+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Двух- и трехпроводная проводка | sma:hem

Различие между двухпроводной и трехпроводной схемами для умного дома важно в том смысле, что некоторые умные розетки и умные выключатели устанавливаются только в трехпроводную схему, а некоторые — в двухпроводную.

В чем различие?

Разница, как несложно догадаться, в количестве проводов: в одной их два, в другой — три. Если говорить более детально, то речь идет о различиях в схеме заземления.

Нейтральные провода и заземление

Трехпроводная схема включает три провода:
(L) основной рабочий провод для поступающего с подстанции электричества под высоким напряжением («фаза», по-английски Live — «живой» провод)
(N) вспомогательный провод без напряжения, по которому в случае появления уходит обратно на подстанцию «лишний» ток (из-за отсутствия напряжения этот провод называют «нейтраль» или «ноль», а поскольку он нужен для работы сети — «рабочий ноль», по-английски Neutral)
(PE) отдельный провод без напряжения для заземления, он служит предохранителем и по нему в землю уходит внезапно появляющийся из-за неполадок ток (провод поэтому называется «земля» и «защитный ноль», а по-английски

Protective Earth — «защитная земля»).

В более старой двухпроводной схеме использовались только два провода:
(L) основной рабочий провод под высоким напряжением
(PEN) вспомогательный провод без напряжения, который использовался одновременно и как «рабочий ноль» для отвода «лишнего» тока, и как «защитный ноль» для заземления.

Вот пример трехпроводной схемы в розетке (синий ноль, зеленая земля и коричневая фаза) и двухпроводной (синий ноль, коричневая фаза).

Трех- и двухпроводная проводка в розетке

В старых домах использовали двухпроводную схему, которая называется TN-C (по-французски

terre et neutre commun — «земля и нейтраль вместе»), поскольку функции «нейтрали» и «земли» исполнял один провод (PEN). Но такая схема считается небезопасной, поскольку в случае неполадок «лишний» ток не будет иметь возможности уйти и может зарядить какие-то металлические предметы домашней обстановки. Прикосновение к таким оказавшимся под напряжением предметам может быть крайне опасно.

Трехпроводная схема считается более безопасной и применяется во всех новых домах. Нейтральный провод (N) и провод заземления (PE) разделяются уже на подстанции. Такая схема заземления называется TN-S (terre et neutre séparé — «земля и нейтраль разделены»). В некоторых старых домах, к которым от подстанции идет общий провод PEN, проводят специальный ремонт и в технических помещениях разделяют его на два, так что в квартиры приходят отдельно провод PE и отдельно провод N. Такую схему заземления называют

TN-C-S (terre et neutre commun séparé — «разделенный общий провод земля — нейтраль»).

Вот так зеленый провод заземления в прямом смысле уходит в землю.

Заземление уходит в землю

Какая проводка у меня дома?

Во-первых, нужно знать, что на сетевом оборудовании зачастую ставятся маркеры для разных проводов. В двухпроводной схеме провода называются L и PEN, в трехпроводной — L, N и PЕ.

Во-вторых, для разных проводов используется изоляция разного цвета: по российским и европейским правилам провод N — синий, провод PE — зеленый или полосатый зелено-желтый, а провод L — серый, черный или коричневый, иногда еще красный, да и вообще он может быть любого цвета кроме синего и зеленого. Правда, нужно иметь в виду, что устанавливавший провода электрик мог отступить от правил или перепутать цвета.

Вот две схемы на электрощитке: в двухпроводная синий ноль и белая фаза, в трехпроводной — синий ноль, зеленое заземление и белая фаза.

Двух- и трехпроводная проводка на щитке

Вооружившись этими знаниями, отключите дома электричество и снимите крышку любой розетки или выключателя — посмотрите, какие провода закреплены в зажимах или сколько их. Если три — значит у вас трехпроводная схема, если два — двухпроводная.

Если ориентироваться по цветам, то наличие отдельного синего и отдельного желто-зеленого проводов — обычно признак того, что заземление и нейтраль у вас дома разведены, то есть применена трехпроводная схема.

Самый верный вариант — вызвать электрика, который сможет сказать точно.

Подключение термосопротивлений

Выберите продукцию из спискаНормирующие измерительные преобразователи…НПСИ-ТП нормирующий преобразователь сигналов термопар и напряжения …НПСИ-237-ТП нормирующий преобразователь сигналов термопар и напряжения, IP65 …НПСИ-ТС нормирующий преобразователь сигналов термосопротивлений …НПСИ-237-ТС нормирующий преобразователь сигналов термосопротивлений, степень защиты IP65 …НПСИ-150-ТП1 нормирующий преобразователь сигналов термопар и напряжения …НПСИ-150-ТС1 нормирующий преобразователь сигналов резистивных датчиков и термометров сопротивления …НПСИ-110-ТП1 нормирующий преобразователь сигналов термопар и напряжения …НПСИ-110-ТС1 нормирующий преобразователь сигналов резистивных датчиков и термометров сопротивления …НПСИ-230-ПМ10 нормирующий преобразователь сигналов потенциометров и потенциометрических датчиков…НПСИ-ГРТП модуль гальванической развязки токовой петли…НПСИ-200-ГР1/ГР2 модули гальванической развязки токового сигнала (4…20) мА…НПСИ-200-ГР1.2 модуль гальванического разделения и разветвления «1 в 2» токового сигнала (4…20) мА…НПСИ-ДНТВ нормирующий измерительный преобразователь действующих значений напряжения (до 500 В) и тока с сигнализацией…НПСИ-ДНТН нормирующий измерительный преобразователь действующих значений напряжения (до 50 В) и тока с сигнализацией…НПСИ-200-ДН, НПСИ-200-ДТ нормирующие преобразователи действующих значений напряжения и тока…НПСИ-500-МС3 измерительный преобразователь параметров трёхфазной сети с интерфейсами RS-485 и USB …НПСИ-500-МС1 измерительный преобразователь параметров однофазной сети с интерфейсами RS-485 и USB …НПСИ-МС1 преобразователь мощности, действующих значений напряжения и тока, коэффициента мощности нагрузки пром. сети…НПСИ-УНТ нормирующий измерительный преобразователь унифицированных сигналов с сигнализацией…НПСИ-237-УНТ нормирующий измерительный преобразователь унифицированных сигналов с сигнализацией, степень защиты IP65 …НПСИ-ЧВ нормирующий преобразователь частоты, периода, длительности сигналов, НПСИ-ЧС — преобразователь частоты сети…ПНТ-х-х нормирующий преобразователь сигналов термопар…ПСТ-х-х нормирующий преобразователь сигналов термосопротивлений…ПНТ-a-Pro нормирующий преобразователь сигналов термопар программируемый…ПCТ-a-Pro нормирующий преобразователь сигналов термосопротивлений программируемый…ПНТ-b-Pro нормирующий преобразователь сигналов термопар программируемый…ПCТ-b-Pro нормирующий преобразователь сигналов термосопротивлений программируемыйБарьеры искробезопасности (искрозащиты)…КА5011Ех барьеры искробезопасности активные, одноканальные приёмники сигнала (4…20) мА от пассивных или активных источников, HART …КА5022Ех барьеры искробезопасности активные двухканальные приёмники сигнала (4…20) мА от пассивных источников…КА5013Ех барьеры искробезопасности активные, разветвители сигнала 1 в 2, HART, шина питания …КА5031Ех барьеры искробезопасности активные, одноканальные приёмники сигнала (4…20) мА от активных источников, HART …КА5032Ех барьеры искробезопасности активные, двухканальные приёмники сигнала (4…20) мА от активных источников, HART …КА5131Ех барьеры искробезопасности активные, одноканальные передатчики сигнала (4…20) мА от активных источников, HART …КА5132Ех барьеры искробезопасности активные, двухканальные передатчики сигнала (4…20) мА от активных источниковКонтроллеры, модули ввода-вывода…MDS CPU1000, MDS CPU1100 Программируемые логические контроллеры…MDS AIO-1 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-1/F1 Модули комбинированные функциональные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-4 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов…MDS AI-8UI Модули ввода аналоговых сигналов тока и напряжения…MDS AI-8TC Модули ввода сигналов термопар, тока и напряжения…MDS AI-8TC/I Модули ввода сигналов термопар, тока и напряжения с индивидуальной изоляцией между входами…MDS AI-3RTD Модули ввода сигналов термосопротивлений и потенциометров…MDS AO-2UI Модули вывода сигналов тока и напряжения…MDS DIO-16BD Модули ввода-вывода дискретных сигналов…MDS DIO-4/4 Модули ввода-вывода дискретных сигналов …MDS DIO-12h4/4RA Модули ввода-вывода дискретных сигналов высоковольтные…MDS DIO-8H/4RA Модули ввода-вывода дискретных сигналов высоковольтные…MDS DI-8H Модули ввода дискретных сигналов высоковольтные…MDS DO-8RС Модули вывода дискретных сигналов …MDS DO-16RA4 Модули вывода дискретных сигналов …MDS IC-USB/485 преобразователь интерфейсов USB и RS-485…MDS IC-232/485 преобразователь интерфейсов RS-232 и RS-485…I-7561 конвертер USB в RS-232/422/485…I-7510 повторитель интерфейса RS-485/RS-485…I-7520 преобразователь интерфейса RS-485/RS-232Измерители-регуляторы технологические…МЕТАКОН-6305 многофункциональный ПИД-регулятор с таймером выдержки…МЕТАКОН-4525 многоканальный ПИД-регулятор…МЕТАКОН-1005 измеритель технологических параметров, щитовой монтаж, RS-485…МЕТАКОН-1015 измеритель, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-1105 измеритель, позиционный регулятор, щитовой монтаж, RS-485…МЕТАКОН-1205 измеритель-регулятор, нормирующий преобразователь, контроллер, щитовой монтаж, RS-485…МЕТАКОН-1725 двухканальный измеритель-регулятор, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-1745 четырехканальный измеритель-регулятор, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-512/522/532/562 многоканальные измерители-регуляторы…Т-424 универсальный ПИД-регулятор…МЕТАКОН-515 быстродействующий универсальный ПИД-регулятор…МЕТАКОН-513/523/533 ПИД-регуляторы…МЕТАКОН-514/524/534 ПДД-регуляторы…МЕТАКОН-613 программные ПИД-регуляторы…МЕТАКОН-614 программные ПИД-регуляторы…СТ-562-М источник тока для ПМТ-2, ПМТ-4Регистраторы видеографические…ИНТЕГРАФ-1100 видеографический безбумажный 4/8/12/16 канальный регистратор данных …ИНТЕГРАФ-1000/1010 видеографические безбумажные 8/16 канальные регистраторы данных …ИНТЕГРАФ-3410 видеографический безбумажный регистратор-контроллер термообработки… DataBox Накопитель-архиваторСчётчики, реле времени, таймеры…ЭРКОН-1315 восьмиразрядный одноканальный счётчик импульсов, поддержка RS-485, щитовой монтаж…ЭРКОН-315 счётчик импульсов одноканальный, поддержка RS-485, щитовой монтаж…ЭРКОН-325 счетчик импульсов двухканальный, поддержка RS-485, щитовой монтаж…ЭРКОН-415 тахометр-расходомер…ЭРКОН-615 счетчик импульсов реверсивный многофункциональный, поддержка RS-485, щитовой монтаж…ЭРКОН-714 таймер астрономический…ЭРКОН-214 одноканальное реле времени, цифровая индикация, монтаж на DIN-рельс или на панель…ЭРКОН-224 двухканальное реле времени, цифровая индикация, монтаж на DIN-рельс или на панель…ЭРКОН-215 реле времени программируемое одноканальное, поддержка RS-485, щитовой монтаж, цифровая индикацияБлоки питания и коммутационные устройства…PSM-120-24 блок питания 24 В (5 А, 120 Вт)…PSM-72-24 блок питания 24 В (3 А, 72 Вт)…PSM-36-24 блок питания 24 В (1,5 А, 36 Вт)…PSL низковольтные DC/DC–преобразователи на DIN-рейку 3 и 10 Вт…PSM-4/3-24 многоканальный блок питания 24 В (4 канала по 0,125 А, 3 Вт)…PSM-2/3-24 блок питания 24 В (2 канала по 0,125 А, 3 Вт)…PSM/4R-36-24 блок питания и реле, 24 В (1,5 А, 36 Вт)…БП-24/12-0,5 блок питания 24В/12В (0,5А)…ФС-220 фильтр сетевой…БПР блок питания и реле…БКР блок коммутации реверсивный (пускатель бесконтактный реверсивный)…БР4 блок реле…PS3400.1 блок питания 24 В (40 А) …PS3200.1 блок питания 24 В (20 А)…PS3100.1 блок питания 24 В (10 А)…PS3050.1 блок питания 24 В (5 А)…PS1200.1 блок питания 24 В (20 А)…PS1100.1 блок питания 24 В (10 А)…PS1050.1 блок питания 24 В (5 А)Программное обеспечение…SetMaker конфигуратор……  История  версий…MDS Utility конфигуратор…RNet программное обеспечение…OPC-сервер для регулятров МЕТАКОН…OPC-сервер для MDS-модулей

Обычно при измерении температуры с помощью термопреобразователя сопротивления на чувствительный элемент (ЧЭ) подают стабилизированный ток возбуждения. В результате на датчике возникает разность потенциалов, пропорциональная сопротивлению, а значит, и измеряемой температуре. Таким образом, измерение температуры сводится к измерению напряжения на ЧЭ.

    Термопреобразователи сопротивления могут подключаться по следующим схемам:

      — двухпроводная;

      — трехпроводная;

      — четырехпроводная.

    Поскольку ЧЭ имеют малое номинальное сопротивление, сравнимое с сопротивлением подводящих проводов, то должны быть приняты меры по устранению влияния сопротивления подводящих проводов на измерение температуры.

 

Двухпроводная схема

    В простейшей двухпроводной схеме влияние сопротивления подводящих проводов не устраняется. Напряжение измеряется не только на ЧЭ, но и на соединительных проводах.

    Такая схема может быть использована в случае, если сопротивлением подводящих проводов (r1,r2) можно пренебречь по сравнению Rt. Дополнительная погрешность, вызванная влиянием сопротивления соединительных проводов, оценивается по формуле (r1+r2)/ Rt.

 

Трёхпроводная схема

    Влияние сопротивления соединительных проводов в трехпроводной схеме устраняется путем компенсации. Компенсация возможна, если соединительные провода одинаковы. В этом случае появляется возможность выделить отдельно напряжение на соединительных проводах и скомпенсировать его. Напряжение  Uп измеряется вольтметром с большим входным сопротивлением, поэтому ток через r2 не течет и Uп=Ur1. При равенстве  r1=r3, Ur3 =Ur1=Uп. Тогда , используя компенсацию, получаем URt = Uизм — 2 Uп. 

    Равенство сопротивлений соединительных проводов,  а также их температурных зависимостей является основным условием применимости трехпроводной схемы.

 

Четырёхпроводная схема

    В четырехпроводной схеме питание ЧЭ током возбуждения производится с помощью одних проводов, а измерение разности потенциалов на ЧЭ – с помощью других. Если измерение напряжения производится высокоомным вольтметром (ток через r2 и r3 не течет), то влияние сопротивления всех проводов полностью исключается.

    Следует учесть, что если измерительный прибор рассчитан на четырехпроводную схему, то датчик к нему можно подключить и по двухпроводной схеме. При этом дополнительная погрешность измерения, вызванная влиянием соединительных проводов, будет иметь величину порядка (r2+r3)/ Rt.

 




Схема подключения измерительного преобразователя ТСМТ, ТСПТ

 

Рис. 1 — Схемы подключения к клеммам измерительного преобразователя.

двухпроводная

а) двухпроводная

 

трехпроводная

б) трехпроводная

 

четырехпроводная

в) четырехпроводная

 

 

 

Схемы внешних измерительных цепей

 

 

Рис. 2 — Двухпроводная схема подключения термометра сопротивления

 

 

Трехпроводная схема подключения термометра сопротивления

Рис. 3 — Трехпроводная схема подключения термометра сопротивления

 

Четырехпроводная схема подключения термометра сопротивления

Рис. 4 — Четырехпроводная схема подключения термометра сопротивления

 

 

Схема подключения датчиков температуры с измерительным преобразователем

 

Рис. 5 — Схема подключения датчиков температуры с измерительным преобразователем

 

Примечание — В каждом конкретном случае схема внешних соединений первичных датчиков температуры определяется типом вторичного измерительного прибора и содержится в эксплуатационной документации вторичного измерительного прибора.

 

Подключение датчиков температуры

Подключение датчиков температуры

При использовании термопреобразователей сопротивления для измерения температуры внести дополнительную погрешность могут провода подключения датчиков, так как провода также имеют свое собственное сопротивление, которое зависит от температуры окружающей среды.
 

Термопреобразователи сопротивления подключаются по двухпроводной и по трехпроводной схеме.
 

Термопреобразователи сопротивления подключаются медными проводами, т.к. медные провода имеют низкое удельное сопротивление.
При двухпроводной схеме подключения сопротивление датчика температуры и сопротивление проводов складываются, что вносит погрешность в результат измерения:

Rизм= Rt+ r1+ r2,

где:
Rизм — измеренное сопротивление;
Rt — сопротивление датчика;
r1, r2 — сопротивления проводов подключения.

Сопротивление проводов подключения датчиков зависит от температуры, окружающей среды, поэтому эта погрешность зависит от температуры. Поэтому двухпроводную схему подключения используют только при небольшой длине проводов, в тех случаях, когда сопротивление проводов намного меньше погрешности измерительного преобразователя.
 

При удалении датчика на большие расстояния следует применять трехпроводную схему подключения. Все три провода должны быть выполнены из одного и того же медного кабеля с одинаковым сечением и длиной. Максимальная длина проводов не должна превышать 150 м.

При трехпроводной схеме подключения измерительный преобразователь по очереди измеряет сопротивление цепи «датчик+ провода подключения» (Rt+r2+r3) и цепи «провода подключения» (r1+r2), вычисляет разность этих значений и получает точное значение сопротивления датчика.
 

Иногда заказчики стараются сэкономить на стоимости проводов подключения и подключают датчики двумя проводами, даже если оборудование поддерживает трехпроводную схему подключения. Рассмотрим на примере, к чему это может привести.

Предположим, датчик температуры расположен в центре помещения, где диапазон изменения температур небольшой. Длина провода подключения составляет 20 м, удельное сопротивление провода 0,1 Ом/м, относительное изменение сопротивления меди равно примерно 0,004/°С. Сопротивление проводов подключения будет равно r1+r2 = 20*0,1+20*0,1 = 4,0 Ом при 20 °С; 3,92 Ом при 15 ° С; 4,08 Ом при 25 ° С. Это приведет к погрешности, вносимой проводами: 10,0 ° С при 20 ° С; 9,8 ° С при 15 ° С; 10,2 ° С  при 25 ° С. Если же провода или часть проводов проходят по помещению, в котором температуры не регулируется, погрешность из-за двухпроводной схемы подключения будет еще выше.
 

Как правило, приборы позволяют ввести коррекцию показаний датчика температуры, в наших приборах это называется «смещение характеристики преобразования». В вышеизложенном случае при использовании двухпроводной схемы подключения следует ввести в прибор коррекцию показаний датчика на 10 °С, но погрешность, вызванная температурными изменениями сопротивления проводов подключения, останется и составит 0,2 °С.
 

Все приборы, изготавливаемые нашим предприятием, позволяют выполнять преобразование сопротивления в температуру с погрешностью не больше 0,1°С. Это позволяет после окончания монтажа системы ввести в прибор поправки, компенсирующие как погрешность датчика, так и погрешность, вносимую проводами подключения. Для этого после окончания прокладки кабелей подключения датчиков следует выполнить сравнение показаний прибора по каждому каналу с показанием образцового термометра (см. “Проверка правильности показаний датчиков температуры” ). Полученные поправки нужно ввести в прибор и убедиться, что отклонение показаний датчиков от показаний образцового термометра не превышает 0,1 °С.

схема, монтаж, правильные настройки и советы установки

Совместная работа датчика движения и светильника повышает уровень комфорта в доме, квартире и даже офисе. Освещение включается самостоятельно в момент фиксирования человека, вошедшего в комнату. Когда комната пустует, то свет автоматически гаснет, а это дополнительная экономия электроэнергии. Чтобы провести подключение датчика движения к лампочке, в статье представлены схемы монтажа, основные правила подключения и принцип работы, которые смогут разобрать даже начинающие электрики.

Основные функции и принцип работы

Датчик движения предназначен для детектирования движущегося объекта и подачи соответствующего сигнала на контрольный орган через коммутацию электрической цепи. Работает с активной и с активно-индуктивной нагрузкой в цепи.

Если замечено в контролируемой зоне движение, запускается цепочка процесса определения освещенности (если данную функцию поддерживает датчик). При показаниях ниже установленного порога срабатывания, контакты замыкаются, ток подводится до лампы и светильник загорается.

По этому принципу сенсор готов работать в темное и светлое время суток. Порог срабатывания выставляется регуляторами в диапазоне 3-2000 Лк.

Но датчик движения может работать по другому принципу: улавливание электромагнитных колебаний волн в инфракрасном спектре. При этом часто у датчиков есть регулируемая задержка на включение при обнаружении движения

Режим выдержки выставляется с помощью поворота регулятора. При этом задержка на срабатывание может быть у всех разной: от 10 секунд до 15 минут.

При этом покупать готовое изделие в виде светильника с датчиком не нужно. Достаточно приобрести подходящий на эту роль сенсор и включить его в схему электрической цепи.

Двухпроводное подключение датчика движения

Не зависимо от конструкции, датчики движения по способу подключения делятся на двухпроводные и трехпроводные.

По конструкции двухпроводные обычно размещают в подрозетники. Основные элементы для подключения:

  1. Автоматический выключатель электроприборов от сети 220В (обычно расположен в распределительном щите).
  2. Распределительная коробка (обычно утапливаемая в стене/потолке).
  3. Датчик движения.
  4. Светильник.

Подсоединение сенсора такое точно, как и одноклавишного выключателя для искусственного освещения. То есть фазу, по которой будет пускаться ток, необходимо подвести к датчику, а через него пустить дальше на светильник. При этом рекомендуется сделать монтаж на отдельном контуре, а устанавливать на общем освещении.

Монтаж

Процесс установки происходит так:

  1. Заведите трехжильный кабель ВВГнг-Ls 3*1,5 мм2 с автоматического выключателя щитка в распределительный короб. Промаркируйте жилы для удобства: L (фаза), N (рабочий нуль), нулевой защитный или земля (PE).
  2. Двухжильный провод (удлинитель) подведите с другой стороны в распредкоробку, соединив предварительно с датчиком с другой стороны через клемниками.
  3. Рекомендуется размещать датчик движения (если это подрозетник) на уровне 1,2 – 2 метра от уровня пола.
  4. Такие сенсоры не следует путать с настенными, что размещают при входе, в коридорах или же в подъездах многоэтажного здания. Те что используются для освещения обычно устанавливают под потолок возле дверей.
  5. Уровень обзора не должен перекрываться движущимися объектами (открытые двери или занавески).
  6. Кабель от светильника тоже заведите в распределительный короб. Соединяйте сперва ноли питания + светильник. Затем заземление первого и второго кабеля вместе.
  7. Фазу (L) с автоматического выключателя соединяйте с первой жилой. Вторую жилу подключите к фазе (L) светильника. Для качественного и эстетичного подключения рекомендуется использовать клеммы Wago.
  8. Подключение сенсора в подрозетнике проиходит по схеме: первая жила (что идет с автомата) подключается в гнездо с обозначением (L).
  9. Вторая жила заводится в гнездо с маркировкой «нагрузка».
  10. Подключенный датчик прячьте в подрозетник и надевайте корпус конструкции.

Настройка

Электрическое подключение завершено. Теперь на передней панели следует настроить датчик:

  1. Прокрутите первый регулятор для установки в режим авто.
  2. Второй регулятор отвечает за чувствительность к свету. Для активации датчика только в темное время суток, поверните регулятор на нужное количество градусов влево.
  3. Таймер отключения освещения при отсутствии движения в контролируемой зоне. Диапазон времени обычно указан характеристиках устройства, в инструкции по эксплуатации.

Готово. В распредщитке переведите автоматический выключатель в положение «включен» и проверяйте только что выполненную работу.

Преимущества

Среди положительных моментов данной схемы можно выделить:

  • Простую установку и пошаговую настройку;
  • Универсальность;
  • Автоматическое включение света без монтажа дополнительных включателей;
  • Взаимозаменяемость с одноклавишным выключателем.

Недостатки

Существенный минус двухпроводного датчика – плохое взаимодействие со светодиодными и энергосберегающими лампами. Последние могут достаточно сильно мерцать, что кроме дискомфорта увеличивает возможность быстрого перегорания.

Трехпроводная схема подключения датчика движения

Датчики с тремя клеммами обычно используются при конструкции типа ИК-сенсор. Довольно распространенной компанией производителем недорогих инфракрасных датчиков движения является IEK. Без особых проблем можно найти хорошие изделия на Алиэкспресс.

Изделия подороже выполнены по аналогичному принципу, схема подключения светильника с датчиком аналогична для модели датчика от любого производителя. Устройства должны иметь степень защиты IP44 от проникновения твердых объектов более 1 мм и капель влаги. Если же датчик движение нужно вынести за пределы дома, то установка возможно только под козырек.

Если желаете защитить прибор от дождя и снега, ищите модель с пылевлагозащитой IP65 и с температурным режимом для вашего климата. Большинство ИК-сенсоров могут работать только до минус 20 градусов Цельсия.

Для подключения трехпроводного ИК-сенсора движения заводится полноценная фаза и ноль. Для правильной расстановки понадобятся все те же основные 4 элемента:

  1. Автоматический выключатель (что в распредщитке).
  2. Распредкоробка (в которой основной монтаж).
  3. Датчик (к нему подведен провод из распредкоробки).
  4. Светильник (второй провод из распредкоробки).

Соединение датчика тремя проводами будет проводится с заводом в распределительный короб трех кабелей:

  1. От автомата три жилы: L (фаза), N (рабочий нуль), нулевой защитный или земля (PE).
  2. На светильник три жилы, если корпус осветительного прибора из метала.
  3. Три жилы на датчик.

Как подключить датчик движения к лампочке с использованием трех жил, детально рассмотрено на схеме.

Нули (N) собираются в одну точку (как в случае с предыдущей схемой). Земля с автоматического выключателя тоже подключается к земле светильника (нулевой привод или PE). На датчик движения с тремя клеммами подается теперь фаза-ноль:

  • Две вводных – для питания 220В, обычно подписаны как L (фаза) и N (ноль).
  • Один вывод – обозначается литерой А.

Монтаж

Для установки трехжильного датчика движения:

  1. Открутите два самореза в корпусе. Клеммы находятся под задней крышкой.
  2. Некоторые модели уже выводятся из корпуса тремя проводами разного цвета. По цвету можно определить, что он значит: земля (А) красный, ноль (N) синий, фаза (L) коричневый. Но если крышка открывается без особых потуг, рекомендуется убедится в правильности определенной маркировки лично, глядя на надписи рядом с клеммами.
  3. Упрощенная схема подключения датчика движения к лампочке выглядит таким вот образом:
  4. Немного наглядности вот на этом рисунке.
  5. Можно обойтись без распредкоробки для соединения проводов и все жилы завести прямо в короб датчика, если внутри достаточно просторно и есть собственный клеммник. Фазу-ноль с одного кабеля подали, а с другого фазу-ноль вывели.
  6. Выходит упрощенная, но такая же трехпроводная схема, только без распределительного короба.

Настройка и регулировка чувствительности

После успешного подключения светильника с датчиком движения нужно правильно выставить его параметры:

  1. На обратной стороне корпуса найдите основные регуляторы. LUX с позициями месяца и солнца отвечает за срабатывание в зависимости от освещенности. Нужно чтобы датчик включался в комнате с окном только когда будет пасмурно или зайдет солнце? Выкрутите регулятор в сторону луны.
  2. Вторым регулятором выставляйте время выключения. Задержку можно выставить с нескольких секунд до 5-10 минут.
  3. Угол поворота всей сферы позволяет регулировать детектирование животных.

Преимущества и нюансы использования

Чтобы на животных не реагировал датчик, не поворачивайте головку сенсора вниз к полу. Выставите его так, чтобы он захватывал движения на уровне головы (плеч) всех жителей дома. Обычно на этом уровне захват животных не происходит.

Если же нужно, чтобы датчик временно не срабатывал, то головку его направьте в потолок. Таким образом захват перемещения невозможен. Захват движения датчиком зависит от угла наклона. В реалиях максимальное расстояние достигает 9 метров. Но по паспорту может быть выше.

Датчик для детектирования применяет ИК-лучи. Если двигаться от луча к лучу, то устройство замечает активность и реагирует. Когда проходишь прямо на луч, чувствительность сенсора минимальна и прибор может не сразу на вас среагировать.

По этой причине установка датчиков движения проводится не прямо над дверным проемом, а немного сбоку. Например, в углу комнаты.

 

Недостатки

Минусом трехпроводной схемы подключения датчика движения к лампе является отсутствие включения света принудительно. Если датчик по каким-либо причинам придет в неисправность, начнутся проблемы с корректной его работой. Чтобы этого избежать, рекомендуется в схему добавить выключатель.

Схема включения датчика движения с выключателем

Данная схема считается универсальной, потому как в ней применим одноклавишный выключатель.

Так как у выключателя два провода, а у датчика три, есть прекрасный для этого способ – параллельное подключение:

  • Фазу от автоматического питания заведите одновременно на выключатель и датчик (клеммы Wago в помощь).
  • Второй провод с выключателя с одной клавишей присоедините к выходному проводнику с датчика (вновь с помощью клемм Wago).

 

Данная схема позволит включать и выключать освещение в комнате вне зависимости от работы датчика движения. Даже если он временно поломается, вы не останетесь без освещения в нужный час.

Последовательное подключение (разрыв фазы происходит до датчика) в данной схеме имеет существенный изъян – полное обесточивание датчика движения сбрасывает его первоначальные настройки, к которым он возвращается в течение 20 секунд. Представьте себе ситуацию, что вы включили свет, стоите в темноте, машете руками перед сенсором, а он никак не реагирует на эти движения. Комфорт от такого гаджета улетучивается мгновенно.

Подключение трехпроводного датчика к двум проводам

Достаточно частый вопрос: можно ли трехпроводной датчик подключить не параллельно с выключателем, а вместо одноклавишного выключателя. По сути, убрать из схемы и допустить в разрыв фазы, как в случае с двухпроводной схемой.

Теоретически можно и с некоторыми светильниками этот фокус действительно сработает. Но для этого потребуется дополнительно:

  • Диод VDI 1N4007;
  • Конденсатор 2.2 МКФ на 400В.

Диод нужно установить между двух клемм A-выход с датчика и там, где подключается ноль N. Сам же конденсатор необходимо припаять параллельно лампочке в светильнике. По схеме выходит, что на датчик приходит одна фаза, заходит на контакт L и выходит с контакта N. Выход А на вид остается не подключенным.

Схема пользуется популярностью у жильцов домов, где проложен двухжильный силовой кабель и что-либо менять в этом направлении не хочется.

Недостатки

Минусы следующие:

  1. Не работает со всеми подряд светодиодными лампами.
  2. Пульсация может быть настолько высокой, что вызовет достаточный дискомфорт, создав дополнительную нагрузку на глаза.
  3. Добавлять какую-либо еще нагрузку в схему нельзя, потому как больше здесь ничего не заработает.
  4. Максимальная мощность данного освещения — 80Вт.

Схема с двумя датчиками

Если необходимо освещать длинную, Г-образную или иного вида комнату, нужно будет установить несколько датчиков для захвата движения. Чтобы не использовать лишние метры кабелей, подключайте оба устройства по параллельной схеме.

В данной схеме количество подключаемых датчиков не ограничивается.

Работает это по такому принципу:

  • Ступили на порог длинного коридора с угловым поворотом и свет автоматически загорелся.
  • Дошли до зоны активации второго сенсора – освещение не прекратилось.
  • Повернули на 90 градусов и ваше движение поймал третий датчик. Освещение по-прежнему продолжается.
  • Покинув коридор полностью, освещение прекращается.

Схема с пускателем или контактором

Предыдущие схемы подключения расщипаны на нагрузку в пределах одного киловатта. Но существует альтернативный вид освещения с мощными нагрузками, например, дуговые натриевые трубчатые лампы. Или большая нагрузка необходима для запуска вентиляторов в вытяжке вместе с освещением.

В данном случае применяется схема с пускателем (нагрузка проходит через контакты пускателя). А Сенсор-ИК в этой схеме управляет катушкой контактора.

Выходной контакт с датчика под напряжением запитает катушку. Нули объединяются в один общий.

Неполадки в работе или ошибки подключения

В качестве неполадок в работе датчиков движения выделяются:

  1. Подключение фазы и ноля. По логике работы прибора ему все равно где будет подключена ноль и фаза. А вот по соображениям безопасности разрыв должен находится именно на проводнике, подведенного к фазе. Аналогию такого включения можно привести с патроном для лампы.
  2. Ложные срабатывания. Возможны при неправильном расположении сенсоров, установку вблизи теплых или нагревательных элементов, монтаж на улице, недалеко от листьев дерева или иных посторонних факторов.
  3. Безосновательное включение сразу же после деактивации. Если на фотореле датчика направлен светильник или другой излучающий свет прибор, это и послужит такому поведению устройства. Недалеко размещенный светильник с лампой накаливания, которая при выключении затухает не сразу. Сенсор может уловить ИК волны и запустить цепочку активации освещения. Не исключены случаи бесконечного цикла активации по ИК-волнам.
  4. Монтаж датчика движения на стену, хотя по паспорту он потолочный. Не спроста в технических характеристиках указан вариант крепления (стена/потолок). Это связано с устройством диаграмм. У таких устройств разный угол обзора и как следствие, возникают проблемы при неправильной установке.
  5. Блики и потоки воздуха. Такие факторы как блики и сильные потоки воздуха заставляют реагировать ИК-сенсор. Если с бликами похожая ситуация рассмотрена в третьем пункте, то с ветром дела обстоят иначе. Не рекомендуется установка с направлением на окна, сплит-системы, на улице, где гуляет сильный сквозняк.
  6. Трещины или появление загрязнения на чувствительном элементе, при подключении к прожектору. Этим элементов в датчике служит линза Фрекеля. Она нужна для фокусировки ИК-излучения с помощью, расположенных внутри вогнутых сегментных зеркал. Если загрязнения много или спереди появится трещина, это значит, что прибор неверно работает.

Заключение

В статье рассмотрен вопрос, как подсоединить датчик движения к лампочке с применением различных схем. Простым и универсальным является подключение датчика с двумя клеммами. Но чтобы добиться беспроблемного освещения с применением светодиодных и энергосберегающих лампочек, рекомендуется использовать датчики с тремя клеммами и подключать по трехпроводной схеме соединения.

Если же трехпроводную схему дополнить параллельным соединением однокнопочного выключателя, можно вне зависимости от работы датчика включать и выключать искусственный свет в комнате вручную.

Однофазная и трехфазная электрическая сеть

 

Вступление

Здравствуй Уважаемый читатель сайта Elesant.ru. Электрический ток «доставляется» до потребителя по высоковольтным линиям электропередач. Электрический ток линий электропередач имеет высокое напряжение и напрямую не может использоваться потребителями. Для повседневного использования электрического тока доставленного ЛЭП его напряжение нужно понизить.

Для этого возле потребителей устанавливаются специальные трансформаторные подстанции. Трансформаторные подстанции понижают высоковольтное напряжение до номинальных значений пригодных для использования. Остановимся немного на подстанциях.

Трансформаторная подстанция

Трансформаторные подстанции это электроустановка, предназначенная для приема, преобразования и распределения электроэнергии от линий электропередач.

Состоят подстанции из понижающего трансформатора, распределительного устройства (РУ) и устройств управления.

По способу строительства и расположения подстанции подразделяются на пристроенные, встроенные, внутрецеховые. Для загорода наиболее распространены мачтовые и столбовые подстанции.

Основным элементом подстанции является понижающий трансформатор. Понижающие трансформаторы могут быть трехфазные и однофазные. Однофазные трансформаторы используются в комплексе с трехфазными трансформаторами и в основном в сельской местности.

Понижается напряжение в трансформаторах до номинального рабочего напряжения 380 или 220 вольт. Называются эти напряжения линейным и фазным соответственно. А питание потребителей называется соответственно трехфазным и однофазным. Рассмотрим виды питания потребителей подробнее.

Однофазное электрическое питание

Однофазное электропитание запитывает потребителя от одной фазной линии и линии нулевого рабочего провода. Линии для однофазного питания называют однофазными электрическими сетями. Номинальное рабочее напряжение однофазных электрических сетей составляет 220 вольт.

Сами однофазные сети тоже можно разделить в зависимости от рабочих проводников.

Однофазная двухпроводная сеть

В однофазных двухпроводных сетях для электропитания используются два провода: фазного(L) и нулевого (N). Такая электрическая сеть не предусматривает заземление электроприборов. Двухпроводная электрическая сеть была да и остается самой распространенной в старом жилом фонде.

Если у вас дома проводка выполнена проводами с алюминиевыми жилами, скорее всего у вас двухпроводная электрическая сеть.

Пример схемы: однофазная двухпроводная сеть в квартире

odnofaznaja dvuchprovodnaj provodka

Однофазная трехпроводная сеть

В однофазных трехпроводных сетях используются три провода: фазного(L), нулевого (N) и защитного, заземляющего. Третий заземляющий провод предназначен для дополнительной защиты человека от поражений электрическим током. Соединение заземляющего провода с корпусами электроприборов (заземление), позволяет отключать электропитание при замыкании фазного провода на корпус прибора (короткого фазного замыкания). Обозначается PE.

Заземление защищает не только человека от поражений электротоком, но и спасает сами электроприборы от перегораний.

Пример схемы:однофазная трехпроводная сеть в квартире

odnofaznaja trechprovodnaj provodka

Трехфазное электрическое питание

При трехфазном питании в электрощит квартиры или ВРУ дома заводится три питающие фазы(L1;L2;L3) и нулевой рабочий проводник(N). Номинальное рабочее напряжение между любыми фазными проводами составляет 380 вольт. Напряжение между любым фазным проводом и рабочим нулем составляет 220 вольт. От электрощита проводка, распределяется по квартире или дому, согласно схеме электропроводки, обеспечивая 220 вольтовое или з80 вольтовое питание для электроприборов.

При расчете трехфазной электросети важно правильно распределить нагрузку между тремя фазами. Неравномерное распределение нагрузки между фазами приведут к перекосу фаз, сильный перекос фаз приведет к аварийной ситуации вплоть до обгорания одной из фаз.

Распределить трехфазное питание по квартире или дому можно электрокабелями с четырьмя или пятью проводами

Трехфазная четырехпроводная электрическая сеть

При четырехпроводной электропроводки электропитание происходит от трех фазных проводов и рабочего нуля. От электрощитка или распределительной коробки проводка распределяется по розеткам и светильникам двумя проводами: каждым фазным и нулевым(L1-N; L2-N; L3-N).Напряжением 220 вольт. На схемах фазы могут обозначаться А, В, С.

Пример схемы: трехфазная четырехпроводная сеть в квартире

trechfaznaja chetyrechprovodnaj provodka

Трехфазная пятипроводная электрическая сеть

В трехфазной пятипроводной электрической сети «появляется» пятый заземляющий провод, выполняющий защитные функции. Обозначается (PE)

Важно! Во всех трехфазных сетях важно равномерное распределение нагрузки (потребляемой мощности) между фазами. Опредилять нагрузку сети при трехфазном питании нельзя по основному закону электротехники, зокону Ома. Для расчетов нужно учитывать коэффициент мощности(cosф) и коэффициент спроса (Кспроса). Обычно для квартир cosф=0,90-0,93;Кспроса=0,8. Значение 0,8 принимается, если потребителей более 5.

Пример схемы:трехфазная пятипроводная сеть в квартире

trechfaznaja pjatiprovodnaj provodka

Нормативные ссылки

Правила Устройства Электроустановок(ПУЭ),издание 7.

Другие статьи раздела: Электрические сети

 

 

Устройство и схемы подключения ТЭН. Часть 2

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с трубчатыми электрическими нагревателями (ТЭН). В первой части мы рассмотрели устройство и включение нагревателей в однофазную электрическую сеть, а в этой части рассмотрим включение нагревателей в трехфазную сеть.

3. Схемы включения ТЭН в трехфазную сеть.

Для включения в трехфазную электрическую сеть применяют ТЭНы с рабочим напряжением 220 и 380 В. Нагреватели с рабочим напряжением 220 В включают по схеме «звезда», а нагреватели с напряжением 380 В включают по схеме «звезда» и «треугольник».

3.1. Схемы соединения звездой.

Рассмотрим схему соединения звездой, составленную из трех нагревателей.
На вывод 2 каждого нагревателя подается соответствующая фаза. Выводы 1 соединены вместе и образуют общую точку, называемую нулевой или нейтральной, и такая схема соединения нагрузки называется трехпроводной.

Соединение трех тэн звездой

Включение по трехпроводной схеме используется, когда нагреватели или любая другая нагрузка рассчитаны на рабочее напряжение 380 В. На рисунке ниже показана монтажная схема трехпроводного включения нагревателей в трехфазную электрическую сеть, где подача и отключение напряжения осуществляется трехполюсным автоматическим выключателем.

Включение тэн по трехпроводной схеме

В этой схеме на правые выводы нагревателей подаются соответствующие фазы А, В и С, а левые выводы соединены в нулевую точку. Между нулевой точкой и правыми выводами нагревателей напряжение составляет 220 В.

Помимо трехпроводной схемы существует четырехпроводная, которая предполагает включение в трехфазную сеть нагрузки с рабочим напряжением 220 В. При таком включении нулевую точку нагрузки соединяют с нулевой точкой источника напряжения.

Четырехпроводная схема включения тэн

В этой схеме на правые выводы нагревателей подается соответствующая фаза, а левые выводы соединены в одну точку, которая подключена к нулевой шине источника напряжения. Между нулевой точкой и выводами нагревателей напряжение составляет 220 В.

Если необходимо, чтобы нагрузка полностью отключалась от электрической сети, то применяют автоматы «3+N» или «3Р+N», у которых включаются и отключаются все четыре силовых контакта.

Четырехпроводное включение тэн

3.2. Схемы соединения треугольником.

При соединении треугольником выводы нагревателей соединяют последовательно друг с другом. Рассмотрим схему включения трех нагревателей: вывод 1 нагревателя №1 соединяется с выводом 1 нагревателя №2; вывод 2 нагревателя №2 соединяется с выводом 2 нагревателя №3; вывод 2 нагревателя №1 соединяется с выводом 1 нагревателя №3. В итоге получилось три плеча – «а», «б», «с».

Соединение тэн треугольником

Теперь на каждое плечо подаем фазу: на плечо «а» фазу А, на плечо «в» фазу В, ну и на плечо «с» фазу С.

Соединение треугольником

3.3. Схема «нагреватель — термореле — контактор».

Рассмотрим пример схемы регулирования температуры.
Данная схема составлена из трехполюсного автоматического выключателя, контактора, термореле и трех нагревателей, включенных звездой.

Фазы А, В и С от выходных клемм автомата поступают на вход силовых контактов контактора и постоянно дежурят на них. К выходным силовым контактам контактора подключены левые выводы ТЭНов, а правые выводы соединены вместе и образуют нулевую точку, подключенную к нулевой шине.

С выходной клеммы автомата фаза А поступает на клемму питания термореле А1 и перемычкой перебрасывается на левый вывод контакта К1 и постоянно дежурит на нем. Правый вывод контакта К1 соединен с выводом А1 катушки контактора.

Ноль N с нулевой шины поступает на вывод А2 катушки контактора и перемычкой перебрасывается на питающую клемму А2 термореле. Датчик температуры подключается к клеммам Т1 и Т2 термореле.

Схема регулятора температуры с помощью трех тэн

В исходном состоянии, когда температура окружающей среды выше заданного значения, контакт реле К1 разомкнут, контактор обесточен и его силовые контакты разомкнуты. При опускании температуры ниже заданного значения от датчика приходит сигнал и реле замыкает контакт К1. Через замкнутый контакт К1 фаза А поступает на вывод А1 катушки контактора, контактор срабатывает и его силовые контакты замыкаются. Фазы А, В и С поступают на соответствующие выводы нагревателей и нагреватели начинают греться.

При достижении заданной температуры от датчика опять приходит сигнал и реле дает команду на размыкание контакта К1. Контакт К1 размыкается и подача фазы А на вывод А1 катушки контактора прекращается. Силовые контакты размыкаются и подача напряжения на нагреватели прекращается.

Следующий вариант схемы включения нагревателей отличается лишь применением трехполюсного автомата с отключающимися тремя фазными и нулевым силовыми контактами.

Включение тэн в трехфазную сеть

Чтобы не нагружать силовую клемму автомата необходимо предусмотреть нулевую шинку, на которой будут собираться все нули. Шинку устанавливают рядом с элементами схемы, и уже от нее тянут нулевой проводник к четвертой клемме автоматического выключателя.

При подключении ТЭН в трехфазную сеть, для равномерного распределения нагрузки по фазам, необходимо учитывать общую мощность нагрузки по каждой фазе, которая должна быть одинаковой.

Вот мы и рассмотрели две основные схемы соединения нагревателей применяемых в трехфазной электрической сети.

Теперь нам только осталось рассмотреть возможные неисправности и способы проверки ТЭН.
На этом пока закончим.
Удачи!

Как подключить трехфазный кВтч? Установка 3-х фазного счетчика энергии.

Как подключить трехфазный счетчик энергии кВтч? (3-фазный, 4-проводный счетчик энергии)

Установка трехфазного счетчика электроэнергии

Сегодня мы покажем, как подключить и установить трехфазный счетчик электроэнергии кВт / ч (трехфазный или Многофазный (, 3-фазный, 4-проводной, ) (цифровой или аналоговый счетчик энергии) от источника питания до главной распределительной платы?

Ниже приведено подключение 3-фазного (трехфазного или многофазного (3-фазного, 4 Провод)) Счетчик кВтч (цифровой или аналоговый счетчик энергии) от источника питания до главного распределительного щита.

How To Wire a 3-Phase kWh meter? Installation of 3-Phase Energy Meter. How To Wire a 3-Phase kWh meter? Installation of 3-Phase Energy Meter. Как подключить трехфазный счетчик кВт

Ниже приведено наиболее частое внутреннее соединение трехфазного счетчика электроэнергии .

how to install a three phase kWH or Energy meter how to install a three phase kWH or Energy meter

Вот еще один живой пример трехфазного счетчика энергии, который был установлен на главном полюсе источника питания.

how to wire 3phase energy meter how to wire 3phase energy meter

how to wire a 3-phase kwh meter? how to wire a 3-phase kwh meter? Как установить трехфазный счетчик энергии кВтч?

На приведенных выше графиках и диаграммах

R = КРАСНЫЙ провод фазы / под напряжением от напряжения источника питания

Y = ЖЕЛТЫЙ провод фазы / под напряжением от источника питания

B = СИНЯЯ фаза / напряжение Провод от источника напряжения питания

Линия или ВХОД = Входная фаза / напряжение или нейтраль от источника питания напряжения

OUT = Выходящая фаза / напряжение или нейтраль к главной главной распределительной плате.

Предупреждение : этот пример показывает наиболее распространенную используемую схему в мире, но в некоторых областях также есть различия. В разных странах используются RYB , ABC (старый стандарт) или UVW (более новый стандарт) и, возможно, другие (например, цветовые коды электропроводки ) и являются эквивалентными. Настройка может отличаться для других типов кВтч или счетчиков энергии в разных местах по всему миру. Для безопасности. Пожалуйста, обратитесь к поставщику услуг и услуг для подтверждения типа подключения перед установкой.

Вам также может быть интересно прочитать в

.
двухсторонний переключатель — как управлять одной лампой из двух или трех мест?

Двухстороннее коммутационное соединение — электрические схемы

Что такое двухстороннее коммутация?

Двухстороннее коммутационное соединение используется для управления электрическими приборами и оборудованием, например, вентилятором, точками освещения и т. Д. Из разных мест с помощью двухходовых переключателей. Наиболее распространенное использование двухпозиционного коммутационного соединения — это лестничная разводка, где световая точка может управляться из двух, трех или даже многих мест.Независимо от текущего положения двухстороннего переключателя (ВКЛ или ВЫКЛ), подключенное устройство, например лампочка, может быть включено / выключено нажатием кнопки.

Двухсторонний или трехсторонний переключатель?

Двусторонний выключатель или трехсторонний выключатель : «Трехсторонний» — это термин для Северной Америки (США) для этого типа выключателя, используемый в следующем учебном пособии. Большинство англоязычных стран (Великобритания / ЕС) называют их «двусторонними». Термин для пары проводов, соединяющих два переключателя, также варьируется: «стропы» для британцев и «путешественники» для США.

Пожалуйста, не убивайте меня, чтобы упомянуть об этом 2-сторонний коммутатор вместо 3-сторонний коммутатор , поскольку все, что мы использовали, — это одно и то же для конкретной цели.

Конструкция и работа 2-полосного коммутатора

2-позиционный коммутатор

также известен как однополюсный двухполюсный (SPDT). Основная конструкция и принцип работы двухпозиционного переключателя показаны на (рис. 1) ниже.

Construction & operation of two way SPST (Single Pole Double Through) Switch Construction & operation of two way SPST (Single Pole Double Through) Switch Конструкция и эксплуатация двухполюсного SPDT (однополюсного двухпроходного) переключателя

Как подключить 2-сторонний коммутатор

Ниже приведена схематическая схема подключения (рис. 2), которая показывает, как подключить 2-сторонний коммутатор. переключать и управлять лампочкой из двух разных мест.

Staircase wiring diagram - How to control a lamp from two different places by two 2 way switches Staircase wiring diagram - How to control a lamp from two different places by two 2 way switches

Примечание:

  • Этой же цели можно достичь, используя также следующее двустороннее переключающее соединение на рис. 3.
  • Подключите провод заземления к подключенному электрическому устройству, а также к выключателям в соответствии с электрическими правилами в вашем регионе.

Как управлять светом из двух мест с помощью двухпозиционного переключателя?

Следующее двухстороннее коммутационное соединение может использоваться для той же цели, что упомянута выше на рис. 1 i.е. управлять точкой освещения из двух разных мест с помощью двухпозиционных переключателей

2 way light switching 2 way light switching

Как управлять одной лампой из трех мест с помощью двухпозиционных переключателей?

На рис. 4 схема подключения показывает, как управлять точкой освещения из трех разных мест с помощью двухпозиционных переключателей и промежуточного переключателя.

How to Control a bulb from three places by using two 2 way switches and intermediate switch How to Control a bulb from three places by using two 2 way switches and intermediate switch

На рис. 5 показано одно и то же соединение для управления световой точкой из трех мест с использованием разных символов.

How to Control a light point from three different places by using two 2 way switches and intermediate switch How to Control a light point from three different places by using two 2 way switches and intermediate switch

Двухстороннее переключение для управления освещением из двух мест в лестнице

Как мы уже говорили выше, наиболее распространенное использование двухсторонних выключателей — это управление точкой света из разных мест, таких как верхний и нижний, то есть нижний входная дверь и верхняя дверь. Эта схема показана ниже:

Staircase wiring circuit diagram - How to control a lamp from two different places by two 2-way switches? Staircase wiring circuit diagram - How to control a lamp from two different places by two 2-way switches?

Как управлять источником света из шести мест

Ниже приведена схема подключения, которая показывает, как управлять точкой освещения из шести различных мест с помощью двух переключателей и четыре промежуточных коммутатора.Обратите внимание, что вы можете контролировать еще больше лампочек, добавив больше промежуточных переключателей в середине цепи. Staircase wiring circuit diagram - How to control a lamp from two different places by two 2-way switches? Staircase wiring circuit diagram - How to control a lamp from two different places by two 2-way switches?

Применение двухсторонней коммутации

  • Используется для управления электрооборудованием и приборами из двух, трех или даже более разных мест путем добавления дополнительных промежуточных выключателей.
  • Он также используется в проводных соединениях лестниц, где световая точка может управляться из двух или более разных мест.
  • Используется в помещениях большой площади с двумя или более входными и выходными дверями и воротами.
  • Основная цель двухсторонней коммутации заключается в управлении электрическими приборами, устройствами или оборудованием переменного или постоянного тока, особенно в точках освещения, из двух мест.

Вы также можете прочитать:

.
Подключение трехпозиционного переключателя: схема подключения

Подключение трехпозиционного переключателя

Подключение трехпозиционного переключателя освещения не является сложной задачей … в конце концов, необходимо выполнить всего три соединения. Сделать их в нужном месте немного сложнее, но все же в пределах возможностей большинства домовладельцев, если кто-то покажет им, как это сделать. Вот где понимание схемы соединений может помочь.

Во-первых, что такое трехсторонний переключатель?

Если вы хотите иметь возможность управлять освещением из двух разных мест (например, вы хотите иметь возможность включать лестничные огни как наверху, так и внизу), это то, что электрики называют «трехпозиционный переключатель».»

Трудно ли подключить трехпозиционный переключатель?

Заменить выключатель совсем не сложно: просто следите за тем, как вы отсоединяете старый, а затем снова ставьте провода на новом выключателе освещения в том же положении. Проблемы могут возникнуть, когда добавляется дополнительный переключатель или если вы забыли, какой провод прошел. Вот тогда-то и становится необходимо понять немного больше о том, как работает трехпозиционный переключатель и как читать схему соединений.

Что мне нужно знать перед тем, как начать?

Если вы знаете, какова цель каждого провода, задача станет намного проще.Эта статья объяснит все, что вам нужно знать для подключения трехпозиционного переключателя, с объяснением схем подключения и общих методов подключения.

А как насчет четырехпозиционных переключателей?

Прочтите Как подключить 4-позиционный переключатель , чтобы получить инструкции и схемы подключения 4-сторонних переключателей.

Идентификация винтовых клемм по цвету

Что такое зеленый клеммный винт?

Маленькая зеленая винтовая клемма внизу — это клемма заземления.Все новые выключатели должны иметь заземление, но некоторые старые не имеют.

Что такое темный винтовой зажим?

Одна из трех винтовых клемм будет другого цвета, обычно темнее. Это общий терминал.

Какие латунные винты?

Две латунные винтовые клеммы являются клеммами путешественника.

Идентификация проводов по цвету

Что такое зеленый провод?

Зеленый или неизолированный (медный) провод заземления всегда идет к клемме заземления.

Что такое белый провод?

Белый провод нейтральный. Вы свяжете все нейтрали с помощью «проволочной гайки» или скрученного пластикового соединителя.

Что такое черный провод?

Черный провод всегда «горячий», если только вся цепь не отключена на панели автоматического выключателя.

Примечание о цветах проводов: Национальный электротехнический кодекс требует, чтобы каждый нейтральный провод был окрашен в белый цвет, а провода заземления — в зеленый.Только нейтральные провода могут быть белого цвета, но код делает исключение для белых проводов в кабеле, которые не используются для нейтрали. Эти провода должны быть окрашены в черный цвет с помощью волшебного маркера или каким-либо другим способом. Многие электрики сделают это, но многие этого не сделают, и это может затруднить устранение неисправностей в будущем и может стать угрозой безопасности для всех, кто работает в системе. Я призываю вас потратить несколько секунд, необходимых для окраски этих не нейтральных проводов.

Цвета, показанные на этих электрических схемах, являются обычными цветными обозначениями и только .Не все электрики используют один и тот же цветовой код (кроме нейтральных и заземляющих), поэтому провода могут быть разных цветов.

Определение всех частей трехстороннего выключателя света

Термины «путешественник» и «общий» уже объяснены, но в этой статье будут использоваться другие термины, которые также нуждаются в некотором объяснении.

  • Кабель . Термин «кабель» относится к комбинации двух или более проводов, связанных вместе, обычно в оболочке из изоляционного материала.Каждый провод изолирован отдельно, за исключением возможного заземления. Заземляющий провод может быть изолирован зеленым или без изоляции (медный) без изоляции.
  • Мощность в . Кабель питания — это тот кабель, который в конечном итоге заканчивается на панели автоматического выключателя или блоке предохранителей. Это кабель, который обеспечивает питание для системы освещения.
  • Нейтральный. Это белый провод, содержащийся в кабеле питания. Он не заканчивается и не подключается к какому-либо переключателю, хотя может присутствовать в распределительной коробке и заканчиваться гайкой, которая соединяет его с другим нейтральным проводом.
  • Земля. Заземленный провод в каждой коробке выключателя или светильника. Он либо окрашен в зеленый цвет, либо оставлен без изоляции (медь).
  • Горячая проволока. Это второй черный провод, содержащийся в кабеле питания. Он всегда «горячий», если только вся цепь не выключена на панели выключателя.
  • Панель выключателя. Обычно называется «блок предохранителей», он может содержать как автоматические выключатели, так и предохранители. Эта панель управляет всей энергией в здании, и именно там эта энергия может быть отключена.
  • Две веревки. «Две веревки» — это обозначение кабеля, имеющего два отдельных провода и заземляющий провод. Эти провода будут окрашены в белый и черный цвета с зеленым или голым (медным) заземлением.
  • Три веревки. Три веревки — это кабель с тремя проводами плюс заземление. Обычно это белый, черный и красный цвета с дополнительной зеленой или голой (медной) поверхностью.

Описание схемы соединений

На каждой диаграмме будут показаны два трехпозиционных переключателя (но не настенный блок, в котором они содержатся), различные кабели и провода, используемые в обсуждаемой конфигурации, а также осветительная коробка и осветительная арматура.

Как проходит электричество через выключатель?

Чтобы понять схему соединений, вы должны знать, что электрический ток поступает в систему по черному проводу в кабеле питания, проходит через переключатели, через осветительный прибор и возвращается к белому проводу в кабеле питания. Если цепь где-либо разорвана (переключатель повернут неправильно, оборван провод или неисправна лампочка), ток не будет течь и лампочка не загорится. В целях обсуждения будет рассматриваться, что для каждого трехпозиционного переключателя общий терминал подключен к разъему правого путешественника в положении «вверх» и подключен к левому разъему в положении «вниз».Это не обязательно верно, однако, это просто полезно для целей обсуждения.

Внимательно прочитайте описания и сравните их с диаграммами, чтобы понять диаграммы. Каждая диаграмма будет иметь описание того, как течет ток, чтобы зажечь лампу.

Тестеры напряжения

Бесконтактный тестер напряжения является бесценным инструментом для работы с электрическими цепями. Как Fluke, так и Klein делают тестеры профессионального качества, а также доступны более дешевые.Как профессиональный электрик около 20 лет, у меня в кармане всегда есть такой, и любой, кто работает с электричеством, должен носить его с собой.

Установка выключателя освещения

После того, как правильное расположение каждого провода определено с помощью приведенной ниже схемы подключения, выключатель освещения подключается к соответствующим проводам и устанавливается в коробке переключателя освещения. Перед выполнением любых подключений убедитесь, что питание отключено!

Старые и новые переключатели:

Многие бытовые выключатели освещения имеют небольшое отверстие в задней части выключателя, в которое можно вставлять провода, а все выключатели имеют винты сбоку.На рисунке старого переключателя выше имеются отверстия и винты; другой — дорогой переключатель, в котором есть отверстия для вставки провода, но винты также должны быть затянуты. Многие переключатели имеют только винты, без отверстий. На задней части коммутатора имеется «полосовой датчик»; он показывает, сколько изоляции должно быть снято, если необходимо использовать метод подключения. Если винты должны быть использованы, необходимо удалить немного больше изоляции.

Как прикрепить провода к винтовым клеммам:

  1. Если винты должны использоваться для соединения, согните конец зачищенного провода в полукруг, используя плоскогубцы, и оберните провод вокруг винта в направлении по часовой стрелке .
  2. Крепко затяните каждый винт.
  3. Аккуратно сложите провода обратно в настенную коробку и вставьте переключатель в коробку.
  4. Обычно винт заземления опускается вниз, к полу, но его можно вставить в верхнее положение с помощью 3-стороннего и 4-стороннего переключателей.

Схема подключения № 1, питание в световом коробе

В этом примере кабель питания входит в световую коробку. Этот метод прокладки провода распространен, когда несколько осветительных приборов используют один общий выключатель, и оба переключателя находятся на одной стене.Кабели должны быть проложены в световом коробе, между двумя переключателями и от светового короба до одного из переключателей.

Позволяет следить за током, когда он зажигает лампу в светильнике:

  1. Ток входит в световой короб на черном проводе, как это всегда происходит.
  2. Этот провод соединен с белым проводом в двухжильном кабеле, который идет к первому коммутатору , блок (не коммутатор), где он соединяется с белым проводом в трехжильном кабеле и продолжается до второго коммутатора. на общем терминале.
  3. Если переключатель включен, он выйдет из переключателя на правой клемме путешественника и продолжит красный провод обратно к клемме путешественника на первом переключателе.
  4. Если этот переключатель также включен, он выйдет из этого переключателя с общей клеммы на черном проводе в двухкабельном кабеле от переключателя освещения.
  5. Продолжая вниз по этому черному проводу, электричество поступает в световую коробку, где оно идет к светильнику.
  6. Ток будет проходить через свет, выходя по белому нейтральному проводу и возвращаясь к кабелю питания.

Примечание о цвете проводов: В этом примере единственными нейтральными проводами являются белый провод в кабеле «питания» (который всегда является белым проводом) и один из двух проводов, прикрепленных к свет (тоже всегда белый). Все остальные белые провода должны быть окрашены.

,
Простое понимание соединений трехфазных трансформаторов (Delta-Delta, Wye-Wye, Delta-Wye и Wye-Delta)

Трехфазные преобразования напряжения

Трехфазные преобразования напряжения могут быть выполнены с использованием трехфазных трансформаторов, которые представляют собой отдельные устройства со всеми обмотками, построенными на одном железном сердечнике. Они также могут быть выполнены с помощью трех однофазных трансформаторов, которые подключены извне для формирования трехфазного блока.

Easy understanding of 3-phase transformer connections (Delta–Delta, Wye–Wye, Delta–Wye and Wye–Delta) Простое понимание подключений трехфазных трансформаторов — Delta – Delta, Wye – Wye, Delta – Wye и Wye – Delta (на фото: трансформатор Jefferson Electric)

Хотя трехфазные устройства обычно являются более экономичным вариантом, однофазный вариант обеспечивает большую гибкость и может быть привлекательным с точки зрения надежности и обслуживания .Если в одном месте требуется несколько одинаковых трансформаторов, однофазный вариант может включать покупку запасного блока для сокращения времени простоя в случае сбоя.

Эта практика часто наблюдается с критическими банками автотрансформаторов и повышающими трансформаторами генератора, потому что потеря трансформатора в течение длительного периода имеет очень существенные последствия.

Соединения, обсуждаемые в этой статье , будут реализованы с использованием однофазных блоков .

При подключении однофазных трансформаторов для формирования трехфазного блока необходимо тщательно соблюдать полярность обмоток. Полярность указывается с использованием точечного соглашения. Ток, возникающий в точке на первичной обмотке, будет индуцировать ток, выходящий из точки на соответствующей вторичной обмотке.

В зависимости от того, как обмотки подключены к втулкам, полярности могут быть аддитивными или вычитающими.

Двумя наиболее часто используемыми конфигурациями трехфазной обмотки являются дельта и вай , названные в честь греческой и английской буквы, каждая из которых похожа. В треугольной конфигурации три обмотки соединены друг с другом, образуя замкнутый путь.Фаза связана с каждым углом дельты.

Хотя обмотки дельты часто эксплуатируются незаземленными, ножка дельты может быть повернута по центру и заземлена, или угол дельты может быть заземлен. В конфигурации Wye один конец каждой из трех обмоток соединен для образования нейтрали. Фаза соединена с другим концом трех обмоток. Нейтраль обычно заземлена.

В следующих параграфах описываются трехфазные трансформаторы, в которых используются треугольные и треугольные соединения.

  1. Дельта-Дельта
  2. Уай-Уай
  3. Delta-Wye
  4. Wye-Delta

В следующей части этой статьи будут обсуждаться трехфазные трансформаторы, использующие разомкнутые и открытые соединения, где один из однофазных трансформаторов, составляющих трехфазный блок, опущен. Нога трансформатора с отсутствующим трансформатором называется фантомной ногой.


1. Дельта – Дельта

Дельта-дельта-трансформаторы, как показано на рисунке 1, часто используются для питания нагрузок, которые в основном трехфазные, но могут иметь небольшой однофазный компонент .

Delta-Delta Transformer Delta-Delta Transformer Рисунок 1 — Delta-Delta Transformer

Трехфазная нагрузка, как правило, является нагрузкой двигателя, тогда как однофазный компонент часто освещается и питается при низком напряжении. Однофазная нагрузка может питаться путем заземления центрального ответвления на одной из ветвей вторичной обмотки, а затем подключения однофазной нагрузки между одной из фаз на заземленной ветке и этой заземленной нейтралью.

На рисунке 2 показано соединение треугольник-треугольник.

Delta–Delta Transformer Connections Delta–Delta Transformer Connections Рисунок 2 — Соединения Delta – Delta Transformer (щелкните, чтобы развернуть диаграмму)

Диаграмма подключения слева показывает, как можно установить соединение треугольник, с тремя однофазными трансформаторами или с одним трехфазным трансформатором .

Пунктирные линии показывают контуры трансформатора. Реализация трех однофазного трансформатора может быть замечена, игнорируя внешнюю пунктирную схему и метки проходных изоляторов, показанные в той схеме, и концентрируясь на трех меньших (однофазный трансформатор) схемах.

Втулки однофазных трансформаторов соединены внешними перемычками, как показано, чтобы выполнить соединение треугольник-треугольник. В случае реализации одного трехфазного трансформатора три внутренних контура не учитываются, и перемычки между обмотками выполнены внутри бака трансформатора.Шесть вводов на схеме трехфазного трансформатора доступны для подключения.

Схематическую диаграмму в верхнем правом углу, возможно, легче проанализировать, поскольку отчетливо видны дельта-соединения.

На векторной диаграмме в нижнем правом углу показаны геометрические соотношения между цепью высокого напряжения и токами цепей низкого напряжения, а уравнения внизу в центре показывают эти соотношения математически.

По мере того как нагрузка на дельта-дельта-трансформатор становится несбалансированной, в обмотках треугольника могут циркулировать большие токи, что приводит к дисбалансу напряжения.Сбалансированная нагрузка требует выбора трех трансформаторов с одинаковыми коэффициентами напряжения и одинаковыми импедансами .

Кроме того, величина однофазной нагрузки должна поддерживаться на низком уровне, поскольку трансформатор с центральным ответвлением должен обеспечивать большую часть однофазной нагрузки. По мере увеличения однофазной нагрузки трансформатор с центральным ответвлением будет увеличивать свою нагрузку больше, чем два других трансформатора, и в конечном итоге будет перегружен.

Если один из однофазных трансформаторов в дельта-дельта-банке выходит из строя, банк может работать только с двумя трансформаторами, образующими конфигурацию открытого треугольника.Номинальное значение кВА банка снижается, но трехфазное питание все еще подается на нагрузку.

Вернуться к содержанию ↑


2. Уай – Уай

Токовые трансформаторы, как показано на рисунке 3, могут обслуживать как трехфазные, так и однофазные нагрузки. Однофазная нагрузка должна быть как можно более равномерно распределена между каждой из трех фаз и нейтралью.

Wye–Wye Transformer Wye–Wye Transformer Рисунок 3 — Уай-Уай-трансформатор

На рисунке 4 показано соединение типа «звезда-звезда» в виде трех однофазных трансформаторов или в виде одного трехфазного блока.Обе метки втулки и точки полярности показаны.

Wye–Wye Transformer Connections Diagram Wye–Wye Transformer Connections Diagram Рисунок 4 — Схема подключений Уай-Уай-трансформатора (щелкните, чтобы развернуть диаграмму)

Одной из проблем, присущих токовым трансформаторам, является распространение токов третьей гармоники и напряжений . Эти гармоники могут вызывать помехи в соседних цепях связи, а также другие проблемы качества электроэнергии.

Другая проблема состоит в том, что существует вероятность возникновения резонанса между шунтирующей емкостью цепей, подключенных к трансформатору, и намагничивающим сопротивлением трансформатора, особенно если цепи включают в себя изолированный кабель.Из-за этих проблем вай-вай-трансформаторы должны быть определены и внедрены тщательно.

Добавление третьей (третичной) обмотки, соединенной в треугольнике, устраняет многие из упомянутых проблем.

Вернуться к содержанию ↑


3. Дельта – Уай

Соединение треугольник-треугольник является наиболее часто используемым соединением трехфазного трансформатора . Вторичный соединитель позволяет распределять однофазную нагрузку между тремя фазами на нейтраль, вместо того чтобы размещать все на одной обмотке, как в четырехпроводной треугольной вторичной обмотке.

Это помогает поддерживать сбалансированную фазную нагрузку на трансформаторе и особенно важно , когда величина однофазной нагрузки становится большой . Стабильная нейтральная точка также обеспечивает хорошее заземление, позволяющее критическое демпфирование системы для предотвращения колебаний напряжения.

Если один из однофазных трансформаторов в дельта-вай-банке выходит из строя, весь банк перестает работать.

Кроме того, поскольку дельта-звёздный трансформатор вводит фазовый сдвиг на 30 ° от первичного к вторичному, как это видно по фазирующим символам на рисунке 5, он не может быть параллелен с дельта-дельта- и вай-вай-трансформаторами, которые не дают фазового сдвига.

Delta–Wye Transformer Delta–Wye Transformer Рисунок 5 — Delta – Wye Transformer

На рисунке 6 показано соединение треугольник-треугольник в виде трех однофазных трансформаторов или одного трехфазного блока. Обе метки втулки и точки полярности показаны.

Delta–Wye Transformer Connections Delta–Wye Transformer Connections Рисунок 6 — Соединения Delta – Wye Transformer

Анализ дельта-звёздного трансформатора иллюстрирует множество важных концепций, касающихся работы многофазных трансформаторов. Анализ может быть выполнен на основе напряжения или тока. Поскольку напряжение (разность потенциалов или вычитание двух векторных величин) является довольно абстрактным и трудно визуализируемым, ток (или поток заряда) будет использоваться в качестве основы для анализа, поскольку ток легко концептуализировать.

Токи, возникающие в обмотках дельта-звёздного трансформатора, показаны на рисунке 7. Обратите внимание, что стрелки указывают мгновенные направления переменного тока и согласуются с условным обозначением точки.

Delta and Wye Windings Delta and Wye Windings Рисунок 7 — Дельта-обмотки

Анализ должен начинаться в одной из двух электрических цепей, либо в цепи высокого напряжения с треугольным соединением, либо в цепи низкого напряжения с соединительным штырем.

Так как в качестве основы для анализа используется ток, в качестве начальной точки выбрана соединительная цепь, так как в цепной соединитель, токи линии (выход из трансформатора) и фазные токи (в обмотках трансформатора) ) равны.Эта связь между линейными и фазными токами упрощает анализ.

Анализ начинается с маркировки всех линейных и фазных токов. Это показано на рисунке 8.

Delta–Wye Transformer with Currents Labeled Delta–Wye Transformer with Currents Labeled Рисунок 8 — Дельта – Уай трансформатор с маркированными токами

Обратите внимание, что нижние индексы указывают линейные токи в цепи низкого напряжения, а нижние нижние индексы указывают линейные токи в цепи высокого напряжения. В цепи низкого напряжения фазные токи идентичны соответствующим линейным токам, поэтому они также обозначены I a , I b и I c .Когда обмотки трансформатора выполнены, конкретная обмотка высокого напряжения соответствует обмотке низкого напряжения, проведенной параллельно ей.

Другими словами, обмотка высокого напряжения и обмотка низкого напряжения, которые проходят параллельно друг другу, составляют однофазного трансформатора или две обмотки на одной ветви магнитного сердечника трехфазного трансформатора .

Ток фазы высокого напряжения, соответствующий I a , обозначен как I a ′ .Направление I a ′ относительно направления I a должно соответствовать пунктирному соглашению. Величина I a ′ относительно I a является обратной величиной отношения витков трансформатора «n» или

The magnitude of Ia′ The magnitude of Ia′

При анализе трансформатора на единицу, n = 1 , поэтому получается:

I а ‘ = I а

Итак,

I a ‘ = I a (на единицу)
I b’ = I b (на единицу)
I с ‘ = I с (на единицу блок)
(уравнения1)

Далее, текущий закон Кирхгофа может быть применен к каждому узлу дельты:

I A = I a ‘ — I b’ = I a — I b
I B = I b ‘ — I c’ = I 901 b — I c
I C = I c ′ — I a ′ = I c — I a
(формулы 2) 94501 902 9009

Вышеприведенные уравнения выражают токи линии цепи высокого напряжения через токи линии тока цепи низкого напряжения .В этот момент числовые значения могут быть заменены на I a , I b и I c . Учитывая, что I a , I b и I c представляют сбалансированный набор векторов , произвольные значения на единицу измерения выбраны так, чтобы представлять a-b-c упорядочение фаз :

Balanced set of phasors Balanced set of phasors формул. 3

Должно использоваться положительное чередование фаз (a-b-c) , поскольку стандарты IEEE для силовых трансформаторов (серия IEEE C57) основаны на положительном чередовании фаз.

Подставляя уравнения. 3 в уравнения 2:

Balanced set of phasors Balanced set of phasors формул. 4

Сравнение I a с I A , с разницей в √3 и угловой разницей в 30 ° очевидно .

IEEE Std. C57.12.00 определяет направление, в котором углы фазора должны изменяться от одной электрической цепи к другой. В стандартном трансформаторе дельта-звезда (или звезда-треугольник) токи и напряжения прямой последовательности со стороны высокого напряжения опережают токи и напряжения прямой последовательности со стороны низкого напряжения на 30 °.

Если вектор высокого напряжения отстает от вектора низкого напряжения, соединение считается нестандартным. Иногда требуются нестандартные соединения для соответствия фазировок в двух разных системах, которые должны быть электрически связаны, но обычно указываются стандартные соединения.

Обратите внимание, что конвенция для определения стандартного соединения требует, чтобы векторы высокого напряжения опережали векторы низкого напряжения на 30 ° . Не делается никаких ссылок на первичные или вторичные.Первичные обмотки трансформатора — это те обмотки, на которые подается напряжение. Вторичные обмотки имеют наведенное напряжение на них.

Обычно первичные обмотки — это обмотки высокого напряжения, но это не всегда так. Хорошим примером исключения является повышающий трансформатор генератора.

Вернуться к содержанию ↑


4. Уай – Дельта

Уай-дельта-трансформатор, показанный на рисунке 9, иногда используется для обеспечения нейтрали в трехпроводной системе, но также может обслуживать нагрузку от своего вторичного .

Wye–Delta Transformer Wye–Delta Transformer Рисунок 9 — Уай-дельта-трансформатор

Первичные витые обмотки обычно заземлены. Если вторичная обмотка представляет собой четырехпроводную дельту, четвертый провод, идущий от центрального ответвления на одном из плеч дельты, заземляется.

На рисунке 10 показано соединение «звезда-треугольник», либо в виде трех однофазных трансформаторов, либо в виде одного трехфазного блока. Обе метки и точки полярности показаны .

Wye–Delta Transformer Connections Wye–Delta Transformer Connections Рис. 10 — Соединения трансформатора Уай-Дельта (щелкните, чтобы развернуть диаграмму)

Вернуться к содержанию ↑

Будет продолжение…

Ссылка // Промышленное распределение электроэнергии Ральф Э.Fehr

,
Провод

Отправить ответ

avatar
  Подписаться  
Уведомление о