+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Допустимые токовые нагрузки на неизолированные провода

 

Допустимые длительно токовые нагрузки на неизолированные провода зависят от условий их экспплуатации, места их прокладки и т.д. Они определены ГОСТом 839-80 и регламентируются ПУЭ [4]. Эти данные для медных (М), алюминиевых (А) проводов, а также наиболее широко распространенных сталеалюминиевых проводов марки АС сечением от 10 до 700 мм2 приведены в таблице 4.6.

 

Таблица 4.6 Допустимые длительные токовые нагрузки на неизолированные медные (М), алюминиевые (А) и сталеалюминиевые (АС) провода, А

 

Сечение, мм2 Марка провода Вне помещений Внутри помещений Марка провода
М А М А
Вне помещений
Внутри помещений
10 АС-10/1,8 84 53 95 60
16 АС-16/2,7 111 79 133 105 102 75
25 АС-25/4,2 142 109 183 136 137 106
35 АС-35/6,2 175 135 223 170 173
130
50 АС-50/8 210 165 275 215 219 165
70 АС-70/11 265 210 337 265 268 210
95 АС-95/16 330 260 422 320 341 255
120 АС-120/19 390 313 485 375 395 300
120 АС-120/27 375 485 375 395 300
150 АС-150/19 450 365 570 440 465 355
150 АС-150/24 450 365 570 440 465 355
185 АС-185/24 520 430 650 500 540 410
185 АС-185/29 510 425 650
500
540 410
185 АС-185/43 515 650 500 540 410
240 АС-240/32 605 505 760 590 685 490
240 АС-240/39 610 505 760 590 685 490
240 АС-240/56 610 760 590 685
490
300 АС-300/39 710 600 880 680 740 570
300 АС-300/48 690 585 880 680 740 570
300 АС-300/66 680 880 680 740 570
330 АС-330/27 730
400 АС-400/22 830 713 1050 815 895 690
400 АС-400/51 825 705 1050 815 895 690
400 АС-400/64 860 1050 815 895 690
500 АС-500/27 960 830 980 820
600 АС-600/72 1050 920 1100
955
700 АС-700/86 1180 1040

 

Примечание. Длительные токовые нагрузки одинаковы для проводов марок АС, АСКС, АСК и АСКП.

какой ток выдерживает кабель ВВГ 3×1.5

Наконец-то мне удалось проверить, какие токи выдерживает силовой кабель, сечением «полтора квадрата».
Это очень важное знание для понимания, где допустимо использовать такой кабель и какими автоматами его нужно защищать.


У меня в квартире ко всем розеткам проложены кабели 1.5 мм², защищённые автоматом 16А, и мне всегда хотелось понять, насколько это допустимо.

Почти все электрики придерживаются правила «кабель 1.5 мм² годится только на свет, а для розеток нужно прокладывать 2.5 мм²».

Продвинутые электрики утверждают, что кабель 1.5 мм² необходимо защищать автоматами 10А, а кабель 2.5 мм² автоматами 16А, аргументируя это тем, что любой автоматический выключатель с характеристикой «С» выдерживает ток в 1.45 раза выше номинального до часа.

Ещё ходит байка, что 2.5 мм² на розетки начали прокладывать тогда, когда весь кабель был «поддельный», сделанный по ТУ, и его реальное сечение было существенно меньше номинального.

Уверен, что никто из этих электриков никогда не проверял реальные характеристики кабеля и не может чётко сказать, что будет с кабелем 1.5 мм², если в течение часа по нему будет идти ток 24А. А я это проверил.

Электрики исходят из цифр, приведённых в ГОСТ в ПУЭ.
ГОСТ 31996-2012 «Кабели силовые с пластмассовой изоляцией…» содержит таблицу 19 «Допустимые токовые нагрузки кабелей с медными жилами с изоляцией из поливинилхлоридных пластикатов и полимерных композиций, не содержащих галогенов».

Согласно этой таблице, допустимый ток для кабеля ВВГ 3×1.5 при прокладке на воздухе составляет 21А.

В ПУЭ 7 (Правила устройства электроустановок. Издание 7) есть таблица 1.3.4 «Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами».

Кабель ВВГ 3×1.5 правильно считать двухжильным, так как только по двум его жилам течёт ток в рабочем режиме. Согласно таблице, такой кабель выдерживает 23А при открытой прокладке и 18А при прокладке в трубе.

Для проведения эксперимента я взял пятиметровый отрезок кабеля ВВГ 3×1.5 ГОСТ (по результатам моих измерений этого кабеля его сечение составляет 1.45 мм², сопротивление километра жилы 12.1 Ом ) и подключил через него шесть тепловентиляторов, каждый из которых обеспечивал нагрузку 4 или 8 ампер.

Для контроля и измерения тока использовался измеритель мощности Atorch AT3010.

Петля кабеля была пропущена через отрезок гофротрубы.

На кабеле были закреплены три термопары (одна на оболочке кабеля, вторая непосредственно на жиле, третья в трубе между двух кабелей), подключенные к термометрам GM1312 и TM-902C.

Сначала я нагрузил кабель током 16А.

Через 30 минут температура стабилизировалась: на поверхности оболочки кабеля 34°, на жиле 33°, в гофротрубе с двумя участками кабеля под нагрузкой 42°.

Второй эксперимент — 24А. Это ток, который может проходить по кабелю до отключения автомата 16А (напомню, он может не отключаться час при превышении 1.45x, то есть до 23.2А).

Через 5 минут температура в гофре достигла 60°, через 20 минут она стабилизировалась на уровне 67° и осталась такой же и через 30 минут. Температуры на кабеле, лежащем на воздухе составили 49° и 46°.

Третий эксперимент — 31.3А. Это ток, который точно не стоит пускать через кабель 1.5 мм². 🙂

Через три минуты в гофре было 64°, через 5 минут 80°, через 10 минут 97°, через 15 минут 104°, через 20 минут 105° и температура стабилизировалась, — через 30 минут были всё те же 105° в гофре, 82° на поверхности кабеля, лежащего на воздухе, 68° на жиле.

В таблице 18 того же ГОСТ 31996-2012 указаны допустимые температуры нагрева токопроводящих жил кабелей.

Длительно допустимой считается температура 70°, предельной — 160°.

Я для себя могу сделать выводы, что 16А это лёгкий режим для кабеля 1.5 мм², при котором он почти не нагревается. 24А тяжёлый, но вполне рабочий режим. 31А экстремальный режим, при котором с кабелем ничего плохого не происходит (он не плавится, не горит, но конечно не должен работать в таком режиме). Получается, что кабель 1.5 мм² вполне можно защищать автоматом 16А с характеристикой «C» (но лучше конечно «B», чтобы он отключался быстрее при аварийной перегрузке).

Насколько это было возможно, я снял эксперимент на видео.

Я лишь провёл эксперимент и не собираюсь спорить с электриками, ПУЭ и ГОСТом. Важные для меня выводы я из этого эксперимента сделал, а вы делайте выводы сами.

© 2020, Алексей Надёжин

Нагрузка на провода и тросы контактной сети трамвая и троллейбуса

 

содержание   ..  60  61  62  63  64  65  66  67  68  69  70  ..

 

РАСЧЕТ КОНТАКТНОЙ СЕТИ ТРАМВАЕВ И ТРОЛЛЕЙБУСОВ


37.

Нагрузка на провода и тросы контактной сети трамвая и троллейбуса

На подвешенные провода и тросы действуют различные силы, определяющие их натяжение и провесы. Часть сил действует постоянно, а часть появляется только временно, в зависимости от метеорологических условий. Постоянной нагрузкой является сила тяжести контактной подвески и ее элементов, ременные нагрузки вызываются ветром и гололедом.

Целью расчета являются определение действующих усилий в конструктивных элементах (проводах, тросах, опорах) при различных метеорологических условиях и выбор соответствующих конструкций, обеспечивающих нормальный токосъем и прочность.

Нагрузка от силы тяжести контактной подвески направлена вертикально вниз и складывается из сил тяжести контактного провода, тросов и арматуры. Сила тяжести провода (троса) зависит от площади его поперечного сечения, длины и линейной плотности материала, из которого они изготовлены.

Нагрузка от силы тяжести 1 м провода может быть получена из справочных таблиц или определена по формуле

 

 

 

 

На контактный провод действует дополнительная нагрузка от установленной на нем арматуры (зажимы, струны и др.). Для простоты расчетов эту сравнительно небольшую нагрузку принимают равномерно распределенной но длине провода и определяют как частное от деления суммарной массы арматуры на длину расчетного участка.

Гололед образуется на проводах и тросах при небольших отрицательных температурах во время быстрого потепления или выпадёния переохлажденного дождя. Гололёдные образования представляют собой сплошной налет прозрачного или полупрозрачного льда или кристаллической рыхлой массы (изморозь), осаждающейся на поводах. Формы гололеда на проводе очень разнообразны.

Условно для расчетов принимают гололед в форме цилиндра, равномерно покрывающего провод по всей его поверхности и имеющего плотность 900 кг/м3.

Принимают также, что максимальный размер гололеда имеет место при температуре —5 °С.
 

 

В зависимости от толщины стенки гололеда территория СССР разделена на пять районов:

 

 

 

Если определяют нагрузку от гололеда на многопроволочных тросах, то в расчете под диаметром провода следует понимать диаметр окружности, описываемой вокруг площади сечения троса. Для контактного провода под диаметром понимают полусумму диаметра провода и его толщины.

Во время интенсивного движения на городском транспорте контактный провод разогрет, и гололед на нем не образуется. При редком движении и в ночное время возможно образование гололеда, но его толщина небольшая. В этом случае толщину стенки гололеда принимают в два раза меньше расчетной нормы.

Ветер создает нагрузку на провода, причем тем больше, чем больше его скорость. По средним статистическим данным максимальная скорость ветра наблюдается при небольших положительных температурах.

Температуру для расчетов принимают +5 °С.

Для расчетов нагрузку на провод или трос от ветра рв, кН/м, принимают условно воздействующей горизонтально и перпендикулярно к проводу, т. е. в расчет вводят наихудший случай максимального воздействия на провода:

 

 

 

 

Скорости ветра значительно возрастают на высоких насыпях, эстакадах, мостах и уменьшаются в местах, защищенных строениями, лесом, в выемках. Для участков с явно выраженным усилением ветра, по сравнению с окружающей местностью, расчетную скорость увеличивают на 12 %, а для защищенных мест уменьшают на 5 %.

Общая нагрузка при одновременном действии вертикальных сил тяжести провода с арматурой и гололедом на проводе и горизонтальной силы от действия ветра может быть определена графически (рис. 129) или вычислена по формуле .

 

 

 

При отсутствии гололеда или ветра значение общей нагрузки получим, принимая gг = О или рв = 0.

Большинство городов, расположенных в средней, равнинной части СССР, относится по гололедному и скоростному напору ветра к, району I. Дополнительные нормативные нагрузки от ветра и гололеда по сравнению с основными (от силы тяжести и натяжения

проводов) невелики и оказывают малое влияние на результаты расчета.

Для городов, расположенных в прибрежной полосе океанов и морей и других местах, отнесенных к районам с более интенсивным образованием гололеда и больших скоростных напоров ветра, следует обязательно учитывать эти дополнительные нагрузки, иначе можно получить ошибочные результаты расчета.

Зная нагрузки на единицу длины провода и тросов, можно найти зависимость между натяжением провода и стрелой его провеса. Наибольшая стрела провеса пролета подвешенного прово-да f при одинаковой высоте точек закрепления его концов будет в середине пролета (рис. 130, а).

 

 

 

 

Рис. 129. Схема к определению общей нагрузки

Рис. 130. Стрелы провеса при точках подвески на одном (а) и на разных (б) уровнях

 

 

 

Если точки закрепления находятся на разных высотах, наибольший провес будет ближе к более низкой точке подвески. Измеряя стрелу провеса от левой подвески, получим f1, от правой — f2. При одинаковой высоте точек подвешивания стрела провеса, м

 

 

 

 

 

 

 

 

 

 

 

 

 

 

содержание   ..  60  61  62  63  64  65  66  67  68  69  70  ..

 

 

Допустимые токовые нагрузки на провода, кабели и шины | Как выбрать сечение проводов и кабелей | Архивы

Страница 3 из 8

 

ВЫБОР СЕЧЕНИЙ ПРОВОДОВ И КАБЕЛЕЙ ПО УСЛОВИЮ НАГРЕВАНИЯ
Л. ДОПУСТИМЫЕ ТОКОВЫЕ НАГРУЗКИ НА ПРОВОДА, КАБЕЛИ И ШИНЫ

Электрический ток, протекающий по проводникам линий электрической сети, нагревает токоведущие жилы. Одновременно происходит охлаждение проводников путем отвода тепла в окружающую среду. Через некоторое время, если величина протекающего в проводниках тока не меняется, температура проводника достигает некоторого предельного значения, которое в дальнейшем остается неизменным.
Наибольшая допустимая температура для проводов и кабелей определяется условиями безопасности, надежности и экономичности.
Излишне высокая температура изолированного провода или кабеля служит причиной быстрого износа изоляции и сокращения срока службы проводки.
Особенно опасным является перегревание изоляции проводников в пожароопасных и взрывоопасных помещениях, где воспламенение изоляции может вызвать пожар или взрыв
Таким образом, величина токовой нагрузки на проводник заданного сечения должна быть ограничена, с тем чтобы наибольшая температура проводника не превышала определенного предела. ПУЭ устанавливают следующие наибольшие допустимые температуры при нагревании длительной токовой нагрузкой: голые провода и шины 70°С, провода и кабели с резиновой или пластмассовой изоляцией 65°С, кабели с бумажной изоляцией на напряжение до 3 000 Б 80 °С.
Допустимые токовые нагрузки зависят от сечений проводника, его конструктивного выполнения и условий охлаждения.
Б табл. П-2—П-4 приведены допустимые токовые нагрузки для изолированных проводов, кабелей с бумажной изоляцией и голых проводов. Эти таблицы составлены для проводников с алюминиевыми жилами, имеющими в настоящее время наибольшее распространение. Таблицы допустимых токовых нагрузок для проводов и кабелей других марок читатель может найти в справочниках или ПУЭ. [Л. 1, 5].
Допустимые нагрузки в указанных таблицах приведены для нормальных условий прокладки. Нормальными условиями при прокладке проводов и кабелей в воздухе считается температура воздуха +25 С, причем расстояние в свету между соседними кабелями при прокладке их внутри и вне зданий и в туннелях должно быть не менее 35 мм и при прокладке в каналах не менее 50 мм. Число прокладываемых кабелей не ограничивается. Нормальной температурой при прокладке кабелей в земле или в воде считается 15 °С. Допустимые нагрузки для кабелей, проложенных в земле, приведены при условии прокладки в траншее одного кабеля.
Пример 2. Определить допустимую нагрузку для трехжильного кабеля с алюминиевыми жилами с бумажной изоляцией сечением 95 мм2 при прокладке в земле, в воде и в воздухе.
Решение. По табл. П-3 находим для трехжильного кабеля указанного сечения допустимые нагрузки при прокладке в земле — 260. в воде — 340 и в воздухе — 90 А Допустимая нагрузка на один и тот же кабель меняется в зависимости от условий охлаждения: лучше всего кабель охлаждается при прокладке в воде, хуже — при прокладке в земле, а еще хуже — при прокладке в воздухе
Если условия прокладки проводов и кабелей отличаются от нормальных, величина допустимой нагрузки /д (А) на провод или кабель определяется с учетом поправочного коэффициента
(4)
где I д н —табличное значение допустимой нагрузки при нормальных условиях. А; Кп — поправочный коэффициент, учитывающий изменение условий охлаждения проводника.
Поправка на температуру окружающей среды. Если фактическая температура окружающей среды отличается от нормальной, вводится поправочный коэффициент Kni, величина которого определяется по табл. П-5 в зависимости от допустимой максимальной температуры проводника и фактической температуры среды.
Поправка на число кабелей, проложенных в одной траншее. При прокладке в общей траншее более одного кабеля вводится поправочный коэффициент Km, определяемый по табл. П-6.
Ненагруженные резервные кабели при этом не должны учитываться.
Поправка на повторно-кратковременный и кратковременный режим работы. Допустимые нагрузки в табл П 2, П-3 и П 4 определены при условии длительного прохождения тока по проводникам. Однако электродвигатели многих станков работают в повторно-кратко временном режиме. Двигатель работает при обработке детали, затем на время установки для обработки новой детали он останавливается. Таким образом, время работы двигателя чередуется со временем отключения. Понятно, что проводники линии, питающей двигатель с таким режимом работы, находятся в лучших условиях охлаждения по сравнению с проводниками такой же линии, несущей нагрузку без перерывов. Проводники линии с повторно-кратковременным режимом работы допускают увеличение нагрузки, учитываемое поправочным коэффициентом Клз, который определяется по формуле
(5)
где ПВ— относительная продолжительность рабочего периода, равная отношению времени включения линии к общей длительности времени включения и отключения,
(6)
где tp — длительность рабочего периода; tn — общая длительность цикла.
Необходимо отметить, что коэффициент, учитывающий увеличение допустимой нагрузки на проводник, может быть применен лишь при следующих условиях:
а)       продолжительность рабочего периода цикла повторно-кратковременного режима работы не превышает 4 мин, а продолжительность отключения — не менее 6 мин;
б)      сечение медных проводников не ниже 10 мм2 и сечение алюминиевых проводников не ниже 16 мм2.
Если условия работы проводки требуют введения нескольких поправок, то общий поправочный коэффициент определяется перемножением отдельных коэффициентов.

Провода и кабели- Допустимые нагрузки

    ПРОВОДА И КАБЕЛИ. ДОПУСТИМЫЕ НАГРУЗКИ [c.138]

    Сечение проводов и кабелей по таблицам выбирают с учетом не только нормальных, но и аварийных режимов, а также возможных неравномерностей производства ремонтов. Однако для кабелей с бумажной пропитанной изоляцией напряжением 10 кв и ниже перегрузка должна учитываться только для случаев, когда она возможна по условиям технологического процесса или режима эксплуатации кабеля. Если нагрузка кабеля не превышает 80% длительно допустимого для него тока, то на время ликвидации аварии можно допустить перегрузку данного кабеля до 130% продолжительностью не более 6 ч в сутки в течение пяти суток. [c.193]


    Площадь поперечного сечения проводника указывается не как геометрическая величина, а как электрическая действующая площадь поперечного сечения, то есть площадь поперечного сечения определяется сопротивлением проводника. Допустимая нагрузка по току и повыщение температуры кабеля зависят от его конструкции, характеристик используемых материалов, а также условий эксплуатации. Для учета требований безопасности и увеличения срока эксплуатации кабеля площадь поперечного сечения проводника должна быть выбрана так, чтобы допустимая нагрузка по току была выше, чем токовая нагрузка, как для нормальных условий, так и для условий короткого замыкания. Такая конструкция исключает нагрев кабеля выше номинальных предельных допустимых температур — рабочей и короткого замыкания. Минимальное число проводов, их диаметр и сопротивление проводника установлены в международных стандартах IE 228 и DIN VDE 0295). [c.323]

    Длительно допустимые нагрузки в а для изолированных проводов, шнуров и освинцованных кабелей с резиновой изоляцией [c.695]

    Длительно допустимые нагрузки могут определяться на основе теплового расчета, однако, в особенности для изолированных проводов и кабелей, формулы получаются сложными, и поэтому в ПУЭ даются готовые таблицы допустимых токовых нагрузок, которые получены как расчетным, так и экспериментальным путем. В ПУЭ приведены средние температуры окружающей среды, для которых составлены [c.162]

    Допустимые нагрузки на изолированные провода и кабели с алюминиевыми жилами для различных условий прокладки, а также поправочные коэффициенты на температуру воздуха даны в табл. 9.6 и в ПУЭ. В гл. 10 даны необходимые указания по выбору плавких вставок предохранителей и расцепителей автоматических выключателей. [c.163]

    Допустимые токовые нагрузки и сопротивления кабелей и проводов воздушных линий приведены в табл. 8 и 9. [c.165]

    Длительно допустимые токовые нагрузки (в А) на провода с резиновой и поливинилхлоридной изоляцией и на кабели с резиновой изоляцией в свинцовой, поливинилхлоридной или резиновой оболочках, бронированные и небронированные [c.127]

    Сечение проводов кабельных и воздушных линий выбирают по допустимому нагреву током нагрузки, потере напряжения и предельной экономической плотности тока. Кабели, кроме того, проверяют на устойчивость к термическому действию тока короткого замыкания, а воздушные линии — по механической прочности проводов, опор и габаритам [6]. [c.156]

    Описаны конструктивные элементы кабелей, проводов и шнуров, конструкции основных кабелей, проводов и шнуров, выпускаемых промышленностью, их внешние диаметры и массы. Приведены электрические и механические характеристики, а также значения напряжений при электрических испытаниях, данные о допустимых токовых нагрузках. Рекомендованы области применения кабелей и проводов, -4-е издание справочника вышло в 1979 г. [c.1]

    ДЛИТЕЛЬНО ДОПУСТИМЫЕ ТОКОВЫЕ НАГРУЗКИ НА КАБЕЛИ, ПРОВОДА И ШНУРЫ С РЕЗИНОВОЙ И ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ [c.508]

    Допустимые токи нагрузки, приведенные в табл. 29.15, действительны независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах). Допустимые длительные токи нагрузки для проводов и кабелей, проложенных в коробах или в лотках пучками, должны приниматься для проводов — по табл. 29.15, как для проводов, проложенных в трубах для кабелей — по табл. 29.16 и 29.18, как для кабелей, проложенных в воздухе. При одновременно нагруженных проводах более четырех, проложенных в трубах, коробах или лотках пучками, токи нагрузки для проводов должны приниматься по табл. 29,5, как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0,68 для 5 и 6, 0,63 для 7 — 9 и 0,6 для 10—12 проводов. Для проводов вторичных цепей снижающие коэффициенты не вводятся. [c.508]

    Длительно допустимые токовые нагрузки на кабели, провода и шнуры [c.509]

    Допустимые длительные токи нагрузки для проводов, проложенных в лотках при однородной укладке, следует принимать как для проводов, проложенных в воздухе, а при прокладке в коробах — как для одиночных проводов и кабелей, проложенных открыто с применением снижающих коэффициентов. [c.511]

    Ввиду небольшой продолжительности нагрева током к. з. для токоведущих частей допускают при этом нагреве максимальные температуры, намного превышающие длительную температуру, устанавливаемую для работы при нагрузке рабочим током ( 4). В частности, наибольшая допустимая температура для медных шин 300 для алюминиевых шин и голых проводов при тяжении менее 9,81 Н/мм 200 для остальных шин, не имеющих непосредственного соединения с аппаратами, 400, для кабелей до 10 кВ с бумажной пропитанной изоляцией 200° С. [c.43]

    Прочие факторы, воздействующие на провода при испытании (электрические, механические и другие нагрузки), а также параметры и критерии проверки зависят от типа испытываемого кабельного изделия. Например, срок службы радиочастотных кабелей с фторопластовой изоляцией в оболочке из фторопласта-4МБ определяют путем воздействия повышенных температур 200, 225 и 250° С, а кабелей в оболочке из стеклотканей — 200, 250 и 300° С. В процессе испытаний контролируют изменение основных параметров кабелей. Установлено, что такие параметры радиочастотных кабелей с фторопластовой изоляцией как емкость, волновое сопротивление, электрическая прочность и холодоустойчивость при длительном воздействии указанных температур практически не изменяются, а изменяется только затухание, возрастая с течением времени. Зависимость времени достижения предельно допустимого значения затухания, указываемого в нормативно-техническом документе, от температуры испытаний подчиняется закону Аррениуса и представлено на рис. 19. Исследования подтверждают [c.71]

    Длительно допустимые токовые нагрузки одиночных проводов и кабелей приведены в таблицах ПП. [c.54]

    Если конкретные условия среды и способы прокладки проводов и кабелей отличаются от приведенных в табл. 2-9, то длительно допустимые токовые нагрузки должны быть пересчитаны по следующей формуле  [c.54]

    Наибольшие длительно допустимые токовые нагрузки для проводов и кабелей с медными жилами принимают по таблицам нагрузок алюминиевых кабелей и проводов аналогичного вида изоляции и геометрических сечений с коэффициентом г=1.3, а алюминиевых — по таблицам нагрузок для медных проводов и кабелей с кг=0,77. [c.56]

    Простота устройства, быстрая заменяемость и сравнительная дешевизна плавких вставок обусловили их широкое применение для защиты силовых и осветительных сетей при коротких замыканиях. Правильно встроенные плавкие вставки не должны прерывать электроснабжение сети, если нагрузки не превышают допустимых пределов для проводов и кабелей этой сети. Это значит, что в нормальных условиях эксплуатации плавкие предохранители не следует нагружать выше номинального тока, на который они рассчитаны  [c.61]

    Длительно допустимый ток нагрузки проводов и кабелей в зависимости от вида защитного аппарата [c.166]

    В настоящее время проводятся подготовительные работы по организации серийного производства кабелей с изоляцией из вулканизуемого полиэтилена на напряжение ПО кВ. Эти кабели имеют конструкцию, аналогичную конструкции одножильных кабелей на напряжение 10—35 кВ, но поверх экструдированного полупроводящего экрана по изоляции наложны медная гофрированная лента и оболочка из поливинилхлоридного пластиката или из самозатухающего полиэтилена. Основные технические параметры 110-кВ кабелей приведены в табл. 9-19. Кабели предназначены для прокладки внутри помещений и в земле. Длительно допустимые токовые нагрузки кабелей приведены в табл. 9-20. [c.312]

    В правилах устройства электроустановок приведена экономическая плотность тока и допустимые нагрузки для разных типов проводов и кабелей, а также условия их прокладки. Расчетная температура воздуха принята 25°, земли — 15°. При изменении условий охлаждения кабеля против расчетных на величину токовой нагрузки (допустимой по правилам) вводят коэффициент, приведенный в таблицах правил (ПУЭ). Нри длительном максимуме нагрузки трехфазной линии Р квт) ток можно определить по формуле [c.160]

    Допустимые нагрузки определяются допустимым нагревом то-коведущих жил проводников. Прн заданной предельно допустимой температуре проводника допустимый нагрев зависит от температуры окружающей среды. В качестве последней принимают для проводов воздушных линий — среднюю по многолетним данным температуру в 13 ч самого жаркого месяца года для кабелей, проложенных в земле или воде, — среднесуточную температуру этой среды аа наиболее жаркий месяц. Эти средние многолетние данные различны для разных районов Советского Союза. Однако с целью унификации расчетов ПУЭ устанавливают в качестве исходных следующие условные температуры окружающей среды для средней полосы СССР Ч-25 С — для проводов и кабелей, прокладываемых как снаружи, так и внутри помещений +15 С — при прокладке кабелей в земле и в воде. Лишь для районов Крайнего Севера, вечной мерзлоты н местностей с тропическим климатом температуру окружающей среды следует принимать отличной от указанных значений. [c.84]

    Питающая сеть от подстанции к отдельным электродвигателям или распределительным пунктам выполняется кабелями. Область применения тех или иных способов прокладки и марок кабелей определяется в соответствии с действующими Правилами устройства электроустановок (ПУЭ) в зависимости от окружающей среды. Кабели, прокладываемые во взрывоопасных зонах, кроме зон классов В-16 и В-1г, должны иметь допустимую длительную токовую нагрузку не менее 125% номинального тока электродвигателя. Кабели напряжением 6 кВ должны быть термически устойчивыми при коротких замыканиях. Во взрывоопасных помещениях классов В-1 и В-1а допускается применять провода и кабели только с медными жилами. Во всех остальных случаях, за исключением токо-подводов к передвижным электроприемникам и электроприемникам, установленным на вибрирующих основаниях, допускается применение кабелей с алюминиевыми жилами. [c.147]

    Допустимые токовые нагрузки на изолированные провода и кабели с резиновой изоляцией приведены в табл. 7. Ток в проводнике при трехфазной индуктивной нагрузке [c.138]

    Основная область применения полиимидных пленок в настоящее время — нагревостойкая прокладочная и обмоточная электроизоляция электрических машин класса Н (180°) и более высоких классов, а также электрических кабелей. Для этих назначений особое значение приобретают наряду с термостабильностью такие качества полиимидных пленок, как высокая прочность, гибкость и непродавливаемость под сосредоточенными нагрузками при высоких температурах, обеспечиваемая при значительно меньшей, чем обычно, толщине изоляции. Технические операции с поли-имидными пленками проводятся на обычном оборудовании. Так осуществляется, например, обмотка круглых и прямоугольных медных жил электрических кабелей. Применяя для этой цели HF-пленку и прогревая изолированный кабель при 350— 400° в индукционных или обычных термопечах, получают монолитную электро- и влагозащиту высокого качества. Двухслойная обмоточная изоляция из HF-пленки общей толщиной 180 мк обеспечивает надежную работу кабеля на 15 кв. При этом резко поднимается допустимая рабочая температура кабеля, т. е. пропускаемая мощность, а вес снижается на 35—50% по сравнению с используемыми типами кабелей. Эластичность, прочность и хорошая адгезия изоляции к металлу после запечки позволяют изгибать толстые жилы под острыми углами, что особенно важно при изготовлении обмоток крупных электромашин. [c.166]

    Фактические к. п. д. и os ф при данном коэффициенте загрузки можно взять из графика П=/(Д з)и со5ф=/(/С°), построив последний по данным завода-изготовителя, который дает эти величины для Кя — 0,25, 0,5, 0,75, 1. Определив максимальную расчетную токовую нагрузку и учитывая способ прокладки проводов или кабелей и температуру окружающей среды, выбирают по таблицам допустимых нагрузок на провода и кабели (ПУЭ) наименьшее допустимое сечение проводов и кабелей. Выбранные по расчетному максимальному длительному току сечения, проверяют дополнительно по току плавкой вставки предохранителей или по уставке максимальных расцепителей автоматических выключателей. Если число часов использования максимума нагрузки более 5000 в год, то сечение кабеля выбирают по экономической плотности тока. [c.195]


Какую нагрузку может выдержать медный провод | Tze1.ru — всё об электромонтаже

При проведении капитального ремонта, как правило, меняется и электропроводка. При этом в разных помещениях или зданиях количество используемых электроприборов и их потребляемая мощность отличаются. Соответственно, использовать провод с одинаковыми характеристиками во всех случаях как минимум нелогично. О том, какую нагрузку может выдержать медный провод и как его выбрать, мы поговорим в этой статье.

Читайте также: Как делают провода

Почему медные провода лучше

Медные провода более востребованы по двум причинам:

1. Они более гибкие и спокойно выдерживают перегибы. Алюминиевые провода после двух-трех изгибов попросту ломаются.

2. При одинаковом сечении проводимость меди выше.

Почему важно правильно подобрать сечение провода

Если при подборе сечения провода вы ошибетесь в бо́льшую сторону, это может повредить только вашему кошельку. Намного хуже выбрать сечение меньше требуемого. В этом случае провод будет греться, а это может привести к короткому замыканию и даже пожару. Безопасность – вот главная причина продуманного подхода при выборе сечения провода.

Читайте также: Как определить сечение провода

Что влияет на выбор сечения провода

Можно назвать две причины, от которых зависит выбор:

1. Мощность подключенных приборов или токовая нагрузка на проводник.

2. Способ его укладки.

Медные провода отличаются количеством жил и величиной сечения

Варианты расчета сечения медного провода

Выбор сечения в зависимости от потребляемой мощности приборов

У каждого провода имеется предельное значение мощности подключенных к нему приборов, которое он способен выдержать без повреждений. Они приведены в таблице ниже:

В этой таблице показатели для двух- и трехфазной сети различаются. Дело в том, что в трехфазной сети используется не два, а три провода. Соответственно, возрастает величина тока, который по ним протекает, и мощность подключенных приборов.

Чтобы рассчитать сечение провода, нужно знать мощность всех электроприборов, которые будут использоваться в помещении. Для выполнения подсчетов можно использовать следующую формулу:

Р = Рn × К,

где Рn – суммарная потребляемая мощность электроприборов,

К – коэффициент одновременного использования электроприборов.

Коэффициент К показывает, сколько приборов в помещении может быть включено одновременно. Согласитесь, пользоваться одновременно, например, утюгом, феном и пылесосом вы вряд ли будете. Если в помещении меньше 10 розеток, коэффициент К принято считать равным 0,8 (то есть одновременно будут работать не больше 80 % имеющихся электроприборов). Если розеток больше 10, К считается равным 0,9.

Какая мощность у бытовых электроприборов

Чтобы было легче ориентироваться, приведем средние показатели мощности некоторых бытовых электроприборов:

Таким может быть результат неправильного выбора сечения медного провода
Читайте также: Короткое замыкание: что это и как его предотвратить

Этот способ можно использовать, чтобы убедиться, что сечение провода выбрано правильно. Он считается более точным, чем рассмотренный выше.

Токовая нагрузка – это величина тока, которую проводник может пропускать длительное время без повреждений. Чтобы определить значение силы тока, нужно знать мощность всех подключаемых электроприборов. Для однофазной сети при подключении бытовых электроприборов можно использовать следующую формулу:

где I – сила тока (токовая нагрузка),

P – суммарная мощность подключаемых электроприборов,

220 – напряжение сети в вольтах.

Для трехфазной сети она будет выглядеть немного иначе:

где P – суммарная мощность подключаемых бытовых электроприборов,

380 – напряжение сети в вольтах.

Значение токовой нагрузки для проводников разного сечения приведено в таблице ниже:

Влияние способа укладки на выбор сечения

Способ укладки тоже влияет на выбор сечения провода. Если они идут в земле, то выдерживают бо́льшую нагрузку, потому что грунт хорошо отводит тепло. При прокладке по воздуху теплоотвод хуже, поэтому понадобятся провода большего сечения. Если провода уложены в короба или лотки, они могут греться друг о друга. В этом случае тоже понадобится увеличить их сечение. Значения сечений провода в зависимости от способа укладки для двухфазной сети приведены в таблице ниже:

Выбор количества жил провода

В многожильном проводе окислению подвергается бо́льшая поверхность по сравнению с одножильным. Соответственно, его электропроводность ухудшается быстрее. Конечный выбор зависит от способа эксплуатации провода. Если он будет лежать неподвижно (например, в стене), то лучше использовать одножильный. Если же речь идет о частых перемещениях и перегибах (например, в случае удлинителя), то оптимальный вариант – многожильный.

Заключение

Знать нагрузку, которую способен выдержать медный провод, действительно важно. От этого зависит срок службы проводки и ее безопасность. Для удобства в таблице ниже приведены расчетные данные для различных значений потребляемой мощности и силы тока для сети 220 В:

Значение электрической линии и нагрузки

В сфере электротехники термины «линия» и «нагрузка» — это сокращенные слова, которые относятся к проводам, которые передают мощность от источника к устройству (линии), по сравнению с проводами, которые передают энергию другим устройствам дальше по цепи ( нагрузка). Ряд других более разговорных терминов также используется для описания того же самого, например входящих против исходящих проводов или восходящего потока против нисходящего .

Эти термины используются в контексте одного устройства и электрической коробки, так что провода, которые подают питание в коробку, описываются как линия , провода, восходящих проводов или входящих проводов , , в то время как провода, идущие дальше к другим устройствам, описываются как нагрузка, нисходящий поток, или исходящие провода. И эти термины относятся к местоположению устройства в цепи, поскольку провод нагрузки для одной розетки становится линией проводом для следующей розетки в цепи.

Термины «линия» и «нагрузка» имеют ряд применений в разных частях электрической системы.

Сервисный вход и главная панель

Входящее питание от коммунальной компании поступает на линию со стороны электросчетчика. Он покидает счетчик со стороны нагрузки , а затем питает линию со стороны линии разъединяющей или сервисной электрической панели. Сервисная панель также имеет соединения линии и нагрузки — линия питает главный выключатель в панели, в то время как отдельные автоматические выключатели ответвления могут рассматриваться как нагрузка по отношению к главному выключателю.

Цепи

Розетки (розетки), выключатели, осветительные приборы и другие электрические устройства обычно подключаются в виде нескольких проводов в одну цепь. Для первого устройства линия — это провод, идущий от сервисной панели к устройству, а нагрузка — это провод, идущий от первого устройства ко второму устройству, расположенному ниже по цепи. На втором устройстве линия является источником питания, поступающим от первого устройства; нагрузка — это провод, идущий к третьему устройству в цепи, и так далее.

То же значение может относиться и к самому устройству. Линия Сторона розетки — это место, где вы подключаете входящий источник питания. Сторона нагрузки — это место, где мощность покидает устройство (или электрическую коробку) и проходит по цепи.

Розетки GFCI

Линия и нагрузка имеют особое значение при подключении выходов прерывателя цепи замыкания на землю (GFCI). GFCI имеют две пары винтовых клемм для подключения проводов: одна пара обозначена LINE, а другая — LOAD.Подключение только к линейным клеммам приводит к тому, что розетка обеспечивает защиту GFCI только для этой розетки. Подключение линии и клемм нагрузки (с использованием двух электрических кабелей или двух наборов гибких проводов) обеспечивает защиту GFCI для этой розетки, а также для других стандартных розеток, расположенных ниже по потоку в той же цепи.

Другие значения словосочетаний «линия» и «нагрузка»

При подключении низковольтных цепей, например, питающих дверные звонки или ландшафтное освещение, «нагрузка» относится к частям цепи, которые находятся под полным домашним напряжением (обычно 120 вольт), чтобы отличить их от низковольтной проводки и устройств, которые используются после понижения напряжения на трансформаторе.

«Нагрузка» также является общим термином для описания потребности в электроэнергии или потребляемой мощности, которую устройство или прибор помещает в цепь. Например, в цепи освещения вы можете сложить максимальную мощность всех осветительных приборов в цепи, чтобы рассчитать «общую нагрузку» или максимальную потенциальную потребляемую мощность всех источников света.

Проводка

— самый быстрый способ определить линейный провод и провод нагрузки в многопозиционном коммутаторе

У каждого трехпозиционного переключателя есть два латунных винта , и два провода бегунка всегда идут к ним.У них также есть , один винт , черный, , имя которого common , и на них подойдут либо ваши всегда горячие , либо переключаемые провода .

Каждый 4-ходовой винт имеет два латунных винта для двух направляющих , внутрь, и два винта черных для двух направляющих , наружу. Каждый провод на 4-х стороннем пути — это путешественник.

Это означает, что во всем 3/4-проводном комплексе любого размера каждый провод является проходным, кроме двух.Они всегда трехсторонние, всегда на концах, всегда на черных винтах и ​​всегда либо , всегда горячие, или , горячие, .


Если вы любите не терять рассудок, у меня есть предложение. Я работаю в кабелепроводе с отдельными проводами любого цвета по своему выбору. Для путешественников использую 2 желтых провода *. Путешественники взаимозаменяемы, и нет необходимости отличать их друг от друга , хотя это определенно помогает отличить их от других проводов. Два идентичных провода разного цвета, идущие вместе, весьма различимы.Если вы не находитесь в кабелепроводе, вы придерживаетесь черного белого красного для всего, но вы можете пометить их цветной изолентой. Они продают 5 упаковок цветной изоленты по 3 доллара во многих магазинах. Мне нравится желтый цвет для путешественников, зеленый ** и синий для альтернативных путешественников, если рядом находятся два отдельных набора, красный — для постоянно включенных, черный — для всегда горячих, а закон уже требует, чтобы нейтральный был белым. (Но белым может быть что угодно).

* Если у меня есть несколько 3-сторонних цепей в непосредственной близости, я буду использовать фиолетовый, синий и т. Д.для остальных, опять же в парах, это весьма своеобразно.)

** Маленькие провода нельзя пометить зеленой лентой как заземление. Так что это ничего не меняет; провод еще горячий.

electric — Как подключить розетку GFCI с помощью двух черных и двух белых проводов?

Стандартная дуплексная розетка функционирует одновременно как розетка и как соединение. Он позволяет подключать к цепи устройства со шнуром и вилкой, в то же время позволяя подключать к цепи другие проводные устройства.Розетки прерывателя цепи замыкания на землю (GFCI) аналогичны, однако они обеспечивают защиту от замыкания на землю для всех подключенных устройств. Чтобы обеспечить такую ​​защиту, у розеток GFCI есть две специфические стороны.

Сторона Line розетки GFCI — это место, где подключается линия питания для подачи питания на устройство. Сторона Нагрузка розетки GFCI используется для питания других устройств, предлагая им защиту от GFCI.

Прежде чем вы сможете понять, как подключить устройство, вы должны определить, откуда идет питание и куда оно направляется.Для этого вам понадобится бесконтактный детектор напряжения и несколько коннекторов.

  • Отключите цепь с помощью автоматического выключателя или предохранителя.
  • Убедитесь, что питание отключено, используя бесконтактный детектор напряжения.
  • Выньте все провода из розетки и наденьте коннектор на каждый провод отдельно.
  • Снова включите питание на автоматическом выключателе / ​​предохранителе.
  • Осторожно переместите бесконтактный датчик напряжения около каждого провода.
  • Когда глюкометр загорится, отметьте провод как-нибудь.
  • Снова выключите прерыватель / предохранитель.

В этой процедуре только один провод должен заставить счетчик загореться. Если счетчик загорелся более чем одним проводом, обратитесь к местному лицензированному электрику.

Теперь, когда вы нашли незаземленный (горячий) провод Line , вам также необходимо найти заземленный (нейтральный) провод Line .Для этого просто проследите за проводом, отмеченным на предыдущем шаге, до места, где он входит в коробку. Вы должны заметить, что провод сгруппирован с одним или двумя другими проводами. Провод, который вы обнаружили, hot должен быть черным, и его следует сгруппировать с белым и, возможно, неизолированным или зеленым проводом. Эти провода составляют фидер Line .

Защита GFCI для последующих устройств

  • Подключите черный провод от фидера Line к латунной винтовой клемме на стороне Line розетки GFCI (розетка должна быть четко обозначена LINE), белый провод от Line к клемме с серебряным винтом на стороне Line розетки.
  • Затем подключите черный провод от другой группы проводов к латунной винтовой клемме на стороне Нагрузка розетки GFCI, а белый провод к серебряной винтовой клемме на стороне Нагрузка GFCI емкость.
  • Соедините все неизолированные / зеленые провода вместе с дополнительным кусочком неизолированного / зеленого провода (длиной около 6 дюймов), используя винтовой или обжимной соединитель.
  • Подключите другой конец дополнительного отрезка провода к зеленой (заземляющей) винтовой клемме на розетке GFCI.

После восстановления питания цепи все устройства, расположенные ниже по потоку (на стороне Нагрузка ) от розетки GFCI, будут защищены GFCI. Если это не желаемый результат, выполните следующие действия.

Нет защиты GFCI для устройства ниже по потоку

  • Подключите черный питатель Line к другому черному проводу и дополнительному отрезку черного провода (длиной около 6 дюймов) с помощью винтового соединителя.
  • Подключите другой конец дополнительной части провода к латунной винтовой клемме на стороне Line розетки GFCI.
  • Подключите белый питатель Line к другому белому проводу и дополнительному отрезку белого провода (около 6 дюймов в длину) с помощью коннектора с закручивающимся проводом.
  • Подключите другой конец дополнительного отрезка провода к серебряной винтовой клемме на стороне Line розетки GFCI.
  • Соедините все неизолированные / зеленые провода вместе с дополнительным кусочком неизолированного / зеленого провода (длиной около 6 дюймов), используя винтовой или обжимной соединитель.
  • Подключите другой конец дополнительного отрезка провода к зеленой (заземляющей) винтовой клемме на розетке GFCI.
  • Оставьте наклейку, закрывающую Нагрузка боковые клеммы розетки GFCI.

ПРЕДУПРЕЖДЕНИЕ: Если вам не хватает инструментов, знаний и / или уверенности для выполнения этой задачи, не стесняйтесь обращаться к местному лицензированному электрику.

Простая схема

Простая схема

Понимание основ работы с автомобильной электрической системой важно для ваших базовых навыков и помогает вам выявлять первопричины и устранять электрические неисправности.Следующая информация поможет вам изучить элементы электричества, определить методы понимания цепей, сопротивления, нагрузки, проверить напряжение холостого хода или доступное напряжение, а также падение напряжения.

Помните о трех элементах электричества; напряжение, сила тока и сопротивление. Напряжение (иногда называемое электродвижущей силой) — это представление электрической потенциальной энергии между двумя точками в электрической цепи, выраженное в вольтах. Подумайте о напряжении как об электрическом давлении, которое существует между двумя точками в проводнике, или о силе, которая заставляет электроны двигаться в электрической цепи.Другими словами, это давление или сила, которые заставляют электроны двигаться в определенном направлении внутри проводника. Когда электроны перемещаются из отрицательно заряженной области в положительно заряженную область, это движение электронов между атомами называется электрическим током. Электрический ток — это мера потока этих электронов через проводник или электричества, протекающего в цепи или электрической системе. Если вы подумаете о садовом шланге в качестве примера, ток — это количество воды, протекающей через шланг.Напряжение — это величина давления, под которым вода проходит через шланг.

Этот поток электронов измеряется в единицах, называемых амперами. Амперы или ампер — это единица измерения силы или скорости протекания электрического тока. Электрическое сопротивление описывает величину сопротивления протеканию тока. Чем больше значение сопротивления, тем больше он борется. Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи. Это сопротивление или противодействие тока измеряется в Ом.Один вольт — это величина давления, необходимая для того, чтобы пропустить один ампер тока через один ом сопротивления в цепи.

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ

Цепь — это законченный путь, по которому течет электричество. Основными элементами базовой электрической цепи являются: источник, нагрузка и заземление. Электричество не может течь без источника питания (батареи), нагрузки (лампочка или резистор-электрическое устройство / компонент) и замкнутого проводящего пути (соединяющих его проводов).Электрические цепи состоят из проводов, соединителей проводов, переключателей, устройств защиты цепей, реле, электрических нагрузок и заземления. Схема, показанная ниже, имеет источник питания, предохранитель, выключатель, лампу и провода, соединяющие их в петлю. Когда соединение завершено, ток течет от положительной клеммы батареи через цепь к отрицательной клемме батареи.

В замкнутой цепи напряжение источника обеспечивает электрическое давление, проталкивающее ток через цепь.Сторона источника цепи включает в себя все части цепи между положительным полюсом батареи и нагрузкой. Нагрузка — это любое устройство в цепи, которое производит свет, тепло, звук или электрическое движение при протекании тока. Нагрузка всегда имеет сопротивление и потребляет напряжение только при протекании тока. В приведенном ниже примере один конец провода от второй лампы возвращает ток в аккумулятор, поскольку он подключен к кузову или раме транспортного средства. Корпус или рама работают как заземление (то есть часть цепи, которая возвращает ток к батарее).

ТРЕБОВАНИЯ К ЦЕПИ

Полная электрическая цепь необходима для практического использования электричества. Электроны должны течь от источника питания и возвращаться к нему. Соединяя отрицательный и положительно заряженный концы источника питания с проводником, мы получаем потенциал движения электронов. Таким образом, полная цепь — это «путь» или петля, которая позволяет электричеству (току) течь. Но чтобы заставить этот контур или схему работать на нас, нам нужно добавить две вещи: источник питания (аккумулятор или генератор переменного тока) и нагрузку (пример — фары).После того, как электричество выполнило свою работу через Нагрузку, оно должно вернуться обратно к Источнику (Батареи). Если у вас где-то в этой цепи произойдет разрыв, у вас будет разрыв электрического потока. Это также известно как «разомкнутая цепь». Напряжение холостого хода измеряется при отсутствии тока в цепи.

Типы цепей

Существует три основных типа цепей: последовательные, параллельные и последовательно-параллельные. Отдельные электрические цепи обычно объединяют одно или несколько устройств сопротивления или нагрузок.Конструкция автомобильной электрической цепи будет определять, какой тип цепи используется, но все они требуют одинаковых основных компонентов для правильной работы:

1. Источник питания (аккумулятор, генератор, генератор и т. Д.) Необходим для обеспечения потока электронов (электричества).

2. Защитное устройство (предохранитель, плавкая вставка или автоматический выключатель) предотвращает повреждение цепи в случае короткого замыкания.

3. Управляющее устройство (переключатель, реле или транзистор) позволяет пользователю управлять включением или выключением цепи.

4.Нагрузочное устройство (лампа, двигатель, обмотка, резистор и т. Д.) Преобразует электричество в работу.

5. Проводник (обратный путь, проводка к земле) обеспечивает электрический путь к источнику питания и от него.

Цепи серии

Компоненты последовательной цепи соединены встык один за другим, чтобы образовалась простая петля для прохождения тока через цепь. Последовательная цепь имеет только один путь к земле, все нагрузки размещены последовательно, поэтому ток должен проходить через каждый компонент, чтобы вернуться на землю.Если в цепи есть разрыв (например, перегоревшая лампочка), вся цепь и любые другие лампочки гаснут. Если путь прерван, ток не течет, и никакая часть цепи не работает. Рождественские огни — хороший тому пример; когда гаснет одна лампочка, вся струна перестает работать.

Параллельные схемы

Параллельная цепь имеет более одного пути прохождения тока. На каждую ветвь подается одинаковое напряжение. Если сопротивление нагрузки в каждой ветви одинаково, ток в каждой ветви будет одинаковым.Если сопротивление нагрузки в каждой ветви разное, ток в каждой ветви будет разным. Компоненты параллельной цепи соединены бок о бок, поэтому для протекания тока можно выбирать пути в цепи. Если одна ветвь сломана, ток продолжит течь к другим ветвям.

В параллельной цепи ниже два или более сопротивления (R1, R2 и т. Д.) Соединены в цепь следующим образом: один конец каждого сопротивления подключен к положительной стороне цепи, а один конец подключен к отрицательной сторона.

Последовательно-параллельные схемы

Последовательно-параллельная схема включает некоторые компоненты, включенные последовательно, а другие — параллельно. Источник питания и устройства управления или защиты обычно включены последовательно; нагрузки обычно параллельны. Если последовательный участок прерывается, ток перестает течь по всей цепи. Если параллельная ветвь разорвана, ток продолжает течь в последовательной части и оставшихся ветвях.

Внутреннее освещение приборной панели — хороший пример соединения резисторов и ламп в последовательно-параллельную цепь.В этом примере, регулируя реостат, вы можете увеличить или уменьшить яркость света.

Диагностические схемы

Проблемы с электрической цепью обычно вызваны неисправным компонентом или низким или высоким сопротивлением в цепи.

Низкое сопротивление в цепи, как правило, может быть вызвано коротким замыканием компонента или замыканием на землю и, как правило, приводит к перегоранию предохранителя, плавкой вставки или автоматического выключателя.

Высокое сопротивление в цепи может быть вызвано коррозией или разрывом в цепи источника или заземления.Все, что препятствует или останавливает прохождение тока, увеличивает сопротивление цепи.

УСТРОЙСТВА ЗАЩИТЫ ЦЕПИ

Устройства защиты цепей используются для защиты проводов и разъемов от повреждения избыточным током, вызванным перегрузкой по току или коротким замыканием. Избыточный ток вызывает чрезмерное нагревание, что может вызвать «разрыв цепи» защиты цепи. Предохранители, плавкие вставки и автоматические выключатели используются в качестве устройств защиты цепей. Устройства защиты цепей доступны в различных типах, формах и определенных номинальных токах.

Предохранители

Предохранитель

A является наиболее распространенным типом устройства защиты от перегрузки по току. В электрическую цепь вставлен предохранитель, который получает такое же электрическое питание, что и защищаемая цепь. Короткое замыкание или заземление позволяет току течь на землю до того, как он достигнет нагрузки. Поэтому, когда подается слишком большой ток, превышающий номинал предохранителя, он «перегорает» или «перегорает», потому что металлический провод или плавкий элемент в предохранителе плавится. Это размыкает или прерывает цепь и предотвращает повреждение проводов, разъемов и электронных компонентов схемы перегрузкой по току.Размер металлического плавкого элемента (или плавкой вставки) определяет его номинал.

Помните, что чрезмерный ток вызывает избыточное тепло, и именно тепло, а не ток вызывает размыкание цепи защиты. Как только предохранитель «перегорел», его необходимо заменить новым. После того, как вы определили, что предохранитель перегорел, наиболее важным элементом является обеспечение замены предохранителя с той же номинальной силой тока, что и перегоревший. Максимальная нагрузка на один предохранитель не должна превышать семидесяти процентов от номинала предохранителя.Обычно следует выбирать предохранитель с номиналом, немного превышающим нормальный рабочий ток (сила тока), который может использоваться при любом напряжении ниже номинального напряжения предохранителя. Если новый предохранитель тоже перегорел, значит, в цепи что-то не так. Проверьте проводку к компонентам, которые выходят из строя сгоревшим предохранителем. Ищите плохие соединения, порезы, разрывы или шорты.

Предохранители

имеют разные время-токовые нагрузочные характеристики для конечного времени работы при использовании и для скорости, с которой плавкий элемент перегорает в ответ на состояние перегрузки по току.Со временем нормальные скачки напряжения могут вызвать усталость предохранителей, что может привести к перегоранию предохранителя даже при отсутствии неисправности. На предохранителях всегда указывается номинальный ток в амперах, на который они рассчитаны в непрерывном режиме при стандартной температуре.

Расположение предохранителей

Предохранители расположены по всему автомобилю. Обычное расположение включает в себя моторный отсек, под приборной панелью за левой или правой панелью для ног или под IPDM.Предохранители обычно сгруппированы вместе и часто смешиваются с другими компонентами, такими как реле, автоматические выключатели и элементы предохранителей.

Крышки блока предохранителей

Крышки блока предохранителей / реле обычно маркируют расположение и положение каждого предохранителя, реле и элемента предохранителя, содержащегося внутри.

Типы предохранителей

Предохранители подразделяются на основные категории: предохранители пластинчатого типа и патронные предохранители старого образца. Используются несколько вариаций каждого из них.

Общие типы предохранителей

Лопастной предохранитель и плавкий элемент на сегодняшний день являются наиболее часто используемыми. Предохранители ножевого типа имеют пластиковый корпус и два штыря, которые вставляются в гнезда и могут быть установлены в блоки предохранителей, линейные держатели предохранителей или зажимы предохранителей. Существуют три различных типа плавких предохранителей; предохранитель Maxi, предохранитель Standard Auto и предохранитель Mini.

Базовая конструкция

Предохранитель плоского типа представляет собой компактную конструкцию с металлическим элементом и прозрачным изоляционным корпусом, который имеет цветовую кодировку для каждого номинального тока.(Стандартный автоматический режим показан ниже; однако конструкция предохранителей Mini и Maxi одинакова.)

Номинальная сила тока предохранителя, цвет

Номинальные значения силы тока предохранителя для предохранителей Mini и Standard Auto идентичны. Однако для определения номинальной силы тока предохранителей макси используется другая схема цветовой кодировки.

Плавкие вставки и элементы предохранителей

Плавкие вставки делятся на две категории: патрон плавкого элемента и плавкая вставка.Конструкция и принцип действия плавких вставок и элементов предохранителей аналогичны плавким предохранителям. Основное отличие состоит в том, что плавкая вставка и плавкий элемент используются для защиты электрических цепей с более высоким током, обычно цепей на 30 ампер или более. Как и в случае с предохранителями, при перегорании плавкой вставки или плавкого элемента его необходимо заменить новым. Плавкие вставки защищают цепи между аккумулятором и блоком предохранителей.

Плавкие вставки

Плавкие вставки — это короткие отрезки проволоки меньшего диаметра, предназначенные для плавления при перегрузке по току.Плавкая вставка обычно на четыре (4) сечения провода меньше, чем цепь, которую она защищает. Изоляция плавкой вставки — специальный негорючий материал. Это позволяет проводу расплавиться, но изоляция останется нетронутой в целях безопасности. Некоторые плавкие ссылки имеют на одном конце тег, который указывает их рейтинг. Как и предохранители, плавкие вставки необходимо заменять после того, как они «перегорели» или расплавились. Многие производители заменили плавкие вставки предохранителями или предохранителями Maxi.

Картридж с предохранителем

Предохранители, плавкая вставка картриджного типа, также известна как предохранители Pacific.Элемент имеет клеммную и плавкую части как единое целое. Элементы предохранителя почти заменили плавкую перемычку. Они состоят из корпуса, в котором находятся клемма и предохранитель. Картриджи с плавкими предохранителями имеют цветовую маркировку для каждой силы тока. Хотя элементы предохранителей доступны в двух физических размерах и могут быть вставлены или закреплены на болтах, вставной тип является наиболее популярным.

Конструкция картриджа с плавким элементом

Конструкция элемента предохранителя довольно проста.Цветной пластиковый корпус содержит элемент термозакрепления, который виден через прозрачный верх. Номиналы предохранителей также указаны на корпусе.

Идентификация цвета элемента предохранителя

Номинальные значения силы тока предохранителя

приведены ниже. Плавкая часть элемента предохранителя видна через прозрачное окошко. Номинальные значения силы тока также указаны на предохранительном элементе.

Плавкие элементы

Плавкие элементы часто располагаются рядом с аккумулятором сами по себе.

Плавкие элементы также могут располагаться в блоках реле / ​​предохранителей в моторном отсеке.

Автоматические выключатели

Автоматические выключатели используются вместо предохранителей для защиты сложных силовых цепей, таких как электрические стеклоподъемники, люки на крыше и цепи обогревателя. Существует три типа автоматических выключателей: тип с ручным сбросом — механический, тип с автоматическим сбросом — механический и твердотельный с автоматическим сбросом — PTC. Автоматические выключатели обычно располагаются в блоках реле / ​​предохранителей; однако в некоторые компоненты, такие как двигатели стеклоподъемников, встроены автоматические выключатели.

Конструкция автоматического выключателя (ручного типа)

Автоматический выключатель в основном состоит из биметаллической ленты, соединенной с двумя выводами и контактом между ними. Ручной автоматический выключатель при срабатывании (ток превышает номинальный) размыкается и должен быть сброшен вручную. Эти ручные автоматические выключатели называются автоматическими выключателями «без цикла».

Автоматический выключатель (ручной тип)

Автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой.Эта полоса имеет форму диска и вогнута вниз. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается или деформируется вверх, и контакты размыкаются, чтобы остановить прохождение тока. Автоматический выключатель можно сбросить после срабатывания.

Ручной сброс Тип

Когда автоматический выключатель размыкается из-за перегрузки по току, автоматический выключатель требует сброса. Для этого вставьте небольшой стержень (канцелярскую скрепку), чтобы установить биметаллическую пластину, как показано.

Тип с автоматическим сбросом — механический

Автоматические выключатели с автоматическим сбросом называются «циклическими» выключателями. Этот тип автоматического выключателя используется для защиты сильноточных цепей, таких как дверные замки с электроприводом, электрические стеклоподъемники, кондиционеры и т. Д. Автоматический выключатель с автоматическим возвратом в исходное положение содержит биметаллическую полосу. Биметаллическая полоса будет перегреваться и открываться от избыточного тока в условиях перегрузки по току и автоматически сбрасывается, когда температура биметаллической ленты остывает.

Устройство и работа с автосбросом

Циклический автоматический выключатель содержит металлическую полосу, состоящую из двух разных металлов, соединенных вместе, называемую биметаллической полосой. Когда тепло от чрезмерного тока превышает номинальный ток автоматического выключателя, два металла меняют форму неравномерно. Полоса изгибается вверх, и набор контактов размыкается, чтобы остановить прохождение тока. При отсутствии тока биметаллическая полоса охлаждается и возвращается к своей нормальной форме, замыкая контакты и возобновляя прохождение тока.Автоматические выключатели с автоматическим возвратом в исходное положение считаются «циклическими», потому что они циклически размыкаются и замыкаются, пока ток не вернется к нормальному уровню.

Тип твердотельного накопителя с автоматическим сбросом — PTC

Полимерный прибор с положительным температурным коэффициентом (PTC) известен как самовосстанавливающийся предохранитель.

Полимерный PTC — это специальный тип автоматического выключателя, называемый термистором (или терморезистором). Термистор PTC увеличивает сопротивление при повышении температуры.PTC, которые сделаны из проводящего полимера, представляют собой твердотельные устройства, что означает, что они не имеют движущихся частей. PTC обычно используются для защиты электрических цепей стеклоподъемников и дверных замков.

Конструкция и эксплуатация полимерных материалов PTC

В нормальном состоянии материал полимерного ПТК имеет форму плотного кристалла с множеством частиц углерода, упакованных вместе. Углеродные частицы обеспечивают проводящие пути для прохождения тока. Это сопротивление низкое.Когда материал нагревается от чрезмерного тока, полимер расширяется, разрывая углеродные цепи. В этом расширенном «отключенном» состоянии есть несколько путей для тока. Когда ток превышает порог срабатывания, устройство остается в состоянии «разомкнутой цепи» до тех пор, пока в цепи остается поданное напряжение. Он сбрасывается только при снятии напряжения и остывании полимера. PTC используются для защиты электрических цепей стеклоподъемников и дверных замков.

УСТРОЙСТВА УПРАВЛЕНИЯ

Управляющие устройства используются для «включения» или «выключения» протекания тока в электрической цепи.Устройства управления включают в себя различные переключатели, реле и соленоиды. Электронные устройства управления включают конденсаторы, диоды и переключающие транзисторы. Коммутационные транзисторы действуют как переключатель или реле с электронным управлением. Преимущество транзистора — это скорость открытия и закрытия цепи.

Управляющие устройства необходимы для запуска, остановки или перенаправления тока в электрической цепи. Устройство управления или переключатель позволяет включать или выключать электричество в цепи.Выключатель — это просто соединение в цепи, которое можно разомкнуть или замкнуть. Большинству переключателей для работы требуется физическое движение, в то время как реле и соленоиды работают с электромагнетизмом.

Коммутаторы

  • Однополюсный односторонний (SPST)
  • , однополюсный, двусторонний (SPDT)
  • Многополюсный многопозиционный переключатель (MPMT или групповой переключатель)
  • Мгновенный контакт
  • Меркурий
  • Температура (биметалл)
  • Задержка по времени
  • Мигалка
  • РЕЛЕ
  • СОЛЕНОИДЫ

Переключатель — это наиболее распространенное устройство управления цепями.Переключатели обычно имеют два или более набора контактов. Размыкание этих контактов называется «разрывом» или «размыканием» цепи, замыкание контактов называется «замыканием» или «завершением» цепи.

Переключатели описываются количеством полюсов и ходов, которые они имеют. «Полюса» относятся к количеству клемм входной цепи, а «Броски» относятся к количеству клемм выходной цепи. Переключатели называются SPST (однополюсные, одноходовые), SPDT (однополюсные, двухпозиционные) или MPMT (многополюсные, многоходовые).

Однополюсный одинарный бросок (SPST)

Самый простой тип переключателя — переключатель «шарнирная защелка» или «лезвие ножа». Он либо «завершает» (включает), либо «размыкает» (выключает) цепь в одной цепи. Этот переключатель имеет один входной полюс и один выходной ход.

Однополюсный, двойной бросок (SPDT)

Однополюсный входной двухпозиционный выходной переключатель имеет один провод, идущий к нему, и два выходных провода. Переключатель света фар является хорошим примером однополюсного двухпозиционного переключателя.Переключатель диммера фары посылает ток либо в дальний, либо в ближний свет цепи фары.

Многополюсная многоточечная (MPMT)

Многополюсный вход, многополюсные выходные переключатели, также известные как «групповые» переключатели, имеют подвижные контакты, подключенные параллельно. Эти переключатели перемещаются вместе для подачи тока на разные наборы выходных контактов. Выключатель зажигания — хороший пример многополюсного многопозиционного переключателя. Каждый переключатель посылает ток из разных источников в разные выходные цепи одновременно в зависимости от положения.Пунктирная линия между переключателями указывает, что они движутся вместе; один не будет двигаться без движения другого.

Мгновенный контакт

Переключатель мгновенного действия имеет подпружиненный контакт, который не позволяет ему замкнуть цепь, за исключением случаев, когда на кнопку прикладывается давление. Это «нормально открытый» тип (показан ниже). Выключатель звукового сигнала является хорошим примером переключателя с мгновенным контактом. Нажмите кнопку звукового сигнала и раздастся звуковой сигнал; отпустите кнопку, и звуковой сигнал прекратится.

Вариантом этого типа является нормально закрытый (не показан), который работает наоборот, как описано выше. Пружина удерживает контакты в замкнутом состоянии, кроме случаев, когда кнопка нажата. Другими словами, цепь находится в состоянии «ВКЛ» до тех пор, пока не будет нажата кнопка для разрыва цепи.

Меркурий

Ртутный выключатель представляет собой герметичную капсулу, частично заполненную ртутью. На одном конце капсулы расположены два электрических контакта. Когда переключатель вращается (перемещается из истинной вертикали), ртуть течет к противоположному концу капсулы с контактами, замыкая цепь.Ртутные переключатели часто используются для обнаружения движения, например, тот, который используется в моторном отсеке на светофоре. Другие применения включают отключение подачи топлива при опрокидывании и некоторые приложения для датчиков подушки безопасности. Ртуть — опасные отходы, с которыми следует обращаться осторожно.

Температурный биметаллический

Термочувствительный переключатель, также известный как «биметаллический» переключатель, обычно содержит биметаллический элемент, который изгибается при нагревании, замыкая контакт, замыкая цепь, или размыкая контакт, размыкая цепь.В реле температуры охлаждающей жидкости двигателя, когда охлаждающая жидкость достигает предельной температуры, биметаллический элемент изгибается, вызывая замыкание контактов в переключателе. Это замыкает цепь и загорается предупреждающий индикатор на панели приборов.

Время задержки

Выключатель с выдержкой времени содержит биметаллическую полосу, контакты и нагревательный элемент. Переключатель задержки времени нормально замкнут. Когда ток протекает через переключатель, ток течет через нагревательный элемент, вызывая его нагрев, в результате чего биметаллическая полоса изгибается и размыкает контакты.Поскольку ток продолжает течь через нагревательный элемент, биметаллическая полоса остается горячей, сохраняя контакты переключателя открытыми. Время задержки перед размыканием контактов определяется характеристиками биметаллической ленты и количеством тепла, выделяемого нагревательным элементом. Когда питание выключателя отключается, нагревательный элемент охлаждается, и биметаллическая полоса возвращается в исходное положение, а контакты замыкаются. Обычное применение переключателя с задержкой времени — это обогреватель заднего стекла.

Мигалка

Мигающий сигнал работает в основном так же, как переключатель задержки времени; кроме случаев, когда контакты размыкаются, ток перестает течь через нагревательный элемент. Это вызывает охлаждение нагревательного элемента и биметаллической ленты. Биметаллическая полоса возвращается в исходное положение, замыкая контакты, позволяя току снова течь через контакты и нагревательный элемент. Этот цикл повторяется снова и снова, пока не будет отключено питание мигающего устройства. Обычно этот тип переключателя используется для включения сигналов поворота или четырехпозиционного указателя поворота (аварийных фонарей).

Реле

Реле — это просто переключатель дистанционного управления, который использует небольшой ток для управления большим током. Типичное реле имеет как цепь управления, так и цепь питания. Конструкция реле содержит железный сердечник, электромагнитную катушку и якорь (набор подвижных контактов). Существует два типа реле: нормально разомкнутые (показаны ниже) и нормально замкнутые (НЕ показаны). Нормально разомкнутые (Н.О.) реле имеют контакты, которые «разомкнуты» до тех пор, пока реле не будет под напряжением, в то время как нормально замкнутые (N.C.) реле имеет контакты, которые «замкнуты» до тех пор, пока реле не сработает.

Работа реле

Ток протекает через управляющую катушку, которая намотана на железный сердечник. Железный сердечник усиливает магнитное поле. Магнитное поле притягивает верхний контактный рычаг и тянет его вниз, замыкая контакты и позволяя мощности от источника питания поступать на нагрузку. Когда катушка не находится под напряжением, контакты разомкнуты, и питание на нагрузку не поступает.Однако, когда переключатель схемы управления замкнут, ток течет к реле и питает катушку. Возникающее магнитное поле тянет якорь вниз, замыкая контакты и позволяя подавать питание на нагрузку. Многие реле используются для управления большим током в одной цепи и низким током в другой цепи. Примером может служить компьютер, который управляет реле, а реле управляет цепью более высокого тока.

Соленоиды — тянущие, тип

Соленоид — это электромагнитный переключатель, который преобразует ток в механическое движение.Когда ток течет через обмотку, создается магнитное поле. Магнитное поле притянет подвижный железный сердечник к центру обмотки. Этот тип соленоида называется соленоидом «тянущего» типа, поскольку магнитное поле втягивает подвижный железный сердечник в катушку. Обычно тянущие соленоиды используются в пусковой системе. Соленоид стартера соединяет стартер с маховиком.

Работа вытяжного типа

Когда ток течет через обмотку, создается магнитное поле.Эти магнитные силовые линии должны быть как можно меньше. Если рядом с катушкой, по которой течет ток, поместить железный сердечник, магнитное поле будет растягиваться, как резинка, вытягивая и втягивая железный стержень в центр катушки.

Работа типа Push / Pull

В соленоиде двухтактного типа в качестве сердечника используется постоянный магнит. Поскольку «одинаковые» магнитные заряды отталкиваются, а «непохожие» магнитные заряды притягиваются, при изменении направления тока, протекающего через катушку, сердечник либо «втягивается», либо «выталкивается наружу».«Обычно этот тип соленоида используется в электрических дверных замках.

УСТРОЙСТВА НАГРУЗКИ

Любое устройство, такое как лампа, звуковой сигнал, электродвигатель стеклоочистителя или обогреватель заднего стекла, потребляющее электричество, называется нагрузкой. В электрической цепи все нагрузки считаются сопротивлением. Нагрузки расходуют напряжение и контролируют величину тока, протекающего в цепи. Нагрузки с высоким сопротивлением вызывают протекание меньшего тока, в то время как нагрузки с более низким сопротивлением позволяют протекать большим токам.

Фары

Фонари бывают разной мощности, чтобы излучать больше или меньше света. Когда лампы соединяются последовательно, они разделяют доступное напряжение в системе, и излучаемый свет уменьшается. Когда лампочки расположены параллельно, каждая лампочка имеет одинаковое количество напряжения, поэтому свет будет ярче.

Двигатели

Двигатели используются в различных системах автомобиля, включая сиденья с электроприводом, дворники, систему охлаждения, системы отопления и кондиционирования воздуха.Двигатели могут работать на одной скорости, например, сиденья с электроприводом, или на нескольких скоростях, например, электродвигатель вентилятора системы отопления и кондиционирования воздуха. Когда двигатели работают на одной скорости, на них обычно подается системное напряжение. Однако, когда двигатели работают с разной скоростью, входное напряжение может быть в разных точках якоря, чтобы уменьшить, чтобы увеличить скорость двигателя, аналогично тому, как разработан двигатель стеклоочистителя, или они могут делить напряжение с резистором, который находится в серия с двигателем, как двигатель нагнетателя для системы отопления и кондиционирования воздуха.

Нагревательные элементы

Нагревательные элементы можно найти в наружных зеркалах, заднем стекле и сиденьях. На нагревательные элементы обычно подается напряжение системы в течение определенного времени для нагрева компонента по запросу.

ЧТО ТАКОЕ ЗАКОН ОМА?

Понимание взаимосвязи между напряжением, током и сопротивлением в электрических цепях важно для быстрой и точной диагностики и ремонта электрических проблем.Закон Ома гласит: ток в цепи всегда будет пропорционален приложенному напряжению и обратно пропорционален величине имеющегося сопротивления. Это означает, что если напряжение повышается, ток будет расти, и наоборот. Кроме того, когда сопротивление растет, ток падает, и наоборот. Закон Ома можно найти хорошее применение при поиске и устранении неисправностей в электрических сетях. Но вычисление точных значений напряжения, тока и сопротивления не всегда практично … да и действительно необходимо. Однако вы должны быть в состоянии предсказать, что должно происходить в цепи, в отличие от того, что происходит в аварийном транспортном средстве.

Source Voltage не зависит ни от тока, ни от сопротивления. Он либо слишком низкий, либо нормальный, либо слишком высокий. Если он слишком низкий, ток будет низким. Если это нормально, ток будет высоким при низком сопротивлении или ток будет низким при высоком сопротивлении. Если напряжение слишком высокое, ток будет большим.

На ток влияет напряжение или сопротивление. Если напряжение высокое или сопротивление низкое, ток будет высоким. Если напряжение низкое или сопротивление велико, ток будет низким.Ток увеличивается, когда сопротивление падает.

На сопротивление не влияют ни напряжение, ни ток. Он либо слишком низкий, хорошо, либо слишком высокий. Если сопротивление слишком низкое, ток будет высоким при любом напряжении. Если сопротивление слишком велико, ток будет низким, если напряжение в норме. Мера сопротивления — насколько сложно протолкнуть поток электрического заряда.

Хорошее сопротивление: для правильной работы некоторым цепям требуется «ограничение» протекания тока. В этом случае используются «резисторы».Резисторы имеют разные номиналы в зависимости от того, насколько ток должен быть ограничен.

Плохое сопротивление: в большинстве случаев слишком большое сопротивление снижает ток и может привести к неправильной работе системы. Обычно причиной является грязь или коррозия на электрических разъемах или заземляющих соединениях.

Диагностика падений напряжения Диагностика электрических неисправностей в автомобилях

Одно из самых серьезных электрических недугов, проявляющихся сегодня в автомобильных сервисных центрах, — это явление, известное как падение напряжения.Если не контролировать, то падение напряжения вызывает бесчисленное количество неразрешенных загадок, особенно когда оно поражает заземляющую сторону цепи. Это также может обманом заставить вас заменить неплохие детали.

Чем больше соединений и проводов в автомобиле, тем более уязвима электрическая система к падению напряжения.

Соблюдайте меры безопасности при работе с электрооборудованием при наличии падения электрического напряжения. Это означает измерение падения напряжения, прежде чем делать какие-либо выводы. «Падение напряжения» в цепи сообщает вам, когда цепь слишком ограничена для работы компонента (например,g., мотор, реле, лампочку) или эксплуатировать его правильно. Если цепь ограничена, отремонтируйте ее и повторите проверку. Если ограничений нет, а компонент по-прежнему не работает или работает правильно, замените компонент.

В этом примере при обрыве провода или обрыве соединения ток перестает течь, а напряжение падает до нуля. Выключается стартер или гаснет фара.

Симптомы падения напряжения

Часто сбивающие с толку и противоречивые симптомы падения электрического напряжения различаются в зависимости от работы схемы и серьезности падения напряжения.

  • Неисправные электрические детали
  • Вялые, ленивые электрические устройства
  • Неустойчивые, прерывистые устройства
  • Устройства, которые работают медленно или беспорядочно в периоды высоких электрических нагрузок
  • Чрезмерные радиопомехи или шумы в радио
  • Повреждены кабели дроссельной заслонки или сцепление
  • Неоднократные отказы дроссельной заслонки или кабеля трансмиссии
  • Поврежденные детали трансмиссии
  • Жалобы на работу двигателя или трансмиссии
  • Не запускается или запускается с трудом
  • Высокое напряжение датчика или компьютера
  • Неустойчивая работа компьютера двигателя или трансмиссии
  • Ложные коды неисправностей в памяти любого бортового компьютера
  • Преждевременный или повторяющийся отказ муфты компрессора кондиционера

В этом списке симптомов можно выделить несколько моментов.

  1. Визуальный осмотр в большинстве случаев пропускает падение электрического напряжения. Обычно вы не можете увидеть коррозию внутри соединения или поврежденный провод, из-за которого возникла проблема.
  2. Падение напряжения на стороне земли, часто игнорируемая причина электрических неисправностей, может вызвать большинство из этих симптомов. Любая цепь или компонент хороши настолько, насколько хороши их заземления.
  3. Чем сложнее становятся электрические системы, тем важнее их заземление. Количество электрических компонентов быстро увеличивалось, и большинство из них не имеет отдельных заземляющих проводов.Вместо этого эти устройства заземлены на двигатель или кузов. Ржавчина, жир, вибрация и / или небрежный ремонт часто ограничивают цепь от двигателя / кузова обратно к аккумуляторной батарее.
  4. Многие компоненты, например датчики двигателя, имеют общую землю. Таким образом, плохое заземление усложняет диагностику, поскольку затрагивает сразу несколько компонентов.
  5. В некоторых руководствах и диагностических таблицах или деревьях неисправностей рекомендуется проверять заземление в последнюю очередь. Гораздо быстрее проверить цепи заземления перед тем, как взобраться на это дерево неисправностей.
  6. Быстрее и разумнее регулярно проверять падение напряжения в цепи, чем запоминать длинные списки симптомов. Если опыт ничему другому нас не научил, так это тому, что погоня за симптомами не заменяет рутинных и тщательных проверок падения напряжения.

Опыт научил нас другим причинам для проверки падения напряжения в первую очередь. Падение напряжения, обычно на стороне земли, приводит к неточным или странным показаниям цифрового мультиметра и осциллограммам. Более того, когда вы подключаете цифровой мультиметр или осциллограф к системе с плохим заземлением, само испытательное оборудование может создать хорошую замену заземления, в зависимости от импеданса инструмента.Если сопротивление достаточно низкое, это может расстраивать — если ваше оборудование подключено, цепь работает, и вы не найдете ничего плохого.

Основные процедуры

Всякий раз, когда электрическая проблема вызывает у вас приступ, сделайте глубокий вдох и подумайте об основном электрическом строительном блоке: последовательной цепи. Независимо от того, насколько сложна система, вы всегда можете упростить ее до меньших серий схем. Затем проверьте каждую цепь на предмет падения напряжения.

В электрической цепи электрическое давление (напряжение или вольты) проталкивает электрический объем (ток или амперы) через цепь, приводя в действие нагрузку.Нагрузкой может быть компьютер, двигатель, лампа, реле или другое устройство. Электрическое давление (напряжение) расходуется на работу нагрузки. Следовательно, на стороне земли напряжение падает примерно до нуля, но ток продолжает течь к батарее. Поскольку напряжение в цепи исправного заземления должно быть около нуля, некоторые техники называют его нулевым заземлением.

Падение напряжения на стороне заземления ухудшает характеристики нагрузки и вызывает считывание напряжения на стороне заземления нагрузки.

Сопротивление — ограничение

Чрезмерное сопротивление в электрической цепи может вызвать ограничение тока.Плохие соединения, а также обрыв или недостаточный размер проводов действуют как изгиб трубы, ограничивая прохождение тока. Ограничение прохождения тока в любом месте — на горячей стороне или на стороне земли — ухудшает характеристики нагрузки. Влияние на нагрузку трудно предсказать, поскольку оно зависит от степени ограничения. Например, двигатель в цепи с ограничениями может перестать работать или просто работать медленнее, чем обычно.

Ограниченный контур может вызвать проскальзывание и преждевременное сгорание муфты компрессора кондиционера. Компьютер, подключенный к цепи с ограничениями, может отключиться или работать нестабильно.Когда коррозия, ослабленные соединения или другие типы сопротивления ограничивают цепь, напряжение и ток падают. Если напряжение падает, падает и сила тока. Вот почему, когда вы обнаруживаете падение напряжения в соединении или кабеле, вы знаете, что соединение или кабель ограничены.

Посмотрите на схемы на наших чертежах и запомните две критические точки:

  1. Свободная сторона заземления так же важна, как и свободно протекающая горячая сторона.
  2. Ограничение со стороны земли — единственное, что вызывает показания напряжения от 0 до 0.1В в любой цепи заземления.

Обрыв провода заземления полностью блокирует прохождение тока, отключает нагрузку и заставляет сторону заземления нагрузки считывать напряжение системы.

Испытания падения напряжения

Падение электрического напряжения зависит от протекающего тока. Если вы не управляете схемой так, чтобы через нее протекал ток, вы не сможете измерить падение напряжения. Поскольку батарея цифрового мультиметра не может обеспечивать ток, который обычно протекает через большинство цепей, тесты цифрового мультиметра обычно не могут обнаружить ограничения так же точно, как тест падения напряжения.

Проблемы с обрывом цепи, например обрыв или отсоединение проводов или соединений, прекращают прохождение тока. После устранения обрыва цепи снова включите цепь и проверьте, не наблюдается ли продолжающегося падения напряжения. Пока вы не пропустите ток и не проверите цепь снова, вы не сможете узнать, исправна ли вся цепь.

Хотя соединения, провода и кабели без сопротивления были бы идеальными, большинство из них будет иметь хотя бы некоторое падение напряжения. Если в ваших руководствах не указаны значения падения напряжения, используйте следующие максимальные пределы:

  • 0.00 В по соединению
  • 0,20 В по проводу или кабелю
  • 0,30 В по переключателю
  • 0,10 В по земле

Поскольку большинство компьютерных схем работают в миллиамперном диапазоне, они не допускают падения напряжения, а также других схемы делаем. Обратите внимание, что миллиампер равен одной тысячной (0,001) ампер. Рекомендуемый рабочий предел — падение 0,10 В на слаботочные провода и переключатели. Для тестирования слаботочных цепей также требуется цифровой мультиметр с высоким сопротивлением (10 МОм).Цифровой мультиметр с низким импедансом может настолько нагружать слаботочную цепь, что дает неверные показания или вообще не показывает их. Большинство цифровых мультиметров профессионального уровня имеют входное сопротивление 10 МОм. Использование цифрового мультиметра — самый быстрый способ точно измерить падение напряжения. Если у вашего цифрового мультиметра нет возможности автоматического выбора диапазона, используйте шкалу низкого напряжения (от 0 до 1 В) для проверки падения напряжения. Помните, что контрольные лампы недостаточно точны для диагностики падения электрического напряжения и могут повредить большинство компьютерных цепей.

Быстрые проверки заземления

Поскольку падение напряжения в цепи заземления может вызвать большинство перечисленных выше симптомов, подумайте о принятии этой новой рабочей привычки: сначала проверьте заземление. Прежде чем выполнять настройку, проверять электрические проблемы или проверять запуск, зарядку, АБС или систему кондиционирования воздуха, регулярно проверяйте двигатель и заземление кузова. Подключите цифровой мультиметр между двигателем и отрицательной клеммой аккумуляторной батареи. Безопасно отключите зажигание и проверните двигатель на несколько секунд, или, если ваш мультиметр имеет функцию записи данных, он снимет показания всего за 100 миллисекунд.

Если падение напряжения слишком велико, отремонтируйте цепь массы двигателя и повторите проверку. Обратите внимание, что в некоторых системах зажигания без распределителя самый простой способ предотвратить запуск двигателя во время проверки заземления — вытащить предохранитель топливного насоса. Затем подключите цифровой мультиметр между отрицательной клеммой аккумулятора и межсетевым экраном автомобиля. Затем запустите двигатель и включите основные электрические аксессуары. Если падение напряжения слишком велико, зафиксируйте массу тела и проведите повторную проверку.

Когда двигатель и масса кузова находятся в допустимых пределах, приступайте к диагностике. Не удивляйтесь, если исправление этих оснований решит проблемы автомобиля. Тот факт, что автомобиль проходит тест на массу, не означает, что вы можете безопасно заземлить свой цифровой мультиметр в любом месте. Некоторые техники часами бегают по кругу из-за того, что их цифровые мультиметры не имеют хорошего заземления. Для безопасного электрического обслуживания сделайте себе 20- или 30-футовую перемычку с зажимом типа «крокодил» на каждом конце, что позволит вам проверить электрический топливный насос, систему освещения или компьютер АБС в задней части автомобиля, заземлив цифровой мультиметр на аккумулятор с перемычкой.

Перегибы заземления компьютера

Поскольку компьютерные цепи работают с таким низким током, стандартные тесты заземления могут не выявить пограничного заземления на бортовом компьютере. Прежде чем осуждать какой-либо бортовой компьютер, сначала проверьте его обоснованность. Включите компьютерную систему и проверьте каждую клемму заземления компьютера. Если вы измеряете напряжение выше 0,10 В, проследите цепь заземления и найдите проблему.

Иногда заземления компьютера подключаются к месту, где они легко повреждаются или подвержены коррозии, например к болту корпуса термостата.Клеммы разъема компьютера также могут подвергнуться коррозии. Удаление разъема и обработка клемм электроочистителем — все, что нужно для устранения падения напряжения.

Опыт показывает, что всего лишь 0,30 В на клемме заземления компьютера может вызвать проблемы. Прежде чем определить это с помощью электронной контрольной лампы, помните, что традиционная контрольная лампа потребляет слишком большой ток и может повредить компьютер. Плохое заземление компьютера и / или датчика может вызвать превышение нормального напряжения датчика и появление ложных кодов неисправностей.Во многих случаях плохое заземление не позволяет компьютеру или датчику понижать сигнал напряжения до нулевого уровня или приближаться к нему. Доступ к компьютеру для проверки заземления может быть проблемой, однако ошибочная замена дорогих датчиков и компьютеров — большая проблема.

Подключите цифровой мультиметр к любой части цепи, чтобы напрямую измерить падение напряжения на этом проводе, кабеле, переключателе или соединении. В этом примере один цифровой мультиметр будет отображать потерю напряжения между батареей и нагрузкой, другой — потерю напряжения со стороны заземления нагрузки на батарею.

Гремлины от земли

Следите за отсутствием грунта на теле. Если с транспортным средством работал кто-то другой, возможно, он забыл повторно подключить провода или кабели заземления кузова. Помните, что когда земля ограничена, ток пытается найти другой путь обратно к батарее. Самый простой альтернативный маршрут может быть через трос переключения передач или трос дроссельной заслонки. Этот ток может не только сваривать кабель, он также может вызвать коррозию втулок и подшипников внутри трансмиссии или колесных подшипников.

Если вы обнаружите, что изоляция на заземляющем проводе кузова сгорела или покрылась пузырями, вы можете держать пари, что ток стартера перегрел провод. Когда заземление двигателя ограничено, стартерный ток пытается вернуться в аккумулятор через цепь заземления кузова. Опыт показывает, что если цепь заземления кузова не выдерживает текущей нагрузки, заказчик может не сразу заметить проблему.

В периоды сильного электрического тока ограниченное заземление может препятствовать работе компонента или отключать его.Например, известно, что указатели поворота перестают мигать, когда водитель нажимает на педаль тормоза. Тестирование подтвердило, что ограниченный участок земли заглушает поворотники. Земля не могла одновременно пропускать ток от указателей поворота и стоп-сигналов.

Безопасное обслуживание

Практика безопасного обслуживания электрооборудования поможет вам решать электрические проблемы быстрее и выгоднее, чем угадывать и менять детали. Заставьте свой цифровой мультиметр работать, устраняя падение электрического напряжения уже сегодня.Это ответственный поступок.

Кабельные нагрузки

Приведенные ниже уравнения также могут использоваться для кабелей, нагруженных только собственным весом, если соотношение высоты провисания (h) к длине (L) меньше 0,1 .

Кабели с равномерной нагрузкой и горизонтальными нагрузками

Кабель повторяет форму притчи, а горизонтальные опорные силы можно рассчитать как

R 1x = R 2x

= q L 2 / (8 ч) (1)

где

R 1x = R 2x = горизонтальные опорные силы (фунты, Н) (равны натяжению в самой нижней точке середины пролета)

q = удельная нагрузка (вес) на кабель (фунт / фут, Н / м)

L = длина кабеля (фут, м)

h = прогиб кабеля (фут, м)

Вертикальные опорные силы на конце кабеля можно рассчитать как

R 1y = R 2y

= q L / 2 (1a)

где

R 1y = R 2y = вертикальные опорные силы (фунты, Н)

Результирующие силы, действующие в концевых опорах — и в направлении кабеля вблизи опор — могут быть рассчитаны как

R 1 = R 2

= (R 1x 2 + R 1 год 2 ) 0.5

= (R 2x 2 + R 2y 2 ) 0,5 (1b)

где

1,20003 905 905 результирующая сила на опоре (фунт, Н)

Угол θ можно рассчитать как

θ = tan -1 (R 1y / R 1x )

= tan -1 (R 2y / R 2x ) (1c)

Длина провисшего кабеля может быть приблизительно равна

s = L + 8 h 2 / (3 L) (1d)

, где

s = длина кабеля (футы, м)

Обратите внимание, что уравнение недействительно, если h> L / 4.

  • тысяч фунтов = 1000 фунтов
  • тысяч фунтов на погонный фут
Кабели с равномерной нагрузкой при горизонтальных нагрузках — калькулятор

q — равномерная нагрузка (Н / м, фунт / фут)

1

1

1

L — длина (м, футы)

h — провисание (м, фут)

Пример — равномерная нагрузка на кабель, британские единицы

Кабель длиной 100 футов и провисанием 30 футов имеет равномерная нагрузка 850 фунтов / фут .Горизонтальные опоры и силы в середине пролета можно рассчитать как

R 1x = R 2x

= ( 850 фунтов / фут ) (100 футов) 2 / (8 (30 футов))

= 35417 фунтов

Вертикальные силы на опорах можно рассчитать как

R 1 год = R 2 года

( = = 850 фунтов / фут ) (100 футов) /2

= 42500 фунтов

Результирующие силы, действующие в опорах, можно рассчитать как

R 1,2 = (( 35417 фунтов ) 2 + ( 42500 фунтов) 2 ) 0.5

= 55323 фунтов

Угол θ можно рассчитать как

θ = тангенциальный угол -1 ((42500 фунтов) / (35417 фунтов))

= 50,2 o

Длина провисшего кабеля может быть приблизительно равна

с = (100 футов) + 8 (30 футов) 2 / (3 (100 футов))

= 124 фута

Пример — равномерная нагрузка на кабель, единицы СИ

Кабель длиной 30 м и провисанием 10 м имеет равномерную нагрузку 4 кН / м .Горизонтальные опоры и силы троса в середине пролета можно рассчитать как

R 1x = R 2x

= (4000 Н / м) (30 м) 2 / (8 (10 м))

= 45000 Н

= 45 кН

Вертикальные опорные силы могут быть рассчитаны как

R 1y = R 2y

9000 = ( 4000 Н / м ) (30 м) /2

= 60000 Н

= 60 кН

Угол θ можно рассчитать как

θ = tan -1 ((60 кН) / (45 кН))

= 53.1 o

Результирующая сила, действующая в опорах, может быть рассчитана как

R 1,2 = (( 45000 N ) 2 + ( 60000 N) 2 ) 0,5

= 75000 Н

= 75 кН

Длина провисшего кабеля может быть приблизительно равна

с = (30 м) + 8 (10 м) 2 / (3 (30 м))

= 38.9 м

Пример — известное натяжение на опорах — расчет провисания и длины кабеля

Для кабеля длиной 30 м с равномерной нагрузкой 4 кН / м результирующее натяжение кабеля на концевых опорах составляет 100 кН .

Вертикальные силы в опорах можно рассчитать как

R 1 год = R 2 года

= ( 4 кН / м ) (30 м) / 2

= 60 кН

Горизонтальные силы в опорах можно рассчитать как

R 1x = R 2x

( ) 2 — (60 кН) 2 ) 0.5

= 80 кН

Угол θ можно рассчитать как

θ = tan -1 ((60 кН) / (80 кН))

= 36.9 o

Прогиб можно рассчитать, изменив уравнение 1 на

h = q L 2 / (8 R 1x )

= (4 кН / м) (30 м ) 2 / (8 (80 кН))

= 5.6 м

Длину провисшего кабеля можно оценить как

s = (30 м) + 8 (5,6 м) 2 / (3 (30 м))

= 32,8 м

Кабели с равномерной нагрузкой и наклонными поясами

Если известны высоты h 1 и h 2 , горизонтальные опорные силы можно рассчитать как

R 1x 2x

= q L 2 / (2 ((h 1 ) 0.5 + (h 2 ) 0,5 )) (2)

Если расстояние a и b известно — горизонтальные опорные силы могут быть выражены как

R 1x = R 2x

= qa 2 / (2 час 1 )

= qb 2 / (2 час 2 ) (2b)

Если b> a Максимальные силы в тросе и на опоре 1 и 2 можно рассчитать как

R 2 = (R 2x 2 + (qb) 2 ) 0.5 (2c)

R 1 = (R 1x 2 + (qa) 2 ) 0,5 (2d)

— и вертикальные силы на опоре 1 и 2 можно рассчитать как

R 2y = (R 2 2 — R 2x 2 ) 0,5 (2e)

R 1y = (R 1y = ( 2 — R 1x 2 ) 0.5 (2f)

Углы между горизонтальными и результирующими силами могут быть рассчитаны как

θ 2 = cos -1 (R 2x / R 2 ) (2g)

θ 1 = cos -1 (R 1x / R 1 ) (2g)

Длину провисшего кабеля можно оценить как

s b = b (1 + 2/3 (h 2 / b) 2 ) (2h)

s a = a (1 + 2/3 (h 1 / a) 2 ) (2i)

s = s a + s b (2j)

Пример — наклонный кабель с равномерной нагрузкой, единицы СИ

Кабель длиной 30 м и провисание ч 2 = 10 м и ч 2 = 1 м имеет равномерную нагрузку 4 кН / м .

Горизонтальные опорные силы можно рассчитать как

R 1x = R 2x

= (4 кН / м) (30 м) 2 / (2 (((1 м)) 0,5 + ( (10 м) ) 0,5 ))

= 103,9 кН

Расстояние a и b можно рассчитать, перенастроив ур. 2b до

a = (2 R 1x h 1 / q) 0.5

= (2 (103,9 кН) (1 м) / (4 кН / м)) 0,5

= 7,2 м

b = (2 R 2x h 2 / q) 0,5

= (2 (103,9 кН) (10 м) / (4 кН / м)) 0,5

= 22,8 м

Возникающие силы в опорах могут рассчитывается как

R 2 = ((103,9 кН) 2 + ((4 кН / м) (22.8 м)) 2 ) 0,5

= 138,2 кН ​​

R 1 = ( (103,9 кН) 2 + ((4 кН / м) (7,2 м) )) 2 ) 0,5

= 107,8 кН

Вертикальные силы в опорах можно рассчитать как

R 2y = ((138,2 кН) 2 — (103,9 кН) 2 ) 0.5

= 91,2 кН ​​

R 1 год = ((107,8 кН) 2 — (103,9 кН) 2 ) 0,5

04

кН

Углы между результирующими и горизонтальными силами в опоре 1 и 2 могут быть рассчитаны как

θ 2 = cos -1 (( 103,9 кН ) / (138.2 кН) )

= 41,3 o

θ 1 = cos -1 ( ( 103,9 кН ) / (1070003 103,9 кН) )

= 15,5 o

Длину провисшего кабеля можно рассчитать как

с b = (22,8 м) (1 + 2/3 ((10 м) / ( 22,8 м)) 2 )

= 25.7 м

с a = (7,2 м) (1 + 2/3 ((1 м) / (7,2 м)) 2 )

= 7,3 м

s = ( 7,3 м ) + ( 25,7 м )

= 33 м

, заземление, нейтраль Можно)

Нейтральный, заземляющий и горячий провода объяснены.В этой статье мы рассмотрим разницу между горячим, нейтральным и заземляющим проводами, а также функцию каждого из них на нескольких примерах. Эта тема для домов в Северной Америке. Если вы находитесь за пределами этого региона, вы все равно можете следовать инструкциям, но ваша система будет работать и выглядеть иначе, поэтому ознакомьтесь с другими нашими темами.

Прокрутите вниз, чтобы просмотреть руководство YouTube по заземлению, нейтрали и горячим проводам.

Предупреждение

Помните, что электричество опасно и может быть смертельным.Вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ. Никогда не работайте с электрическими цепями, находящимися под напряжением / горячими.

Прежде чем мы перейдем к этому видео, я хочу, чтобы вы запомнили три вещи.

1) Электричество будет течь только по замкнутой цепи, если вы войдете в контакт с электрическим проводником, ваше тело может замкнуть цепь.
2) Электричество всегда пытается вернуться к своему источнику.
3) Электричество использует все доступные пути для замыкания цепи. Он предпочитает путь с меньшим сопротивлением, и по нему будет течь больше тока.

Мы собираемся изучить провода под напряжением, нейтраль и заземление для типичной электросети в североамериканских жилых домах. Но сначала мы увидим действительно простую схему, чтобы понять, как она работает, а затем применим эти знания к сложной жилой установке.

Если мы посмотрим на простую электрическую схему с батареей и лампой. Мы знаем, что для включения лампы нам нужно подключить оба конца проводов к клеммам аккумулятора. Как только мы подключим эти провода, цепь замкнута, и электроны могут течь от отрицательного полюса через лампу и обратно к положительному выводу.

Электроны текут от отрицательного к положительному . Это называется потоком электронов. Первоначально считалось, что они перетекают от положительного к отрицательному. Позже было обнаружено, что это неверно, и мы называем это обычным током.

Итак, чтобы цепь была замкнута, нам нужен провод для переноса электронов от источника питания к свету, это наш горячий провод. Затем нам нужно подключиться от лампы и обратно к батарее, чтобы электроны вернулись к своему источнику питания или своему источнику.Это наш нейтральный провод. Горячий провод передает электричество от источника питания к нагрузке, а нейтральный провод возвращает использованное электричество обратно к источнику питания.

Токовая нагрузка в цепях

Если мы посмотрим на жилую электрическую систему в Северной Америке, мы найдем два провода под напряжением, нейтральный провод и несколько проводов заземления. Если вы хотите подробно изучить, как это работает, у нас есть обучающее видео, которое можно посмотреть здесь.

Представьте на секунду, что электрическая система дома отключена. подключен к аккумулятору, и у нас есть только один провод под напряжением и нейтральный провод.Как мы пила по простой схеме, для включения света нам понадобится горячий провод, чтобы подавать ток на нагрузку, и нам нужен нейтральный провод, чтобы вернуть ток к источнику. Таким образом, электричество проходит через горячую шину. и автоматический выключатель и в свет. Затем он возвращается через нейтрально и к источнику.

Конечно дома не подключены к батареям, они подключен к трансформаторам. Итак, мы заменили батарею на трансформатор, и мы иметь полную схему.

Электричество в этой цепи — переменный ток, который отличается от постоянного тока, который мы видели с батареей. С DC электроны текут прямо от A к B в одном направлении, как поток вода по реке. Но в наших домах у нас есть переменный ток переменного тока, что означает электроны сильно меняют свое направление между вперед и назад как прилив на море.

Сейчас в Северной Америке у нас есть разделенная фаза питания для большинства жилых домов, поэтому у нас есть два провода под напряжением и один нейтральный провод.У нас просто есть две катушки на 120 В, соединенные вместе в трансформаторе, а затем нейтраль подключается к центру между двумя катушками.

Когда мы подключаем мультиметр между фазой и нейтралью, мы получаем 120 В, и мы получаем такие же показания для другого, потому что мы используем только половину катушки в трансформаторе. Когда мы подключаемся между двумя точками, мы получаем 240 В, потому что мы используем полную катушку трансформатора.

Если у вас нет мультиметра, я настоятельно рекомендую вам его приобрести, это незаменимый инструмент для поиска любых находок и электромонтажных работ.

Если у нас есть нагрузка только на одну половину катушки, между горячей и нейтралью, и нагрузка, например, 20 А, то горячая часть будет переносить 20 А к нагрузке, а нейтраль вернет 20 А обратно к источнику.

Мы можем измерить ток в кабеле с помощью токоизмерительных клещей.

Если у нас есть другая нагрузка на нашей другой половине катушки, между другой горячей и нейтралью, и нагрузка имеет другое значение, скажем, 15 Ампер, то нейтраль будет переносить только разницу между этими двумя значениями обратно на трансформатор.В этом случае 20A — 15A = 5A, поэтому нейтраль будет переносить 5A обратно. Остальная часть пройдет через два провода под напряжением. Это то, что у нас будет в большинстве случаев, потому что есть несколько цепей с разными нагрузками.

Если бы у нас была нагрузка на обе катушки, и они имеют одинаковое значение, скажем, например, 15 А каждая, то в нейтральном проводе не будет протекать ток. Все это течет вперед и назад по двум токоведущим проводам между нагрузкой и источником. Это связано с тем, что это переменный ток переменного тока, и трансформатор имеет центральное ответвление с нейтралью, поэтому, когда одна половина движется вперед, другая половина движется назад, и ток будет течь в другую цепь, а не обратно через нейтраль.

Подробную анимацию см. В видео на YouTube ниже

Горячие провода переносят электрический ток от источника питания к нагрузке, а нейтральные провода переносят электрический ток от нагрузки и обратно к источнику питания.

Для чего нужен заземляющий провод?

Заземляющий провод при нормальных условиях эксплуатации не пропускает электрический ток. Этот провод будет пропускать электрический ток только в случае замыкания на землю. Будем надеяться, что иначе этот провод никогда не будет использоваться в течение всей его жизни.Это просто аварийный путь, по которому электричество возвращается к источнику энергии, а не проходит через вас. Заземляющий провод в большинстве случаев представляет собой неизолированный медный провод, но иногда он покрывается зеленой изоляцией. Этот провод имеет очень низкое сопротивление, поэтому электричество предпочтительнее перемещаться по нему, потому что это легче и может быстрее вернуться.

Возвращаясь к простой схеме с батареей и лампой. Если мы теперь возьмем другой провод и проведем его от положительной клеммы к лампе и подключим его к металлическому патрону лампы, это будет фактически наш заземляющий провод.Он не используется для подачи электричества. Если горячий провод касается металлического корпуса, то вместо этого электричество будет проходить через заземляющий провод. Если горячий провод соприкасается как с нейтралью, так и с землей, он будет течь через оба провода обратно к источнику, но поскольку заземление имеет меньшее сопротивление, через него будет протекать больший ток.

Когда электричество находит способ выйти из своей цепи и вернуться к источнику другим путем, чем нейтральный провод, мы называем это замыкание на землю.

Возвращаясь в дом, электричество проходит через горячий и светлый и обратно через нейтраль. Но если горячая энергия касается металлического корпуса, она вместо этого потечет через заземляющий провод обратно к панели, затем через шину, а затем обратно к трансформатору через нейтральный провод. У заземляющего провода очень низкое сопротивление, поэтому он вызывает резкое и мгновенное увеличение тока, которое приведет к срабатыванию выключателя.

Поэтому мы подключаем заземляющие провода ко всему, что может потенциально стать потенциальным путем, по которому электричество может покинуть свою цепь, например, как металлические трубы, металлические пластины выключателей и розеток и их коробки.Нам также нужно запустить один в торговые точки, потому что часто наши бытовая техника будет иметь металлический корпус, как стиральные машины и микроволновые печи.

Если вы посмотрите на розетку и вилку, то увидите, что клемма под напряжением, клемма нейтрали и клемма заземления. Оболочка чего-то как стиральная машина подключена к проводу заземления в проводе, который идет к вилку через розетку и обратно к панели, чтобы спасти вас от поражение электрическим током.

Теперь предположим, что вы находитесь на улице без обуви и на земле. влажный.Если вы дотронетесь до горячего провода, вы замкните цепь и ток пройдет через вас, чтобы вернуться к источнику питания. В этом случае сопротивление очень высокое, поэтому ток может быть недостаточно высоким, чтобы автоматически переверните выключатель и отключите питание. Это, скорее всего, приведет к тому, что люди смерть.

К счастью, у нас есть розетка GFCI или прерыватель GFCI. GFCI расшифровывается как прерыватель цепи замыкания на землю. Мы рассмотрим вариант с автоматическим выключателем, но, по сути, они работают одинаково.

Этот выключатель GFCI будет подключаться как к горячему, так и к нейтрали цепи, чтобы он мог контролировать провода и гарантировать, что ток, протекающий в горячем проводе схемы, равен току в нейтральном проводе цепи. .Если ток не равен, значит, он явно течет обратно к источнику по другому маршруту, например, по металлической трубе, поэтому у нас есть замыкание на землю. Прерыватель осознает это очень быстро и автоматически переключится, чтобы отключить питание цепи.

Штанга заземления

При подключении к основной панели находим толстый медный провод. что приводит к заземляющему стержню. Грунтовая дорога засыпана землей снаружи рядом с собственностью. Этот стержень не используется при замыканиях на землю. Цель состоит в том, чтобы рассеивают статическое электричество и высокое внешнее напряжение, например, молнии удары.

Также имеется заземляющий стержень, подключенный к нейтрали трансформатора. Многие думают, что во время замыкания на землю электричество проходит через заземляющий стержень в землю. Но помните, что электричество пытается вернуться к своему источнику. Поскольку у трансформатора есть заземляющий стержень, существует потенциальный путь для электричества, чтобы вернуться к источнику. НО, этот путь будет иметь очень высокое сопротивление или импеданс, поскольку это переменный ток, и, как мы знаем, электричество будет иметь преимущество перед путем с наименьшим сопротивлением.Поскольку у нас уже есть заземляющий провод с низким сопротивлением, который обеспечивает обратный путь непосредственно к источнику, замыкание на землю будет происходить по этому же маршруту.

Когда дело доходит до освещения, источником освещения в основном является Земля. Итак, молния пытается вернуться к своему источнику, который является земной шар. Если молния ударит по кабелям электросети, она потечет по проводам к добраться до заземляющих стержней как трансформатора, так и главной панели, чтобы вернуться на землю. В противном случае он взорвет все наши цепи и вызовет пожары.

Если горячая проволока напрямую контактирует с заземляющим стержнем, то электричество будет проходить через землю обратно к трансформатору, но сопротивление очень велико, поэтому ток будет низким. Это означает, что автоматический выключатель вряд ли обнаружит эту неисправность, и выключатель не будет автоматически переключаться, чтобы отключить питание.


.
Провод

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *