим для удержания меди в растворе и повышения проводимости. Аммиак используется для улучшения однородности и яркости отложений.Нитраты также могут быть добавлены для уменьшения поляризации, а цитраты или оксалаты действуют как буфер. Ортофосфаты образуются в растворе в результате гидролиза пирофосфата. Он усиливает коррозию анода и действует как буфер, но раствор необходимо выбросить, если концентрация превышает 100 г л — 1 . pH раствора обычно составляет 8,2–8,8. При значениях pH ниже 7 пирофосфатный комплекс разрушается, и пирофосфат меди может выпадать в осадок. При значениях pH выше 11 может выпадать в осадок гидроксид меди.
Самым большим преимуществом пирофосфатной ванны является то, что раствор почти нейтрален, поэтому он подходит для легко корродируемых оснований. Катодная плотность тока составляет от 0,5 до 8 Адм –2 , а выход по току составляет почти 100%. Если не используется разбавленная ванна, может потребоваться нанесение удара медью. Контроль добавок важен для правильной работы ванны. Для улучшения свойств покрытия доступно множество органических и металлических добавок, но они будут разлагаться во время работы, что может иметь неблагоприятные последствия, например, сделать покрытие хрупким.Ванна также более чувствительна к органическим примесям, чем ванны с сульфатом кислоты.
Цианидные ванны содержат цианид меди CuCN в качестве источника меди. Выбор количества меди зависит от желаемой производительности и толщины слоя; типичное количество составляет 75 г л — 1 CuCN ( 32 , 34 ). Существует избыток цианида в форме цианида калия или натрия, который образует водорастворимые комплексные ионы с цианидом меди. Типичное количество составляет 130 г л — 1 KCN.Избыток также способствует растворению анода и улучшает качество покрытия. Что касается щелочного цианида, в ванну добавляют гидроксид калия или натрия для увеличения проводимости и щелочности раствора, а также для уменьшения разложения цианида ( 36 ). Типичное количество составляет 30 г л — 1 КОН. Небольшое количество, примерно 15 г / л -1 карбоната щелочного металла, добавляют в целях буферизации. Однако карбонат образуется из-за разложения цианида, когда он окисляется под действием кислорода воздуха.Карбонат будет накапливаться в растворе и должен быть удален, когда его количество превысит примерно 90 г / л -1 .
Выбор соли зависит от цены, желаемой производительности и практики ухода за ванной. Соли калия обладают большей проводимостью, допускают более высокие плотности тока и обеспечивают более равномерное распределение покрытия, но они также более дороги в покупке и обслуживании, поскольку избыточные карбонаты, образующиеся в ванне, не могут быть заморожены, но необходимо либо обновить ванну, либо больше. Время от времени необходимо проводить сложное химическое осаждение солями кальция.
Ударный раствор должен использоваться для предотвращения образования неплотно прикрепленной пленки в результате реакции обмена. Аноды должны быть из чистой меди, без фосфорных сплавов. Пирофосфат и аммиак растворяют аноды. Отношение анода к катоду должно быть 2: 1.
Алюминий медный сплав | AMERICAN ELEMENTS ®
РАЗДЕЛ 2. ИДЕНТИФИКАЦИЯ ОПАСНОСТИ
Классификация вещества или смеси
Классификация в соответствии с Регламентом (ЕС) № 1272/2008
Вещество не классифицируется как опасное для здоровья или окружающей среды в соответствии с Регламентом CLP.
Классификация в соответствии с Директивой 67/548 / EEC или Директивой 1999/45 / EC
Не применимо
Информация, касающаяся особых опасностей для человека и окружающей среды:
Информация отсутствует.
Опасности, не классифицированные иным образом
Информация отсутствует.
Элементы маркировки
Маркировка в соответствии с Регламентом (ЕС) № 1272/2008
Неприменимо
Пиктограммы опасности
Неприменимо
Сигнальное слово
Неприменимо
Формулировки опасности
Неприменимо
Классификация WHMIS
Не контролируется
Система классификации
Рейтинги HMIS (шкала 0-4)
(Система идентификации опасных материалов)
Здоровье (острые эффекты) = 0
Воспламеняемость = 0
Физическая опасность = 0
Другие опасности
Результаты оценки PBT и vPvB
PBT:
Не применимо.
vPvB:
Неприменимо
РАЗДЕЛ 3. СОСТАВ / ИНФОРМАЦИЯ ОБ ИНГРЕДИЕНТАХ
Химические характеристики: Вещества
Номер CAS Описание:
7429-90-5 Алюминий
7440-50-8 Медь
РАЗДЕЛ 4. ПЕРВАЯ ПОМОЩЬ МЕРЫ
Описание мер первой помощи
Общие сведения
Никаких специальных мер не требуется.
При вдыхании
В случае жалоб обратитесь за медицинской помощью.
При контакте с кожей
Обычно продукт не раздражает кожу.
После контакта с глазами
Промыть открытый глаз под проточной водой в течение нескольких минут. Если симптомы не исчезнут, обратитесь к врачу.
После проглатывания
Если симптомы не исчезнут, обратиться к врачу.
Информация для врача
Наиболее важные симптомы и воздействия, как острые, так и проявляющиеся с задержкой
Отсутствует какая-либо соответствующая информация.
Указание на необходимость немедленной медицинской помощи и специального лечения
Отсутствует какая-либо соответствующая информация.
РАЗДЕЛ 5. МЕРЫ ПОЖАРОТУШЕНИЯ
Средства пожаротушения
Подходящие средства тушения
Специальный порошок для металлических возгораний.Не используйте воду.
Средства пожаротушения, непригодные из соображений безопасности
Вода
Особые опасности, исходящие от вещества или смеси
При пожаре могут образоваться следующие вещества:
Дым оксида металла
Рекомендации для пожарных
Защитное снаряжение:
Нет специальных мер требуется
РАЗДЕЛ 6. МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ
Меры личной безопасности, защитное снаряжение и порядок действий в чрезвычайной ситуации
Не требуется.
Меры по защите окружающей среды:
Не допускайте попадания материала в окружающую среду без соответствующих правительственных разрешений.
Не допускать попадания продукта в канализацию или водоемы.
Не допускать проникновения в землю / почву.
Методы и материалы для локализации и очистки:
Собирать механически.
Предотвращение вторичных опасностей:
Никаких специальных мер не требуется.
Ссылка на другие разделы
См. Раздел 7 для получения информации о безопасном обращении.
См. Раздел 8 для получения информации о средствах индивидуальной защиты.
Информацию об утилизации см. В разделе 13.
РАЗДЕЛ 7.ОБРАЩЕНИЕ И ХРАНЕНИЕ
Обращение
Меры предосторожности для безопасного обращения
Хранить контейнер плотно закрытым.
Хранить в сухом прохладном месте в плотно закрытой таре.
Информация о защите от взрывов и пожаров:
Никаких специальных мер не требуется.
Условия безопасного хранения с учетом несовместимости
Хранение
Требования, предъявляемые к складским помещениям и таре:
Особых требований нет.
Информация о хранении в одном общем хранилище:
Не хранить вместе с кислотами.
Хранить вдали от окислителей.
Дополнительная информация об условиях хранения:
Держать емкость плотно закрытой.
Хранить в прохладных, сухих условиях в хорошо закрытых емкостях.
Особое конечное использование
Отсутствует какая-либо соответствующая информация.
РАЗДЕЛ 8. КОНТРОЛЬ ВОЗДЕЙСТВИЯ / ЛИЧНАЯ ЗАЩИТА
Дополнительная информация о конструкции технических систем:
Дополнительных данных нет; см. раздел 7.
Параметры контроля
Компоненты с предельными значениями, требующие контроля на рабочем месте:
7429-90-5 Алюминий (100.0%)
PEL (США) Долгосрочная стоимость: 15 *; 15 ** мг / м³
* Общая пыль; ** Вдыхаемая фракция
REL (США) Долгосрочное значение: 10 * 5 ** мг / м³
* Общая пыль ** Вдыхаемая фракция
TLV (США) Долгосрочное значение: 1 * мг / м³
как Al; * в виде вдыхаемой фракции
EL (Канада) Долгосрочное значение: 1,0 мг / м³
металл и нерастворимые соединения, вдыхаемые
EV (Канада) Долгосрочное значение: 5 мг / м³
алюминийсодержащий (как алюминий)
Дополнительная информация :
Нет данных
Контроль воздействия
Средства индивидуальной защиты
Общие меры защиты и гигиены
Следует соблюдать обычные меры предосторожности при обращении с химическими веществами.
Поддерживайте эргономичную рабочую среду.
Дыхательное оборудование:
Не требуется.
Защита рук:
Не требуется.
Время проницаемости материала перчаток (в минутах)
Не определено
Защита глаз:
Защитные очки
Защита тела:
Защитная рабочая одежда
РАЗДЕЛ 9. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА
Информация об основных физико-химических свойствах
Общая информация
Внешний вид:
Форма: Твердое вещество в различных формах
Цвет: Серебристый
Порог запаха: Не определено.
Значение pH: Не применимо.
Изменение состояния
Точка плавления / интервал плавления: Не определено.
Точка кипения / интервал температур кипения: Не определено.
Температура / начало сублимации: Не определено.
Воспламеняемость (твердое, газообразное)
Не определено.
Температура возгорания: Не определено
Температура разложения: Не определено
Самовоспламенение: Не определено.
Взрывоопасность: Не определено.
Пределы взрываемости:
Нижний: Не определено
Верхнее: Не определено
Давление пара: Не применимо.
Плотность при 20 ° C (68 ° F): не определено.
Относительная плотность
Не определено.
Плотность пара
Не применимо.
Скорость испарения
Не применимо.
Растворимость в / Смешиваемость с водой: Нерастворимо
Коэффициент распределения (н-октанол / вода): Не определено.
Вязкость:
динамическая: Не применимо.
кинематическая: не применимо.
Другая информация
Отсутствует какая-либо соответствующая информация.
РАЗДЕЛ 10. СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ
Реакционная способность
Информация отсутствует.
Химическая стабильность
Стабилен при соблюдении рекомендуемых условий хранения.
Термическое разложение / условия, которых следует избегать:
Разложения не происходит при использовании и хранении в соответствии со спецификациями.
Возможность опасных реакций
Реагирует с сильными окислителями
Условия, которых следует избегать
Отсутствует какая-либо соответствующая информация.
Несовместимые материалы:
Кислоты
Окислители
Опасные продукты разложения:
Пары оксидов металлов
РАЗДЕЛ 11.ТОКСИКОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ
Информация о токсикологическом воздействии
Острая токсичность:
Эффекты неизвестны.
Значения LD / LC50, имеющие отношение к классификации:
Нет данных
Раздражение или разъедание кожи:
Может вызывать раздражение
Раздражение или разъедание глаз:
Может вызывать раздражение
Сенсибилизация:
Сенсибилизирующие эффекты неизвестны.
Мутагенность зародышевых клеток:
Эффекты неизвестны.
Канцерогенность:
ACGIH A4: Не классифицируется как канцероген для человека: Недостаточно данных для классификации агента с точки зрения его канцерогенности для людей и / или животных.
Репродуктивная токсичность:
Реестр токсических эффектов химических веществ (RTECS) содержит репродуктивные данные для этого вещества.
Специфическая системная токсичность, поражающая отдельные органы-мишени — многократное воздействие:
Эффекты неизвестны.
Специфическая системная токсичность, поражающая отдельные органы-мишени — однократное воздействие:
Эффекты неизвестны.
Опасность при вдыхании:
Воздействие неизвестно.
От подострой до хронической токсичности:
Реестр токсических эффектов химических веществ (RTECS) содержит данные о токсичности при многократных дозах
для этого вещества.
Дополнительная токсикологическая информация:
Насколько нам известно, острая и хроническая токсичность этого вещества полностью не изучена.
РАЗДЕЛ 12. ЭКОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ
Токсичность
Водная токсичность:
Отсутствует какая-либо соответствующая информация.
Стойкость и разлагаемость
Отсутствует какая-либо соответствующая информация.
Способность к биоаккумуляции
Отсутствует какая-либо соответствующая информация.
Подвижность в почве
Отсутствует какая-либо соответствующая информация.
Дополнительная экологическая информация:
Общие примечания:
Не допускайте попадания материала в окружающую среду без соответствующих правительственных разрешений.
Избегать попадания в окружающую среду.
Результаты оценки PBT и vPvB
PBT:
Не применимо.
vPvB:
Не применимо.
Другие побочные эффекты
Отсутствует какая-либо соответствующая информация.
РАЗДЕЛ 13. УТИЛИЗАЦИЯ
Методы обработки отходов
Рекомендация
Проконсультируйтесь с государственными, местными или национальными правилами, чтобы обеспечить надлежащую утилизацию.
Неочищенная тара:
Рекомендация:
Утилизация должна производиться в соответствии с официальными предписаниями.
РАЗДЕЛ 14. ТРАНСПОРТНАЯ ИНФОРМАЦИЯ
Номер ООН
DOT, ADN, IMDG, IATA
Неприменимо
Собственное транспортное наименование ООН
DOT, ADN, IMDG, IATA
Неприменимо
Класс (ы) опасности при транспортировке
DOT, ADR, ADN, IMDG, IATA
Class
Неприменимо
Группа упаковки
DOT, IMDG, IATA
Неприменимо
Опасности для окружающей среды:
Неприменимо.
Особые меры предосторожности для пользователя
Не применимо.
Транспортировка наливом в соответствии с Приложением II MARPOL73 / 78 и Кодексом IBC
Не применимо.
Транспортировка / Дополнительная информация:
DOT
Marine Pollutant (DOT):
№
РАЗДЕЛ 15. НОРМАТИВНАЯ ИНФОРМАЦИЯ
Нормативы / законы по безопасности, охране здоровья и окружающей среды, специфические для вещества или смеси
Национальные правила
Все компоненты этого продукта перечислены в Реестре химических веществ в соответствии с Законом о контроле над токсичными веществами Агентства по охране окружающей среды США.
Все компоненты этого продукта занесены в Канадский список веществ, предназначенных для домашнего использования (DSL).
SARA Раздел 313 (списки конкретных токсичных химикатов)
7429-90-5 Алюминий
Предложение 65 Калифорнии
Предложение 65 — Химические вещества, вызывающие рак
Вещество не указано.
Предложение 65 — Токсичность для развития
Вещество не указано.
Предложение 65 — Токсичность для развития, женщины
Вещество не указано.
Предложение 65 — Токсичность для развития, мужчины
Вещество не перечислено.
Информация об ограничении использования:
Для использования только технически квалифицированными специалистами.
Этот продукт подпадает под требования к отчетности раздела 313 Закона о чрезвычайном планировании и праве общества на информацию от 1986 года и 40CFR372.
Другие постановления, ограничения и запретительные постановления
Вещество, вызывающее особую озабоченность (SVHC) в соответствии с Регламентом REACH (EC) № 1907/2006.
Вещества нет в списке.
Должны соблюдаться условия ограничений согласно Статье 67 и Приложению XVII Регламента (ЕС) № 1907/2006 (REACH) для производства, размещения на рынке и использования.
Вещества нет в списке.
Приложение XIV Правил REACH (требуется разрешение на использование)
Вещество не указано.
REACH — Предварительно зарегистрированные вещества
Перечислены вещества.
Оценка химической безопасности:
Оценка химической безопасности не проводилась.
Защита алюминиево-медных соединений HVAC / R
Алюминий-медь Защита HVAC
Промышленность HVAC / холодоснабжения переводит многие компоненты из меди в алюминий.Причины? Алюминий менее дорогой по весу, более устойчив к коррозии, меньше весит и сохраняет такую же теплопередачу, что и медь.
Эти алюминиевые детали соединяются с остальными компонентами HVAC / R посредством пайки. Соединения алюминия и меди можно паять порошковыми сплавами Lucas-Milhaupt AL 802 или AL 718 Handy One®. Флюс в этих прутках не вызывает коррозии, и его не нужно удалять из стыка после пайки.
Однако влажная среда, в которой используются блоки HVAC / R, может сделать соединение алюминия с медью восприимчивым к гальванической коррозии.Поэтому стыки нужно беречь. Давайте рассмотрим эту проблему и возможные решения.
Гальваническая коррозия
Каждый металл или проводящий материал имеет свой гальванический потенциал. Если два металла с разными потенциалами контактировать друг с другом в присутствии электролита, между ними будет течь ток. Тогда обратный ток будет течь через электролит от менее благородного металла к более благородному. В среде HVAC / R дождь и конденсат действуют как электролит в процессе коррозии, обеспечивая соединение для запуска электронного потока между медными и алюминиевыми трубками.
Менее благородный материал становится анодом, а более благородный материал — катодом. Менее благородный материал жертвует собой ради более благородного материала; в этом случае алюминий приносится в жертву, а медь остается неповрежденной. Когда паяные соединения включают в себя прямой контакт разнородных материалов, всегда учитывайте возможность гальванической коррозии.
Скорость коррозии напрямую зависит от разницы потенциалов между двумя материалами и окружающей средой.Согласно Руководству по пайке алюминия: скорость, с которой паяное алюминиевое соединение, полностью лишенное флюса, будет корродировать в присутствии влаги, напрямую зависит от разности потенциалов раствора, которая может существовать между задействованными сплавами. Чем меньше разность потенциалов, тем меньше скорость коррозии. Потенциальные перепады менее 0,013 В обычно считаются незначительными. Пример гальванической диаграммы для морской воды с электролитом показан на рисунке 1. Диаграмма используется только в иллюстративных целях.
Рисунок 1: Гальваническая диаграмма. Самые благородные материалы (слева) сохранились. Наименее благородные материалы (справа) приносят в жертву. В HVAC / R алюминий приносит в жертву (корродирует), чтобы медь выживала (не подвергалась воздействию коррозионной среды). Цинком можно пожертвовать ради спасения как алюминия, так и меди. Источник: Atlas Steels, температура морской воды и окружающей среды.
Защитные покрытия
Производители предотвращают гальваническую коррозию, герметизируя соединения алюминия и меди от окружающей среды.Есть несколько продуктов, которые работают хорошо, хотя они и не созданы специально для этой отрасли. Производители «нестандартно мыслили», чтобы найти эти решения:
- ZRC® Cold-Galvanized Compound (zrcworldwide.com) — цинковое покрытие, наносимое распылением или щеткой. Поскольку цинк не является очень благородным металлом, он действует как анод, который жертвует собой, чтобы спасти как алюминий, так и медь от гальванической коррозии.
- Устранение утечек герметика Permatex® Spray Sealant (permatex.com) — этот продукт предназначен для предотвращения утечек в двигателях автомобилей, но также может использоваться для герметизации соединений меди с алюминием от окружающей среды. При распылении на поверхность стыка он образует воздухонепроницаемое резиновое уплотнение над паяным стыком.
- Термоусадочная трубка 3MTM EPS-300 (3M.com) — эта трубка предназначена для защиты электрических компонентов и пучков проводов от окружающей среды. Это резиновая трубка, которая сжимается при нагревании. Когда трубка сжимается относительно поверхности соединения меди с алюминием, она выделяет расплавленный клей, который дополнительно защищает поверхность от коррозии.
ЗАКЛЮЧЕНИЕ:
Промышленность HVAC / R переводит многие компоненты из меди в алюминий. Эти алюминиевые детали обычно соединяются с медными компонентами холодильного оборудования и могут быть припаяны порошковыми сплавами Lucas-Milhaupt AL 802 или AL 718. Однако соединения должны быть защищены от гальванической коррозии в среде HVAC / R с помощью решений, включая цинковое покрытие ZRC, герметичное резиновое уплотнение Permatex или термоусадочные трубки 3M.
Спасибо, что присоединились к нам сегодня! Lucas-Milhaupt занимается предоставлением экспертной информации для Better Brazing; пожалуйста, не стесняйтесь поделиться этим сообщением в блоге с коллегами.Для демонстрации соединения алюминия с медью смотрите наше видео. Как всегда, свяжитесь с Lucas-Milhaupt, когда мы сможем вам помочь.
Демо 36: Алюминий — Медный компромисс
Материалы
Бутылка раствора хлорида меди (около 30 г / л)
Алюминиевая тарелка для пирога (фольга слишком легкая и во время реакции распадется)
Стеклянный градуированный цилиндр 1 литр
Перчатки и очки
Процедура
- Отрежьте полоску от алюминиевой формы для пирога.Скрутите интересную форму и вставьте градуированный цилиндр. (Лучше всего плотно вклинить его в цилиндр, чтобы он оставался погруженным при добавлении раствора хлорида меди).
- Налейте раствор хлорида меди в цилиндр.
- Алюминий перейдет в раствор, и медный порог выпадет в осадок, оставив красноватый осадок на алюминиевой фольге.
Реакция
Эта демонстрация представляет собой реакцию замещения, в которой более активный металл, алюминий, заменяет ионы меди в растворе.
2Al (s) + 3Cu 2+ (водн.) -> 2Al 3+ (водн.) + 3Cu (s)
ПРИМЕЧАНИЯ
- Во время этой реакции можно сделать три наблюдения химической реакции:
- Раствор хлорида меди меняет цвет с зелено-синего на почти бесцветный;
- В результате реакции выделяется тепло;
- Новая цветная сплошная форма.
- Предложите студентам написать свои наблюдения.Помогите им не говорить, что алюминий «превратился в новое вещество» или что он «заржавел».
- Губчатая медь, которая образуется на поверхности алюминия, может быть идентифицирована, поскольку она не вступает в реакцию с соляной кислотой.
- Губчатая медь может быть расплавлена горячим пламенем, чтобы получить более узнаваемую металлическую медь. Отнесите котел в сварочный центр.
ВОПРОСЫ СТУДЕНТАМ
- Укажите три изменения, указывающие, что это химическая реакция.
- Какое изменение произошло в реагирующих атомах меди?
- Какое изменение произошло в атомах алюминия?
- Будет ли реагировать подобным образом любой другой металл при помещении его в раствор хлорида меди?
Цены на медь и алюминиевый лом остаются высокими.
Переработчики лома указывают на высокие цены на медный и алюминиевый лом, хотя волатильность цен на медь заставляет по крайней мере одного переработчика лома стремиться к стабильности.
«Я хотел бы увидеть немного стабильности», — говорит Тодд Сафран из компании Safran Metals, занимающейся переработкой меди и латуни, в Чикаго. «Всем нравится видеть более высокий рынок, но нужно знать, что цена сегодня будет аналогична цене завтра».
«Когда мы видим, что цены падают, потребители бросаются покупать. Многие потребители берут то, что им нужно, и не более того ».
— Тодд Сафран из Safran Metals, Чикаго
Спотовый контракт на медь на Comex достиг 3 долларов.99 за фунт 5 марта, что на 10,3 цента за фунт меньше, чем на предыдущей неделе, согласно индексу Дэвиса. В течение последней недели февраля спотовые контракты на медь на Comex достигли 4,30 доллара за фунт.
Такая нестабильность может означать, что потребители лома заинтересованы сегодня, а не завтра, говорит Safran. «Когда мы видим, что цены падают, потребители бросаются покупать». Однако он добавляет: «Многие потребители берут то, что им нужно, и не более того».
В то время как закупка медного лома в настоящее время может быть несколько сдержанной, рост зеленой энергетики может привести к увеличению спроса на красный металл в будущем, что, вероятно, увеличит спрос на медный лом.
Во время семинара Fastmarkets по меди 11-12 марта Борис Миканикрезай, исследователь Fastmarkets, сказал, что спрос на медь будет расти по мере того, как мир переходит на экологически чистую энергию. Он отметил, что для морской ветроэнергетики требуется 22 фунта меди на киловатт, что в 4,5 раза больше, чем ядерная энергия, и в пять раз больше, чем энергия угля.
В целом, по прогнозам Миканикрезаи, в этом году мировое промышленное производство вырастет на 6 процентов, при этом автомобильный сектор будет лидировать в этом росте, что приведет к увеличению спроса на рафинированную медь.Он предсказал рост производства автомобилей на 16 процентов в этом году.
В более долгосрочной перспективе, по его словам, «революция» электромобилей (EV) приведет к увеличению спроса на рафинированную медь, отметив, что электромобиль с аккумулятором (BEV) потребляет примерно 183 фунта рафинированной меди по сравнению с 51 фунтом, используемым для внутренней автомобили с двигателем внутреннего сгорания (ICEV). Подключаемый к сети гибридный электромобиль использует около 132 фунтов рафинированной меди, что примерно в три раза больше, чем ICEV, а электрический автобус содержит 814 фунтов рафинированной меди, в основном в батарее.
Миканикрезай сказал, что ожидается, что к 2030 году глобальные продажи BEV будут расти в среднем на 26 процентов в год, при этом в Европе, вероятно, будет наблюдаться самый сильный рост в среднем на 28 процентов, за ней следуют Китай с 27 процентами и США с 23 процентами.
Хотя эти цифры могут указывать на рост спроса на медный лом в будущем, спрос на алюминиевый лом в настоящее время высок.
«Спрэды очень узкие и, кажется, нехватка лома», — говорит Мэтт Крипке из брокерской фирмы по переработке алюминиевого лома Kripke Enterprises Inc.со штаб-квартирой в Толедо, штат Огайо. Он добавляет, что спрос на рулоны, заготовки, слябы и банки превысил темпы образования лома, что привело к сокращению спредов. «Нам осталось от 30 до 60 дней до восстановления равновесия», — сказал он 11 марта. Как только производство металлолома догонит спрос, он ожидает, что спрэд начнет расширяться.
Часть этого металлолома, вероятно, поступит из зимних штормов, которые обрушились на большую часть страны в феврале, особенно в Техас, где лед и снег встречаются редко, говорит Крипке, поскольку поврежденные желоба и водосточные трубы заменяются.«На рынок поступит много металлолома».
Однако по состоянию на начало марта контакт с переработчиком металлолома, работающим на Среднем Западе и Юго-Востоке, сказал: «Не похоже, что лома достаточно. Все прокатные станы загружены и нуждаются в ломе. Вторичные плавильные заводы такие же ».
Он говорит, что спрос на большинство сортов алюминия, за исключением аэрокосмического лома, высок, и ожидает, что дефицит в поставках лома сохранится во втором квартале.
«Трудно сказать, настолько ли высокий спрос или настолько слабое предложение», — говорит Крипке. «Вы можете продать все, что попадете в руки. Вы можете назвать цену, если у вас есть материал ».
Хотя он говорит, что экспортный спрос на алюминиевый лом «был своего рода моментом пять или шесть месяцев назад, когда упала премия на Среднем Западе», по мере того, как эта премия усилилась, экспортным покупателям было трудно вывозить алюминиевый лом из США, потому что они не могут быть конкурентоспособными по цене.
Столь же сложной задачей, как герметичность, является сектор алюминиевого лома, Крипке говорит, что более серьезной проблемой является транспортировка, указывая на увеличение затрат и снижение доступности.
Процессор, работающий на Среднем Западе и Юго-Востоке, описывает грузоперевозки как «дорогие, дефицитные и разочаровывающие», добавляя, что «надежность ужасна».