+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

10N конденсатор какая емкость

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

1. Кодировка 3-мя цифрами

Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.


* Иногда последний ноль не указывают.

2. Кодировка 4-мя цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).

3. Маркировка ёмкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

4. Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандар-

тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.

С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.

Зачем нужна маркировка?

Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:

  • данные о ёмкости конденсатора – главной характеристике элемента;
  • сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
  • данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
  • процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
  • дату выпуска.

Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.

Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.

Маркировка отечественных конденсаторов

Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.

Ёмкость

Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».

Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико).

Для их обозначения используют также буквы греческого алфавита.

  • 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
  • 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
  • 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
  • 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.

Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.

В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.

Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.

Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.

Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.

Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.

Номинальное напряжение

Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.

Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.

Дата выпуска

Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.

“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц – двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).

4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”

Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.

ГодКод
1990A
1991B
1992C
1993D
1994E
1995F
1996H
1997I
1998K
1999L
2000M
2001N
2002P
2003R
2004S
2005T
2006U
2007V
2008W
2009X
2010A
2011B
2012C
2013D
2014E
2015F
2016H
2017I
2018K
2019L

Расположение маркировки на корпусе

Маркировка отыгрывает важную роль на любой продукции.

Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.

По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.

Цветовая маркировка отечественных радиоэлементов

При производстве линий с так называемыми автоматическими видами монтажа появилось и цветное нанесение, а также его непосредственное значение во всей системе.

На сегодняшний день больше всего используют нанесение с помощью четырех цветов. В данном случае прибегли к применению четырех полос. Итак, первая полоска вместе со второй представляют собой значение емкости в так называемых пикофарадах. Третья полоса означает отклонение, которое можно позволить. А четвертая полоса в свою очередь означает напряжение номинального типа.

Приводим для вас пример как обозначается тот или иной элемент – емкость – 23*106 пикофарад (24 F), допустимое отклонение от номинала – ±5%, номинальное напряжение – 57 В.

Маркировка конденсаторов импортного производства

На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.

Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.

Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.

Цветовая маркировка импортных конденсаторов

Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.

Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну.

Маркировка smd компонентов

Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.

Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра. Это значение имеет дробь в виде десятичного типа.

Заключение

Как вы уже догадались, маркировка данных предметов имеет весьма широкий вариант. Особенно большое количество маркировок имеют конденсаторы, которые были произведены за границей. Довольно часто встречаются изделия не большого размера, параметры, которых можно определить с помощью специальных измерений.

1. Маркировка тремя цифрами.

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1. 0пФ).

кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
1091.0 пФ
1591.5 пФ
2292.2 пФ
3393.3 пФ
4794.7 пФ
6896.8 пФ
10010 пФ0.01 нФ
15015 пФ0.015 нФ
22022 пФ0.022 нФ
33033 пФ0.033 нФ
47047 пФ0.047 нФ
68068 пФ0.068 нФ
101100 пФ0. 1 нФ
151150 пФ0.15 нФ
221220 пФ0.22 нФ
331330 пФ0.33 нФ
471470 пФ0.47 нФ
681680 пФ0.68 нФ
1021000 пФ1 нФ
1521500 пФ1.5 нФ
2222200 пФ2.2 нФ
3323300 пФ3.3 нФ
4724700 пФ4.7 нФ
6826800 пФ6.8 нФ
10310000 пФ10 нФ0.01 мкФ
153 15000 пФ15 нФ0. 015 мкФ
223 22000 пФ22 нФ0.022 мкФ
333 33000 пФ33 нФ0.033 мкФ
473 47000 пФ47 нФ0.047 мкФ
683 68000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0.47 мкФ
684680000 пФ680 нФ0. 68 мкФ
1051000000 пФ1000 нФ1 мкФ

2. Маркировка четырьмя цифрами.

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

3. Буквенно-цифровая маркировка.

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n».

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы.

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

маркировказначениемаркировказначениемаркировказначениемаркировказначение
A1.0J2.2S4. 7a2.5
B1.1K2.4T5.1b3.5
C1.2L2.7U5.6d4.0
D1.3M3.0V6.2e4.5
E1.5N3.3W6.8f5.0
F1.6P3.6X7.5m6.0
G1.8Q3.9Y8. 2n7.0
H2.0R4.3Z9.1t8.0

5. Планарные электролитические конденсаторы.

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

, по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

букваeGJACDEVH (T для танталовых)
напряжение2,5 В4 В6,3 В10 В16 В20 В25 В35 В50 В

Кодовая маркировка, дополнение

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

КодЕмкость [пФ]Емкость [нФ]Емкость [мкФ]
1091,00,0010,000001
1591,50,00150,000001
2292,20,00220,000001
3393,30,00330,000001
4794,70,00470,000001
6896,80,00680,000001
100*100,010,00001
150150,0150,000015
220220,0220,000022
330330,0330,000033
470470,0470,000047
680680,0680,000068
1011000,10,0001
1511500,150,00015
2212200,220,00022
3313300,330,00033
4714700,470,00047
6816800,680,00068
10210001,00,001
15215001,50,0015
22222002,20,0022
33233003,30,0033
47247004,70,0047
68268006,80,0068
10310000100,01
15315000150,015
22322000220,022
33333000330,033
47347000470,047
68368000680,068
1041000001000,1
1541500001500,15
2242200002200,22
3343300003300,33
4744700004700,47
6846800006800,68
105100000010001,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

КодЕмкость[пФ]Емкость[нФ]Емкость[мкФ]
16221620016,20,0162
47534750004750,475

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

КодЕмкость [мкФ]
R10,1
R470,47
11,0
4R74,7
1010
100100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

КодЕмкость
p100,1 пФ
Ip51,5 пФ
332p332 пФ
1НО или 1nО1,0 нФ
15Н или 15n15 нФ
33h3 или 33n233,2 нФ
590H или 590n590 нФ
m150,15мкФ
1m51,5 мкФ
33m233,2 мкФ
330m330 мкФ
1mO1 мФ или 1000 мкФ
10m10 мФ

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

КодЕмкость [мкФ]Напряжение [В]
А61,016/35
А7104
АА71010
АЕ71510
AJ62,210
AJ72210
AN63,310
AN73310
AS64,710
AW66,810
СА71016
СЕ61,516
СЕ71516
CJ62,216
CN63,316
CS64,716
CW66,816
DA61,020
DA71020
DE61,520
DJ62,220
DN63,320
DS64,720
DW66,820
Е61,510/25
ЕА61,025
ЕЕ61,525
EJ62,225
EN63,325
ES64,725
EW50,6825
GA7104
GE7154
GJ7224
GN7334
GS64,74
GS7474
GW66,84
GW7684
J62,26,3/7/20
JA7106,3/7
JE7156,3/7
JJ7226,3/7
JN63,36,3/7
JN7336,3/7
JS64,76,3/7
JS7476,3/7
JW66,86,3/7
N50,3335
N63,34/16
S50,4725/35
VA61,035
VE61,535
VJ62,235
VN63,335
VS50,4735
VW50,6835
W50,6820/35

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Тиристорный симисторный регулятор. Регулятор для индуктивной нагрузки. Установка конструкции в отдельный корпус

Симисторами называют полупроводниковый прибор, на котором присутствуют 5 р-н переходов. Важнейшее его качество, это способность пропускать сигнал, как в прямом, так и обратном направлениях.

Принцип работы симисторного регулятора мощности

Их применяют только в небольших электроприборах из-за того, что они крайне чувствительны к электромагнитным волнам, выделяют много тепла и неспособны работать на высоких частотах переменного тока. Их не используют в крупных промышленных агрегатах.

Прибор прост в изготовлении, не требует больших денежных затрат и обладает долгим сроком эксплуатации. Его можно легко применять в сферах и приборах, где описанные выше недостатки не играют большой роли.

Многие не знают, для чего нужны симисторные регуляторы мощности. Но они присутствуют в большинстве домашних бытовых приборах, таких как: фен, пылесос, электроинструменты и нагревательные приборы.

Регулятор мощности позволяет пропускать электрический сигнал, с частотой заданной пользователем.

Инструкция, как сделать симисторный регулятор своими руками

На сегодняшний день не так легко найти подходящий регулятор мощности, несмотря на невысокую цену крайне проблематично достать полностью подходящий по параметрам симистор.

Поэтому не остается другого выбора, кроме как сделать его самостоятельно. Для этого нужно рассмотреть несколько простых основных схем регуляторов, чем они отличаются друг от друга и разберем элементарную базу каждой.

Устройство и схемы простых регуляторов

Простейшая схема, которая может работать под любой нагрузкой. Комплектующие простейшие электронные компоненты, а управление осуществляется по фазово-импульсному принципу.

Основные элементы схемы:

  • симистор VD4 10 А, 400 В
  • динистор VD3 32 В
  • потенциометр R2

По R2 и R3 протекает ток, который накапливает заряд на конденсаторе С1. После того, как на заряд достигнет значения 32 В, откроется динистор VD3 и конденсатор С1 начнет разряжаться через R4 и VD3. Энергия пойдет на симистор VD4, он откроется и даст току протекать через нагрузку.

Регулировка мощности происходит при помощи симистора VD3 и нагрузки R2. Значения воздействия симистора постоянное и изменяться не может, регулировка мощности осуществляется путем изменения сопротивления нагрузки R2.

Элементы VD1, VD2, R1 являются не обязательными в данной схеме, но они позволяют обеспечивать плавность и точность изменения выходной мощности.

Какие элементы понадобятся

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600, 4-12А.
  • Диоды VD1, VD2 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Данная схема наиболее распространена и универсальна, существует множество ее вариаций.

Сборка

Используя данный план по сборке, вы сэкономите свое время. Вам нужны точные параметры устройства, для которого будет изготавливаться прибор.

Нужно знать:

Обратите внимание!

  • Количество фаз. Их может быть одна или три;
  • Наличие необходимости точной регулировки выходной мощности;
  • Входное напряжение и ток потребляемый нагрузкой. Значения должны быть в Вольтах и Амперах.

Необходимо выбрать тип устройства, либо аналоговый либо цифровой. Подобрать комплектующие по мощности прибора. В сети можно найти различный софт, который поможет с расчетами.

Выполнить расчет тепловыделений. Это делается довольно просто: Падение напряжения на симисторе умножается на номинальный ток. Необходимые данные должны быть указаны в характеристике симистора.

Приобрести необходимые элементы, печатную плату и радиатор. Произвести разводку дорожек на печатной плате при помощи растворителя. Нельзя забывать о креплении симистора и радиатора. Припаять все элементы так, как показано на схеме. Уделить особое внимание полярности подключения диодов и симистора.

Осуществить проверку готового прибора при помощи мультиметра в режиме сопротивления. Характеристика должна быть идентична изначальному проекту.

Установить симистор почти вплотную к радиатору, но нужно обеспечить тепловую изоляцию между ними. Винт, которым будет произведено закрепления нужно качественно заизолировать. Изготовить пластиковый корпус для прибора.

Обратите внимание!

Поместить полученную установку в защитный корпус. Поставить значения потенциометра на минимальные значения и осуществить пробный запуск. Мультиметром измеряем напряжения на выходе, при этом плавно поворачиваем ручку регулятора;

Если полученный результат не соответствует требуемым производим регулировку мощности. Если прибор работает как надо, можно подключать нагрузку к выходу регулятора.

Заключение

Правильно изготовленный симисторный регулятор мощности будет надежно служить и потребует небольших денежных вложений. Долговечность порадует самых скептически настроенных специалистов. Можно ознакомиться с фото самодельных симисторных регуляторов мощности в сети и убедиться в целесообразности изготовления данного прибора.

Фото симисторного регулятора мощности

Обратите внимание!

Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Симистор, по большому счету , — это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков — это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

  • Пр. 1 — предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 — токоограничительный резистор — служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 — потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 — основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 — динистор, открытие которого управляет симистором.
  • VD4 — симистор — главный элемент, производящий коммутацию и, соответственно, регулировку.

Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания . Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Напряжение на тиристоре

Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор — 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор — только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно .

Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья — с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.

Простая схема

Простая схема фазового регулирования на тиристоре представлена ниже .

Единственное её отличие от схемы на симисторе — это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.

Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.

С генератором на основе логики

Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.

Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.

Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных — положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.

На основе транзистора КТ117

Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.

В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.

  • VD1-VD4 — диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
  • EL1 — лампа накаливания — представлена вроде нагрузки, но может быть любой другой прибор.
  • FU1 — предохранитель, в этом случае стоит на 10 А.
  • R3, R4 — токоограничительные резисторы — нужны, чтобы не сжечь схему управления.
  • VD5, VD6 — стабилитроны — выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
  • VT1 — транзистор КТ117 — установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
  • R6 — подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
  • VS1 — тиристор — элемент, обеспечивающий коммутацию.
  • С2 — времязадающий конденсатор, определяющий период появления управляющего сигнала.

Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Регулятор напряжения

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

ТЕСТ:

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.


Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.


В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.


Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.


Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.


Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.


Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.тиристора,

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.


(Вариант 1)

В симисторных регуляторах мощности, работающих по принципу пропускания через нагрузку определенного числа полупериодов тока в единицу времени, должно выполняться условие четности их числа. Во многих известных радиолюбительских (и не только) конструкциях оно нарушается. Вниманию читателей предлагается регулятор, свободный от этого недостатка. Его схема изображена на рис. 1.

Здесь имеются узел питания, генератор импульсов регулируемой скважности и формирователь импульсов, управляющих симистором. Узел питания выполнен по классической схеме: токоограничивающие резистор R2 и конденсатор С1, выпрямитель на диодах VD3, VD4, стабилитрон VD5, сглаживающий конденсатор СЗ. Частота импульсов генератора, собранного на элементах DD1.1, DD1.2 и DD1.4, зависит от емкости конденсатора С2 и сопротивления между крайними выводами переменного резистора R1. Этим же резистором регулируют скважность импульсов. Элемент DD1.3 служит формирователем импульсов с частотой сетевого напряжения, поступающего на его вывод 1 через делитель из резисторов R3 и R4, причем каждый импульс начинается, вблизи перехода мгновенного значения сетевого напряжения через ноль. С выхода элемента DD1.3 эти импульсы через ограничительные резисторы R5 и R6 поступают на базы транзисторов VT1, VT2. Усиленные транзисторами импульсы управления через разделительный конденсатор С4 приходят на управляющий электрод симистора VS1. Здесь их полярность соответствует знаку сетевого напряжения, приложенного в этот момент к выв. 2 симистора. Благодаря тому, что элементы DD1.1 и DD1.2, DD1.3 и DD1.4 образуют два триггера, уровень на выходе элемента DD1.4, соединенном с выводом 2 элемента DD1.3, сменяется на противоположный только в отрицательном полупериоде сетевого напряжения. Предположим, триггер на элементах DD1.3, DD1.4 находится в состоянии с низким уровнем на выходе элемента DD1.3 и высоким на выходе элемента DD1.4. Для изменения этого состояния необходимо, чтобы высокий уровень на выходе элемента DD1.2, соединенном с выводом 6 элемента DD1.4, стал низким. А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.1, независимо от момента установки высокого уровня на выводе 8 элемента DD1.2. Формирование управляющего импульса начинается с приходом положительного полупериода сетевого напряжения на вывод 1 элемента DD1.3. В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1. 2 сменится низким, что установит на выходе элемента высокий уровень напряжения. Теперь высокий уровень на выходе элемента DD1.4 тоже может смениться низким, но только в отрицательный полупериод напряжения, поступающего на вывод 1 элемента DD1.3. Следовательно, рабочий цикл формирователя управляющих импульсов закончится в конце отрицательного полупериода сетевого напряжения, а общее число полупериодов напряжения, приложенного к нагрузке, будет четным. Основная часть деталей устройства смонтирована на плате с односторонней печатью, чертеж которой показан на рис. 2.

Диоды VD1 и VD2 припаяны непосредственно к выводам переменного резистора R1, а резистор R7 — к выводам симистора VS1. Симистор снабжен ребристым теплоотводом заводского изготовления с площадью теплоотводящей поверхности около 400 см2. Использованы постоянные резисторы МЛТ, переменный резистор R1 — СПЗ-4аМ. Его можно заменить другим такого же или большего сопротивления. Номиналы резисторов R3 и R4 должны быть одинаковыми. Конденсаторы С1, С2 — К73-17. Если требуется повышенная надежность, то оксидный конденсатор С4 можно заменить пленочным, например, К73-17 2,2…4,7 мкФ на 63 В, но размеры печатной платы придется увеличить.
Вместо диодов КД521А подойдут и другие маломощные кремниевые, а стабилитрон Д814В заменит любой более современный с напряжением стабилизации 9 В. Замена транзисторов КТ3102В, КТ3107Г — другие маломощные кремниевые соответствующей структуры. Если амплитуда открывающих симистор VS1 импульсов тока окажется недостаточной, сопротивление резисторов R5 и R6 уменьшать нельзя. Лучше подобрать транзисторы с возможно большим коэффициентом передачи тока при напряжении между коллектором и эмиттером 1 В. У VT1 он должен быть 150…250, у VT2 — 250…270. По окончании монтажа можно присоединять к регулятору нагрузку сопротивлением 50…100 Ом и включать его в сеть. Параллельно нагрузке подключите вольтметр постоянного тока на 300…600 В. Если симистор устойчиво открывается в обоих полупериодах сетевого напряжения, стрелка вольтметра вообще не отклоняется от нуля либо немного колеблется вокруг него. Если же стрелка вольтметра отклоняется лишь в одну сторону, значит, симистор открывается только в полупериодах одного знака. Направление отклонения стрелки соответствует той полярности приложенного к симистору напряжения, при которой он остается закрытым. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока.

Симисторный регулятор мощности.
(Вариант 2)

Предлагаемый симисторный регулятор мощности (см. рис.) можно использовать для регулирования активной мощности нагревательных приборов (паяльника, электрической печки, плиты и пр.). Для изменения яркости осветительных приборов его использовать не рекомендуется, т.к. они будут сильно мигать. Особенностью регулятора является коммутация симистора в моменты перехода сетевого напряжения через ноль, поэтому он не создает сетевых помех Мощность регулируется изменением числа полупериодов сетевого напряжения, поступающих в нагрузку.

Синхрогенератор выполнен на базе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ DD1. 1. Его особенностью является появление высокого уровня (логической «1») на выходе в том случае, когда входные сигналы отличаются друг от друга, и низкого уровня («О») при совладении входных сигналов. В результате этого «Г появляется на выходе DD1.1 только в моменты перехода сетевого напряжения через ноль. Генератор прямоугольных импульсов с регулируемой скважностью выполнен на логических элементах DD1.2 и DD1.3. Соединение одного из входов этих элементов с питанием превращает их в инверторы. В результате получается генератор прямоугольных импульсов. Частота импульсов приблизительно 2 Гц, а их длительность изменяется резистором R5.

На резисторе R6 и диодах VD5. VD6 выполнена схема совпадения 2И. Высокий уровень на ее выходе появляется только при совпадении двух «1» (импульса синхронизации и импульса с генератора). В результате на выходе 11 DD1.4 появляются пачки импульсов синхронизации. Элемент DD1.4 является повторителем импульсов, для чего один из его входов подключен к общей шине.
На транзисторе VT1 выполнен формирователь управляющих импульсов. Пачки коротких импульсов с его эмиттера, синхронизированные с началом полупериодов сетевого напряжения, поступают на управляющий переход симистора VS1 и открывают его. Через RH протекает ток.

Питание симисторного регулятора мощности осуществляется через цепочку R1-C1-VD2. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Положительные импульсы со стабилитрона VD1 через диод VD2 заряжают конденсатор СЗ.
При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тогда симистор типа КУ208Г позволяет коммутировать мощность до 1 кВт. Размеры радиатора можно приближенно прикинуть из расчета, что на 1 Вт рассеиваемой мощности необходимо около 10 см2 эффективной поверхности радиатора (сам корпус симистора рассеивает 10 Вт мощности). Для большей мощности необходим более мощный симистор, например, ТС2-25-6. Он позволяет коммутировать ток 25 А. Симистор выбирается с допустимым обратным напряжением не ниже 600 В. Симистор желательно защитить варистором, включенным параллельно, например, СН-1-1-560. Диоды VD2.. .VD6 можно применять в схеме любые, например. КД522Б или КД510А Стабилитрон — любой маломощный на напряжение 14.. .15 В. Подойдет Д814Д.

Симисторный регулятор мощности размещен на печатной плате из одностороннего стеклотекстолита размерами 68×38 мм.

Простой регулятор мощности.

Регулятор мощности до 1 кВт (0%-100%).
Схема собиралась не раз, работает без наладки и других проблем. Естественно диоды и тиристор на радиатор при мощности более 300 ватт. Если меньше, то хватает самих корпусов деталей для охлаждения.
Изначально в схеме применялись транзисторы типа МП38 и МП41.

Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора. Схема достаточно проста и доступна даже начинающему радиолюбителю. Для управления более мощной нагрузкой тиристоры необходимо поставить на радиатор (150 см2 и более). Для устранения помех, создаваемых регулятором, желательно на входе поставить дроссель.

На схеме — родителе, был установлен симистор КУ208Г, и меня он не устроил из за малой мощности коммутации. Покопавшись нашел импортные симисторы BTA16-600. Максимальное напряжение коммутации которого равен 600 вольт пр токе 16А!!!
Все резисторы МЛТ 0,125;
R4 — СП3-4аМ;
Конденсатор составлен из двух (включенных параллельно) по 1 микрофараду 250 вольт, типа — К73-17.
При данных, указанных на схеме, были достигнуты следующие результаты: Регулировка напряжения от 40 до напряжения сети.

Регулятор можно вставить в штатный корпус обогревателя.

Схема срисованная с платы регулятора пылесоса.

на кондесаторе маркировка: 1j100
Пробовал управлять ТЭНом 2 квт — никаких морганий света на той же фазе не заметил,
напряжение на ТЭНе регулируется плавно и, вроде бы, равномернно (пропорционально углу поворота резистора).
Регулируется от 0 до 218 вольт при напряжении в сети 224-228 вольт.

Такой простой, но в то же время очень эффективный регулятор, сможет собрать практически каждый, кто может держать в руках паяльник и хоть слегка читает схемы. Ну а этот сайт поможет вам осуществить своё желание. Представленный регулятор регулирует мощность очень плавно без бросков и провалов.

Схема простого симисторного регулятора

Такой регулятор можно применить в регулировании освещения лампами накаливания, но и светодиодными тоже, если купить диммируемые. Температуру паяльника регулировать — легко. Можно бесступенчато регулировать обогрев, менять скорость вращения электродвигателей с фазным ротором и ещё много где найдётся место такой полезной вещице. Если у вас есть старая электродрель, у которой не регулируются обороты, то применив этот регулятор, вы усовершенствуете такую полезную вещь.
В статье, с помощью фотографий, описания и прилагаемого видео, очень подробно описан весь процесс изготовления, от сбора деталей до испытания готового изделия.


Сразу говорю, что если вы не дружите с соседями, то цепочку C3 — R4 можете не собирать. (Шутка) Она служит для защиты от радиопомех.
Все детали можно купить в Китае на Алиэкспресс. Цены от двух до десяти раз меньше, чем в наших магазинах.
Для изготовления этого устройства понадобится:
  • R1 – резистор примерно 20 Ком, мощностью 0,25вт;
  • R2 – потенциометр примерно 500 Ком, можно от 300 Ком до 1 Мом, но лучше 470 Ком;
  • R3 — резистор примерно 3 Ком, 0, 25 Вт;
  • R4- резистор 200-300 Ом, 0, 5 Вт;
  • C1 и C2 – конденсаторы 0, 05 МкФ, 400 В;
  • C3 – 0, 1 МкФ, 400 В;
  • DB3 – динистор, есть в каждой энергосберегающей лампе;
  • BT139-600, регулирует ток 18 А или BT138-800, регулирует ток 12 А – симисторы, но можно взять и любые другие, в зависимости от того, какую нагрузку нужно регулировать. Динистор ещё называют диак, симистор – триак.
  • Радиатор охлаждения выбирается от величины планируемой мощности регулирования, но чем больше, тем лучше. Без радиатора можно регулировать не более 300 ватт.
  • Клеммные колодки можно поставить любые;
  • Макетную плату применять по вашему желанию, лишь бы всё вошло.
  • Ну и без прибора, как без рук. А вот припой применять лучше наш. Он хоть и дороже, но намного лучше. Хорошего припоя Китайского не видел.

Приступаем к сборке регулятора

Сначала нужно продумать расстановку деталей так, чтобы ставить как можно меньше перемычек и меньше паять, затем очень внимательно проверяем соответствие со схемой, а потом все соединения запаиваем.


Убедившись, что ошибок нет и поместив изделие в пластиковый корпус, можно опробовать, подключив к сети.

Схемы на то 12.5.12 5. Как подключить нагрузку к блоку управления на микросхемах

Подборка схем и описание работы регулятора мощности на симисторах и не только. Схемы симисторных регуляторов мощности хорошо подходят для продление срока эксплуатации ламп накаливания и для регулировки их яркости свечения. Или для запитки нестандартной аппаратуры например на 110 вольт.

На рисунке представлена схема симисторного регулятора мощности, которую можно менять за счет изменения общего количества сетевых полупериодов, пропускаемых симистором за определенный интервал времени. На элементах микросхемы DD1.1.DD1.3 сделан , период колебания которого около 15-25 сетевых полупериодов.

Скважность импульсов регулируется резистором R3. Транзистор VT1 совместно с диодами VD5-VD8 предназначен для привязки момента включения симистора во время перехода сетевого напряжения через нуль. В основном этот транзистор открыт, соответственно, на вход DD1.4 поступает «1» и транзистор VT2 с симистором VS1 закрыты. В момент перехода через нуль транзистор VT1 закрывается и почти сразу открывается. При этом, если на выходе DD1.3 была 1, то состояние элементов DD1.1.DD1.6 не изменится, а если на выходе DD1.3 был «ноль», то элементы DD1.4.DD1.6 сгенерируют короткий импульс, который усилится транзистором VT2 и откроет симистор.

До тех пор пока на выходе генератора будет логический ноль, процесс будет идти цикличиски после каждого перехода сетевого напряжения через точку нуля.

Основа схемы зарубежный симистор mac97a8, который позваляет коммутировать большие мощности подключенные нагрузки, а для ее регулировки использовал старый советский переменный резистор, а в качестве индикации использовал обычный светодиод.

В симисторном регуляторе мощности применен принцип фазового управления. Работа схемы регулятора мощности основана на изменении момента включения симистора относительно перехода сетевого напряжения через ноль. В первоначальный момент положительного полупериода симистор находится в закрытом состояние. С возрастанием сетевого напряжения, конденсатор С1 заряжается через делитель.

Возрастающее напряжения на конденсаторе сдвигается по фазе от сетевого на величину, зависящую от суммарного сопротивления обоих резисторов и емкости конденсатора. Заряд конденсатора происходит до тех пор, пока напряжение на нем не дойдет до уровня «пробоя» динистора, приблизительно 32 В.

В момент открытия динистора, откроется и симистор, через подключенную к выходу нагрузку потечет ток, зависящий от суммарного сопротивлением открытого симистора и нагрузки. Симистор будет открыт до конца полупериода. Резистором VR1 задаем напряжение открывания динистора и симистора, тем самым регулируя мощность. В момент действия отрицательного полупериода алгоритм работы схемы аналогичен.

Вариант схемы с небольшими доработками на 3,5 кВт

Схема регулятора несложная, мощность нагрузки на выходе устройства составляет 3,5 кВт. С помощью этой радиолюбительской самоделки вы можите регулировать освещение, нагревательные тэны и многое другое. Единственный существенный недостаток данной схемы, это то что подсоединить к ней индукционную нагрузку нельзя ни в коем случае, т.к симистор сгорит!


Используемые в конструкции радиокомпоненты: Симистор Т1 — BTB16-600BW или аналогичный (КУ 208 ил ВТА, ВТ). Динистор Т — типа DB3 или DB4. Конденсатор 0,1мкФ керамический.

Сопротивление R2 510Ом ограничивает максимальные вольты на конденсаторе 0,1 мкФ, если поставить движок регулятора в положение 0 Ом, то сопротивление цепи составит порядка 510 Ом. Заряжается емкость, через резисторы R2 510Ом и переменное сопротивление R1 420кОм, после того, как U на конденсаторе достигнет уровня открывания динистора DB3, последний сформирует импульс, отпирающий симистор, после чего, при дальнейшем проходе синусоиды, симистор запирается. Частота открывания-закрывания Т1 зависит от уровня U на конденсаторе 0.1мкФ, которое,зависит от сопротивления переменного резистора. Т.е, прерывая ток (с большой частотой) схема, тем самым регулирует мощность на выходе.

При каждой положительной полуволне входного переменного напряжения емкость С1 заряжается через цепочку резисторов R3, R4, когда напряжение на конденсаторе С1 станет равным напряжению открытия динистора VD7 произойдет его пробой и разрядка емкости через диодный мост VD1-VD4 , а также сопротивление R1 и управляющий электрод VS1 . Для открытия симистора используется электрическая цепочка из диодов VD5, VD6 конденсатора С2 и сопротивления R5.

Требуется подобрать номинал резистора R2 так, чтобы при обоих полуволнах сетевого напряжения, симистор регулятора надежно срабатывал, а также требуется подобрать номиналы сопротивлений R3 и R4 так, чтобы при вращении ручки переменного сопротивления R4 напряжение на нагрузке плавно изменялось от минимальных до максимальных значений. Вместо симистора ТС 2-80 можно использовать ТС2-50 или ТС2-25, хотя будет небольшой проигрыш по допустимой мощности в нагрузке.

В качестве симистора был использован КУ208Г, ТС106-10-4, ТС 112-10-4 и их аналоги. В тот момент времени когда симистор закрыт, осуществляется заряд конденсатора С1 через подключенную нагрузку и резисторы R1 и R2. Скорость заряда изменяется резистором R2, резистор R1 предназначен для ограничения максимальной величины тока заряда

При достижении на обкладках конденсатора порогового значения напряжения происходит открытие ключа, конденсатор С1 быстро разряжается на управляющий электрод и перключает симистор из закрытого состояния в открытое, в открытом состоянии симистор шунтирует цепь R1, R2, С1. В момент перехода сетевого напряжения через ноль происходит закрытие симистора, затем снова заряд конденсатора C1, но уже отрицательным напряжением.

Конденсатор С1 от 0,1…1,0 мкФ. Резистор R2 1,0…0,1 МОм. Симистор включается положительным импульсом тока на управляющий электрод при положительном напряжении на выводе условном аноде и отрицательным импульсом тока на управляющий электрод при отрицательном напряжении условного катода. Таким образом, ключевой элемент для регулятоpa должен быть двунаправленным. Можно в качестве ключа использовать двунаправленный динистор.

Диоды Д5-Д6 используются для защиты тиристора от возможного пробоя обратным напряжением. Транзистор работает в режиме лавинного пробоя. Его напряжение пробоя около 18-25 вольт. Если вы не найдете П416Б, то можно попытаться найти ему замену .

Импульсный трансформатор наматывается на ферритовом кольце диаметром 15 мм, марки Н2000.Тиристор можно заменить на КУ201

Схема этого регулятора мощности похожа на вышеописанные схемы, только введена помехоподавляющая цепь С2, R3, а ыыключатель SW дает возможность разрывать цепь зарядки управляющего конденсатора, что приводит к моментальному запиранию симистора и отключению нагрузки.

С1, С2 — 0,1 МКФ, R1-4k7, R2-2 мОм, R3-220 Ом, VR1-500 кОм, DB3 — динистор, BTA26-600B — симистор, 1N4148/16 В — диод, светодиод любой.

Регулятор используется для регулировки мощности нагрузки в цепях до 2000 Вт, ламп накаливания, нагревательных приборов, паяльника, асинхронных двигателей, зарядного устройство для авто, и если заменить симистор на более мощный можно применить в цепи регупировки тока в сварочных трансформаторах.

Принцип работы этой схемы регулятора мощности заключается в том, что на нагрузку поступает полупериод сетевого напряжения через выбранное число пропущенных полупериодов.


Диодный мост выпрямляет переменное напряжение. Резистор R1 и стабилитрон VD2, вместе с конденсатором фильтра образуют источник питания 10 В для питания микросхемы К561ИЕ8 и транзистора КТ315. Выпрямленные положительные полупериоды напряжения проходя через конденсатор С1 стабилизируются стабилитроном VD3 на уровне 10 В. Таким образом, на счетный вход С счетчика К561ИЕ8 следуют импульсы с частотой 100 Гц. Если переключатель SA1 подсоединен к выходу 2, то на базе транзистора будет постоянно присутствовать уровень логической единицы. Т.к импульс обнуления микросхемы очень короткий и счетчик успевает перезапуститься от того же импульса.

На выводе 3 установится уровень логической единицы. Тиристор будет открыт. На нагрузке будет выделяться вся мощность. Во всех последующих положениях SA1 на выводе 3 счетчика будет проходить один импульс через 2-9 импульсов.

Микросхема К561ИЕ8 это десятичный счетчик с позиционным дешифратором на выходе, поэтому уровень логической единицы будет периодически на всех выходах. Однако, если переключатель установлен на 5 выходе (выв.1), то счет будет происходить только до 5. При прохождении импульсом выхода 5 микросхема обнулится. Начнется счет с ноля, а на выводе 3 появится уровень логической единицы на время одного полупериода. На это время открывается транзистор и тиристор, один полупериод проходит в нагрузку. Для того чтобы было понятней привожу векторные диаграммы работы схемы.

Если требуется уменьшить мощность нагрузки, можно добавить еще одну микросхему счетчика, соединив вывод 12 предыдущей микросхемы с выводом 14 последующей. Установив еще один переключатель, можно будет регулировать мощность до 99 пропущенных импульсов. Т.е. можно получить примерно сотую часть общей мощности.

Микросхема КР1182ПМ1 имеет в своем внутреннем составе два тиристора и узел управления ими. Максимальное входное напряжение микросхемы КР1182ПМ1 около 270 Вольт, а максимум в нагрузке может достигать 150 Ватт без использования внешнего симистора и до 2000 Вт с использованием, а также с учетом того, что симистор будет установлен на радиаторе.


Для снижения уровня внешних помех используется конденсатор С1 и дроссель L1, а емкость С4 требуется для плавного включения нагрузки. Регулировка осуществляется с помощью сопротивления R3.

Подборка довольно простых схем регуляторов для паяльника упростит жизнь радиолюбителю

Комбинированность заключается в совмещении удобства применения цифрового регулятора и гибкости регулировки простого.


Рассмотренная схема регулятора мощности работает по принципу изменения числа периодов входного переменного напряжения, идущих на нагрузку. Это значит, что устройство нельзя использовать для настройки яркости ламп накаливания из-за заметного для глаза мигания. Схема дает возможность регулировать мощность в пределах восьми предустановленных значений.

Существует огромной количество классических тиристорных и симисторных схем регуляторов, но этот регулятор выполнен на современной элементной базе и кроме того являлся фазовым, т.е. пропускает не всю полуволну сетевого напряжения, а только некоторую её часть, тем самым и осуществляется ограничение мощности, т. к открытие симистора происходит только при нужном фазовом угле.


(Вариант 1)

В симисторных регуляторах мощности, работающих по принципу пропускания через нагрузку определенного числа полупериодов тока в единицу времени, должно выполняться условие четности их числа. Во многих известных радиолюбительских (и не только) конструкциях оно нарушается. Вниманию читателей предлагается регулятор, свободный от этого недостатка. Его схема изображена на рис. 1.

Здесь имеются узел питания, генератор импульсов регулируемой скважности и формирователь импульсов, управляющих симистором. Узел питания выполнен по классической схеме: токоограничивающие резистор R2 и конденсатор С1, выпрямитель на диодах VD3, VD4, стабилитрон VD5, сглаживающий конденсатор СЗ. Частота импульсов генератора, собранного на элементах DD1.1, DD1.2 и DD1.4, зависит от емкости конденсатора С2 и сопротивления между крайними выводами переменного резистора R1. Этим же резистором регулируют скважность импульсов. Элемент DD1.3 служит формирователем импульсов с частотой сетевого напряжения, поступающего на его вывод 1 через делитель из резисторов R3 и R4, причем каждый импульс начинается, вблизи перехода мгновенного значения сетевого напряжения через ноль. С выхода элемента DD1.3 эти импульсы через ограничительные резисторы R5 и R6 поступают на базы транзисторов VT1, VT2. Усиленные транзисторами импульсы управления через разделительный конденсатор С4 приходят на управляющий электрод симистора VS1. Здесь их полярность соответствует знаку сетевого напряжения, приложенного в этот момент к выв. 2 симистора. Благодаря тому, что элементы DD1.1 и DD1.2, DD1.3 и DD1.4 образуют два триггера, уровень на выходе элемента DD1.4, соединенном с выводом 2 элемента DD1.3, сменяется на противоположный только в отрицательном полупериоде сетевого напряжения. Предположим, триггер на элементах DD1.3, DD1.4 находится в состоянии с низким уровнем на выходе элемента DD1.3 и высоким на выходе элемента DD1.4. Для изменения этого состояния необходимо, чтобы высокий уровень на выходе элемента DD1. 2, соединенном с выводом 6 элемента DD1.4, стал низким. А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.1, независимо от момента установки высокого уровня на выводе 8 элемента DD1.2. Формирование управляющего импульса начинается с приходом положительного полупериода сетевого напряжения на вывод 1 элемента DD1.3. В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.2 сменится низким, что установит на выходе элемента высокий уровень напряжения. Теперь высокий уровень на выходе элемента DD1.4 тоже может смениться низким, но только в отрицательный полупериод напряжения, поступающего на вывод 1 элемента DD1.3. Следовательно, рабочий цикл формирователя управляющих импульсов закончится в конце отрицательного полупериода сетевого напряжения, а общее число полупериодов напряжения, приложенного к нагрузке, будет четным. Основная часть деталей устройства смонтирована на плате с односторонней печатью, чертеж которой показан на рис. 2.

Диоды VD1 и VD2 припаяны непосредственно к выводам переменного резистора R1, а резистор R7 — к выводам симистора VS1. Симистор снабжен ребристым теплоотводом заводского изготовления с площадью теплоотводящей поверхности около 400 см2. Использованы постоянные резисторы МЛТ, переменный резистор R1 — СПЗ-4аМ. Его можно заменить другим такого же или большего сопротивления. Номиналы резисторов R3 и R4 должны быть одинаковыми. Конденсаторы С1, С2 — К73-17. Если требуется повышенная надежность, то оксидный конденсатор С4 можно заменить пленочным, например, К73-17 2,2…4,7 мкФ на 63 В, но размеры печатной платы придется увеличить.
Вместо диодов КД521А подойдут и другие маломощные кремниевые, а стабилитрон Д814В заменит любой более современный с напряжением стабилизации 9 В. Замена транзисторов КТ3102В, КТ3107Г — другие маломощные кремниевые соответствующей структуры. Если амплитуда открывающих симистор VS1 импульсов тока окажется недостаточной, сопротивление резисторов R5 и R6 уменьшать нельзя. Лучше подобрать транзисторы с возможно большим коэффициентом передачи тока при напряжении между коллектором и эмиттером 1 В. У VT1 он должен быть 150…250, у VT2 — 250…270. По окончании монтажа можно присоединять к регулятору нагрузку сопротивлением 50…100 Ом и включать его в сеть. Параллельно нагрузке подключите вольтметр постоянного тока на 300…600 В. Если симистор устойчиво открывается в обоих полупериодах сетевого напряжения, стрелка вольтметра вообще не отклоняется от нуля либо немного колеблется вокруг него. Если же стрелка вольтметра отклоняется лишь в одну сторону, значит, симистор открывается только в полупериодах одного знака. Направление отклонения стрелки соответствует той полярности приложенного к симистору напряжения, при которой он остается закрытым. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока.

Симисторный регулятор мощности.
(Вариант 2)

Предлагаемый симисторный регулятор мощности (см. рис.) можно использовать для регулирования активной мощности нагревательных приборов (паяльника, электрической печки, плиты и пр.). Для изменения яркости осветительных приборов его использовать не рекомендуется, т.к. они будут сильно мигать. Особенностью регулятора является коммутация симистора в моменты перехода сетевого напряжения через ноль, поэтому он не создает сетевых помех Мощность регулируется изменением числа полупериодов сетевого напряжения, поступающих в нагрузку.

Синхрогенератор выполнен на базе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ DD1.1. Его особенностью является появление высокого уровня (логической «1») на выходе в том случае, когда входные сигналы отличаются друг от друга, и низкого уровня («О») при совладении входных сигналов. В результате этого «Г появляется на выходе DD1.1 только в моменты перехода сетевого напряжения через ноль. Генератор прямоугольных импульсов с регулируемой скважностью выполнен на логических элементах DD1.2 и DD1.3. Соединение одного из входов этих элементов с питанием превращает их в инверторы. В результате получается генератор прямоугольных импульсов. Частота импульсов приблизительно 2 Гц, а их длительность изменяется резистором R5.

На резисторе R6 и диодах VD5. VD6 выполнена схема совпадения 2И. Высокий уровень на ее выходе появляется только при совпадении двух «1» (импульса синхронизации и импульса с генератора). В результате на выходе 11 DD1.4 появляются пачки импульсов синхронизации. Элемент DD1.4 является повторителем импульсов, для чего один из его входов подключен к общей шине.
На транзисторе VT1 выполнен формирователь управляющих импульсов. Пачки коротких импульсов с его эмиттера, синхронизированные с началом полупериодов сетевого напряжения, поступают на управляющий переход симистора VS1 и открывают его. Через RH протекает ток.

Питание симисторного регулятора мощности осуществляется через цепочку R1-C1-VD2. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Положительные импульсы со стабилитрона VD1 через диод VD2 заряжают конденсатор СЗ.
При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тогда симистор типа КУ208Г позволяет коммутировать мощность до 1 кВт. Размеры радиатора можно приближенно прикинуть из расчета, что на 1 Вт рассеиваемой мощности необходимо около 10 см2 эффективной поверхности радиатора (сам корпус симистора рассеивает 10 Вт мощности). Для большей мощности необходим более мощный симистор, например, ТС2-25-6. Он позволяет коммутировать ток 25 А. Симистор выбирается с допустимым обратным напряжением не ниже 600 В. Симистор желательно защитить варистором, включенным параллельно, например, СН-1-1-560. Диоды VD2.. .VD6 можно применять в схеме любые, например. КД522Б или КД510А Стабилитрон — любой маломощный на напряжение 14.. .15 В. Подойдет Д814Д.

Симисторный регулятор мощности размещен на печатной плате из одностороннего стеклотекстолита размерами 68×38 мм.

Простой регулятор мощности.

Регулятор мощности до 1 кВт (0%-100%).
Схема собиралась не раз, работает без наладки и других проблем. Естественно диоды и тиристор на радиатор при мощности более 300 ватт. Если меньше, то хватает самих корпусов деталей для охлаждения.
Изначально в схеме применялись транзисторы типа МП38 и МП41.

Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора. Схема достаточно проста и доступна даже начинающему радиолюбителю. Для управления более мощной нагрузкой тиристоры необходимо поставить на радиатор (150 см2 и более). Для устранения помех, создаваемых регулятором, желательно на входе поставить дроссель.

На схеме — родителе, был установлен симистор КУ208Г, и меня он не устроил из за малой мощности коммутации. Покопавшись нашел импортные симисторы BTA16-600. Максимальное напряжение коммутации которого равен 600 вольт пр токе 16А!!!
Все резисторы МЛТ 0,125;
R4 — СП3-4аМ;
Конденсатор составлен из двух (включенных параллельно) по 1 микрофараду 250 вольт, типа — К73-17.
При данных, указанных на схеме, были достигнуты следующие результаты: Регулировка напряжения от 40 до напряжения сети.

Регулятор можно вставить в штатный корпус обогревателя.

Схема срисованная с платы регулятора пылесоса.

на кондесаторе маркировка: 1j100
Пробовал управлять ТЭНом 2 квт — никаких морганий света на той же фазе не заметил,
напряжение на ТЭНе регулируется плавно и, вроде бы, равномернно (пропорционально углу поворота резистора).
Регулируется от 0 до 218 вольт при напряжении в сети 224-228 вольт.

При разработке регулируемого источника питания без высокочастотного преобразователя разработчик сталкивается с такой проблемой, что при минимальном выходном напряжении и большом токе нагрузки на регулирующем элементе стабилизатор рассеивается большая мощность. До настоящего времени в большинстве случаев эту проблему решали так: делали несколько отводов у вторичной обмотки силового трансформатора и разбивали весь диапазон регулировки выходного напряжения на несколько поддиапазонов. Такой принцип использован во многих серийных источниках питания, например, УИП-2 и более современных. Понятно, что использование источника питания с несколькими поддиапазонами усложняется, усложняется также дистанционное управление таким источником питания, например, от ЭВМ.

Выходом мне показалось использование управляемого выпрямителя на тиристоре т. к. появляется возможность создания источника питания, управляемого одной ручкой установки выходного напряжения или одним управляющим сигналом с диапазоном регулировки выходного напряжения от нуля (или почти от нуля) до максимального значения. Такой источник питания можно будет изготовить из готовых деталей, имеющихся в продаже.

К настоящему моменту управляемые выпрямители с тиристорами описаны и весьма подробно в книгах по источникам питания, но практически в лабораторных источниках питания применяются редко. В любительских конструкциях они также редко встречаются (кроме, конечно, зарядных устройств для автомобильных аккумуляторов). Надеюсь, что настоящая работа поможет изменить это положение дел.

В принципе, описанные здесь схемы могут быть применены для стабилизации входного напряжения высокочастотного преобразователя, например, как это сделано в телевизорах “Электроника Ц432”. Приведенные здесь схемы могут также быть использованы для изготовления лабораторных источников питания или зарядных устройств.

Описание своих работ я привожу не в том порядке как я их проводил, а более или менее упорядочено. Сначала рассмотрим общие вопросы, затем “низковольтные” конструкции типа источников питания для транзисторных схем или зарядки аккумуляторов и затем “высоковольтные” выпрямители для питания схем на электронных лампах.

Работа тиристорного выпрямителя на емкостную нагрузку

В литературе описано большое количество тиристорных регуляторов мощности, работающих на переменном или пульсирующем токе с активной (например, лампы накаливания) или индуктивной (например, электродвигатель) нагрузкой. Нагрузкой же выпрямителя обычно является фильтр в котором для сглаживания пульсаций применяются конденсаторы, поэтому нагрузка выпрямителя может иметь емкостный характер.

Рассмотрим работу выпрямителя с тиристорным регулятором на резистивно-емкостную нагрузку. Схема подобного регулятора приведена на рис. 1.

Рис. 1.

Здесь для примера показан двухполупериодный выпрямитель со средней точкой, однако он может быть выполнен и по другой схеме, например, мостовой. Иногда тиристоры кроме регулирования напряжения на нагрузке U н выполняют также функцию выпрямительных элементов (вентилей), однако такой режим допускается не для всех тиристоров (тиристоры КУ202 с некоторыми литерами допускают работу в качестве вентилей). Для ясности изложения предположим, что тиристоры используются только для регулирования напряжения на нагрузке U н , а выпрямление производится другими приборами.

Принцип работы тиристорного регулятора напряжения поясняет рис. 2. На выходе выпрямителя (точка соединения катодов диодов на рис. 1) получаются импульсы напряжения (нижняя полуволна синусоиды “вывернута” вверх), обозначенные U выпр . Частота пульсаций f п на выходе двухполупериодного выпрямителя равна удвоенной частоте сети, т. е. 100 Hz при питании от сети 50 Hz . Схемауправления подает на управляющий электрод тиристора импульсы тока (или света если применен оптотиристор) с определенной задержкой t з относительно начала периода пульсаций, т. е. того момента, когда напряжение выпрямителя U выпр становится равным нулю.

Рис. 2.

Рисунок 2 выполнен для случая, когда задержка t з превышает половину периода пульсаций. В этом случае схема работает на падающем участке волны синусоиды. Чем больше задержка момента включения тиристора, тем меньше получится выпрямленное напряжение U н на нагрузке. Пульсации напряжения на нагрузке U н сглаживаются конденсатором фильтра C ф . Здесь и далее сделаны некоторые упрощения при рассмотрении работы схем: выходное сопротивление силового трансформатора считается равным нулю, падение напряжения на диодах выпрямителя не учитывается, не учитывается время включения тиристора. При этом получается что подзаряд емкости фильтра C ф происходит как бы мгновенно. В реальности после подачи запускающего импульса на управляющий электрод тиристора заряд конденсатора фильтра занимает некоторое время, которое, однако, обычно намного меньше периода пульсаций Т п.

Теперь представим, что задержка момента включения тиристора t з равна половине периода пульсаций (см. рис. 3). Тогда тиристор будет включаться, когда напряжение на выходе выпрямителя проходит через максимум.


Рис. 3.

В этом случае напряжение на нагрузке U н также будет наибольшим, примерно таким же, как если бы тиристорного регулятора в схеме не было (пренебрегаем падением напряжения на открытом тиристоре).

Здесь мы и сталкиваемся с проблемой. Предположим, что мы хотим регулировать напряжение на нагрузке почти от нуля до наибольшего значения, которое можно получить от имеющегося силового трансформатора. Для этого с учетом сделанных ранее допущения потребуется подавать на тиристор запускающие импульсы ТОЧНО в момент, когда U выпр проходит через максимум, т. е. t з = T п /2. С учетом того, что тиристор открывается не моментально, а подзарядка конденсатора фильтра C ф также требует некоторого времени, запускающий импульс нужно подать несколько РАНЬШЕ половины периода пульсаций, т. е. t з /2. Проблема в том, что во-первых сложно сказать насколько раньше, т. к. это зависит от таких причин, которые при расчете точно учесть сложно, например, времени включения данного экземпляра тиристора или полного (с учетом индуктивностей) выходного сопротивления силового трансформатора. Во-вторых, даже если произвести расчет и регулировку схемы абсолютно точно, время задержки включения t з , частота сети, а значит, частота и период T п пульсаций, время включения тиристора и другие параметры со временем могут измениться. Поэтому для того чтобы получить наибольшее напряжение на нагрузке U н возникает желание включать тиристор намного раньше половины периода пульсаций.

Предположим, что так мы и поступили, т. е. установили время задержки t з намного меньшее Т п /2. Графики, характеризующие работу схемы в этом случае приведены на рис. 4. Заметим, что если тиристор откроется раньше половины полупериода, он будет оставаться в открытом состоянии пока не закончится процесс заряда конденсатора фильтра C ф (см. первый импульс на рис. 4).


Рис. 4.

Оказывается, что при малом времени задержки t з возможно возникновение колебаний выходного напряжения регулятора. Они возникают в том случае, если в момент подачи на тиристор запускающего импульса напряжение на нагрузке U н оказывается больше напряжения на выходе выпрямителя U выпр . В этом случае тиристор оказывается под обратным напряжением и не может открыться под действием запускающего импульса. Один или несколько запускающих импульсов могут быть пропущены (см. второй импульс на рис. 4). Следующее включение тиристора произойдет когда конденсатор фильтра разрядится и в момент подачи управляющего импульса тиристор будет находиться под прямым напряжением.

Вероятно, наиболее опасным является случай, когда оказывается пропущен каждый второй импульс. В этом случае через обмотку силового трансформатора будет проходить постоянный ток, под действием которого трансформатор может выйти из строя.

Для того чтобы избежать появления колебательного процесса в схеме тиристорного регулятора вероятно можно отказаться от импульсного управления тиристором, но в этом случае схема управления усложняется или становится неэкономичной. Поэтому автор разработал схему тиристорного регулятора в которой тиристор нормально запускается управляющими импульсами и колебательного процесса не возникает. Такая схема приведена на рис. 5.


Рис. 5.

Здесь тиристор нагружен на пусковое сопротивление R п , а конденсатор фильтра C R н подключены через пусковой диод VD п . В такой схеме запуск тиристора происходит независимо от напряжения на конденсаторе фильтра C ф .После подачи запускающего импульса на тиристор его анодный ток сначала начинает проходить через пусковое сопротивление R п и, затем, когда напряжение на R п превысит напряжение на нагрузке U н , открывается пусковой диод VD п и анодный ток тиристора подзаряжает конденсатор фильтра C ф . Сопротивление R п выбирается такой величины чтобы обеспечить устойчивый запуск тиристора при минимальном времени задержки запускающего импульса t з . Понятно, что на пусковом сопротивлении бесполезно теряется некоторая мощность. Поэтому в приведенной схеме предпочтительно использовать тиристоры с малым током удержания, тогда можно будет применить пусковое сопротивление большой величины и уменьшить потери мощности.

Схема на рис. 5 имеет тот недостаток, что ток нагрузки проходит через дополнительный диод VD п , на котором бесполезно теряется часть выпрямленного напряжения. Этот недостаток можно устранить, если подключить пусковое сопротивление R п к отдельному выпрямителю. Схема с отдельным выпрямителем управления, от которого питается схема запуска и пусковое сопротивление R п приведена на рис. 6. В этой схеме диоды выпрямителя управления могут быть маломощными т. к. ток нагрузки протекает только через силовой выпрямитель.


Рис. 6.

Низковольтные источники питания с тиристорным регулятором

Ниже приводится описание нескольких конструкций низковольтных выпрямителей с тиристорным регулятором. При их изготовлении я взял за основу схему тиристорного регулятора, применяемого в устройствах для заряда автомобильных аккумуляторов (см. рис. 7). Эта схема успешно применялась моим покойным товарищем А. Г. Спиридоновым.


Рис. 7.

Элементы, обведенные на схеме (рис. 7), устанавливались на небольшой печатной плате. В литературе описано несколько подобных схем, отличия между ними минимальны, в основном, типами и номиналами деталей. В основном отличия такие:

1. Применяют времязадающие конденсаторы разной емкости, т. е. вместо 0.5 m F ставят 1 m F , и, соответственно, переменное сопротивление другой величины. Для надежности запуска тиристора в своих схемах я применял конденсатор на 1 m F .

2. Параллельно времязадающему конденсатору можно не ставить сопротивление (3 k W на рис. 7). Понятно, что при этом может потребоваться переменное сопротивление не на 15 k W , а другой величины. Влияние сопротивления, параллельного времязадающему конденсатору на устойчивость работы схемы я пока не выяснил.

3. В большинстве описанных в литературе схем применяются транзисторы типов КТ315 и КТ361. Порою они выходят из строя, поэтому в своих схемах я применял более мощные транзисторы типов КТ816 и КТ817.

4. К точке соединения базы pnp и коллектора npn транзисторов может быть подключен делитель из сопротивлений другой величины (10 k W и 12 k W на рис. 7).

5. В цепи управляющего электрода тиристора можно установить диод (см. на схемах, приведенных ниже). Этот диод устраняет влияние тиристора на схему управления.

Схема (рис. 7) приведена для примера, несколько подобных схем с описаниями можно найти в книге “Зарядные и пуско-зарядные устройства: Информационный обзор для автолюбителей / Сост. А. Г. Ходасевич, Т. И. Ходасевич -М.:НТ Пресс, 2005”. Книга состоит из трех частей, в ней собраны чуть ли не все зарядные устройства за историю человечества.

Простейшая схема выпрямителя с тиристорным регулятором напряжения приведена на рис. 8.


Рис. 8.

В этой схеме использован двухполупериодный выпрямитель со средней точкой т. к. в ней содержится меньше диодов, поэтому нужно меньше радиаторов и выше КПД. Силовой трансформатор имеет две вторичные обмотки на переменное напряжение 15 V . Схема управления тиристором здесь состоит из конденсатора С1, сопротивлений R 1- R 6, транзисторов VT 1 и VT 2, диода VD 3.

Рассмотрим работу схемы. Конденсатор С1 заряжается через переменное сопротивление R 2 и постоянное R 1. Когда напряжение на конденсаторе C 1 превысит напряжение в точке соединения сопротивлений R 4 и R 5, открывается транзистор VT 1. Коллекторный ток транзистора VT 1 открывает VT 2. В свою очередь, коллекторный ток VT 2 открывает VT 1. Таким образом, транзисторы лавинообразно открываются и происходит разряд конденсатора C 1 в управляющий электрод тиристора VS 1. Так получается запускающий импульс. Изменяя переменным сопротивлением R 2 время задержки запускающего импульса, можно регулировать выходное напряжение схемы. Чем больше это сопротивление, тем медленнее происходит заряд конденсатора C 1, больше время задержки запускающего импульса и ниже выходное напряжение на нагрузке.

Постоянное сопротивление R 1, включенное последовательно с переменным R 2 ограничивает минимальное время задержки импульса. Если его сильно уменьшить, то при минимальном положении переменного сопротивления R 2 выходное напряжение будет скачком исчезать. Поэтому R 1 подобрано таким образом чтобы схема устойчиво работала при R 2 в положении минимального сопротивления (соответствует наибольшему выходному напряжению).

В схеме использовано сопротивление R 5 мощностью 1 W только потому, что оно попалось под руку. Вероятно вполне достаточно будет установить R 5 мощностью 0.5 W .

Сопротивление R 3 установлено для устранения влияния наводок на работу схемы управления. Без него схема работает, но чувствительна, например, к прикосновению к выводам транзисторов.

Диод VD 3 устраняет влияние тиристора на схему управления. На опыте я проверил и убедился что с диодом схема работает устойчивее. Короче, не нужно скупиться, проще поставить Д226, коих запасы неисчерпаемы исделать надежно работающее устройство.

Сопротивление R 6 в цепи управляющего электрода тиристора VS 1 повышает надежность его работы. Иногда это сопротивление ставят большей величины или не ставят вовсе. Схема без него обычно работает, но тиристор может самопроизвольно открываться под действием помех и утечек в цепи управляющего электрода. Я установил R 6 величиной 51 W как рекомендовано в справочных данных тиристоров КУ202.

Сопротивление R 7 и диод VD 4 обеспечивают надежный запуск тиристора при малом времени задержки запускающего импульса (см. рис. 5 и пояснения к нему).

Конденсатор C 2 сглаживает пульсации напряжения на выходе схемы.

В качестве нагрузки при опытах регулятором использовалась лампа от автомобильной фары.

Схема с отдельным выпрямителем для питания цепей управления и запуска тиристора приведена на рис. 9.


Рис. 9.

Достоинством данной схемы является меньшее число силовых диодов, требующих установки на радиаторы. Заметим, что диоды Д242 силового выпрямителя соединены катодами и могут быть установлены на общий радиатор. Анод тиристора соединенный с его корпусом подключен к “минусу” нагрузки.

Монтажная схема этого варианта управляемого выпрямителя приведена на рис. 10.


Рис. 10.

Для сглаживания пульсаций выходного напряжения может быть применен LC -фильтр. Схема управляемого выпрямителя с таким фильтром приведена на рис. 11.


Рис. 11.

Я применил именно LC -фильтр по следующим соображениям:

1. Он более устойчив к перегрузкам. Я разрабатывал схему для лабораторного источника питания, поэтому перегрузки его вполне возможны. Замечу, что даже если сделать какую-либо схему защиты, то у нее будет некоторое время срабатывания. За это время источник питания не должен выходить из строя.

2. Если сделать транзисторный фильтр, то на транзисторе обязательно будет падать некоторое напряжение, поэтому КПД будет низкий, а транзистору может потребоваться радиатор.

В фильтре использован серийный дроссель Д255В.

Рассмотрим возможные модификации схемы управления тиристором. Первая из них показана на рис. 12.


Рис. 12.

Обычно времязадающую цепь тиристорного регулятора делают из включенных последовательно времязадающего конденсатора и переменного сопротивления. Иногда удобно построить схему так, чтобы один из выводов переменного сопротивления был подключен к “минусу” выпрямителя. Тогда можно включить переменное сопротивление параллельно конденсатору, как сделано на рисунке 12. Когда движок находится в нижнем по схеме положении, основная часть тока, проходящего через сопротивление 1.1 k W поступает во времязадающий конденсатор 1 m F и быстро заряжает его. При этом тиристор запускается на “макушках” пульсаций выпрямленного напряжения или немного раньше и выходное напряжение регулятора получается наибольшим. Если движок находится в верхнем по схеме положении, то времязадающий конденсатор закорочен и напряжение на нем никогда не откроет транзисторы. При этом выходное напряжение будет равно нулю. Меняя положение движка переменного сопротивления, можно изменять силу тока, заряжающего времязадающий конденсатор и, таким образом, время задержки запускающих импульсов.

Иногда требуется производить управление тиристорным регулятором не при помощи переменного сопротивления, а от какой-нибудь другой схемы (дистанционное управление, управление от вычислительной машины). Бывает, что детали тиристорного регулятора находятся под большим напряжением и непосредственное присоединение к ним опасно. В этих случаях вместо переменного сопротивления можно использовать оптрон.


Рис. 13.

Пример включения оптрона в схему тиристорного регулятора показан на рис. 13. Здесь используется транзисторный оптрон типа 4 N 35. База его фототранзистора (вывод 6) соединена через сопротивление с эмиттером (вывод 4). Это сопротивление определяет коэффициент передачи оптрона, его быстродействие и устойчивость к изменениям температуры. Автор испытал регулятор с указанным на схеме сопротивлением 100 k W , при этом зависимость выходного напряжения от температуры оказалась ОТРИЦАТЕЛЬНОЙ, т. е. при очень сильном нагреве оптрона (оплавилась полихлорвиниловая изоляция проводов) выходное напряжение уменьшалось. Вероятно, это связано с уменьшением отдачи светодиода при нагреве. Автор благодарит С. Балашова за советы по использованию транзисторных оптронов.


Рис. 14.

При регулировке схемы управления тиристором иногда бывает полезна подстройка порога срабатывания транзисторов. Пример такой подстройки показан на рис. 14.

Рассмотрим также пример схемы с тиристорным регулятором на большее напряжение (см. рис. 15). Схема питается от вторичной обмотки силового трансформатора ТСА-270-1, дающей переменное напряжение 32 V . Номиналы деталей, указанные на схеме, подобраны под это напряжение.


Рис. 15.

Схема на рис. 15 позволяет плавно регулировать выходное напряжение от 5 V до 40 V , что достаточно для большинства устройств на полупроводниковых приборах, таким образом, эту схему можно взять за основу при изготовлении лабораторного источника питания.

Недостатком этой схемы является необходимость рассеивать достаточно большую мощность на пусковом сопротивлении R 7. Понятно, что чем меньше ток удержания тиристора, тем больше может быть величина и меньше мощность пускового сопротивления R 7. Поэтому здесь предпочтительно использовать тиристоры с малым током удержания.

Кроме обычных тиристоров в схеме тиристорного регулятора может быть использован оптотиристор. На рис. 16. приведена схема с оптотиристором ТО125-10.


Рис. 16.

Здесь оптотиристор просто включен вместо обычного, но т.к. его фототиристор и светодиод изолированы друг от друга, схемы его применения в тиристорных регуляторах могут быть и другими. Заметим, что благодаря малому току удержания тиристоров ТО125 пусковое сопротивление R 7 требуется менее мощное, чем в схеме на рис. 15. Поскольку автор опасался повредить светодиод оптотиристора большими импульсными токами, в схему было включено сопротивление R6. Как оказалось, схема работает и без этого сопротивления, причем без него схема лучше работает при низких напряжениях на выходе.

Высоковольтные источники питания с тиристорным регулятором

При разработке высоковольтных источников питания с тиристорным регулятором за основу была взята схема управления оптотиристором, разработанная В. П. Буренковым (ПРЗ) для сварочных аппаратов.Для этой схемы разработаны и выпускаются печатные платы. Автор выражает благодарность В. П. Буренкову за образец такой платы. Схема одного из макетов регулируемого выпрямителя с использованием платы конструкции Буренкова приведена на рис. 17.


Рис. 17.

Детали, установленные на печатной плате обведены на схеме пунктиром. Как видно из рис. 16, на плате установлены гасящие сопротивления R 1 и R 2, выпрямительный мост VD 1 и стабилитроны VD 2 и VD 3. Эти детали предназначены для питания от сети 220 V . Чтобы испытать схему тиристорного регулятора без переделок в печатной плате, использован силовой трансформатор ТБС3-0,25У3, вторичная обмотка которого подключена таким образом, что с нее снимается переменное напряжение 200 V , т. е. близкое к нормальному питающему напряжению платы. Схема управления работает аналогично описанным выше, т. е. конденсатор С1 заряжается через подстроечное сопротивление R 5 и переменное сопротивление (установлено вне платы) до того момента, пока напряжение на нем не превысит напряжение на базе транзистора VT 2, после чего транзисторы VT 1 и VT2 открываются и происходит разряд конденсатора С1 через открывшиеся транзисторы и светодиод оптронного тиристора.

Достоинством данной схемы является возможность подстройки напряжения, при котором открываются транзисторы (при помощи R 4), а также минимального сопротивления во времязадающей цепи (при помощи R 5). Как показывает практика, иметь возможность такой подстройки весьма полезно, особенно если схема собирается в любительских условиях из случайных деталей. При помощи подстроечных сопротивлений R4 и R5 можно добиться регулировки напряжения в широких пределах и устойчивой работы регулятора.

С этой схемы я начинал свои ОКР по разработке тиристорного регулятора. В ней же и был обнаружен пропуск запускающих импульсов при работе тиристора на емкостную нагрузку (см. рис. 4). Желание повысить стабильность работы регулятора привело к появлению схемы рис. 18. В ней автор опробовал работу тиристора с пусковым сопротивлением (см. рис 5.


Рис. 18.

В схеме рис. 18. использована та же плата, что и в схеме рис. 17, только с нее удален диодный мост, т.к. здесь используется один общий для нагрузки и схемы управления выпрямитель. Заметим, что в схеме на рис. 17 пусковое сопротивление подобрано из нескольких параллельно включенных чтобы определить максимально возможное значение этого сопротивления, при котором схема начинает устойчиво работать. Между катодом оптотиристора и конденсатором фильтра включено проволочное сопротивление 10 W . Оно нужно для ограничения бросков тока через опторитистор. Пока это сопротивление не было установлено, после поворота ручки переменного сопротивления оптотиристор пропускал в нагрузку одну или несколько целых полуволн выпрямленного напряжения.

На основании проведенных опытов была разработана схема выпрямителя с тиристорным регулятором, пригодная для практического использования. Она приведена на рис. 19.


Рис. 19.


Рис. 20.

Печатная плата SCR 1 M 0 (рис. 20) разработана для установки на нее современных малогабаритных электролитических конденсаторов и проволочных сопротивлений в керамическом корпусе типа SQP . Автор выражает благодарность Р. Пеплову за помощь с изготовлением и испытанием этой печатной платы.

Поскольку автор разрабатывал выпрямитель с наибольшим выходным напряжением 500 V , потребовалось иметь некоторый запас по выходному напряжению на случай снижения напряжения сети. Увеличить выходное напряжение оказалось возможным если пересоединить обмотки силового трансформатора, как показано на рис. 21.

Рис. 21.

Замечу также, что схема рис. 19 и плата рис. 20 разработаны с учетом возможности их дальнейшего развития. Для этого на плате SCR 1 M 0 имеются дополнительные выводы от общего провода GND 1 и GND 2, от выпрямителя DC 1

Разработка и налаживание выпрямителя с тиристорным регулятором SCR 1 M 0 проводились совместно со студентом Р. Пеловым в ПГУ. C его помощью были сделаны фотографии модуля SCR 1 M 0 и осциллограмм.


Рис. 22. Вид модуля SCR 1 M 0 со стороны деталей


Рис. 23. Вид модуля SCR 1 M 0 со стороны пайки


Рис. 24. Вид модуля SCR 1 M 0 сбоку

Таблица 1. Осциллограммы при малом напряжении

№ п/п

Минимальное положение регулятора напряжения

По схеме

Примечания

На катоде VD5

5 В/дел

2 мс/дел

На конденсаторе C1

2 В/дел

2 мс/дел

т.соединения R2 и R3

2 В/дел

2 мс/дел

На аноде тиристора

100 В/дел

2 мс/дел

На катоде тиристора

50 В/дел

2 мс/де

Таблица 2. Осциллограммы при среднем напряжении

№ п/п

Среднее положение регулятора напряжения

По схеме

Примечания

На катоде VD5

5 В/дел

2 мс/дел

На конденсаторе C1

2 В/дел

2 мс/дел

т. соединения R2 и R3

2 В/дел

2 мс/дел

На аноде тиристора

100 В/дел

2 мс/дел

На катоде тиристора

100 В/дел

2 мс/дел

Таблица 3. Осциллограммы при максимальном напряжении

№ п/п

Максимальное положение регулятора напряжения

По схеме

Примечания

На катоде VD5

5 В/дел

2 мс/дел

На конденсаторе C1

1 В/дел

2 мс/дел

т.соединения R2 и R3

2 В/дел

2 мс/дел

На аноде тиристора

100 В/дел

2 мс/дел

На катоде тиристора

100 В/дел

2 мс/дел

Чтобы избавиться от этого недостатка схема регулятора была изменена. Было установлено два тиристора – каждый на свой полупериод. С этими изменениями схема испытывалась несколько часов и “выбросов” замечено не было.

Рис. 25. Схема SCR 1 M 0 с доработками

Инструкция по расчёту электрических цепей

Назначение

Программа предназначена для расчёта установившихся режимов электрических цепей по законам ТОЭ. Программа позволяет нарисовать схему, задать параметры её элементов и рассчитать схему. В результате формируется текстовое описание порядка расчёта.

Рисование схемы

Рисование схемы производится путём перетаскивания элементов методом drag-and-drop из боковой панели и последующим соединением выбранных элементов.

В боковой панели доступны следующие элементы с задаваемыми параметрами:

При наведении указателя мыши на элемент отображаются точки соединения элемента с другими элементами (рис. 1) и кнопка для поворачивания элемента (рис. 2).


Рис. 1. Точки соединения элемента


Рис. 2. Кнопка для поворачивания элемента

Для соединения одного элемента с другим необходимо навести указатель мыши на точку соединения элемента, нажать левую клавишу мыши и соединить его с другим элементом (рис. 3), нажав левой клавишей мыши на точке соединения другого элемента.


Рис. 3. Соединение элементов

Узлы формируются автоматически при соединении элемента с другой соединительной линией.


Рис. 4. Формирование узла

При нажатии на элемент в правой части экрана формируется окно с параметрами элемента, которые доступны для редактирования (рис. 5).


Рис. 5. Задание параметров элемента

Ограничения при рисовании схемы

Для корректного анализа схемы соединительная линия обязательно должна быть соединена с обеих сторон к элементам/соединительным линиям, иначе программа не будет производить расчёт схемы, о чём она просигнализирует соответствующим уведомлением.

Удаление элементов производится нажатием кнопки «Удалить», расположенной в левой части экрана ниже боковой панели с элементами.

Сохранение схемы в виде файла и загрузка схемы из файла

На боковой панели доступна кнопка для загрузки схемы из файла и кнопка для сохранения исходной схемы в файл.

Задание параметров

ВНИМАНИЕ! Если параметры элементов задаются в виде вещественного числа, то дробную часть от целой необходимо отделять точкой. 

В качестве параметров конденсаторов и катушек индуктивности задаются их сопротивления. В том случае, если в исходной задаче заданы их ёмкости и индуктивности, то их сопротивления рассчитываются по известным формулам.

Задание параметров источников ЭДС и тока задаются в виде их модуля и фазы. Например, если в исходных данных

$$ \underline{E} = 3 + 4j, $$

то для того, чтобы задать это значение в программу, его необходимо привести в полярную форму. Получим:

$$ \underline{E} = 5 \angle 53. 13 \degree $$

Таким образом, в поле «Амплитудное значение» необходимо задать значение 5, а в поле «Начальная фаза» необходимо задать значение 53.13.

Методы расчёта

После завершения рисования схемы при нажатии кнопки «Расчёт» запускается расчёт электрической цепи. Программа анализирует исходную схему и при выявлении каких-либо ошибок сообщает об этом. При успешном анализе схемы запускается расчёт по методам ТОЭ.

Метод расчёта осуществляет путём его выбора в спадающем списке, расположенном ниже кнопки «Расчёт». Приняты следующие обозначения методов:

  • ЗК − расчёт по законам Кирхгофа
  • МУП − расчёт по методу узловых потенциалов
  • МКТ − расчёт по методу контурных токов
  • МЭГ − расчёт по методу эквивалентного генератора
  • Z − расчёт эквивалентного сопротивления цепи относительно источника питания

Следует обратить внимание на то, что если рассчитываемая схема одноконтурная, то, независимо от выбранного метода расчёта, расчёт будет производиться по закону Ома. Эквивалентное сопротивление цепи может быть рассчитано только для схемы с одним источником питания.

Расчёт по закону Ома

Расчёт по закону Ома осуществляется для одноконтурных схем. Используемая методика расчёта приведена здесь.

Пример схемы и расчёт:

Исходные данные и схема:

  • E1:
    • Номер элемента: 1
    • Амплитудное значение: 100 В
    • Начальная фаза, °: 0
  • R1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1

После нажатия кнопки «Расчёт» формируется решение:

В исходной схеме только один контур. Рассчитаем её по закону Ома.

Согласно закону Ома, ток в замкнутой цепи равен отношению ЭДС цепи к сопротивлению. Составим уравнение, приняв за положительное направление тока $ \underline{I} $ направление источника ЭДС $ \underline{E}_{1} $:

$$ R_{1}\cdot \underline{I} = \underline{E}_{1} $$

Подставим в полученную систему уравнений значения сопротивлений и источников и получим:

$$ 1. 0\cdot \underline{I}=100 $$

Отсюда искомый ток в цепи равен

$$ \underline{I} = 100\space \textrm{А}$$

Расчёт по законам Кирхгофа

Используемая методика при расчёте по законам Кирхгофа приведена здесь.

Пример схемы и расчёт:

Исходные данные и схема:

  • E1:
    • Номер элемента: 1
    • Амплитудное значение: 100 В
    • Начальная фаза, °: 0
  • R1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • L1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • C1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1

После нажатия кнопки «Расчёт» на исходной схеме отображаются принятые обозначения узлов и принятые направления токов и формируется решение:

Рассчитаем схему по законам Кирхгофа.

В данной схеме: узлов − 2 , ветвей − 3, независимых контуров − 2.

Произвольно зададим направления токов в ветвях и направления обхода контуров.

Принятые направления токов:
Ток $ \underline{I}_{1} $ направлен от узла ‘2 у.’ к узлу ‘1 у.’ через элементы $ \underline{E}_{1} $, $ R_{1} $.
Ток $ \underline{I}_{2} $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ L_{1} $.
Ток $ \underline{I}_{3} $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ C_{1} $.

Принятые направления обхода контуров:
Контур №1 обходится через элементы $ \underline{E}_{1} $, $ R_{1} $, $ L_{1} $ в указанном порядке.
Контур №2 обходится через элементы $ L_{1} $, $ C_{1} $ в указанном порядке.

Составим уравнения по первому закону Кирхгофа. При составлении уравнений «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» − со знаком «−».

Количество уравнений, составляемых по первому закону Кирхгофа, равно $ N_\textrm{у} − 1 $, где $ N_\textrm{у} $ − число узлов. Для данной схемы количество уравнений по первому закону Кирхгофа равно 2 − 1 = 1.

Составим уравнение для узла №1:

$$ \underline{I}_{1}- \underline{I}_{2}- \underline{I}_{3} = 0 $$

Составим уравнения по второму закону Кирхгофа. При составлении уравнений положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура.

Количество уравнений, составляемых по второму закону Кирхгофа, равно $ N_\textrm{в}- N_\textrm{у} + 1 $, где $ N_\textrm{в} $ − число ветвей. Для данной схемы количество уравнений по второму закону Кирхгофа равно 3 − 2 + 1 = 2.

Составим уравнение для контура №1:

$$ R_{1}\cdot \underline{I}_{1} + jX_{L1}\cdot \underline{I}_{2}=\underline{E}_{1} $$

Составим уравнение для контура №2:

$$ jX_{L1}\cdot \underline{I}_{2}- (-jX_{C1})\cdot \underline{I}_{3}=0 $$

Объединим полученные уравнения в одну систему, при этом перенесём известные величины в правую сторону, оставив в левой стороне только составляющие с искомыми токами. Система уравнений по законам Кирхгофа для исходной цепи выглядит следующим образом:

$$ \begin{cases}\underline{I}_{1}- \underline{I}_{2}- \underline{I}_{3} = 0 \\ R_{1}\cdot \underline{I}_{1}+jX_{L1}\cdot \underline{I}_{2} = \underline{E}_{1} \\ jX_{L1}\cdot \underline{I}_{2}-(-jX_{C1})\cdot \underline{I}_{3} = 0 \\ \end{cases} $$

Подставим в полученную систему уравнений значения сопротивлений и источников и получим:

$$ \begin{cases}\underline{I}_{1}- \underline{I}_{2}- \underline{I}_{3}=0 \\ \underline{I}_{1}+ j \cdot \underline{I}_{2}=100 \\ j \cdot \underline{I}_{2}+ j \cdot \underline{I}_{3}=0 \\ \end{cases} $$

Решим систему уравнений и получим искомые токи:

$$ \underline{I}_{1} = 0 $$
$$ \underline{I}_{2} =-100j $$
$$ \underline{I}_{3} = 100j $$

Расчёт по методу узловых потенциалов

Используемая методика при расчёте по методу узловых потенциалов приведена здесь.

ВНИМАНИЕ! На данный момент имеются ограничения на расчёт схем по методу узловых потенциалов. Расчёт не производится для больших схем, где имеется большое количество особых ветвей, не связанных между собой. Если расчёт не получается осуществить по методу узловых потенциалов, рекомендуем воспользоваться расчётом по законам Кирхгофа.

Пример схемы и расчёт:

Исходные данные и схема:

  • E1:
    • Номер элемента: 1
    • Амплитудное значение: 100 В
    • Начальная фаза, °: 0
  • R1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • L1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • C1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1

После нажатия кнопки «Расчёт» на исходной схеме отображаются принятые обозначения узлов и принятые направления токов и формируется решение:

Рассчитаем схему по методу узловых потенциалов.

В данной схеме: узлов − 2, ветвей − 3, из них особых ветвей − 0. Под особыми ветвями понимаются ветви, в которых имеется только источник ЭДС.

Количество уравнений, составляемых по методу узловых потенциалов, равно $ N_\textrm{у}- 1- N_\textrm{e} $, где $ N_\textrm{у} $ − число узлов, $ N_\textrm{e} $ − число особых ветвей. Для данной схемы количество уравнений, составляемых по методу узловых потенциалов, равно 2 − 1 − 0 = 1.

В исходной схеме нет особых ветвей. Примем потенциал узла №1 равным нулю, т.е. $$ \underline{\varphi}_{1} = 0 \space\textrm{В} $$

Составим уравнения для определения потенциалов остальных узлов.

Уравнение для узла №2:

$$ \underline{\varphi}_{2} \cdot (\frac{1}{R_{1}}+\frac{1}{jX_{L1}}+\frac{1}{-jX_{C1}})-\underline{\varphi}_{1} \cdot \frac{1}{R_{1}}-\underline{\varphi}_{1} \cdot \frac{1}{jX_{L1}}-\underline{\varphi}_{1} \cdot \frac{1}{-jX_{C1}}=- \underline{E}_{1}\cdot \frac{1}{R_{1}} $$

Перенесём все известные слагаемые в правую часть и объединим полученные уравнения в систему. Получим:

$$ \begin{cases} \underline{\varphi}_{2} \cdot (\frac{1}{R_{1}}+\frac{1}{jX_{L1}}+\frac{1}{-jX_{C1}}) = \underline{\varphi}_{1} \cdot \frac{1}{R_{1}}+\underline{\varphi}_{1} \cdot \frac{1}{jX_{L1}}+\underline{\varphi}_{1} \cdot \frac{1}{-jX_{C1}}- \underline{E}_{1}\cdot \frac{1}{R_{1}} \\ \end{cases} $$

Подставим в полученную систему уравнений численные значения и получим:

$$ \begin{cases}\underline{\varphi}_{2}=-100 \\ \end{cases} $$

Решим систему уравнений и получим искомые потенциалы узлов:

$$ \underline{\varphi}_{2} = -100\space\textrm{В} $$

Произвольно зададим направления токов в ветвях.

Принятые направления токов:
Ток $ \underline{I}_{1} $ направлен от узла ‘2 у.’ к узлу ‘1 у.’ через элементы $ \underline{E}_{1} $, $ R_{1} $.
Ток $ \underline{I}_{2} $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ L_{1} $.
Ток $ \underline{I}_{3} $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ C_{1} $.

Определим токи во всех ветвях, кроме особых, по закону Ома для участка цепи:

$$ \underline{I}_{1} = \frac{\underline{\varphi}_{2}- \underline{\varphi}_{1}+ \underline{E}_{1}}{R_{1}}= \frac{(-100)-0+100}{1} =0\space\textrm{А} $$

$$ \underline{I}_{2} = \frac{\underline{\varphi}_{1}- \underline{\varphi}_{2}}{jX_{L1}}= \frac{0-(-100)}{1j} =-100j\space\textrm{А} $$

$$ \underline{I}_{3} = \frac{\underline{\varphi}_{1}- \underline{\varphi}_{2}}{-jX_{C1}}= \frac{0-(-100)}{-1j} =100j\space\textrm{А} $$

Расчёт по методу контурных токов

Используемая методика при расчёте по методу контурных токов приведена здесь.

Пример схемы и расчёт:

Исходные данные и схема:

  • E1:
    • Номер элемента: 1
    • Амплитудное значение: 100 В
    • Начальная фаза, °: 0
  • R1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • L1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • C1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1

После нажатия кнопки «Расчёт» на исходной схеме отображаются принятые обозначения узлов и принятые направления токов и формируется решение:

Рассчитаем схему по методу контурных токов.

В данной схеме: узлов − 2, ветвей − 3, независимых контуров − 2.

Количество уравнений, составляемых по методу контурных токов, равно $ N_\textrm{в}- N_\textrm{у} + 1 $, где $ N_\textrm{в} $ − число ветвей, $ N_\textrm{у} $ − число узлов.

Для данной схемы количество уравнений, составляемых по методу контурных токов, равно 3 − 2 + 1 = 2.

Произвольно зададим направления обхода контуров и соответствующие контурные токи.

Принятые направления обхода контуров:
Контур №1 обходится через элементы $ \underline{E}_{1} $, $ R_{1} $, $ L_{1} $ в указанном порядке. Через эти элементы протекает контурный ток $ \underline{I}_{11} $.
Контур №2 обходится через элементы $ L_{1} $, $ C_{1} $ в указанном порядке. Через эти элементы протекает контурный ток $ \underline{I}_{22} $.

Составим уравнения по методу контурных токов.

Составим уравнение для контура №1:

$$ \underline{I}_{11} \cdot (R_{1}+jX_{L1})+\underline{I}_{22} \cdot jX_{L1}=\underline{E}_{1} $$

Составим уравнение для контура №2:

$$ \underline{I}_{22} \cdot (jX_{L1}- jX_{C1})+\underline{I}_{11} \cdot jX_{L1}=0 $$

Объединим полученные уравнения в одну систему, при этом перенесём известные величины в правую сторону, оставив в левой стороне только составляющие с искомыми контурными токами. Система уравнений по методу контурных токов для исходной цепи выглядит следующим образом:

$$ \begin{cases}\underline{I}_{11} \cdot (R_{1}+jX_{L1})+\underline{I}_{22} \cdot jX_{L1} = \underline{E}_{1} \\ \underline{I}_{22} \cdot (jX_{L1}- jX_{C1})+\underline{I}_{11} \cdot jX_{L1} = 0 \\ \end{cases} $$

Подставим в полученную систему уравнений значения сопротивлений и источников и получим:

$$ \begin{cases}(1+1j)\cdot \underline{I}_{11}+ j \cdot \underline{I}_{22}=100 \\ j \cdot \underline{I}_{11}=0 \\ \end{cases} $$

Решим систему уравнений и получим искомые контурные токи:

$$ \underline{I}_{11} = 0\space\textrm{А} $$

$$ \underline{I}_{22} = -100j\space\textrm{А} $$

Произвольно зададим направления токов в ветвях.

Принятые направления токов:
Ток $ \underline{I}_{1} $ направлен от узла ‘2 у.’ к узлу ‘1 у.’ через элементы $ \underline{E}_{1} $, $ R_{1} $.
Ток $ \underline{I}_{2} $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ L_{1} $.
Ток $ \underline{I}_{3} $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ C_{1} $.

Рассчитаем токи в ветвях исходя из полученных контурных токов.

$$ \underline{I}_{1} =\underline{I}_{11}=0=0 $$ $$ \underline{I}_{2} =\underline{I}_{11}+\underline{I}_{22}=0+(-100j)=-100j $$ $$ \underline{I}_{3} =-\underline{I}_{22}=-(-100j)=100j $$

Расчёт по методу эквивалентного генератора

Суть метода эквивалентного генератора приведена здесь.

Для расчёта тока в ветви по методу эквивалентного генератора необходимо выбрать метод расчёта «МЭГ». После этого необходимо определить все ветви рассчитываемой цепи с помощью кнопки «Ветви» и выбрать ветвь, в которой необходимо рассчитать ток, в полученном спадающем списке.

Для расчёта тока в ветви по методу эквивалентного генератора программа рассчитывает напряжение холостого хода $ \underline{U}_\textrm{хх} $ на выводах разомкнутой ветви с искомым током и внутреннее сопротивление цепи $ \underline{Z}_\textrm{вн} $ относительно ветви с искомым током.

Пример схемы и расчёт:

Исходные данные и схема:

  • E1:
    • Номер элемента: 1
    • Амплитудное значение: 100 В
    • Начальная фаза, °: 0
  • R1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • L1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • C1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1

После выбора ветви «L1» и нажатия кнопки «Расчёт» на исходной схеме появляется обозначение и направление искомого тока и формируется решение.

Рассчитаем ток $ \underline{I} $ в ветви с элементами $ L_{1} $ по методу эквивалентного генератора. Для этого рассчитаем напряжение холостого хода на выводах разомкнутой ветви с искомым током и эквивалентное сопротивление пассивной цепи относительно ветви с искомым током.

Рассчитаем напряжение холостого хода. На рисунке ниже приведена рассчитываемая схема. Напряжение холостого хода $ \underline{U}_\textrm{хх} $ сонаправлено с искомым током. Принятое направление искомого тока приведено на схеме выше.

В исходной схеме только один контур. Рассчитаем её по закону Ома.

Согласно закону Ома, ток в замкнутой цепи равен отношению ЭДС цепи к сопротивлению. Составим уравнение, приняв за положительное направление тока $ \underline{I} $ направление источника ЭДС $ \underline{E}_{1} $:

$$ (R_{1}-jX_{C1})\cdot \underline{I} = \underline{E}_{1} $$

Подставим в полученную систему уравнений значения сопротивлений и источников и получим:

$$ (1-1j)\cdot \underline{I}=100 $$

Отсюда искомый ток в цепи равен

$$ \underline{I} = 50+50j\space \textrm{А} $$

Определим искомое напряжение холостого хода. Рассмотрим контур, проходящий в указанном порядке через элементы $ \underline{U}_\textrm{хх} $, $ R_{1} $, $ \underline{E}_{1} $, и составим для него уравнение по второму закону Кирхгофа. Получим:

$$ \underline{U}_\textrm{хх}-\underline{I}_{1} \cdot R_{1}=-\underline{E}_{1} $$​

Определим напряжение холостого хода. Получим:

$$ \underline{U}_\textrm{хх} = \underline{I}_{1} \cdot R_{1}-\underline{E}_{1}=(50+50j) \cdot 1-100=-50+50j\space\textrm{В} $$

Рассчитаем внутреннее сопротивление цепи $ \underline{Z}_\textrm{вн} $ относительно ветви с искомым током. Для этого из исходной схемы уберём ветвь с искомым током, при этом оставим концы этой ветви. Все источники ЭДС закоротим, а источники тока разомкнем.

Рассчитаем эквивалентное сопротивление цепи относительно ветви с искомым током.

Ветвь с элементами $ R_{1} $ параллельна ветви с элементами $ C_{1} $​. Эквивалентное сопротивление этих ветвей равно:

$$ \underline{Z}_{1} = \frac{R_{1}⋅(- jX_{C1})}{R_{1}- jX_{C1}}=\frac{1⋅(-1j)}{1-1j}=0. 5000-0.5000j $$

Внутреннее сопротивление цепи равно:

$$ \underline{Z}_\textrm{вн} = \underline{Z}_{1}+0=0.5000-0.5000j+0=0.5000-0.5000j\space\textrm{Ом} $$

Определим искомый ток:

$$ \underline{I} = \frac{\underline{U}_\textrm{хх}}{\underline{Z}_\textrm{вн}+jX_{L1}} = \frac{-50+50j}{0.5000-0.5000j+1j} =100j\space\textrm{А} $$

Расчёт эквивалентного сопротивления цепи

Используемые формулы расчёта эквивалентного сопротивления цепи приведены здесь.

Расчёт эквивалентного сопротивления осуществляется только для схем с одним источником питания и относительно зажимов этого источника.

Пример схемы и расчёт:

Исходные данные и схема:

  • E1:
    • Номер элемента: 1
    • Амплитудное значение: 100 В
    • Начальная фаза, °: 0
  • R1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • L1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • C1:
    • Номер элемента: 1
    • Сопротивление, Ом: 2

После нажатия кнопки «Расчёт» на исходной схеме отображаются принятые обозначения узлов и принятые направления токов и формируется решение:

Рассчитаем эквивалентное сопротивление цепи относительно источника $ \underline{E}_{1} $. {2})=0.$$

Определим мощность, отдаваемую источниками:

$$ \underline{S}_\textrm{ист} = \underline{S}_{\underline{E}} + \underline{S}_{\underline{J}}$$

где $ \underline{S}_{\underline{E}} $ − мощность, отдаваемая источниками ЭДС, $ \underline{S}_{J} $ − мощность, отдаваемая источниками тока.

Определим мощность $ \underline{S}_{\underline{E}} $, отдаваемую источниками ЭДС:

$$ \underline{S}_{\underline{E}} =\underline{E}_{1} ⋅ \underline{I}’_{1}, $$

где $ \underline{I}’ $ означает сопряжённый комплексный ток.

Подставим числовые значения и получим:

$$ \underline{S}_\textrm{\underline{E}} = 100⋅0=0. $$

Т.к. в схеме нет источников тока, то $ \underline{S}_{\underline{J}} = 0. $

Мощность, отдаваемая источниками, равна:

$$ \underline{S}_\textrm{ист} = \underline{S}_{\underline{E}} + \underline{S}_{\underline{J}} =0+0=0. $$

Итак, $ \underline{S}_\textrm{пр} = 0 $, $ \underline{S}_\textrm{ист} = 0 $. Баланс мощностей сходится. 2} = 100\space\textrm{В} $$

Построение векторных диаграмм

После завершения расчёта программа автоматически формирует векторные диаграммы токов и напряжений. Векторные диаграммы строятся согласно методике, приведённой здесь. Векторные диаграммы токов доступны только для многоконтурных схем.

Все векторные диаграммы токов и все векторные диаграммы напряжений строятся на своих графиках. Внизу каждого графика доступны чекбоксы для отображения или скрытия векторных диаграмм для определённых узлов или контуров.

Пример векторных диаграмм токов и напряжений

Исходные данные и схема:

  • E1:
    • Номер элемента: 1
    • Амплитудное значение: 100 В
    • Начальная фаза: 45
  • R1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • L1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • C1:
    • Номер элемента: 1
    • Сопротивление, Ом: 1
  • R2:
    • Номер элемента: 1
    • Сопротивление, Ом: 1

После нажатия кнопки «Расчёт» формируется решение задачи:

Рассчитаем схему по законам Кирхгофа.

В данной схеме: узлов − 2, ветвей − 3, независимых контуров − 2.

Произвольно зададим направления токов в ветвях и направления обхода контуров.
Принятые направления токов:

Ток $ \underline{I}_{1} $ направлен от узла ‘2 у.’ к узлу ‘1 у.’ через элементы $ \underline{E}_{1} $, $ R_{1} $.
Ток $ \underline{I}_{2} $ направлен от узла ‘2 у.’ к узлу ‘1 у.’ через элементы $ R_{2} $, $ C_{1} $.
Ток $ \underline{I}_{3} $ направлен от узла ‘1 у.’ к узлу ‘2 у.’ через элементы $ L_{1} $.

Принятые направления обхода контуров:

Контур №1 обходится через элементы $ \underline{E}_{1} $, $ R_{1} $, $ C_{1} $ в указанном порядке.
Контур №2 обходится через элементы $ R_{2} $, $ C_{1} $, $ L_{1} $ в указанном порядке.

Составим уравнения по первому закону Кирхгофа. При составлении уравнений «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» − со знаком «−».

Количество уравнений, составляемых по первому закону Кирхгофа, равно $ N_\textrm{у}- 1 $, где $ N_\textrm{у} $ − число узлов. Для данной схемы количество уравнений по первому закону Кирхгофа равно 2 − 1 = 1.

Составим уравнение для узла №1:

$$ \underline{I}_{1} + \underline{I}_{2}- \underline{I}_{3} = 0 $$

Составим уравнения по второму закону Кирхгофа. При составлении уравнений положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура.

Количество уравнений, составляемых по второму закону Кирхгофа, равно $ N_\textrm{в}- N_\textrm{у} + 1 $, где $ N_\textrm{в} $ − число ветвей. Для данной схемы количество уравнений по второму закону Кирхгофа равно 3 − 2 + 1 = 2.

Составим уравнение для контура №1:

$$ R_{1}\cdot \underline{I}_{1}-(R_{2}-jX_{C1})\cdot \underline{I}_{2}=\underline{E}_{1}$$

Составим уравнение для контура №2:

$$ (R_{2}-jX_{C1})\cdot \underline{I}_{2}+jX_{L1}\cdot \underline{I}_{3}=0 $$

Объединим полученные уравнения в одну систему, при этом перенесём известные величины в правую сторону, оставив в левой стороне только составляющие с искомыми токами. Система уравнений по законам Кирхгофа для исходной цепи выглядит следующим образом:

$$ \begin{cases}\underline{I}_{1} + \underline{I}_{2}- \underline{I}_{3} = 0 \\ R_{1}\cdot \underline{I}_{1}-(R_{2}-jX_{C1})\cdot \underline{I}_{2} = \underline{E}_{1} \\ (R_{2}-jX_{C1})\cdot \underline{I}_{2}+jX_{L1}\cdot \underline{I}_{3} = 0 \\ \end{cases} $$

Подставим в полученную систему уравнений значения сопротивлений и источников и получим:

$$ \begin{cases}\underline{I}_{1}+ \underline{I}_{2}- \underline{I}_{3}=0 \\ \underline{I}_{1}+(-1+1j)\cdot \underline{I}_{2}=0.7071+0.7071j \\ (1-1j)\cdot \underline{I}_{2}+ j \cdot \underline{I}_{3}=0 \\ \end{cases} $$

Решим систему уравнений и получим искомые токи:

$$ \underline{I}_{1} = 0.4243+0.1414j\space\textrm{А} $$
$$ \underline{I}_{2} = 0.1414-0.4243j\space\textrm{А} $$
$$ \underline{I}_{3} = 0.5657-0.2828j\space\textrm{А} $$

Пользователям

При невозможности рассчитать схему просьба сообщить об этом Администрации сайта по электронной почте support@faultan. ru либо через контактную форму.

Симисторный регулятор тока схема. Симисторный регулятор мощности — схема самодельного устройства и пошаговая инструкция как сделать регулятор своими руками

Из-за проблемы с электричеством люди все чаще покупают регуляторы мощности. Не секрет, что резкие перепады, а также чрезмерно пониженное или повышенное напряжение пагубно влияют на бытовые приборы. Для того чтобы не допустить порчи имущества, необходимо пользоваться регулятором напряжения, который защитит от короткого замыкания и различных негативных факторов электронные приборы.

Типы регуляторов

В наше время на рынке можно увидеть огромное количество различных регуляторов как для всего дома, так и маломощных отдельных бытовых приборов. Существуют транзисторные регуляторы напряжения, тиристорные, механические (регулировка напряжения осуществляется при помощи механического бегунка с графитовым стержнем на конце). Но самым распространенным является симисторный регулятор напряжения. Основой этого прибора являются симисторы, которые позволяют резко среагировать на скачки напряжения и сгладить их.

Симистор представляет собой элемент, который содержит пять p-n переходов. Этот радиоэлемент имеет возможность пропускать ток как в прямом направлении, так и в обратном.

Эти компоненты можно наблюдать в различной бытовой технике начиная от фенов и настольных ламп и заканчивая паяльниками, где необходима плавная регулировка.

Принцип работы симистора довольно прост. Это своего рода электронный ключ, который то закрывает двери, то открывает их с заданной частотой. При открытии P-N перехода симистора он пропускает небольшую часть полуволны и потребитель получает только часть номинальной мощности. То есть чем больше открывается P-N переход, тем больше мощности получает потребитель.

К достоинствам этого элемента можно отнести:

В связи с вышесказанными достоинствами симисторы и регуляторы на их основе используются довольно часто.

Эта схема довольно проста в сборке и не требует большого количества деталей. Такой регулятор можно применить для регулировки не только температуры паяльника, но и обычных ламп накаливания и светодиодных. К этой схеме можно подключать различные дрели, болгарки, пылесосы, шлифмашинки, которые изначально шли без плавной регулировки скорости.

Вот такой регулятор напряжения 220в своими руками можно собрать из следующих деталей:

  • R1 — резистор 20 кОм, мощностью 0,25 Вт.
  • R2 — переменный резистор 400−500 кОм.
  • R3 — 3 кОм, 0,25 Вт.
  • R4-300 Ом, 0,5 Вт.
  • C1 C2 — конденсаторы неполярные 0,05 Мкф.
  • C3 — 0,1 Мкф, 400 в.
  • DB3 — динистор.
  • BT139−600 — симистор необходимо подобрать в зависимости от нагрузки которая будет подключен. Прибор, собранный по этой схеме, может регулировать ток величиной 18А.
  • К симистору желательно применить радиатор, так как элемент довольно сильно греется.

Схема проверена и работает довольно стабильно при разных видах нагрузки .

Существует еще одна схема универсального регулятора мощности.

На вход схемы подается переменное напряжение 220 В, а на выходе уже 220 В постоянного тока. Эта схема имеет в своем арсенале уже больше деталей, соответственно и сложность сборки повышается. На выход схемы возможно подключить любой потребитель (постоянного тока). В большинстве домов и квартир люди стараются поставить энергосберегающие лампы. Не каждый регулятор справится с плавной регулировкой такой лампы, например, тиристорный регулятор использовать нежелательно. Эта схема позволяет беспрепятственно подключать эти лампы и делать из них своего рода ночники.

Особенность схемы заключается в том, что при включении ламп на минимум все бытовые приборы должны быть отключены от сети. После этого в счетчике сработает компенсатор, и диск медленно остановится, а свет будет продолжать гореть. Это возможность собрать симисторный регулятор мощности своими руками. Номиналы деталей нужных для сборки, можно увидеть на схеме.

Еще одна занимательная схема, которая позволяет подключить нагрузку до 5А и мощностью до 1000Вт.

Регулятор собран на базе симистора BT06−600. Принцип работы этой схемы заключается в открытии перехода симистора. Чем больше элемент открыт, тем больше мощность поступает на нагрузку. А также в схеме присутствует светодиод, который даст знать, работает устройство или нет. Перечень деталей, которые понадобятся для сборки аппарата:

  • R1 — резистор 3.9 кОм и R2 — 500 кОм своеобразный делитель напряжения, который служит для зарядки конденсатора С1.
  • конденсатор С1- 0,22 мкФ.
  • динистор D1 — 1N4148.
  • светодиод D2, служит для индикации работы устройства.
  • динисторы D3 — DB4 U1 — BT06−600.
  • клемы для подключения нагрузки P1, P2.
  • резистор R3 — 22кОм и мощностью 2 вт
  • конденсатор C2 — 0.22мкФ рассчитан на напряжение не меньше 400 В.

Симисторы и тиристоры с успехом используются в качестве пускателей. Иногда необходимо запустить очень мощные тэны, управлять включением сварочного мощного оборудования, где сила тока достигает 300−400 А. Механическое включение и выключение с помощью контакторов уступает симисторному пускателю из-за быстрого износа контакторов, к тому же при механическом включении возникает дуга, которая также пагубно влияет на контакторы. Поэтому целесообразным будет использовать симисторы для этих целей. Вот одна из схем.

Все номиналы и перечень деталей указаны на Рис. 4. Достоинством этой схемы является полная гальваническая развязка от сети, что обеспечит безопасность в случае повреждения.

Нередко в хозяйстве необходимо выполнить сварочные работы. Если есть готовый инверторный сварочного аппарата, то сварка не представляет особых трудностей, поскольку в аппарате присутствует регулировка тока. У большинства людей нет такого сварочного и приходится пользоваться обычным трансформаторным сварочным, в котором регулировка тока осуществляется путем смены сопротивления, что довольно неудобно.

Тех, кто пробовал использовать в качестве регулятора симистор, ждет разочарование. Он не будет регулировать мощность. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Но существует выход из этой ситуации. Следует подать на управляющий электрод однотипный импульс или подавать на УЭ (управляющий электрод) постоянный сигнал, пока не будет проход через ноль. Схема регулятора выглядит следующим образом:

Конечно, схема довольно сложная в сборке, но такой вариант решит все проблемы с регулировкой. Теперь не нужно будет пользоваться громоздким сопротивлением, к тому же очень плавной регулировки не получится. В случае с симистором возможна довольно плавная регулировка.

Если существуют постоянные перепады напряжения, а также пониженное или повышенное напряжение, рекомендуется приобрести симисторный регулятор или по возможности сделать регулятор своими руками. Регулятор защитит бытовую технику, а также предотвратит ее порчу.


(Вариант 1)

В симисторных регуляторах мощности, работающих по принципу пропускания через нагрузку определенного числа полупериодов тока в единицу времени, должно выполняться условие четности их числа. Во многих известных радиолюбительских (и не только) конструкциях оно нарушается. Вниманию читателей предлагается регулятор, свободный от этого недостатка. Его схема изображена на рис. 1.

Здесь имеются узел питания, генератор импульсов регулируемой скважности и формирователь импульсов, управляющих симистором. Узел питания выполнен по классической схеме: токоограничивающие резистор R2 и конденсатор С1, выпрямитель на диодах VD3, VD4, стабилитрон VD5, сглаживающий конденсатор СЗ. Частота импульсов генератора, собранного на элементах DD1.1, DD1.2 и DD1.4, зависит от емкости конденсатора С2 и сопротивления между крайними выводами переменного резистора R1. Этим же резистором регулируют скважность импульсов. Элемент DD1.3 служит формирователем импульсов с частотой сетевого напряжения, поступающего на его вывод 1 через делитель из резисторов R3 и R4, причем каждый импульс начинается, вблизи перехода мгновенного значения сетевого напряжения через ноль. С выхода элемента DD1.3 эти импульсы через ограничительные резисторы R5 и R6 поступают на базы транзисторов VT1, VT2. Усиленные транзисторами импульсы управления через разделительный конденсатор С4 приходят на управляющий электрод симистора VS1. Здесь их полярность соответствует знаку сетевого напряжения, приложенного в этот момент к выв. 2 симистора. Благодаря тому, что элементы DD1.1 и DD1.2, DD1.3 и DD1.4 образуют два триггера, уровень на выходе элемента DD1.4, соединенном с выводом 2 элемента DD1.3, сменяется на противоположный только в отрицательном полупериоде сетевого напряжения. Предположим, триггер на элементах DD1.3, DD1.4 находится в состоянии с низким уровнем на выходе элемента DD1.3 и высоким на выходе элемента DD1.4. Для изменения этого состояния необходимо, чтобы высокий уровень на выходе элемента DD1.2, соединенном с выводом 6 элемента DD1.4, стал низким. А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.1, независимо от момента установки высокого уровня на выводе 8 элемента DD1.2. Формирование управляющего импульса начинается с приходом положительного полупериода сетевого напряжения на вывод 1 элемента DD1. 3. В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.2 сменится низким, что установит на выходе элемента высокий уровень напряжения. Теперь высокий уровень на выходе элемента DD1.4 тоже может смениться низким, но только в отрицательный полупериод напряжения, поступающего на вывод 1 элемента DD1.3. Следовательно, рабочий цикл формирователя управляющих импульсов закончится в конце отрицательного полупериода сетевого напряжения, а общее число полупериодов напряжения, приложенного к нагрузке, будет четным. Основная часть деталей устройства смонтирована на плате с односторонней печатью, чертеж которой показан на рис. 2.

Диоды VD1 и VD2 припаяны непосредственно к выводам переменного резистора R1, а резистор R7 — к выводам симистора VS1. Симистор снабжен ребристым теплоотводом заводского изготовления с площадью теплоотводящей поверхности около 400 см2. Использованы постоянные резисторы МЛТ, переменный резистор R1 — СПЗ-4аМ. Его можно заменить другим такого же или большего сопротивления. Номиналы резисторов R3 и R4 должны быть одинаковыми. Конденсаторы С1, С2 — К73-17. Если требуется повышенная надежность, то оксидный конденсатор С4 можно заменить пленочным, например, К73-17 2,2…4,7 мкФ на 63 В, но размеры печатной платы придется увеличить.
Вместо диодов КД521А подойдут и другие маломощные кремниевые, а стабилитрон Д814В заменит любой более современный с напряжением стабилизации 9 В. Замена транзисторов КТ3102В, КТ3107Г — другие маломощные кремниевые соответствующей структуры. Если амплитуда открывающих симистор VS1 импульсов тока окажется недостаточной, сопротивление резисторов R5 и R6 уменьшать нельзя. Лучше подобрать транзисторы с возможно большим коэффициентом передачи тока при напряжении между коллектором и эмиттером 1 В. У VT1 он должен быть 150…250, у VT2 — 250…270. По окончании монтажа можно присоединять к регулятору нагрузку сопротивлением 50…100 Ом и включать его в сеть. Параллельно нагрузке подключите вольтметр постоянного тока на 300…600 В. Если симистор устойчиво открывается в обоих полупериодах сетевого напряжения, стрелка вольтметра вообще не отклоняется от нуля либо немного колеблется вокруг него. Если же стрелка вольтметра отклоняется лишь в одну сторону, значит, симистор открывается только в полупериодах одного знака. Направление отклонения стрелки соответствует той полярности приложенного к симистору напряжения, при которой он остается закрытым. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока.

Симисторный регулятор мощности.
(Вариант 2)

Предлагаемый симисторный регулятор мощности (см. рис.) можно использовать для регулирования активной мощности нагревательных приборов (паяльника, электрической печки, плиты и пр.). Для изменения яркости осветительных приборов его использовать не рекомендуется, т.к. они будут сильно мигать. Особенностью регулятора является коммутация симистора в моменты перехода сетевого напряжения через ноль, поэтому он не создает сетевых помех Мощность регулируется изменением числа полупериодов сетевого напряжения, поступающих в нагрузку.

Синхрогенератор выполнен на базе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ DD1. 1. Его особенностью является появление высокого уровня (логической «1») на выходе в том случае, когда входные сигналы отличаются друг от друга, и низкого уровня («О») при совладении входных сигналов. В результате этого «Г появляется на выходе DD1.1 только в моменты перехода сетевого напряжения через ноль. Генератор прямоугольных импульсов с регулируемой скважностью выполнен на логических элементах DD1.2 и DD1.3. Соединение одного из входов этих элементов с питанием превращает их в инверторы. В результате получается генератор прямоугольных импульсов. Частота импульсов приблизительно 2 Гц, а их длительность изменяется резистором R5.

На резисторе R6 и диодах VD5. VD6 выполнена схема совпадения 2И. Высокий уровень на ее выходе появляется только при совпадении двух «1» (импульса синхронизации и импульса с генератора). В результате на выходе 11 DD1.4 появляются пачки импульсов синхронизации. Элемент DD1.4 является повторителем импульсов, для чего один из его входов подключен к общей шине.
На транзисторе VT1 выполнен формирователь управляющих импульсов. Пачки коротких импульсов с его эмиттера, синхронизированные с началом полупериодов сетевого напряжения, поступают на управляющий переход симистора VS1 и открывают его. Через RH протекает ток.

Питание симисторного регулятора мощности осуществляется через цепочку R1-C1-VD2. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Положительные импульсы со стабилитрона VD1 через диод VD2 заряжают конденсатор СЗ.
При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тогда симистор типа КУ208Г позволяет коммутировать мощность до 1 кВт. Размеры радиатора можно приближенно прикинуть из расчета, что на 1 Вт рассеиваемой мощности необходимо около 10 см2 эффективной поверхности радиатора (сам корпус симистора рассеивает 10 Вт мощности). Для большей мощности необходим более мощный симистор, например, ТС2-25-6. Он позволяет коммутировать ток 25 А. Симистор выбирается с допустимым обратным напряжением не ниже 600 В. Симистор желательно защитить варистором, включенным параллельно, например, СН-1-1-560. Диоды VD2.. .VD6 можно применять в схеме любые, например. КД522Б или КД510А Стабилитрон — любой маломощный на напряжение 14.. .15 В. Подойдет Д814Д.

Симисторный регулятор мощности размещен на печатной плате из одностороннего стеклотекстолита размерами 68×38 мм.

Простой регулятор мощности.

Регулятор мощности до 1 кВт (0%-100%).
Схема собиралась не раз, работает без наладки и других проблем. Естественно диоды и тиристор на радиатор при мощности более 300 ватт. Если меньше, то хватает самих корпусов деталей для охлаждения.
Изначально в схеме применялись транзисторы типа МП38 и МП41.

Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора. Схема достаточно проста и доступна даже начинающему радиолюбителю. Для управления более мощной нагрузкой тиристоры необходимо поставить на радиатор (150 см2 и более). Для устранения помех, создаваемых регулятором, желательно на входе поставить дроссель.

На схеме — родителе, был установлен симистор КУ208Г, и меня он не устроил из за малой мощности коммутации. Покопавшись нашел импортные симисторы BTA16-600. Максимальное напряжение коммутации которого равен 600 вольт пр токе 16А!!!
Все резисторы МЛТ 0,125;
R4 — СП3-4аМ;
Конденсатор составлен из двух (включенных параллельно) по 1 микрофараду 250 вольт, типа — К73-17.
При данных, указанных на схеме, были достигнуты следующие результаты: Регулировка напряжения от 40 до напряжения сети.

Регулятор можно вставить в штатный корпус обогревателя.

Схема срисованная с платы регулятора пылесоса.

на кондесаторе маркировка: 1j100
Пробовал управлять ТЭНом 2 квт — никаких морганий света на той же фазе не заметил,
напряжение на ТЭНе регулируется плавно и, вроде бы, равномернно (пропорционально углу поворота резистора).
Регулируется от 0 до 218 вольт при напряжении в сети 224-228 вольт.

Приборы, которые работают на потреблении электрического тока, можно настраивать. Для этого существуют специальные регуляторы. Сегодня всё большую популярность набирает симисторный подтип. Его существенным отличием стало двухстороннее действие. Благодаря тому, что в приборе есть анод и катод, в процессе их передвижения появляется возможность изменять направления тока.

Не стоит думать, то этот элемент можно заменить контакторами, пускателями или реле. Именно симисторы отличаются долговечностью, детали на приборе практически не изнашиваются. Основным положительным моментом от использования симистора, стало полное отсутствие искры в электрических приборах. Были проанализированы схемы, в которых использовались симисторы двунаправленные, их стоимость была значительно меньше, чем те, которые базировались на транзисторах и микросхемах .

Плюсы и минусы использования симисторов

Среди основных преимуществ можно назвать следующие:

  • минимальная стоимость прибора;
  • длительный срок эксплуатации;
  • возможность избежать механических контактов.

Есть и недостатки:

  • чтобы не произошло перегрева прибора, необходимо обязательно устанавливать радиатор;
  • симистор очень чувствителен к переходным процессам;
  • нет возможности использовать на больших частотах;
  • реагирует на посторонние помехи и шумы.

Особенности применения в электроприборах

Учитывая те показатели, которыми обладает симистор, его активно используют в работе приборов бытовой техники, таких как:

  • осветительные приборы, которые можно регулировать;
  • бытовые строительные электроинструменты;
  • нагревательные приборы;
  • приборы с наличием компрессора;
  • стиральные машины , пылесосы, вентиляторы, фены.

Как сделать регулятор мощности своими руками

Сегодня есть возможность установки простых диммеров в электрические приборы. Рассмотрим несколько вариантов схем по установке симисторов.

Для паяльника

Для этого прибора есть возможность собрать устройство настройки мощности до 100 Вт, необходимо всего несколько деталей. Именно с помощью него можно контролировать температуру жала паяльника, яркость настольной лампы, скорость вращения вентилятора. Сам регулятор можно собрать на основе симистора ВТА 16600. Его отличительными чертами станет то, что в цепи управляющего электрода симистора будет находить неоновая лампа.

Если вы решите использовать именно такой вид, то необходимо правильно выбрать неоновую лампу, она должна иметь минимальные показатели напряжения пробоя. Это очень важно, так как именно этот показатель и будет влиять на плавность регулировки мощности лампы или паяльника. Если устанавливать стартер в светильник, здесь можно неоновую лампочку не применять.

Варианты схем

Схемы диммера являются сами простыми. В качестве диодного моста используются диоды Д226, обязательно включаются тиристор КУ202Н, который имеет свою цепь управления. Если вы хотите иметь до 9 фиксированных положений регулировки, то нужно немного усложнить схему и добавить элемент логики – счётчик К561ИЕ8. Здесь также регулировать нагрузку будет тиристор. В схеме после установки диодного моста будет находиться обычный параметрический стабилизатор, который будет подавать питание на микросхему. Необходимо правильно для такой схемы подобрать диоды, их мощность должна равняться нагрузке, которую будет настраивать аппарат.

Существует ещё один вариант составления схемы для регулировки мощности пальника. В самой схеме нет ничего сложного, никаких дорогих или дефицитных деталей. С помощью установки светодиода можно контролировать включение и выключение прибора. Допустимые параметры выходного напряжения варьируются в пределах от 130 до 220 вольт. Для всех приборов можно использовать специальный индикатор напряжения. Его можно взять из старых моделей магнитофонов. Для того чтобы усовершенствовать такую головку, можно добавить светодиод. Он покажет включение и выключение прибора и будет подсвечивать шкалу мощности.

Не стоит забывать, что для такого прибора должен быть подобран правильный корпус. Его можно изготовить из обычного пластика, так как его удобно и легко резать, гнуть, обрабатывать, склеивать. Из куска пластика необходимо вырезать заготовку, зачистить края, и с помощью клея собрать коробку. В неё вкладывается собранный диммер. Когда собран сам прибор регулирования мощности, то его необходимо проверить перед введением в эксплуатацию.

Для проверки можно использовать обычный паяльник или мультиметр. Эти проборы достаточно подключить к выходу схемы, и постепенно вращать ручку регулятора. Это даст возможность определить плавность изменения выходного напряжения. Если в устройстве вы установили светодиод, то по его яркости свечения можно определить уменьшение или увеличение выходного напряжения.

Настройка устройства

Существуют схемы регулировки мощности, при нагрузке до 500 Вт или при переменном токе в 220 В. Это могут быть домашние вентиляторы, электродрели. Здесь нужно использовать устройства широкого диапазона, большой мощности. Симисторный регулятор будет использоваться в качестве фазового управления. Основным назначением прибора будет изменение момента включения симистора относительно перехода сетевого напряжения через ноль.

Изначально, в периоде положительного полупериода симистор закрыт. Как только начнёт увеличиваться напряжение, конденсатор заряжается и делится в двух направлениях. По мере увеличения сетевого напряжения, напряжение на конденсате отстаёт на величину, суммарного сопротивления делителя и ёмкости. Конденсатор будет заряжаться до момента получения напряжения около 32 В. В этот момент происходит открытие динистора, а с ним и симистора. Тогда начнёт поступать равный суммарному сопротивлению симистора и нагрузки. Симистор будет открыт на весь полупериод. Таким образом, происходит регулировка мощности напряжения.

Собрать симисторный регулятор мощности достаточно просто, даже не обладая специальными знаниями. Гораздо сложнее чётко усвоить правила его эксплуатации. Чрезвычайно важно, чтобы вышеизложенные нюансы строго соблюдались. В ином случае, собственноручная конструкция не будет функционировать качественно и может принести проблемы, связанные с целостностью и эффективной эксплуатацией электроприборов.

Видео: изготовление симисторного диммера

Очень старая и очень простая схема для регулирования мощности паяльника, который также можно применять и для обогревательных приборов. Можно и для ламп накаливания, но это уже сегодня не актуально, думаю, так как большинство уже использует энергосберегающие.

Схема не только проста, но и надежна, и испытана временем лично мною и другими людьми, держит установленную мощность стабильно. И еще две схемы.

Но сразу скажу, что данные регуляторы мощности работают только с нагревательными приборами и лампами накаливания, с трансформаторами. С двигателями и прочим, результаты непредсказуемы — там всякие индуктивные дела начнутся.

Первые две схемы настолько просты, что печатные платы просто бессмысленны, и их можно смонтировать в какой-нибудь коробочке от неисправного блока зарядки мобильника или чего-то подобного. Для начинающих с малым опытом самое то!

Вот, собственно, сама схема регулятора мощности, которая настолько проста, что я вписал номиналы прямо в нее, так удобней и наглядней. Вся хитрость данной схемки в неоновой лампе и конденсаторе. Как это работает, я и сам толком не понимаю, 🙂 но работает отлично. Ведь для стабильного удержания заданной мощности тиристором или симистором, обычно применяются управляющие элементы на полупроводниках, а тут какая-то лампочка, которая изготавливалась для совершенно других целей, да конденсатор, творят чудеса. В общем, выражаясь сегодняшним языком, можно сказать, что схема самая что ни есть креативная. К тому же (чуть не забыл!), неоновая лампочка одновременно служит еще и индикатором мощности: она меняет яркость, и этим самым можно контролировать регулировку.

При этом схема регулирует мощность от 0% до 100% !

Так выглядят старый добрый симистор КУ208Г и рядом с ним различные неоновые лампочки. И то, и другое можно за гроши найти на радиорынке, в современном магазине вряд ли. Впрочем, неонку можно из какого-нибудь старого бытового прибора выдернуть, а аналог КУ208Г можно думаю и в магазине купить из чего-то современного.

Вроде бы аналоги КУ208В,ТС112-10,ТС112-16, ТС122-10, ТС122-25, Т820КВ.

Регулятор мощности на тиристоре КУ202Н

Если уж совсем туго с неонкой будет или с КУ208, то можно собрать схемку регулятора еще проще. Даже не верится: куда уж еще проще? 🙂 Да, без неоновой лампы и вместо симистора — тиристор КУ202Н, который еще более доступен, более дешев и аналогов навалом. Диод также можно любой, подходящий по току и напряжению.


Думаю, по схеме понятно, что данный регулятор работает в диапазоне от 50% до 100% , но до 99%, поскольку одна сетевая полуволна идет напрямую через диод.
Да, в общем, для паяльника и камина самое то, думаю, от ноля регулировать вряд ли кому-то понадобится. От 50% даже и удобней, по-моему.


Если захотите погасить помехи от переключения тиристора/симистора в первой или второй схеме регулятора, то можно сделать петлю на ферритовом кольце от старого монитора, например, или другого ненужного сетевого компьютерного шнура.

Регулятор мощности без помех

А это уже схема регулятора (кликабельно) для более продвинутых, для фанатов «цифры». Регулирует мощность как и предыдущая от 50% , но ее отличие от двух первых в том, что регулирование осуществляется уже не за счет отрезания части полуволны сетевой синусоиды, что собственно и создает помехи, а за счет отсчета и пропускания разного количества полуволн. Но полуволны пропускаются целиком, именно поэтому и нет помех: открытие тиристора происходит на уровне, близком к нулю (каких-то пару вольт, нужных для его открытия).

На схеме зелеными кружками обозначены некоторые точки, а на диаграммах ниже — напряжения в этих точках, поясняющие работу схемы регулятора мощности без помех.

Причем, схема имеет свою особенность: по нижним трем диаграммам можно сообразить без пояснений, по какому принципу регулируется мощность. Регулировка ступенчатая, и получается такая дискретность: 50%, 66,6%, 75%… Далее по логике, как я понимаю, 80%, 83,3%, 85,7%… Так выходит, потому что время пауз: 1/2, 1/3, 1/4, 1/6, 1/7 и т. д. То есть, шаг регулирования уменьшается с повышением мощности, что разумно — применительно к паяльнику.

Стрелочный индикатор к паяльнику

Согласитесь, без индикации регулировать мощность паяльника как-то некошерно. Да, можно нарисовать метки на регуляторе, но эффект и удобства не те.

Для большего удобства регулировки нагрева паяльника совсем несложно и очень полезно добавить к собранному регулятору индикацию на каком-нибудь небольшом стрелочном приборе. Такой индикатор можно выдернуть из старой ненужной аудиоаппаратуры, если таковая завалялась еще, либо пройтись и отовариться на местном блошином рынке.

Примерная схема индикатора с использованием подобного стрелочного прибора показана на рисунке. Номиналы, как и сама схема допускает изменения и упрощения при понимании принципов тем, кто будет собирать ее. Номиналы на данной схеме применялись с использованием стрелочного индикатора М68501, который применялся в советских магнитофонах. Основная настройка схемы при использовании М68501 — это подбор резистора R4. При использовании другого стрелочного индикатора, вероятно придется подбирать еще и R3, ведь для удобной вам индикации при уменьшении мощности паяльника, должен быть соответствующий баланс резисторов R3/R4. Чтобы не получалось так, что при мощности в 50% стрелка индикатора уменьшается на 10-20%, либо наоборот, при небольшом уменьшении мощности, отклоняется на половину.

Вы еще не видели мой электромагнитный маятник?

Сегодня я вам расскажу об очень полезной схеме, которая пригодится как в лаборатории, так и в хозяйстве. Устройство, о котором пойдет речь, называется симисторный регулятор мощности. Регулятор можно применить для плавной регулировки яркостью освещения, температуры паяльника, оборотами электродвигателя (переменного тока). Мой вариант применения регулятора интересней, я плавно регулирую температуру нагрева тэна мощностью 1кВт в самогонном аппарате. Да-да, я занимаюсь этим благородным делом.

Схема имеет минимум элементов и заводится сразу. Мощность нагрузки для симисторного регулятора определяется током симистора. Симистор BTA12-600 рассчитан на ток 12 Ампер и напряжение 600 Вольт. Симистор нужно выбирать с запасом по току, я выбрал двукратный запас. Например, симистор BTA12-600 с оптимальным охлаждением может в штатном режиме пропускать через себя ток 8 Ампер. Если нужен регулятор мощнее, используйте симистор BTA16-600 или BTA24-600.

Рабочая температура кристалла симистора от -40 до +125 градусов Цельсия. Необходимо сделать хорошее охлаждение. У меня нагрузка 1кВт, соответственно ток нагрузки около 5А, радиатор площадью 200см кв. греется от 85 до90 градусов Цельсия при длительной работе (до 6ч). Планирую увеличить рабочую площадь радиатора, чтобы повысить надежность устройства.


Симистор имеет управляющий вывод и два вывода, через которые проходит ток нагрузки. Эти два вывода можно менять местами ничего страшного не случиться.

Для безопасности (чтобы не щелкнуло током), симистор необходимо устанавливать на радиатор через диэлектрическую прокладку (полимерную или слюдяную) и диэлектрическую втулку.

Компоненты.

Резистор 4.7кОм мощностью 0,25Вт. Динистор с маркировкой DB3 , полярности не имеет, впаивать любой стороной. Конденсатор пленочный на 100нФ 400В полярности не имеет.

Светодиод любого цвета диаметром 3мм, обратное напряжение 5В, ток 25мА. Короче любой светодиод 3мм. Светодиод дает индикацию нагрузки, не пугайтесь, если при первом включении (естественно без нагрузки) он светиться не будет.


Первое включение необходимо производить кратковременно без нагрузки. Если все нормально, никакие элементы не греются, ничего не щелкнуло, тогда включаем без нагрузки на 15 секунд. Далее цепляем лампу напряжением 220В и мощностью 60-200Вт, крутим ручку переменного резистора и наслаждаемся работой.


Для защиты я установил в разрыв сетевого провода (220В) предохранитель на 12А.


Собранный нами регулятор мощности на симисторе BTA12-600 можно применить для регулировки температуры паяльника (регулируя мощность), тем самым получив паяльную станцию для вашей мастерской.


Симисторный регулятор мощности для трансформатора своими руками. Напряжение на тиристоре


(Вариант 1)

В симисторных регуляторах мощности, работающих по принципу пропускания через нагрузку определенного числа полупериодов тока в единицу времени, должно выполняться условие четности их числа. Во многих известных радиолюбительских (и не только) конструкциях оно нарушается. Вниманию читателей предлагается регулятор, свободный от этого недостатка. Его схема изображена на рис. 1.

Здесь имеются узел питания, генератор импульсов регулируемой скважности и формирователь импульсов, управляющих симистором. Узел питания выполнен по классической схеме: токоограничивающие резистор R2 и конденсатор С1, выпрямитель на диодах VD3, VD4, стабилитрон VD5, сглаживающий конденсатор СЗ. Частота импульсов генератора, собранного на элементах DD1.1, DD1.2 и DD1.4, зависит от емкости конденсатора С2 и сопротивления между крайними выводами переменного резистора R1. Этим же резистором регулируют скважность импульсов. Элемент DD1.3 служит формирователем импульсов с частотой сетевого напряжения, поступающего на его вывод 1 через делитель из резисторов R3 и R4, причем каждый импульс начинается, вблизи перехода мгновенного значения сетевого напряжения через ноль. С выхода элемента DD1.3 эти импульсы через ограничительные резисторы R5 и R6 поступают на базы транзисторов VT1, VT2. Усиленные транзисторами импульсы управления через разделительный конденсатор С4 приходят на управляющий электрод симистора VS1. Здесь их полярность соответствует знаку сетевого напряжения, приложенного в этот момент к выв. 2 симистора. Благодаря тому, что элементы DD1.1 и DD1.2, DD1.3 и DD1.4 образуют два триггера, уровень на выходе элемента DD1.4, соединенном с выводом 2 элемента DD1.3, сменяется на противоположный только в отрицательном полупериоде сетевого напряжения. Предположим, триггер на элементах DD1.3, DD1.4 находится в состоянии с низким уровнем на выходе элемента DD1. 3 и высоким на выходе элемента DD1.4. Для изменения этого состояния необходимо, чтобы высокий уровень на выходе элемента DD1.2, соединенном с выводом 6 элемента DD1.4, стал низким. А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.1, независимо от момента установки высокого уровня на выводе 8 элемента DD1.2. Формирование управляющего импульса начинается с приходом положительного полупериода сетевого напряжения на вывод 1 элемента DD1.3. В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.2 сменится низким, что установит на выходе элемента высокий уровень напряжения. Теперь высокий уровень на выходе элемента DD1.4 тоже может смениться низким, но только в отрицательный полупериод напряжения, поступающего на вывод 1 элемента DD1.3. Следовательно, рабочий цикл формирователя управляющих импульсов закончится в конце отрицательного полупериода сетевого напряжения, а общее число полупериодов напряжения, приложенного к нагрузке, будет четным. Основная часть деталей устройства смонтирована на плате с односторонней печатью, чертеж которой показан на рис. 2.

Диоды VD1 и VD2 припаяны непосредственно к выводам переменного резистора R1, а резистор R7 — к выводам симистора VS1. Симистор снабжен ребристым теплоотводом заводского изготовления с площадью теплоотводящей поверхности около 400 см2. Использованы постоянные резисторы МЛТ, переменный резистор R1 — СПЗ-4аМ. Его можно заменить другим такого же или большего сопротивления. Номиналы резисторов R3 и R4 должны быть одинаковыми. Конденсаторы С1, С2 — К73-17. Если требуется повышенная надежность, то оксидный конденсатор С4 можно заменить пленочным, например, К73-17 2,2…4,7 мкФ на 63 В, но размеры печатной платы придется увеличить.
Вместо диодов КД521А подойдут и другие маломощные кремниевые, а стабилитрон Д814В заменит любой более современный с напряжением стабилизации 9 В. Замена транзисторов КТ3102В, КТ3107Г — другие маломощные кремниевые соответствующей структуры. Если амплитуда открывающих симистор VS1 импульсов тока окажется недостаточной, сопротивление резисторов R5 и R6 уменьшать нельзя. Лучше подобрать транзисторы с возможно большим коэффициентом передачи тока при напряжении между коллектором и эмиттером 1 В. У VT1 он должен быть 150…250, у VT2 — 250…270. По окончании монтажа можно присоединять к регулятору нагрузку сопротивлением 50…100 Ом и включать его в сеть. Параллельно нагрузке подключите вольтметр постоянного тока на 300…600 В. Если симистор устойчиво открывается в обоих полупериодах сетевого напряжения, стрелка вольтметра вообще не отклоняется от нуля либо немного колеблется вокруг него. Если же стрелка вольтметра отклоняется лишь в одну сторону, значит, симистор открывается только в полупериодах одного знака. Направление отклонения стрелки соответствует той полярности приложенного к симистору напряжения, при которой он остается закрытым. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока.

Симисторный регулятор мощности.
(Вариант 2)

Предлагаемый симисторный регулятор мощности (см. рис.) можно использовать для регулирования активной мощности нагревательных приборов (паяльника, электрической печки, плиты и пр.). Для изменения яркости осветительных приборов его использовать не рекомендуется, т.к. они будут сильно мигать. Особенностью регулятора является коммутация симистора в моменты перехода сетевого напряжения через ноль, поэтому он не создает сетевых помех Мощность регулируется изменением числа полупериодов сетевого напряжения, поступающих в нагрузку.

Синхрогенератор выполнен на базе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ DD1.1. Его особенностью является появление высокого уровня (логической «1») на выходе в том случае, когда входные сигналы отличаются друг от друга, и низкого уровня («О») при совладении входных сигналов. В результате этого «Г появляется на выходе DD1.1 только в моменты перехода сетевого напряжения через ноль. Генератор прямоугольных импульсов с регулируемой скважностью выполнен на логических элементах DD1.2 и DD1.3. Соединение одного из входов этих элементов с питанием превращает их в инверторы. В результате получается генератор прямоугольных импульсов. Частота импульсов приблизительно 2 Гц, а их длительность изменяется резистором R5.

На резисторе R6 и диодах VD5. VD6 выполнена схема совпадения 2И. Высокий уровень на ее выходе появляется только при совпадении двух «1» (импульса синхронизации и импульса с генератора). В результате на выходе 11 DD1.4 появляются пачки импульсов синхронизации. Элемент DD1.4 является повторителем импульсов, для чего один из его входов подключен к общей шине.
На транзисторе VT1 выполнен формирователь управляющих импульсов. Пачки коротких импульсов с его эмиттера, синхронизированные с началом полупериодов сетевого напряжения, поступают на управляющий переход симистора VS1 и открывают его. Через RH протекает ток.

Питание симисторного регулятора мощности осуществляется через цепочку R1-C1-VD2. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Положительные импульсы со стабилитрона VD1 через диод VD2 заряжают конденсатор СЗ.
При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тогда симистор типа КУ208Г позволяет коммутировать мощность до 1 кВт. Размеры радиатора можно приближенно прикинуть из расчета, что на 1 Вт рассеиваемой мощности необходимо около 10 см2 эффективной поверхности радиатора (сам корпус симистора рассеивает 10 Вт мощности). Для большей мощности необходим более мощный симистор, например, ТС2-25-6. Он позволяет коммутировать ток 25 А. Симистор выбирается с допустимым обратным напряжением не ниже 600 В. Симистор желательно защитить варистором, включенным параллельно, например, СН-1-1-560. Диоды VD2.. .VD6 можно применять в схеме любые, например. КД522Б или КД510А Стабилитрон — любой маломощный на напряжение 14.. .15 В. Подойдет Д814Д.

Симисторный регулятор мощности размещен на печатной плате из одностороннего стеклотекстолита размерами 68×38 мм.

Простой регулятор мощности.

Регулятор мощности до 1 кВт (0%-100%).
Схема собиралась не раз, работает без наладки и других проблем. Естественно диоды и тиристор на радиатор при мощности более 300 ватт. Если меньше, то хватает самих корпусов деталей для охлаждения.
Изначально в схеме применялись транзисторы типа МП38 и МП41.

Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора. Схема достаточно проста и доступна даже начинающему радиолюбителю. Для управления более мощной нагрузкой тиристоры необходимо поставить на радиатор (150 см2 и более). Для устранения помех, создаваемых регулятором, желательно на входе поставить дроссель.

На схеме — родителе, был установлен симистор КУ208Г, и меня он не устроил из за малой мощности коммутации. Покопавшись нашел импортные симисторы BTA16-600. Максимальное напряжение коммутации которого равен 600 вольт пр токе 16А!!!
Все резисторы МЛТ 0,125;
R4 — СП3-4аМ;
Конденсатор составлен из двух (включенных параллельно) по 1 микрофараду 250 вольт, типа — К73-17.
При данных, указанных на схеме, были достигнуты следующие результаты: Регулировка напряжения от 40 до напряжения сети.

Регулятор можно вставить в штатный корпус обогревателя.

Схема срисованная с платы регулятора пылесоса.

на кондесаторе маркировка: 1j100
Пробовал управлять ТЭНом 2 квт — никаких морганий света на той же фазе не заметил,
напряжение на ТЭНе регулируется плавно и, вроде бы, равномернно (пропорционально углу поворота резистора).
Регулируется от 0 до 218 вольт при напряжении в сети 224-228 вольт.

Простой регулятор мощности до 100Вт можно сделать всего из нескольких деталей. Его можно приспособить для регулирования температуры жала паяльника, яркости настольной лампы, скорости вентилятора и т.п. Регулятор на тиристоре получается по размерам сильно большой и конструктивно имеет недочеты и большую схему. Регулятор мощности на импортном малогабаритном симисторе mac97a (600В; 0,6А) можно коммутировать и более мощные нагрузки, простая схема, плавная регулировка, маленькие габариты.

Немного о принципе работы симистора

Если у тиристора есть анод и катод, то электроды у симистора так охарактеризовать нельзя, потому что каждый электрод является и анодом и катодом одновременно. В отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Как раз простой схемой, характеризующей принцип работы симистора служит наш электронный регулятор мощности.

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса.

В данном случае изменяя управляющее напряжение мы можем регулировать яркость электрической лампочки или температуру жала паяльника, а также скорость вентилятора.

Принципиальная схема регулятора на симисторе MAC97A6

Описание работы регулятора мощности на симисторе

При каждой полуволне сетевого напряжения конденсатор С заряжается через цепочку сопротивлений R1, R2, когда напряжение на С становится равным напряжению открывания динистора VD1 происходит пробой и разрядка конденсатора через управляющий электрод VS1 .

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики (ВАХ) динистора DB3 изображена на рисунке:

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет разницы, как его подключать.

Характеристики динистора DB3

Кому нужно регулировать нагрузку более 100Вт, ниже представлена похожая схема более мощного регулятора на симисторе ВТ136-600.

Принципиальная схема регулятора на симисторе BT136-600

Приведенная схема регулятора мощности на симисторе рассчитана на достаточно большой ток нагрузки.

Если у Вас нет необходимых деталей и платы для сборки регулятора мощности на симисторе MAC97A6, Вы можете купить полный набор для его сборки в нашем магазине.


П О П У Л Я Р Н О Е:

Регулятор мощности симисторный предназначен для регулировки мощности нагревательных и осветительных приборов мощность которых не првышает 1000 Вт.

Технические характеристики :
Рабочее напряжение; 160-300 В
Диапазон регулировки мащности 10-90%
Ток нагрузки: до 5 А

Устройство состоит из симистора и времязадающей цепочки. Принцип регулировки мощности заключается в изменения продолжительности времени открытого состояния симистора (рисунок 1). Чем большее время симистор открыт, тем большая мощность отдается в нагрузку. А так как симистор выключается в момент когда ток протекающий через симистор равен нулю, то задавать продолжительность открытия симистора будем в пределах половины периода. В начале положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения, конденсатор С1 заряжается через делитель R1, R2. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога «пробоя» динистора (около 32 В). Динистор замкнет цепь Dl, Cl, D3 и откроет симистор U1. Симистор остается открытым до конца полупериода. Время зарядки конденсатора задается параметрами цепочки R1, R2, С1. Резистором R2 задаем время зарядки конденсатора, а соответственно и момент открытия динистора и симистора. Т.е. этим резистором производится регулировка мощности. При действии отрицательной полуволны принцип работы аналогичен. Светодиод LED индицирует рабочий режим регулятора мощности.


Используемые радиоэлементы:
R1 — 3.9…10K
R2 — 500K
C1 — 0.22мкФ
D1 — 1N4148
D2 — светодиод
D3 — DB4
U1 — BT06-600
P1,P2 клемники
R3 — 22K 2Вт
C2 — 0.22мкФ 400В


Правильно собранная схема наладки не требует.
При использовании нагрузки мощностью более 300 Вт, симистор необходимо установить на радиатор с площадью поверхности не мене 20 см 2
На переменный резистор необходимо установить ручку из изолированного материала.

При дополнении схемы всего двумя элементами (на схеме обозначены красным цветом)появляется возможность управления индуктивной нагрузкой. Т.е. можно на выход симисторного регулятора мощности подключить трансформатор.

ВНИМАНИЕ! Устройство гальванически не развязано от сети! Запрещается прикасаться к элементам включенной схемы!

Если в жилье есть газоснабжение, готовить пищу на газовой плите удобнее, а отопление газовым котлом обычно дешевле электрического варианта. Но при отсутствии газа оптимизация потребления электроэнергии становится очень важной задачей. Для ее решения надо потреблять ровно столько электрической энергии, сколько необходимо. А для этого потребуется оптимальное управление бытовыми электроприборами и освещением. Многие электроплиты, электрообогреватели, вентиляторы и т.д. снабжены встроенными регуляторами.

Но технические возможности системы управления электрооборудованием стоят немалых денег. И по этой причине чаще всего покупаются недорогие электроприборы с простейшими регуляторами. Далее мы расскажем читателям об устройствах, использование которых даст не только экономию электроэнергии, но и сделает многие электроприборы более удобными. Эти устройства — регуляторы мощности. Их назначение — регулировка среднего значения напряжения на нагрузке.

Проще всего купить диммер

Они уменьшают его величину, а соответственно, и потребляемую мощность. По законам Джоуля-Ленца и Ома для электрической цепи. Эффективное регулирование мощности нагрузки обеспечивают специальные технические решения. А любая схема регулятора мощности содержит полупроводниковый коммутатор. Кто желает поскорее обрести возможность гибкого управления своими электроприборами, может легко купить простой регулятор мощности. Им является диммер. Разнообразные модели этого устройства продаются в торговых сетях.

Очень удобен такой регулятор на даче. Он будет замечательным дополнением к маленькому кипятильнику или одно-, двухконфорочной электроплитке. Теперь в ходе приготовления еды не будет подгорания и слишком сильного кипения. Покупая регулятор мощности, обязательно удостоверьтесь в его соответствии решаемым задачам. Он должен быть мощнее управляемого электрооборудования. Большинство моделей диммеров рассчитано на обслуживание квартирного освещения. По этой причине они в основном регулируют мощность до 300 Вт.

Не нашел в магазине — сделай сам

Чтобы приобрести более мощную модель, придется поискать ее в торговых сетях. Альтернативное решение — просмотр схем регуляторов мощности, изготовление своими руками выбранной модели. Чтобы помочь нашим читателям выбрать оптимальную схему, более подробно опишем главные особенности этих устройств. Регулятор на полупроводниковом ключе может быть выполнен на

  • биполярном транзисторе;
  • полевом транзисторе;
  • тиристоре;
  • симметричном тиристоре (симисторе, триаке).

Регулятор мощности, схема которого содержит любой из перечисленных полупроводниковых ключей, всегда пребывает в одном из двух состояний. Он либо максимально ограничивает ток (отключает нагрузку), либо почти не оказывает сопротивления (подключает нагрузку). При срабатывании сопротивление переходов полупроводниковых приборов быстро изменяется по величине. Каждому его значению соответствует определенная электрическая мощность. Она выделяется как тепло и носит название динамических потерь. Чем быстрее срабатывает прибор (отключает или подключает нагрузку), тем меньше динамические потери.

Наиболее быстродействующими ключами являются транзисторы. Но они и включаются и выключаются при любой ненулевой величине напряжения. Если эти процессы происходят вблизи его амплитудного значения, динамические потери будут максимально большими. Обычный тиристорный ключ отличается тем, что выключается без управляющего сигнала при переходе тока нагрузки через ноль. Хотя его включение происходит при той же амплитуде переменного напряжения, что и у транзисторов.

Выбери триак

По этой причине схема тиристора, а особенно симисторного регулятора мощности получается более простой, экономичной и надежной. Особенно если он быстро включается. У регулятора мощности на симисторе кроме него нет больше полупроводниковых приборов, по которым течет ток нагрузки. А у регуляторов с остальными ключами такими приборами обязательно будут выпрямительные диоды, в том числе встроенные. Поэтому рекомендуем остановиться на симисторах — схемы с ними есть во многих справочниках, популярных журналах а, следовательно, и в интернете. Их легко найти и выбрать что-либо приемлемое.

Первый регулятор мощности на симисторе КУ208Г используется уже много лет, начиная с 80-х годов прошлого века.

Современные симисторы в регуляторах

Устаревший дизайн КУ208Г не всегда удобен для размещения в корпусе регулятора. Новая модель BT136 600E, у которой параметры включения и регулировки примерно такие же, позволит собрать более компактный симисторный регулятор мощности. С этой моделью из-за ее компактности получается значительно больше вариантов конструкции, из которых можно выбирать.

Если самостоятельно изготавливается регулятор мощности, схема которого взята из какого-либо источника, обязательно сравните максимальные токи используемого ключа и нагрузки. В этих целях разделите паспортную мощность нагрузки на 220. Для надежной работы регулятора мощности на симисторе и не только полученное значение тока должно составлять 0,7 от номинального значения ключа, используемого в схеме. Поэтому для многих бытовых электроприборов КУ208Г окажется слабоват. Но его можно заменить более мощным, например ВТА 12.

Этот ключ со своими 12 амперами сможет надежно регулировать нагрузку до 1848 Вт с непродолжительным увеличением ее до 2000 Вт. Собранный регулятор мощности на симисторе этой модели, например, можно применить для управления электрическим чайником. Один из таких вариантов показан далее.

При выборе схемы регулятора мощности

  • коллекторного мотора постоянного тока,
  • универсальных (тоже коллекторных) двигателей,
  • пригодного для управления электродвигателя в каком-либо электрооборудовании,

рекомендуем обратить внимание на безопасность управления. Она обеспечивается гальванической развязкой в схеме регулятора. Ключ надежно развязывается от управляющего элемента, к которому прикасается пользователь. Для этого применяются схемотехнические решения с трансформаторами, а также оптронные электронные приборы. Примеры подобных схем показаны далее. В этих схемах управляющий элемент является частью контроллера.

Эффективный, надежный и безопасный регулятор мощности добавит многим вашим электроприборам новые потребительские свойства. За вами остается правильный выбор устройства при покупке или изготовление их без ошибок своими руками по выбранной схеме.

Очень старая и очень простая схема для регулирования мощности паяльника, который также можно применять и для обогревательных приборов. Можно и для ламп накаливания, но это уже сегодня не актуально, думаю, так как большинство уже использует энергосберегающие.

Схема не только проста, но и надежна, и испытана временем лично мною и другими людьми, держит установленную мощность стабильно. И еще две схемы.

Но сразу скажу, что данные регуляторы мощности работают только с нагревательными приборами и лампами накаливания, с трансформаторами. С двигателями и прочим, результаты непредсказуемы — там всякие индуктивные дела начнутся.

Первые две схемы настолько просты, что печатные платы просто бессмысленны, и их можно смонтировать в какой-нибудь коробочке от неисправного блока зарядки мобильника или чего-то подобного. Для начинающих с малым опытом самое то!

Вот, собственно, сама схема регулятора мощности, которая настолько проста, что я вписал номиналы прямо в нее, так удобней и наглядней. Вся хитрость данной схемки в неоновой лампе и конденсаторе. Как это работает, я и сам толком не понимаю, 🙂 но работает отлично. Ведь для стабильного удержания заданной мощности тиристором или симистором, обычно применяются управляющие элементы на полупроводниках, а тут какая-то лампочка, которая изготавливалась для совершенно других целей, да конденсатор, творят чудеса. В общем, выражаясь сегодняшним языком, можно сказать, что схема самая что ни есть креативная. К тому же (чуть не забыл!), неоновая лампочка одновременно служит еще и индикатором мощности: она меняет яркость, и этим самым можно контролировать регулировку.

При этом схема регулирует мощность от 0% до 100% !

Так выглядят старый добрый симистор КУ208Г и рядом с ним различные неоновые лампочки. И то, и другое можно за гроши найти на радиорынке, в современном магазине вряд ли. Впрочем, неонку можно из какого-нибудь старого бытового прибора выдернуть, а аналог КУ208Г можно думаю и в магазине купить из чего-то современного.

Вроде бы аналоги КУ208В,ТС112-10,ТС112-16, ТС122-10, ТС122-25, Т820КВ.

Регулятор мощности на тиристоре КУ202Н

Если уж совсем туго с неонкой будет или с КУ208, то можно собрать схемку регулятора еще проще. Даже не верится: куда уж еще проще? 🙂 Да, без неоновой лампы и вместо симистора — тиристор КУ202Н, который еще более доступен, более дешев и аналогов навалом. Диод также можно любой, подходящий по току и напряжению.


Думаю, по схеме понятно, что данный регулятор работает в диапазоне от 50% до 100% , но до 99%, поскольку одна сетевая полуволна идет напрямую через диод.
Да, в общем, для паяльника и камина самое то, думаю, от ноля регулировать вряд ли кому-то понадобится. От 50% даже и удобней, по-моему.


Если захотите погасить помехи от переключения тиристора/симистора в первой или второй схеме регулятора, то можно сделать петлю на ферритовом кольце от старого монитора, например, или другого ненужного сетевого компьютерного шнура.

Регулятор мощности без помех

А это уже схема регулятора (кликабельно) для более продвинутых, для фанатов «цифры». Регулирует мощность как и предыдущая от 50% , но ее отличие от двух первых в том, что регулирование осуществляется уже не за счет отрезания части полуволны сетевой синусоиды, что собственно и создает помехи, а за счет отсчета и пропускания разного количества полуволн. Но полуволны пропускаются целиком, именно поэтому и нет помех: открытие тиристора происходит на уровне, близком к нулю (каких-то пару вольт, нужных для его открытия).

На схеме зелеными кружками обозначены некоторые точки, а на диаграммах ниже — напряжения в этих точках, поясняющие работу схемы регулятора мощности без помех.

Причем, схема имеет свою особенность: по нижним трем диаграммам можно сообразить без пояснений, по какому принципу регулируется мощность. Регулировка ступенчатая, и получается такая дискретность: 50%, 66,6%, 75%… Далее по логике, как я понимаю, 80%, 83,3%, 85,7%… Так выходит, потому что время пауз: 1/2, 1/3, 1/4, 1/6, 1/7 и т.д. То есть, шаг регулирования уменьшается с повышением мощности, что разумно — применительно к паяльнику.

Стрелочный индикатор к паяльнику

Согласитесь, без индикации регулировать мощность паяльника как-то некошерно. Да, можно нарисовать метки на регуляторе, но эффект и удобства не те.

Для большего удобства регулировки нагрева паяльника совсем несложно и очень полезно добавить к собранному регулятору индикацию на каком-нибудь небольшом стрелочном приборе. Такой индикатор можно выдернуть из старой ненужной аудиоаппаратуры, если таковая завалялась еще, либо пройтись и отовариться на местном блошином рынке.

Примерная схема индикатора с использованием подобного стрелочного прибора показана на рисунке. Номиналы, как и сама схема допускает изменения и упрощения при понимании принципов тем, кто будет собирать ее. Номиналы на данной схеме применялись с использованием стрелочного индикатора М68501, который применялся в советских магнитофонах. Основная настройка схемы при использовании М68501 — это подбор резистора R4. При использовании другого стрелочного индикатора, вероятно придется подбирать еще и R3, ведь для удобной вам индикации при уменьшении мощности паяльника, должен быть соответствующий баланс резисторов R3/R4. Чтобы не получалось так, что при мощности в 50% стрелка индикатора уменьшается на 10-20%, либо наоборот, при небольшом уменьшении мощности, отклоняется на половину.

Вы еще не видели мой электромагнитный маятник?

 

 

Передатчик на 10 Вт


Условия эксплуатации

ПКУ чаще всего используются на открытом пространстве (их климатическое исполнение имеет значение У1 и УХЛ1 согласно ГОСТу 15150-69) при следующих условиях:

Структура условного обозначения

  • Высота, на которой устанавливаются ПКУ , не должна превышать 1 км над уровнем моря;
  • Устройство разрешается эксплуатировать при температурных колебаниях внешней среды в пределах «-» 40 – «+» 40 градусов для У1, и «-» 60 – «+» 40 градусов для УХЛ1;
  • Тип атмосферы должен соответствовать ГОСТу 15150-69 – II;
  • Группа условий использования ПКУ согласно ГОСТу 17516.1-90 в части действия факторов механического типа – М2;
  • Ветровые районы I-V, а также районы по гололеду I-IV.


Характеристики

Название характеристикиЗначение параметра
Значение номинального напряжения, кВ6; 10
Значение самого большого рабочего напряжения согласно ГОСТу 1516.3, кВ7,2; 12
Значение номинального тока трансформаторов тока, А5; 10; 15; 20; 50; 75; 200; 300; 400; 600;
Значение параметра номинального тока вторичных цепей, А1 или 5
Класс точности ТТ0,2; 0,5; 0,2S; 0,5s
Класс точности ТН0,2; 0,5
Класс точности счетчика0,5; 1; 2
Используемый вид изоляции согласно ГОСТу 14693воздушная, комбинированная
Используемый тип системы заземления ШУTN-S
Уровень степени защиты по ГОСТу 14254IP54
Значение частоты сети, Гц50
Стойкость к сейсмическому воздействию по ГОСТу 17516.1-90, выраженную в баллахдо 9
Размеры МВ, см:97,6х72,4х11
Размеры ШУ, см:42х19,3х75,3
Масса ПКУ М, не превышающая355


Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

Основные компоненты:

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2.

Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

Используемые элементы:

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.


Схема симисторного регулятора мощности

Сборка

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты, радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.


Симисторный радиатор мощности

Регулировка мощности

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.



Конструкция

В состав ПКУ 6-10 входит высоковольтный модуль (МВ), который включает в себя не только встроенные трансформаторы тока и напряжения, но и шкаф учета (ШУ) со встроенным устройством учета, аппаратами защиты, а также устройствами телемеханики. Для того чтобы связать между собой МВ и ШУ, используют специальный соединительный кабель. В конструкции ПКУ М также предусмотрен и монтажный комплект, благодаря которому можно установить пункт учета на опору высоковольтной линии.

Высоковольтный модуль

Высоковольтный модуль (МВ) являет собой сварной корпус из металла, внутри которого располагаются трансформаторы тока и напряжения. Количество данных трансформаторов определяется исходя из схемы ПКУ. Современные конструкции МВ предусматривают возможность установки не только двух трансформаторов тока и напряжения, но и трех трансформаторов тока и напряжения. Возможен вариант установки 2 трансформаторов тока и 3 трансформаторов напряжения.

МВ подключается к высоковольтной линии благодаря проходным изоляторам, у которых имеется полимерная или фарфоровая изоляция, которая устанавливается на крышке модуля. В нижней части МВ предусматривается установка специального отверстия под сальник для того, чтобы выводить кабель, которым соединяются вторичные цепи трансформаторов тока и напряжения со шкафом учета. На боковых поверхностях корпуса МВ имеются открывающиеся дверцы, через которые специалист имеет возможность периодически проверять работу трансформаторов. В закрытом положении дверцы фиксируются при помощи специальных замков и болтов.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Разделы сайта

DirectAdvert NEWS

Друзья сайта

ActionTeaser NEWS

Статистика

В симисторных регуляторах мощности, работающих по принципу пропускания через нагрузку определенного числа полупериодов тока в единицу времени, должно выполняться условие четности их числа. Во многих известных радиолюбительских (и не только) конструкциях оно нарушается. Вниманию читателей предлагается регулятор, свободный от этого недостатка. Его схема изображена на рис. 1.

Здесь имеются узел питания, генератор импульсов регулируемой скважности и формирователь импульсов, управляющих симистором. Узел питания выполнен по классической схеме: токоограничивающие резистор R2 и конденсатор С1, выпрямитель на диодах VD3, VD4, стабилитрон VD5, сглаживающий конденсатор СЗ. Частота импульсов генератора, собранного на элементах DD1.1, DD1.2 и DD1.4, зависит от емкости конденсатора С2 и сопротивления между крайними выводами переменного резистора R1. Этим же резистором регулируют скважность импульсов. Элемент DD1.3 служит формирователем импульсов с частотой сетевого напряжения, поступающего на его вывод 1 через делитель из резисторов R3 и R4, причем каждый импульс начинается, вблизи перехода мгновенного значения сетевого напряжения через ноль. С выхода элемента DD1.3 эти импульсы через ограничительные резисторы R5 и R6 поступают на базы транзисторов VT1, VT2. Усиленные транзисторами импульсы управления через разделительный конденсатор С4 приходят на управляющий электрод симистора VS1. Здесь их полярность соответствует знаку сетевого напряжения, приложенного в этот момент к выв. 2 симистора. Благодаря тому, что элементы DD1.1 и DD1.2, DD1.3 и DD1.4 образуют два триггера, уровень на выходе элемента DD1.4, соединенном с выводом 2 элемента DD1.3, сменяется на противоположный только в отрицательном полупериоде сетевого напряжения. Предположим, триггер на элементах DD1.3, DD1.4 находится в состоянии с низким уровнем на выходе элемента DD1.3 и высоким на выходе элемента DD1.4. Для изменения этого состояния необходимо, чтобы высокий уровень на выходе элемента DD1.2, соединенном с выводом 6 элемента DD1.4, стал низким. А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.1, независимо от момента установки высокого уровня на выводе 8 элемента DD1.2. Формирование управляющего импульса начинается с приходом положительного полупериода сетевого напряжения на вывод 1 элемента DD1.3. В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.2 сменится низким, что установит на выходе элемента высокий уровень напряжения. Теперь высокий уровень на выходе элемента DD1.4 тоже может смениться низким, но только в отрицательный полупериод напряжения, поступающего на вывод 1 элемента DD1.3. Следовательно, рабочий цикл формирователя управляющих импульсов закончится в конце отрицательного полупериода сетевого напряжения, а общее число полупериодов напряжения, приложенного к нагрузке, будет четным. Основная часть деталей устройства смонтирована на плате с односторонней печатью, чертеж которой показан на рис. 2.

Читать также: Как сделать выжигатель из батарейки

Диоды VD1 и VD2 припаяны непосредственно к выводам переменного резистора R1, а резистор R7 – к выводам симистора VS1. Симистор снабжен ребристым теплоотводом заводского изготовления с площадью теплоотводящей поверхности около 400 см2. Использованы постоянные резисторы МЛТ, переменный резистор R1 – СПЗ-4аМ. Его можно заменить другим такого же или большего сопротивления. Номиналы резисторов R3 и R4 должны быть одинаковыми. Конденсаторы С1, С2 – К73-17. Если требуется повышенная надежность, то оксидный конденсатор С4 можно заменить пленочным, например, К73-17 2,2. 4,7 мкФ на 63 В, но размеры печатной платы придется увеличить. Вместо диодов КД521А подойдут и другие маломощные кремниевые, а стабилитрон Д814В заменит любой более современный с напряжением стабилизации 9 В. Замена транзисторов КТ3102В, КТ3107Г – другие маломощные кремниевые соответствующей структуры. Если амплитуда открывающих симистор VS1 импульсов тока окажется недостаточной, сопротивление резисторов R5 и R6 уменьшать нельзя. Лучше подобрать транзисторы с возможно большим коэффициентом передачи тока при напряжении между коллектором и эмиттером 1 В. У VT1 он должен быть 150. 250, у VT2 – 250. 270. По окончании монтажа можно присоединять к регулятору нагрузку сопротивлением 50. 100 Ом и включать его в сеть. Параллельно нагрузке подключите вольтметр постоянного тока на 300. 600 В. Если симистор устойчиво открывается в обоих полупериодах сетевого напряжения, стрелка вольтметра вообще не отклоняется от нуля либо немного колеблется вокруг него. Если же стрелка вольтметра отклоняется лишь в одну сторону, значит, симистор открывается только в полупериодах одного знака. Направление отклонения стрелки соответствует той полярности приложенного к симистору напряжения, при которой он остается закрытым. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока.

Предлагаемый симисторный регулятор мощности (см. рис.) можно использовать для регулирования активной мощности нагревательных приборов (паяльника, электрической печки, плиты и пр.). Для изменения яркости осветительных приборов его использовать не рекомендуется, т.к. они будут сильно мигать. Особенностью регулятора является коммутация симистора в моменты перехода сетевого напряжения через ноль, поэтому он не создает сетевых помех Мощность регулируется изменением числа полупериодов сетевого напряжения, поступающих в нагрузку.

Синхрогенератор выполнен на базе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ DD1.1. Его особенностью является появление высокого уровня (логической «1») на выходе в том случае, когда входные сигналы отличаются друг от друга, и низкого уровня («О») при совладении входных сигналов. В результате этого «Г появляется на выходе DD1.1 только в моменты перехода сетевого напряжения через ноль. Генератор прямоугольных импульсов с регулируемой скважностью выполнен на логических элементах DD1.2 и DD1.3. Соединение одного из входов этих элементов с питанием превращает их в инверторы. В результате получается генератор прямоугольных импульсов. Частота импульсов приблизительно 2 Гц, а их длительность изменяется резистором R5.

На резисторе R6 и диодах VD5. VD6 выполнена схема совпадения 2И. Высокий уровень на ее выходе появляется только при совпадении двух «1» (импульса синхронизации и импульса с генератора). В результате на выходе 11 DD1.4 появляются пачки импульсов синхронизации. Элемент DD1.4 является повторителем импульсов, для чего один из его входов подключен к общей шине. На транзисторе VT1 выполнен формирователь управляющих импульсов. Пачки коротких импульсов с его эмиттера, синхронизированные с началом полупериодов сетевого напряжения, поступают на управляющий переход симистора VS1 и открывают его. Через RH протекает ток.

Питание симисторного регулятора мощности осуществляется через цепочку R1-C1-VD2. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Положительные импульсы со стабилитрона VD1 через диод VD2 заряжают конденсатор СЗ. При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тогда симистор типа КУ208Г позволяет коммутировать мощность до 1 кВт. Размеры радиатора можно приближенно прикинуть из расчета, что на 1 Вт рассеиваемой мощности необходимо около 10 см2 эффективной поверхности радиатора (сам корпус симистора рассеивает 10 Вт мощности). Для большей мощности необходим более мощный симистор, например, ТС2-25-6. Он позволяет коммутировать ток 25 А. Симистор выбирается с допустимым обратным напряжением не ниже 600 В. Симистор желательно защитить варистором, включенным параллельно, например, СН-1-1-560. Диоды VD2.. .VD6 можно применять в схеме любые, например. КД522Б или КД510А Стабилитрон — любой маломощный на напряжение 14.. .15 В. Подойдет Д814Д.

Симисторный регулятор мощности размещен на печатной плате из одностороннего стеклотекстолита размерами 68×38 мм.

Регулятор мощности до 1 кВт (0%-100%). Схема собиралась не раз, работает без наладки и других проблем. Естественно диоды и тиристор на радиатор при мощности более 300 ватт. Если меньше, то хватает самих корпусов деталей для охлаждения. Изначально в схеме применялись транзисторы типа МП38 и МП41.

Простой универсальный регулятор мощности.

Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора. Схема достаточно проста и доступна даже начинающему радиолюбителю. Для управления более мощной нагрузкой тиристоры необходимо поставить на радиатор (150 см2 и более). Для устранения помех, создаваемых регулятором, желательно на входе поставить дроссель.

На схеме – родителе, был установлен симистор КУ208Г, и меня он не устроил из за малой мощности коммутации. Покопавшись нашел импортные симисторы BTA16-600. Максимальное напряжение коммутации которого равен 600 вольт пр токе 16А. Все резисторы МЛТ 0,125; R4 – СП3-4аМ; Конденсатор составлен из двух (включенных параллельно) по 1 микрофараду 250 вольт, типа – К73-17. При данных, указанных на схеме, были достигнуты следующие результаты: Регулировка напряжения от 40 до напряжения сети.

Читать также: Лазерный станок с чпу цена

Регулятор можно вставить в штатный корпус обогревателя.

Схема срисованная с платы регулятора пылесоса.

на кондесаторе маркировка: 1j100 Пробовал управлять ТЭНом 2 квт – никаких морганий света на той же фазе не заметил, напряжение на ТЭНе регулируется плавно и, вроде бы, равномернно (пропорционально углу поворота резистора). Регулируется от 0 до 218 вольт при напряжении в сети 224-228 вольт.

Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

Шкаф учета

Шкаф учета (ШУ) – это сварной шкаф, который изготавливается из металла. В своем составе он имеет замок, прибор учета, который расположен внутри шкафа (тип счетчика указывает сам заказчик, но мы рекомендуем Вам использовать счетчики типа СЭТ, ПСЧ 4АР, Альфа, которые имеют возможность нормально функционировать при отрицательных температурах). Кроме того, в ШУ можно найти и испытательную коробку, и автоматические выключатели защиты, и устройство передачи информации, благодаря которому можно дистанционно снимать показания прибора учета. Наши специалисты предлагают использовать радиомодем типа «Спектр», который способен нормально функционировать при температуре до минус 40 градусов.

Чтобы защитить прибор учета от всевозможных манипуляций со счетчиком, крышка клеммника счетчика имеет специальное отверстие для возможности установки пломбы. В цепях напряжения же устанавливается выключатель вместе с навесной блокировкой. Чтобы специалисту было удобно визуально снимать показания счетчика, монтируется лампа освещения. Если ШУ предполагается использовать в суровых климатических условиях, тогда в его конструкцию можно вмонтировать резисторы для обогрева внутреннего пространства ШУ.

Они подключаются к автоматическому регулятору температуры. Питание всех систем, монтированных в ПКУ, а также оборудования для передачи данных осуществляется от дополнительной обмотки антирезонансной группы трансформаторов напряжения типа 3хЗНОЛПМ.

Преимущества

Применение ПКУ М в различных распределительных сетях 6 (10) кВ даст возможность:

  • Правильно организовать на границе балансовой принадлежности точный коммерческий учет по стороне 6 (10) кВ;
  • Снизить общее количество затрат на обслуживание большого числа счетчиков, которые установлены на стороне 0,4 кВ, в любой сетевой или сбытовой фирме;
  • Предупредить хищение электричества в сетях 0,4 кВ, которое осуществляется самыми распространенными способами;
  • Избегать несанкционированного употребления электрической энергии;
  • Если имело место незаконное потребление электроэнергии, то ПКУ позволит получить доказательную базу для предъявления претензий в суде;
  • Примерный срок окупаемости ПКУ 6-10 составляет 3-6 месяцев.

Виды современных устройств

Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

На сегодняшний момент производство выпускает следующие типы приборов:

  1. Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
  2. Тиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
  3. Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
  4. Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.

При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

  • плавность регулировки;
  • рабочую и пиковую подводимую мощность;
  • диапазон входного рабочего сигнала;
  • КПД.

Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

Тиристорный прибор управления

Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.

Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.

Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.

Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.

Симисторный преобразователь мощности

Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.

Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.

Фазовый способ трансформации

Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.

Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

Читать также: Лист стальной 5мм вес 1м2

При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.

Конденсаторы: PMT2R0.33J100, PMT401SP, P / N 014-0037-13

на секцию: 0,330 мкФ, одинарная секция
Тип и количество клемм: 2 неизолированных провода
Тип корпуса: 27 А Без подключения к электросети клеммы на одной поверхности
758)

-01

08

PMT2R0.33J100
PMT2R033J100
5910-01-156-7701 Конденсатор, бумажный, металлический ITT Corp. (61725)
PMT2R.033K400
PMT2R033K400
5910-01-290-6918 Конденсатор, фиксированный, металлизированный, бумажный Значение емкости на секцию: 0,033 мкФ, односекционный
Тип и количество клемм: 2 неизолированных провода
Тип корпуса: 27A W / Терминал (ы) для обслуживания оборудования на одной поверхности
ITT Corp. (61725)
PMT2R047J250 5910-00-161-7263 Конденсатор, фиксированный, диэлектрический 9000 9000 : Не установлено
ITT Corp.(61725)
PMT2R0.47M100
PMT2R047M100
5910-00-008-1621 Конденсатор, специальный Nortel ( Nortel (K750008)

PMT2R10J100
5910-01-299-4462 Конденсатор, фиксированный, металлизированный, бумажный Значение емкости для каждой секции: 1.000 микрофарад, односекционный
Тип и количество клемм: 2 неизолированных провода
Тип корпуса: 27 А Без терминала (ов) на одной поверхности
ITT Corp. (61725)
PMT2R1- 0M100
PMT2R10M100
5910-00-006-6064 Конденсатор, специальный Nortel (K7575)
PMT2R1.0M100

07
Конденсатор, фиксированный, металлизированный, бумажный Значение емкости для каждой секции: 1.000 микрофарад, одна секция
Тип и количество терминала: 2 неизолированных провода
Тип корпуса: 27A Без терминала (ов) на одной поверхности
Cogent Defense Systems Часть (K0526)
Eads Defense and Security Systems LI ( U4756)
PMT2R1.M100
PMT2R1M100
5910-01-040-4722 Конденсатор, фиксированный, металлизированный, бумажный Значение емкости в разделе: 1.000 микрофарад, односекционный
Тип и количество клемм: 2 неизолированных провода
Тип корпуса: 27 А Без терминала (ов) на одной поверхности
Nortel (K7575)
PMT2R.1UFP0RM10- 100V
PMT2R1UFP0RM10100V
5910-01-145-3147 Конденсатор, фиксированный, металлизированный, бумажный Тип корпуса: Без терминала (ов) на одной поверхности
Индикатор надежности: не установлено
Длина терминала: 0 .Номинальный размер 512 дюймов
C-MAC Microcircuits LTD (K1672)
PMT2R.22J100
PMT2R22J100
5910-01-262-1707 Конденсатор, бумажный на секцию: 0,220 мкФ, одинарная секция
Тип и количество клемм: 2 неизолированных провода
Тип корпуса: 27 А Без терминала (ов) на одной поверхности
ITT Corp.(61725)
PMT2R2.2J100
PMT2R22J100
5910-01-145-3148 Конденсатор, фиксированный, металлизированный, бумажный Значение емкости
для секции Тип клеммы: 2.200 Количество: 2 неизолированных провода
Тип корпуса: 27A Без клемм (-ов) MTG на одной поверхности
ITT Semiconductors (15238)
PMT3R.1J100
PMT3R1J100
5910-01-243-4375 Конденсатор, фиксированный, металлизированный, бумажный ITT Corp. (61725)
-0006PM401 0120 Конденсатор, фиксированный, с бумажным диэлектриком Значение емкости на секцию: 1.000 микрофарад на одну секцию
Тип и количество клемм: 2 выступа, наконечник под пайку
Тип корпуса: 13 А Без оборудования, клемма (и) на одной поверхности
TDL Inc.(21966)
PMX1 5910-00-259-5115 Конденсатор, фиксированный, металлизированный, бумажный Значение емкости на секцию: 10000000 пикофарад на одну секцию
Тип и количество клемм без изоляции: провод
Тип корпуса: 27A Без терминала (ов) mtg на одной поверхности
TIE Communications Canada Inc. Subof (38889)
PMX2 5910-00-257-9673 Конденсатор, фиксированный, пластиковый диэлектрик Значение емкости на секцию: 22000.000 пикофарад, односекционный
Тип и количество клемм: 2 неизолированных проводника
Тип корпуса: 27 А Без терминала (ов) на одной поверхности
TIE Communications Canada Inc. Subof (38889)
PMX4-1T20
PMX41T20
5910-00-121-1660 Конденсатор, фиксированный, с пластиковым диэлектриком Sprague Electric of Canada LTD (35998)
PM 00-259-5106 Конденсатор, фиксированный, пластиковый диэлектрик Значение емкости на секцию: 0.150 микрофарад, односекционный
Тип и количество клемм: 2 неизолированных провода
Тип корпуса: 27 А Без оборудования, терминал (ы) на одной поверхности
TIE Communications Canada Inc. Subof (38889)
PMX64 5910-00-257-9674 Конденсатор, фиксированный, металлизированный, бумажный Значение емкости на одну секцию: 0,220 мкФ на одну секцию
Тип и количество клемм: 2 неизолированных провода
Тип корпуса: 27 А без вывода Терминал (-ы) объектов mtg на одной поверхности
TIE Communications Canada Inc.Subof (38889)
PMX8 5910-00-257-9675 Конденсатор, фиксированный, пластиковый диэлектрик Значение емкости на секцию: 68000.000 пикофарад, односекционный
Количество неизолированных клемм провод
Тип корпуса: 27A Без терминала (ов) mtg на одной поверхности
TIE Communications Canada Inc. Subof (38889)
P / N 014-0037-13
PN014003713
5910-01-482-7372 Конденсатор, фиксированный, металлизированный, бумажный Значение емкости в секции: 15.000 микрофарад, односекционный
Тип и количество клемм: 2 выступа, наконечник для пайки
Тип корпуса: 1B Без оборудования, клеммы на одном конце
Copeland Corp. (14569)

Конденсаторы PMT2RO.22K400, PMT2RO22M100, PMT2RO47K250, PMT3R0-47M100, PMT3R.1J100, PMT400V6K8K, PMT401SP, PMT63V, PMTAB1102K400D, PMTAB2102K400D, PMTAB1102K400D, PMTAB2102K400D, PMTAB2202K400V22, PMTAB2202K400V66 PMTAB2202K400V, PMTAB2202K400V66 -40V680KJ, PMV66-1-63V330KJ, PMV66-250V100KM, PMV66A1-160V100KJ, PMV66A1-160V47KJ.Получить предложение и купить

000, Металлизированный, бумажно-пластмассовый диэлектрик U298 ()
-2000
D478
PMT2RO.22K400 PMT2RO22K400 Конденсатор, фиксированный, металлизированный, бумажно-пластиковый диэлектрик C-MAC Microcircuits LTD (U0F31)

003000

000000 Конденсатор, фиксированный, с пластиковым диэлектриком Министерство обороны Военно-морское агентство по поддержке кораблей Управление технических публикаций военно-морского флота (K7999)
PMT2RO22M100 Пластиковый диэлектрический Plessey North America Corp.(K7999)
PMT2RO47K250 Конденсатор, фиксированный, металлизированный, бумажно-пластиковый диэлектрик AVX LTD (K7999)
000
000 PMT3R047M100 Конденсатор, фиксированный, металлизированный, с бумажно-пластиковым диэлектриком AVX LTD (K8295)
PMT3R.1J100 PMT3R1J100 Конденсатор, фиксированный, металлизированный, бумажный Tektronix Inc. Gespac Integration Saint Malo (F0326)
PMT401SP Конденсатор, фиксированный, бумажный диэлектрик Значение емкости в разделе: 1.000 микрофарад, одна секция
Тип и количество клемм: 2 выступа, наконечник для пайки
Тип корпуса: Без оборудования, клеммы на одной поверхности
General Electric Co. (21966)
PMT63V Конденсатор, фиксированный, металлизированный, бумажно-пластиковый диэлектрик ВМФ Министерства обороны РФЗ Базовые запасные части (C5108, K0316)
000 AVX LTD (K8295)
PMTAB2102K400D Конденсатор, фиксированный, металлизированный, бумажно-пластиковый диэлектрик
PMTAB2202K400D 9 0008 Конденсатор, фиксированный, металлизированный, с бумажно-пластиковым диэлектриком AVX LTD (K8295)
PMTC2R1M100 Пластиковый конденсатор )
PMTR0-022K400 PMTR0022K400 Конденсатор, фиксированный, металлизированный, диэлектрик из бумажно-пластикового материала AVX LTD (K8295)
000
000 PMV661250V47KK Конденсатор, фиксированный, металлизированный, бумажно-пластиковый диэлектрический Union Technique Electricite (F0986)
PMV66-1-40V470KJ 940V470KJ PMV66-1-40V470KJ 04 Конденсатор, фиксированный, металлизированный, с бумажно-пластиковым диэлектриком Precis (F0986, F1379, F7124)
PMV66-1-40V680KJ PMV66140V680K4 PMV66140V680K Пластиковый диэлектрик Diehl Aerospace GMBH Standort Frankfurt (F0986, F1379, F7124)
PMV66-1-63V330KJ PMV66-1-63V330KJ PMV66163V330KJ Union Technique Electricite (F0986, F7124)
PMV66-250V100KM PMV66250V100KM Конденсатор, фиксированный, металлизированный, бумажно-пластмассовый диэлектрик
9 0005 PMV66A1-160V100KJ PMV66A1160V100KJ Конденсатор, фиксированный, металлизированный, с бумажно-пластиковым диэлектриком Union Technique Electricite (F0986, F1379, F7124)
000 PMV6670003 Конденсатор, фиксированный, металлизированный, бумажно-пластиковый диэлектрик Union Technique Electricite (F0986, F7124)

UVP — Nichicon

DtSheet
    Загрузить

УВП — Ничикон

Открыть как PDF
Похожие страницы
FW — Ничикон
АЛЮМИНИЕВЫЕ ЭЛЕКТРОЛИТИЧЕСКИЕ КОНДЕНСАТОРЫ
NICHICON UVY2W4R7MPD
NICHICON UVZ1E221MPD
nichicon-нас.com
PT — Nichicon
PH — Ничикон
Серия PZ — Nichicon
НИЧИКОН УВР1Х201МПД1ТА
PDF
NICHICON UCS2D100MPD1TD
PX — Ничикон
nichicon-нас.com
RZ — Ничикон
NICHICON UPB2G220MHD
PDF
FG — Ничикон
НИЧИКОН УВЫ1х572МХД
KL — Ничикон
NICHICON UVR2W330MHA
nichicon-нас.com
НИЧИКОН УФГ1х3Р2МДМ

dtsheet © 2021 г.

О нас DMCA / GDPR Злоупотребление здесь

Калькулятор значения / кода конденсатора

Этот калькулятор значения конденсатора вычисляет значение емкости керамического конденсатора после ввода кода конденсатора в поле ввода ниже.


Калькулятор кода конденсатора

Этот калькулятор кодов конденсатора вычисляет код керамического конденсатора после ввода значения емкости конденсатора в поле ввода ниже.


Как работает калькулятор номинала конденсатора / кода?

Поскольку керамические конденсаторы имеют меньшую площадь поверхности из-за их крошечного размера, их значение не записывается в конденсаторе, вместо этого на них записывается закодированный код. Используя этот калькулятор номинала конденсатора, мы можем рассчитать значение этого конденсатора или наоборот.Для электролитических конденсаторов на них просто написаны значения емкости.

Кодировка керамических конденсаторов

Кодировка керамических конденсаторов

состоит из 1–3 цифр.

Если код конденсатора состоит только из 1 или 2 цифр, это просто значение их емкости в пикофарадах (пФ). Например, если керамический конденсатор имеет код «5», а другой — «47», их соответствующие значения емкости составляют 5 пФ и 47 пФ.

Для трехзначного кода конденсатора первые две цифры представляют собой значение емкости в пФ, а третья цифра — коэффициент умножения первых двух цифр для расчета окончательного значения емкости конденсатора.

3 -е число находится в диапазоне от 0 до 6. Оно не может превышать 6.

Если 3 rd цифра 0, это означает множитель 1.

Если 3 rd цифра 1, это означает коэффициент множителя 10.

Если 3 rd цифра 2, это означает множитель 100.

Если 3 rd цифра 3, это означает множитель 1000.

Если 3 ряд цифр 4, это означает множитель 10000.

Если 3 rd цифра 5, это означает множитель 100000.

Если 3 rd цифра 6, это означает множитель 1000000.

Чтобы понять, как работает умножитель, давайте рассмотрим пример конденсатора с кодом «104».

Поскольку первые две цифры равны 10, а 3 число равно 4, то коэффициент умножения равен 10000, общее значение емкости в пФ будет следующим:

10 * 10000 = 100000 пФ

Аналогичным образом, если код конденсатора равен 152, цифра 3 , число равно 2, поэтому коэффициент умножения равен 100.Значение емкости рассчитывается следующим образом:

15 * 100 = 1500 пФ

Вот как калькулятор / кода конденсатора вычисляет значение керамического конденсатора на основе кода конденсатора, или наоборот.

Таблица

»Примечания к электронике

Таблица преобразования значений конденсаторов или диаграмма, показывающая взаимосвязь между номиналами конденсаторов с использованием единиц пико, нано и микрофарад.


Capacitor Tutorial:
Использование конденсатора Типы конденсаторов Электролитический конденсатор Керамический конденсатор Танталовый конденсатор Пленочные конденсаторы Серебряный слюдяной конденсатор Супер конденсатор Конденсатор SMD Технические характеристики и параметры Как купить конденсаторы — подсказки и подсказки Коды и маркировка конденсаторов Таблица преобразования


Значения конденсаторов варьируются в огромном диапазоне.В нижней части шкалы конденсаторы типа серебряной слюды и некоторых керамических типов могут иметь емкость только в несколько пикофарад. На другом конце шкалы электролитические конденсаторы могут иметь значение во много сотен или тысяч микрофарад. В середине шкалы такие типы конденсаторов, как керамические, полиэфирные и ряд других типов, могут иметь значения, измеренные в нано-фарадах.

Префиксы значений конденсаторов

Ввиду огромного диапазона, в котором номиналы конденсаторов могут изменяться, можно использовать ряд различных префиксов.Это предотвращает путаницу с большим количеством нулей, прикрепленных к номиналам различных конденсаторов.

Основные префиксы, используемые для номиналов конденсаторов, приведены в таблице ниже.

и nbsp

Префиксы SI для частей, кратных десяти
, которые используются с номиналами конденсаторов.

Префикс Значение 10 -X
Микро 0.000001 10 -6
Нано 0,000000001 10 -9
Пико 0,000001 10 -12

Эти префиксы представляют собой стандартные префиксы и множители SI, которые используются в промышленности. Они позволяют указывать значащие цифры емкости конденсатора вместе с множителем. Таким образом, его легче понять и запомнить.

Таблица преобразования конденсаторов

Есть определенное перекрытие. Есть много случаев, когда два компонента одного и того же значения могут быть указаны по-разному: один может быть указан в пикофарадах, а другой — в нано-фарадах. Например, 100 нФ — это то же самое, что 0,1 мкФ. Приведенная ниже таблица быстро помогает показать, какие значения совпадают и сколько нано-фарад составляет микрофарад и т. Д. Его можно использовать в качестве краткого справочника по конденсаторам или любому другому электронному компоненту при просмотре различных элементов от разных производителей.

и nbsp

Таблица преобразования конденсаторов для пикофарад, нано-фарад и микрофарад

мкФ (мФ) нанофарады (нФ) пикофарад (пФ)
0,000001 0,001 1
0,00001 0,01 10
0,0001 0,1 100
0.001 1 1000
0,01 10 10000
0,1 100 100000
1 1000 1000000
10 10000 10000000
100 100000 100000000

Используя таблицу преобразования конденсаторов, можно быстро проверить соотношение между двумя конденсаторами с разными маркировками.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *