От чего зависит сопротивление
☰
Сила тока в проводнике прямо пропорциональна напряжению на нем. Это значит, что с увеличением напряжения увеличивается и сила тока. Однако при одинаковом напряжении, но использовании разных проводников сила тока различна. Можно сказать по-другому. Если увеличивать напряжение, то хотя сила тока и будет увеличиваться, но везде по-разному, в зависимости от свойств проводника.
Зависимость силы тока от напряжения для данного конкретного проводника представляет собой сопротивление этого проводника. Оно обозначается R и находится по формуле R = U/I. То есть сопротивление определяется как отношение напряжения к силе тока. Чем больше сила тока в проводнике при данном напряжении, тем меньше его сопротивление. Чем больше напряжение при данной силе тока, тем больше сопротивление проводника.
Формулу можно переписать по отношению к силе тока: I = U/R (закон Ома). В таком случае нагляднее, что чем больше сопротивление, тем меньше сила тока.
Можно сказать, что сопротивление как бы мешает напряжению создавать большую силу тока.
Само сопротивление является характеристикой проводника. Оно не зависит от поданного на него напряжения. Если будет подано большое напряжение, то изменится сила тока, но не изменится отношение U/I, т. е. не изменится сопротивление.
От чего же зависит сопротивление проводника? Оно зависти от
- длины проводника,
- площади его поперечного сечения,
- вещества, из которого изготовлен проводник,
- температуры.
Чтобы связать вещество и его сопротивление, вводится такое понятие как
Чем меньше удельное сопротивление вещества, тем лучшим проводником электрического тока оно является. Маленьким удельным сопротивлением обладают, например, серебро, медь, алюминий; куда большее у железа, вольфрама; очень большое у различных сплавов.
Чем длиннее проводник, тем большее сопротивление он имеет. Это становится понятно, если принять во внимание, что движению электронов в металлах мешают ионы, составляющие кристаллическую решетку. Чем их больше, т. е. чем длиннее проводник, тем больше у электрона шанс замедлить свой путь.
Однако увеличение площади поперечного сечения делает как бы дорогу шире. Электронам легче течь и не сталкиваться с узлами кристаллической решетки. Поэтому чем толще проводник, тем его сопротивление меньше.
Таким образом, сопротивление прямо пропорционально зависит от удельного сопротивления (ρ) и длины (l) проводника и обратно пропорционально зависит от площади (S) его поперечного сечения. Получаем формулу сопротивления:
R = ρl/S
В этой формуле на первый взгляд не отражается зависимость сопротивления проводника от его температуры. Однако удельное сопротивление вещества меряется при определенной температуре (обычно 20 °C). Поэтому температура учитывается. Для вычислений удельные сопротивления берут из специальных таблиц.
Для металлических проводников чем больше температура, тем сопротивление больше. Это связано с тем, что при повышении температуры ионы решетки начинают сильнее колебаться и больше мешать движению электронов. Однако в электролитах (растворах, где заряд несут ионы, а не электроны) с повышением температуры сопротивление уменьшается. Здесь это связано с тем, что чем выше температура, тем больше происходит диссоциация на ионы, и они быстрее двигаются в растворе.
Что такое сопротивление проводников и от чего оно зависит: что важнее
Протекающий в проводящем материале ток пропорционален напряжению на нём. Т.е. при увеличении потенциала объём протекающих электронов также растёт. Правда, при применении различных элементов равнозначное напряжение даёт различное значение у тока. Таким образом, получается правило: при увеличении напряжения проходящий через проводник электрический ток тоже будет расти, но неодинаково, а в зависимости от характеристик элемента.
Пример провода
Определение резистивной составляющей
Электросопротивление материала – это соотношение величины протекающего тока и приложенного к нему напряжения. Для каждого конкретного элемента это соотношение своё. Для обозначения данной физической величины используют букву R. При определении её используют формулу закона Ома для участка цепи:
R=U/I.
Из представленного выражения видно, что резистивная составляющая – это отношение потенциала на проводнике к силе тока на нём же. Таким образом, чем выше величина тока, тем слабее резистивная составляющая у проводника, при большем напряжении – большая.
Дополнительная информация. Часто в обиходе говорят, что резистивная величина «мешает» напряжению бесконечно наращивать силу тока.
У любого резистора, выпускаемого в промышленных условиях, существует порядка десяти параметров, на которые необходимо обращать внимание при его выборе. Главный его параметр – сопротивление. Это статическая характеристика для любого проводника, заданная при его производстве. Т.е. при подаче большего потенциала на проводящий элемент изменится только ток, проходящий сквозь него, но не его резистивная составляющая. Т.е. соотношение U/I остаётся неизменным.
От чего зависит сопротивление
Необходимо рассмотреть, от каких факторов зависит электрическое сопротивление проводника. Основных параметров четыре:
- Длина кабеля – l;
- Площадь поперечного сечения проводящего элемента – S;
- Металл, использованный в производстве кабеля;
- Температура окружающей среды – t.
Важно! Удельное сопротивление детали – это используемое в физике понятие, показывающее способность элемента задерживать проведение электричества.
Для состыковки детали и ее резистивной составляющей в физической науке введено понятие удельного сопротивления. Этот показатель характеризует величину резистивной составляющей кабеля при единичной длине в 1 метр и единичной площадью 1 м². Детали указанной протяжённости и толщины, произведённые из различного сырья, будут показывать различные значения резистивной величины. Это связано с физическими свойствами металлов. Именно из них в основном изготавливают провода и кабели. У каждого металлического материала своя величина элементов в кристаллической решётке.
Кристаллическая решётка
Самыми безупречно проводящими электричество деталями являются те, у которых значение резистивной составляющей наименьшее. Примером металлов с небольшой указанной величиной являются алюминий и медь. Подавляющее большинство проводов и кабелей для передачи электрической энергии изготавливаются из них. Также из них изготавливают шины в трансформаторных подстанциях и главных распределительных щитах любых зданий. Примером металлов, обладающих большой величиной удельного сопротивления, можно указать железо и всевозможные сплавы. Зачастую резистивную составляющую элемента указывают резистором.
При увеличении длины проводящего материала увеличивается и сопротивление металлического проводника. Это связано с физическими процессами, происходящими в нём при прохождении электрического тока. Суть их такова: электроны движутся по проводящему слою, в котором присутствуют ионы, из которых состоит кристаллическая решётка любого металла. Чем больше длина проводника, тем большее количество мешающих движению электронов присутствует ионов кристаллической решётки. Тем больше они создают препятствия для проведения электричества.
Для возможности наращивания протяжённости проводника производители увеличивают площадь материалов. Это даёт возможность расширить «автостраду» для электрического тока. Т.е. электроны меньше пересекаются с деталями решетки металла. Отсюда следует, что более толстый кабель имеет меньшее сопротивление.
Из всего вышесказанного вытекает формула для определения сопротивления проводника, выраженная через его длину (l), площадь поперечного сечения (S) и удельного сопротивления металла (ρ):
R = ρl/S.
В представленном выражении определения данного параметра отсутствует температура окружающей среды. Однако резистивная величина элемента меняется при достижении определенной температуры. Обычно эта температура составляет 20-25 °С. Поэтому не учитывать температуру окружающей среды при выборе детали нельзя. Это может привести к перегреву проводника и его воспламенению. Для выбора используют специализированные таблицы, значения которых используют в вычислениях.
Обычно увеличение температуры ведёт к увеличению резистивной составляющей металлического элемента. С физической точки зрения это связано с тем, что при увеличении температуры кристаллической решётки ионы в ней выходят из состояния покоя и начинают производить колебательные движения. Данный процесс замедляет электроны, т. к. столкновения между ними происходят чаще.
Шинная сборка
Выбор проводника – это достаточно сложный процесс, который лучше доверить профессионалам. При неправильной оценке всех факторов работы детали можно получить множество негативных последствий, вплоть до пожара. Поэтому понимание, от чего может зависеть сопротивление проводника, должно присутствовать.
Видео
Оцените статью:§11. Электрическое сопротивление — Начало. Основы. — Справочник
§11. Электрическое сопротивление.
Источнику электроэнергии в замкнутой цепи приходится расходовать энергию на преодоление сопротивлений как внешней, так и внутренней цепей.
Сопротивление обозначается буквой R ®, измеряется в Омах (Ом). 1Ом=1В/1А. Устройства, включаемые в цепь и обладающие сопротивлением, называются резисторами. На схемах они обозначаются так.
Рис. 1. Условное обозначение резисторов:
а) — общее обозначение;
б),в) -регулируемые резисторы:б) — реостат.
Также сопротивления больших величин измеряют в килоомах (кОм) и мегоомах (мОм).
R=ρ·l/S.
Из этой формулы видно, что сопротивление проводника прямо пропорционально длине этого проводника, удельному сопротивлению материала, из которого сделан данный проводник и обратно пропорционален площади поперечного сечения этого проводника.
Сопротивление проводников зависит не только от материала, из которого он изготовлен, но также и от температуры. С увеличением температуры сопротивление металлических проводников увеличивается. Так, если принять R1 за сопротивление проводника при температуре Т1, а R2 – сопротивление этого же проводника, но при температуре Т2, то можно написать следующее:
R2=R1|1+α(T2-T1)|, где
α – температурный коэффициент сопротивления (ТКС).
ТКС зависит от металла, из которого сделан проводник. Эта формула справедлива только для не очень высоких температур – до 100-120 ˚С.
Для регулирования сопротивления и тока в цепи, применяют регулируемые сопротивления – реостаты. Их изготовляют из проволоки, имеющее большое удельное сопротивление. Сопротивление может изменять как плавно, так ступенчато.
Какое удельное электрическое сопротивление проводника
Понятие об электрическом сопротивлении и проводимости
Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.
Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.
Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока.
Сопротивление обозначается латинскими буквами R или r .
За единицу электрического сопротивления принят ом.
Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм2 при температуре 0° С.
Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4ом.
Для измерения сопротивлений большой величины принята единица, называемая мегомом.
Один мегом равен одному миллиону ом.
Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.
Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью.
Электрической проводимостью называется способность материала пропускать через себя электрический ток.
Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/ R ,обозначается проводимость латинской буквой g.
Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления
Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.
Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.
Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа – 0,12, удельное сопротивление константана – 0,48, удельное сопротивление нихрома – 1-1,1.
Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.
Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника :
где – R – сопротивление проводника, ом, l – длина в проводника в м, S – площадь поперечного сечения проводника, мм 2 .
Площадь поперечного сечения круглого проводника вычисляется по формуле:
где Пи – постоянная величина, равная 3,14; d – диаметр проводника.
А так определяется длина проводника:
Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.
Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:
Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:
Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.
Еще одной причиной, влияющей на сопротивление проводников, является температура .
Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1° C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.
Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов .
Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре – 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.
Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.
Удельное сопротивление
Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:
где:
ρ — удельное сопротивление металла (Ом⋅м),
Е — напряженность электрического поля (В/м),
J — величина плотности электрического тока в металле (А/м2)
Если напряженность электрического поля (Е) в металле очень большая, а плотность тока (J) очень маленькая, это означает, что металл имеет высокое удельное сопротивление.
Обратной величиной удельного сопротивления является удельная электропроводность, указывающая, насколько хорошо материал проводит электрический ток:
σ — проводимость материала, выраженная в сименс на метр (См/м).
Электрическое сопротивление
Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.
Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.
Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.
В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.
В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.
- Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
- Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка
Сопротивление провода
Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:
где:
R — сопротивление провода (Ом)
ρ — удельное сопротивление металла (Ом.m)
L — длина провода (м)
А — площадь поперечного сечения провода (м2)
В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:
R=1,1*10 -6 *(1,5/0,000000196) = 8,4 Ом
Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.
Поверхностное сопротивление
Величина поверхностного сопротивления рассчитывается таким же образом, как и сопротивление провода. В данном случае площадь сечения можно представить в виде произведения w и t:
Для некоторых материалов, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется поверхностное сопротивление слоя RS:
где RS измеряется в омах. При данном расчете толщина пленки должна быть постоянной.
Часто производители резисторов для увеличения сопротивления вырезают в пленке дорожки, чтобы увеличить путь для электрического тока.
Свойства резистивных материалов
Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.
Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.
Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко паяется и имеет более низкий температурный коэффициент.
Как нам известно из закона Ома, ток на участке цепи находится в следующей зависимости: I=U/R. Закон был выведен в результате серии экспериментов немецким физиком Георгом Омом в XIX веке. Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно – от его сопротивления.
Позже было установлено, что сопротивление участка зависит от его геометрических характеристик следующим образом: R=ρl/S,
где l- длина проводника, S – площадь его поперечного сечения, а ρ – некий коэффициент пропорциональности.
Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление (далее – у. с.) – так назвали этот коэффициент. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление – это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества.
com/embed/9ByGynkMIPY»/>
Проводимость и сопротивление
У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:
σ=1/ρ, где ρ – это и есть удельное сопротивление вещества.
Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.
В растворах носителями заряда являются ионы.
Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:
Проводники и диэлектрики
Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.
Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).
Условной границей понятия «проводник» является ρ
от чего зависит сопротивление проводника, формулы для расчета
Одним из физических свойств вещества является способность проводить электрический ток. Электропроводимость (сопротивление проводника) зависит от некоторых факторов: длины электрической цепи, особенностей строения, наличия свободных электронов, температуры, тока, напряжения, материала и площади поперечного сечения.
Физический смысл сопротивления
Протекание электрического тока через проводник приводит к направленному движению свободных электронов. Наличие свободных электронов зависит от самого вещества и берется из таблицы Д. И. Менделеева , а именно из электронной конфигурации элемента. Электроны начинают ударяться о кристаллическую решетку элемента и передают энергию последней. В этом случае возникает тепловой эффект при действии тока на проводник.
При этом взаимодействии они замедляются, но затем под действием электрического поля, которое их ускоряет, начинают двигаться с той же скоростью. Электроны сталкиваются огромное количество раз. Этот процесс и называется сопротивлением проводника.
Следовательно, электрическим сопротивлением проводника считается физическая величина, характеризующая отношение напряжения к силе тока.
Что такое электрическое сопротивление: величина, указывающая на свойство физического тела преобразовывать энергию электрическую в тепловую, благодаря взаимодействию энергии электронов с кристаллической решеткой вещества. По характеру проводимости различаются:
- Проводники (способны проводить электрический ток, так как присутствуют свободные электроны).
- Полупроводники (могут проводить электрический ток, но при определенных условиях).
- Диэлектрики или изоляторы (обладают огромным сопротивлением, отсутствуют свободные электроны, что делает их неспособными проводить ток).
Обозначается эта характеристика буквой R и измеряется в Омах (Ом). Применение этих групп веществ является очень значимым для разработки электрических принципиальных схем приборов.
Для полного понимания зависимости R от чего-либо нужно обратить особое внимание на расчет этой величины.
Расчет электрической проводимости
Для расчета R проводника применяется закон Ома, который гласит: сила тока (I) прямо пропорциональна напряжению (U) и обратно пропорциональна сопротивлению.
Формула нахождения характеристики проводимости материала R (следствие из закона Ома для участка цепи): R = U / I.
Для полного участка цепи эта формула принимает следующий вид: R = (U / I) — Rвн, где Rвн — внутреннее R источника питания.
Зависимость проводимости материала
Способность проводника к пропусканию электрического тока зависит от многих факторов: напряжения, тока, длины, площади поперечного сечения и материала проводника, а также от температуры окружающей среды.
В электротехнике для произведения расчетов и изготовления резисторов учитывается и геометрическая составляющая проводника.
От чего зависит сопротивление: от длины проводника — l, удельного сопротивления — p и от площади сечения (с радиусом r) — S = Пи * r * r.
Формула R проводника: R = p * l / S.
Из формулы видно, от чего зависит удельное сопротивление проводника: R, l, S. Нет необходимости его таким способом рассчитывать, потому что есть способ намного лучше. Удельное сопротивление можно найти в соответствующих справочниках для каждого типа проводника (p — это физическая величина равная R материала длиною в 1 метр и площадью сечения равной 1 м².
Однако этой формулы мало для точного расчета резистора, поэтому используют зависимость от температуры.
Влияние температуры окружающей среды
Доказано, что каждое вещество обладает удельным сопротивлением, зависящим от температуры.
Для демонстрации это можно произвести следующий опыт. Возьмите спираль из нихрома или любого проводника (обозначена на схеме в виде резистора), источник питания и обычный амперметр (его можно заменить на лампу накаливания). Соберите цепь согласно схеме 1.
Схема 1 — Электрическая цепь для проведения опыта
Необходимо запитать потребитель и внимательно следить за показаниями амперметра. Далее следует нагревать R, не отключая, и показания амперметра начнут падать при росте температуры. Прослеживается зависимость по закону Ома для участка цепи: I = U / R. В данном случае внутренним сопротивлением источника питания можно пренебречь: это не отразится на демонстрации зависимости R от температуры. Отсюда следует, что зависимость R от температуры присутствует.
Физический смысл роста значения R обусловлен влиянием температуры на амплитуду колебаний (увеличение) ионов в кристаллической решетке. В результате этого электроны чаще сталкиваются и это вызывает рост R.
Согласно формуле: R = p * l / S, находим показатель, который зависит от температуры (S и l — не зависят от температуры). Остается p проводника. Исходя из это получается формула зависимости от температуры: (R — Ro) / R = a * t, где Ro при температуре 0 градусов по Цельсию, t — температура окружающей среды и a — коэффициент пропорциональности (температурный коэффициент).
Для металлов «a» всегда больше нуля, а для растворов электролитов температурный коэффициент меньше 0.
Формула нахождения p, применяемая при расчетах: p = (1 + a * t) * po, где ро — удельное значение сопротивления, взятое из справочника для конкретного проводника. В этом случае температурный коэффициент можно считать постоянным. Зависимость мощности (P) от R вытекает из формулы мощности: P = U * I = U * U / R = I * I * R. Удельное значение сопротивления еще зависит и от деформаций материала, при котором нарушается кристаллическая решетка.
Деформация и удельное сопротивление
При обработке металла в холодной среде при некотором давлении происходит пластическая деформация. При этом кристаллическая решетка искажается и растет R течения электронов. В этом случае удельное сопротивление также увеличивается. Этот процесс является обратимым и называется рекристаллическим отжигом, благодаря которому часть дефектов уменьшается.
При действии на металл сил растяжения и сжатия последний подвергается деформациям, которые называются упругими. Удельное сопротивление уменьшается при сжатии, так как происходит уменьшение амплитуды тепловых колебаний. Направленным заряженным частицам становится легче двигаться. При растяжении удельное сопротивление увеличивается из-за роста амплитуды тепловых колебаний.
Еще одним фактором, влияющим на проводимость, является вид тока, проходящего по проводнику.
Цепи переменного тока
Сопротивление в сетях с переменным током ведет себя несколько иначе, ведь закон Ома применим только для схем с постоянным напряжением. Следовательно, расчеты следует производить иначе.
Полное сопротивление обозначается буквой Z и состоит из алгебраической суммы активного, емкостного и индуктивного сопротивлений.
При подключении активного R в цепь переменного тока под воздействием разницы потенциалов начинает течь ток синусоидального вида. В этом случае формула выглядит: Iм = Uм / R, где Iм и Uм — амплитудные значения силы тока и напряжения. Формула сопротивления принимает следующий вид: Iм = Uм / ((1 + a * t) * po * l / 2 * Пи * r * r).
Емкостное сопротивление (Xc) обусловлено наличием в схемах конденсаторов. Необходимо отметить, что через конденсаторы проходит переменный ток и, следовательно, он выступает в роли проводника с емкостью.
Вычисляется Xc следующим образом: Xc = 1 / (w * C), где w — угловая частота и C — емкость конденсатора или группы конденсаторов. Угловая частота определяется следующим образом:
- Измеряется частота переменного тока (как правило, 50 Гц).
- Умножается на 6,283.
Индуктивное сопротивление (Xl) — подразумевает наличие индуктивности в схеме (дроссель, реле, контур, трансформатор и так далее). Рассчитывается следующим образом: Xl = wL, где L — индуктивность и w — угловая частота. Для расчета индуктивности необходимо воспользоваться специализированными онлайн-калькуляторами или справочником по физике. Итак, все величины рассчитаны по формулам и остается всего лишь записать Z: Z * Z = R * R + (Xc — Xl) * (Xc — Xl).
Для определения окончательного значения необходимо извлечь квадратный корень из выражения: R * R + (Xc — Xl) * (Xc — Xl). Из формул следует, что частота переменного тока играет большую роль, например, в схеме одного и того же исполнения при повышении частоты увеличивается и ее Z. Необходимо добавить, что в цепях с переменным напряжением Z зависит от таких показателей:
- Длины проводника.
- Площади сечения — S.
- Температуры.
- Типа материала.
- Емкости.
- Индуктивности.
- Частоты.
Следовательно и закон Ома для участка цепи имеет совершенно другой вид: I = U / Z. Меняется и закон для полной цепи.
Измерение электрической проводимости
Расчеты сопротивлений требуют определенного количества времени, поэтому для измерений их величин применяются специальные электроизмерительные приборы, которые называются омметрами. Измерительный прибор состоит из стрелочного индикатора, к которому последовательно включен источник питания.
Измеряют R все комбинированные приборы, такие как тестеры и мультиметры. Обособленные приборы для измерения только этой характеристики применяются крайне редко (мегаомметр для проверки изоляции силового кабеля).
Прибор применяется для прозвонки электрических цепей на предмет повреждения и исправности радиодеталей, а также для прозвонки изоляции кабелей.
При измерении R необходимо полностью обесточить участок цепи во избежание выхода прибора из строя. Для это необходимо предпринять следующие меры предосторожности:
- Вытянуть вилку из сети.
- Включить прибор, при этом произойдет разрядка конденсаторов.
- Приступить к измерению или прозвонке.
- Установить переключатель в режим измерения сопротивления.
- Закоротить щупы прибора, чтобы удостовериться в его работоспособности (покажет очень малое сопротивление).
- Измерить необходимый участок.
В дорогих мультиметрах есть функция прозвонки цепи, дублируемая звуковым сигналом, благодаря чему нет необходимости смотреть на табло прибора.
Таким образом, электрическое сопротивление играет важную роль в электротехнике. Оно зависит в постоянных цепях от температуры, силы тока, длины, типа материала и площади поперечного сечения проводника. В цепях переменного тока эта зависимость дополняется такими величинами, как частота, емкость и индуктивность. Благодаря этой зависимости существует возможность изменять характеристики электричества: напряжение и силу тока. Для измерений величины сопротивления применяются омметры, которые используются также и при выявлении неполадок проводки, прозвонки различных цепей и радиодеталей.
Физика 8 класс. Электрическое сопротивление. Удельное сопротивление :: Класс!ная физика
Физика 8 класс. ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ
Электрическое сопротивление ( R ) — это физическая величина, численно равная отношению
напряжения на концах проводника к силе тока, проходящего через проводник.
Величину сопротивления для участка цепи можно определить из формулы закона Ома для участка цепи.
Однако, сопротивление проводника не зависит от силы тока в цепи и напряжения, а определяется только формой, размерами и материалом проводника.
где l — длина проводника ( м ), S — площадь поперечного сечения (кв.м ),
r ( ро) — удельное сопротивление (Ом м ).
Удельное сопротивление
— показывает, чему равно сопротивление проводника, выполненного из данного вещества,
длиной в 1м и с поперечным сечением 1 м кв.
Единица измерения удельного сопротивления в системе СИ: 1 Ом м
Однако, на практике толщина проводов значительно меньше 1 м кв,
поэтому чаще используют внесистемную единицу измерения удельного сопротивления:
Единица измерения сопротивления в системе в СИ:
[R] = 1 Ом
Сопротивление проводника равно 1 Ом, если при разности потенциалов на его концах в 1 В,
по нему протекает ток силой 1 А.
___
Причиной наличия сопротивления у проводника является взаимодействие движущихся электронов с ионами кристалической решетки проводника. Из-за различия в строении криталической решетки у проводников, выполненных из различных веществ, сопротивления их отличаются друг от друга.
ЗАПОМНИ !
Существует физическая величина обратная сопротивлению — электрическая проводимость.
R — это сопротивление проводника,
1/R — это электрическая проводимость проводника
___
Величины проводимости проводников и изоляторов различаются в большое число раз,
измеряемое единицей с двадцатью двумя нулями!
ЗНАЕШЬ ЛИ ТЫ ?
… что сопротивления кожи человека обычно изменяется от 1 кОм ( для влажной кожи )
до 500 кОм ( для сухой кожи ). Сопротивление других тканей тела равно от 100 до 500 Ом.
Устали? — Отдыхаем!
Закон Ома для участка цепи. Расчет электрического сопротивления проводника
Цель |
Обобщить знания учащихся об электрическом токе и напряжении и установить на опыте зависимость силы тока от напряжения на однородном участке электрической цепи и от сопротивления этого участка, вывести закон Ома для участка цепи. Установить, что электрическое сопротивление зависит от длины проводника, удельного сопротивления и площади поперечного сечения. |
Задачи урока |
|
Тип урока |
Урок формирования новых знаний с использованием электронных образовательных ресурсов. |
Формы работы учащихся |
Фронтальная, групповая, индивидуальная. |
Используемые приемы обучения |
проблемный; исследовательский. |
Методы |
Словесный, частично-поисковый, Практический, методы контроля и самоконтроля. |
Средства обучения |
Мел, доска, компьютер, мультимедийный проектор, наличие доступа в Интернет. |
Демонстрации |
1.Зависимость силы тока от сопротивления проводника при постоянном напряжении; |
Формируемые УУД |
|
Ожидаемые результаты |
|
Ход урока
1. Организационный момент (приветствие, присутствие).
2. Этап актуализации знаний
Учитель: Ребята, обратите внимание на слайд. Как Вы видите тема нашего сегодняшнего урока звучит как «Закон Ома для участка цепи. Расчет электрического сопротивления».
Но прежде, чем начать изучать новый материал, следует выяснить, к каким из физических явлений относится данная тема? (выслушиваются варианты ответа, возможно, понадобится вспомнить все остальные пять физических явлений). Итак, подведем итог, явления, к которым имеет отношение тема сегодняшнего урока называются электрические . Давайте вспомним, что же такое электрические явления? (выслушиваются предположения детей, далее работа по слайду).
Учитель: замечательно, ребята! Теперь когда мы знаем что такое электрические явления, необходимо поставить цель нашего урока, к которой мы будем стараться прийти в конце.
3. Мотивационный этап
Ребята, прежде чем устанавливать зависимости между физическими величинами, нам необходимо четко усвоить каждую из этих величин. Для этого давайте повторим по слайдам все физические величины, ос которыми нам сегодня придется работать при решении задач, а также повторим составные части электрической цепи, какие приборы помогают нам снимать показания.
Чтобы было легче понять, что такое сила тока, представьте, что перед Вами вместо провода труба, в которой находится вода, а воде плавают маленькие рыбки. Так вот рыбки, благодаря действию течения потока воды, начинают одновременно плыть в одном направлении. Если мы представим, что вместо рыбок у нас электроны, а вместо течения воды — электрическое поле, то в таком случае в проводнике возникает электрический ток, то есть упорядоченное движение заряженных частиц. За направление тока мы принимаем направление движения положительно заряженных частиц, то есть от + к -.
А теперь вспомним, что такое напряжение.
Если мы представим, что под действием течения воды в трубе одна из рыбок переместилась влево на расстояние 1 м, то мы можем сказать, что течение совершило работу по перемещению рыбки. Так и в случае электричества. Электрическое поле, перемещая заряженную частицу совершает работу, и если мы разделим значение этой работы на величину заряда частицы, то получим величину, которая называется электрическое напряжение.
Обратимся к еще одной физической величине
Электроны, передвигаясь вдоль проводника испытывают различные препятствия. Так, например, хорошими проводниками электрического тока являются металлы, а у них имеется кристаллическая решетка, чем более плотно устроена эта решетка, тем и электронам сложнее перемещаться из одного места проводника в другое, а следовательно электроны встречают некоторое сопротивление. Я неспроста сказала сопротивление, именно из этого физического смысла и вытекает понятие электрического сопротивления. Чем сложнее электронам передвигаться по проводнику, тем меньшее их количество в единицу времени будет перемещаться сквозь поперечное сечение и следовательно сила тока также будет меньше.
Давайте выясним, от каких параметров зависит электрическое сопротивление
И последнее, что мы сделаем перед изучением нового материала, это повторим, как правильно собираться электрические цепи по схемам, основные составные части электрической цепи.
4. Этап изучения нового материала
Ребята, зависимость этих трех физических величин друг от друга в 1827 году впервые вывел немецкий ученый Георг Ом. Поэтому и формула носит название его фамилии. Закон Ома.
Рассматривая зависимость друг от друга двух величин, третья должна оставаться постоянной. Мы с Вами сейчас опытным путем подтвердим что сила тока на участке цепи действительно будет увеличиваться при увеличении напряжения, но с учетом того, что сопротивление у нас будет величиной постоянной. (обращаемся к ЦОР).
По графику мы видим, что сила тока увеличивалась ровно настолько же, насколько мы увеличивали напряжение, а значит первое утверждение из закона Ома о том, «что сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка,» ВЕРНО!
Теперь выясним, как же сила тока зависит от сопротивления при постоянном напряжении и прав ли бы Георг Ом в своих суждениях.
По графику мы убедились с Вами «Что сила тока обратно пропорциональна сопротивлению».
А теперь предлагаю Вам правило треугольника, для более удобного запоминая данной формулы
5.
Этап применения нового знанияПриступим к решению задач. От простого к сложному.
Задача №1
Напряжение на зажимах электрического утюга 220(В), сопротивление нагревательного элемента утюга 50 (Ом). Чему равна сила тока в нагревательном элементе? Рассчитайте величину электрического заряда, проходящего через проводник за время 0,5 сек?
Задача №2
Используя данные предыдущей задачи, рассчитайте длину проводника (спирали в нагревательном элементе утюга), если известно, что площадь поперечного сечения проводника S равна 0,8 кв.мм., и проводник выполнен из меди.
Задача №3
Сборник ОГЭ физика 2017. автор ЗОРИН Н. И.
Вариант 6 № 16
Через поперечное сечение проводника прошел заряд, равный 6 Кл, за время, равное 5 минутам. Сопротивление проводника 5 (Ом). Рассчитайте напряжение проводника.
Задача №4
Вариант 8 № 18
Задача №5
Вариант 9 № 16
Как изменится сила тока в электрической цепи, если площадь поперечного сечения проводника уменьшить вдвое?
Задача №6
Вариант 9 №15
6.
Рефлексивный этапУчитель: А сейчас подведем итог нашего урока. Вспомним цели, которые мы ставили перед собой! Как Вы считаете, удалось ли нам их добиться? Тогда давайте ответим на следующие вопросы: Какую взаимозависимость между силой тока, напряжением и сопротивлением на участке цепи мы раскрыли?
Ученики: Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.(слайд)
Учитель: В какой формуле выражена эта взаимозависимость?
Ученики: Взаимозависимость силы тока, напряжения и сопротивления выражена законом Ома для участка цепи.
Учитель: Кто впервые установил эту зависимость?
Ученики: Георг Ом (немецкий физик) в 1927 году.
Учитель: А как зависит электрическое сопротивление от длины проводника и площади поперечного сечения?
Ученики:Чем больше длина, тем больше сопротивление, чем больше площадь поперечного сечения, тем меньше сопротивление.
Учитель: Замечательно, надеюсь, данное занятие было полезным для Вас и теперь Вы сможете применять полученные знания на практике при решении задач.
Сопротивление проводника — Energy Education
Рис. 1. Нить накаливания загорается из-за сопротивления проводящего провода. [1]Сопротивление проводника — это свойство проводника при определенной температуре, и оно определяется как величина сопротивления протеканию электрического тока через проводящую среду. [2] Сопротивление проводника зависит от площади поперечного сечения проводника, длины проводника и его удельного сопротивления.Важно отметить, что электрическая проводимость и удельное сопротивление обратно пропорциональны, а это означает, что чем больше проводимость, тем меньше сопротивление.
Сопротивление проводника можно рассчитать при температуре 20 ° C с помощью: [3]
[математика] \ R = \ frac {\ rho L} {A} [/ математика]где:
- [math] R [/ math] — сопротивление в омах (Ом)
- [math] \ rho [/ math] — удельное сопротивление материала в омметрах (Ом · м).
- [math] L [/ math] — длина проводника в метрах (м)
- [math] A [/ math] — площадь поперечного сечения проводника в метрах в квадрате (м 2 )
Эта формула говорит нам, что сопротивление проводника прямо пропорционально [math] \ rho [ / math] и [math] L [/ math], и обратно пропорционально [math] A [/ math].Поскольку сопротивление некоторого проводника, такого как кусок провода, зависит от столкновений внутри самого провода, сопротивление зависит от температуры. С повышением температуры сопротивление провода увеличивается, так как столкновения внутри провода увеличиваются и «замедляют» протекание тока. Величина изменения определяется температурным коэффициентом. [4] Положительный температурный коэффициент приводит к увеличению сопротивления с повышением температуры, тогда как отрицательный температурный коэффициент приводит к уменьшению сопротивления с повышением температуры.Поскольку проводники обычно демонстрируют повышенное удельное сопротивление с повышением температуры, они имеют положительный температурный коэффициент. Наиболее распространенные типы резисторов — это переменные резисторы и постоянные резисторы.
Используя сопротивление проводника, можно создать свет в лампе накаливания. В лампе накаливания есть проволочная нить определенной длины и ширины, обеспечивающая определенное сопротивление. Если это сопротивление правильное, ток, протекающий через провод, замедляется ровно настолько, без остановки из-за слишком большого сопротивления, что нить накала нагревается до точки, в которой она начинает светиться. [5]
Подробнее о сопротивлении проводника см. HyperPhysics.
PhET: Сопротивление в проводе
Университет Колорадо любезно разрешил нам использовать следующую симуляцию Фета. Изучите симуляцию, чтобы увидеть, как сопротивление проводника изменяется в зависимости от геометрии и удельного сопротивления:
Для дальнейшего чтения
Для получения дополнительной информации см. Соответствующие страницы ниже:
Ссылки
Произошла ошибка: SQLSTATE [42000]: синтаксическая ошибка или нарушение доступа: 1064 У вас есть ошибка в синтаксисе SQL; проверьте руководство, соответствующее вашей версии сервера MySQL, чтобы найти правильный синтаксис рядом с ‘)’ в строке 1
Resistance | электроника | Britannica
Сопротивление , в электричестве, свойство электрической цепи или части цепи, которая преобразует электрическую энергию в тепловую энергию в противодействии электрическому току. Сопротивление включает столкновения заряженных частиц с током с неподвижными частицами, составляющими структуру проводников. Сопротивление часто считается локализованным в таких устройствах, как лампы, нагреватели и резисторы, в которых оно преобладает, хотя оно характерно для каждой части цепи, включая соединительные провода и линии электропередачи.
Рассеивание электрической энергии в виде тепла, даже если оно небольшое, влияет на величину электродвижущей силы или управляющего напряжения, необходимого для создания заданного тока в цепи.Фактически, электродвижущая сила В, (измеренная в вольтах) в цепи, деленная на ток I (амперы), протекающий через эту цепь, количественно определяет величину электрического сопротивления R. Точнее, R = В / I. Таким образом, если 12-вольтовая батарея постоянно пропускает двухамперный ток по длине провода, этот провод имеет сопротивление шесть вольт на ампер или шесть Ом. Ом — это общепринятая единица измерения электрического сопротивления, эквивалентная одному вольту на ампер и обозначаемая заглавной греческой буквой омега, Ом. Сопротивление провода прямо пропорционально его длине и обратно пропорционально его площади поперечного сечения. Сопротивление также зависит от материала проводника. См. Удельное сопротивление .
Сопротивление проводника или элемента схемы обычно увеличивается с повышением температуры. При охлаждении до чрезвычайно низких температур некоторые проводники имеют нулевое сопротивление. Токи продолжают течь в этих веществах, называемых сверхпроводниками, после снятия приложенной электродвижущей силы.
Величина, обратная сопротивлению, 1/ R, , называется проводимостью и выражается в единицах обратного сопротивления, называемых mho.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчасЭлектрическое сопротивление — провод, шланг, ток и материалы
Электрическое сопротивление провода или цепи — это способ измерения сопротивления прохождению электрического тока. Хороший электрический провод, такой как медный провод , будет иметь очень низкое сопротивление. Хорошие изоляторы, такие как изоляторы из резины или стекла , имеют очень высокое сопротивление. Сопротивление измеряется в Ом и связано с током в цепи и напряжением в цепи согласно закону Ома . Для данного напряжения провод с меньшим сопротивлением будет иметь более высокий ток.
Сопротивление данного куска провода зависит от трех факторов: длины провода, площади поперечного сечения провода и удельного сопротивления материала, из которого он состоит.Чтобы понять, как это работает, представьте воды , протекающей по шлангу. Количество воды, протекающей по шлангу, аналогично току в проводе. Подобно тому, как через пожарный шланг fat может пройти больше воды, чем через тонкий садовый шланг, толстый провод может пропускать больше тока, чем тонкий провод. У провода чем больше площадь поперечного сечения, тем меньше сопротивление; чем меньше площадь поперечного сечения, тем выше сопротивление. Теперь рассмотрим длину. По очень длинному шлангу труднее протекать воде просто потому, что она должна течь дальше. Точно так же току труднее проходить по более длинному проводу. Более длинный провод будет иметь большее сопротивление. Удельное сопротивление — это свойство материала в проволоке, которое зависит от химического состава материала, но не от количества материала или формы (длины, площади поперечного сечения) материала. Медь имеет низкое удельное сопротивление, но сопротивление данной медной проволоки зависит от ее длины и площади. Замена медного провода на провод той же длины и площади, но с более высоким удельным сопротивлением приведет к более высокому сопротивлению.В аналоге шланга это похоже на заполнение шланга песком . По шлангу с песком будет течь меньше воды, чем по тому же шлангу без препятствий. Фактически, песок имеет более высокое сопротивление потоку воды. Таким образом, полное сопротивление провода представляет собой удельное сопротивление материала, составляющего провод, умноженное на длину провода, деленное на площадь поперечного сечения провода.
Сопротивление в проводниках
- Изучив этот раздел, вы должны уметь:
- • Рассчитайте размеры проводника.
- • Опишите влияние длины и площади поперечного сечения на сопротивление проводника.
Как размеры проводника влияют на его сопротивление
Проводник — это любой материал, который позволяет электрическому току проходить через него. Способность любого проводника в электрической цепи пропускать ток оценивается по его электрическому СОПРОТИВЛЕНИЮ. Сопротивление — это способность противодействовать прохождению электрического тока.Напряжение — это электрическая сила, которая заставляет ток течь через проводник, но чем больше значение сопротивления любого проводника, тем меньше тока будет течь для любого конкретного значения приложенного напряжения. Сопротивление проводника в основном зависит от трех факторов:
Рис. 1.3.1 Расчет размеров проводника
1. ДЛИНА проводника.
2. ПЛОЩАДЬ КОНДИЦИОНЕРА.
3. МАТЕРИАЛ, из которого изготовлен проводник.
Поскольку сопротивление больше в более длинных проводниках, чем в более коротких, то:
СОПРОТИВЛЕНИЕ (R) ПРОПОРЦИОНАЛЬНО ДЛЯ ДЛИНЫ (L)
и записывается как R ∝ L (∝ означает пропорционально . ..)
Следовательно, чем длиннее проводник, тем больше сопротивление и, следовательно, меньше тока.
Также, поскольку сопротивление меньше в проводниках с большой площадью поперечного сечения:
СОПРОТИВЛЕНИЕ (R) ОБРАТНО ПРОПОРЦИОНАЛЬНО ПОПЕРЕЧНОЙ ПЛОЩАДИ (A)
, который записывается как R ∝ 1 / A (или R ∝ A -1 ).
Чем больше площадь поперечного сечения, тем больше тока может протекать по проводнику, поэтому тем ниже значение сопротивления проводника.
Круглые проводники
Если проводник имеет круглое поперечное сечение, площадь круга можно определить по формуле:
π r 2 Где π = 3,142 и r — радиус окружности.
Если поперечное сечение проводника квадратное или прямоугольное, площадь поперечного сечения проводника все же можно определить, просто умножив ширину на высоту.Большинство проводников в кабелях и т. Д., Конечно, имеют круглое поперечное сечение.
Материал, из которого изготовлен проводник, также влияет на его сопротивление на величину, зависящую от СОПРОТИВЛЕНИЯ материала, описанного в Модуле 1.4 резисторов и схем.
Electric Resistance — The Physics Hypertextbook
Обсуждение
введение
Йех! Что за беспорядок.
Проводимость: С. Грей, 1729 г. — Сопротивление: Георг Симон Ом, 1827 г.
Обычная версия…
I ∝ V
I = | В | ⇒ | .В = ИК | ⇒ | .R = | В |
R | Я |
Variableogy…
- количество: сопротивление R
единица: Ом [Ом] Георг Ом (1787–1854) Германия
Причудливая версия (магнитогидродинамическая версия?)…
Дж ∝ E
Дж = σ E | ⇐ | ⇒ | .E = ρ Дж |
Добро пожаловать в символ ада…
количество | символ | шт. | символ | недвижимость… |
---|---|---|---|---|
сопротивление | R | Ом | Ом | объекта |
проводимость | G | siemens | S | |
удельное сопротивление | ρ | Омметр | Ом · м | материалов |
проводимость | σ | siemens | См / м |
Закон Ома не серьезный закон.Это непростая физика. Разумные материалы и устройства подчиняются ему, но есть много мошенников, которые этого не делают.
резисторы
Плохая выпивка портит наши молодые кишки, но водка идет хорошо.
Лучше постройте крышу над гаражом, пока фургон не намок.
цвет | цифра | множитель | допуск | tcr (10 −6 / К) | |
---|---|---|---|---|---|
нет | ± 20% | ||||
розовый | 10 −3 | ||||
серебристый | 10 −2 | ± 10% | |||
золото | 10 -1 | ± 5% | |||
черный | 0 | 10 0+ | ± 250 | ||
коричневый | 1 | 10 1+ | ± 1% | ± 100 | |
красный | 2 | 10 2+ | ± 2% | ± 50 | |
оранжевый | 3 | 10 3+ | ± 0. 05% | ± 15 | |
желтый | 4 | 10 4+ | ± 0,02% | ± 25 | |
зеленый | 5 | 10 5+ | ± 0,50% | ± 20 | |
синий | 6 | 10 6+ | ± 0,25% | ± 10 | |
фиолетовый | 7 | ± 0.10% | ± 5 | ||
серый | 8 | ± 0,01% | ± 1 | ||
белый | 9 |
материалы
Сопротивление и удельное сопротивление. Факторы, влияющие на сопротивление в проводящем проводе.
Проводники и изоляторы
Лучшие электрические проводники: серебро, медь, золото, алюминий, кальций, бериллий, вольфрам
Удельное сопротивление и проводимость взаимны.
Электропроводность металлов — это статистическая / термодинамическая величина.
Удельное сопротивление определяется рассеянием электронов. Чем больше рассеяние, тем выше сопротивление.
, где…
σ = | Электропроводность [См / м] |
n = | плотность свободных электронов [э / м 3 ] |
e = | заряд электрона (1.60 × 10 −19 С) |
м e = | масса электрона (9,11 × 10 −31 кг) |
v среднеквадратичное значение = | Среднеквадратичная скорость электронов [м / с] |
ℓ = | средняя длина свободного пробега [м] |
Графит
Кому принадлежит эта идея? Нихром был изобретен в 1906 году, что сделало возможным электрические тостеры.
Проводящие полимеры.
металлы | ρ (нОм м) | неметаллы | ρ (Ом м) |
---|---|---|---|
алюминий | 26,5 | оксид алюминия (14 ° C) | 1 × 10 14 |
латунь | 64 | оксид алюминия (300 ° C) | 3 × 10 11 |
хром | 126 | оксид алюминия (800 ° C) | 4 × 10 6 |
медь | 17.1 | углерод аморфный | 0,35 |
золото | 22,1 | карбон, алмаз | 2,7 |
утюг | 96,1 | углерод, графит | 650 × 10 −9 |
свинец | 208 | оксид индия и олова, тонкая пленка | 2000 × 10 −9 |
литий | 92. 8 | германий | 0,46 |
ртуть (0 ° C) | 941 | пирекс 7740 | 40 000 |
марганец | 1440 | кварц | 75 × 10 16 |
нихром | 1500 | кремний | 640 |
никель | 69,3 | диоксид кремния (20 ° C) | 1 × 10 13 |
палладий | 105.4 | диоксид кремния (600 ° C) | 70 000 |
платина | 105 | диоксид кремния (1300 ° C) | 0,004 |
плутоний | 1414 | вода, жидкость (0 ° C) | 861 900 |
серебристый | 15,9 | вода, жидкость (25 ° C) | 181 800 |
припой | 150 | вода, жидкость (100 ° C) | 12 740 |
сталь гладкая | 180 | ||
сталь, нержавеющая | 720 | ||
тантал | 131 | ||
банка (0 ° C) | 115 | ||
титан (0 ° C) | 390 | ||
вольфрам | 52. 8 | ||
уран (0 ° C) | 280 | ||
цинк | 59 |
температура
Общее правило — удельное сопротивление увеличивается с повышением температуры в проводниках и уменьшается с увеличением температуры в изоляторах. К сожалению, не существует простой математической функции для описания этих отношений.
Температурную зависимость удельного сопротивления (или обратной проводимости) можно понять только с помощью квантовой механики. Точно так же, как материя представляет собой совокупность микроскопических частиц, называемых атомами, а луч света — это поток микроскопических частиц, называемых фотонами, тепловые колебания в твердом теле представляют собой рой микроскопических частиц, называемых фононами . Электроны пытаются дрейфовать к положительному полюсу батареи, но фононы продолжают врезаться в них. Случайное направление этих столкновений нарушает попытку организованного движения электронов против электрического поля. Отклонение или рассеяние электронов на фононах — один из источников сопротивления. С повышением температуры количество фононов увеличивается, а вместе с ним и вероятность столкновения электронов и фононов. Таким образом, когда температура повышается, сопротивление повышается.
Для некоторых материалов удельное сопротивление является линейной функцией температуры.
ρ = ρ 0 (1 + α ( T — T 0 ))
Удельное сопротивление проводника увеличивается с температурой.В случае меди зависимость между удельным сопротивлением и температурой примерно линейна в широком диапазоне температур.
Для других материалов лучше работает соотношение сил.
ρ = ρ 0 ( T / T 0 ) μ
Удельное сопротивление проводника увеличивается с температурой. В случае вольфрама связь между удельным сопротивлением и температурой лучше всего описывается соотношением мощности.
см. Также: сверхпроводимость
разное
магнитосопротивление
фотопроводимость
жидкости
электролиты
газы
пробой диэлектрика
плазма
микрофоны
Угольный микрофон — ничто задом наперед
тип | звуков производят изменений в… | , что вызывает изменений… | , что приводит к изменениям… |
---|---|---|---|
угольный | Плотность гранул | сопротивление | напряжение |
конденсатор | разделительная пластина | емкость | напряжение |
динамический | расположение катушки | флюс | напряжение |
пьезоэлектрический | компрессия | поляризация | напряжение |
Сопротивление и удельное сопротивление
Электрическое сопротивление электрического проводника зависит от
- длины проводника
- материала проводника
- температуры материала
- площади поперечного сечения проводника
и может быть выражено как
R = ρ L / A (1)
где
R = сопротивление проводника (Ом, Ом)
ρ = удельное сопротивление материала проводника (омметр, Ом · м)
L = длина проводника (м)
A = площадь поперечного сечения проводника (м 2 )
Удельное сопротивление некоторых общих проводников
- Алюминий : 2. 65 x 10 -8 Ом м (0,0265 мкОм м)
- Углерод: 10 x 10 -8 Ом м (0,10 мкОм м)
- Медь: 1,724 x 10 -8 Ом м (0,0174 мкОм м)
- Железо: 10 x 10 -8 Ом м (0,1 мкОм м)
- Серебро: 1,6 x 10 9 -8 Ом м (0,0265 мкОм м)
Обратите внимание, что удельное сопротивление зависит от температуры .Вышеуказанные значения относятся к температурам 20 o C .
Удельное сопротивление некоторых обычных изоляторов
- бакелит: 1 x 10 12 Ом · м
- стекло: 1 x 10 10 — 1 x 10 11 Ом · м
- мрамор: 1 x 10 8 Ом м
- слюда: 0,9 x 10 13 Ом м
- парафиновое масло: 1 x 10 16 Ом м
- парафиновый воск (чистый ) : 1 x 10 16 Ом м
- оргстекло: 1 x 10 13 Ом м
- полистирол: 1 x 10 14 Ом м
- фарфор: 1 x 10 12 Ом м
- прессованный янтарь: 1 x 10 16 Ом м
- вулканит: 1 x 10 14 Ом м
- вода, дистиллированная: 1 x 10 10 Ом м
Обратите внимание, что хороший кон электрические проводники имеют низкое удельное сопротивление, а хорошие изоляторы имеют высокое удельное сопротивление.
Пример — сопротивление проводника
Сопротивление 10 метров калибра 17 медного провода с площадью поперечного сечения 1,04 мм 2 можно рассчитать как
R = (1,7 x 10 — 8 Ом м) (10 м) / ((1,04 мм 2 ) (10 -6 м 2 / мм 2 ))
= 0,16 Ом
Пример — Кросс- площадь сечения и сопротивление
Медный провод выше уменьшен до калибра 24, и площади поперечного сечения 0.205 мм 2 . Увеличение сопротивления можно рассчитать до
R = (1,7 x 10 -8 Ом м) (10 м) / ((0,205 мм 2 ) (10 -6 м 2 / мм 2 ))
= 0,83 Ом
Электрическое сопротивление проводника зависит от физики класса 12 JEE_Main
Подсказка: — Сопротивление проводника — это свойство, с помощью которого он препятствует прохождению через него заряда. Он равен отношению разности потенциалов, приложенной к проводнику, к току, протекающему по нему. Поскольку это физическая величина проводника, она должна зависеть от физических наряду со структурными характеристиками проводника. Полное пошаговое решение:
Материалы, которые хорошо проводят электрический ток или любую форму энергии, называются проводниками. Например все металлы.
Считается, что сопротивление проводника равно одному Ом, если через него протекает ток в один ампер при приложении потенциала в один вольт к его концам.
Факторы, от которых зависит сопротивление проводника формы провода:
Первый фактор заключается в том, что сопротивление проводника прямо пропорционально его длине.
$ R \ alpha l $ ……….. $ \ left (1 \ right) $
Второй фактор заключается в том, что сопротивление прямого проводника обратно пропорционально его площади поперечного сечения.
$ R \ alpha \ dfrac {1} {A} $ ……….. $ \ left (2 \ right) $
$ A $ = Площадь поперечного сечения
$ l $ = длина
Третий фактор заключается в том, что сопротивление проводника также зависит от природы материала, из которого он сделан.