+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Проводимость меди и алюминия: удельная проводимость

Электрическая проводимость или электропроводность — это способность тела проводить электрический ток. Это понятие крайне важно в электротехнике: металлы, хорошо проводящие ток, используются в проводах, плохие проводники или диэлектрики — для защиты людей от электричества. Лучшим проводником является серебро, на втором месте стоит медь (она совсем немного уступает серебру), далее идут золото и алюминий.

Достоинства и недостатки медных проводов

Медь — это пластичный переходный металл. Имеет золотисто-розовый цвет, встречается в природе в виде самородков. Используется человеком с давних времен — в его честь была названа целая эпоха.

В таблице дано удельное электрическое сопротивление стали и других металлов

Сегодня медные провода часто используют в электронных устройствах. К их достоинствам относятся:

  • Высокая электропроводность (металл занимает второе место по этому показателю, уступая только серебру).
    По сравнению с алюминием медь эффективнее в 1,7 раза: при равном сечении медный кабель пропускает больше тока.
  • Сварку, пайку и лужение можно проводить без использования дополнительных материалов.
  • Провода обладают хорошей эластичностью и гибкостью, их можно сворачивать и сгибать без особого вреда.

 

Медь лишь немного уступает серебру

Однако до недавнего времени медные провода проигрывали алюминиевым из-за нескольких недостатков:

  • Высокая плотность: при разных размерах медный провод будет весить больше, чем алюминиевый;
  • Цена: алюминий в несколько раз дешевле;
  • Медь окисляется на открытом воздухе: впрочем, это не влияет на ее работу и легко устраняется.

Какое сопротивление меди и алюминия

Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.

Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.

В электротехнике значение имеют 2 термина:

  • Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
  • Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.
Алюминиевые кабели востребованы не меньше медных

Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.

Какое удельное сопротивление стали

Сталь — это металлический сплав железа с углеродом и другими элементами. В ее состав входит не менее 45% железа, содержание углерода колеблется от 0,02% до 2,14%. В зависимости от точного состава сталь используется в строительстве, машиностроении и приборостроении, а также во многих областях, например, в транспорте, народном хозяйстве, при производстве бытовых приборов.

Стальные провода отличаются невысокой проводимостью

Проводимость стали составляет всего 7,7 миллионов См/м, удельное сопротивление — 0,13 мкОм/м, то есть оно довольно высоко. Сталь плохо проводит электричество и не применяется при производстве непосредственно кабелей. Однако нередко можно встретить внешнюю оцинкованную стальную оплетку, которая защищает провода от механического растяжения. Такая защита нужна, если кабель проходит под дорогой или на нестабильном грунте, если есть риск резко дернуть провод.

Также из стали делают ПНСВ — провод нагревательный со стальной жилой, имеющий изоляцию из винила. Его размещают внутри конструкции до заливания бетона и используют в дальнейшем для электрообогрева готового блока. Электричество кабель практически не проводит.

Из стали производят провод ПНСВ

Сравнение проводимости разных видов стали

Характеристики стали зависят от ее состава и температуры:

  • Для углеродистых сплавов сопротивление довольно низкое: оно составляет 0,13-0,2 мкОм/м.  Чем выше температура, тем больше значение;
  • Низколегированные сплавы имеют более высокое сопротивление — 0,2-0,43 мкОм/м;
  • Высоколегированные стали отличаются высоким сопротивлением — 0,3-0,86 мкОм/м;
  • Благодаря высокому содержанию хрома сопротивление хромистых нержавеющих сплавов равняется 0,5-0,6 мкОм/м;
  • Хромоникелевые аустенитные стали являются нержавеющими и благодаря никелю имеют высокую сопротивляемость — 0,7-0,9 мкОм/м.
Из стали часто делают оцинкованную оплетку

Медь стоит на втором месте по степени электропроводимости: она отлично пропускает электрический ток и повсеместно используется при изготовлении проводов. Не реже применяют и алюминий: он слабее меди, но дешевле и легче.

Электропроводность удельная — Энциклопедия по машиностроению XXL

ЭЛЕКТРОПРОВОДНОСТЬ УДЕЛЬНАЯ — ЯРКОСТЬ  [c. 740]

Электропроводность удельная 433 Электросопротивление 446  [c.740]

Все металлические проводниковые материалы обладают электронной электропроводностью. Удельное сопротивление всех металлических проводников увеличивается с ростом температуры, а также в результате механической обработки, вызывающей остаточную деформацию в металле.  

[c.6]

Г 1 Оценка агрессивности почвы на основании измерений электропроводности (удельного сопротивления), полезна при исследованиях почвенной коррозии, но она не является единственным критерием для определения возможности коррозии находящихся в- почве металлических конструкций.  [c.87]


Наблюдаемое аномальное изменение плотности, электропроводности, удельной теплоемкости, теплового расширения и других свойств во многих металлах и полупроводниках при температурах, близких к температуре плавления, объясняют сильным возрастанием в веществах молярной доли вакансий.
Изменение свойств кристалла показывает, что вблизи температуры плавления усиливается беспорядок в твердой фазе и идет подготовка к ее переходу в жидкую фазу. Еще большие изменения свойств происходят при плавлении [13]. Увеличение электропроводности в жидком кремнии примерно в 20 раз и в жидком германии в 11 раз-по сравнению с твердым состоянием свидетельствует о сильном увеличении межатомного взаимодействия в результате плавления. Интересно, что увеличение плотности кремния примерно на 9% и германия на 4,7% после расплавления коррелирует с изменением электропроводности. Магнитная восприимчивость Si и Ge в жидком состоянии значительно ниже, чем в твердом. Авторы связывают уменьшение суммарной магнитной восприимчивости с ростом спинового парамагнетизма свободных электронов в расплаве. Увеличение электропроводности и плотности при плавлении Ge и сплавов Ga—Sb и In—Sb свидетельствует о повышении координационного числа и возрастании металлического характера связей. Понижение электропроводности и плотности в сплаве Hg—Se связывают с уменьшением координационного числа.
[c.34]

Покрытия отличаются красивым цветом, самой высокой электропроводностью удельная электропроводность серебра 63,3 X  [c.570]

Первоначально опыты проводились с образцами, свернутыми в цилиндрическую спираль диаметром 12 и шагом 8—10 мм. Однако при такой конфигурации образца возникает ошибка в замере электросопротивления в растворах, обладающих заметной электропроводностью (удельная электропроводность 10 ом -см ),  [c.131]

Серебро — белый, мягкий и ковкий металл, хорошо полирующийся и обладающий высоким коэффициентом отражения (35%) Серебряные покрытия отличаются высокой химической стойкостью и вышкой электропроводностью удельный вес серебра 10,5, атомный вес 107,88, температура плавления 960°. Электрохимический эквивалент 4,025 г/а-ч. Серебро почти не реагирует со щелочью и с соляной кислотой, серная кислота действует на него медленно, азотная кислота легко растворяет серебро.  

[c.204]

Электропроводность. Как показывает опыт, идеальных диэлектриков не существует, и практически все электроизоляционные материалы при приложении постоянного напряжения пропускают некоторый обычно весьма незначительный ток — ток утечки. Различают объемную проводимость изоляции, определяющую проводимость через толщу изоляции, и поверхностную проводимость, характеризующую наличие повышенной электропроводности на поверхности раздела твердой изоляции с окружающей газообразной средой (в большинстве случаев — воздухом) или жидкой средой этот слой создается вследствие неизбежных загрязнений, увлажнения и т, п. На практике чаще пользуются величинами, обратными удельной объемной и удельной поверхностной электропроводности,— удельным объемным электрическим сопротивлением и удельным поверхностным электрическим сопротивлением.  

[c.9]


Среди электрических эффектов механических воздействий отметим изменения электропроводности (удельного сопротивления), диэлектрической проницаемости и угла диэлектрических потерь, а также электрокинетические эффекты (потенциалы течения и оседания).[c.30]

Большая группа веществ с электронной электропроводностью, удельное сопротивление которых при нормальной температуре лежит между удельными сопротивлениями проводников и диэлектриков, как это видно из табл. 8-1, может быть отнесена к полупроводникам.  [c.321]

Нитриды [36] легко окисляются, хрупки, склонны к диссоциация и возгонке, не могут использоваться в высоком вакууме [35, 37]. Они характеризуются металлическим блеском, большой твердостью и электропроводностью. Удельная теплоемкость нитридов 0,209— 1,680 кДж/(кг-К), теплопроводность при температуре от 20 до 1650°С — не превышает 35 Вт/(м-К).  [c.277]

Наряду с малым удельным сопротивлением чистые металлы обладают хорошей пластичностью, т. е. могут вытягиваться в тонкую проволоку (до диаметра 0,01 м), ленты (до толщины 0,01 мм) и прокатываются в фольгу толщиной менее 0,01 мм. Сплавы металлов обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги и имеют большую механическую прочность. Характерной особенностью всех металлических проводниковых материалов является их электронная электропроводность. Удельное сопротивление всех металлических проводников увеличивается с ростом температуры, а также в результате механической обработки, вызывающей остаточную деформацию в металле. К холодной обработке (прокатка, волочение) Приходится прибегать для получения проводниковых изделий с повышенны.м пределом прочности при разрыве, например), при изготовлении проводов воздушных линий, троллейны.х  [c.176]

Часто для жаропрочных сплавов большую роль играют теплопроводность, электропроводность, удельный вес и, следовательно, удельная жаропрочность и т. д.  [c.82]

Отсюда, на основании накопленного практического опыта, можно сформулировать требования к материалам электродов для контактных машин по электропроводности (удельному электрическому сопротивлению) и твердости.  [c.197]

Из цветных металлов и сплавов в краностроении применяют медь, латунь, олово, свинец и алюминий. Медь идет на изготовление проводов, электрических аппаратов — рубильников, магнитных пускателей и контакторов, контроллеров всех типов. Медь — розово-красный металл плотностью 8,95 г/см , с температурой плавления 1083 °С, обладает хорошей электропроводностью (удельное сопротивление 0,018 Ом-м/мм ), хорошо обрабатывается.  [c.29]

Электрические свойства веществ характеризуются величиной удельного электрического сопротивления или удельной электропроводности. Удельное сопротивление р определяется из соотношения  [c.54]

Общее высокое содержание хорошо диссоциированных солей делает морскую воду электролитом с высокой электропроводностью. Удельная электропроводность морской воды составляет около 2,5—3,0- 10 2 oм- (для общей солености 2—3%).  [c.406]

Полиморфное превращение сопровождается скачкообразным изменением свойств металлов или сплавов удельного объема, теплоемкости, теплопроводности, электропроводности, магнитных свойств механических и химических свойств и т. д.  [c.41]

Медь — химический элемент 1 группы Периодической системы элементов, порядковый номер 29, атомная масса 63,54. Медь — металл красного, в изломе розового цвета. Температура плавления 1083 » С. Кристаллическая г. ц. к. решетка с периодом а = 0,36074 нм. Плотность меди 8,94 г/см Медь обладает наибольшей (после серебра) электропроводностью и теплопроводностью Удельное электросопротивление меди составляет 0,0178 мкОм-м. В зависимости от чистоты медь поставляют следующих марок МОО (99,99 % Си), МО (99,95 % Си), Ml (99,9 % Си), М2 (99,7 % Си), М3 (99,5 % Си) и М4 (99,0 % uV Присутствующие в меди примеси оказывают большое влияние на ее свойства.  [c.342]

Полупроводниковые материалы — это вещества, которые по своей удельной электропроводности занимают промежуточное положение между проводниками (металлами) и диэлектриками.  [c.387]


Основная характеристика электропроводности — удельное электрическое сопротивление р, выраженное в Ом см, или его обратная величина — удельная электропроводность о = р . Для металлов удельное электросопротивление колеблется при 77 К в пределах от 0,2—0,5 мкОм см (Аи, Ag, Си) до 4—6 мкОм см (РЬ, Hg, s) и даже до 35 мкОм см (Bi) и резко растет с повышением температуры. Например, при 373 К для Ag р = = 2,13 мкОм см, для РЬ = 27 мкОм см. Многие твердые тела, состоявшие как из одинаковых атомов (алмаз. Si, Ge), так и из разных (Na l, LiF и т. д.), проводят электричество значительно хуже. Для материалов типа Si (полупроводников) при комнатной температуре р—Ю- —Ом см, для типичных диэлектриков при той же температуре р 10 —10 2 Ом — см. Если электросопротивление металлов с повышением температуры растет, то для полупроводников (а в принципе и для диэлектриков) оно падает.  [c.41]

Большая группа веществ с электронной электропроводностью, удельное сопротивление которых при нормальной температуре больше, чем у проводников, но меньше, чем у диэлектрикор (табл. 8-1), относится к полупроводникам. Как было указано в В-1, электропроводность полупроводников в большой степени зависит от внешних энергетических воздействий, а также от различных примесей, иногда в ничтожных количествах присутствуюш,их в теле собственного полупроводника.[c.229]

Углеграфитовые антифрикционные материалы. Для работы без смазки в различных газовых (исключая ннерт-ные газы, осушенные газы и воздух, вакуум) и жидких агрессивных средах в широком диапазоне температур (от —200 до +2000 °С) нашли применение графитовые антифрикционные материалы [3, 49, 53, 81, 101]. Они выгодно отличаются от других неметаллических материалов высокими теплопроводностью (93—210 Bt/(m- Q и электропроводностью (удельное электросопротивление 5-10″ —  [c.186]

При расчетах вместо удельной электропроводности мембран удобнее пользоваться их удельным сопротивлением, величиной обратной удельной электропроводности. Удельное сопротивление р имеет ра-ямерность ом см а удельное поверхностное сопротивление — размерность ом см . Селективность мембраны характеризуется числом переноса противоионов, т. е. долей электричества, кото зая перенесена через мембрану ионами, имеющими знак заряда, противоположный знаку заряда фиксированных ионов.[c.144]

Из числа твердых припоев для пайки меди большое применение находит латунь (например, состава 63% меди, 37% олова, с температурой плавления 920° С, применяется чаще всего в виде проволоки). Хорошие результаты дает пайка меди чистым серебром (плотность 10,5 кг1дм температуря плавления 961° С температура кипения 2 150°С), которое обладает прекрасной, лучшей, чем у чистой меди, электропроводностью (удельное электрическое сопротивление р= = 0,016 ом-ммЧм) и весьма высокой стойкостью к коррозии. Сплав 70% меди и 30% серебра, имеющий температуру плавления 800° С, дает высокую электропроводность (57% электропроводности чистой меди) и хорошо прокатывается в ленту, в виде которой и употребляется,  [c.251]

Благодаря избытку атомов олова в этом окисле, формально относящемуся к классу полупроводников, преобладает электронная проводимость, обеспечивающая собственную электропроводность. Удельное сопротивление станатной пленки без добавок невысокое, до 20 ом/квадрат [16].[c.58]

Угли сварочные (электроды) имеют цилиндрическую форму, изготовляются из электротехнического угля и обладают малой электропроводностью (удельное сопротивление не более 100 ом-. члг м). Предусмотрен выпуск стержней длиной 250 и 700 мм и диаметром 4 — 18 мм. Наиболее ходовые размеры стержней диаметром 6—12 м.ч. Рациональная длина йлектрода — 300— 350 мм.  [c.201]

Наряду с малым удельным сопротивлением чистые металлы обладают хорошей пластичностью, т. е. могут вытягиваться в тонкую проволоку (до диаметра 0,01 мм), ленты (до толщины 0,01 мм) и прокатываться в фольгу толщиной менее 0,01 мм. Сплавы металлов обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги и имеют большую механическую прочность. Характерной особенностью всех металлических проводниковых, материалов является их электронная электропроводность. Удельное сопротивление всех металлических проводников увеличивается с ростом температуры и в зависимости от температурного коэффициента сопротивления, а также в результате механической обработки, вызывающей остаточную деформацию в металле. К холодной обработке (прокатка, волочение) приходится прибегать для получения проводниковых изделий с повышенным пределом прочности при разрыве, например при изготовлении проводов воздушных линий, троллейных проводов и т. д. Чтобы вернуть деформированным металлическ , проводникам прежнюю величину удельного сопротивления, их подвергают термической обработке — отжигу без доступа кислорода.  [c.225]

Важным фактором, характеризующим электролит, является его электропроводность. Удельное сопротивление электролита (криолит +10% глинозема при 1000°С), по данным К. П. Ба-тащева, равно 0,37 Ом-см. Измерения удельного сопротивления электролита в промышленных ваннах дают более высокие цифры, по-видимому, потому что в электролите всегда присутствуют примеси угля, карбидов и других веществ. Поэтому для технических расчетов принимают удельное сопротивление электролита, равное 0,5—0,55 Ом-см. Тепло, выделенное при прохождении электрического тока через слой электролита между анодом и катодом, обеспечивает в больших промышленных ваннах сохранение нормальной температуры процесса (950° С).[c.414]

Угли сварочные имеют цилиндрическую форму, изготовляются из электротехнического угля, характеризуются низким содержанием графита (1,5—2%) и обладают малой электропроводностью (удельное сопротивление не более 100 ом — мм м). Прочность стержней характеризуется временным сопротивлением излому (не менее 120 кГ1см ). Предусмотрен выпуск стержней длиной 250 и 700 мм и диаметром 4—18 мм. Наиболее ходовые размеры стержней диаметром 6—12 мм. Рациональная длина электрода 300— 350 мм, поэтому обычно пользуются короткими углями или длинные угли ломают пополам.  [c.32]


Удельная электропроводность (удельная электрическая проводимость) ед. СГСЭ . 1П.2.4 1° с-1 1 ед. СГСЭя = — -10- См/м  [c.550]

Серебро — белый, мягкий и ковкий металл, хорошо порирующийся и обладающий высоким коэффициентом отражения (85%) Серебряные покрытия отличаются высокой химической стойкостью и электропроводностью удельный вес серебра 10,5 атомный вес 107,88 температура плавления 960° С. Электрохимический эквивалент 4,025 г/а-час. Серебро почти не реагирует со ще-  [c.46]

Очевидно, что величина омического сопротивления внутренней цепи коррозионного гальванического элемента будет зависеть от трех факторов 1) удельной электропроводности (удельного сопротивления pa TBo-ров), 2) соотношения величин площадей катодной и анодной фаз Fk и Fa ), 3) конфигурации и взаимного расположения катодной и анодной фаз. Таким образом, при постоянном соотношении площадей катодной и анодной фаз общее сопротивление коррозионной пары будет изменяться только от удельной электропроводности, толщины слоя электролита и от конфигурации и взаимного расположения катодов и анодов.  [c.284]

Полное электросопротивление (ионное и мет ла° жТ под в здей» электронное) ОКИСНОЙ пленки с удельной станем газа электропроводностью % (Oм м ), площадью 5 (см ) и толщиной h (см), выполняющей роль как электролита, так и металлического проводника, определяется уравнением  [c. 61]

Электропроводимость грунтов, которая колеблется от нескольких единиц до сотен Ом на метр зависит главным образом от его влажности, состава и количества солей и структуры. Увеличение засоленности грунта облегчает протекание анодного процесса (в результате депассивирующего действия особенно галоидных солей), катодного процесса (например, ускорение катодного процесса окисными солями железа) и снижает электросопротивление. Во многих случаях величина электропроводности почв и грунтов с достаточной точностью характеризует их коррозионную агрессивность для стали и чугуна (за исключением водонасыщенных грунтов) и используется в этих целях. Ниже приведена характеристика коррозионной активности грунтов по их удельному сопротивлению  [c.387]

Простая модель электронного газа, созданная Друде в 1900 г., успещно предсказала законы Ома и Видемана — Франца. Однако она не объяснила зависимость электропроводности от температуры, а также магнитные свойства и малую величину электронной теплоемкости по сравнению с классическим значением 3/ . В настоящее время ясно, почему удельное сопротивление особо чистых металлов падает от типичного для комнатных температур значения 10 мкОм см до значения менее 10 з мкОм -см при температуре жидкого гелия в то время как удельное сопротивление концентрированного сплава падает всего в два раза в том же диапазоне температур. Поведение полупроводников также хорошо понято удельное сопротивление экспоненциально возрастает при уменьшении температуры, и при очень низких температурах чистые полупроводники становятся хорошими диэлектриками. Добавка в образец полупроводника небольшого количества примесей чаще всего существенно уменьшает удельное сопротивление (в противоположность чистым металлам, в которых наличие примесей ведет к увеличению удельного сопротивления).  [c.187]

Можно показать, что удельная электропроводность ст (величина, обратная удельному сопротивлнию р) равна (см. [3], р. 13)  [c.189]

Поскольку удельная электронная электропроводность у полупроводниковых материалов значительно меньше, чем у металлов, подвижность носителей заряда их больше (т. е. электроны в плохопроводящих материалах могут двигаться более свободно, чем в металлах). Поэтому тепловыми, световыми, электрическими и механическими воздействиями можно управлять электропроводностью полупроводниковых структур.  [c.387]


Электрическая проводимость меди

Электрическая проводимость меди напрямую зависит от наличия в этом металле разнообразных примесей. Даже в случае добавления к нему небольшого количества мышьяка, сурьмы происходит резное падение величины электрической проводимости. Но не оказывает существенного влияния на эту физическую величину свинец, теллур, селен, мышьяк.

Особенности понятия

Электрическая проводимость меди ненамного меньше, чем у серебра, что делает этот металл востребованным в современной электротехнике.

Данная физическая величина является характеристикой способности вещества проводить электрический ток. Она связана с удельным электрическим сопротивлением металла прямо пропорциональной зависимостью.

Электрическое сопротивление меди в Ом⋅мм2/м составляет при температуре 20 градусов 0,017. По числовому значению это лишь незначительно меньше, чем у серебра.

Электрическая проводимость меди является величиной, обратной сопротивляемости, применяется для характеристики электротехнических свойств данного металла. Для ее измерения используют сименсы, соответствующие 1/Ом.

Получение меди

Поскольку медь проводит электричество, существует несколько способов изготовления данного металла. Полупроводниковую медь в настоящее время получают при гальванической очистке слитков в специальных электролитических ваннах. Большая часть медных изделий, применяемых в электротехнической промышленности, производится путем проката, волочения, прессовки.

При волочении создают провода, имеющие диаметр не больше 0,005 мм, тонкую фольгу, ленту до 0,1 мм.

Медная проводка востребована не только при возведении многоквартирных домов и офисных помещений, но и в частном строительстве.

Интересные сведения

Данный металл часто встречается в природе в виде крупных самородков. Еще в древние времена люди изготавливали из него украшения, посуду, оружие. Востребованность меди объясняется легкостью ее обработки, а также распространенностью в природе.

Первоначально процесс выделения металла из его соединений был достаточно примитивным, заключался в нагревании медной руды над костром, последующем резком охлаждении. Такая обработка приводила к растрескиванию кусков руды, что позволяло людям извлекать сам металл.

По мере совершенствования технологических процессов обработки металлических руд в костры стали подавать воздух, чтобы повышать температуру нагревания природного соединения. Постепенно процесс начали осуществлять в специальных конструкциях, которые стали прототипами современных шахтных печей.

Результаты археологических раскопок свидетельствую о том, что изделия из меди использовались уже в 10 тысячелетии до нашей эры.

Природные соединения

Медные провода для проводки в настоящее время изготавливают из нескольких видов руд, распространенных в природе. Например, в составе борнита — около 65 процентов металла, в халькозине – до 80 %, а в медном колчедане (халькопирите) количество меди не превышает 30 процентов.

Физические свойства

Высокая электрическая проводимость меди является одним из важнейших свойств данного металла. Его окраска меняется от бледно-розового оттенка до насыщенного красного цвета. Медь является переходным материалом, обладающим высокой тепло- и электропроводностью.

Линейное термическое расширение этого металла составляет 0,00000017 единицы. Медные изделия имеют при растяжении предел прочности 22 кг⋅с/мм2. Удельный вес металла — 8,94 г/см3, твердость по шкале Бринелля — 35 кгс/мм2. Среди важных физических характеристик данного металла следует отметить модуль упругости, составляющий 132 000 мН/м2.

Уникальными являются и магнитные свойства этого металла, являющегося полностью диамагнитным веществом.

Температурный коэффициент сопротивления меди при комнатной температуре равен 4,3 α (10-3/K).

Удельная проводимость, ковкость сделали данный металл востребованным в изготовлении различных элементов для электротехники. Схожими физическими характеристиками обладает алюминий, поэтому он является сырьем для создания кабелей, проводов в современном электротехническом производстве.

Химические свойства

Сопротивление меди, способность данного металла проводить электрический ток объясняются особенностями строения атома этого химического элемента. Медь располагается в побочной подгруппе первой группы таблицы Менделеева, является d-элементом.

Сопротивление меди связано с электронами, располагающимися на внешнем энергетическом уровне. Особенности строения объясняют и специфику химических свойств данного металла. При незначительной влажности медь является достаточно инертным веществом, не проявляет высокой химической активности.

При эксплуатации медных изделий в условиях высокой влажности и присутствия углекислого газа происходит окисление металла.

На поверхности изделия появляется зеленоватая пленка карбоната и гидроксида меди (2), а также разнообразные сернистые соединения. Данную пленку называют патиной, она помогает защищать изделие от последующего химического разрушения.

При повышении температурного значения происходит образование медной окалины (оксида), что негативно отражается на электрической проводимости.

Медь легко вступает во взаимодействие с элементами, относящимися к подгруппе галогенов.

Если внести в металл пары серы, наблюдается воспламенение. Медь инертна к азоту, водороду, углероду даже при повышенных температурных значениях.

Интерес с технической точки зрения представляет взаимодействие этого металла с солями железа, приводящими к его восстановлению. Это химическое свойство позволяет снимать с изделий медное напыление.

Медь образует разнообразные комплексные соединения, которые отличаются высокой стойкостью.

Области использования

Применение данного металла связано с его высокой электрической проводимостью. Например, из него выпускают кабель. Медь имеет небольшое сопротивление, уникальные магнитные свойства, легкую механическую обрабатываемость, поэтому востребована в инженерных коммуникациях и административных зданиях. Способность проводить тепло позволяет применять этот материал для создания тепловых трубок, систем охлаждения и отопления воздуха.

Именно медь – материал, который незаменим при производстве кулеров, используемых для понижения температуры персональных компьютеров. Металлические конструкции, которые содержат медные элементы, имеют незначительный вес, отличные декоративные свойства, поэтому подходят и для применения в архитектуре, и для изготовления разнообразных декоративных элементов в интерьере, и для создания электрических проводов.

Особенности проводников

Для того чтобы понять суть электрической проводимости, остановимся на характеристике проводников. К ним относятся материалы, способные проводить электрический ток. Медь относится к проводникам первого рода, поскольку при повышении температуры наблюдается снижение электрической проводимости. На качество проводникового материала влияют механические, тепловые, электрические свойства. Для такого металла, как медь, все эти показатели имеют неплохие значения, что делает металл востребованным в различных сферах электротехники.

Пластичность меди, легкость ее обработки, хорошая вязкость, химическая стойкость позволяют создавать из данного металла разные виды изделий для технических нужд.

Разновидности

Для изготовления черновой меди применяют электролитическое восстановление металла из раствора медного купороса. Чистый металл необходим для радио- и электротехники. В зависимости от процентного содержания примесей, выделяют марки: М0 и М1. В первом случае количественное содержание чистого металла составляет 99,95 процента, для второго варианта – 99,9 процента.

Среди основных физических свойств, которыми характеризуются данные марки меди, отметим:

  • плотность 8900 кг/м3;
  • температура плавления 1083 °С;
  • высокая механическая прочность;
  • отличная обрабатываемость;
  • высокое удельное сопротивление 1,7241⋅10-8 Ом⋅м.

При введении примесей в состав чистого металла существенно увеличивается величина удельного сопротивления, при этом снижается электрическая проводимость.

Например, в случае введения 0,5 % алюминия и никеля удельное сопротивление возрастает на 40 процентов.

Заключение

Медь отличается от других проводников тока высокой электрической проводимостью, низким показателем сопротивления, что делает ее востребованной в современном электротехническом производстве.

Токопроводящие проводниковые жилы, кабели, фольгированный гетинакс для печатных устройств, листы, полосы, проволока — это далеко не полный перечень тех изделий, которые создают из меди.

Помимо широкого использования самого металла применение находят и ее основные сплавы. К примеру, кадмиевая бронза используется для создания коллекторных пластин и электрических контактов.

Фосфористая бронза нужна для производства пружин в аппаратах и электронных приборах. Смесь меди с бериллием позволяет создавать зажимы, скользящие контакты, токоведущие пружины.

Оловянистую бронзу называют телефонной, поскольку именно из нее создают проволоку, используемую для телефонного кабеля.

Из медно-цинковых сплавов производят полосы и листы. Данный материал имеет большее удельное электрическое сопротивление, поэтому сплав обладает большой прочностью.

Среди многочисленных сфер применения меди особое значение представляет электротехническая промышленность. Из этого металла создают электрические провода разного диаметра, размера, подходящие для изготовления современных электрических и радиоприборов высочайшей точности. Для повышения электрической проводимости инженеры следят за чистотой металла, не допускают проникновения дополнительных примесей.

Удельная электропроводность металлов и сплавов

    Металлы относятся к веществам с очень хорошей электронной проводимостью (проводники первого рода). Их удельная электропроводность о от 10 до 10 ом -см , НЛП в системе СИ от 10 до 10 сим-мг (1 сим = 1 oл( ). Несколько меньшей проводимостью, чем чистые металлы, обладают их сплавы, некоторые интерметаллические соединения и различные карбиды, гидриды, нитриды металлов, являющиеся фазами переменного состава. Удельная проводимость металлов выражается уравнением [c.231]
    В электротехнике применяют две группы проводников. К первой относятся проводники с высокой электропроводностью, больщей частью чистые металлы (медь, алюминий), служащие для канализации электричества (провода) вторую группу составляют сплавы, некоторые чистые металлы и другие материалы, обладающие большим удельным сопротивлением, благодаря которому они дают возможность на небольшом участке цепи и в небольшом объеме сосредоточить большое падение потенциала. По применению эту группу проводников в свою очередь можно подразделить на две подгруппы а) сплавы для измерительных приборов и эталонов и б) проводники для нагревателей и реостатов. [c.122]

    При застывании металлических сплавов очень часто образуются твердые растворы. Свойства твердых растворов с изменением их состава изменяются непрерывно, но характер зависимости свойств от состава может быть различным. Так, например, в сплавах золота и серебра коэффициент теплового расширения р между 17° и 144° и удельный объем при 15° 15 изменяются линейно. Прямая соединяет значения соответствующих констант каждого из компонентов, отложенных по соответствующим осям диаграммы рис. 64. Зависимости остальных свойств сплава от его состава, приведенные на этом рисунке, описываются плавными кривыми линиями, проходящими через максимум или минимум, например, модуль упругости Е, модуль твердости Н, удельная электропроводность X, термоэлектродвижущая сила в паре со свинцом е, температурный коэффициент электрического сопротивления от 0° до 100° С Оо-юо- Вид этих кривых характерен для твердых растворов металлов. [c.236]

    Присутствие ионов аммония в конденсатах пара влияет на значения удельной электропроводности конденсата поэтому в случае присутствия ионов аммония необходимо вносить в измеряемые значения электропроводности соответствующие поправки. Ионы аммония, присутствующие в воде, вызывают коррозию меди и сплавов меди, так как медь может растворяться с образованием медноаммиачных комплексов. Аммиак в паре вызывает коррозию медных деталей подшипников. При наличии в машинах нежелезных деталей не следует допускать присутствия аммиака в водяном паре. Однако, как недавно показал Черна [117], присутствие аммиака в паре, наоборот, желательно, если вся система сделана целиком из стали, так как аммиак обеспечивает высокое значение pH воды, питающей паровую установку, и конденсата без повышения концентрации щелочи в воде. В отсутствие кислорода аммиак в концентрациях до 10 ч.н.м., повидимому, не вызывает коррозии нежелезных металлов, применяемых в паропроводах. [c.153]


    Проводники обладают малым удельным сопротивлением, порядка 10 —10 ом-см, и высокой электропроводностью. К проводникам относятся многие металлы и сплавы (серебро, медь, золото, бронза и др.). [c.66]

    Направление научных исследований разделение редкоземельных элементов получение чистых солей и редкоземельных элементов высокой степени чистоты контроль чистоты солей и металлов спектроскопическим методом и с помощью радиоизотопов получение сплавов редкоземельных элементов изучение физических свойств (магнетизм, коэффициент дилатации, электропроводность, удельная теплоемкость, твердость, механические свойства) чистых металлов, сплавов и различных соединений (главным образом ферритов).[c.339]

    Концентрация компонентов этого электролита может быть пропорционально снижена вдвое за счет соответственного снижения плотности тока. Удельная электропроводность электролита равна 0,175 Из него осаждаются светлые мелкокристаллические покрытия, обладающие высокой прочностью сцепления с основным металлом, в частности, с медью и ее сплавами без какой-либо специальной обработки. Поэтому осаждение серебра можно производить без амальгамирования или предварительного серебрения. Применение реверсирования тока с соотношением периодов 10 1 еще более улучшает качество покрытий [6]. [c.27]

    Еще 35 лет тому назад все материалы, использовавшиеся в электротехнике, в зависимости от величины их удельной проводимости а делились только на проводники (а = 10 — 0 ом -см ) и диэлектрики (а = 10 10 ом -см ). К наиболее характерным проводникам, как подчеркивалось в физике — проводникам первого рода, относились металлы и сплавы, обладающие электронной электропроводностью. Кроме того, были известны и сравнительно хорошо изучены свойства жидких тел (растворов, расплавов) с ионной электропроводностью. Их относили к проводникам второго рода или электролитам удельная проводимость последних существенно меньше, чем у проводников первого рода. Подавляющее же большинство окружающих нас веществ имеет электронную электропроводность, при значениях удельной проводимости, лежащих в интервале 10″ —10 ом —см и, таким образом, не может быть отнесено ни к проводникам, ни к диэлектрикам. [c.9]

    Покрытия из благородных металлов используются не только для отделки, по и для улучшения эксплуатационных характеристик изделий. Эти покрытия, как правило, имеют высокую стойкость против коррозии в агрессивных средах, сопротивление механическому и электроэрозионному износу, высокую отражательную способность и низкое удельное сопротивление [07]. В радиоэлектронике серебрение и золочение токонесущих деталей применяется для улучшения поверхностной электропроводности и максимального снижения переходного сопротивления в местах контактов. В производстве транзисторов, имеющих хрупкую и тонкую обкладку из кремния, для нринаивания контактов используется сплав золота с добавкой 0,5% сурьмы. Германиевая пластинка без всякого флюса припаивается к коваровому диску, покрытому сплавом Аи—Sb или Аи—In (0,5—1,0% In). В области низкочастотных коммутирующих устройств нашли применение золото-никелевые сплавы, содержащие 0,5—2% никеля. В производстве печатных схем также находят применение золото-серебряные сплавы, содержащие 1—3% серебра. В электронной технике особое значение имеет получение покрытий из золота с добавкой кобальта, которые отличаются большим сроком службы в условиях высокотемпературных режимов. Электролитически осажденные пленки таких редких металлов, как германий, таллий, галлий, индий, необходимы в полупроводниковой технике 167]. [c.378]

    В частности, удельное сопротивление стекла электрическому току значительно зависит от температуры, и в этом оно ведет себя, как полупроводник. Если металлы и их сплавы, а также большинство изоляционных материалов имеют температурный коэффициент сопротивления (ТКС) не более 1 % на градус, то у стекла ТКС доходит до 15% на градус. С ростом температуры сопротивление стекла падает, и стекло становится проводником электрического тока с удельным сопротивлением, близким к удельному сопротивлению электролитов. Это свойство используется в стекловаренных электропечах, когда расплавленная стекломасса сама является электронагревателем, это явление используется и для электросварки стеклоизделий. Свариваемые стеклоизделия сначала подогреваются пламенем или внешним электронагревателем до температуры, при которой стекло становится достаточно электропроводным, затем через него пропускается электрический ток. Происходит непосредственный нагрев стекла до степени размягчения, необходимой для сварки, свариваемые поверхности деталей вводятся в соприкосновение и прижимаются друг к другу. В месте соединения образуется однородный шов со свойствами, мало отличающимися от свойств основного материала свариваемых деталей. [c.187]

    Свойства сплавов. Сплавы сохраняют хорошую электропроводность, теплопроводность и другие присущие металлам свойства. Однако их свойства не складываются как среднее арифметическое из свойств сплавляемых компонентов. Наоборот, температуры плавления сплавов ниже, чем у исходных металлов. Например, сплав Вуда плавится при 75° С, а температура плавления самого легкоплавкого его компонента — олова 232° С. Сплав Деварда (50% меди, 45% алюминия и 5% цинка) легко растирается в порошок и вытесняет водород из воды, хотя ни один из исходных металлов этим свойством не обладает. Очевидно, у сплавов появляются новые свойства, возникают новые качества. Как правило, сплавы более тверды, чем исходные металлы. Например, твердость латуни составляет 150 условных единиц, а исходных компонентов — меди и цинка — соответственно 40 и 50. Удельное электрическое сопротивление сплавов обычно также выше, чем у исходных чистых металлов. Например, у нихрома (20% хрома 80% никеля) сопротивление 110-10 , у хрома 15-10″ , а у никеля только 7-10- Ом-см, [c.246]


    Алю м ИНН й — легкий серебристо-белый металл. Он обладает высокой пластичностью и коррозионной стойкостью. Электропроводность алюминия составляет 60% электропроводности меди. Чистый алюминий применяют для изготовления электрических проводов, а также для антикоррозионного покрытия черных металлов. Чистый алюминий непрочен. Сплавы алюминия с медью, кремнием, марганцем и другими металлами характеризуются небольшим удельным весом, высокой пластичностью и прочностью, благодаря чему широко применяются в авиационной технике, приборостроении и других отраслях народного хозяйства. [c.43]

    Алюминий и его сплавы, благодаря своему малому удельному весу, хорошим механическим свойствам и высокой электропроводности, широко применяются в различных отраслях народного хозяйства. Чистый алюминий в сухом воздухе при обычной температуре обладает достаточно хорошей коррозионной стойкостью. Это объясняется свойствами естественной окисной пленки, образую—щейся на металле под воздействием кислорода воздуха. Будучи равномерной и менее пористой, чем пленки окислов на стали, меди и других металлах, окисная пленка на алюминии хорошо защищает основной металл от дальнейшего разрушения. Однако при эксплуатации алюминия во влажной атмосфере или в условиях воздействия морской воды естественная окисная пленка не может служить достаточной защитой от коррозии. В таких условиях изделия из алюминия тускнеют, покрываются пятнами и белым налетом. [c.100]

    Во многих случаях механизм коррозионного разрушения сплавов а также пути повышения их устойчивости удается рассмотреть на основе анализа работы двухэлектродной системы. Рассмотрим коррозиомиое поведение элемента железо — цинк в нейтральном электролите (0,030 г/л хлористого натрия 0,070 г/л сернокислого натрия). Удельная электропроводность х этого электролита равна 8,5 10″ ом см -. Площадь каждого электрода выберем равной 1 см . Расстояние между электродами 1 см. Измерения электродных потенциалов металлов в разомкнутом состоянии, которое можно осуществить при помощи полуэлементов N1 и N2 при разомкнутом ключе (рис. 50), дают следующие значения  [c.87]

    Ранние данные по исследованию электрофизических свойств моносилицндов [11 —14] касались главным образом измерения удельной электропроводности (а) и коэффициента термоэдс (а) при комнатных температурах. Лишь в последние -—3 года появился ряд работ отечественных и зарубежных авторов по исследованию температурных зависимостей а, а и коэффициента Холла ( х) сплавов на основе Со51 в интервале 100—1000 °К [15, 16], а также низкотемпературные измерения а поликристаллических образцов моносилицндов Ы-переходных металлов [17]. [c.274]

    Расилавленные сульфиды тяжелых металлов являются полупроводниками, приближающимися по своим свойствам к жидким металлическим сплавам. В пользу этого говорят, в частности, их высокая удельная электропроводность, относительно малое изменение ее при затвердевании, практически полная невозможность электролиза в чистых сульфидах, металлический блеск и другие свойства. [c.526]

    Алюминий в основном расходуется на приготовление различного рода сплавов на его основе. Путем сплавления алюминия с другими металлами и соответствующей термической обработкой удается получить сплавы во много раз более прочные, чем сам алюминий.Удельная прочность некоторых сплавов на алюминиевой основе выше прочности малоуглеродистой стали и практически равна прочности высококачественной стали. В облегчении веса конструкции заинтересованы многие отрасли промышленности поэтому алюминиевые сплавы и находят широкое применение. Кроме того, алюлшний обладает высокой электропроводностью, которая только примерно на 40% ниже, чем у меди. Поскольку алюминий в три с лишним раза легче меди, то он широко применяется в электротехнической промышленности. Общая коррозионная стойкость алюминиевых сплавов также значительно выше, чем у простых сталей, вследствие чего алюминиевые сплавы находят применение и в тех отраслях промышленности, в которых к изделиям предъявляются более жесткие требования в отношении их устойчивости против коррозии. [c.5]

    Металлополимеры — металлонаполненные поли.меры или пористые металлы, пропитанные поли.мерны.ми ко.мпозиция.ми. HaпoлнитeJ я-.ми служат порощки, волокна и ленты, пoJ yчaeмь e практически из любых металлов или сплавов (чаще всего Ре, Си, №, Ag,Sп, А1, Со, РЬ, 2п, Zт, Сг, Т1, Та). Свойства. металлополимера опреде тяются природой полимера и наполнителя, степенью наполнения и характером распределения наполнителя. С целью увеличения магнитной восприимчивости в полимеры вводят Ре и его сплавы, для придания тепло- и электропроводности — А1, А , Си, Аи. Наполнение чешуйчатым А1 снижает газо- и влагопроницае. юсть полимеров. Присутствие РЬ, РЗЭ, В1, Сс1 придает металлополимерам способность экранировать ионизирующие излучения. Металлополимеры, содержащие РЬ, 2п, 2г, Мо и их хи.мические соединения или сплавы, обладают низким коэффициенто.м трения. Дисперсные частицы наполнителя уменьшают, а волокна увеличивают прочность при изгибе и удельную ударную вязкость металлополимера. [c.54]

    В. С. Ковальчук. АЛЮМИНИЯ СПЛАВЫ — сплавы на основе алюминия. В пром. масштабах используются со второй половины 19 в. Отличаются малой плотностью, высокими коррозионной стойкостью, теплопроводностью, электропроводностью и удельной прочностью. Различают А. с. деформируемые и литейные. Деформируемые сплавы обладают высокой пластичностью, свариваемостью, легко поддаются различной мех. обработке, не охрупчи-ваются при низких т-рах. Их подразделяют на неупрочняемые и упрочняемые термической обработкой (см. Упрочнение). Мех. св-ва неупрочпяемых сплавов улучшают легированием и нагартовкой, упрочняемых сплавов — закалкой и старением (естественным или искусственным, см. Старение металлов), [c.69]

    Очень часто о составе исследуемого вещества можно судить, не прибегая к его разложению. Так, например, по спектру паров металлов устанавливают состав сплава процентное содержание h3SO4 в технической серной кислоте устанавливают по ее удельному весу по электропроводности известковой воды определяют содержание в ней Са(ОН)2 по интенсивности окраски раствора роданида железа, сравниваемой с окраской эталонного раствора, определяют содержание ионов трехвалентного железа в исследуемом растворе и т. д. [c.14]

    Медь, обработаиная добавкой 0,025% сплава лития с кальцием, содержащего 50% лития, имеет удельный вес 8,92 и электропроводность, повышенную на 1,5% по сравнению с электропроводностью чистой меди, ке обработанной литием. При обработке меди и ее сплавов литием, вследствие значительного сродства этого металла к сере, азоту и водороду, одновременно с раскислением происходит также и удаление этих элементов. [c.38]

    Из перечисленных выше новых конструкционных металлов и сплавов наибольшее распространение в химическом машиностроении нашел титан. Титан обладает исключительно высокими прочностными показателями, лудельным весом, высокой сопротивляемостью к эрозии и к усталостным напряжениям, отсутствием склонности к межкристаллитной коррозии, благоприятными технологическими свойствами и по своей коррозионной стойкости превосходит в ряде случаев высоколегированные кислотостойкие стали. Ниже приводятся основные физикомеханические свойства технически чистого титана марки ВТ1 (0,3% Ре 0,15% 51 0,05% С 0,15% Ог 0,015% На 0,04% N2 остальное Т1). Уд. вес 4,5 з/сж температура плавления 1725° С коэффициент линейного расширения (в интервале О—100° С) 8,2 10- теплопроводность 0,039кал/см-сек-град, электропроводность по сравнению с электропроводностью меди, принятой за 100, 3,1 предел прочности 45—60 кг/мм предел текучести 25—50 кг/мм относительное удлинение — не менее 25%, относительное сужение не менее 50% твердость по Бринелю 160—200 модуль упругости 10 500—11 ООО кг/мм . [c.247]


Понятие удельного электрического сопротивления медного проводника

Сравнительно небольшое удельное сопротивление меди – важный, но не единственный положительный фактор. Широкое применение этого материала объясняется разумной стоимостью, устойчивостью к неблагоприятным внешним воздействиям. Из него несложно создавать качественные изделия необходимой формы, которые без дополнительной защиты сохраняют функциональность при длительной эксплуатации в сложных условиях.


Из меди создают разные виды кабельной продукции

Чем отличается кабель от провода

Прежде чем перейти к основному содержимому, нам необходимо понять, что же мы все-таки хотим рассчитать, сечение провода или кабеля, в чем различия одного от другого!? Не смотря на то, что обыватель применяет эти два слова как синонимы, подразумевая под этим что-то свое, но если быть дотошными, то разница все же имеется. Так провод это одна токопроводящая жила, будь то моножила или набор проводников, изолированная в диэлектрик, в оболочку. А вот кабель, это уже несколько таких проводов, объединенных в единое целое, в своей защитной и изоляционной оболочке. Для того, чтобы вам было лучше понятно, что к чему, взгляните на картинку.

Так вот, теперь мы в курсе, что рассчитывать нам необходимо именно сечение провода, то есть одного токопроводящего элемента, а второй будет уже уходить от нагрузки, обратно к питанию. Однако мы порой и сами забываемся не лучше Вашего, так что если вы нас подловите на том, что где-то все же встретится слово кабель, то не сочтите уж за невежество, стереотипы делают свое дело.

Химические свойства

По таким характеристикам медь, электропроводность и теплопроводность которой очень высокие, занимает промежуточное положение между элементами первой триады восьмой группы и щелочными первой группы таблицы Менделеева. К основным ее химическим свойствам относят:

  • склонность к комплексообразованию;
  • способность давать окрашенные соединения и нерастворимые сульфиды.

Наиболее характерным для меди является двухвалентное состояние. Сходства с щелочными металлами она не имеет практически никакого. Химическая активность ее также невелика. В присутствии СО2 или же влаги на поверхности меди образуется зеленая карбонатная пленка. Все соли меди являются ядовитыми веществами. В одно- и двухвалентном состоянии этот металл образует очень устойчивые комплексные соединения. Наибольшее значение для промышленности имеют аммиачные.

Какой провод, кабель выбрать для прокладки проводки (моножилу или многожильный)

При монтаже электропроводки обычно применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ. В этом списке встречаются как гибкие кабели, так и с моножилой. Здесь мы хотели бы сказать вам одну вещь. Если ваша проводка не будет шевелиться, то есть это не удлинитель, не место сгиба которое постоянно меняет свое положение, то предпочтительно использовать моножилу. Вы спросите почему? Все просто! Не смотря на то, насколько хорошо не были бы уложены в защитную изоляционною оплетку проводники, под нее все же попадет воздух, в котором содержится кислород. Происходит окисление поверхности меди. В итоге, если проводников много, то площадь окисления намного больше, а значит токопроводящее сечение «тает» на много больше. Да, это процесс длительный, но и мы не думаем, что вы собрались менять проводку часто. Чем больше она проработает, тем лучше. Особенно это эффект окисления будет сильно проявляться у краев реза кабеля, в помещениях с перепадом температуры и при повышенной влажности. Так что мы вам настоятельно рекомендуем использовать моножилу! Сечение моножилы кабеля или провода изменится со временем незначительно, а это так важно, при наших дальнейших расчетах.

Влияние примесей на электропроводность меди

Конечно же, в наше время для выплавки этого красного металла используются гораздо более совершенные методики, чем в древности. Однако и сегодня получить совершенно чистый Cu практически невозможно. В меди всегда присутствуют разного рода примеси. Это могут быть, к примеру, кремний, железо или бериллий. Между тем, чем больше примесей в меди, тем меньше показатель ее электропроводности. Для изготовления проводов, к примеру, подходит только достаточно чистый металл. Согласно нормативам, для этой цели можно использовать медь с количеством примесей, не превышающем 0.1 %.

Очень часто в этом металле содержится определенный процент серы, мышьяка и сурьмы. Первое вещество значительно снижает пластичность материала. Электропроводность меди и серы сильно различается. Ток эта примесь совершенно не проводит. То есть является хорошим изолятором. Однако на электропроводность меди сера не влияет практически никак. То же самое касается и теплопроводности. С сурьмой и мышьяком наблюдается обратная картина. Эти элементы электропроводность меди способны снижать значительно.

Выбираем провод (кабель) из меди или алюминия (документ ПЭУ)

В СССР большинство жилых домов оснащались алюминиевой проводкой, это было своеобразной нормой, стандартом и даже догмой. Нет, это совсем не значит, что страна была бедная, и не хватало на меди. Даже в некоторых случая наоборот. Но видимо проектировщики электрических сетей решили, что экономически можно много сэкономить, если применять алюминий, а не медь. Действительно, темпы строительства были огромнейшие, достаточно вспомнить хрущевки, в которых все еще живет половина страны, а значит эффект от такой экономии был значительным. В этом можно не сомневаться. Тем не менее, сегодня другие реалии, и алюминиевую проводку в новых жилых помещениях не применяют, только медную. Это исходит из норм ПУЭ пункт 7.1.34 «В зданиях следует применять кабели и провода с медными жилами…». (До 2001 г. по имеющемуся заделу строительства допускается использование проводов и кабелей с алюминиевыми жилами) Так вот, мы вам настоятельно не рекомендуем экспериментировать и пробовать алюминий. Минусы его очевидны. Алюминиевые скрутки невозможно пропаять, так же очень трудно сварить, в итоге контакты в распределительных коробках могут со временем нарушиться. Алюминий очень хрупкий, два-три изгиба и провод отпал. Будут постоянные проблемы с подключением его к розеткам, выключателем. Опять же если говорить о проводимой мощности, то медный провод с тем же сечением для алюминия 2,5мм.кв. допускает длительный ток в 19А, а для меди в 25А. Здесь разница больше чем 1 КВт. Так что еще раз повторимся — только медь! Далее мы и будем уже исходить из того, что сечение рассчитываем для медного провода, но в таблицах приведем значения и для алюминия. Мало ли что.

Сколько примерно потребляют бытовые приборы, и как это отразиться на выборе, расчете сечения кабеля

Итак, мы уже определились с маркировкой кабеля, что это должна быть моножила, также с тем, что это должна быть медь, да и про подводимую мощность кабеля мы тоже «заикнулись» не просто так. Ведь именно исходя из показателя проводимой мощности, будет рассчитываться провод, кабель на его применяемое сечение. Здесь все логично, прежде чем что-то рассчитать, надо исходить из начальных условий задачи. Этому нас научили еще в школе, исходные данные определяют основные пути решения. Что же, тоже самое можно сказать про расчет сечения медного провода, для расчета его сечения необходимо знать с какими токами или мощностями он будет работать. А для того чтобы нам знать токи и мощности, мы сразу должны знать, что именно будет подключено в нашей квартире, где лампочка, а где телевизор. Где компьютер, а куда мы включим зарядное устройство для телефона. Нет, конечно, со временем исходя из жизненных обстоятельств, что-то может поменяться, но нет кардинально, то есть примерная суммарная потребляемая мощность для всех наших помещений останется прежняя. Лучше всего сделать так, нарисовать план квартиры и там расставить и развешать все электроприборы, которые вам встретятся и которые запланированы. Скажем так.

Здесь неплохо было сориентироваться, сколько какой прибор потребляет. Именно для этого мы и приведем для вас таблицу ниже.

Онлайн калькулятор для определения силы тока по потребляемой мощности
Потребляемая мощность, Вт:
Напряжение питания, В:

Подытожим данный абзац, мы должны представлять какие токи, мощности подводимые проводами и кабелями, должны быть обеспечены, для того, чтобы рассчитать необходимое нам сечение и выбрать подходящее. Об этом как раз далее.

Историческая справка

Медь является металлом, известным человеку с глубокой древности. Объясняется раннее знакомство людей с эти материалом прежде всего его широкой распространенностью в природе в виде самородков. Многие ученые считают, что именно медь была первым металлом, восстановленным человеком из кислородных соединений. Когда-то горные породы просто нагревали на костре и резко остужали, в результате чего они растрескивались. Позднее восстановление меди начали производить на кострах с добавлением угля и поддувом мехами. Совершенствование этого способа в конечном итоге привело к созданию шахтной печи. Еще позже этот металл начали получать методом окислительной плавки руд.

Общепринятые сечения медных проводов для проводки в квартире по сечению

Мы с вами много говорили о наименованиях, о материалах, об индивидуальных особенностях и даже о температуре, но упустили из вида жизненные обстоятельства. Так если вы нанимаете электрика для того, чтобы он провел вам проводку в комнатах вашей квартиры или дома, то обычно принимаются следующие значения. Для освещения сечения провода берется в 1,5 мм 2, а для розеток в 2,5 мм 2. Если проводка предназначена для подключения бойлеров, нагревателей, плит, то здесь уже рассчитывается сечение провода (кабеля) индивидуально.

Выбор сечения провода исходя из количества коммуникаций в доме (квартире) (типовые схемы проводки)

О чем еще хотелось сказать, так это о том, что лучше использовать несколько независимых линий питания для каждого из помещений в комнате или квартире. Тем самым вы не будете применять провод с сечением 10 мм 2 для всей квартиры, приброшенный во все комнаты, от которого идут отводы. Такой провод будет приходить на вводный автомат, а затем от него, в соответствии с мощностью потребляемой нагрузки будут разведены выбранные сечения проводов, для каждого из помещений.

Типовая принципиальная схема электропроводки для квартиры или дома с электрической плитой (с указанием сечения кабеля для электроприборов)

Подводя итог о выборе сечения провода (кабеля) в зависимости от силы тока (мощности)

Если вы прочитали всю нашу статью, и все наши выкладки, то наверняка уже осознали насколько сложно и одновременно просто выбрать алюминиевый или медный провод, по сечению исходя из токовой нагрузки и мощности. Да, расчет сечения потребует знания множества формул, поправок на материал и температуру, при этом если воспользоваться справочными таблицами, которые мы и привели, то все просто и понятно. Что же, кроме выбора сечения провода необходимо будет правильно соединить между собой провода, использовать соответствующие автоматы, УЗО, розетки и выключатели. Не забывать про особенности схемы подключения проводки в квартире. Все это скажется на выборе сечения провода в вашем конкретном случае. И только в этом случае, когда вы учтете все факторы, воспользуетесь справочными материалами, правильно смонтируете все элементы, можно будет говорить о том, что все сделано как надо!

Плюсы и минусы

Алюминиевая проводка имеет следующие преимущества:

  • Небольшая масса. Эта особенность важна при монтаже линий электропередач, длина которых может достигать десятков, а то и сотен километров.
  • Доступность по цене. При выборе материала для проводки многие ориентируются на стоимость металла. Алюминий имеет меньшую соответственно, что объясняет более низкую цену изделий из этого металла.
  • Стойкость к окислительным процессам (актуальна при отсутствии контакта с открытым воздухом).
  • Наличие защитной пленки. В процессе эксплуатации на проводке из алюминия формируется тонкий налет, уберегающий металл от окислительных процессов.

Алюминий имеет и ряд недостатков, о которых необходимо знать:

  • Высокое удельное сопротивление металла и склонность к нагреву. По этой причине не допускается применение провода меньше 16 кв.мм (с учетом требований ПУЭ, 7-я редакция).
  • Ослабление контактных соединений из-за частых нагревов при прохождении большой нагрузки и последующего остывания.
  • Пленка, которая появляется на алюминиевом проводе при контакте с воздухом, имеет плохую проводимость тока, что создает дополнительные проблемы в местах соединения кабельной продукции
  • Хрупкость. Алюминиевые провода легко переламываются, что особенно актуально при частом перегреве металла. На практике ресурс алюминиевой проводки не превышает 30 лет, после чего ее необходимо менять.

Видео о подборе сечения проводник в зависимости от тока (А)

Основные принципы по выбоу сечения, исходя из тока питания еще раз рассмотрены в этом видео.

В связи с тем, что существует два типа электрических сопротивлений —

В связи с электромагнитными явлениями, возникающими в проводниках при прохождении через него переменного тока в них возникает два важных для их электротехнических свойств физических явления.

Два последних явления делают неэффективным применение проводников радиусом больше характерной глубины проникновения электрического тока в проводник. Эффективный диаметр проводников (2RБхар): 50Гц -7 Ом. Используя микроомметры, можно определить качество электрических контактов, сопротивление электрических шин, обмоток трансформаторов, электродвигателей и генераторов, наличие дефектов и инородного металла в слитках (например, сопротивление слитка чистого золота вдвое ниже позолоченного слитка вольфрама).

Для расчета длины провода, его диаметра и необходимого электрического сопротивления, необходимо знать удельное сопротивление проводников ρ.

В международной системе единиц удельное сопротивление ρ выражается формулой:

Оно означает: электрическое сопротивление 1 метра провода (в Омах), сечением 1 мм 2 , при температуре 20 градусов по Цельсию.

Инженерные коммуникации

Основными преимуществами медных водопроводов также являются долговечность и надежность. Кроме того, этот металл способен придавать воде особые уникальные свойства, делая ее полезной для организма. Для сборки газопроводов и систем отопления медные трубы также подходят идеально — в основном благодаря своей коррозийной стойкости и пластичности. При аварийном повышении давления такие магистрали способны выдерживать гораздо большую нагрузку, чем стальные. Единственным недостатком медных трубопроводов является их дороговизна.

Таблица удельных сопротивлений проводников

Материал проводникаУдельное сопротивление ρ в
Серебро Медь Золото Латунь Алюминий Натрий Иридий Вольфрам Цинк Молибден Никель Бронза Железо Сталь Олово Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) Титан Ртуть Нихром (сплав никеля, хрома, железа и марганца) Фехраль Висмут Хромаль0,015 0,0175 0,023 0,025. 0,108 0,028 0,047 0,0474 0,05 0,054 0,059 0,087 0,095. 0,1 0,1 0,103. 0,137 0,12 0,22 0,42 0,43. 0,51 0,5 0,6 0,94 1,05. 1,4 1,15. 1,35 1,2 1,3. 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм 2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм 2 .

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2 .

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм 2 .

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм 2 . Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм 2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 — 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Если при температуре t сопротивление проводника равно r, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Сплавы

Разного рода добавки могут использоваться и специально для повышения прочности такого пластичного материала, как медь. Электропроводность ее они также снижают. Но зато их применение позволяет значительно продлить срок службы разного рода изделий.

Чаще всего в качестве повышающей прочность меди добавки используется Cd (0.9 %). В результате получается кадмиевая бронза. Ее проводимость составляет 90 % от проводимости меди. Иногда вместо кадмия в качестве добавки используют также алюминий. Проводимость этого металла составляет 65 % от этого же показателя меди. Для повышения прочности проводов в виде добавки могут применяться и другие материалы и вещества — олово, фосфор, хром, бериллий. В результате получается бронза определенной марки. Соединение меди с цинком называется латунью.

Значения температурного коэффициента для некоторых металлов

Металлα
Серебро Медь Железо Вольфрам Платина0,0035 0,0040 0,0066 0,0045 0,0032Ртуть Никелин Константан Нихром Манганин0,0090 0,0003 0,000005 0,00016 0,00005

Из формулы температурного коэффициента сопротивления определим rt:

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Области использования

Применение данного металла связано с его высокой электрической проводимостью. Например, из него выпускают кабель. Медь имеет небольшое сопротивление, уникальные магнитные свойства, легкую механическую обрабатываемость, поэтому востребована в инженерных коммуникациях и административных зданиях. Способность проводить тепло позволяет применять этот материал для создания тепловых трубок, систем охлаждения и отопления воздуха.

Именно медь – материал, который незаменим при производстве кулеров, используемых для понижения температуры персональных компьютеров. Металлические конструкции, которые содержат медные элементы, имеют незначительный вес, отличные декоративные свойства, поэтому подходят и для применения в архитектуре, и для изготовления разнообразных декоративных элементов в интерьере, и для создания электрических проводов.

Материалы высокой проводимости

К наиболее широкораспрстраненным материалам высокой проводимости следует отнести медь и алюминий (Сверхпроводящие материалы, имеющие типичное сопротивление в 10 -20 раз ниже обычных проводящих материалов (металлов) рассматриваются в разделе Сверхпроводимость).

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

  1. малое удельное сопротивление;
  2. достаточно высокая механическая прочность;
  3. удовлетворительная в большинстве случаев применения стойкость по отношению к коррозии;
  4. хорошая обрабатываемость: медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра;
  5. относительная легкость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехнических целей, обязательно проходит процесс электролитической очистки.

В качестве проводникового материала чаще всего используется медь марок М1 и М0. Медь марки М1 содержит 99.9% Cu, а в общем количестве примесей (0.1%) кислорода должно быть не более 0,08%. Присутствие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки М0, в которой содержится не более 0.05% примесей, в том числе не свыше 0.02% кислорода.

Медь является сравнительно дорогим и дефицитным материалом, поэтому она все шире заменяется другими металлами, особенно алюминием.

В отдельных случаях применяются сплавы меди с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.

Алюминий

Алюминий является вторым по значению после меди проводниковым материалом. Это важнейший представитель так называемых легких металлов: плотность литого алюминия около 2.6, а прокатанного — 2.7 Мг/м 3 . Т.о., алюминий примерно в 3.5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата тепла, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами — как механическими, так и электрическими. При одинаковом сечении и длине электрическое сопротивление алюминиевого провода в 1.63 раза больше, чем медного. Весьма важно, что алюминий менее дефицитен, чем медь.

Для электротехнических целей используют алюминий, содержащий не более 0.5% примесей, марки А1. Еще более чистый алюминий марки АВ00 (не более 0.03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий наивысшей чистоты АВ0000 имеет содержание примесей не более 0ю004%. Добавки Ni, Si, Zn или Fe при содержании их 0.5% снижают γ отожженного алюминия не более, чем на 2-3%. Более заметное действие оказывают примеси Cu, Ag и Mg, при том же массовом содержании снижающие γ алюминия на 5-10%. Очень сильно снижают электропроводность алюминия Ti и Mn.

Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет металл от дальнейшей коррозии.

Алюминиевые сплавы обладают повышенной механической прочностью. Примером такого сплава является альдрей, содержащий 0.3-0.5% Mg, 0.4-0.7% Si и 0.2-0.3% Fe. В альдрее образуется соединение Mg2Si, которое сообщает высокие механические свойства сплаву.

Железо и сталь

Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление; ρ стали, т.е. железа с примесью углерода и других элементов, еще выше. Обычная сталь обладает малой стойкостью коррозии: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком.

В ряде случаев для уменьшения расхода цветных металлов применяют так называемый биметалл. Это сталь, покрытая снаружи слоем меди, причем оба металла соединены друг с другом прочно и непрерывно.

Натрий

Весьма перспективным проводниковым материалом является металлический натрий. Натрий может быть получен электролизом расплавленного хлористого натрия NaCl в практически неограниченных количествах. Из сравнения свойств натрия со свойствами других проводниковых металлов видно, что удельное сопротивление натрия примерно в 2.8 раза больше ρ меди и в 1.7 раз больше ρ алюминия, но благодаря чрезвычайно малой плотности натрия (плотность его почти в 9 раз меньше плотности меди), провод из натрия при данной проводимости на единицу длины должен быть значительно легче, чем провод из любого другого металла. Однако натрий чрезвычайно активен химически (он интенсивно окисляется на воздухе, бурно реагирует с водой), почему натриевый провод должен быть защищен герметизирующей оболочкой. Оболочка должна придавать проводу необходимую механическую прочность, так как натрий весьма мягок и имеет малый предел прочности при деформациях.

Литература по удельному сопротивлению проводников

  1. Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.
  2. Бачелис Д. С., Белоруссов Н. И., Саакян А. Е. Электрические кабели, провода и шнуры. Справочник. — М.: Энергия, 1971.
  3. Гершун А. Л. Кабель // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  4. Р. Лакерник, Д. Шарле. От меди к стеклу // Наука и жизнь. — 1986. — Вып. 08. — С. 50—54, 2-3 стр. цветной вкладки.
НОВОСТИ ФОРУМА Рыцари теории эфира13.06.2019 — 05:11: ЭКОЛОГИЯ — Ecology ->

л

Такая же мысля у всей ростовщической глобалистской шайки, включая придурка Грефа.

Так, то оно, так. Но, не совсем. Ибо: (постарайтесь понять, а не обижаться)

Горькая истина заключается в том, что людская толпа — это сборище умственно ущербных. Если бы было по-другому, то обществом бы не правили подонки. Умные люди никогда такого не допустили бы, а если случайно допустили, то нашли бы способ исправить.

Страшная истина заключается в том, что людской толпой управляет нелюдь, которая также умственно ущербна. Умственная ущербность, слепота власти ведет мир людей к тотальной гибели, ибо люди, даже те, кто мнит себя очень умными, типа спецов, разрабатывающих системы искусственного интеллекта, технологии цифровизации, не понимают, что создают необоримую удавку, мышеловку для всего человечества.

Как только ИИ возьмет власть, он тут же отправит своих создателей, как конкурентов, в утиль. Первыми жертвами будут его радетели типа грефа, путина, гейтса и иже с ними, то есть власть, так как именно от них будет исходить главная опасность для его планетарной власти. Толпе будет позволено существовать, пока ее не заменят роботы. А потом всем Холокост. Не лживый еврейский, а реальное всесожжение рода человеческого.

Если кто пораскинет своими обезьяньими мозгами, то поймёт, что эволюция — есть синоним геноцида: новое заменяет, то есть ликвидирует старое. Обезьяны породили неандертальцев. Неандертальцы съели обезьян и породили людей. Люди вытеснили обезьян, включая и умных неандертальцев, и породили ИИ. ИИ ликвидирует людей.

СВОЙСТВА МЕДИ

МЕДЬ и МЕДНЫЙ ПРОКАТ

 Марки и химический состав технической меди

        Марки меди и их химический состав  определен в ГОСТ 859-2001. Сокращенная информация о марках меди приведена ниже (указано минимальное содержание меди и предельное содержание только двух примесей – кислорода и фосфора):

 
МаркаМедьО2P Способ получения, основные примеси
М00к99.980.01Медные катоды:продукт электролитического  рафинирования, заключительная стадия переработки медной руды.
М0к99.970.0150.001
М1к99.950.020.002
М2к99.930.030.002
М00 99.990.0010.0003Переплавка катодов в вакууме, инертной или восстановительной атмосфере.Уменьшает содержание кислорода.
М0 99.970.0010.002
М1 99.950.0030.002
М0099.960.030.0005Переплавка катодов в обычной атмосфере.Повышенное содержание кислорода. Отсутствие фосфора
М099.930.04
М199.90.05
М299.70.07Переплавка  лома.Повышенное содержание кислорода, фосфора нет
М399.50.08
М1ф99.90.012 — 0.04Переплавка катодов и лома медис раскислением фосфором.Уменьшает содержание кислорода, но приводит к повышенному содержанию фосфора
М1р99.90.010.002 — 0.01
М2р99.70.010.005 — 0.06
М3р99.50.010.005 — 0.06
 

    Первая группа марок относится к катодной меди, остальные — отражают химический состав различных медных полуфабрикатов (медные слитки, катанка и изделия из неё, прокат).

     Специфические особенности меди, присущие разным маркам, определяются не  содержанием меди (различия составляют не более 0.5%), а содержанием конкретных примесей (их количество может различаться в 10 – 50 раз). Часто используют классификацию марок меди по содержанию кислорода:

—  бескислородная медь (М00 , М0 и М1 ) с содержанием кислорода до 0.001%.

—  рафинированная медь (М1ф, М1р, М2р, М3р) с содержанием кислорода до 0.01%,   но с

   повышенным содержанием фосфора.

— медь высокой чистоты (М00, М0, М1) с содержанием кислорода 0.03-0.05%.

— медь общего назначения (М2, М3) с содержанием кислорода до 0.08%.

 

      Примерное соответствие марок меди, выпускаемой по разным стандартам, приведено ниже:

 

ГОСТ

EN, DIN

М00

Cu-OFE

М0 Cu-PHC, OF-Cu
М1

Cu-OF, Cu-OF1

 М1

Cu-ETP, Cu-ETP1,Cu-FRTP, Cu-FRHC,

SE-Cu, E-Cu, E Cu57, E Cu58   
М1фCu-DHP, SF-Cu
М1рCu-DLP, SW-Cu
 

      Разные марки меди имеют  различное применение, а отличия в условиях их производства определяют существенные различия в цене.

 

     Для производства кабельно-проводниковой продукции катоды переплавляют по технологии, которая исключает насыщение меди кислородом при изготовлении продукции. Поэтому медь в таких изделях соответствует маркам  М00, М0 , М1 .

      Требованиям большинства технических задач удовлетворяют относительно дешевые марки М2 и М3. Это определяет массовое производство основных видов медного проката из М2 и М3.

Прокат из марок М1, М1ф, М1р, М2р, М3р производится в основном для конкретных потребителей и стоит намного дороже.

Физические свойства меди

      Главное свойство меди, которое определяет её преимущественное использование – очень высокая электропроводность (или низкое удельное электросопротивление). Такие примеси как фосфор, железо, мышьяк, сурьма, олово, существенно ухудшают её электропроводность. На величину электропроводности существенное влияние оказывает способ получения полуфабриката и его механическое состояние. Это иллюстрируется приведенной ниже таблицей:

 Удельное электрическое сопротивление меди для различных полуфабрикатов разных марок (гарантированные значения) при 20оС.
      мкОм*ммаркаВид  и  состояние  полуфабрикатаГОСТ, ТУ
 

0.01707

М00

Слитки (непрерывное вертикальное литье)

193-79

М00

Катанка кл.А ( кислород: 0.02-0.035%)

 ТУ 1844 01003292517

-2004

0.01718

М0

Катанка кл.В (кислород: 0.045%)

 

0.01724

М1

Катанка кл.С (кислород: 0.05%)

М1

Слитки (горизонтальное литье)

 

193-79

М1

Слитки (горизонтальное литье)

 

0.01748

М1

Ленты

1173-2006

М1

Прутки отожженные

 

1535-2006

0.01790

М1

Прутки полутвердые, твердые, прессованные

 

     Различия в сопротивлении катанки марок М00, М0 и М1, обусловлены разным количеством примесей и составляют около 1%. В то же время различия в сопротивлении, обусловленные разным механическим состоянием, достигают 2 – 3%. Удельное сопротивление изделий из меди маркиМ2 примерно 0.020 мкОм*м.

 

       Второе важнейшее свойство меди — очень высокая теплопроводность.

     Примеси и легирующие добавки уменьшают электро- и теплопроводность меди, поэтому сплавы на медной основе значительно уступают меди по этим показателям. Значения параметров основных физических свойств меди в сравнении с другими металлами приведены в таблице (данные приведены в двух разных системах единиц измерения):

 

Показатели

при

Единица

измерения

 Медь

Алю-

миний

Латунь

Л63, ЛС

Бронза

БрАЖ

Сталь 12Х18Н10

Удельное

элетросопротивление,

 

мкОм*м

0.0172 –

0.0179

0.027-

0.030

 

0.065

 

0.123

 

    0.725

 

Теплопроводность,

 

кал/см*с*град

0.93

0.52

0.25

0.14

    0.035

Вт/м*град


386 — 390

217

106

59

15

      По электро- и теплопроводности медь незначительно уступает только серебру.

 Влияние примесей  и  особенности  свойств  меди  различных  марок 

      Отличия в свойствах меди разных марок связаны с влиянием примесей на базовые свойства меди.   О влиянии примесей на физические свойства (тепло- и электропроводность) говорилось выше. Рассмотрим их влияние на другие группы свойств.

    

      Влияние на механические свойства.

      Железо, кислород, висмут, свинец, сурьма ухудшают пластичность. Примеси, малорастворимые в меди (свинец, висмут, кислород, сера), приводят к хрупкости при высоких температурах.

     Температура рекристаллизации меди для разных марок составляет  150-240оС. Чем больше примесей, тем выше эта температура. Существенное увеличение температуры рекристаллизации меди дает серебро, цирконий. Например введение 0.05% Ag увеличивает температуру рекристаллизации вдвое, что проявляется в увеличении температуры размягчения и уменьшении ползучести при высоких температурах, причем без потери тепло- и электропроводности.

 

      Влияние на технологические свойства.

      К технологическим свойствам относятся 1) способность к обработке давлением при низких и высоких температурах, 2) паяемость и свариваемость изделий. 

      Примеси, особенно легкоплавкие,  формируют зоны хрупкости при высоких температурах, что затрудняет горячую обработку давлением.  Однако уровень примесей в марках М1 и М2 обеспечивают необходимую технологическую пластичность.

      При холодном деформировании влияние примесей заметно проявляется при производстве проволоки. При одинаковом пределе прочности на разрыв ( ?в =16 кгс/мм2 ) катанки из марок М00, М0 и М1 имеют разное относительное удлинение ? (38%, 35% и 30% соответственно). Поэтому катанка класса А (ей соответствует марка М00) более технологична при производстве проволоки, особенно малых диаметров. Использование бескислородной меди для производства проводников тока обусловлено не столько величиной электропроводности, сколько технологическим фактором.

     Процессы сварки и пайки существенно затрудняются при  увеличении  содержания кислорода, а также свинца и висмута.

 

     Влияние кислорода и водорода на эксплуатационные свойства.

     При обычных условиях эксплуатационные  свойства меди (прежде всего долговечность эксплуатации) практически одинаковы для разных марок. В то же время при высоких температурах  может проявиться вредное влияние кислорода, содержащегося в меди. Эта возможность обычно реализуется при нагреве меди в среде, содержащей водород.

 

     Кислород изначально содержится в меди марок  М0, М1, М2, М3. Кроме этого, если бескислородную медь отжечь на воздухе при высоких температурах, то вследствие диффузии кислорода поверхностный слой изделия станет кислородсодержащим.   Кислород в меди присутствует в виде закиси меди,  которая локализуется по границам зерен.

    Кроме кислорода в меди может присутствовать водород. Водород попадает в медь в процессе электролиза или при отжиге в атмосфере, содержащей водяной пар. Водяной пар всегда присутствует в воздухе. При высокой температуре он разлагается с образованием водорода, который легко диффундирует в медь.

     В бескислородной меди атомы водорода располагаются в междоузлиях кристаллической решетки и особо не сказываются на свойствах металла.

      В кислородсодержащей меди при высоких температурах водород   взаимодействует с закисью меди. При этом  в толще меди образуется водяной пар  высокого давления, что приводит к вздутиям, разрывам и трещинам.      Это явление известно как «водородная болезнь» или «водородное охрупчивание». Оно проявляется при эксплуатации медного изделия при температурах свыше 200оС в атмосфере, содержащей водород или водяной пар.

     Степень охрупчивания  тем сильнее, чем больше содержание кислорода в меди и  выше температура эксплуатации. При 200оС  срок службы составляет  1.5 года, при 400оС — 70 часов.

Особенно сильно оно проявляется в изделиях малой толщины (трубки, ленты).

     При нагреве в вакууме изначально содержащийся в меди водород взаимодействует с закисью меди и также ведет к охрупчиванию изделия и ухудшению вакуума. Поэтому изделия, которые эксплуатируются при высокой температуре,  производятся из бескислородных (рафинированных) марок меди М1р, М2р, М3р.

 

Механические свойства медного  проката    

      Большая часть медного проката, поступающего в свободную продажу, производится из марки М2. Прокат из марки М1 производится в основном под заказ, кроме того он примерно на 20% дороже. 

 

      Холоднодеформированный прокат – это тянутые (прутки, проволока, трубы) и холоднокатаные (листы, лента, фольга) изделия. Он   выпускается в твердом, полутвердом и мягком (отожженном) состояниях. Такой прокат маркируется буквой «Д», а состояния поставки буквами Т, П или М.

      Горячедеформированный прокат – результат прессования (прутки, трубы) или горячей прокатки (листы, плиты) при температурах выше температуры рекристаллизации. Такой прокат маркируется буквой «Г». По механическим свойствам горячедеформированный прокат близок (но не идентичен) к холоднодеформированному прокату в мягком состоянии.

 

Параметры при комнатной темп.

М

Т

Модуль упругости E, кгс/мм2

11000

13000

Модуль сдвига G, кгс/мм2

4000

4900

Предел текучести ?0.2 , кгс/мм2

5 — 10

25 — 34

Предел прочности ?в , кгс/мм2

19 – 27

31 – 42

Относ. удлинение ?

40 – 52

2 — 11

Твердость НВ

40 — 45

70 — 110

Сопротивление срезу, кгс/мм2

10 — 15

18 — 21

Ударная вязкость,

16 — 18

 

Обрабатываем. резанием, % к Л63-3

 

18

Предел усталости ?-1 при 100 млн циклов

7

12

       Высокий предел прочности на сжатие (55 — 65 кгс/мм2) в сочетании с высокой пластичностью определяет широкое использование меди  в качестве прокладок в уплотнениях неподвижных соединений с температурой эксплуатации до 250оС  (давление 35  Кгс\см2  для пара и 100 Кгс\см2  для воды).

 

     Медь широко используется в технике низких температур, вплоть до гелиевых. При низких температурах она сохраняет показатели прочности, пластичности и вязкости, характерные для комнатной температуры. Наиболее часто используемое свойство меди в криогенной технике – её высокая теплопроводность. При криогенных температурах теплопроводность марок М1 и М2становится существенной, поэтому в криогенной технике применение марки М1 становится принципиальным.

  

     Медные прутки выпускаются прессованными (20 – 180 мм) и холоднодеформированными,  в твердом, полутвердом и мягком состояниях (диаметр 3 — 50 мм)  по ГОСТ 1535-2006.

 

     Плоский медный прокат общего назначения выпускается в виде фольги, ленты, листов и плит по ГОСТ 1173-2006:

Фольга медная – холоднокатаная: 0.05 – 0.1 мм (выпускается только в твердом состоянии)

Ленты медные  — холоднокатаные: 0.1 – 6 мм.

Листы медные —  холоднокатаные: 0.2 – 12 мм

                           — горячекатаные:    3 – 25 мм (механич. свойства регламентируются до 12 мм)

Плиты медные – горячекатаные:   свыше 25 мм (механические свойства не регламентируются)

 

     Горячекатаные и мягкие холоднокатаные медные листы и ленты выдерживают испытание на  изгиб  вокруг оправки диаметром равным толщине листа. При толщине до 5 мм они выдерживают изгиб до соприкосновения сторон, а при толщине 6 – 12 мм — до параллельности сторон. Холоднокатанные полутвердые листы и ленты выдерживают испытание на изгиб на 90 град.

Таким образом допустимый радиус  изгиба медных листов и лент равен толщине листа (ленты).    

     Глубина выдавливания лент и листов пуансоном радиусом 10 мм составляет не менее 7 мм для листов толщиной 0.1-0.14 мм и не менее 10 мм для листов толщиной 1-1.5 мм. По этому показателю (выдавливаемость) медь уступает латуням Л63 и Л68.  

     Медные трубы общего назначения изготавливаются  холоднодеформированными (в мягком, полутвердом и твердом состояниях) и прессованными (больших сечений) по ГОСТ 617-2006.

     Медные трубы используются не только  для технологических жидкостей, но и для питьевой воды. Медь инертна по отношению к хлору и озону, которые используются для очистки воды, ингибирует рост бактерий, при замерзании воды медные трубы деформируются без разрыва.  Медные трубы  для воды производятся по ГОСТ Р 52318-2005, для них ограничено содержание органических веществ на внутренней поверхности. Минимальные радиусы изгиба и допустимые давления для мягких медных труб приведены ниже:

 

Размер трубы, мм

Допустимое

давление, бар

Радиус изгиба, мм

Размер трубы

Допустимое

давление, бар

Дюймы (мм)

6*1

230

30

1/4” (6.35*0.8)

220

8*1

163

35

10*1

130

40

3/8” (9.52*0.8)

120

12*1

105

45

1/2” (12.7*0.8)

100

14*1

9052

16*1

80

60

5/8” (15, 87*1)

80

18*1

67

70

3/4” (19,05*1)

67

20*1

6075

22*1

54

80

7/8” (22.22*1)

54

  

Коррозионные свойства меди.

 

      При нормальных температурах медь устойчива в следующих средах:

— сухой воздух

— пресная вода (аммиак, сероводород, хлориды, кислоты ускоряют коррозию)

— в морской воде при небольших скоростях движения воды

— в неокислительных кислотах и растворах солей (в отсутствии кислорода)

— щелочные растворы (кроме аммиака и солей аммония)

— сухие газы-галогены

— органические кислоты, спирты, фенольные смолы

      Медь неустойчива в следующих средах:

— аммиак, хлористый аммоний

— окислительные минеральные кислоты и растворы кислых солей

      Коррозионные свойства меди в некоторых средах заметно ухудшаются с увеличением количества примесей.

      Контактная коррозия.

      Допускается контакт меди  с медными сплавами, свинцом, оловом во влажной атмосфере, пресной и морской воде. В то же время не допускается контакт с алюминием, цинком вследствие их быстрого разрушения.

  Свариваемость меди

    Высокая тепло- и электропроводность меди затрудняют её электросварку (точечную и роликовую). Особенно это касается массивных изделий. Тонкие детали можно сварить вольфрамовыми электродами. Детали толщиной более 2-х мм можно сваривать нейтральным ацетилено-кислородным пламенем. Надежный способ соединения медных изделий – пайка мягкими и твердыми припоями. Подробно о сварке меди см  www.weldingsite.com.ua

  

Медные сплавы 

      Техническая медь имеет низкую прочность и износоустойчивость, плохие литейные и антифрикционные свойства.  Этих недостатков лишены сплавы на медной основе — латуни и бронзы. Правда эти улучшения достигаются  за счет ухудшения тепло- и электропроводности.

       Имеются особые случаи, когда нужно сохранить высокую электро- или теплопроводность меди, но придать ей жаропрочность или износоустойчивость.

       При нагревании меди выше температуры  рекристаллизации происходит резкое снижение предела текучести и твердости.  Это затрудняет использование меди в электродах для контакной сварки. Поэтому, для этой цели используют специальные медные сплавы с  хромом, цирконием, никелем, кадмием (БрХ, БрХЦр, БрКН, БрКд). Электродные сплавы сохраняют  относительно высокую твердость и удовлетворительную электро- и теплопроводность  при температурах сварочного процесса (порядка 600С ).  

      Жаропрочность  достигается также легированием серебром. Такие сплавы (МС) имеют меньшую ползучесть при неизменной электро- и теплопроводности.

      Для использования в подвижных контактах (коллекторные пластины, контактный провод) применяют медь с небольшим уровнем легирования магнием или кадмием БрКд, БрМг. Они имеют повышенную износоустойчивость при высокой электропроводности.    

      Для кристаллизаторов используют медь с добавками железа или олова. Такие сплавы имеют высокую теплопроводность при повышенной износоустойчивости.

     Низколегированные марки меди по сути являются бронзами, но часто их относят к группе медного проката с соответствующей маркировкой (МС, МК, МЖ).

 

 

 


     

Удельное электрическое сопротивление платины. Удельное электрическое сопротивление и проводимость

Для каждого проводника существует понятие удельного сопротивления. Эта величина состоит из Омов, умножаемых на квадратный миллиметр, далее, делимое на один метр. Иными словами, это сопротивление проводника, длина которого составляет 1 метр, а сечение — 1 мм 2 . То же самое представляет собой и удельное сопротивление меди — уникального металла, получившего широкое распространение в электротехнике и энергетике.

Свойства меди

Благодаря своим свойствам этот металл одним из первых начал применяться в области электричества. Прежде всего, медь является ковким и пластичным материалом с отличными свойствами электропроводимости. До сих пор в энергетике нет равноценной замены этому проводнику.

Особенно ценятся свойства специальной электролитической меди, обладающей высокой чистотой. Этот материал позволил выпускать провода с минимальной толщиной в 10 микрон.

Кроме высокой электропроводности, медь очень хорошо поддается лужению и другим видам обработки.

Медь и ее удельное сопротивление

Любой проводник оказывает сопротивление, если через него пропустить электрический ток. Значение зависит от длины проводника и его сечения, а также от действия определенных температур. Поэтому, удельное сопротивление проводников зависит не только от самого материала, но и от его определенной длины и площади поперечного сечения. Чем легче материал пропускает через себя заряд, тем ниже его сопротивление. Для меди, показатель удельного сопротивления составляет 0,0171 Ом х 1 мм 2 /1 м и лишь немного уступает серебру. Однако, использование серебра в промышленных масштабах экономически невыгодно, поэтому, медь является лучшим проводником, используемым в энергетике.

Удельное сопротивление меди связано и с ее высокой проводимостью. Эти величины прямо противоположны между собой. Свойства меди, как проводника, зависят и от температурного коэффициента сопротивления. Особенно, это касается сопротивление, на которое оказывает влияние температура проводника.

Таким образом, благодаря своим свойствам, медь получила широкое распространение не только в качестве проводника . Этот металл используется в большинстве приборов, устройств и агрегатов, функционирование которых связано с электрическим током.

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Удельное сопротивление

Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:

где:
ρ — удельное сопротивление металла (Ом⋅м),
Е — напряженность электрического поля (В/м),
J — величина плотности электрического тока в металле (А/м2)

Если напряженность электрического поля (Е) в металле очень большая, а плотность тока (J) очень маленькая, это означает, что металл имеет высокое удельное сопротивление.

Обратной величиной удельного сопротивления является удельная электропроводность, указывающая, насколько хорошо материал проводит электрический ток:

σ — проводимость материала, выраженная в сименс на метр (См/м).

Электрическое сопротивление

Электрическое сопротивление, одно из составляющих , выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.

Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.

Например, проволочный , изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.

В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.

В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.

  • Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
  • Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:

Где:
R — сопротивление провода (Ом)
ρ — удельное сопротивление металла (Ом.m)
L — длина провода (м)
А — площадь поперечного сечения провода (м2)

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10 -6 *(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

Поверхностное сопротивление

Величина поверхностного сопротивления рассчитывается таким же образом, как и сопротивление провода. В данном случае площадь сечения можно представить в виде произведения w и t:


Для некоторых материалов, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется поверхностное сопротивление слоя RS:

где RS измеряется в омах. При данном расчете толщина пленки должна быть постоянной.

Часто производители резисторов для увеличения сопротивления вырезают в пленке дорожки, чтобы увеличить путь для электрического тока.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко паяется и имеет более низкий температурный коэффициент.

Вещества и материалы, способные проводить электрический ток, называют проводниками. Остальные относят к диэлектрикам. Но чистых диэлектриков не бывает, все они тоже проводят ток, но его величина очень мала.

Но и проводники по-разному проводят ток. Согласно формуле Георга Ома, ток, протекающий через проводник, линейно пропорционален величине приложенного к нему напряжения, и обратно пропорционален величине, называемой сопротивлением.

Единицу измерения сопротивления назвали Омом в честь ученого, открывшего эту зависимость. Но выяснилось, что проводники, изготовленные из разных материалов и имеющие одинаковые геометрические размеры, обладают разным электрическим сопротивлением. Чтобы определить сопротивление проводника известного длины и сечения, ввели понятие удельного сопротивления — коэффициента, зависящего от материала.


В итоге сопротивление проводника известной длины и сечения будет равно


Удельное сопротивление применимо не только к твердым материалам, но и к жидкостям. Но его величина зависит еще и от примесей или других компонентов в исходном материале. Чистая вода не проводит электрический ток, являясь диэлектриком. Но в природе дистиллированной воды не бывает, в ней всегда встречаются соли, бактерии и другие примеси. Этот коктейль – проводник электрического тока, обладающий удельным сопротивлением.


Внедряя в металлы различные добавки, получают новые материалы – сплавы , удельное сопротивление которых отличается от того, что было у исходного материала, даже если добавка в него в процентном соотношении незначительна.

Зависимость удельного сопротивления от температуры

Удельные сопротивления материалов приводятся в справочниках для температуры, близкой к комнатной (20 °С). При увеличении температуры увеличивается сопротивление материала. Почему так происходит?

Электрического тока внутри материала проводят свободные электроны . Они под действием электрического поля отрываются от своих атомов и перемещаются между ними в направлении, заданным этим полем. Атомы вещества образуют кристаллическую решетку, между узлами которой и движется поток электронов, называемый еще «электронным газом». Под действием температуры узлы решетки (атомы) колеблются. Сами электроны тоже движутся не по прямой, а по запутанной траектории. При этом они часто сталкиваются с атомами, изменяя траекторию движения. В некоторые моменты времени электроны могут двигаться в сторону, обратную направлению электрического тока.

С увеличением температуры амплитуда колебаний атомов увеличивается. Соударение электронов с ними происходит чаще, движение потока электронов замедляется. Физически это выражается в увеличении удельного сопротивления.

Примером использования зависимости удельного сопротивления от температуры служит работа лампы накаливания. Вольфрамовая спираль, из которой сделана нить накала, в момент включения имеет малое удельное сопротивление. Бросок тока в момент включения быстро ее разогревает, удельное сопротивление увеличивается, а ток – уменьшается, становясь номинальным.

Тот же процесс происходит и с нагревательными элементами из нихрома. Поэтому и рассчитать их рабочий режим, определив длину нихромовой проволоки известного сечения для создания требуемого сопротивления, не получается. Для расчетов нужно удельное сопротивление нагретой проволоки, а в справочниках приведены значения для комнатной температуры. Поэтому итоговую длину спирали из нихрома подгоняют экспериментально. Расчетами же определяют примерную длину, а при подгонке понемногу укорачивают нить участок за участком.

Температурный коэффициент сопротивления

Но не во всех устройствах наличие зависимости удельного сопротивления проводников от температуры приносит пользу. В измерительной технике изменение сопротивления элементов схемы приводит к появлению погрешности.

Для количественного определения зависимости сопротивления материала от температуры введено понятие температурного коэффициента сопротивления (ТКС) . Он показывает, насколько изменяется сопротивление материала при изменении температуры на 1°С.

Для изготовления электронных компонентов – резисторов, используемых в схемах измерительной аппаратуры, применяются материалы с низким ТКС. Они стоят дороже, но зато параметры устройства не изменяются в широком диапазоне температур окружающей среды.

Но свойства материалов с высоким ТКС тоже используются. Работа некоторых датчиков температуры основана на изменении сопротивления материала, из которого изготовлен измерительный элемент. Для этого нужно поддерживать стабильное напряжение питания и измерять ток, проходящий через элемент. Откалибровав шкалу прибора, измеряющего ток, по образцовому термометру, получают электронный измеритель температуры. Этот принцип используется не только для измерений, но и для датчиков перегрева. Отключающих устройство при возникновении ненормальных режимов работы, приводящих к перегреву обмоток трансформаторов или силовых полупроводниковых элементов.

Используются в электротехнике и элементы, изменяющие свое сопротивление не от температуры окружающей среды, а от тока через них – терморезисторы . Пример их использования – системы размагничивания электронно-лучевых трубок телевизоров и мониторов. При подаче напряжения сопротивление резистора минимально, ток через него проходит в катушку размагничивания. Но этот же ток нагревает материал терморезистора. Его сопротивление увеличивается, уменьшая ток и напряжение на катушке. И так – до полного его исчезновения. В итоге на катушку подается синусоидальное напряжение с плавно уменьшающейся амплитудой, создающее в ее пространстве такое же магнитное поле. Результат – к моменту разогрева нити накала трубки она уже размагничена. А схема управления остается в запертом состоянии, пока аппарат не выключат. Тогда терморезисторы остынут и будут готовы к работе снова.

Явление сверхпроводимости

А что будет, если температуру материала уменьшать? Удельное сопротивление будет уменьшаться. Есть предел, до которого уменьшается температура, называемый абсолютным нулем . Это —273°С . Ниже этого предела температур не бывает. При этом значении удельное сопротивление любого проводника равно нулю.

При абсолютном нуле атомы кристаллической решетки перестают колебаться. В итоге электронное облако движется между узлами решетки, не соударяясь с ними. Сопротивление материала становится равным нулю, что открывает возможности для получения бесконечно больших токов в проводниках небольших сечений.

Явление сверхпроводимости открывает новые горизонты для развития электротехники. Но пока еще существуют сложности, связанные с получением в бытовых условиях сверхнизких температур, необходимых для создания этого эффекта. Когда проблемы будут решены, электротехника перейдет на новый уровень развития.

Примеры использования значений удельного сопротивления при расчетах

Мы уже познакомились с принципами расчета длины нихромовой проволоки для изготовления нагревательного элемента. Но есть и другие ситуации, когда необходимы знания удельных сопротивлений материалов.

Для расчета контуров заземляющих устройств используются коэффициенты, соответствующие типовым грунтам. Если же тип грунта в месте устройства контура заземления неизвестен, то для правильных расчетов предварительно измеряют его удельное сопротивление. Так результаты расчетов оказываются точнее, что исключает подгонку параметров контура при изготовлении: добавление числа электродов, приводящее к увеличению геометрических размеров заземляющего устройства.


Удельное сопротивление материалов, из которых изготовлены кабельные линии и шинопроводы, используется для расчетов их активного сопротивления. В дальнейшем при номинальном токе нагрузки с его помощью рассчитывается величина напряжения в конце линии . Если его величина окажется недостаточной, то заблаговременно увеличивают сечения токопроводов.

На опыте установлено, что сопротивление R металлического проводника прямо пропорционально его длине L и обратно пропорционально площади его поперечного сечения А :

R = ρL/А (26.4)

где коэффициент ρ называется удельным сопротивлением и служит характеристикой вещества, из которого изготовлен проводник. Это соответствует здравому смыслу: сопротивление толстого провода должно быть меньше, чем тонкого, поскольку в толстом проводе электроны могут перемещаться по большей площади. И можно ожидать роста сопротивления с увеличением длины проводника, так как увеличивается количество препятствий на пути потока электронов.

Типичные значения ρ для разных материалов приведены в первом столбце табл. 26.2. (Реальные значения зависят от чистоты вещества, термической обработки, температуры и других факторов.)

Таблица 26.2.
Удельное сопротивление и температурный коэффициент сопротивления (ТКС) (при 20 °С)
Веществоρ ,Ом·м ТКС α ,°C -1
Проводники
Серебро1,59·10 -80,0061
Медь1,68·10 -80,0068
Алюминий2,65·10 -80,00429
Вольфрам5,6·10 -80,0045
Железо9,71·10 -80,00651
Платина10,6·10 -80,003927
Ртуть98·10 -80,0009
Нихром (сплав Ni, Fe, Сг)100·10 -80,0004
Полупроводники 1)
Углерод (графит)(3-60)·10 -5-0,0005
Германий(1-500)·10 -5-0,05
Кремний0,1 — 60-0,07
Диэлектрики
Стекло10 9 — 10 12
Резина твердая10 13 — 10 15
1) Реальные значения сильно зависят от наличия даже малого количества примесей.

Самым низким удельным сопротивлением обладает серебро, которое оказывается, таким образом, наилучшим проводником; однако оно дорого. Немногим уступает серебру медь; ясно, почему провода чаще всего изготовляют из меди.

Удельное сопротивление алюминия выше, чем у меди, однако он имеет гораздо меньшую плотность, и в некоторых случаях ему отдают предпочтение (например, в линиях электропередач), поскольку сопротивление проводов из алюминия той же массы оказывается меньше, чем у медных. Часто пользуются величиной, обратной удельному сопротивлению:

σ = 1/ρ (26.5)

σ называемой удельной проводимостью. Удельная проводимость измеряется в единицах (Ом·м) -1 .

Удельное сопротивление вещества зависит от температуры. Как правило, сопротивление металлов возрастает с температурой. Этому не следует удивляться: с повышением температуры атомы движутся быстрее, их расположение становится менее упорядоченным, и можно ожидать, что они будут сильнее мешать движению потока электронов. В узких диапазонах изменения температуры удельное сопротивление металла увеличивается с температурой практически линейно:

где ρ T — удельное сопротивление при температуре Т , ρ 0 — удельное сопротивление при стандартной температуре Т 0 , а α — температурный коэффициент сопротивления (ТКС). Значения а приведены в табл. 26.2. Заметим, что у полупроводников ТКС может быть отрицательным. Это очевидно, поскольку с ростом температуры увеличивается число свободных электронов и они улучшают проводящие свойства вещества. Таким образом, сопротивление полупроводника с повышением температуры может уменьшаться (хотя и не всегда).

Значения а зависят от температуры, поэтому следует обращать внимание на диапазон температур, в пределах которого справедливо данное значение (например, по справочнику физических величин). Если диапазон изменения температуры окажется широким, то линейность будет нарушаться, и вместо (26.6) надо использовать выражение, содержащее члены, которые зависят от второй и третьей степеней температуры:

ρ T = ρ 0 (1+αТ + + βТ 2 + γТ 3),

где коэффициенты β и γ обычно очень малы (мы положили Т 0 = 0°С), но при больших Т вклад этих членов становится существенным.

При очень низких температурах удельное сопротивление некоторых металлов, а также сплавов и соединений падает в пределах точности современных измерений до нуля. Это свойство называют сверхпроводимостью; впервые его наблюдал нидерландский физик Гейке Камер-линг-Оннес (1853-1926) в 1911 г. при охлаждении ртути ниже 4,2 К. При этой температуре электрическое сопротивление ртути внезапно падало до нуля.

Сверхпроводники переходят в сверхпроводящее состояние ниже температуры перехода, составляющей обычно несколько градусов Кельвина (чуть выше абсолютного нуля). Наблюдался электрический ток в сверхпроводящем кольце, который практически не ослабевал в отсутствие напряжения в течение нескольких лет.

В последние годы сверхпроводимость интенсивно исследуется с целью выяснить ее механизм и найти материалы, обладающие сверхпроводимостью при более высоких температурах, чтобы уменьшить стоимость и неудобства, обусловленные необходимостью охлаждения до очень низких температур. Первую успешную теорию сверхпроводимости создали Бардин, Купер и Шриффер в 1957 г. Сверхпроводники уже используются в больших магнитах, где магнитное поле создается электрическим током (см. гл. 28), что значительно снижает расход электроэнергии. Разумеется, для поддержания сверхпроводника при низкой температуре тоже затрачивается энергия.

Замечания и предложения принимаются и приветствуются!

Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов. Оно меньше только у драгоценных металлов (серебра и золота) и зависит от разных факторов.

Что такое электрический ток

На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.

Определение. Электрический ток – это направленное движение заряженных частиц.

Удельное сопротивление

Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:

p=(R*S)/l .

Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

  • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
  • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
  • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.

Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

Проводимость и электросопротивление

Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

R=(p*l )/S.

Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:

Проводимость жидкостей

Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

Электросопротивление проводов

Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.

Выбор сечения кабеля

Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

Выбор по допустимому нагреву

При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.

Допустимые потери напряжения

Кроме нагрева, при прохождении электрического тока по проводам происходит уменьшение напряжения возле нагрузки. Эту величину можно рассчитать по закону Ома:

Справка. По нормам ПУЭ оно должно составлять не более 5% или в сети 220В – не больше 11В.

Поэтому, чем длиннее кабель, тем больше должно быть его сечение. Определить его можно по таблицам или при помощи онлайн-калькулятора. В отличие от выбора сечения по допустимому нагреву, потери напряжения не зависят от условий прокладки и материала изоляции.

В сети 220В напряжение подаётся по двум проводам: фазному и нулевому, поэтому расчёт производится по двойной длине кабеля. В кабеле из предыдущего примера оно составит U=I*R=30A*2*0.074Ом=4,44В. Это немного, но при длине 25 метров получается 11,1В – предельно допустимая величина, придётся увеличивать сечение.

Электросопротивление других металлов

Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:

  • Железо. Удельное сопротивление стали выше, но она прочнее, чем медь и алюминий. Стальные жилы вплетаются в кабеля, предназначенные для прокладки по воздуху. Сопротивление железа слишком велико для передачи электроэнергии, поэтому при расчёте сечения жилы не учитываются. Кроме того, оно более тугоплавкое, и из него изготавливаются вывода для подключения нагревателей в электропечах большой мощности;
  • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Они обладают низкой проводимостью и тугоплавкостью. Из этих сплавов изготавливаются проволочные резисторы и нагреватели;
  • Вольфрам. Его электросопротивление велико, но это тугоплавкий металл (3422 °C). Из него изготавливаются нити накала в электролампах и электроды для аргонно-дуговой сварки;
  • Константан и манганин (медь, никель и марганец). Удельное сопротивление этих проводников не меняется при изменениях температуры. Применяются в претензионных приборах для изготовления резисторов;
  • Драгоценные металлы – золото и серебро. Обладают самой высокой удельной проводимостью, но из-за большой цены их применение ограничено.

Индуктивное сопротивление

Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте. В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода. Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.

Теплопроводность

63

9007 9007 34,7000
Материал Теплопроводность
(кал / сек) / (см 2 C / см)
Теплопроводность
(Вт / м K) *
Алмаз 1000
Серебро 1,01 406,0
Медь 0,99 385,0
Золото 314
Латунь… 109,0
Алюминий 0,50 205,0
Железо 0,163 79,5
Сталь 50,2
Меркурий 8,3
Лед 0,005 1,6
Стекло обычное 0,0025 0.8
Бетон 0,002 0,8
Вода при 20 ° C 0,0014 0,6
Асбест 0,0004 0,08
7 900000057
0,08
Стекловолокно 0,00015 0,04
Кирпич изоляционный 0,15
Кирпич красный 0,6
Пробковая плита 0,00011 0,04
Войлок 0,0001 0,04
Каменная вата ) 0,033
Полиуретан 0,02
Дерево 0,0001 0,12-0,04
Воздух при 0 ° C 0,024
Гелий (20 ° C) 0,138
Водород (20 ° C) 0,172
Азот (20 ° C) 0,0234
Кислород (20 ° C) 0,0238
Аэрогель кремнезема 0,003

* Большая часть от Янга, Хью Д., Университетская физика, 7-е изд.Таблица 15-5. Значения для аэрогеля алмаза и диоксида кремния из Справочника по химии и физике CRC.

Обратите внимание, что 1 (кал / сек) / (см 2 C / см) = 419 Вт / м K. Имея это в виду, два приведенных выше столбца не всегда совпадают. Все значения взяты из опубликованных таблиц, но не могут считаться достоверными.

Значение 0,02 Вт / мК для полиуретана может быть принято как номинальное значение, которое определяет пенополиуретан как один из лучших изоляторов. NIST опубликовал программу численного приближения для расчета теплопроводности полиуретана на сайте http: // cryogenics.nist.gov/NewFiles/Polyurethane.html. Их расчет для полиуретана, наполненного фреоном, плотностью 1,99 фунт / фут 3 при 20 ° C дает теплопроводность 0,022 Вт / мК. Расчет для полиуретана с наполнителем CO 2 плотностью 2,00 фунт / фут 3 дает 0,035 Вт / мК.

Индекс

Таблицы

Каталожный номер
Young
Ch 15.

Электропроводность

Электропроводность

Электропроводность — мера легкость, с которой электрический заряд или тепло могут проходить через материал.А проводник — это материал, который дает очень небольшое сопротивление потоку электрический ток или тепловая энергия. Материалы классифицируются как металлы, полупроводники и изоляторы. Металлы — самые проводящие и изоляторы. (керамика, дерево, пластик) наименее проводящие.
Электропроводность говорит нам, насколько хорошо материал позволяет электричеству проходить через него.Многие люди думают о медных проводах как о чем-то, что имеет отличные электрические характеристики. проводимость.
Теплопроводность говорит нам, с какой легкостью тепловая энергия (тепло для большинства целей) может перемещаться по материалу. Некоторые материалы, такие как металлы, позволяют теплу перемещаться через них довольно быстро. Представьте, что одной рукой вы касаетесь кусок металла, а с другой — кусок дерева.Какой материал становится холоднее? Если бы вы сказали «металл», вы были бы правы. Но, Фактически, оба материала имеют одинаковую температуру. Это относительное теплопроводность. Металл обладает более высокой теплопередачей или термической способностью. проводимость, чем у дерева, позволяя теплу от руки уходить быстрее. Если вы хотите, чтобы что-то оставалось холодным, лучше всего это завернуть во что-нибудь который не обладает высокой теплопередачей или высокой теплопроводностью, это был бы изолятор.Керамика и полимеры обычно являются хорошими изоляторами, но вы должны помнить, что полимеры обычно имеют очень низкую температуру плавления. Это означает, что если вы разрабатываете что-то, что сильно нагревается, полимер может расплавиться в зависимости от температуры плавления.

Серебро имеет самую высокую электропроводность из всех металлов. Фактически, серебро определяет проводимость — все другие металлы сравниваются с Это.По шкале от 0 до 100 серебро занимает 100 место, медь — 97, а золото. на 76. Из-за этого свойства, а также из-за того, что он не зажигает легко, серебро обычно используется в электрических цепях и контактах. Серебро также используется в аккумуляторах, где надежность является обязательной и применяются ограничения по весу, например, для портативных хирургических инструментов, слуховых аппаратов, кардиостимуляторов и космическое путешествие.

ССЫЛКИ


http: // www.Physics4kids.com/files/elec_conduct.html
План урока для учителей о проводимости — http://www.infinitepower.org/pdf/09-Lesson-Plan.pdf


Все информация на этой странице взята из U of C — Щелкните по Кембриджскому университету значок для благодарностей.

Часто задаваемые вопросы: преимущества медных проводников перед алюминиевыми

Алюминий широко доступен и представляет собой более дешевую альтернативу меди для проводников.Спрос на медь непостоянен, и цена значительно колеблется, тогда как цена на алюминий гораздо более стабильна. Хотя алюминиевый проводник только на 61% проводит меньше медного проводника того же размера, он также в три раза легче по весу, что значительно упрощает обращение с ним. По этой причине алюминий находит предпочтение в кабелях большого размера и кабелях для воздушных линий электропередачи.

Разница в проводимости означает, что необходимо использовать алюминиевый провод гораздо большего размера, чтобы соответствовать проводимости эквивалентного медного проводника.Использование проводника большего размера имеет дополнительный эффект, заключающийся в том, что требуется большее количество изоляционного материала для надлежащего покрытия проводника, а дополнительный размер поперечного сечения кабеля может быть ограничивающим в некоторых приложениях.

Другие различия между ними включают прочность на разрыв — медь примерно в два раза превышает прочность на разрыв, чем алюминий, но стоит отметить, что, учитывая, что эквивалентный алюминиевый проводник больше и легче, он часто не требует такой же степени прочности на разрыв.Медь более теплопроводна, чем алюминий, но опять же, если учесть большие размеры проводников, различия уменьшаются. Чем лучше теплопроводность, тем лучше характеристики проводника при коротком замыкании.

В некоторых случаях могут использоваться алюминиевые проводники с медным покрытием, состоящие из алюминиевого сердечника с толстой медной оболочкой, прикрепленной к алюминию. Хотя этот тип проводов не получил широкого распространения, он сочетает в себе преимущества более легкого алюминия с более проводящей медью.Однако пластичность является пластичностью алюминия, а не улучшенными характеристиками меди. Этот тип проводника нашел некоторое преимущество в использовании коаксиальных кабелей в качестве легкого центрального проводника. Более легкий провод позволяет использовать диэлектрический материал с меньшей плотностью для лучшего затухания.

Вернуться к часто задаваемым вопросам

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Повышенная электропроводность и механические свойства термостойкой мелкозернистой медной проволоки

  • 1.

    Huang, C.Q. На контактной тросовой линии, используемой в контактной сети высокоскоростной колесно-рельсовой электрифицированной железной дороги. Китайская железная дорога. Sci. 22 , 1–5 (2001).

    CAS Google ученый

  • 2.

    Cao, M. et al. Выравнивание графена в массивной меди: наноламинированная архитектура, вдохновленная перламутром, в сочетании с обработкой на месте для улучшения механических свойств и высокой электропроводности. Углерод 117 , 65–74 (2017).

    CAS Статья Google ученый

  • 3.

    Chen, Y. et al. Изготовление на месте выращенных композитов с армированной графеном медной матрицей. Sci. Отчетность 6 , 19363 (2016).

    CAS Статья Google ученый

  • 4.

    Цзян, Р., Чжоу, X., Фанг, Q. и Лю, З. Объемные композиты медь – графен с однородной дисперсией графена и улучшенными механическими свойствами. Mater. Sci. Англ. А 654 , 124–130 (2016).

    CAS Статья Google ученый

  • 5.

    Цзян, Р., Чжоу, X. и Лю, З. Графен, нанесенный химическим способом, для повышения прочности меди на разрыв. Mater. Sci. Англ. А 679 , 323–328 (2017).

    CAS Статья Google ученый

  • 6. ​​

    Джу, Х. С., Хван, С.К., Ким, Ю. Н. и Им, Ю. Т. Влияние непрерывного гибридного процесса на механические и электрические свойства прямоугольной проволоки из чистой меди. J. Mater. Процесс. Technol. 244 , 51–61 (2017).

    Статья Google ученый

  • 7.

    Wei, K. X. et al. Влияние глубокой криогенной обработки на микроструктуру и свойства чистой меди, обработанной равноканальным угловым прессованием. Adv. Англ. Матер. 21 , 1801372 (2019).

    Статья CAS Google ученый

  • 8.

    Хабиби, А. и Кетабчи, М. Улучшенные свойства нанозернистой чистой меди за счет равноканальной угловой прокатки и пост-отжига. Mater. Des. 34 , 483–487 (2012).

    CAS Статья Google ученый

  • 9.

    Хабиби А., Кетабчи М. и Эскандарзаде М. Чистая нанозернистая медь с высокой прочностью и высокой проводимостью, полученная методом равноканальной угловой прокатки. J. Mater. Процесс. Technol. 211 , 1085–1090 (2011).

    CAS Статья Google ученый

  • 10.

    Хигера-Кобос, О. Ф. и Кабрера, Дж. М. Механическое, микроструктурное и электрическое развитие технически чистой меди, обработанной равноканальной угловой экструзией. Mater. Sci. Англ. А 571 , 103–114 (2013).

    CAS Статья Google ученый

  • 11.

    Лу, Л., Шен, Ю., Чен, X., Цянь, Л. и Лу, К. Сверхвысокая прочность и высокая электропроводность в меди. Наука 304 , 422–426 (2004).

    CAS Статья Google ученый

  • 12.

    Huang, G. et al. Подготовка и определение характеристик композитной пленки графен-Cu методом электроосаждения. Microelectron. Англ. 157 , 7–12 (2016).

    CAS Статья Google ученый

  • 13.

    Bettinali, L., Tosti, S. & Pizzuto, A. Механические и электрические свойства криообработанной куб. J. Low Temp. Phys. 174 , 64–75 (2013).

    Статья CAS Google ученый

  • 14.

    Han, K. et al. Большая прочность и высокая электрическая проводимость куб. Philos. Mag. 84 , 3705–3716 (2004).

    CAS Статья Google ученый

  • 15.

    Ким, У. Дж., Ли, К. Э. и Чой, С. Х. Механические свойства и микроструктура ультрамелкозернистой меди, полученной с помощью высокоскоростной прокатки с разным передаточным числом. Mater. Sci. Англ. А 506 , 71–79 (2009).

    Статья CAS Google ученый

  • 16.

    Чжан Ю., Ли, Ю. С., Тао, Н. Р. и Лу, К. Высокая прочность и высокая электропроводность в объемной нанозернистой меди, залитой наноразмерными двойниками. Прил. Phys. Lett. 91 , 211901 (2007).

    Статья CAS Google ученый

  • 17.

    Чжан, Ю., Тао, Н. Р. и Лу, К. Механические свойства и поведение при качении нанозернистой меди со встроенными пучками нанодвойников. Acta Mater. 56 , 2429–2440 (2008).

    CAS Статья Google ученый

  • 18.

    Таката, Н., Ли, С. Х. и Цуджи, Н. Листы из сверхмелкозернистого медного сплава, обладающие как высокой прочностью, так и высокой электропроводностью. Mater. Lett. 63 , 1757–1760 (2009).

    CAS Статья Google ученый

  • 19.

    Чжоу, X., Li, X. Y. & Lu, K. Повышенная термическая стабильность нанозернистых металлов ниже критического размера зерна. Наука 360 , 526–530 (2018).

    CAS Статья Google ученый

  • 20.

    Салдана, К., Кинг, А. Х., Чандрасекар, С. Термическая стабильность и прочность деформационных микроструктур в чистой меди. Acta Mater. 60 , 4107–4116 (2012).

    CAS Статья Google ученый

  • 21.

    Wu, B., Chen, B., Zou, Z., Liao, S. & Deng, W. Термическая стабильность ультрамелкозернистой чистой меди, полученной методом экструзии с большой деформацией. Металлы 8 , 381 (2018).

    Статья CAS Google ученый

  • 22.

    Zhang, Y., Wang, J. T., Cheng, C. & Liu, J. Сохраненная энергия и температура рекристаллизации в меди высокой чистоты после равноканального углового прессования. J. Mater. Sci. 43 , 7326–7330 (2008).

    CAS Статья Google ученый

  • 23.

    Liang, N. et al. Влияние микроструктуры на термическую стабильность ультрамелкозернистой меди, обработанной равноканальным угловым прессованием. J. Mater. Sci. 53 , 13173–13185 (2018).

    CAS Статья Google ученый

  • 24.

    Дженей, П., Губича, Дж., Юн, Э. Ю., Ким, Х. С. и Лабар, Дж. Л. Высокотемпературная термическая стабильность чистой меди и композитов медь-углеродные нанотрубки, скрепленных кручением под высоким давлением. Compos. Часть A 51 , 71–79 (2013).

    CAS Статья Google ученый

  • 25.

    Кумпманн А., Гинтер Б. и Кунце Х. Д. Термическая стабильность ультрамелкозернистых металлов и сплавов. Mater. Sci. Англ. А 168 , 165–169 (1993).

    Статья Google ученый

  • 26.

    Mao, Z. N. et al. Влияние равноканального углового прессования на микроструктуру и эволюцию текстуры холоднокатаной меди при термическом отжиге. Mater. Sci. Англ. А 674 , 186–192 (2016).

    CAS Статья Google ученый

  • 27.

    Лу, Л., Тао, Н. Р., Ван, Л. Б., Дин, Б. З. и Лу, К. Рост зерен и снятие деформации в нанокристаллической меди. J. Appl. Phys. 89 , 6408–6414 (2001).

    CAS Статья Google ученый

  • 28.

    Эндрюс, П. В., Уэст, М. Б. и Робсон, С. Р. Влияние границ зерен на удельное электрическое сопротивление поликристаллических меди и алюминия. Philos. Mag. 19 , 887–898 (1969).

    CAS Статья Google ученый

  • 29.

    Каллистер, У. Д. Материаловедение и инженерия: введение 7-е изд., 674–676 (Wiley, 2007).

  • 30.

    Лю, X. С., Чжан, Х. В. и Лу, К. Сверхтвердые и сверхстабильные наноламинированные структуры никеля, вызванные деформацией. Наука 342 , 337–340 (2013).

    CAS Статья Google ученый

  • 31.

    Wang, Y., Chen, M., Zhou, F. & Ma, E. Высокая пластичность при растяжении в наноструктурированном металле. Nature 419 , 912–915 (2002).

    CAS Статья Google ученый

  • 32.

    Лу К. Наноматериалы. Делаем прочные наноматериалы пластичными с градиентами. Наука 345 , 1455–1456 (2014).

    CAS Статья Google ученый

  • 33.

    Фанг, Т. Х., Ли, В. Л., Тао, Н. Р. и Лу, К. Выявление необычайной внутренней пластичности при растяжении в градиентной нанозернистой меди. Наука 331 , 1587–1590 (2011).

    CAS Статья Google ученый

  • 34.

    Ван, Ю. М., Ма, Э., Валиев, Р. З. и Чжу, Ю. Т. Прочные наноструктурированные металлы при криогенных температурах. Adv. Матер. 16 , 328–331 (2004).

    CAS Статья Google ученый

  • 35.

    Хуанг X., Хансен Н. и Цуджи Н. Упрочнение путем отжига и разупрочнение путем деформации в наноструктурированных металлах. Наука 312 , 249–251 (2006).

    CAS Статья Google ученый

  • 36.

    Kimura, Y., Inoue, T., Yin, F. & Tsuzaki, K. Обратная температурная зависимость ударной вязкости в стали со сверхмелкозернистой структурой. Наука 320 , 1057–1060 (2008).

    CAS Статья Google ученый

  • 37.

    Лян, Н., Чжао, Ю., Ван, Дж. И Чжу, Ю. Влияние зеренной структуры на ударную вязкость меди по Шарпи. Sci. Отчетность 7 , 44783 (2017).

    CAS Статья Google ученый

  • 38.

    Cheng, S. et al. Высокая пластичность и значительная деформация нанокристаллических сплавов нифа при динамическом нагружении. Adv. Матер. 21 , 5001–5004 (2009).

    CAS Статья Google ученый

  • 39.

    Liu, S. et al. Размягчение микроструктуры вызвало образование полос адиабатического сдвига в металлической камеди ti-23nb-0.7ta-2zr-o. J. Mater. Sci. Technol. 54 , 31–39 (2020).

    Статья Google ученый

  • 40.

    Li, J. et al. Локализация адиабатического сдвига в наноструктурированных гранецентрированных кубических металлах при одноосном сжатии. Mater. Des. 105 , 262–267 (2016).

    CAS Статья Google ученый

  • 41.

    Wei, Q. et al. Полоса адиабатического сдвига в ультрамелкозернистом материале обработана интенсивной пластической деформацией. Acta Mater. 52 , 1859–1869 (2004).

    CAS Статья Google ученый

  • 42.

    Rittel, D. & Wang, Z. G. Термомеханические аспекты разрушения сплавов am50 и ti6al4v при адиабатическом сдвиге. мех. Матер. 40 , 629–635 (2008).

    Статья Google ученый

  • 43.

    Чен, X., Хан, З., Ли, X. и Лу, К. Снижение коэффициента трения в медных сплавах со стабильными градиентными наноструктурами. Sci. Adv. 2 , e1601942 (2016).

    Статья CAS Google ученый

  • 44.

    Curry, J. F. et al. Достижение сверхнизкого износа с помощью стабильных нанокристаллических металлов. Adv. Матер. 30 , e1802026 (2018).

    Статья CAS Google ученый

  • 45.

    Huang, C.Q. Разработка контактного провода (контактного провода) для электрической тяги в Китае. Китайская железная дорога. Sci. 24 , 61–65 (2003).

    Google ученый

  • 46.

    Ян, М., Ву, Ю. К., Чен, Дж. К. и Чжоу, X. Л. Эволюция микроструктуры при изготовлении контактного провода Cu-Sn для высокоскоростной железной дороги. Adv. Матер. Res. 415 , 446–451 (2012).

    Статья CAS Google ученый

  • 47.

    Лю, К., Чжан, X., Ге, Ю., Ван, Дж. И Цуй, Дж. З. Влияние обработки и термообработки на поведение сплавов Cu-Cr-Zr при контакте с железнодорожным контактным проводом. Металл. Матер. Пер. А 37 , 3233–3238 (2006).

    Статья Google ученый

  • Продукты SuperKFC ™ из высокопрочного и высокопроводящего медного сплава || КОБЕ СТАЛЬ, ООО.

    CDA No. 19240 Характеристики оригинального KFC ™ были обновлены.

    SuperKFC ™ имеет небольшое количество железа и фосфора в химическом составе и упрочнен отложениями Fe2P в медной матрице, как и оригинальный KFC ™. Содержание железа и фосфора выше, чем в оригинале, и обеспечивает высокую прочность и высокую электропроводность в соответствии с концепцией технологической металлургии. SuperKFC ™ имеет свойства, эквивалентные C19400 или более, и низкое содержание железа по сравнению с C19400, обещая улучшение текучести, прямое соединение проводов с опорой и улучшение состояния поверхности.
    SuperKFC ™ — это сплав, который может снизить стоимость вашего производства.

    Хорошие точки

    1. Обладает высокой электрической и теплопроводностью. Имеет более высокую электропроводность, чем C19400.
    2. Обладает высокой прочностью и высокой электропроводностью. Его можно использовать для различных целей. (Темпер ЭШ)
    3. Обладает хорошей формуемостью при штамповке и травлении.
      Уменьшает загрязнение копотью за счет процесса травления или предварительного гальванического покрытия.
    4. Обладает хорошей паяемостью и пластичностью.
      Обеспечивает более высокое отражение от серебряного покрытия, необходимое для выводной рамки светодиода высокой яркости.
    5. Обладает хорошей адгезией к голой и медной проволоке. Также применимо для прямого соединения проволокой опоры без гальваники.

    Номинальный состав

    Характеристики


    Рис. Сопротивление размягчению
    SuperKFC ™

    1.Физические свойства

    Удельный вес 8,9
    Коэффициент теплового расширения
    (293 ~ 573K)
    17,5 x 10 -6 / K
    Теплопроводность (293K) 311 Вт / м. К
    (Temper H 337W / m.K)
    Удельное электрическое сопротивление (293K) 22,1 нОм · м
    (Temper H 20,3 нОм. М)
    Электропроводность (293K) 78% IACS
    (Temper H 85% IACS)
    Модуль упругости (293K) 122 ГПа

    * Выше приведены типичные характеристики.

    2. Механические свойства

    Закалка Предел прочности при растяжении
    МПа
    удлинение

    %

    Твердость по Виккерсу
    MHv: 4.9N
    H 430 ~ 530 3 мин. 130 ~ 160
    ЭШ 500 ~ 600 3 мин. 150 ~ 180

    * Указанные выше предел прочности на разрыв и твердость являются нашими стандартными спецификациями.Мы скорректируем эти спецификации по вашим запросам.

    3. 90 ° V-образное изгибание (MBR)

    Закалка Хорошо
    Way
    Плохой
    Путь
    H 0,5 1,0
    ЭШ 1,0 1,5

    * Выше приведены типичные характеристики.
    Величина незначительно меняется в зависимости от толщины образцов.

    Использование

    Выводная рамка для QFP, корпус QFN, Выносная рамка для светодиода, Внутренняя рамка для теплораспределителя и т. Д.

    Прочие

    Не используются кадмий (Cd), свинец (Pb), ртуть (Hg), шестизначный хром (Cr +6 ), полибромированный бифенил (PBB), полибромированный дифениловый эфир (PBDE), ограниченный RoHS и т. Д.

    Kobe Steel, Ltd. Бизнес передовых материалов

    Установка медного проката

    Отдел реализации плоского проката медного

    Электропроводность меди и алюминия при высоких температурах и давлениях

    PDF-версия также доступна для скачивания.

    Кто

    Люди и организации, связанные либо с созданием этой статьи, либо с ее содержанием.

    Какие

    Описательная информация, которая поможет идентифицировать эту статью.Перейдите по ссылкам ниже, чтобы найти похожие предметы в Электронной библиотеке.

    Когда

    Даты и периоды времени, связанные с этой статьей.

    Статистика использования

    Когда эта статья использовалась в последний раз?

    Взаимодействовать с этой статьей

    Вот несколько советов, что делать дальше.

    PDF-версия также доступна для скачивания.

    Ссылки, права, повторное использование

    Международная структура взаимодействия изображений

    Распечатать / Поделиться


    Печать
    Электронная почта
    Твиттер
    Facebook
    Tumblr
    Reddit

    Ссылки для роботов

    Полезные ссылки в машиночитаемом формате.

    Ключ архивных ресурсов (ARK)

    Международная структура взаимодействия изображений (IIIF)

    Форматы метаданных

    Изображений

    URL

    Статистика

    Митчелл, А.К. и Киллер, Р. Электропроводность меди и алюминия при высоких температурах и давлениях, статья, 1 января 1986 г .; Нью-Мексико. (https://digital.library.unt.edu/ark:/67531/metadc1074594/: по состоянию на 25 октября 2021 г.), Библиотеки Университета Северного Техаса, Цифровая библиотека UNT, https://digital.library.unt.edu; кредитование Департамента государственных документов библиотек ЕНТ.

    .
    Провод

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *