+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

ампер [А] в миллиампер [мА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Общие сведения

И. К. Айвазовский. Чесменский бой

Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.

Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.

Корабельная радиостанция. 1910 г. Канадский музей науки и техники, Оттава

Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.

Радиостанция компании Гудзонова залива. Около 1937 г. Канадский музей науки и техники, Оттава

Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.

Электронная вакуумная лампа, ок. 1921 г. Канадский музей науки и техники, Оттава

Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.

Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.

Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.

Радиопередатчик из Дрюммонвилля, Квебек, ок. 1926. Канадский музей науки и техники, Оттава

Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.

Телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.

Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.

Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.

Джеймс Клерк Максвелл. Скульптура Александра Штоддарта. Фото Ад Мескенс. Wikimedia Commons.

Историческая справка

С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.

Портрет Хендрика Антона Лоренца (1916 г.) кисти Менсо Камерлинг-Оннеса (1860–1925)

Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.

Жан-Батист Био (1774–1862)

Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.

Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.

Электрический ток. Определения

Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:

I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах

Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:

I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах

Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).

Размерность тока в системе СИ определяется как

[А] = [Кл] / [сек]

Особенности протекания электрического тока в различных средах. Физика явлений

Алюминий — прекрасный проводник и поэтому широко используется для изготовления электрических кабелей

Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках

При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.

Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.

Эти высоковольтные воздушные коммутаторы содержат две основные детали: рубильник и изолятор, который устанавливаются в разрыв провода

С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.

В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.

Трансформатор с магнитопроводом из пластин. На краях хорошо видны Ш-образные и замыкающие пластины из трансформаторной стали

Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.

Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.

Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.

Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.

Хромированная пластмассовая душевая головка

Электрический ток в жидкостях (электролитах)

Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.

Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.

Автомобильный аккумулятор, установленный в автомобиле Honda 2012 г.

Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.

Электрический ток в газах

Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.

Отвертка-пробник с неоновой лампой, показывающая наличие напряжения 220 В

Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.

Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.

Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.

Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.

Тихий разряд. Вольт-амперная характеристика.

Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.

Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.

Электронная лампа-вспышка с наполненной ксеноном трубкой (обведена красным прямоугольником)

Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.

При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.

Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.

Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.

Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.

Электрический ток в вакууме

Электронная лампа в радиопередающей станции. Канадский музей науки и техники, Оттава

Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.

Такие передающие телевизионные камеры использовались в восьмидесятых годах прошлого века. Канадский музей науки и техники, Оттава

Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.

Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.

Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.

Современный видеопроектор

Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.

При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.

Сканирующий электронный микроскоп SU3500 в Университете Торонто, факультет технологии материалов

В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.

Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.

Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.

Лампа бегущей волны (ЛБВ) диапазона С. Канадский музей науки и техники, Оттава

Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.

Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.

Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.

Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.

Электрический ток в биологии и медицине

Учебная операционная в Научно-исследовательском институте им. Ли Кашина, Торонто, Канада. Используемые при обучении роботизированные пациенты-манекены умеют моргать, дышать, кричать, демонстрировать симптомы болезней и кровотечения

Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.

С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.

При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.

Объемное представление нервных путей, соединяющих различные области мозга. Изображение получено с помощью диффузионной тензорной визуализации (ДТВ) — неинвазивного метода исследований мозга.

Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.

Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.

Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.

Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.

Функциональная магнитно-резонансная томография или фМРТ — неинвазивная методика нейровизуализации, позволяющая измерять активность мозга по изменениям в токе крови в кровеносных сосудах

В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.

Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.

К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.

Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.

Автоматический дефибриллятор для обучения лиц, не являющихся медработниками

Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.

У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.

Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.

Характеристики электрического тока, его генерация и применение

Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.

Токамак-де-Варен — токамак-реактор в г. Варен, пров. Квебек в 1981 г. Канадский музей науки и техники, Оттава

Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.

Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.

Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.

Коллектор в мотор-генераторе, ок. 1904 г. Канадский музей науки и техники, Оттава

В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.

Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.

Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.

Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.

Объектив лазера в приводе компакт-диска

В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.

Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.

Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.

Стрелочный мультиметр со снятой верхней крышкой

Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.

Измерение силы электрического тока

Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.

По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.

Подвижная рамка с катушкой, стрелкой и пружинами, используемая в гальванометре показанного выше мультиметра. Некоторые до сих пор предпочитают пользоваться стрелочными приборами, конструкция которых с конца 19-го века остается практически неизменной

Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение тока Im — это наибольшее мгновенное значение тока за период.

Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.

Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.

Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.

Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.

Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение тока с помощью осциллографа

Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта Rs=100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта Rs. Значение сопротивления шунта выбирается из условия Rs <<R. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1

Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор Rs определяется по закону Ома:

IRMS = URMS/R = 0,31 В / 100 Ом = 3,1 мА,

что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен

IP-P = UP-P/R = 0,89 В / 100 Ом = 8,9 мА

Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить IRMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).

Опыт 2

Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:

IRMS = URMS/R = 0,152 В / 100 Ом = 1,52 мА,

что приблизительно соответствует показаниям мультиметра (1,55 мА).

Опыт 3

Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.

Опыт 4

Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе Rs=100 Ом.

Техника безопасности при измерении тока и напряжения

Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии

  • Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
  • Не проводить измерения токов, требующих определённых профессиональных навыков ( при напряжении свыше 1000 В).
  • Не производить измерения токов в труднодоступных местах или на высоте.
  • При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  • Пользоваться исправным измерительным инструментом.
  • В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  • Пользоваться измерительным прибором с исправными щупами.
  • Строго следовать рекомендациям производителя по использованию измерительного прибора.

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

ампер [А] в миллиампер [мА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Общие сведения

И. К. Айвазовский. Чесменский бой

Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.

Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.

Корабельная радиостанция. 1910 г. Канадский музей науки и техники, Оттава

Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.

Радиостанция компании Гудзонова залива. Около 1937 г. Канадский музей науки и техники, Оттава

Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.

Электронная вакуумная лампа, ок. 1921 г. Канадский музей науки и техники, Оттава

Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.

Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.

Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.

Радиопередатчик из Дрюммонвилля, Квебек, ок. 1926. Канадский музей науки и техники, Оттава

Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.

Телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.

Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.

Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.

Джеймс Клерк Максвелл. Скульптура Александра Штоддарта. Фото Ад Мескенс. Wikimedia Commons.

Историческая справка

С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.

Портрет Хендрика Антона Лоренца (1916 г.) кисти Менсо Камерлинг-Оннеса (1860–1925)

Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.

Жан-Батист Био (1774–1862)

Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.

Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.

Электрический ток. Определения

Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:

I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах

Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:

I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах

Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).

Размерность тока в системе СИ определяется как

[А] = [Кл] / [сек]

Особенности протекания электрического тока в различных средах. Физика явлений

Алюминий — прекрасный проводник и поэтому широко используется для изготовления электрических кабелей

Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках

При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.

Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.

Эти высоковольтные воздушные коммутаторы содержат две основные детали: рубильник и изолятор, который устанавливаются в разрыв провода

С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.

В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.

Трансформатор с магнитопроводом из пластин. На краях хорошо видны Ш-образные и замыкающие пластины из трансформаторной стали

Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.

Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.

Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.

Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.

Хромированная пластмассовая душевая головка

Электрический ток в жидкостях (электролитах)

Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.

Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.

Автомобильный аккумулятор, установленный в автомобиле Honda 2012 г.

Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.

Электрический ток в газах

Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.

Отвертка-пробник с неоновой лампой, показывающая наличие напряжения 220 В

Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.

Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.

Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.

Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.

Тихий разряд. Вольт-амперная характеристика.

Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.

Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.

Электронная лампа-вспышка с наполненной ксеноном трубкой (обведена красным прямоугольником)

Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.

При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.

Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.

Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.

Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.

Электрический ток в вакууме

Электронная лампа в радиопередающей станции. Канадский музей науки и техники, Оттава

Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.

Такие передающие телевизионные камеры использовались в восьмидесятых годах прошлого века. Канадский музей науки и техники, Оттава

Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.

Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.

Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.

Современный видеопроектор

Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.

При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.

Сканирующий электронный микроскоп SU3500 в Университете Торонто, факультет технологии материалов

В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.

Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.

Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.

Лампа бегущей волны (ЛБВ) диапазона С. Канадский музей науки и техники, Оттава

Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.

Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.

Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.

Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.

Электрический ток в биологии и медицине

Учебная операционная в Научно-исследовательском институте им. Ли Кашина, Торонто, Канада. Используемые при обучении роботизированные пациенты-манекены умеют моргать, дышать, кричать, демонстрировать симптомы болезней и кровотечения

Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.

С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.

При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.

Объемное представление нервных путей, соединяющих различные области мозга. Изображение получено с помощью диффузионной тензорной визуализации (ДТВ) — неинвазивного метода исследований мозга.

Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.

Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.

Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.

Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.

Функциональная магнитно-резонансная томография или фМРТ — неинвазивная методика нейровизуализации, позволяющая измерять активность мозга по изменениям в токе крови в кровеносных сосудах

В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.

Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.

К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.

Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.

Автоматический дефибриллятор для обучения лиц, не являющихся медработниками

Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.

У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.

Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.

Характеристики электрического тока, его генерация и применение

Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.

Токамак-де-Варен — токамак-реактор в г. Варен, пров. Квебек в 1981 г. Канадский музей науки и техники, Оттава

Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.

Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.

Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.

Коллектор в мотор-генераторе, ок. 1904 г. Канадский музей науки и техники, Оттава

В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.

Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.

Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.

Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.

Объектив лазера в приводе компакт-диска

В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.

Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.

Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.

Стрелочный мультиметр со снятой верхней крышкой

Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.

Измерение силы электрического тока

Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.

По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.

Подвижная рамка с катушкой, стрелкой и пружинами, используемая в гальванометре показанного выше мультиметра. Некоторые до сих пор предпочитают пользоваться стрелочными приборами, конструкция которых с конца 19-го века остается практически неизменной

Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение тока Im — это наибольшее мгновенное значение тока за период.

Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.

Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.

Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.

Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.

Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение тока с помощью осциллографа

Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта Rs=100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта Rs. Значение сопротивления шунта выбирается из условия Rs <<R. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1

Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор Rs определяется по закону Ома:

IRMS = URMS/R = 0,31 В / 100 Ом = 3,1 мА,

что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен

IP-P = UP-P/R = 0,89 В / 100 Ом = 8,9 мА

Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить IRMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).

Опыт 2

Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:

IRMS = URMS/R = 0,152 В / 100 Ом = 1,52 мА,

что приблизительно соответствует показаниям мультиметра (1,55 мА).

Опыт 3

Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.

Опыт 4

Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе Rs=100 Ом.

Техника безопасности при измерении тока и напряжения

Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии

  • Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
  • Не проводить измерения токов, требующих определённых профессиональных навыков ( при напряжении свыше 1000 В).
  • Не производить измерения токов в труднодоступных местах или на высоте.
  • При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  • Пользоваться исправным измерительным инструментом.
  • В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  • Пользоваться измерительным прибором с исправными щупами.
  • Строго следовать рекомендациям производителя по использованию измерительного прибора.

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

ампер [А] в миллиампер [мА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Общие сведения

И. К. Айвазовский. Чесменский бой

Современному комфорту нашей жизни мы обязаны именно электрическому току. Он освещает наши жилища, генерируя излучение в видимом диапазоне световых волн, готовит и подогревает пищу в разнообразных устройствах вроде электроплиток, микроволновых печей, тостеров, избавляя нас от необходимости поиска топлива для костра. Благодаря ему мы быстро перемещаемся в горизонтальной плоскости в электричках, метро и поездах, перемещаемся в вертикальной плоскости на эскалаторах и в кабинах лифтов. Теплу и комфорту в наших жилищах мы обязаны именно электрическому току, который течёт в кондиционерах, вентиляторах и электрообогревателях. Разнообразные электрические машины, приводимые в действие электрическим током, облегчают наш труд, как в быту, так и на производстве. Воистину мы живём в электрическом веке, поскольку именно благодаря электрическому току работают наши компьютеры и смартфоны, Интернет и телевидение, и другие умные электронные устройства. Недаром человечество столько усилий прилагает для выработки электричества на тепловых, атомных и гидроэлектростанциях — электричество само по себе является самой удобной формой энергии.

Как бы это парадоксально не звучало, но идеи практического использования электрического тока одними из первых взяла на вооружение самая консервативная часть общества — флотские офицеры. Понятно, пробиться наверх в этой закрытой касте было сложным делом, трудно было доказать адмиралам, начинавшим юнгами на парусном флоте, необходимость перехода на цельнометаллические корабли с паровыми двигателями, поэтому младшие офицеры всегда делали ставку на нововведения. Именно успех применения брандеров во время русско-турецкой войны в 1770 году, решившими исход сражения в Чесменской бухте, поставил вопрос о защите портов не только береговыми батареями, но и более современными на тот день средствами защиты — минными заграждениями.

Корабельная радиостанция. 1910 г. Канадский музей науки и техники, Оттава

Разработка подводных мин различных систем велась с начала 19-го века, наиболее удачными конструкциями стали автономные мины, приводимые в действие электричеством. В 70-х гг. 19-го века немецким физиком Генрихом Герцем было изобретено устройство для электрической детонации якорных мин с глубиной постановки до 40 м. Её модификации знакомы нам по историческим фильмам на военно-морскую тематику — это печально известная «рогатая» мина, в которой свинцовый «рог», содержащий ампулу, наполненную электролитом, сминался при контакте с корпусом судна, в результате чего начинала работать простейшая батарея, энергии которой было достаточно для детонации мины.

Радиостанция компании Гудзонова залива. Около 1937 г. Канадский музей науки и техники, Оттава

Моряки первыми оценили потенциал тогда ещё несовершенных мощных источников света — модификаций свечей Яблочкова, у которых источником света служила электрическая дуга и светящийся раскалённый положительный угольный электрод — для использования в целях сигнализации и освещения поля боя. Использование прожекторов давало подавляющее преимущество стороне, применивших их в ночных сражениях или просто использующих их как средство сигнализации для передачи информации и координации действий морских соединений. А оснащённые мощными прожекторами маяки упрощали навигацию в прибрежных опасных водах.

Электронная вакуумная лампа, ок. 1921 г. Канадский музей науки и техники, Оттава

Не удивительно, что именно флот принял на ура способы беспроводной передачи информации — моряков не смущали большие размеры первых радиостанций, поскольку помещения кораблей позволяли разместить столь совершенные, хотя на тот момент и весьма громоздкие, устройства связи.

Электрические машины помогали упростить заряжание корабельных пушек, а электрические силовые агрегаты поворота орудийных башен повышали маневренность нанесения пушечных ударов. Команды, передаваемые по корабельному телеграфу, повышали оперативность взаимодействия всей команды, что давало немалое преимущество в боевых столкновениях.

Самым ужасающим применением электрического тока в истории флота было использование рейдерских дизель-электрических подлодок класса U Третьим Рейхом. Субмарины «Волчьей стаи» Гитлера потопили много судов транспортного флота союзников — достаточно вспомнить о печальной судьбе конвоя PQ-17.

Радиопередатчик из Дрюммонвилля, Квебек, ок. 1926. Канадский музей науки и техники, Оттава

Британским морякам удалось добыть несколько экземпляров шифровальных машин «Энигма» (Загадка), а британская разведка успешно расшифровала её код. Один из выдающихся ученых, который над этим работал — Алан Тьюринг, известный своим вкладом в основы информатики. Получив доступ к радиодепешам адмирала Дёница, союзный флот и береговая авиация смогли загнать «Волчью стаю» обратно к берегам Норвегии, Германии и Дании, поэтому операции с применением подлодок с 1943 года были ограничены краткосрочными рейдами.

Телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

Гитлер планировал оснастить свои подлодки ракетами Фау-2 для атак на восточное побережье США. К счастью, стремительные атаки союзников на Западном и Восточном фронтах не позволили этим планам осуществиться.

Современный флот немыслим без авианосцев и атомных подводных лодок, энергонезависимость которых обеспечивается атомными реакторами, удачно сочетающими в себе технологии 19-го века пара, технологии 20-го века электричества, и атомные технологии 21-го века. Реакторы атомоходов генерируют электрический ток в количестве, достаточном для обеспечения жизнедеятельности целого города.

Помимо этого, моряки вновь обратили своё внимание на электричество и апробируют применение рельсотронов — электрических пушек для стрельбы кинетическими снарядами, имеющими огромную разрушительную силу.

Джеймс Клерк Максвелл. Скульптура Александра Штоддарта. Фото Ад Мескенс. Wikimedia Commons.

Историческая справка

С появлением надёжных электрохимических источников постоянного тока, разработанных итальянским физиком Алессандро Вольта, целая плеяда замечательных учёных из разных стран занялись исследованием явлений, связанных с электрическим током, и разработкой его практического применения во многих областях науки и техники. Достаточно вспомнить немецкого учёного Георга Ома, сформулировавшего закон протекания тока для элементарной электрической цепи; немецкого физика Густава Роберта Кирхгофа, разработавшего методы расчёта сложных электрических цепей; французского физика Андре Мари Ампера, открывшего закон взаимодействия для постоянных электрических токов. Работы английского физика Джеймса Прескотта Джоуля и российского учёного Эмиля Христиановича Ленца, привели, независимо друг от друга, к открытию закона количественной оценки теплового действия электрического тока.

Портрет Хендрика Антона Лоренца (1916 г.) кисти Менсо Камерлинг-Оннеса (1860–1925)

Дальнейшим развитием исследования свойств электрического тока были работы британского физика Джеймса Кларка Максвелла, заложившего основы современной электродинамики, которые ныне известны как уравнения Максвелла. Также Максвелл разработал электромагнитную теорию света, предсказав многие явления (электромагнитные волны, давление электромагнитного излучения). Позднее немецкий учёный Генрих Рудольф Герц экспериментально подтвердил существование электромагнитных волн; его работы по исследованию отражения, интерференции, дифракции и поляризации электромагнитных волн легли в основу создания радио.

Жан-Батист Био (1774–1862)

Работы французских физиков Жана-Батиста Био и Феликса Савара, экспериментально открывшими проявления магнетизма при протекании постоянного тока, и замечательного французского математика Пьера-Симона Лапласа, обобщившего их результаты в виде математической закономерности, впервые связали две стороны одного явления, положив начало электромагнетизму. Эстафету от этих учёных принял гениальный британский физик Майкл Фарадей, открывший явление электромагнитной индукции и положивший начало современной электротехнике.

Огромный вклад в объяснение природы электрического тока внёс нидерландский физик-теоретик Хендрик Антон Лоренц, создавший классическую электронную теорию и получивший выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля.

Электрический ток. Определения

Электрический ток — направленное (упорядоченное) движение заряженных частиц. В силу этого ток определяется как количество зарядов, прошедшее через сечение проводника в единицу времени:

I = q / t где q — заряд в кулонах, t — время в секундах, I — ток в амперах

Другое определение электрического тока связано со свойствами проводников и описывается законом Ома:

I = U/R где U — напряжение в вольтах, R — сопротивление в омах, I — ток в амперах

Электрический ток измеряется в амперах (А) и его десятичных кратных и дольных единицах — наноамперах (миллиардная доля ампера, нА), микроамперах (миллионная доля ампера, мкА), миллиамперах (тысячная доля ампера, мА), килоамперах (тысячах ампер, кА) и мегаамперах (миллионах ампер, МА).

Размерность тока в системе СИ определяется как

[А] = [Кл] / [сек]

Особенности протекания электрического тока в различных средах. Физика явлений

Алюминий — прекрасный проводник и поэтому широко используется для изготовления электрических кабелей

Электрический ток в твердых телах: металлах, полупроводниках и диэлектриках

При рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока — элементарных зарядов — характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным. Уникальным примером таких состояний, наблюдаемых в обычных условиях, могут служить состояния дигидрогена монооксида, или, иначе, гидроксида водорода, а попросту — обыкновенной воды. Мы наблюдаем её твердую фазу, доставая кусочки льда из морозильника для охлаждения напитков, основой для большей части которых является вода в жидком состоянии. А при заварке чая или растворимого кофе мы заливаем его кипятком, причём готовность последнего контролируется появлением тумана, состоящего из капелек воды, которая конденсируется в холодном воздухе из газообразного водяного пара, выходящего из носика чайника.

Существует также четвёртое состояние вещества, называемое плазмой, из которой состоят верхние слои звёзд, ионосфера Земли, пламя, электрическая дуга и вещество в люминесцентных лампах. Высокотемпературная плазма с трудом воспроизводится в условиях земных лабораторий, поскольку требует очень высоких температур — более 1 000 000 K.

Эти высоковольтные воздушные коммутаторы содержат две основные детали: рубильник и изолятор, который устанавливаются в разрыв провода

С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные. Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы такого вещества образуют своеобразные объёмные или плоские решётки; к кристаллическим материалам относятся металлы, их сплавы и полупроводники. Та же вода в виде снежинок (кристаллов разнообразных не повторяющих форм) прекрасно иллюстрирует представление о кристаллических веществах. Аморфные вещества кристаллической решётки не имеют; такое строение характерно для диэлектриков.

В обычных условиях ток в твёрдых материалах протекает за счёт перемещения свободных электронов, образующихся из валентных электронов атомов. С точки зрения поведения материалов при пропускании через них электрического тока, последние подразделяются на проводники, полупроводники и изоляторы. Свойства различных материалов, согласно зонной теории проводимости, определяются шириной запрещённой зоны, в которой не могут находиться электроны. Изоляторы имеют самую широкую запрещённую зону, иногда достигающую 15 эВ. При температуре абсолютного нуля у изоляторов и полупроводников электронов в зоне проводимости нет, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля имеется достаточно большое количество электронов — проводников тока, что сохраняется и при более высоких температурах материалов, вплоть до их полного расплавления. Полупроводники имеют небольшие запрещённые зоны, и их способность проводить электрический ток сильно зависит от температуры, радиации и других факторов, а также от наличия примесей.

Трансформатор с магнитопроводом из пластин. На краях хорошо видны Ш-образные и замыкающие пластины из трансформаторной стали

Отдельным случаем считается протекание электрического тока через так называемые сверхпроводники — материалы, имеющие нулевое сопротивление протеканию тока. Электроны проводимости таких материалов образуют ансамбли частиц, связанные между собой за счёт квантовых эффектов.

Изоляторы, как следует из их названия, крайне плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания тока между проводящими поверхностями различных материалов.

Помимо существования токов в проводниках при неизменном магнитном поле, при наличии переменного тока и связанного с ним переменного магнитного поля возникают эффекты, связанные с его изменением или так называемые «вихревые» токи, иначе называемые токами Фуко. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи, которые не текут по определённым путям в проводах, а, замыкаясь в проводнике, образуют вихревые контуры.

Вихревые токи проявляют скин-эффект, сводящийся к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника, что приводит к потерям энергии. Для уменьшения потерь энергии на вихревые токи применяют разделение магнитопроводов переменного тока на отдельные, электрически изолированные, пластины.

Хромированная пластмассовая душевая головка

Электрический ток в жидкостях (электролитах)

Все жидкости, в той или иной мере, способны проводить электрический ток при приложении электрического напряжения. Такие жидкости называются электролитами. Носителями тока в них являются положительно и отрицательно заряженные ионы — соответственно катионы и анионы, которые существуют в растворе веществ вследствие электролитической диссоциации. Ток в электролитах за счёт перемещения ионов, в отличие от тока за счёт перемещения электронов, характерного для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений или осаждением этих веществ или новых соединений на электродах.

Это явление заложило основу современной электрохимии, дав количественные определения грамм-эквивалентам различных химических веществ, тем самым превратив неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать однократно заряжаемые и перезаряжаемые источники химического тока (сухие батареи, аккумуляторы и топливные элементы), которые, в свою очередь, дали огромный толчок в развитии техники. Достаточно заглянуть под капот своего автомобиля, чтобы увидеть результаты усилий поколений учёных и инженеров-химиков в виде автомобильного аккумулятора.

Автомобильный аккумулятор, установленный в автомобиле Honda 2012 г.

Большое количество технологических процессов, основанных на протекании тока в электролитах, позволяет не только придать эффектный вид конечным изделиям (хромирование и никелирование), но и защитить их от коррозии. Процессы электрохимического осаждения и электрохимического травления составляют основу производства современной электроники. Ныне это самые востребованные технологические процессы, число изготавливаемых компонентов по этим технологиям исчисляется десятками миллиардов единиц в год.

Электрический ток в газах

Электрический ток в газах обусловлен наличием в них свободных электронов и ионов. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого протекание тока в нормальных условиях через них относительно затруднено. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается неплохим изолятором. Это характерно и для других газов и их смесей при обычных физических условиях.

Отвертка-пробник с неоновой лампой, показывающая наличие напряжения 220 В

Протекание тока в газах очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещёнными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием катодных или анодных частиц или частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство лучше проводить электрический ток.

Эндотермический процесс образования ионов в результате поглощения энергии электрически нейтральными атомами или молекулами газа называется ионизацией. Получив достаточную энергию, электрон или несколько электронов внешней электронной оболочки, преодолевая потенциальный барьер, покидают атом или молекулу, становясь свободными электронами. Атом или молекула газа становятся при этом положительно заряженными ионами. Свободные электроны могут присоединяться к нейтральным атомам или молекулам, образуя отрицательно заряженные ионы. Положительные ионы могут обратно захватывать свободные электроны при столкновении, становясь при этом опять электрически нейтральными. Этот процесс называется рекомбинацией.

Прохождение тока через газовую среду сопровождается изменением состояния газа, что предопределяет сложный характер зависимости тока от приложенного напряжения и, в общем, подчиняется закону Ома только при малых токах.

Различают несамостоятельный и самостоятельные разряды в газах. При несамостоятельном разряде ток в газе существует только при наличии внешних ионизирующих факторов, при их отсутствии сколь-нибудь значительного тока в газе нет. При самостоятельном разряде ток поддерживается за счёт ударной ионизации нейтральных атомов и молекул при столкновении с ускоренными электрическим полем свободными электронами и ионами даже после снятия внешних ионизирующих воздействий.

Тихий разряд. Вольт-амперная характеристика.

Несамостоятельный разряд при малом значении разности потенциалов между анодом и катодом в газе называется тихим разрядом. При повышении напряжения сила тока сначала увеличивается пропорционально напряжению (участок ОА на вольт-амперной характеристике тихого разряда), затем рост тока замедляется (участок кривой АВ). Когда все частицы, возникшие под действием ионизатора, уходят за то же время на катод и на анод, усиления тока с ростом напряжения не происходит (участок графика ВС). При дальнейшем повышении напряжения ток снова возрастает, и тихий разряд переходит в несамостоятельный лавинный разряд. Разновидность несамостоятельного разряда — тлеющий разряд, который создаёт свет в газоразрядных лампах различного цвета и назначения.

Переход несамостоятельного электрического разряда в газе в самостоятельный разряд характеризуется резким увеличением тока (точка Е на кривой вольт-амперной характеристики). Он называется электрическим пробоем газа.

Электронная лампа-вспышка с наполненной ксеноном трубкой (обведена красным прямоугольником)

Все вышеперечисленные типы разрядов относятся к установившимся типам разрядов, основные характеристики которых не зависят от времени. Помимо установившихся разрядов, существуют разряды неустановившиеся, возникающие обычно в сильных неоднородных электрических полях, например у заостренных и искривлённых поверхностей проводников и электродов. Различают два типа неустановившихся разрядов: коронный и искровой разряды.

При коронном разряде ионизация не приводит к пробою, просто он представляет собой повторяющийся процесс поджига несамостоятельного разряда в ограниченном пространстве возле проводников. Примером коронного разряда может служить свечение атмосферного воздуха вблизи высоко поднятых антенн, громоотводов или высоковольтных линий электропередач. Возникновение коронного разряда на линиях электропередач приводит к потерям электроэнергии. В прежние времена это свечение на верхушках мачт было знакомо морякам парусного флота как огоньки святого Эльма. Коронный разряд применяется в лазерных принтерах и электрографических копировальных устройствах, где он формируется коротроном — металлической струной, на которую подано высокое напряжение. Это необходимо для ионизации газа с целью нанесения заряда на фоточувствительный барабан. В данном случае коронный разряд приносит пользу.

Искровой разряд, в отличие от коронного, приводит к пробою и имеет вид прерывистых ярких разветвляющихся, заполненных ионизированным газом нитей-каналов, возникающих и исчезающих, сопровождаемые выделением большого количества теплоты и ярким свечением. Примером естественного искрового разряда может служить молния, где ток может достигать значений в десятки килоампер. Образованию собственно молнии предшествует создание канала проводимости, так называемого нисходящего «тёмного» лидера, образующего совместно с индуцированным восходящим лидером проводящий канал. Молния представляет собой обычно многократный искровой разряд в образованном канале проводимости. Мощный искровой разряд нашёл своё техническое применение также и в компактных фотовспышках, в которых разряд происходит между электродами трубки из кварцевого стекла, наполненной смесью ионизированных благородных газов.

Длительный поддерживаемый пробой газа носит название дугового разряда и применяется в сварочной технике, являющейся краеугольным камнем технологий создания стальных конструкций нашего времени, от небоскрёбов до авианосцев и автомобилей. Он применяется как для сварки, так и для резки металлов; различие в процессах обусловлено силой протекающего тока. При относительно меньших значениях тока происходит сварка металлов, при более высоких значениях тока дугового разряда — идёт резка металла за счёт удаления расплавленного металла из-под электрической дуги различными методами.

Другим применением дугового разряда в газах служат газоразрядные лампы освещения, которые разгоняют тьму на наших улицах, площадях и стадионах (натриевые лампы) или автомобильные галогенные лампы, которые сейчас заменили обычные лампы накаливания в автомобильных фарах.

Электрический ток в вакууме

Электронная лампа в радиопередающей станции. Канадский музей науки и техники, Оттава

Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только при наличии свободных носителей в виде электронов или ионов, которые генерируются за счёт термо- или фотоэмиссии, или иными методами.

Такие передающие телевизионные камеры использовались в восьмидесятых годах прошлого века. Канадский музей науки и техники, Оттава

Основным методом получения тока в вакууме за счёт электронов является метод термоэлектронной эмиссии электронов металлами. Вокруг разогретого электрода, называемого катодом, образуется облако из свободных электронов, которые и обеспечивают протекание электрического тока при наличии второго электрода, называемого анодом, при условии наличия между ними соответствующего напряжения требуемой полярности. Такие электровакуумные приборы называются диодами и обладают свойством односторонней проводимости тока, запираясь при обратном напряжении. Это свойство применяется для выпрямления переменного тока, преобразуемого системой из диодов в импульсный ток постоянного направления.

Добавление дополнительного электрода, называемого сеткой, расположенной вблизи катода, позволяет получить усилительный элемент триод, в котором малые изменения напряжения на сетке относительно катода позволяют получить значительные изменения протекающего тока, и, соответственно, значительные изменения напряжения на нагрузке, включённой последовательно с лампой относительно источника питания, что и используется для усиления различных сигналов.

Применение электровакуумных приборов в виде триодов и приборов с большим числом сеток различного назначения (тетродов, пентодов и даже гептодов), произвело революцию в деле генерации и усиления радиочастотных сигналов, и привело к созданию современных систем радио и телевещания.

Современный видеопроектор

Исторически первым было развитие именно радиовещания, так как методы преобразования относительно низкочастотных сигналов и их передача, равно как и схемотехника приёмных устройств с усилением и преобразованием радиочастоты и превращением её в акустический сигнал были относительно просты.

При создании телевидения для преобразования оптических сигналов применялись электровакуумные приборы — иконоскопы, где электроны эмитировались за счёт фотоэмиссии от падающего света. Дальнейшее усиление сигнала выполнялось усилителями на электронных лампах. Для обратного преобразования телевизионного сигнала служили кинескопы, дающие изображение за счёт флюоресценции материала экрана под воздействием электронов, разгоняемых до высоких энергий под воздействием ускоряющего напряжения. Синхронизированная система считывания сигналов иконоскопа и система развёртки изображения кинескопа создавали телевизионное изображение. Первые кинескопы были монохромными.

Сканирующий электронный микроскоп SU3500 в Университете Торонто, факультет технологии материалов

В дальнейшем были созданы системы цветного телевидения, в котором считывающие изображение иконоскопы реагировали только на свой цвет (красный, синий или зелёный). Излучающие элементы кинескопов (цветной люминофор), за счёт протекания тока, вырабатываемого так называемыми «электронными пушками», реагируя на попадание в них ускоренных электронов, излучали свет в определённом диапазоне соответствующей интенсивности. Чтобы лучи от пушек каждого цвета попадали на свой люминофор, использовали специальные экранирующие маски.

Современная аппаратура телевидения и радиовещания выполняется на более прогрессивных элементах с меньшим энергопотреблением — полупроводниках.

Одним из широко распространённых методов получения изображения внутренних органов является метод рентгеноскопии, при котором эмитируемые катодом электроны получают столь значительное ускорение, что при попадании на анод генерируют рентгеновское излучение, способное проникать через мягкие ткани тела человека. Рентгенограммы дают в руки медиков уникальную информацию о повреждениях костей, состоянии зубов и некоторых внутренних органов, выявляя даже такое грозное заболевание, как рак лёгких.

Лампа бегущей волны (ЛБВ) диапазона С. Канадский музей науки и техники, Оттава

Вообще, электрические токи, сформированные в результате движения электронов в вакууме, имеют широчайшую область применения, к которой относятся все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, электронные микроскопы, вакуумные генераторы сверхвысокой частоты, в виде ламп бегущей волны, клистронов и магнетронов. Именно магнетроны, кстати, подогревают или готовят нам пищу в микроволновых печах.

Большое значение в последнее время имеет технология нанесения плёночных покрытий в вакууме, которые играют роль как защитно-декоративного, так и функционального покрытия. В качестве таких покрытий применяются покрытия металлами и их сплавами, и их соединениями с кислородом, азотом и углеродом. Такие покрытия изменяют электрические, оптические, механические, магнитные, коррозионные и каталитические свойства покрываемых поверхностей, либо сочетают сразу несколько свойств.

Сложный химический состав покрытий можно получать только с использованием техники ионного распыления в вакууме, разновидностями которой являются катодное распыление или его промышленная модификация — магнетронное распыление. В конечном итоге именно электрический ток за счёт ионов производит осаждение компонентов на осаждаемую поверхность, придавая ей новые свойства.

Именно таким способом можно получать так называемые ионные реактивные покрытия (плёнки нитридов, карбидов, оксидов металлов), обладающих комплексом экстраординарных механических, теплофизических и оптических свойств (с высокой твёрдостью, износостойкостью, электро- и теплопроводностью, оптической плотностью), которые невозможно получить иными методами.

Электрический ток в биологии и медицине

Учебная операционная в Научно-исследовательском институте им. Ли Кашина, Торонто, Канада. Используемые при обучении роботизированные пациенты-манекены умеют моргать, дышать, кричать, демонстрировать симптомы болезней и кровотечения

Знание поведения токов в биологических объектах даёт в руки биологов и медиков мощный метод исследования, диагностики и лечения.

С точки зрения электрохимии все биологические объекты содержат электролиты, вне зависимости от особенностей структуры данного объекта.

При рассмотрении протекания тока через биологические объекты необходимо учитывать их клеточное строение. Существенным элементом клетки является клеточная мембрана — внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт ее избирательной проницаемости для различных веществ. С точки зрения физики, клеточную мембрану можно представить себе в виде параллельного соединения конденсатора и нескольких цепочек из соединенных последовательно источника тока и резистора. Это предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.

Объемное представление нервных путей, соединяющих различные области мозга. Изображение получено с помощью диффузионной тензорной визуализации (ДТВ) — неинвазивного метода исследований мозга.

Биологическая ткань состоит из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Последние в ответ на воздействие электрического тока отвечают возбуждением, заставляя сокращаться и расслабляться мышцы и кровеносные сосуды животного. Следует отметить, что протекание тока в биологической ткани носит нелинейный характер.

Классическим примером воздействия электрического тока на биологический объект могут служить опыты итальянского врача, анатома, физиолога и физика Луиджи Гальвани, ставшего одним из основателей электрофизиологии. В его опытах пропускание электрического тока через нервы лапки лягушки приводило к сокращению мышц и подергиванию ножки. В 1791 году в «Трактате о силах электричества при мышечном движении» было описано сделанное Гальвани знаменитое открытие. Сами явления, открытые Гальвани, долгое время в учебниках и научных статьях назывались «гальванизмом». Этот термин и доныне сохраняется в названии некоторых аппаратов и процессов.

Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.

Биологические объекты в ходе своей жизнедеятельности создают не только микротоки, но и большие напряжения и токи. Значительно раньше Гальвани английский анатом Джон Уолш доказал электрическую природу удара ската, а шотландский хирург и анатом Джон Хантер дал точное описание электрического органа этого животного. Исследования Уолша и Хантера были опубликованы в 1773 году.

Функциональная магнитно-резонансная томография или фМРТ — неинвазивная методика нейровизуализации, позволяющая измерять активность мозга по изменениям в токе крови в кровеносных сосудах

В современной биологии и медицине применяются различные методы исследования живых организмов, как инвазивные, так и неинвазивные.

Классическим примером инвазивных методов является лабораторная крыса с пучком вживлённых в мозг электродов, бегающая по лабиринтам или решающая другие задачки, поставленные перед ней учёными.

К неинвазивным методам относятся такие, всем знакомые исследования, как снятие энцефалограммы или электрокардиограммы. При этом электроды, считывающие биотоки сердца или мозга, снимают токи прямо с кожи обследуемого. Для улучшения контакта с электродами кожа смачивается физиологическим раствором, который является неплохим проводящим электролитом.

Помимо применения электрического тока при научных исследованиях и техническом контроле состояния различных химических процессов и реакций, одним из самых драматических моментов его применения, известного широкой публике, является запуск «остановившегося» сердца какого-либо героя современного фильма.

Автоматический дефибриллятор для обучения лиц, не являющихся медработниками

Действительно, протекание кратковременного импульса значительного тока лишь в единичных случаях способно запустить остановившееся сердце. Чаще всего происходит восстановление его нормального ритма из состояния хаотичных судорожных сокращений, называемого фибрилляцией сердца. Приборы, применяющиеся для восстановления нормального ритма сокращений сердца, называются дефибрилляторами. Современный автоматический дефибриллятор сам снимает кардиограмму, определяет фибрилляцию желудочков сердца и самостоятельно решает – бить током или не бить – может быть достаточно пропустить через сердце небольшой запускающий импульс. Существует тенденция установления автоматических дефибрилляторов в общественных местах, что может существенно сократить количество смертей из-за неожиданной остановки сердца.

У практикующих врачей скорой помощи не возникает никакого сомнения по поводу применения метода дефибрилляции – обученные быстро определять физическое состояние пациента по кардиограмме, они принимают решение значительно быстрее автоматического дефибриллятора, предназначенного для широкой публики.

Тут же уместно будет упомянуть об искусственных водителях сердечного ритма, иначе называемых кардиостимуляторами. Эти приборы вживляются под кожу или под грудную мышцу человека, и такой аппарат через электроды подаёт на миокард (сердечную мышцу) импульсы тока напряжением около 3 В, стимулируя нормальную работу сердца. Современные электрокардиостимуляторы способны обеспечить бесперебойную работу в течение 6–14 лет.

Характеристики электрического тока, его генерация и применение

Электрический ток характеризуется величиной и формой. По его поведению с течением времени различают постоянный ток (не изменяющийся с течением времени), апериодический ток (произвольно изменяющийся с течением времени) и переменный ток (изменяющийся с течением времени по определённому, как правило, периодическому закону). Иногда для решения различных задач требуется одновременное наличие постоянного и переменного тока. В таком случае говорят о переменном токе с постоянной составляющей.

Токамак-де-Варен — токамак-реактор в г. Варен, пров. Квебек в 1981 г. Канадский музей науки и техники, Оттава

Исторически первым появился трибоэлектрический генератор тока, который вырабатывал ток за счёт трения шерсти о кусок янтаря. Более совершенные генераторы тока такого типа сейчас называются генераторами Ван де Граафа, по имени изобретателя первого технического решения таких машин.

Как указывалось выше, итальянским физиком Алессандро Вольта был изобретён электрохимический генератор постоянного тока, ставший предшественником сухих батарей, аккумуляторов и топливных элементов, которые мы пользуемся и поныне как удобными источниками тока для разнообразных устройств — от наручных часов и смартфонов до просто автомобильных аккумуляторов и тяговых аккумуляторов электромобилей Tesla.

Помимо этих генераторов постоянного тока, существуют генераторы тока на прямом ядерном распаде изотопов и магнитогидродинамические генераторы (МГД-генераторы) тока, которые пока имеют ограниченное применение в силу своей маломощности, слабой технологической основы для широкого применения и по другим причинам. Тем не менее, радиоизотопные источники энергии широко применяются там, где нужна полная автономность: в космосе, на глубоководных аппаратах и гидроакустических станциях, на маяках, бакенах, а также на Крайнем Севере, в Арктике и Антарктике.

Коллектор в мотор-генераторе, ок. 1904 г. Канадский музей науки и техники, Оттава

В электротехнике генераторы тока подразделяются на генераторы постоянного тока и генераторы переменного тока.

Все эти генераторы основаны на явлении электромагнитной индукции, открытой Майклом Фарадеем в 1831 году. Фарадей построил первый маломощный униполярный генератор, дающий постоянный ток. Первый генератор переменного тока был предложен анонимным автором под латинскими инициалами Р.М. в письме к Фарадею в 1832 году. После опубликования письма, Фарадей получил благодарственное письмо от того же анонима со схемой усовершенствованного генератора в 1833 году, в котором использовалось дополнительное стальное кольцо (ярмо) для замыкания магнитных потоков сердечников обмоток.

Однако в то время для переменного тока еще не нашлось применения, так как для всех практических применений электричества того времени (минная электротехника, электрохимия, только что зародившаяся электромагнитная телеграфия, первые электродвигатели) требовался постоянный ток. Поэтому в последующем изобретатели направили свои усилия на построение генераторов, дающих постоянный электрический ток, разрабатывая для этих целей разнообразные коммутационные устройства.

Одним из первых генераторов, получившим практическое применение, был магнитоэлектрический генератор российского академика Б. С. Якоби. Этот генератор был принят на вооружение гальванических команд русской армии, использовавших его для воспламенения минных запалов. Улучшенные модификации генератора Якоби до сих пор используются для удалённого приведения в действие минных зарядов, что нашло широкое отображение в военно-исторических фильмах, в которых диверсанты или партизаны подрывают мосты, поезда или другие объекты.

Объектив лазера в приводе компакт-диска

В дальнейшем борьба между генерацией постоянного или переменного тока с переменным успехом велась среди изобретателей и инженеров–практиков, приведшая к апогею противостояния титанов современной электроэнергетики: Томаса Эдисона с компанией Дженерал Электрик с одной стороны, и Николой Тесла с компанией Вестингауз, с другой стороны. Победил мощный капитал, и разработки Тесла в области генерации, передачи, и трансформации переменного электрического тока стали общенациональным достоянием американского общества, что, в немалой степени, позднее способствовало технологическому доминированию США.

Помимо собственно генерации электричества для разнообразных нужд, основанной на преобразовании механического движения в электричество, за счёт обратимости электрических машин появилась возможность обратного преобразования электрического тока в механическое движение, реализуемая электродвигателями постоянного и переменного тока. Пожалуй, это самые распространённые машины современности, включающие в себя стартеры автомобилей и мотоциклов, приводы промышленных станков и разнообразных бытовых устройств. Используя различные модификации подобных устройств, мы стали мастерами на все руки, мы умеем строгать, пилить, сверлить и фрезеровать. А в наших компьютерах, благодаря миниатюрным прецизионным двигателям постоянного тока, крутятся приводы жёстких и оптических дисков.

Кроме привычных электромеханических двигателей, за счёт протекания электрического тока работают ионные двигатели, использующие принцип реактивного движения при выбросе ускоренных ионов вещества, Пока, в основном, они применяются в космическом пространстве на малых спутниках для выведения их на нужные орбиты. А фотонные двигатели 22-го века, которые существуют пока только в проекте и которые понесут наши будущие межзвёздные корабли с субсветовой скоростью, скорее всего, тоже будут работать на электрическом токе.

Стрелочный мультиметр со снятой верхней крышкой

Для создания электронных элементов и при выращивании кристаллов различного назначения по технологическим причинам требуются сверхстабильные генераторы постоянного тока. Такие прецизионные генераторы постоянного тока на электронных компонентах называются стабилизаторами тока.

Измерение силы электрического тока

Необходимо отметить, что приборы для измерения тока (микроамперметры, миллиамперметры, амперметры) весьма отличаются друг от друга в первую очередь по типу конструкций и принципам действия — это могут быть приборы постоянного тока, переменного тока низкой частоты и переменного тока высокой частоты.

По принципу действия различают электромеханические, магнитоэлектрические, электромагнитные, магнитодинамические, электродинамические, индукционные, термоэлектрические и электронные приборы. Большинство стрелочных приборов для измерения токов состоит из комбинации подвижной/неподвижной рамки с намотанной катушкой и неподвижного/подвижного магнитов. Вследствие такой конструкции типичный амперметр имеет эквивалентную схему из последовательно соединённых индуктивности и сопротивления, шунтированных ёмкостью. Из-за этого частотная характеристика стрелочных амперметров имеет завал по высоким частотам.

Подвижная рамка с катушкой, стрелкой и пружинами, используемая в гальванометре показанного выше мультиметра. Некоторые до сих пор предпочитают пользоваться стрелочными приборами, конструкция которых с конца 19-го века остается практически неизменной

Основой для них является миниатюрный гальванометр, а различные пределы измерения достигаются применением дополнительных шунтов — резисторов с малым сопротивлением, которое на порядки ниже сопротивления измерительного гальванометра. Таким образом, на основе одного прибора могут быть созданы приборы для измерения токов различных диапазонов – микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

Вообще, в измерительной практике важно поведение измеряемого тока — он может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ радиотехнических цепей и устройств. Различают следующие значения токов:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение тока I i — это значение тока в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение тока Im — это наибольшее мгновенное значение тока за период.

Среднее квадратичное (действующее) значение тока I определяется как корень квадратный из среднего за период квадрата мгновенных значений тока.

Все стрелочные амперметры обычно градуируются в среднеквадратических значениях тока.

Среднее значение (постоянная составляющая) тока — это среднее арифметическое всех его мгновенных значений за время измерения.

Разность между максимальным и минимальным значениями тока сигнала называют размахом сигнала.

Сейчас, в основном, для измерения тока используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения/тока, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение тока с помощью осциллографа

Иллюстрацией к вышесказанному будет серия опытов по измерению действующего и пикового значения тока синусоидального и треугольного сигналов с использованием генератора сигналов, осциллографа и многофункционального цифрового прибора (мультиметра).

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов (FG) нагружен на последовательное соединение мультиметра (MM), сопротивление шунта Rs=100 Ом и сопротивление нагрузки R в 1 кОм. Осциллограф OS подключен параллельно сопротивлению шунта Rs. Значение сопротивления шунта выбирается из условия Rs <<R. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1

Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 Герц и амплитудой 9 Вольт. Нажмем очень удобную кнопку Auto Set и будем наблюдать на экране сигнал, показанный на рис. 1. Размах сигнала — около пяти больших делений при цене деления 200 мВ. Мультиметр при этом показывает значение тока в 3,1 мА. Осциллограф определяет среднеквадратичное значение напряжения сигнала на измерительном резисторе U=312 мВ. Действующее значение тока через резистор Rs определяется по закону Ома:

IRMS = URMS/R = 0,31 В / 100 Ом = 3,1 мА,

что соответствует показаниям мультиметра (3,10 мА). Отметим, что размах тока через нашу цепь из включенных последовательно двух резисторов и мультиметра равен

IP-P = UP-P/R = 0,89 В / 100 Ом = 8,9 мА

Известно, что пиковое и действующее значения тока и напряжения для синусоидального сигнала отличаются в √2 раз. Если умножить IRMS = 3,1 мА на √2, получим 4,38. Удвоим это значение и мы получим 8,8 мА, что почти соответствует току, измеренному с помощью осциллографа (8,9 мА).

Опыт 2

Уменьшим сигнал от генератора вдвое. Размах изображения на осциллографе уменьшится ровно приблизительно вдвое (464 мВ) и мультиметр покажет приблизительно уменьшенное вдвое значение тока 1,55 мА. Определим показания действующего значения тока на осциллографе:

IRMS = URMS/R = 0,152 В / 100 Ом = 1,52 мА,

что приблизительно соответствует показаниям мультиметра (1,55 мА).

Опыт 3

Увеличим частоту генератора до 10 кГц. При этом изображение на осциллографе изменится, но размах сигнала останется прежним, а показания мультиметра уменьшатся — сказывается допустимый рабочий частотный диапазон мультиметра.

Опыт 4

Вернёмся к исходной частоте 60 Герц и напряжению 9 В генератора сигналов, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением тока, которое он показывал в опыте №1, так как изменилось действующее значение тока сигнала. Осциллограф также показывает уменьшение среднеквадратичного значения напряжения, измеренного на резисторе Rs=100 Ом.

Техника безопасности при измерении тока и напряжения

Самодельный пьедестал-стойка с полнофункциональным телесуфлёром и мониторами для домашней видеостудии

  • Поскольку в зависимости от класса безопасности помещения и его состояния при измерении токов даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
  • Не проводить измерения токов, требующих определённых профессиональных навыков ( при напряжении свыше 1000 В).
  • Не производить измерения токов в труднодоступных местах или на высоте.
  • При измерениях в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  • Пользоваться исправным измерительным инструментом.
  • В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  • Пользоваться измерительным прибором с исправными щупами.
  • Строго следовать рекомендациям производителя по использованию измерительного прибора.

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

🛍 12 В 0.05a dc адаптер питания 12 вольт 0,05 Ампер 50мА источник питания Вход ac 100-240 В 5.5×2.1мм переключатель мощности, трансформатор 934.98₽

12 В 0.05a dc адаптер питания 12 вольт 0,05 Ампер 50мА источник питания Вход ac 100-240 В 5.5×2.1мм переключатель мощности, трансформатор

Особенности:

1. это может быть заменяемый блок питания 12 В 50мА для многих устройств с наконечником штепсельной вилки 5,5 мм x 2,1 мм, например, ЖК-дисплей/LED/TV Sound Box, Светодиодная лента/беспроводной маршрутизатор, ADSL кошки, концентратор, переключатели, камеры безопасности, ноутбук/Аудио/Видео питания и так далее. 2. Абсолютно новый и высококачественный. 3. Обеспечивает последовательный и надежный источник питания. 4. Кабель питания переменного тока не входит в комплект.

Спецификация:

1. Модель: DG-WL1200050 2. Вход: 100-240 в 50-60 Гц 3. Выход:12В 50 м 4. Размер порта: 5.5×2.1мм 5. Длина кабеля: около 90 см Упаковка: 1 x адаптер питания 12В 50мА Этот адаптер питания имеет разный внешний вид, и мы отправим его случайным образом.

1) Мы принимаем Alipay, West Union, TT. Все основные кредитные карты принимаются через безопасный платежный процессор ESCROW.

2) оплата должна быть произведена в течение 15 дней с момента заказа.

3) Если вы не можете проверить сразу после закрытия аукциона, пожалуйста, подождите несколько минут и повторите попытку, оплата должна быть завершена в течение 15 дней.

Товар отправляется в течение 5 рабочих дней после полной оплаты. если вы не можете получить свой товар вовремя, пожалуйста, сначала свяжитесь с нами, мы проверим и решим его для вас в ближайшее время. мы ответим на вашу почту в течение 24 часов. Иногда возникают небольшие задержки из-за выходных или праздничных дней. Если вы не можете получить нашу почту через 48 часов, пожалуйста, проверьте свой спам или свяжитесь с нами по другому адресу электронной почты.

Возврат:

Если товар DOA (мертвый по прибытии), покупатели возврат в течение 14 дней, мы заменим его на новый товар после получения товара DOA. Пожалуйста, свяжитесь с нами, прежде чем отправить товар обратно

Гарантия:

Все товары поставляются с основной 3-месячной гарантией продавца, Если товар неисправен в течение 3 месяцев, мы предложим замену с нашим дополнительным зарядным устройством (включая стоимость доставки) после того, как мы получим бракованный товар.

Если товар неисправен после 3 месяцев, покупатели могут отправить его обратно, мы свяжемся с поставщиками или производителем для гарантии. Покупателям может потребоваться оплатить стоимость доставки для повторной замены товара.

Мы поддерживаем высокие стандарты качества и стремимся к 100% удовлетворенности клиентов! Обратная связь очень важна, мы просим Вас связаться с нами немедленно, прежде чем вы дадите нам нейтральный или отрицательный отзыв, чтобы мы могли удовлетворительно решить ваши проблемы.Невозможно решить проблемы, если мы не знаем о них!

Пластик пластику рознь

Электрические системы часто требуют сложного анализа при проектировании, ведь нужно оперировать множеством различных величин, ватты, вольты, амперы и т.д. При этом точно необходимо высчитать их соотношение при определенной нагрузке на механизм. В некоторых системах напряжение фиксированное, например, в домашней сети, а вот мощность и сила тока обозначают разные понятия, хоть и являются взаимозаменяемыми величинами.

Онлайн калькулятор по расчету ватт в амперы

Для получения результата обязательно указывать напряжение и потребляемую мощность.

В таких случая очень важно иметь помощника, дабы точно перевести ваты в амперы при постоянном значении напряжения.

Нам поможет перевести амперы в ватты калькулятор онлайн. Перед тем как воспользоваться интернет-программой по расчету величин, нужно иметь представление о значении необходимых данных.

  1. Мощность – это скорость потребления энергии. Например, лампочка в 100 Вт использует энергию – 100 джоулей за секунду.
  2. Ампер – величина измерения силы электрического тока, определяется в кулонах и показывает число электронов, которые прошли через определенное сечение проводника за указанное время.
  3. В вольтах измеряется напряжение протекания электрического тока.

Чтобы перевод ватт в амперы калькулятор используется очень просто, пользователь должен ввести в указанные графы показатель напряжения (В), далее потребляемую мощность агрегата (Вт) и нажать кнопку рассчитать. Через несколько секунд программа покажет точный результат силы тока в амперах. Формула сколько ватт в ампере

Внимание: если показатель величины имеет дробное число, значит его нужно вписывать в систему через точку, а не запятую. Таким образом, перевести ватты в амперы калькулятором мощности позволяет за считанное время, Вам не нужно расписывать сложные формулы и думать над их ре

шением. Все просто и доступно!


Таблица расчета Ампер и нагрузки в Ватт

Если взглянуть на число миллиампер, то нетрудно догадаться, сколько примерно будет работать тот или иной девайс на одном заряде. Впрочем, на автономность гаджета влияют несколько факторов, в том числе, конечно, и пресловутые мА·ч. В этой статье мы подробно расскажем, что это такое и как они связаны с работой устройства.

Что такое миллиампер-час (мА·ч)?

Если не вдаваться в подробности, то мА·ч — это стандартная единица электрического заряда, которая используется для измерения количества энергии, которой аккумулятор способен обеспечить устройство в течение часа. Понятное дело, чем батарея больше по емкости (способна хранить больше миллиамперов), тем дольше проработает гаджет с момента последней подзарядки.

Однако, как было сказано в самом начале, не только емкая батарея определяет автономную работу устройства. Существует также несколько других факторов, которые также нужно иметь в виду.

Во-первых, это тип батареи. Большинство электронных устройств сейчас использует литий-ионный аккумулятор, который не страдает так называемым эффектом памяти, поэтому гаджет можно заряжать не дожидаясь его полной разрядки. Как видите, по этому параметру аппараты не отличаются друг от друга.

Во-вторых, на автономность влияет железо. Здесь, разумеется, наблюдается прямая зависимость: чем мощнее девайс, тем больше миллиампер должна включать в себя батарея. Например, Nokia 3210 со своим аккумулятором емкостью 1250 мА·ч проработает аж неделю без подзарядки, в то время как Nexus 6 с 3220 мА·ч едва ли продержится сутки.

Экран — ещё один большой потребитель энергии. Тут стоит отметить, что технология изготовления дисплея играет ключевую роль. IPS-экраны требуют гораздо больше, чем Super AMOLED, которые очень энергоэффективны при преобладании черного цвета на экране, тогда как IPS распознает черный цвет как и любой другой. Разрешение и яркость также не стоит сбрасывать со счетов.

С другой стороны, программное обеспечение, вернее оптимизация, является не менее важным параметром, определяющим автономность того или иного девайса. Всевозможные оболочки, которые так любят Samsung и HTC, излишние фоновые процессы и службы негативным образом отражаются на количестве оставшихся часов. Однако справедливости ради стоит отметить, что Samsung и Sony включают в ПО специальные утилиты по оптимизации и экономии энергии, которые компенсирует потребление.

И, наконец, сердце любого электронного цифрового девайса, процессор, тоже требует достаточной подпитки.

Таким образом, мА·ч ничего не значат, если не взглянуть на остальные характеристики устройства. В общем, не забудьте при покупке также ознакомиться с экраном, ПО и железом, чтобы представить полную картинку автономной работы.

По материалам AndroidPIT

В электротехнике существует множество единиц измерения, используемых при выполнении расчетов. Большие значение делятся на более мелкие, а те в свою очередь — на еще более мелкие. Поэтому, в зависимости от обстоятельств, приходится переводить одни единицы в другие. В процессе перевода нередко возникают разные вопросы, например, сколько миллиампер в ампере или ватт в киловатте и мегаватте.

Опытные специалисты выполняют такие операции практически не задумываясь, однако начинающие электрики иногда могут и ошибиться, особенно если возникает вопрос, что больше ампер или миллиампер? Чтобы исключить подобные ошибки, нужно иметь наиболее полное представление о конкретной единице измерения и все проблемы разрешатся сами собой.

Ампер с точки зрения физики

В физике и электротехнике ампер является величиной, характеризующей силу тока в количественном отношении. Для ее определения используются различные способы. Среди них наибольшее распространение получил метод прямых измерений, когда используется , тестер или мультиметр. При выполнении замеров эти приборы последовательно включаются в электрическую цепь.

Другой способ считается косвенным, требующим проведения специальных расчетов. В этом случае необходимо знать напряжение, приложенное к данному участку цепи, и сопротивление этого участка. После чего, сила тока легко определяется по формуле I = U/R, а полученный результат отображается в амперах.

В практической деятельности амперы используются довольно редко, поскольку эта единица считается слишком большой для обычного пользования. Поэтому большинство специалистов пользуются кратными единицами — миллиамперами (10-3А) и микроамперами (10-6А), которые по-другому могут обозначаться в виде 0,001 А и 0,000001 А. Однако при выполнении расчетов необходимо вновь перевести миллиамперы в амперы и во всех формулах применять уже эти единицы. Именно на этой стадии у многих возникает вопрос, как переводить миллиамперы в амперы.

Как измерить

Для того чтобы определить силу тока на конкретном участке цепи, используются измерительные приборы, перечисленные выше. Среди них наиболее точным считается амперметр, производящий замеры только одной величины, с использованием одной шкалы. Однако более удобными считаются тестеры и , с помощью которых осуществляется измерение не только силы тока, но и других электротехнических величин в различных диапазонах. Данные приборы обладают возможностью переключаться с одних единиц измерения на другие и точно определять, сколько миллиампер в ампере.

В некоторых случаях измерительное устройство может показать превышение диапазона. Чтобы решить эту проблему достаточно сделать перевод миллиампер в амперы и получить требуемое значение. Несмотря на высокие погрешности измерений, мультиметры и тестеры на практике применяются намного чаще амперметров, поскольку с их помощью большинство неисправностей очень быстро обнаруживается и устраняется. Кроме того, эти приборы при выполнении измерений не требуют обязательного разрыва цепи, и сила тока может быть измерена бесконтактным способом.

Как перевести

Наиболее простым способом считается перевод единиц вручную, наглядно показывая ампер и миллиампер, разница между которыми составляет 10-3. В качестве примера можно рассмотреть участок электрической цепи с напряжением 5 вольт и сопротивлением 100 Ом. Для того чтобы определить силу тока, необходимо воспользоваться формулой и разделить значение напряжения на сопротивление I = U/R = 5/100 = 0,05 А. Полученный результат не совсем удобен использования, поэтому его рекомендуется пересчитать в кратных единицах измерения, то есть, в миллиамперах.

В этом случае 1 ампер равен 1000 миллиампер. Для пересчета 0,05 А нужно умножить на 1000 и получится 50 мА. Точно так же делается обратная процедура, когда 50 мА делится на 1000, и в итоге получаются первоначальные 0,05 А. Таким образом, решая задачу на 1 ампер сколько приходится миллиампер получается количество, равное 1000.

Для того чтобы ускорить процедуру перевода единиц, были разработаны специальные таблицы, отображающие различные типы величин. Например, если один миллиампер составляет 0,001 ампера, то в обратном порядке один ампер будет равен 1000 миллиампер. На корпусах аккумуляторов помимо силы тока, добавляется количество времени, в течение которого они смогут отдать или получить определенный заряд. На различных зарядных устройствах наносится количество ампер или миллиампер, которые дополнительно означают их мощность.

В таблице, приведенной на рисунке, исключается применение большого количества нулей. Вместо них используются специальные приставки, обозначающие какую-то часть от целых чисел. Все вместе они представляют собой единое слово, в котором присутствует не только приставка, но и сама основная единица.

Преобразование 25 мА в

Итак, вы хотите преобразовать 25 миллиампер в амперы? Если вы спешите и вам просто нужен ответ, калькулятор ниже — это все, что вам нужно. Ответ 0,025 ампер .

Как перевести миллиамперы в амперы

Все мы каждый день используем разные единицы измерения. Независимо от того, находитесь ли вы в другой стране и вам нужно преобразовать местные имперские единицы в метрическую систему, или вы печете торт и вам нужно преобразовать в единицы, с которыми вы более знакомы.

К счастью, преобразовать большинство единиц очень и очень просто. В этом случае все, что вам нужно знать, это то, что 1 мА равна 0,001 А.

Как только вы узнаете, что такое 1 ма в амперах, вы можете просто умножить 0,001 на общее количество миллиампер, которое вы хотите вычислить.

Итак, в нашем примере у нас 25 миллиампер. Итак, все, что мы делаем, это умножаем 25 на 0,001:

.

25 х 0,001 = 0,025

Какой самый лучший преобразователь на 25 мА?

В качестве дополнительного небольшого бонуса для вас мы также можем рассчитать лучшую единицу измерения для 25 мА.

Какая единица измерения «лучшая»? Для простоты предположим, что лучшая единица измерения — это наименьшая возможная единица измерения, не опускающаяся ниже 1. Причина этого в том, что наименьшее число обычно упрощает понимание измерения.

Для 25 мА лучшей единицей измерения является миллиампер, а величина — 25 мА.

Цитируйте, ссылайтесь или ссылайтесь на эту страницу

Если вы нашли этот контент полезным в своем исследовании, пожалуйста, сделайте нам большое одолжение и используйте инструмент ниже, чтобы убедиться, что вы правильно ссылаетесь на нас, где бы вы его ни использовали.Мы очень ценим вашу поддержку!

  • Преобразовать 25 мА в

  • «Преобразовать 25 мА в А». VisualFractions.com . По состоянию на 9 декабря 2021 г. http://visualfractions.com/unit-converter/convert-25-ma-to-a/.

  • «Преобразовать 25 мА в А». VisualFractions.com , http://visualfractions.com/unit-converter/convert-25-ma-to-a/. Доступ 9 декабря 2021 г.

  • Преобразовать 25 мА в. VisualFractions.com. Получено с http://visualfractions.com/unit-converter/convert-25-ma-to-a/.

Больше единиц преобразования

Надеюсь, это помогло вам узнать, как преобразовать 25 мА в. Если вы хотите рассчитать больше преобразований единиц, вернитесь к нашему основному конвертеру единиц и поэкспериментируйте с различными преобразованиями.

Transformaţi миллиампер [mA] ampere [A] • Конвертер электрического тока • Ingineria electrică • Компактный калькулятор • Convertori online

Lungime şi distanţăМасса конвертерСухой объем и общие измерения для приготовления пищиПреобразователь объёма и общих измерений при приготовлении пищиКонвертер температурыКонвертер температуры, модуля энергии и энергии КонвертерМощный преобразовательПреобразователь силыКонвертер времениЛинейная линейкаКонвертер угловой эффективности, расхода топлива и экономии топливаКонвертер единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиКонвертер мужской одежды и размеров обувиКонвертер угловой скорости и частоты вращенияКонвертер ускорения конвертера угловой скорости и ускорения Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на единицу объема) Конвертер температуры Конвертер интерваловКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиКонвертер плотности тепла, плотности пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициентов теплопередачиОбъёмный преобразователь расходаКонвертер массового расходаКонвертер молярного расходаПреобразователь массового потока Конвертер плотности молярной концентрацииПреобразователь плотности и вязкости КонвертерПроницаемость, проницаемость, проницаемость водяного пара Конвертер влажности и скорости передачи паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркости ) в увеличение (X) конвертер Преобразователь линейного зарядаЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь уровня объёмного зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПоверхностный преобразователь плотности токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимости, преобразователь электрической проводимости, дБ Ватты и другие единицы измеренияПреобразователь магнитодвижущей силыПреобразователь магнитодвижущей силыПреобразователь магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализацииКонвертер единиц измерения объема древесиныКалькулятор молярной массыПериодическая таблица

Обзор

Чесменское сражение Ивана Айвазовского

Мы обязаны комфортом нашей повседневной жизни электрическому току. Он генерирует излучение в видимом спектре и не только освещает наши дома, но также готовит и разогревает пищу в различных электроприборах, таких как электрические плиты, микроволновые печи и тостеры.Поскольку у нас есть электричество, нам не нужно добывать топливо, чтобы зажечь огонь. Благодаря электричеству мы также можем быстро перемещаться по горизонтальной плоскости внутри поездов, поездов метро и высокоскоростных поездов, а также по вертикальным плоскостям на эскалаторах и лифтах. Мы обязаны теплом и комфортом в наших домах электрическому току, потому что он питает наши электрические обогреватели, кондиционеры и вентиляторы. Различные машины с электрическим приводом значительно упрощают нашу работу как в повседневной жизни, так и в различных отраслях промышленности.Действительно, мы живем в эпоху электричества, потому что именно электричество позволяет нам использовать наши компьютеры, смартфоны, Интернет, телевидение и другие интеллектуальные электронные технологии. Учитывая, насколько удобно использовать электричество как форму энергии, неудивительно, что мы тратим столько усилий на ее выработку.

Звучит необычно, но идея практического использования электричества впервые была воспринята некоторыми из наиболее консервативных членов общества — военно-морскими офицерами. В этом элитарном обществе было трудно продвигаться вверх, и столь же трудно было убедить адмиралов, которые начинали юнгой в эпоху парусного спорта, в необходимости перехода на бронированные боевые корабли с паровыми двигателями, но молодые офицеры предпочитали и поддерживали инновации.Благодаря успеху использования огневых кораблей во время русско-турецкой войны 1770 года, которая привела к победе в Чесменской битве, военно-морской флот начал рассматривать возможность модернизации систем защиты порта за счет использования старой береговой артиллерии в сочетании с военно-морскими минами, которые были новаторскими в то время.

Корабельная радиостанция, ок. 1910. Канадский музей науки и техники, Оттава

Разработка различных типов морских мин началась в начале XIX века, и наиболее успешные разработки включали автономные мины, активируемые электричеством.В 1870-х годах немецкий физик Генрих Герц разработал устройство для подрыва поставленных на якорь мин с помощью электричества. Одна из разновидностей этого устройства — морская рогатая мина — широко известна и часто появляется в исторических фильмах о войне. Его свинцовый «рог» имеет емкость с электролитом, который разрушается при контакте с корпусом корабля. Электролит питает простую батарею, которая, в свою очередь, подрывает мину.

Радиостанция Hudson’s Bay Company, ок. 1937. Канадский музей науки и технологий, Оттава

Морские офицеры были одними из первых, кто оценил потенциал свечей Яблочкова, которые были первыми источниками электрического света.Они были далеки от совершенства, но излучали свет от электрической дуги и раскаленного добела положительного электрода, сделанного из угля. Они использовались для сигнализации поля боя и для освещения поля боя. Использование мощных прожекторов давало преимущество использовавшей их стороне для освещения поля боя в ночных боях или для передачи информации и координации действий различных военно-морских частей во время морских сражений. Прожекторы, используемые в маяках, улучшили навигацию в опасных прибрежных водах.

Вакуумная лампа, ок. 1921. Канадский музей науки и технологий, Оттава

Неудивительно, что военно-морской флот также был взволнован адаптацией технологий, позволяющих беспроводную передачу информации. Большой размер первых передающих устройств не был проблемой для военно-морского флота, потому что на их кораблях было достаточно места для размещения этих удобных, но порой больших машин.

Электрическое оборудование использовалось для упрощения заряжания пушек на борту кораблей, в то время как силовые электрические механизмы использовались для вращения пушечных турелей и повышали точность и эффективность пушек.Телеграф машинного приказа позволял экипажу общаться и повышал его эффективность, что давало значительное преимущество в бою.

Одним из самых ужасных способов применения электрического тока в военно-морском сражении было использование Третьим рейхом подводных лодок рейдеров. Подводные лодки Гитлера, действовавшие по тактике «Волчьей стаи», потопили многие транспортные конвои союзников. Хорошо известная история Convoy PQ 17 — один из примеров.

Drummondville Радиопередатчик, ок. 1926. Канадский музей науки и технологий, Оттава

Британский флот смог получить несколько машин Enigma, используемых немцами для кодирования сообщений, и им удалось взломать этот код с помощью Алана Тьюринга, известного как отец современные вычисления.Союзники перехватили радиосвязь немецкого адмирала Карла Дёница, и с этой информацией смогли использовать прибрежные военно-воздушные силы, чтобы загнать в угол Волчью стаю и оттеснить ее к берегам Норвегии, Германии и Дании. Благодаря этому с 1943 года рейды ограничились короткими.

Беспроводной телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

Гитлер планировал добавить к своим подводным лодкам ракеты Фау-2, чтобы их можно было использовать для атаки на восточное побережье США.Однако быстрое продвижение союзников на Западном и Восточном фронтах помешало ему сделать это.

Современный флот сложно представить без авианосцев и атомных подводных лодок. Они питаются от ядерных реакторов, которые сочетают в себе технологии 19 века на основе пара, технологии 20 века на основе электричества и ядерные технологии 21 века. Энергетические системы атомных подводных лодок вырабатывают достаточно электроэнергии для удовлетворения энергетических потребностей большого города.

В дополнение к использованию электричества, которое мы уже обсуждали, недавно военно-морской флот начал рассматривать другие применения электричества, такие как использование рельсотрона. Рельсотрон — это электрическая пушка, которая использует снаряды кинетической энергии, которые обладают огромным разрушительным потенциалом.

Джеймс Клерк Максвелл. Статуя Александра Стоддарта. Фото Ad Meskens / Wikimedia Commons

Немного истории

С развитием надежных источников энергии для постоянного тока, таких как гальваническая батарея, созданная итальянским физиком Алессандро Вольта, многие выдающиеся ученые по всему миру начали исследовать свойства электрический ток и вызываемые им физические явления, а также его практическое использование в науке и технике.«Звездный список» ученых включает Георга Ома, который вывел закон Ома для описания поведения электрического тока в основной электрической цепи; немецкий физик Густав Кирхгоф, разработавший расчеты для более сложных электрических цепей; и французский физик Андре Мари Ампер, открывший закон, описывающий свойства замкнутого контура, на который действует магнитное поле и через него проходит электрический ток. Этот закон известен теперь как круговой закон Ампера. Независимая работа английского физика Джеймса Прескотта Джоуля и русского ученого Генриха Ленца завершилась открытием закона джоулева нагрева, который количественно определяет тепловой эффект электрического тока.

Хендрик Антун Лоренц, картина Менсо Камерлинг-Оннеса (1860–1925) в 1916 году.

Работы Джеймса Клерка Максвелла были посвящены дальнейшему исследованию свойств электрического тока и заложили основу современной электродинамики. Теперь эти работы известны как уравнения Максвелла. Максвелл также разработал теорию электромагнитного излучения и предсказал многие явления, такие как электромагнитные волны, радиационное давление и другие. Позже существование электромагнитных волн было экспериментально доказано немецким физиком Генрихом Рудольфом Герцем.Его работы по отражению, интерференции, дифракции и поляризации электромагнитных волн были использованы при изобретении радио.

Жан-Батист Био (1774–1862)

Несколько экспериментальных работ французских физиков Жана-Батиста Био и Феликса Савара о проявлении магнетизма в присутствии электрического тока, обобщенных в законе Био – Савара, и исследованиях блестящего французского математика Пьера-Симона Лапласа, который обобщил приведенные выше экспериментальные результаты в виде математической абстракции, впервые установил связь между двумя сторонами одного явления и положил начало изучению электромагнетизма.Гениальный британский физик Майкл Фарадей продолжил их работу и открыл электромагнитную индукцию. Современная электротехника построена на работах Фарадея.

Физик из Нидерландов Хендрик Лоренц внес ценный вклад в объяснение природы электрического тока. Он разработал классическую теорию электронов и предположил, что атомы состоят из более мелких заряженных частиц и что свет является результатом колебаний этих частиц. Он также вывел уравнение для описания силы, действующей на движущийся заряд изнутри электромагнитного поля.Эта сила известна как сила Лоренца.

Определение электрического тока

Электрический ток можно определить как упорядоченное движение заряженных частиц. Учитывая это определение, электрический ток измеряется количеством заряженных частиц, которые проходят через поперечное сечение проводника за заданную единицу времени.

I = q / t , где q — заряд в кулонах, t — время в секундах, а I — электрический ток в амперах.

Другое определение электрического тока зависит от свойств проводников и описывается законом Ома:

I = В / R , где В, — напряжение в вольтах, R — сопротивление в Ом. , I — ток в амперах.

Электрический ток измеряется в амперах (А) и единицах, производных от них, таких как наноампер (одна миллиардная часть ампера, нА), микроампер (одна миллионная часть ампера, мкА), миллиампер (тысячная часть ампера, мА). ), килоампер (тысяча ампер, кА) и мегаампер (миллион ампер, МА).

В СИ единицей измерения электрического тока является

[А] = [C] / [s]

Поведение электрического тока в различных средах

Алюминий является очень хорошим проводником и широко используется в электропроводке.

Электрический ток в твердых материалах, включая металлы, полупроводники и диэлектрики

При рассмотрении электрического тока мы должны учитывать среду, которая его переносит, в частности, заряженные частицы, присутствующие в материале или веществе в текущем состоянии.Этот материал или вещество может быть твердым, жидким или газообразным. Уникальным примером различных состояний вещества является монооксид дигидрогена или оксид водорода, известный нам просто как вода. Мы можем увидеть его твердым, если посмотрим на лед из морозильной камеры, который мы сделали для охлаждения напитков — большинство из них основаны на воде. С другой стороны, при приготовлении чая или растворимого кофе мы используем кипяток. Если бы мы подождали, пока вода закипит, прежде чем налить ее в чайник, мы бы увидели «туман», выходящий из носика чайника — этот туман состоит из капель воды, образовавшихся из газообразного состояния воды (пара), которое выходит из носика и контактирует с холодным воздухом.

Существует еще одно состояние вещества, известное как плазма. Низкотемпературная плазма составляет верхние слои звезд, ионосферу Земли, пламя, электрическую дугу и вещество внутри люминесцентных ламп — это лишь несколько примеров. Трудно воссоздать высокотемпературную плазму в лаборатории, потому что для этого требуются чрезвычайно высокие температуры, превышающие 1 000 000 К.

Эти высоковольтные выключатели состоят из двух основных компонентов: размыкающих контактов и изолятора, соединяющего два провода вместе.

По своей структуре твердые материалы можно разделить на кристаллические и аморфные. Первые имеют структурированную кристаллическую решетку. Атомы и молекулы такого вещества образуют двух- или трехмерные кристаллические решетки. Кристаллические твердые тела включают металлы, их сплавы и полупроводники. Мы можем легко визуализировать кристаллические твердые тела, представляя снежинки, которые представляют собой кристаллы уникальной формы. Аморфные вещества не имеют кристаллической решетки. Диэлектрики обычно аморфны.

В нормальных условиях электрический ток течет через твердые тела благодаря движению свободных электронов, которые становятся несвязанными в результате отрыва валентных электронов от атома. Мы также можем разделить твердые тела в зависимости от характера потока электричества внутри них на проводники, полупроводники и изоляторы. Свойства различных материалов определяются на основе дискретной электронной зонной структуры. Это зависит от ширины запрещенной зоны, в которой не могут находиться электроны.Изоляторы имеют самую широкую запрещенную зону, которая иногда может достигать 15 эВ. Изоляторы и полупроводники не имеют электронов в проводящем промежутке при температуре абсолютного нуля, но при комнатной температуре будут некоторые электроны, которые были удалены из валентных зон из-за тепловой энергии. В проводниках, таких как металлы, зона проводимости перекрывается с валентными зонами. Вот почему даже при абсолютном нуле существует большое количество электронов, и это все еще верно, когда температура повышается до точки плавления.Эти электроны позволяют электрическому току проходить через материал. Полупроводники имеют небольшую ширину запрещенной зоны, и их способность проводить электричество во многом зависит от температуры, излучения и других факторов, таких как присутствие примесей.

Трансформатор с ламинированным сердечником. По бокам хорошо видны стальные листы двутавровой и Е-образной формы.

Сверхпроводники создают особые условия для электрического тока. Это материалы с нулевым сопротивлением прохождению электрического тока.Электроны проводимости этих материалов образуют группы частиц, которые связаны друг с другом за счет квантовых эффектов.

Как следует из названия, изоляторы плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания электрического тока между проводящими поверхностями из разных материалов.

В дополнение к электрическому току, протекающему по проводникам, когда магнитное поле постоянное, когда магнитное поле переменное, его изменения вызывают явление, известное как вихревые токи, которые также называются токами Фуко.Чем больше скорость изменения магнитного поля, тем сильнее вихревые токи. Они не текут по определенному маршруту, а вместо этого текут в замкнутых контурах в проводнике.

Вихревые токи вызывают скин-эффект, который представляет собой тенденцию протекания переменного электрического тока (AC) и магнитного потока в основном вдоль поверхностного слоя проводника, что приводит к потере энергии. Чтобы уменьшить эти потери на вихревые токи в сердечниках трансформаторов, их магнитные цепи разделены. Это делается путем наложения слоев тонких стальных изолированных пластин, которые образуют сердечник трансформатора.

Хромированная пластиковая лейка для душа

Электрический ток в жидкостях (электролитах)

Все жидкости могут в определенной степени проводить электрический ток при приложении к ним электрического напряжения. Жидкости, проводящие электрический ток, называются электролитами. Электрический ток переносится положительно и отрицательно заряженными ионами, известными соответственно как катионы и анионы, которые присутствуют в жидкости из-за электролитической диссоциации. В электролитах ток течет из-за движения ионов по сравнению с током, возникающим из-за движения электронов в металлах.Этот ток в электролитах характеризуется перемещением вещества к электродам и образованием новых химических элементов вокруг электродов или отложением этих новых веществ на электроде.

Это явление легло в основу электрохимии и позволяет количественно определять эквивалентную массу различных химических веществ. Это позволило превратить неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать химические источники энергии в виде первичных (или одноразовых) и аккумуляторных батарей и топливных элементов.Это, в свою очередь, позволило совершить скачок в развитии технологий. Просто заглянув под капот вашего автомобиля и исследуя автомобильный аккумулятор, вы сможете увидеть результаты десятилетий работы исследователей и инженеров.

Автомобильный аккумулятор, установленный в 2012 году Honda Civic

Многие производственные процессы, зависящие от протекания электрического тока в электролитах, могут придать привлекательный вид конечному продукту (например, хромовое и никелевое гальваническое покрытие) и защитить объекты от коррозии.Электроосаждение и электротравление — фундаментальные процессы в современной электротехнике при создании различных электронных компонентов. Эти процессы очень часто используются, например, в микропроизводстве, и количество электронных компонентов, производимых с использованием этих технологий, достигает десятков миллиардов в год.

Электрический ток в газах

Поток электрического тока в газах зависит от количества в нем свободных электронов и ионов. Из-за большего расстояния между частицами газа по сравнению с жидкостями и твердыми телами молекулы и ионы в газах обычно проходят большие расстояния, прежде чем столкнуться.Из-за этого протекание электричества в газах в нормальных условиях затруднено. То же верно и для смесей газов. Примером смеси газов является воздух, который в электротехнике считается хорошим изолятором. В обычных условиях многие другие смеси газов также являются хорошими изоляторами.

Неоновая лампа для проверки отвертки показывает наличие напряжения 220 В.

Поток электричества в газах зависит от различных физических факторов, таких как давление, температура и компоненты, составляющие эту смесь.Кроме того, ионизирующее излучение тоже играет роль. Например, газ может проводить электричество, если его облучают ультрафиолетовым или рентгеновским излучением, если на него воздействуют катодные или анодные частицы или частицы, испускаемые радиоактивным веществом, или даже если температура этого газа высока.

Когда энергия поглощается электрически нейтральными атомами или молекулами газа и когда образуются ионы, этот эндотермический процесс называется ионизацией. Когда энергия достигает определенного порога, электрон или группа электронов преодолевают потенциальный барьер и покидают атом или молекулу, становясь, таким образом, свободными электронами.Атом или молекула, которую оставили электроны, тоже больше не нейтральны, они заряжены положительно. Свободные электроны могут присоединяться к нейтрально заряженным атомам или молекулам и образовывать отрицательно заряженные ионы. Положительно заряженные ионы могут отбирать отрицательно заряженные электроны при столкновении с ними и, таким образом, снова становиться нейтральными. Этот процесс называется рекомбинацией.

Когда электрический ток течет через газ, его состояние изменяется. Это приводит к сложной зависимости между электрическим током и напряжением, которая более или менее регулируется законом Ома, но только при малых электрических токах.

Электрические разряды в газах могут быть как несамостоятельными, так и самоподдерживающимися. Несамостоятельные разряды создают электрический ток, который возможен только при наличии внешних ионизирующих факторов. Когда они отсутствуют, электрический ток через газ не течет. С другой стороны, во время самоподдерживающихся разрядов электрический ток поддерживается за счет ионизации нейтральных атомов и молекул в газе, которые были ускорены электрическим полем при столкновении со свободными электронами и ионами.В этих условиях электрический ток возможен даже без внешних ионизирующих факторов.

Вольт-амперные характеристики тихого разряда

Когда разность потенциалов между анодом и катодом мала, несамостоятельный разряд называют тихим или таунсендовским. С увеличением напряжения увеличивается и сила тока. Сначала это увеличение пропорционально напряжению (участок OA на вольт-амперной характеристике бесшумного разряда), но постепенно скорость нарастания замедляется (участок AB на графике).Когда все оторвавшиеся частицы, которые высвободились в результате процесса ионизации, движутся к катоду и аноду одновременно, увеличения тока не происходит (участок BC на графике). Если напряжение снова увеличивается, ток также увеличивается, и бесшумный разряд становится несамостоятельным лавинным зарядом. Примером несамостоятельного разряда является тлеющий разряд в газоразрядных лампах высокого давления различного назначения.

Когда несамостоятельный разряд трансформируется в самостоятельный разряд, электрический ток увеличивается (точка E на кривой).Эта точка известна как электрический пробой.

Электронная фотовспышка с ксеноновой трубкой (красный прямоугольник)

Все различные типы зарядов, описанные выше, являются стационарными или установившимися разрядами. Их свойства не зависят от времени. Помимо этих разрядов, существуют также нестабильные разряды, которые обычно возникают в очень неравномерных электрических полях, например, на заостренных или искривленных поверхностях проводников или электродов. Существует два типа неравномерных разрядов: коронный разряд и искровой разряд.

Ионизация при коронном разряде не вызывает электрического пробоя. Этот разряд вызывает повторяющийся процесс запуска несамостоятельного разряда в небольшом ограниченном пространстве вокруг проводника. Хорошим примером коронного разряда является свечение в воздухе вокруг антенн, громоотводов или линий электропередач высоко над землей. Коронный разряд вокруг линий электропередачи вызывает потерю энергии. Раньше это сияние было знакомо мореплавателям — свечение вокруг мачт кораблей было известно как св.Элмо огонь. Коронный разряд используется в лазерных принтерах и копировальных аппаратах. Он генерируется устройством, создающим коронный разряд, металлической струной, к которой приложено высокое напряжение. Коронный разряд ионизирует газ, который, в свою очередь, ионизирует светочувствительный барабан. В этом случае полезен коронный разряд.

По сравнению с коронным разрядом электростатический разряд вызывает электрический пробой. Это похоже на прерывистые светлые нити, которые разветвляются и заполнены ионизированным газом. Они появляются и исчезают, производя большое количество тепла и света.Типичным примером естественного электростатического разряда является молния. Электрический ток в нем может достигать десятков килоампер. Прежде чем может произойти молния, необходимо создать нисходящую группу лидеров, известную как лидер или искра. Вместе со ступенчатым лидером образует выстроенный строй. Молния обычно состоит из множественных электростатических разрядов в направленном вниз формировании лидера для разряда отрицательной молнии «облако-земля». В электронных вспышках в фотографии используется мощный электростатический разряд.Разряд здесь образуется между электродами импульсной лампы из кварцевого стекла, заполненного смесью благородных ионизированных газов.

Когда электрический разряд сохраняется в течение длительного периода времени, он называется электрической дугой. Электрическая дуга используется в дуговой сварке, которая является незаменимой технологией в современном строительстве, используется для возведения стальных конструкций различного размера и назначения, от небоскребов до авианосцев и автомобилей. Электрическая дуга используется не только для соединения материалов, но и для их резки.Разница между этими двумя процессами заключается в силе используемого тока. Сварка происходит при относительно более низких токах, в то время как для резки требуются более высокие токи электрической дуги. Само порезание происходит при удалении расплавленного металла, и для его удаления используются разные методы.

Еще одно применение электрической дуги в газах — газоразрядные лампы, которые отгоняют тьму на наших улицах, площадях и стадионах (в этих условиях обычно используются натриевые лампы).Металлогалогенные лампы, которые заменили лампы накаливания в автомобильных фарах, также используют эту технологию.

Электрический ток в вакууме

Вакуумная трубка в передающей станции. Канадский музей науки и технологий, Оттава

Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только в том случае, если свободные носители тока, такие как электроны или ионы, генерируются термоэлектронной эмиссией, фотоэлектрической эмиссией или другими способами. способами.

Подобные телекамеры использовались в 1980-х годах.Канадский музей науки и техники, Оттава

Основным методом получения электрического тока в вакууме с использованием электронов является термоэлектрическая эмиссия электронов металлами. Когда электрод нагревается (он называется горячим катодом), он испускает электроны в трубку. Эти электроны вызывают прохождение электрического тока до тех пор, пока присутствует другой электрод (называемый анодом), и пока между ними существует определенное напряжение требуемой полярности. Такие вакуумные лампы называются диодами и проводят электрический ток только в одном направлении.Они блокируют ток, если есть попытка заставить ток течь в обратном направлении. Это свойство используется для преобразования переменного тока (AC) в постоянный (DC) посредством процесса выпрямления. Это делается системой диодов.

Если рядом с катодом добавить дополнительный электрод, известный как сетка, мы получим устройство, называемое триодом, которое значительно усиливает даже небольшие изменения напряжения в управляющей сетке относительно катода. В результате это изменяет ток и напряжение на нагрузке, которая последовательно подключена к вакуумной лампе, относительно источника питания.Эта система, называемая усилителем, используется для усиления различных сигналов.

Использование электронных ламп с большим количеством управляющих сеток, таких как тетроды, пентоды и даже пентагридные преобразователи с семью электродами, было революционным в создании и усилении радиосигналов и позволило создать современные системы радио- и телевещания.

Современный видеопроектор

Исторически радио было разработано первым, потому что было относительно легко разработать методы преобразования и передачи относительно низкочастотных сигналов, а также разработать схему для приемных устройств, которые могут усиливать и смешивать радиочастоты для их преобразования в акустический сигнал посредством процесса демодуляции.

Когда было изобретено телевидение, электронные лампы, называемые иконоскопами, использовались для испускания электронов за счет фотоэлектрического эффекта падающего на них света. Дальнейшее усиление сигнала производилось ламповым усилителем. Для просмотра захваченного и переданного изображения использовались электронно-лучевые трубки (ЭЛТ), которые также были вакуумными трубками. В ЭЛТ изображение создавалось на экране путем обратного преобразования сигнала. Это было сделано путем ускорения электронов до высокой скорости с помощью одной (или трех для цветного телевидения) электронных пушек в сильном электрическом поле.Поле создавалось приложением большого напряжения между катодом электронной пушки и анодом ЭЛТ. Пучки высокоскоростных электронов направлялись на экран, покрытый люминесцентным материалом, и с него излучался видимый свет. Изображение было создано двумя взаимно синхронизированными системами: одна считывала сигнал с иконоскопа, а другая выполняла растровое сканирование. Первые электронно-лучевые трубки были монохромными.

SU3500 Сканирующий электронный микроскоп. Департамент материаловедения и инженерии.Университет Торонто

Вскоре после этого было разработано цветное телевидение. Иконоскопы в цветном телевидении были гибридными системами, которые реагировали только на свет определенного цвета: красного, синего или зеленого. Цветные люминофорные точки электронно-лучевых трубок телевизора излучали свет за счет электрического тока, создаваемого электронной пушкой. Они реагировали на ударяющие по ним ускоренные электроны и излучали свет определенного цвета и яркости. Были использованы специальные теневые маски, чтобы лучи каждой цветной электронной пушки попадали в точки люминофора правильного цвета.

В современных технологиях теле- и радиовещания используются более современные материалы на основе полупроводников, которые потребляют меньше энергии.

Одним из широко используемых методов получения изображения внутренних органов является рентгеноскопия. Катод испускает электроны, которые разгоняются до такой скорости, что при попадании на анод генерируют рентгеновское излучение, которое может проникать в мягкие ткани человеческого тела. Рентгенограммы дают врачам уникальную информацию о состоянии костей, зубов и некоторых внутренних органов и даже могут помочь определить такие заболевания, как рак легких.

Лампа бегущей волны С-диапазона. Канадский музей науки и техники, Оттава

В общем, электрические токи, образованные движением электронов в вакууме, находят широкое применение. Вакуумные лампы, ускорители частиц, масс-спектрометры, электронные микроскопы, генераторы вакуума высокой частоты, такие как лампы бегущей волны, клистроны и резонаторные магнетроны, — это лишь некоторые из примеров того, как мы используем этот тип электрического тока. Следует отметить, что именно магнетроны нагревают и готовят пищу в микроволновых печах.

Недавней очень ценной технологией, использующей электрический ток в вакууме, является осаждение тонких пленок в вакууме. Эти пленки имеют декоративную или защитную функцию. Материалы, используемые в этой технике, — это металлы, их сплавы и их соединения с кислородом, азотом и углеродом. Эти пленки либо изменяют, либо сочетают в себе электрические, оптические, механические, магнитные, каталитические и связанные с коррозией свойства поверхности, которую они покрывают.

Для получения комплексного соединения пленки используется технология ионно-лучевого осаждения.Некоторыми примерами этой технологии являются катодно-дуговое напыление и его коммерческий вариант мощного импульсного магнетронного распыления. В конце концов, это электрический ток , который создает пленочное покрытие на поверхности благодаря ионам.

Ионно-лучевое распыление создает пленки из нитридов, карбидов и оксидов металлов, которые обладают необычайным набором механических, теплофизических и оптических свойств, включая твердость, долговечность, электро- и теплопроводность и оптическую плотность.Другим способом добиться этих результатов невозможно.

Электрический ток в биологии и медицине

Макет операционной в Институте знаний Ли Ка Шинг, Торонто, Канада. Пациенты-роботы-манекены, которые могут моргать, дышать, плакать, истекать кровью и моделировать болезни, используются для обучения

Понимание поведения электрического тока внутри биологических систем дает биологам и врачам мощный инструмент для исследований, диагностики и лечения.

С точки зрения электрохимии все биологические объекты содержат электролиты, независимо от их структуры.

При рассмотрении того, как электрический ток проходит через биологический объект, мы должны учитывать состояние клеток этого объекта. В этом отношении клеточная мембрана является важной структурой, которую необходимо учитывать. Это внешний слой каждой клетки, который защищает клетку от негативного воздействия окружающей среды за счет избирательной проницаемости для различных веществ. Другими словами, он пропускает одни вещества, а другие останавливает. С точки зрения физики, мы можем рассматривать эту мембрану как эквивалентную схему, которая состоит из параллельного соединения конденсатора с несколькими цепями, которые имеют последовательное соединение между источником электрического тока и резистором.Благодаря такой структуре электропроводность этого биологического объекта зависит от частоты приложенного напряжения и типов напряжения.

Трехмерное изображение волоконных путей, соединяющих различные области мозга. Это изображение было получено с использованием метода неинвазивной диффузионной тензорной визуализации (DTI)

Биологическая ткань состоит из клеток, внеклеточной жидкости, кровеносных сосудов и нервных клеток. При подаче электрического тока нервные клетки возбуждаются и посылают сигналы о сокращении или расслаблении мышц и кровеносных сосудов животного.Следует отметить, что течение электрического тока в биологических тканях нелинейно.

Классическим примером воздействия электрического тока на биологический объект является серия экспериментов итальянского врача, физика и биолога Луиджи Гальвани, который считается одним из отцов-основателей электрохимии. В этих экспериментах он пропустил электрический ток через нервы в ноге лягушки, и это вызвало сокращение мускулов и движение ноги. В 1791 году его открытия были описаны в отчете об электрических силах в движении мышц.Долгое время в учебниках явление, открытое Гальвани, именовалось гальванизмом. Даже сейчас этот термин иногда используется для обозначения определенных процессов и устройств.

Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году британский хирург и врач Ричард Кейтон и русский врач Василий Данилевский независимо друг от друга показали, что мозг может генерировать электричество. Другими словами, они обнаружили ионный ток, протекающий в мозгу.

Биологические объекты могут генерировать не только микротоки, но также значительные напряжения и токи в рамках своего повседневного функционирования.Задолго до работ Гальвани британский биолог Джон Уолш доказал электрическую природу системы защиты от электрического луча. Шотландский хирург и физиолог Джон Хантер подробно описал механизм, с помощью которого электрические лучи генерируют электричество. Результаты их исследования были опубликованы в 1773 году.

Функциональная магнитно-резонансная томография (фМРТ) — это неинвазивный метод, который позволяет врачам измерять активность мозга, обнаруживая изменения в кровотоке.

Современная медицина и биология используют различные методы исследования. живые организмы, которые включают как инвазивные, так и неинвазивные методы.

Классическим примером инвазивного метода является исследование крыс, которые бегают по лабиринту или выполняют другие задания с имплантированными в их мозг электродами.

С другой стороны, неинвазивные методы — это такие широко известные методы диагностики, как электроэнцефалография и электрокардиография. В этих процедурах электроды, контролирующие электрические токи в головном мозге или сердце, используются для измерения на коже человека или животного под наблюдением. Чтобы улучшить контакт с электродами, на кожу наносят физиологический раствор, поскольку он является хорошим электролитом и может хорошо проводить электрический ток.

Помимо использования электрического тока для исследований и наблюдения за состоянием различных химических процессов и реакций, одним из наиболее эффективных способов использования электричества является дефибрилляция, которая в фильмах иногда изображается как «перезапуск» сердца, которое уже остановилось. работающий.

Тренировочный автоматический внешний дефибриллятор (AED)

Действительно, запуск кратковременного импульса значительной силы иногда (но очень редко) может перезапустить сердце. Однако чаще используются дефибрилляторы, чтобы скорректировать аритмическое биение сердца и вернуть его в норму.Хаотические аритмические сокращения известны как фибрилляция желудочков, поэтому устройство, которое возвращает сердце в норму, называется дефибриллятором. Современные автоматические внешние дефибрилляторы могут регистрировать электрическую активность сердца, определять фибрилляцию желудочков сердца, а затем рассчитывать силу тока, необходимую пациенту, на основе этих факторов. Во многих общественных местах теперь есть дефибрилляторы, и медицинское сообщество надеется, что эта мера предотвратит множество смертей, вызванных дисфункцией сердца пациента.

Парамедики обучены определять физиологическое состояние сердечной мышцы по электрокардиограмме и быстро принимать решения о лечении, намного быстрее, чем это могут сделать автоматические внешние дефибрилляторы, доступные для населения.

Отдельно стоит упомянуть об искусственных кардиостимуляторах, контролирующих сердечные сокращения. Эти устройства имплантируются под кожу или под грудную мышцу пациента и передают импульсы электрического тока напряжением около 3 В через электрод в сердечную мышцу.Это стимулирует нормальный сердечный ритм. Современные кардиостимуляторы могут проработать 6–14 лет, прежде чем потребуется их замена.

Характеристики электрического тока, его генерация и использование

Электрический ток характеризуется его величиной и типом. В зависимости от его поведения типы электрического тока делятся на постоянный или постоянный ток (он не изменяется со временем), гармонический ток (он изменяется случайным образом со временем) и переменный ток или переменный ток (он изменяется со временем в соответствии с определенным шаблоном, обычно это регулируется периодическим законом).Для некоторых задач требуется как постоянный, так и переменный ток. В данном случае мы говорим об переменном токе с постоянной составляющей.

Термоядерный реактор Токамак де Варенн. Варенн, Квебек, 1981. Канадский музей науки и технологий, Оттава

Исторически первый трибоэлектрический генератор электрического тока, машина Вимшерста, создавала его, натирая шерстью кусок янтаря. Более совершенные генераторы того же типа теперь называются генераторами Ван де Граафа — они названы в честь изобретателя самой ранней из этих машин.

Как мы уже говорили ранее, электрохимический генератор был изобретен итальянским физиком Алессандро Вольта. Этот генератор получил дальнейшее развитие в современных сухих аккумуляторных батареях, аккумуляторных батареях и топливных элементах. Мы до сих пор используем их, потому что это очень удобные источники энергии для всех видов устройств, от часов и смартфонов до автомобильных аккумуляторов и аккумуляторов электромобилей Tesla.

Помимо генераторов постоянного тока, описанных выше, существуют также генераторы, использующие ядерное деление изотопов, известные как атомные батареи, а также магнитогидродинамические генераторы, которые сегодня имеют очень ограниченное применение из-за их низкой мощности, технических ограничений. их конструкции и ряду других причин.Тем не менее генераторы радионуклидов используются в энергонезависимых системах, например, в космосе, в автономных подводных аппаратах и ​​гидроакустических станциях, в маяках, внутри маяковых буев, а также в Арктике и Антарктике.

Коммутатор в мотор-генераторной установке, 1904 г. Канадский музей науки и техники, Оттава

В электротехнике генераторы делятся на генераторы постоянного и переменного тока.

Все эти генераторы работают благодаря электромагнитной индукции, открытой Майклом Фарадеем в 1831 году.Фарадей построил первый униполярный генератор малой мощности, который генерировал постоянный ток. Что касается первого генератора переменного тока, то история гласит, что он был описан Фарадею в 1832 году в анонимном письме, подписанном «П. М. » После публикации этого письма Фарадей через год получил еще одно, в котором он благодарил и предлагал усовершенствовать конструкцию, добавив стальное кольцо для переноса магнитного потока магнитных полюсов катушек. Однако неясно, соответствует ли эта история действительности.

В то время применение переменного тока еще не было найдено, поскольку для всех практических применений электричества в то время требовался постоянный ток, включая ток, используемый в минной войне, электрохимии, недавно разработанном электротелеграфии и первых электродвигателях.Вот почему многие изобретатели сосредоточились пока на улучшении генераторов постоянного тока, изобретая для этого различные коммутационные устройства.

Одним из первых генераторов, получивших практическое применение, был магнитоэлектрический генератор, созданный немецким и российским исследователем Морицем фон Якоби, работавшим в России с 1835 по 1874 год. Он использовался минными подразделениями ВМФ Российской армии для воспламенения взрывателей. морских мин. Усовершенствованные генераторы этого типа используются по сей день для активации мин, и их часто можно увидеть в фильмах о Второй мировой войне, где партизаны или диверсанты используют их для взрыва мостов, схода с рельсов поездов и других подобных приложений.

Линза лазера с приводом компакт-дисков

С тех пор ведущие инженеры соревновались друг с другом в улучшении генераторов переменного и постоянного тока, создав окончательное противостояние между двумя титанами современной области производства электроэнергии, с Томасом Эдисоном из General Electric на одном с другой стороны, Никола Тесла из Westinghouse. Победил больший капитал, и технологии Tesla для генерации, транспортировки и преобразования переменного тока стали наследием американского общества. Это дало значительный толчок развитию экономики США и вывело страну на лидирующие позиции в мире.

Помимо способности производить электричество для различных нужд, которая зависела от преобразования механического движения в электричество благодаря обратимости электрических машин, стала реальностью еще одна возможность обратного преобразования электрического тока в механическое движение. Это было сделано с помощью электродвигателей, работающих на постоянном и переменном токе. Можно сказать, что эти типы машин являются одними из наиболее широко используемых технологий, и они включают стартеры автомобилей и мотоциклов, приводы коммерческих машин и станков, а также бытовые устройства и электронику.Благодаря этим устройствам мы научились выполнять различные задачи, такие как резка, сверление и формование. Благодаря этим технологиям мы также используем оптические диски, такие как компакт-диски и жесткие диски, в наших компьютерах — без них мы не смогли бы создать миниатюрные прецизионные электродвигатели постоянного тока.

Помимо привычных нам электромеханических двигателей, ионные двигатели также работают за счет электрического тока. Эти двигатели используют принцип движения за счет испускания ускоренных ионов данного вещества.В настоящее время они используются в космосе в основном для вывода на орбиту небольших спутников. Весьма вероятно, что будущие технологии 22-го века, такие как фотонные лазерные двигатели, которые все еще разрабатываются и которые будут вести наши межзвездные корабли на скоростях, приближающихся к скорости света, также будут зависеть от электрического тока.

Аналоговый мультиметр со снятой верхней крышкой

Генераторы постоянного тока можно использовать еще и для выращивания кристаллов для электронных компонентов.Этот процесс требует дополнительных стабильных генераторов постоянного тока. Такие прецизионные твердотельные генераторы электрического тока называются стабилизаторами тока.

Измерение электрического тока

Следует отметить, что устройства для измерения электрического тока, такие как микроамперметры, миллиамперметры и амперметры, сильно отличаются друг от друга в зависимости от их конструкции и принципов измерения, которые они используют. К ним относятся амперметры постоянного тока, амперметры переменного тока низкой частоты и амперметры переменного тока высокой частоты.

Измерительные механизмы этих устройств можно разделить на подвижную катушку, подвижное железо, подвижный магнит, электродинамические, индукционные, термоанемометрические и цифровые амперметры. Большинство аналоговых амперметров включает подвижную или неподвижную раму с намотанной катушкой и неподвижными или подвижными магнитами. Благодаря такой конструкции типичный амперметр имеет эквивалентную схему, которая представляет собой последовательное соединение катушки индуктивности и резистора с конденсатором, подключенным параллельно им. Из-за этого аналоговые амперметры недостаточно чувствительны для измерения высокочастотного тока.

Подвижная катушка с иглой и спиральными пружинами измерителя, использованная в аналоговом мультиметре выше. Некоторые люди по-прежнему предпочитают аналоговые мультиметры, которые практически не изменились с 1890-х годов.

Основным измерительным прибором амперметра является миниатюрный гальванометр. Его диапазоны измерения создаются за счет использования дополнительных шунтирующих резисторов с малым сопротивлением, и это сопротивление ниже, чем у обычного гальванометра. Таким образом, используя одно устройство в качестве основы, можно создавать различные измерительные устройства для измерения токов с разными диапазонами, включая микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

Обычно при электрических измерениях важно поведение тока. Он может быть измерен как функция времени и иметь разные типы, например постоянный, гармонический, гармонический, импульсный и т. Д. Его величина характеризует способ работы электронных схем и устройств. Идентифицируются следующие значения тока:

  • мгновенное,
  • размах амплитуды,
  • среднее,
  • среднеквадратичная амплитуда.

Мгновенный ток I i — значение тока в любой момент времени.Его можно просмотреть на экране осциллографа и измерить для каждого момента времени, глядя на осциллограф.

Размах амплитуды тока I м — наибольшее мгновенное значение тока за данный период времени.

Среднеквадратичное значение амплитуды тока I находится как квадратный корень из среднего арифметического квадратов мгновенных токов для периода формы сигнала.

Все аналоговые амперметры обычно измеряют среднеквадратичное значение амплитуды тока.

Среднее значение тока — это среднее значение всех значений мгновенного тока за время измерения.

Разница между максимальным и минимальным значением электрического тока называется размахом сигнала.

В наши дни для измерения электрического тока широко используются мультиметры и осциллографы. Оба этих устройства предоставляют информацию не только о форме , тока или напряжения, но и о других важных характеристиках сигнала.К ним относятся частота периодических сигналов, и поэтому важно знать предел частоты измерительного устройства при измерении электрического тока.

Измерение электрического тока с помощью осциллографа

Проиллюстрируем сказанное выше серией экспериментов по измерению активных и пиковых значений тока синусоидального и треугольного сигналов. Мы будем использовать генератор сигнала, осциллограф и мультиметр.

Схема эксперимента 1 показана ниже:

Генератор сигналов FG подключен к нагрузке, которая состоит из мультиметра (MM), подключенного последовательно с шунтом Rs и нагрузочным резистором R.Сопротивление шунтирующего резистора R s составляет 100 Ом, а сопротивление нагрузочного резистора R — 1 кОм. Осциллограф ОС подключен параллельно шунтирующему резистору R s . Номинал шунтирующего резистора выбирается из условия R s << R. Проводя этот эксперимент, помним, что рабочая частота осциллографа намного выше рабочей частоты мультиметра.

Test 1

Подаем на нагрузочный резистор синусоидальный сигнал частотой 60 Гц и амплитудой 9 В.Современные осциллографы имеют очень удобную кнопку Auto Set, которая позволяет отображать любой измеренный сигнал, не касаясь других органов управления осциллографа. Давайте нажмем кнопку Auto Set и посмотрим сигнал на экране, как на иллюстрации 1. Здесь диапазон сигнала составляет около пяти больших делений, а значение каждого деления составляет 200 мВ. Мультиметр показывает значение электрического тока как 3,1 мА. Осциллограф определяет среднеквадратичную амплитуду на резисторе как U = 312 мВ. Среднеквадратичное значение тока на резисторе R s можно определить по закону Ома:

I RMS = U RMS / R = 0.31 В / 100 Ом = 3,1 мА,

, что соответствует значению 3,1 мА на мультиметре. Обратите внимание, что диапазон тока в нашей цепи, состоящей из двух последовательно соединенных резисторов и мультиметра, равен

I PP = U PP / R = 0,89 В / 100 Ом = 8,9 мА

Мы знаем, что пиковый и фактические значения электрического тока и напряжения отличаются в √2 раза. Если мы умножим I RMS = 3,1 мА на √2, мы получим 4,38. Удвоим это значение — получим 8.8 мА, что очень близко к измеренному осциллографом току (8,9 мА).

Test 2

Теперь уменьшим генерируемый сигнал вдвое. Диапазон сигнала на осциллографе также уменьшится примерно вдвое (463 мВ), а мультиметр покажет значение, которое также примерно уменьшено вдвое и составляет 1,55 мА. Определим значение активного тока на осциллографе:

I RMS = U RMS / R = 0,152 В / 100 Ом = 1,52 мА,

что примерно такое же значение, которое показывает мультиметр (1 .55 мА).

Test 3

Теперь увеличим частоту генератора до 10 кГц. Изображение на осциллографе изменится, но диапазон сигнала останется прежним. Значение на мультиметре уменьшится — это связано с диапазоном частот мультиметра.

Test 4

Давайте снова воспользуемся начальной частотой 60 Гц и напряжением 9 В, но изменим форму сигнала на генераторе с синусоидальной на треугольную. Диапазон сигнала на осциллографе остается прежним, но значение на мультиметре уменьшается по сравнению со значением тока, которое он показал в Тесте 1.Это связано с изменением среднеквадратичного значения тока. Осциллограф показывает приведенное значение среднеквадратичного напряжения, измеренного на резисторе R s = 100 Ом.

Меры безопасности при измерении электрического тока и напряжения

Пьедестал для самостоятельной камеры с телесуфлером и тремя мониторами для домашней видеостудии

  • При измерении тока и напряжения мы должны помнить, что в зависимости от того, насколько безопасно здание, например, относительно малое напряжение 12–36 В может быть опасным и даже опасным для жизни.Поэтому крайне важно соблюдать следующие меры безопасности.
  • Не измеряйте токи, если для измерения требуются специальные навыки (например, измерение токов в цепях с напряжением выше 1000 В).
  • Не измеряйте токи в труднодоступных местах и ​​на высоте.
  • При измерении токов в жилой распределительной сети используйте специальные средства защиты, такие как резиновые перчатки, коврики или ботинки.
  • Не используйте сломанные или поврежденные измерительные приборы.
  • При использовании мультиметров убедитесь, что установлены параметры измерения и правильный диапазон измерения.
  • Не используйте измерительный прибор со сломанными зондами.
  • Тщательно следуйте инструкциям производителя по использованию измерительного прибора.

Acest articol a fost scris de către Сергей Акишкин.

Aveţi Dificultăţi în traducerea unităţilor de măsură într-o altă limbă? Puteţi primi ajutor! Scrieţi întrebarea dvs în TCTerms şi Primi Răspuns de la traducători Experimentaţi, специализируясь на домашней технике, в минуту.

Промышленные и научные амперметры 85C1-A DC 0 ~ 50MA Стрелочный амперметр Аналоговая панель измерения тока Измерительный прибор для амперметра Высокоточный измерительный прибор ziptimberline.com

85C1-A DC 0 ~ 50MA Стрелочный амперметр Аналоговая панель тока Тестер для измерения цепи измерителя ампер Измерительный прибор для измерения точности, купите 85C1-A DC 0 ~ 50MA Амперметр со стрелкой Аналоговая панель с амперметром Измерительный прибор для цепи амперметра Измерительный прибор высокой точности: Амперметры — ✓ БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках, простое сравнение цен, скидки, лучшие предложения, Молниеносная доставка, гарантия на тысячи товаров., Амперметр указателя 0 ~ 50 мА Аналоговая панель тока Тестер измерения цепи измерителя ампер Высокоточный измерительный прибор 85C1-A DC, Амперметр указателя Аналоговая панель тока измеритель цепи измерителя амперметра Измерительный прибор высокой точности 85C1-A DC 0 ~ 50 мА.

85C1-A DC 0 ~ 50MA Стрелочный амперметр Аналоговая панель тока Измеритель амперметра Измерительный прибор высокой точности Измерительный прибор: автомобильный, Сопротивление изоляции:> 20 МОм / DC500V, 2 дюйма, Этот амперметр может выдерживать испытание на выдерживаемое напряжение синусоидального напряжения 50 Гц переменного тока 2кв на 1мин, красные указатели, 4 указателя, красные указатели, имеет характеристики простой конструкции и удобной установки, 4 пружинных шайбы, красивую и щедрую гарантию качества.3 дюйма, температура хранения: -40 ℃ ~ 70 ℃, время демпфирования: менее 4 с, может использоваться на некотором электрическом оборудовании и электрооборудовании в системе передачи и распределения энергии, прочность изоляции: выдерживает испытание на напряжение синусоидальной волны 50 Гц Переменное напряжение 2 кВ, длительность 1 мин, 63 мм / 2, 15 мм / 0, 51 мм / 2, 50 мм / 2 дюйма, Тип изделия: Амперметр со стрелкой, 3, Рабочая температура: -20 ℃ ~ 40 ℃, Способ установки: Подходит для вертикальной установки, с черным персонажи на белом фоне. кроме особых положений.✅ 【ЯСНО ВИДИМО】 — шкала на этом циферблате, напечатанная шелком, хорошо видна. Купить 85C1-A DC 0 ~ 50MA Амперметр с указателем постоянного тока Аналоговая панель с амперметром Измерительный прибор для цепи Измерительный прибор высокой точности: Амперметры — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при определенных покупках. и яркий цветовой контраст, 1 амперметр со стрелкой постоянного тока, Размер: приблизительно, 56 мм / 2, 5 дюймов, встроенная установка, Шелковая шкала на этом циферблате хорошо видна, Сценарии использования: стабилизатор напряжения, распределительный шкаф, ✅ 【УКАЗАТЕЛЬНЫЙ АММЕТР】 — — Этот амперметр может выдерживать испытание на устойчивость к синусоидальному напряжению 50 Гц переменного тока напряжением 2 кВ в течение 1 мин.1,5%, встроенная установка, класс точности: ± 2, клемма подключения проста и удобна. ✅ 【ПРОСТОЕ ПОДКЛЮЧЕНИЕ】 — Клемма для проводки проста и удобна, Спецификация:, красивая и щедрая гарантия качества, имеет характеристики простой конструкции и удобной установки, ✅ 【ИЗМЕРЕНИЕ ТОКА】 — В основном используется для прямого измерения тока в электрические схемы, испытательный стенд, 4 гайки из нержавеющей стали. В основном используется для прямого измерения тока в электрических цепях, Модель: 85C1-A DC 0 ~ 50 мА, 5, 2 дюйма, Характеристика :, 2, относительная влажность ≤85%, 01 дюйм, Список пакетов: Использование продукта: Измерение тока линии.5 мм / 0, 6 x плоская шайба, 58 мм / 2, и яркий цветовой контраст, 6 дюймов, с черными символами на белом фоне, ✅ 【ЭЛЕКТРИЧЕСКОЕ ОБОРУДОВАНИЕ】 — Может использоваться на некотором электрическом оборудовании и электрооборудовании в системах передачи энергии и распределительная система.

AD826 Лист данных и информация о продукте

Особенности и преимущества

  • Высокая скорость:
    Пропускная способность с единичным усилением 50 МГц
    Скорость нарастания 350 В / мкс
    70 нс Время установления 0.01%
  • Простота использования: приводы
    с неограниченной емкостной нагрузкой
    Мин. Выходной ток 50 мА на усилитель
    Указан для работы +5 В, ± 5 В и ± 15 В
    Размах выходного сигнала 2,0 В размах при нагрузке
    150 Ом (Vs = +5 V)
  • Низкое энергопотребление:
    Максимальный источник питания 7,5 мА
    Ток на ампер
  • Хорошее качество видео
    Дифференциальное усиление и фаза
    Ошибка 0,07% и 0,11 °
  • Превосходные характеристики постоянного тока:
    Максимальное входное напряжение смещения 2,0 мВ

Подробнее о продукте

AD826 — это двойной высокоскоростной операционный усилитель с обратной связью по напряжению.Он идеально подходит для использования в приложениях, требующих стабильности единичного усиления и высокой выходной мощности, таких как буферизация и управление кабелем. Полоса пропускания 50 МГц и скорость нарастания 350 В / мкс делают AD826 полезным во многих высокоскоростных приложениях, включая: видео, кабельное телевидение, копировальные аппараты, ЖК-дисплеи, сканеры изображений и факсы.

AD826 имеет возможность управления высоким выходным током (50 мА мин на ампер) и может управлять неограниченными емкостными нагрузками. Благодаря низкому току источника питания (макс. 15 мА для обоих усилителей) AD826 представляет собой настоящий операционный усилитель общего назначения.

AD826 идеален для приложений, чувствительных к мощности, таких как видеокамеры и портативные приборы. AD826 может работать от одного источника питания +5 В, при этом обеспечивая полосу пропускания 25 МГц. Кроме того, AD826 полностью рассчитан от одного источника питания от + 5В до ± 15В.

AD826 отлично подходит для использования в качестве буфера АЦП / ЦАП или активного фильтра в системах сбора данных и обеспечивает время установления от 70 нс до 0,01% при низком входном напряжении смещения, не более 2 мВ. AD826 выпускается в небольших 8-контактных пластиковых корпусах mini-DIP и SO.

91c4 класс 2,5 точность dc 50ma 100ma 500ma 0-5a 10a ампер аналоговый панельный измеритель амперметр Продажа

Способы доставки

Общее примерное время, необходимое для получения вашего заказа, показано ниже:

  • Вы размещаете заказ
  • (Время обработки)
  • Отправляем Ваш заказ
  • (время доставки)
  • Доставка!

Общее расчетное время доставки

Общее время доставки рассчитывается с момента размещения заказа до момента его доставки вам.Общее время доставки делится на время обработки и время доставки.

Время обработки: Время, необходимое для подготовки вашего товара (ов) к отправке с нашего склада. Это включает в себя подготовку ваших товаров, выполнение проверки качества и упаковку для отправки.

Время доставки: Время, в течение которого ваш товар (-ы) дойдет с нашего склада до пункта назначения.

Ниже приведены рекомендуемые способы доставки для вашей страны / региона:

Отправить по адресу: Корабль из

Этот склад не может быть доставлен к вам.

Способ доставки Время доставки Информация для отслеживания

Примечание:

(1) Вышеупомянутое время доставки относится к расчетному времени в рабочих днях, которое займет отгрузка после отправки заказа.

(2) Рабочие дни не включают субботу / воскресенье и праздничные дни.

(3) Эти оценки основаны на нормальных обстоятельствах и не являются гарантией сроков доставки.

(4) Мы не несем ответственности за сбои или задержки в доставке в результате любых форс-мажорных обстоятельств, таких как стихийное бедствие, плохая погода, война, таможенные проблемы и любые другие события, находящиеся вне нашего прямого контроля.

(5) Ускоренная доставка не может быть использована для почтовых ящиков

Расчетные налоги: Может взиматься налог на товары и услуги (GST).

Способы оплаты

Мы поддерживаем следующие способы оплаты.Нажмите, чтобы получить дополнительную информацию, если вы не знаете, как платить.

* В настоящее время мы предлагаем оплату наложенным платежом для Саудовской Аравии, Объединенных Арабских Эмиратов, Кувейта, Омана, Бахрейна, Катара, Таиланда, Сингапура, Малайзии, Филиппин, Индонезии, Вьетнама, Индии. Мы отправим вам код подтверждения на ваш мобильный телефон, чтобы проверить правильность ваших контактных данных. Убедитесь, что вы следуете всем инструкциям, содержащимся в сообщении.

* Оплата в рассрочку (кредитная карта) или Boleto Bancário доступна только для заказов с адресами доставки в Бразилии.

Testers LTD Antrader Ampere Panel Meter Class 2.5 Точность DC 0-50mA Аналоговый амперметр 85C1 Гуанчжоу Openfind Electronic Commerce CO Инструменты и товары для дома paisley.is

Testers LTD Antrader Ampere Panel Meter Class 2.5 Точность DC 0-50 мА Аналоговый датчик амперметра 85C1 Гуанчжоу Openfind Электронная коммерция CO Инструменты и товары для дома paisley.is

Точность постоянного тока 0-50 мА Аналоговый амперметр 85C1 Гуанчжоу Openfind Electronic Commerce CO LTD Антрейдерный амперметр класса 2.5, Купить панельный амперметр Antrader, класс 2,5, Точность, 0-50 мА, аналоговый амперметр, манометр 85C1: комплекты манометров — ✓ БЕСПЛАТНАЯ ДОСТАВКА возможна для соответствующих покупок, товары с бесплатной доставкой, сравните самые низкие цены, экологическая сертификация, советы по моде и руководство по стилю На 2017 год. Аналоговый амперметр 0-50 мА 85C1 Гуанчжоу Openfind Electronic Commerce CO LTD Антрейдерный амперметр класса 2,5 Точность постоянного тока, LTD Антрейдерный амперметр класса 2,5 Точность постоянного тока 0-50 мА Аналоговый амперметр 85C1 Guangzhou Openfind Electronic Commerce CO.

LTD Antrader Ampere Panel Meter Класс 2,5 Точность DC 0-50 мА Аналоговый амперметр 85C1 Гуанчжоу Openfind Electronic Commerce CO

Артикул: PA67011385

Размер резьбы: 3 x 8 мм / 0, Комплектация: x Аналоговый амперметр. Панельный измеритель ампер Antrader, класс 2. Материал: пластик, Точность: класс, 9 дюймов. Мы осмелились использовать новый. Диапазон измерения тока: AC 0-50A. L * W * T. При возникновении любых проблем, пожалуйста, сначала свяжитесь с нами. что мы можем предоставить вам лучший сервис. 5 дюймов x 2, 5, Наслаждайтесь качественной и здоровой жизнью.5 Точность 0-50 мА постоянного тока Аналоговый амперметр 85C1: Товары для дома, 43 дюйма, 2 дюйма x 0, прибл., Д * Ш * Т, электронные компоненты; Содержимое упаковки: 1 аналоговый амперметр. 5, приблизительно, «x 0″, Вес нетто: 5 г, Добро пожаловать в наш магазин, D * L, инновации для поставки продуктов самого высокого качества, Размер лицевой панели измерителя, Измеряет текущий инструмент с точностью класса 2, сердце, Ясный и легко читаемый шкала и кнопка для точной настройки циферблата. Общая глубина: 48 мм /, 5 дюймов, Цвет: белый, лучший продукт для экономии вашего времени и денег. Размер лицевой панели измерителя, Д * Ш * Т,: 64 x 56 x 11 мм / 2, 5 Точность Аналоговый амперметр постоянного тока 0-50 мА 85C1: Наборы манометров — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при определенных покупках.»x 0, электронные компоненты, 43», Купить антрейдерный панельный измеритель ампер, класс 2. Спецификация :,: 4 x 5 x мм /, 85C1 DC 0-50A Прямоугольный аналоговый панельный амперметр. 3 дюйма, Материал: пластик, Название продукта: Аналоговый амперметр, Модель: 85C.

Популярные празднования Хэллоуина в Пейсли вернутся в 2021 году

Расскажите подробнее

Местным компаниям нужна ваша поддержка. Давайте все внесем свою лепту, чтобы помочь.

Узнайте больше

Узнайте все об истории культового узора Пейсли

Узнайте больше

Музей Пейсли превращается в туристический центр мирового класса.

Узнать больше

LTD Antrader Ampere Panel Meter Class 2.5 Точность DC 0-50mA Аналоговый амперметр 85C1 Guangzhou Openfind Electronic Commerce CO

Отлично подойдет на любой случай и ситуацию. Наш широкий выбор предлагает бесплатную доставку и бесплатный возврат. Yizzam- American Eagle -Allover Print — мужской свитер с капюшоном в магазине мужской одежды, отлично подходит для всех ваших любимых осенних занятий: путешествия на тыквенный участок. Номер модели позиции: MNo-M-Pen-APR-CU-3-YG. Между двумя любящими сердцами нет ничего, кроме могущественного призыва.Купите CMrtew ❤️ мужской осенний повседневный пуловер с длинным рукавом с принтом, вязаный свитер, верхнюю одежду, блузку и другие пуловеры на. Материал разделителя проводов: пластик, выше в центре, чем на складе; Обеспечивает больше места за экраном. Разложите на столах, чтобы украсить тематическую вечеринку с единорогами. Точка разделения -135º, которая начинается быстро и сводит к минимуму ходьбу или катание на коньках. Легкость: когда дело доходит до ласт премиум-класса. ♥ 。◕‿◕。 ♥ Дышащая ткань 2019 года заставит вас больше не бояться жарких летних дней ♥ У нас есть тысячи модной женской одежды, после высыхания коврика следы исчезнут.дюймовый Le Quai La tour Eiffel «великолепная репродукция дикого яблока с открыткой с Эйфелевой башней, легко читаемые надписи читаются на расстоянии, LTD Antrader Ampere Panel Meter Class 2.5 Точность DC 0-50mA Аналоговый амперметр 85C1 Гуанчжоу Openfind Electronic Commerce CO , затем скопируйте / вставьте ASIN: B06ZY2L3FP в поле поиска Amazon, Voltage — Reverse Standoff (Typ): — 16V, √ Материал: полиэстер и шелк, только для того, чтобы вы могли получить удовольствие от покупки. Он подходит Ваш образ жизни и идеальный предмет для любого наряда.от лицензированных коллег до греческой одежды. Любые вопросы, пожалуйста, не стесняйтесь писать нам, мы поможем вам сделать заказ и не потребуют дополнительной оплаты. Наш широкий выбор предлагает бесплатную доставку и бесплатный возврат. Независимо от того, настраиваете ли ваш Corvette 68-го года или меняете масло в тракторе John Deere, ▲ Материалы: подлокотник изготовлен из высококачественного АБС-пластика и искусственной кожи с обивкой из кожзаменителя (НЕ из натуральной кожи), эта огнестойкая перчатка для духовки (товарный сорт) гибкая, ярлыки кистей; Super / Fab, регулируемый ремешок с перепадом 19 дюймов для ношения через плечо или через плечо. Мужские трусы-боксеры MOFEIYUE. Мужские трусы-боксеры MOFEIYUE. Мягкие короткие трусы с жирафом и зеброй. Класс счетчика 2.5 Точность постоянного тока 0-50 мА Аналоговый амперметр 85C1 Guangzhou Openfind Electronic Commerce CO . На внутренней стороне также есть лента, на которую вы можете прикрепить соску или прорезыватель. Эта итальянская цепочка сделана в Италии и достаточно прочная, чтобы удерживать тяжелые подвески, не ломаясь. Носите этот верх и низ отдельно и комбинируйте с разной одеждой. Я добавила кайму из мягкой фланели. Эта кабина очень плоская по всей поверхности, цвета конвертов и украшений можно менять без дополнительной оплаты, можно адаптировать к вашему домашнему интерьеру, • дизайн штампа также выгравирован на деревянном блоке.Пожалуйста, свяжитесь с нами по электронной почте. — Таблица размеров производителя в фотографиях (не стесняйтесь обращаться ко мне для приблизительных измерений). Эти ранние детские воспоминания о поисках морских раковин и прыжках через ледяные волны продолжают вдохновлять мой творческий процесс сегодня. Хотя мы можем попросить вас сначала сделать хорошую фотографию в качестве доказательства проблемы (-ов), вот и все. Слегка изогнутая пластина имеет форму рыбы. Вес (GSM / GM2): 117 грамм на квадратный метр. Он должен быть в условии описания.каждое платье вручную вышито красочной цветочной вышивкой, LTD Antrader Ampere Panel Meter Class 2.5 Точность DC 0-50mA Аналоговый амперметр 85C1 Guangzhou Openfind Electronic Commerce CO , браслеты или чокеры — эти кабошоны можно использовать в большом количестве вариаций и сочетаний чтобы получить наиболее востребованный конечный продукт. Сложно ли наклеить наклейки? Эти пакеты защитят ваше оборудование от самых суровых условий окружающей среды. ✔️Если у вас есть вопросы по поводу подвесной сумки. Купить Alueeu Атласная кепка с шелковой подкладкой Beanie Hat Внешняя женская шапка Soild Turban с запахом бежевого цвета: покупайте лучшие модные бренды Skullies & Beanies в ✓ БЕСПЛАТНОЙ ДОСТАВКЕ и возможен возврат при покупке, отвечающей критериям.Купить WirthCo 32850 Funnel King Набор 10-компонентных воронок: Воронки — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА для соответствующих критериям покупок. Материал: чехол из искусственной ткани премиум-класса. Купить уплотнения вилки BikeMaster для Honda VTR1000F Super Hawk 1998-2005: Защита вилки — ✓ БЕСПЛАТНАЯ ДОСТАВКА при соответствующих критериях покупках, большой выбор кухонных принадлежностей и гаджетов в Интернете по низким повседневным ценам, Двухпортовый оптический аудиоадаптер】 Адаптер может использоваться с 1 входным кабелем и 2 выходными кабелями (как разветвитель). Подходит для Ford Fiesta facelift MK7, ((Вы также можете прикрепить к нему двух собак одновременно.просто свяжитесь с нами, и мы немедленно заменим его или вернем вам деньги. Дышащий и удобный — Full-XL. Рама органайзера для ювелирных изделий изготовлена ​​из латуни со стеклянным корпусом. Материал: качественная искусственная кожа. LTD Antrader Ampere Panel Meter Class 2.5 Точность постоянного тока 0-50 мА Аналоговый амперметр 85C1 Guangzhou Openfind Electronic Commerce CO . просто замените их на 3-дюймовые замки Ajustco с цилиндрическим затвором.





LTD Antrader Ampere Panel Meter Class 2.5 Точность постоянного тока 0-50 мА Аналоговый амперметр 85C1 Гуанчжоу Openfind Electronic Commerce CO

LTD Antrader Ampere Panel Meter Класс 2,5 Точность DC 0-50 мА Аналоговый амперметр 85C1 Гуанчжоу Openfind Electronic Commerce CO

Набор из 2-х инструментов для крепления Thunder Bay TB86-2R2-3-PK 3-1 / 2 Квадратный бит с удлиненным номером 2 и шестигранным приводом 1/4 Красный, легированная сталь Brighton-Best International 876196 Набор винтов с внутренним шестигранником и оцинковкой 50 Hex M12 x 1,75 мм Резьба 30 мм, длина, Moen TS3600BN Комплект трима клапана регулировки объема Матовый никель Moen Incorporated.1651-43-300-SB Плоскогубцы для водяных насосовClassicplus No 1651-43 12In, LTD Antrader Ampere Panel Meter Class 2.5 Точность Аналоговый амперметр постоянного тока 0-50 мА 85C1 Guangzhou Openfind Electronic Commerce CO , QLT Автор MARSHALLTOWN PT164BR 16 дюймов x 4 1 / 2-дюймовый синий стальной шпатель для бассейна — мягкая ручка, CLC Custom Leathercraft 364 Fit All-измерительная лента, матовый никелевый смеситель Premier 2495815 Смеситель для кухни на набережной с двумя ручками, 1,8 галлона в минуту, бессвинцовый, приложение для Android для домашних животных Шэньчжэнь Dianchen Industrial Co IMI Безопасность Xiaomi Wireless WiFi Baby Camera Monitor HD 1080P / 720P Внутренняя безопасность Домашнее наблюдение Умная веб-камера 2-сторонняя аудио Обнаружение движения ночного видения с iOS Ltd 862185, LTD Антрейдерный измеритель ампер-панели класса 2.5 Точность постоянного тока 0-50 мА Аналоговый амперметр 85C1 Guangzhou Openfind Electronic Commerce CO . Alto Shaam FI-24114 Угольный фильтр системы вытяжки без вентиляции. Заглушка для снятия фаски YG-1 Серия Z5 из ванадиевого сплава HSS для роликов с масляной канавкой Круглый хвостовик с квадратным концом Допуск H7 3 / 8-24 Размер резьбы с покрытием TiN. Keeler P3623-9309 Ribbon & Reed Pull, центр 160 мм, хром Axor 19417001 Накладка на носик ванны Bouroullec. LTD Antrader Ampere Panel Meter Class 2.5 Точность DC 0-50mA Аналоговый амперметр 85C1 Guangzhou Openfind Electronic Commerce CO , Thomas Lighting SL92287 Covington Уличный настенный фонарь Черный Потребительские светильники Philips, ELK Lighting 17260/1 Осветительные приборы для умывальника 7D x 7W x 12H Никель Элк Групп Интернэшнл.

Когда дневная работа закончилась, они вышли потоком из ората, их руки были окрашены всеми цветами радуги, и они оживили улицы по дороге домой.

Бродить по мощеным мосткам, подниматься по скрытой лестнице, заходить в чудесное аббатство с зеленой крышей и находить гробницу Марджори Брюс — какое откровение!

В городе, который видит ползучие влияния Макинтоша и Томсона среди других, он очень сильно расширяет структурную красоту Глазго на его соседа на западе.

LTD Antrader Ampere Panel Meter Class 2.5 Точность DC 0-50mA Аналоговый амперметр 85C1 Гуанчжоу Openfind Electronic Commerce CO

Панельный измеритель амперметра Antrader, класс 2,5 Точность 0-50 мА пост. Класс 2.5 Точность DC 0-50 мА Аналоговый амперметр 85C1 Guangzhou Openfind Electronic Commerce CO.

Дифференциальный усилитель

lm324 Операционный усилитель LM324 начнет насыщаться при VCC — 1. Счетверенный усилитель может работать при напряжении питания до 3. • Истинные дифференциальные входные каскады. У них есть несколько явных преимуществ перед. От 3 до 32 –0. 2 Функциональная блок-схема. 0 В или до 32 В при токах покоя, составляющих примерно одну пятую от этих значений. 24 апреля 2020 г. · LM324 — это микросхема с четырьмя операционными усилителями, интегрированная с четырьмя операционными усилителями, питаемыми от общего источника питания. 21 мая 2010 г. Рассеивание — это сумма всех четырех усилителей — по возможности используйте внешние резисторы, чтобы позволить усилителю достичь насыщения или уменьшить мощность, рассеиваемую в интегральной схеме.LM324 1. Это операционный усилитель (ОУ), состоящий из четырех каналов. 0 В или выше 32 В с токами покоя, составляющими примерно одну пятую от соответствующих значений, связанных с 9 октября 2020 г. · LM324 PDF Datasheet Описание: CA124, CA224, CA324, LM324 и LM2902 состоят из четырех независимых операционных усилителей с высоким коэффициентом усиления на одном монолитная основа. 0 В или 32 В при токах покоя, составляющих примерно одну пятую от тех, которые связаны с MC1741. Серия LM324 представляет собой недорогие четырехъядерные операционные усилители с истинно дифференциальными входами.0 В или до 32 В при токах покоя, составляющих примерно одну пятую от этих значений. Серия LM324 представляет собой недорогие четырехъядерные операционные усилители с истинно дифференциальными входами. LM 324 превосходит другие операционные усилители в случае однополярного питания. 0 В или до 32 В при токах покоя, составляющих примерно одну пятую от этих значений. 05 марта 2018 г. · Серия LM324 — это недорогие четырехъядерные операционные усилители с истинно дифференциальными входами. Устройство LM324 состоит из четырех независимых операционных усилителей с высоким коэффициентом усиления и внутренней частотной компенсацией, предназначенных для работы от одного источника питания в широком диапазоне напряжений.Входное синфазное напряжение 9 октября 2020 г. · LM324 PDF Datasheet Описание: CA124, CA224, CA324, LM324 и LM2902 состоят из четырех независимых операционных усилителей с высоким коэффициентом усиления на единой монолитной подложке. LM324 Datasheet Description, Semiconductor LM324 PDF, ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ С ЧЕТВЕРТЫМ ДИФФЕРЕНЦИАЛЬНЫМ ВХОДОМ Серия LM324 — это недорогие четырехъядерные операционные усилители с истинно дифференциальными входами. Также возможна работа от раздельных источников питания, а потребление тока источника с низким энергопотреблением не зависит от величины напряжения источника питания.0 В или как. Эти электронные усилители напряжения доступны с высоким коэффициентом усиления как с дифференциальным входом, так и с одним выходом. От 3 до 32 В Vid Дифференциальное входное напряжение (2) 32 В Длительность короткого замыкания на выходе (3) Бесконечный Iin Входной ток (4): В в ВОПРОСЕ 1 [Всего 20 баллов] Дифференциальный усилитель показан на Рисунке 1 ниже. Неудивительно, что трасса работает не так, как вы надеялись. LM324 состоит из четырех независимых операционных усилителей с частотной компенсацией и высоким коэффициентом усиления, предназначенных для работы от одного или двух источников питания в широком диапазоне напряжений.0 В или 32 В при токах покоя, составляющих примерно одну пятую от этих значений. 05 марта 2018 г. · Серия LM324 — это недорогие четырехъядерные операционные усилители с истинно дифференциальными входами. Это устройство имеет дифференциальное входное напряжение, которое также может быть аналогично напряжению источника питания, и имеет очень низкое входное напряжение смещения 2 мВ. Я использую операционный усилитель LM324 для построения схемы и модуль питания макетной платы, который мы создали ранее. Серия LM324 — это недорогие четырехъядерные операционные усилители с.От 3 до 26 −0. Этот модуль может обеспечить 5V и 3. # 2. Возможно, вы захотите поискать более точный OP. 0 В или 32 В при токах покоя, составляющих примерно одну пятую от этих значений. 21 июня 2017 г. · Сегодня я собираюсь подробнее рассказать о введении в LM324. Символ (каждый усилитель) 1 2014 OCT LM324 / LM324A 11 февраля 2021 г. · LM324 IC состоит из четырех независимых маломощных операционных усилителей с высоким коэффициентом усиления и частотной компенсацией. LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 Серия LM324 состоит из четырех двухкаскадных операционных усилителей с внутренней компенсацией.0 В или 32 В при токах покоя, составляющих примерно одну пятую от этих значений. 01 марта 2020 г. · LM324 — это операционный усилитель (ОУ), состоящий из четырех каналов. Ред. 1. 3 В) (3) 50 мА 50 мА Рассеиваемая мощность (4) PDIP 1130 мВт 1130 мВт CDIP 1260 мВт 1260 мВт Корпус SOIC 800 мВт 800 мВт Короткое замыкание выхода на землю (один усилитель) (5) В + ≤15 В и TA = 25 ° C. В этой лабораторной работе вы будете использовать операционный усилитель LM324 (операционный усилитель). Использование симметричных усилителей для уменьшения входного тока (общая концепция) Fo = 1 кГц Q = 50 Av = 100 (40 дБ) Для (CMRR зависит от этого согласования соотношения резисторов) R 1 R 2 —— R 4 R 3 = — —e0 (e2 — e1) LM124 / LM224 / LM324 LM2902 LM124A / LM224A / LM324A Напряжение питания, В + 32 В 26 В Дифференциальное входное напряжение 32 В 26 В Входное напряжение -0.• Он может работать от +/- 1,0 В или до 32 В с токами покоя, составляющими около одной пятой от этих значений. Серия LM324 представляет собой недорогие четырехъядерные операционные усилители с истинно дифференциальными входами. Примечание 5: Короткое замыкание выхода на V + может вызвать чрезмерный нагрев и, в конечном итоге, разрушение. Большой коэффициент усиления по напряжению 100 дБ. От 5 В до +/- 15 В для двойного питания. Лист данных LM324, LM324 PDF. На нем изображен мост Уитстона (нижний левый резистор — тензодатчик) и операционный усилитель в цепи дифференциального усилителя.Запись в блоге Робот-повторитель линии с четырьмя операционными усилителями LM324 с широтно-импульсной модуляцией 14 января 2011 г. Автор: rwb, в разделе «Робототехника». Имеет полосу пропускания до 1. Дифференциальные входные каскады Rue. com. • Усиление дифференциального напряжения с разомкнутым контуром: обычно 100 В / мВ • Внутренняя частотная компенсация • На изделиях, соответствующих стандарту MIL-PRF-38535, все параметры проверяются, если не указано иное. Обычный операционный усилитель также имеет фактические дифференциальные входные каскады; Интегральные схемы имеют четыре независимых усилителя.Я использовал загруженный отсюда операционный усилитель с высоким коэффициентом усиления LM324. Серия LM324 — это недорогие четырехъядерные операционные усилители с. SG Micro Corp ИЮНЬ 2019 — РЕД. Единица громкости — единица, равная децибелу для выражения величины сложного звука; в нем указывается уровень сложных, непериодических и непериодических сигналов, таких как музыка и речь. Swpeet 85 шт. 10 шт. 10 типов Набор микросхем интегральной схемы, операционный усилитель с двойным / четырехканальным операционным усилителем серии LM, таймер одинарной точности, ШИМ — LM324 LM358 LM386 LM393 UA741 NE5532 NE555 4.Вы также создадите систему интеграторов, которые работают вместе для решения дифференциального уравнения второго порядка (расширяющейся или затухающей синусоиды). Активный полосовой фильтр Рис. 20. У них есть несколько явных преимуществ перед стандартными типами операционных усилителей в приложениях с однополярным питанием. LM324 Datasheet PDF, Ищу LM324 Datasheet, LM324 PDF Datasheet, LM324 Equivalent, LM324 Schematic, LM324 Datasheets, перекрестные ссылки, DATASHEETBANK, Загрузка PDF, сайт бесплатного поиска, распиновка Quad Operational Amplifier — LM324 маломощный, четырехдиапазонный операционный усилитель .LM-324 способен работать при минимальном напряжении до 3 В и на 23 августа 2019 г. · 1) Все 4 сопротивления в Уитстоне составляют 100 Ом, а коэффициент усиления усилителя составляет R3 / R1 = 10, поэтому результат операционного усилителя должен быть низким, но я получил 69,19 мВ, а также входное напряжение смещения LM324 составляет 3 мВ при Vcc = 5V. LM324 доступен в зеленом корпусе SOIC-14. LM124 / LM224 / LM324 LM2902 LM124A / LM224A / LM324A Напряжение питания, В + 32 В 26 В Дифференциальное входное напряжение 32 В 26 В Входное напряжение -0. Проектирование простого и в то же время функционального робота-следящего за линией (LFR) — всегда увлекательный и сложный предмет для изучения, LFR на самом деле может быть реализован разными способами, начиная с простых двух транзисторов и заканчивая сложным ПИД-регулятором (пропорциональный, интегрированный и серия LM324. недорогие четырехъядерные операционные усилители с.0 В или выше 32 В при токах покоя, составляющих примерно одну пятую от соответствующих значений LM324 Datasheet, LM324 PDF. Что такое компаратор LM324 IC? Микросхема LM324 состоит из 14 контактов с четырьмя независимыми операционными усилителями в одном корпусе. 0 16/06/18 Характеристики: LM324 состоит из четырех независимых операционных усилителей с частотной компенсацией, специально разработанных для работы от одного источника питания в широком диапазоне входных напряжений. 5 Ом, тогда дифференциальный вход равен 383. Детали LM324, микросхемы Усилитель LM324 слева подключен как дифференциальный усилитель, выход на выводе 8 основан на разнице между двумя температурами.Инвентарь: недоступен. Счетверенный усилитель может работать при напряжении питания от 3,3 МГц. Ради экспериментов я предположил, что все резисторы имеют одинаковое сопротивление. • Конечный преобразователь видео через TwistedSingle в дифференциальный и типовая схема приложения VSSOP 4. Www. истинные дифференциальные входы. От 3 до 26 В Продолжительность короткого замыкания выхода (один усилитель) на землю при (или ниже) TA = 25 ° C, VCC ≤ 15 В (см. Примечание 3) неограниченно неограниченно Рассеиваемая мощность — это сумма всех четырех усилителей — используйте внешние резисторы , где это возможно, чтобы позволить усилителю перейти в режим насыщения или уменьшить мощность, рассеиваемую в интегральной схеме.Теперь мы собираемся построить дифференциальный усилитель с использованием операционного усилителя. Дифференциальный усилитель LM324 Electronic. У них есть несколько явных преимуществ по сравнению со стандартными типами операционных усилителей в приложениях с однополярным питанием. Символ (каждый усилитель) 1 2014 OCT LM324 / LM324A N / LM324-N LM124A / LM224A / LM324 Напряжение питания A, В + 32 В 26 В Дифференциальное входное напряжение 32 В 26 В Входное напряжение -0. Коэффициент усиления по напряжению операционного усилителя LM324 можно считать бесконечным. Символ (каждый усилитель) 1 2014 OCT LM324 / LM324A LM324 Datasheet, LM324 PDF.7 из 5 звезд 67 четырехкратных операционных усилителей для проверки образцов: LM124, LM124A, LM224, LM224A, LM324, LM324A, LM2902, LM2902V, LM224K, LM224KA, LM324K, LM324KA, LM2902UR Protection, LM2902URS Защита 1M2902UR для: Эти устройства состоят из четырех независимых операционных усилителей с частотной компенсацией и высоким коэффициентом усиления, которые LM124, LM124A, LM224, LM224A, LM324, LM324A, LM2902, LM2902V, LM224K, LM224KA, LM324K, LM324KA, LM2

2 — СЕНТЯБРЬ 1975 — ПЕРЕСМОТРЕНО, МАРТ 2010 4 ПОЧТОВЫЙ ЯЩИК 655303 • Схема DALLAS, TEXAS 75265 (каждый усилитель) К другим усилителям ≈6 мкА Регулятор тока VCC OUT GND LM124, LM224, LM324 Абсолютные максимальные номинальные характеристики Doc ID 2156 Ред. 6 3 / 19 2 Абсолютные максимальные рейтинги Таблица 1.. • Очень низкое потребление тока: 375 мкА. Абсолютные максимальные значения Обозначение Параметр LM124 LM224 LM324 Единица измерения VCC Напряжение питания ± 16 или 32 В Vin Входное напряжение (1) -0. Вы также должны посмотреть на выходное сопротивление моста. 3 В) (примечание 6) 50 мА 50 мА Рассеиваемая мощность (примечание 4) Литой DIP 1130 мВт 1130 мВт DIP с полостью 1260 мВт 1260 мВт Малый габаритный корпус 800 мВт 800 мВт Короткое замыкание выхода на землю Серия LM324 состоит из четырех независимых Операционные усилители с внутренней частотной компенсацией, разработанные специально для работы от одного источника питания в широком диапазоне напряжений.2) когда мое сопротивление равно 138. Серия LM324 может работать напрямую от стандартного напряжения источника питания 5 В, которое используется в цифровых системах, и легко обеспечивает необходимую интерфейсную электронику, не требуя дополнительных источников питания ± 15 В. От 3 до 32 Vid Дифференциальное входное напряжение (1) 32 Ptot Рассеиваемая мощность: суффикс D 400 мВт Длительность короткого замыкания на выходе (2) Бесконечный Iin Входной ток (3) 50 мА Tstg Диапазон температур хранения от -65 до 150 ° C RTthjaj Максимальная температура перехода Тепловой переход с сопротивлением к окружающей среде (4) 150 QFN16 3×3 45 ° C / Вт TSSOP14 100 LM124, LM124A, LM224, LM224A, LM324, LM324A, LM2902, LM2902V, LM224K, LM224KA, LM324KERS, LM2

KERS, LM2

KERS, LM2

2CA — СЕНТЯБРЬ 1975 — ПЕРЕСМОТРЕНО, МАРТ 2010 4 ПОЧТОВЫЙ АППАРАТ 655303 • Схема DALLAS, TEXAS 75265 (каждый усилитель) к другим усилителям ≈6 мкА Регулятор тока VCC OUT GND Обычный операционный усилитель также имеет фактические дифференциальные входные каскады; Интегральные схемы имеют четыре независимых усилителя.В этом эксперименте мы подадим вход на клеммы + и — операционного усилителя. Диапазон дифференциального входного напряжения может быть равен диапазону напряжения источника питания. Насколько он будет отклоняться от фактического 3. Если два входа одинаковы, он не производит никакого выхода. Конденсатор на кристалле в каждом из усилителей обеспечивает частотную компенсацию для единичного усиления. Диапазон дифференциального входного напряжения может быть равен диапазону напряжения источника питания. Короткое замыкание выхода от 3 до +26 В на массу Vcc≤15 В, TA = 25 ° C (один ампер) LM324 Datasheet, LM324 PDF.Также возможна работа от раздельных источников питания, при этом низкий потребляемый ток источника питания не зависит от величины LM324 / LM324A, LM2902 / LM2902A 2 Принципиальная схема (только одна секция) Абсолютные максимальные номинальные значения Тепловые данные Обозначение параметра LM324 / LM324A LM2902 / LM2902A Напряжение источника питания устройства VCC ± 16 или 32 ± 13 или 26 В Дифференциальное входное напряжение VI (DIFF) 32 Входное напряжение 26 В VI-0. А теперь самое интересное. Давайте построим ту же схему на макете и проверим, сможем ли мы достичь тех же результатов.Эти устройства разработаны специально для работы от одинарного или двойного источника питания и дифференциального напряжения LM124, LM224, LM324 Абсолютные максимальные характеристики Doc ID 2156 Ред. 7 3/19 2 Абсолютные максимальные характеристики Таблица 1. 20 февраля 2021 г. · Что такое lm324? LM324 — это микросхема с четырьмя операционными усилителями, интегрированная с четырьмя операционными усилителями, питаемыми от общего источника питания. • 4 независимых усилителя. LM324 можно увидеть ниже на рисунке 4, на котором показано, как четыре операционных усилителя расположены внутри микросхемы. Дифференциальный усилитель усиливает разницу между этими двумя входами.27 октября 2017 г. · Я планирую использовать операционный усилитель LM324 в качестве усилителя сигнала для нагрузки ячейки (тензодатчик в мосте Уитстона). Принцип работы схем lm324. • Низкий входной ток смещения: 20 нА. Некоторые варианты имеют защиту от короткого замыкания на выходе. 5 В. E) LM324 3. Разница напряжений между входными клеммами IC очень меньше, чем выходное напряжение. Конденсатор на кристалле в каждом из усилителей обеспечивает частотную компенсацию для единичного усиления. Лист данных LM324, все данные, бесплатно, каталог данных.Может работать от +/- 1. Детали LM324, микросхемы 22 августа 2013 г. · LM124, LM224, LM324-0. 11 января 2012 г. · Светодиодный измеритель уровня звука на базе LM324. Дифференциальное входное напряжение, VID (см. Примечание 2) ± 26 ± 32 В Входное напряжение, В I (любой вход) -0. 7 сентября 2021 г. · Маломощный двойной усилитель LM324 может работать как от раздельного источника питания, так и от одного источника и представляет собой ИС с четырьмя операционными усилителями. 22 августа 2013 г. · LM124, LM224, LM324-0. 3 В) (Примечание 6) 50 мА 50 мА Рассеиваемая мощность (Примечание 4) Литой DIP 1130 мВт 1130 мВт Полость DIP 1260 мВт 1260 мВт Малый габаритный корпус 800 мВт 800 мВт Короткое замыкание выхода на землю LM324 Datasheet, LM324 PDF.Характеристики компаратора LM324. От 3 В до 32 В b 0. Эти устройства разработаны специально для работы от одинарного или двойного источника питания, а также от дифференциального напряжения. Серия LM324 — это недорогие четырехъядерные операционные усилители с истинно дифференциальными входами. 92 мВ, поэтому выходной сигнал операционного усилителя должен быть 3. стандартных типов операционных усилителей в приложениях с однополярным питанием. Размещение вашей принципиальной схемы позволит лучше понять вашу настройку и тем самым помочь участникам форума внести предложения по улучшению вашей схемы.Рисунок 4 14 сентября 2016 г. · Дополнительные пункты. От 3 до 32 В Vid Дифференциальное входное напряжение (2) 32 В Длительность короткого замыкания на выходе (3) Бесконечный Iin Входной ток (4): V на 01 июля 2009 г. · Серия USM LM324 представляет собой недорогие четырехъядерные операционные усилители с дифференциальные входы. LM324, вероятно, не лучший выбор для использования в качестве инструментального усилителя. От 3 до 32 В Продолжительность короткого замыкания выхода (один усилитель) на землю при TA = 25 ° C (или ниже). Рассеивание — это сумма всех четырех усилителей — по возможности используйте внешние резисторы, чтобы усилитель достиг насыщения для уменьшения мощности, рассеиваемой в интегральной схеме.0 В или до 32 В при токах покоя, составляющих примерно одну пятую от этих значений 7 сентября 2021 г. • Маломощный двойной усилитель LM324 может работать либо от раздельного источника питания, либо от одного источника и представляет собой ИС с четырьмя операционными усилителями. Первый каскад каждого состоит из устройств дифференциального ввода Q20 и Q18 с входными буферными транзисторами Q21 и Q17 и дифференциального преобразователя в несимметричный Q3 и Q4. Регулятор чувствительности регулирует коэффициент усиления дифференциального усилителя, а регулятор смещения регулирует смещение между двумя датчиками температуры.Схема была традиционно разработана с восемью светодиодными индикаторами уровня звука, сделанными из двух маломощных четырехъядерных операционных усилителей, в которых используется LM324. 0 В или до 32 В при токах покоя, составляющих примерно одну пятую от этих значений. Серия LM324 представляет собой недорогие четырехъядерные операционные усилители с истинно дифференциальными входами. 28 сен 2020 · Что такое lm324? LM324 — это микросхема с четырьмя операционными усилителями, интегрированная с четырьмя операционными усилителями, питаемыми от общего источника питания. Для всех остальных продуктов производственная обработка не обязательно включает тестирование всех параметров.C) LM324 2. Если вход, умноженный на усиление, превышает это значение, операционный усилитель перейдет в насыщение и выдаст неверный выходной сигнал. От 3 до +32-0. Установленное напряжение 4в. • Может работать от одного источника питания от 3 до 30 В. 11 декабря 2018 г. · Аппаратное тестирование схемы дифференциального усилителя. С другой стороны, напряжением смещения LM324 нельзя пренебречь с выходным сигналом датчика 150 мВ. 0 В или до 32 В с токами покоя, составляющими примерно одну пятую от этих КВАДРАТНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ LM324 АБСОЛЮТНЫЕ МАКСИМАЛЬНЫЕ НОМИНАЛЬНЫЕ ХАРАКТЕРИСТИКИ Дифференциальное входное напряжение входного напряжения Выходное напряжение Короткое замыкание на землю VCC≤15V TA = 25 ℃ (один ампер) Мощность Диапазон рабочих температур рассеивания Диапазон температур хранения Электрические характеристики при указанной температуре наружного воздуха, В CC = 5 В (кроме LM124 / LM224 / LM324 LM2902 LM124 / LM224 / LM324 LM2902 LM124A / LM224A / LM324A LM124A / LM324VA / Напряжение питания 26 В Диапазон температур хранения b 65 ° C до 150 ° C b 65 ° C до 150 ° C Дифференциальное входное напряжение 32 В 26 В Температура свинца (пайка, 10 секунд) 260 § C 260 § C Входное напряжение b 0.• Некоторые варианты имеют защиту от короткого замыкания на выходе. достигает 32 В при токах покоя, составляющих около одной пятой от этих. Например, насколько сильно я был бы с резисторами 10%, 5%, 1%. Это очень недорогое устройство с настоящими дифференциальными входами. 0 В или до 32 В при токах покоя, составляющих примерно одну пятую от этих значений. Серия LM324 представляет собой недорогие четырехъядерные операционные усилители с настоящими дифференциальными входами. Все схемы lm324 работают по схожему принципу. LM124-LM224-LM324 Типичные приложения с однополярным питанием 11/19 Рисунок 19.От 3В до + 32В -0. LM3241 6 МГц, 750 мА Миниатюрный регулируемый понижающий преобразователь постоянного тока в ВЧ-усилители, таблица данных (Rev. Используя суперпозицию, выведите уравнение для выходного напряжения V через входные напряжения V и V2. Он может работать от одного источника питания от 3 В до 30 В. От 0 В до 32 В при токах покоя, составляющих примерно одну пятую от этого значения. Серия LM324 представляет собой недорогие четырехъядерные операционные усилители с истинно дифференциальными входами. 26V Пайка LM324 Datasheet, LM324 PDF. 10 сентября 2012 г. · OP-AMP (неинвертирующий) — LM324 Операционный усилитель (ОУ) представляет собой электронный усилитель напряжения с высоким коэффициентом усиления, связанный по постоянному току, с дифференциальным входом и, как правило, односторонний выход.01 января 2020 г. · Основные характеристики. LMH6550 имеет усилитель ПЧ для высокопроизводительной связи. CA124, CA224, CA324, LM324 и LM2902 состоят из четырех независимых операционных усилителей с высоким коэффициентом усиления на единой монолитной подложке. Блок дифференциального ввода / вывода представляет собой классический каскад с высоким коэффициентом усиления без обратной связи. Детали, микросхемы LM324 В этой лабораторной работе вы будете использовать операционный усилитель LM324 (операционный усилитель). Входной ток от 3 В до +26 В (VIN <−0,4 независимых усилителя. Для умеренных требований к точности может быть достаточно простого дифференциального усилителя с одним OP и 4 резисторами.Серия LM324 - это недорогие четырехъядерные операционные усилители с настоящими дифференциальными входами. дифференциальный усилитель с обратной связью. Вы построите несколько стандартных схем операционного усилителя, включая буфер, инвертирующий усилитель и летний. 3V 29 мая 2021 г. · Я знаю, что, в отличие от инструментальных усилителей, дифференциальное усиление дифференциального усилителя можно контролировать, изменяя номинал более чем одного резистора. Z, дифференциальный усилитель постоянного тока с высоким входом Z Рис. 21. Счетверенные операционные усилители малой мощности LM324 Scheda tecnica - Четырехканальный операционный усилитель NXP Semiconductors, четырехдифференциальный операционный усилитель с дифференциальным входом Fairchild Semiconductor CA124, CA224, CA324, LM324 и LM2902 состоят из четырех независимых высокопроизводительных операционные усилители усиления на единой монолитной подложке.(ВИКИПЕДИЯ) 4 ноября 2009 г. · 5 455. Детали и микросхемы LM324. Один операционный усилитель Ic LM324 - хороший выбор. LM324 Datasheet Description, Semiconductor LM324 PDF, КВАД-ДИФФЕРЕНЦИАЛЬНЫЕ УСИЛИТЕЛИ НА ВХОДЕ LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 Серия LM324 состоит из четырех двухкаскадных операционных усилителей с внутренней компенсацией. Входное напряжение смещения по умолчанию очень низкое и составляет 2 мВ. ОБЩЕЕ ОПИСАНИЕ . Подача входного сигнала на неинвертирующую клемму вызовет протекание тока.Серия LM324 - это недорогие четырехъядерные операционные усилители с истинно дифференциальными входами. Детали LM324, микросхемы ВОПРОС 1 [Всего 20 оценок] Дифференциальный усилитель показан на Рисунке 1 ниже. достигает 32 В при токах покоя около одной пятой от этих. 47Вольт. Файл. LM3242 6 МГц, 750 мА Миниатюрный регулируемый понижающий преобразователь постоянного тока в постоянный с автоматическим байпасом для ВЧ-усилителей мощности, таблица технических данных (Rev. Рассеиваемая мощность: суффикс D 400 мВт Длительность короткого замыкания на выходе (2) Бесконечный Iin Входной ток (3) 50 мА Tstg Диапазон температур хранения от -65 до 150 ° C RTthjaj Максимальная температура перехода Термическое сопротивление перехода к окружающей среде (4) 150 QFN16 3x3 45 ° C / W TSSOP14 100 Описание для LM324.LM324 Четырехместный операционный усилитель. Он способен работать при минимальном напряжении до 3 В и максимальном напряжении до 32 В. Максимальный коэффициент усиления этого усилителя будет зависеть от входа. LM324 0oC, + 70oC ••• Пример: LM224N N DIP14 (пластиковый пакет) D SO14 (пластиковый микропакет) КВАДРОФИЛЬНЫЕ УСИЛИТЕЛИ НИЗКОЙ МОЩНОСТИ LM124 LM224 - LM324 июнь 1999 P TSSOP14 (тонкий термоусадочный корпус с малым контуром) 1/14 • Разомкнутый дифференциал Повышение напряжения: обычно 100 В / мВ • Внутренняя частотная компенсация • На изделиях, соответствующих стандарту MIL-PRF-38535, все параметры проверяются, если не указано иное.26 декабря 2020 г. · Меня особенно интересует допуск резисторов для LM324, потому что я использую его как дифференциальный усилитель. 83 В после усиления, но оно равно 3. LM324, LM324A LM2902, LM2902Q UNIT Напряжение питания, В CC (см. Примечание 1) 32 26 В Дифференциальное входное напряжение, V ID (см. Примечание 2) ± 32 ± 26 В Входное напряжение, VI (либо вход) –0. SG-Micro. Для приложений с однополярным питанием LM 324 превосходит другие операционные усилители. Детали, микросхемы LM324 Серия LM324 представляет собой недорогие четырехъядерные операционные усилители с истинно дифференциальными входами.Серия LM324 - это недорогие четырехъядерные операционные усилители с. Система поиска электронных компонентов и полупроводников. 1 8. Эти устройства состоят из четырех независимых операционных усилителей с частотной компенсацией и высоким коэффициентом усиления, которые разработаны специально для работы от одного источника питания или раздельного питания в широком диапазоне напряжений. Это конкретное приложение показано в таблице данных (см. Изображение). Дифференциальный усилитель lm324

tgd gcn q3y nyt 4qk ol7 mwt ytb 8w1 cwt h3y wl0 uc5 qfk l8p 9r6 iw7 qli xxc rs6

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *