+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Подключения промежуточного реле (как, схема)

Название промежуточные реле возникло не от принципиального отличия рабочего механизма устройства от других реле, а скорее от функционального назначения этого вида. Переключение механических контактов производится электромагнитом, в полупроводниковых моделях через р-n-р переходы. Основным назначением промежуточных элементов является управление коммутацией цепей с большим напряжением и током, систем питания или отдельных установок, электродвигателей станков. Отличительным признаком промежуточных реле можно считать наличие нескольких групп с большим количеством контактов. Такая конструкция позволяет управлять целой сетью коммутаций при одном срабатывании. Читайте также статью ⇒ Подключение указательное реле (схема)

Назначение и область применения промежуточных реле

Трудно перечислить отрасли промышленности, отдельные направления индустрии в которых используются промежуточные реле. Во всех отраслях промышленности, приборах для бытового применения, особенно в элементах систем с электронным, электротехническим оборудованием может быть установлено промежуточное реле.

Можно выделить несколько случаев как используют вспомогательные реле в сложных электротехнических комплексах:

  • Для коммутации участков в различных независимых друг от друга сетях;
  • Для увеличения задержки срабатывания защитных элементов в цепях большими токами нагрузки;
  • Во вторичных цепях, для контроля параметров и режимов работы отдельных элементов в цепях высокого напряжения;

Одно реле на производственной линии может выполнять одновременно или последовательно несколько коммутаций в цепях питания или управления. В системах подогрева и водоснабжения при включении глубинного насоса, подается питание на катушку реле, при замыкании группы контактов включается система контроля, за работой насоса. На дисплее оператора отображаются основные параметры наличие напряжения, на насосе, токи нагрузки на каждой фазе, температура и другие в зависимости от сложности схемы, по мере необходимости.

Другая пара одновременно замкнет контакты подачи питания на катушку магнитного пускателя, при срабатывании которого ток пройдет на все три фазы электродвигателя насоса. В случае если пускатель собран по реверсивной схеме, другая группа одновременно отключает реверсивную схему, исключая короткое замыкание.

В системе подогрева сигнал со слабыми токами не способен включать катушки мощных магнитных пускателей или реле. Поэтому промежуточное реле выступает как усилитель управляющего сигнала, сигнал с теплового датчика включает промежуточное реле, контакты которого подают напряжение на обмотки магнитного пускателя, контакты которого замыкаются и питание подается на тэны, кипятильники или другие мощные нагревательные приборы.

Конструкция и принцип работы промежуточного реле

Это изделие можно сравнить с миниатюрным магнитным пускателем, количество групп контактов в котором определяется схемой, где он применяется его функциональным назначением.

Не во всех схемах они могут применяться для коммутации цепей электропитания основное их назначение, передача сигналов управления. Это связано с тонкими пластинами контактной группы, редкие модели способны пропускать длительное время рабочий ток выше 10 А.

Классическая конструкция малогабаритного промежуточного реле включает в себя следующие элементы:

  • Основание, на котором крепятся все составляющие;
  • Электромагнитная катушка с сердечником;
  • Подвижная пластина с рычагом для смещения подвижной группы контактов;
  • Пружина привода рычага в исходное состояние после снятия управляющего напряжения с обмотки катушки;
  • Панель с группой контактов;
  • Клеммы на основании для подключения проводов к контактам коммутации и катушки.

Как пример разновидности можно привести конструкции промежуточного реле в системе управления тепловозов.

Классификация разновидностей промежуточных реле

Вариантов много, рассмотрим основные разновидности:

Реле разделяют по типу переключения

  • Минимальные — снижают определенный параметр до установленного порога;
  • Максимальные – повышают определенный параметр до установленного порога;

По функциональному назначению

  • Комбинированные – соединение группы реле для решения определенной логической задачи;
  • Логические – работают с одинаковыми параметрами в дискретных электрических цепях;
  • Измерительные – регулируются интервалы определенных параметров.

По способу управления нагрузкой

  • Прямого воздействия – контакты реле подключают непосредственно нагрузку;
  • Косвенного воздействия – нагрузка подключается через цепи вторичных элементов.

По способу подключения

  • Первичные – включаются контактами в цепь напрямую;
  • Вторичные – включаются через индуктивные или емкостные элементы.

Промежуточные реле в цепях защиты имеют свои конструктивные особенности и разделяются по следующим признакам:

  • Полупроводниковые – не имеют коммутационных контактов, цепи размыкаются и замыкаются р-n-р и n-р-n переходами под воздействием управляющего напряжения. В качестве полупроводниковых элементов используются, варисторы, тиристоры, симисторы и транзисторы.
  • Индукционные – управляющее напряжение в обмотке наводится от соседней катушки, не связанной прямым электрическим контактом;
  • Магнитоэлектрические – магнит занимает неподвижное положение в конструкции, катушка с контактами на каркасе вращается, замыкая или размыкая цепи;
  • Поляризационные – работают, как электромагнитные направление переключения контактов определят полярность подключения на катушке;

Читайте также статью ⇒ Реле напряжения.

Расшифровка аббревиатуры промежуточных реле

Для удобного определения функционального назначения, количества контактов и других параметров реле имеют буквенные и цифровые обозначения:

  • П – промежуточное;
  • Э – электромагнитное;
  • 46 или (ХХ) – серия изделия;
  • 1 – сигналы управления импульсные.

Дальнейшие обозначения, могут определять, для каких климатических условий адаптировано изделие и количество контактных групп.

Пример как расшифровываются обозначения

РЭП26-004А526042-40УХЛ4

  • РЭП – реле электромагнитное промежуточное
  • 26 – серия
  • ХХХ – функциональное назначение и  количество контактов
 назначение                                          Количество
замыкающиеразмыкающиепереключающие.
001+
010+
100+
002++
020++
110++
200
++
003+++
120+++
210+++
300+++
004++++
220++++
310+++
+
400++++
  • 001 – обозначает, что реле содержит 1 переключающий контакт, 010 – один размыкающий; 400 – четыре замыкающих контакта.
  • А….Д – класс износостойкости материалов, из которых сделаны контакты;
  • Х – вид тока в обмотке электромагнитной катушки, тип конструкции возврата механизма в исходное состояние,

1 – ~ ток;

5 – постоянный ток;

6 – постоянный ток в токовой катушке;

  • ХХ – двухзначный цифровой код показывающий конструкцию крепления корпуса реле на поверхность и метод подключения проводов к клеммам:
Код
разъем
Способ подключения проводов
16—-Припой
18—-“фастон”
76—-печать
21+винтовые соединения
26+припой
78+печать
  • ХХ – код показывающий величину, вид напряжения, тока в обмотке катушки
Коды электрических параметров включающей катушки
постоянный~ ток 50 Гц
01… 6 В
02…12 В
03… 15 В
04…24 В
06…48 В
09…60 В
11…110 В
13…220В
21…12 В
22…24 В
24…40 В
26…110 В
27…220 В
28…380В
34…230 В
35…240 В

Коды от 01 до 13 указывают, что катушки этих реле постоянного тока с различными напряжениями от 6 до 220в.

Коды от 21 до 35 указывают что катушки рассчитаны на ~I с U = 12…. 240 В частота 50 Гц.

Последнее обозначение Х указывает о наличии специальных элементов в конструкции:

2 – ручной переключатель реле;

5 – с ручной манипуляцией и электронным индикатором положения реле для изделий на 24В;

6 – с ручным манипулятором и диодом для защиты реле на 24В и меньше;

7 – реле включает все три ранее перечисленные элемента,

40 – это степень защищенности от влаги и пыли IР- 40…56..68;

УХЛ4 – модель для соответствующих климатических условий, данная для севера и средних широт. Буква «О» – указывает, что изделие адаптировано для тропиков.

РЭП26-004А526042-40УХЛ4

– данная аббревиатура указывает что промежуточное реле имеет 4 переключающих контакта с классом  А (по износостойкости), постоянного тока, контактное соединение с разъемами, провода крепятся пайкой, катушка 24 В, конструкция имеет ручной манипулятор. Класс защиты IР – 40 для северных и средних широт.

Совет №1. Некоторые пренебрегают степенью защиты изделия, реле имеют тонкие контакты и чувствительны к пыли и влажности. Поэтому степень защиты обязательно надо учитывать особенно на объектах с повышенной влажностью, запыленностью. На взрывоопасных участках рекомендуется применять полупроводниковые изделия, которые не искрят в момент коммутации.

Не смотря на различные конструкции и технические характеристики, все промежуточные реле имеют основные общие параметры, по которым определяется соответствие функциональному назначению.

Основные технические параметры промежуточных реле

Все реле, в том числе и промежуточные, оцениваются по следующим параметрам:

  • Величина коммутируемого напряжения;
  • Номинальное значение тока на коммутационных контактах;
  • Минимальный ток коммутации;
  • Допустимый кратковременный ток через контакты коммутации;
  • Интервал величины напряжения на катушке электромагнита;
  • Потребляемая мощность катушкой включения;
  • Время замыкания;
  • Время размыкания контактов;
  • Износостойкость контактов оценивается количеством срабатывания реле;
  • Предельно допустимая мощность нагрузки, которая подключается через контакты реле.

Это общие параметры технических характеристик, в зависимости от конструкций и назначения могут быть дополнительные. Рассмотрим конкретные технические характеристики на примере РЭП – 26 различных модификаций.

 параметры                   величина
Интервал коммутируемых напряжений Переменное 5–381 В
Постоянное 5-221 В
Номинальный ток на контактах 10,1 А
9,1 А
8,1 А
Минимальный ток контактов0,06 А
0,01А
Сквозной ток на контактах (А)161А
Интервал изменений
напряжения в цепи управления
+5,1 %
-15,1%
 мощность потребления катушкой
— при пост. токе с 1-3 контактами 
— при пост. токе с 4 контактами 
— при переменном токе
1,6 кВ
2,1 кВ
3,1 кА
Время срабатывания, не более. 0,03 сек
Время отпускания, не более. 0,03 сек
Механическая износостойкость. 30 миллионов срабатываний
 Отключаемая мощность
— при переменном токе 
— при постоянном токе
1,6кВт
3кВт
150 Вт
250 Вт

Подключение промежуточного реле в схемы с нагрузкой различного назначения

Большая часть моделей промежуточных реле адаптированы к стандартным условиям монтажа, на плоскую поверхность или на дин-рейку в распределительном шкафу. После установки реле можно подключать в электрическую схему системы:

  • В первую очередь проверяется работоспособность реле, для этого подключают контакты катушки ( 13 и 14) к источнику питания, при этом слышен характерный щелчок переключения контактов.

 

На данной схеме контактора показано положение при отсутствии питания на катушке.

При подаче напряжения 220, 24 или 12в контакты 9 – 10 – 11 – 12 замкнутся на соответствующие пары 5 – 6 – 7 – 8.

В данной схеме подключения реле исполняет роль контактора распределяющего подачу питания на элементы нагрузки.
  • Нейтральный провод напрямую подключен к одному из контактов катушки;
  • Фаза подключается через нормально замкнутую кнопку «Стоп», работающую на размыкание цепи;
  • Последовательно кнопки «Стоп» включается кнопка пуск, разомкнутая в нормальном состоянии и работающая на замыкание цепи;
  • Второй контакт кнопки пуск подключается к фазе;
  • Фазы подключаются к нормально разомкнутым контактам;
  • Нагрузка к нормально замкнутым контактам;
  • Один из контактов выхода к нагрузки подключается между кнопкой пуск и стоп, после пуска схема обеспечит постоянную подачу напряжения на катушку, контакты будут замкнуты. Отключение реле и нагрузки произойдет при разрыве цепи кнопкой «Стоп».

В качестве нагрузки могут быть самые разные электромеханические элементы, для подключения нагрузки большой мощности промежуточные реле управляют работой магнитного пускателя с контактами способными пропускать большие токи. Промежуточные реле может управляться датчиками, освещенности, терморегулятором или датчиком движения в зависимости от функционального назначения схемы.

Схема управления электро-нагревающей системой через термостат и магнитный пускатель

Принцип работы этой схемы аналогичен предыдущей. Только пуск осуществляется автоматически термостатом, питание подается на катушку магнитного пускателя, после чего подключаются обогревательные элементы.

Спрос потребителей на реле различных производителей

Производителей реле большое количество, среди отечественных часто используется продукция ФГУП «НПП «СТАРТ» в Великом Новгороде, реле РЭП-26 004. РЭП-26 002, РЭП-26 003.

РП-21М, РП-21МН производятся на московском заводе МПО «Электротехника» и в Чебоксарах ООО «ПКФ Опытный завод энергооборудования» г. Чебоксары. Это продукция пользуется хорошим спросом и даже подделывается китайскими конкурентами.

Совет №2 При установке китайских моделей обязательно прозвоните контакты мультиметром или другими приборами, в исходном состоянии и после сработки реле. Бывает так, что контакты залипают, не замыкаются или не размыкаются.

С правой стороны вариант китайской подделки

Профессионалы рекомендуют использовать импортные модели от производителей

ABB, Schneider Finder, Siemens, Electric , Relрol.

Износостойкость контактов этих изделий намного выше, сбои в системе управления сложного оборудования могут привести к остановке производства и дорогостоящему ремонту. Поэтому рациональнее использовать более дорогие реле, но надежные.

Ошибки при монтаже и эксплуатации

  • Одной из распространенных ошибок считается не правильный выбор технических параметров промежуточных реле. Внимательно смотрите в каких сетях используется реле, постоянного или переменного тока, какое напряжение или ток необходимо подать на управляющую катушку.
  • Обязательно учитывайте допустимые токовые нагрузки на коммутационные контакты, особенно когда реле включается напрямую для питания приборов большой мощности.
  • Старайтесь использовать реле с необходимым количеством контактов, модели с большим количеством потребляют больше электроэнергии на электромагнитной катушке.

Часто задаваемые вопросы

  1. Можно поставить реле для управления уличным освещением, чтобы от датчик на движение одна группа осветительных приборов включалась, а другая отключалась?
Один из вариантов схемы с использованием датчика движения

Конечно можно, подробное описание такой схемы требует детального рассмотрения, но одно можно сказать точно, потребуется использовать реле с группой контактов для переключения.

  1. Можно использовать реле с большим количеством контактов для включения нескольких нагрузок без магнитного пускателя?

Магнитный пускатель в электромагнитном реле однозначно присутствует, если не использовать дополнительный пускатель с контактами большой мощности, которым управляет промежуточное реле. То это можно при условии, что контакты реле длительное время смогут выдерживать ток нагрузки.

Оцените качество статьи:

Устройство, схема и подключение промежуточного реле. Часть 2

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о промежуточном электромагнитном реле. В первой части статьи мы рассмотрели устройство, принцип работы, электрическую схему реле и обозначение реле на принципиальных электрических схемах, а в этой части рассмотрим основные параметры и схемы включения реле.

5. Основные параметры электромагнитных реле.

Основными параметрами, определяющими нормальную работоспособность реле и характеризующие эксплуатационные возможности, являются: 1. Чувствительность. 2. Ток (напряжение) срабатывания. 3. Ток (напряжение) отпускания. 4. Ток (напряжение) удержания. 5. Коэффициент запаса. 6. Рабочий ток (напряжение). 7. Сопротивление обмотки. 8. Коммутационная способность. 9. Износостойкость и количество коммутаций. 10. Количество контактных групп. 11. Временны́е параметры: время срабатывания, время отпускания, время дребезга контактов. 12. Вид нагрузки. 13. Частота коммутаций. 14. Электрическая изоляция.

Все эти параметры подробно приводятся в технических условиях (ТУ), справочниках или в руководствах по применению реле. Однако мы рассмотрим лишь некоторые из них, которыми, как правило, пользуются при повторении радиолюбительских конструкций.

1. Чувствительность реле определяется минимальной мощностью тока, подаваемой в обмотку реле и достаточной для приведения в движение якоря и переключения контактов. Чувствительность различных реле неодинаковая и зависит от конструкции реле и намоточных данных катушки. Чем меньше электрическая мощность тока, необходимая для срабатывания реле, тем реле чувствительнее. Как правило, обмотка более чувствительного реле содержит бо́льшее число витков и имеет бо́льшее сопротивление.

Однако в технической документации параметр чувствительность не указывается, а определяется как мощность срабатывания (Рср) и вычисляется из сопротивления обмотки и тока (напряжения) срабатывания:

2. Ток (напряжение) срабатывания определяет чувствительность реле при питании обмотки минимальным током или напряжением, при котором реле должно четко сработать и переключить контакты. А для их удержания в сработанном положении на обмотку подаются рабочие значения тока или напряжения.

Ток или напряжение срабатывания указывается в технической документации для нормальных условий и является контрольным параметром для проверки реле при их изготовлении и не является рабочим параметром.

3. Ток (напряжение) отпускания приводится в технической документации для нормальных условий и не является рабочим параметром. Отпускание реле (возвращение контактов в исходное состояние) происходит при снижении тока или напряжения в обмотке до значения, при котором якорь и контакты возвращаются в исходное положение.

4. Рабочий ток (напряжение) обмотки указывается в виде номинального значения с двухсторонними допусками, в пределах которых гарантируется работоспособность реле.

Верхнее значение рабочего тока или напряжения ограничивается в основном температурой нагрева провода обмотки, а нижнее значение определяется надежностью работы реле при снижении напряжения источника питания. При подаче на обмотку реле тока или напряжения в указанных пределах реле должно четко срабатывать.

5. Коммутационная способность контактов реле характеризуется величиной мощности, коммутируемой контактами. В технической документации коммутируемая мощность указывается верхним и нижним диапазоном коммутируемых токов и напряжений, в пределах которых гарантируется определенное число коммутаций (срабатываний).

Нижний предел токов и напряжений, коммутируемых контактами, ограничивается величиной переходного сопротивления материала, из которого выполнены контакты. Для большинства промежуточных электромагнитных реле нижним пределом является нагрузка контактов током 10 – 50 мкА при напряжении на контактах 10 – 50 мВ.

Верхним пределом токов и напряжений является нагрузка контактов максимальным коммутирующим током, предусмотренным в технической документации. Верхний предел ограничивается температурой нагрева контактов, при которой снижается механическая прочность контактных материалов, что может привести к нарушению рабочей поверхности.

6. Подключение промежуточных реле.

Схемы включения промежуточных реле практически ни чем не отличаются от схем включения контакторов и магнитных пускателей. Разница состоит лишь в мощности коммутируемой нагрузки. Если контакты промежуточных реле ограничены коммутационной мощностью контактов, составляющей около 5 А, то магнитные пускатели и контакторы способны коммутировать токи более 50 А и напряжения свыше 1000 В.

Разберем подключение реле на примере простых схем.

6.1. Схема с нормально разомкнутым контактом.

Схема питается от источника постоянного тока GB1 напряжением 12 В и состоит из кнопочного выключателя SB1, катушки реле KL1 и лампы накаливания HL1.

В исходном состоянии, когда контакты выключателя SB1 разомкнуты, напряжение питания на катушке реле KL1 отсутствует. Контакт реле KL1.1, стоящий в цепи питания лампы HL1, разомкнут, и на лампу не поступает напряжение.

При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 замыкается и включает лампу HL1.

При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.

6.2. Схема с нормально замкнутым контактом.

В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено, его нормально замкнутый контакт KL1.1 замкнут и напряжение питания 12 В поступает на лампу HL1. Лампа горит.

При замыкании контактов выключателя SB1 напряжение поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 размыкается и разрывает цепь питания лампы HL1. Лампа гаснет.

При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.

6.3. Схема с нормально замкнутым и нормально разомкнутым контактами.

В этой схеме используются сразу два контакта реле KL1.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено и его нормально разомкнутый контакт KL1.1 разомкнут, а нормально замкнутый KL1.2 замкнут. При этом лампа HL1 не горит, а лампа HL2 горит.

При замыкании контактов выключателя SB1 реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкается и включает лампу HL1, а контакт KL1.2 размыкается и выключает лампу HL2.

При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в первоначальное положение.

Рассмотренная схема включения реле не обеспечивает гальваническую развязку между обмоткой реле и нагрузкой, так как они питаются от общего источника напряжения. Т.е. если необходимо коммутировать нагрузку, например, с рабочим переменным напряжением 220 В, то и реле необходимо использовать с обмоткой, рассчитанной на такое же рабочее напряжение. Если же разделить управление обмоткой и нагрузкой, то их можно применять с любым напряжением.

6.4. Схема с гальванической развязкой.

На схеме показаны две цепи – управляющая и исполнительная (силовая):

управляющая цепь питается напряжением 12 В и включает в себя источник постоянного тока GB1, кнопочный выключатель SB1 и катушку реле KL1;

исполнительная цепь, или ее еще называют силовой, питается переменным напряжением 220 В. В нее входят две лампы накаливания HL1 и HL2, рассчитанные на рабочее напряжение 220 В, и два контакта реле KL1. 1 и KL1.2, служащие для управления лампами.

При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкаясь включает лампу HL1, а контакт KL1.2 размыкаясь выключает лампу HL2.

6.5. Схема технологической сигнализации.

А теперь рассмотрим схему технологической сигнализации, используемую в системах управления технологическими процессами. Работа такой схемы заключается в контролировании технологических параметров (температура, давление, уровень) и выдаче световой и звуковой информации об отклонении этих параметров за пределы заданных значений.

Для контроля за технологическими параметрами применяют специализированные датчики и приборы, например, сигнализаторы, электроконтактные манометры и т.д., контакты которых задействованы в схеме сигнализации. При выходе параметра за пределы допустимого значения контакт датчика или прибора замыкается или размыкается и этот сигнал запускает сигнализацию в работу.

Рассмотрим упрощенную схему с одним контролируемым параметром.

Схема состоит из двух кнопок SB1 и SB2, двух промежуточных реле KL1 и KL2, сирены HA1, лампы накаливания HL1 и контакта датчика Р1.

При отклонении технологического параметра от заданного значения замыкается контакт датчика Р1 и включаются световая и звуковая сигнализации. Световая сигнализация HL1 включается при срабатывании реле KL2, которое своим нормально разомкнутым контактом KL2.1 подает фазу А1 на лампу. Звуковая сигнализация НА1 включается через замкнутый контакт датчика Р1 и нормально разомкнутый контакт KL1.2. И пока контакт Р1 не разомкнется лампа будет светить, а сирена звенеть.

Чтобы сирена постоянно не звенела, ее отключают нажатием кнопки SB2. При этом фаза А1 через контакт Р1 и контакты кнопки SB2 поступит на катушку реле KL1. Реле сработает и своим нормально разомкнутым контактом KL1.1 встанет на самоподхват, а нормально замкнутым контактом KL1.2 разорвет цепь питания звонка НА1. При возвращении технологического параметра в норму контакт датчика Р1 разомкнется и схема сигнализации вернется в первоначальное состояние.

Для проверки работоспособности сигнализации предусмотрена кнопка SВ1. При ее нажатии фаза А1 через нормально замкнутый контакт KL1.2 поступает на сирену НА1 и сирена начинает звенеть. И одновременно фаза А1 поступает на катушку реле KL2, которое срабатывает и своим контактом KL2.1 включает лампу HL1.

И в дополнение к статье видеоролик о промежуточных реле.

Ну вот в принципе и все, что хотел сказать о промежуточных реле.
Удачи!

Литература:

1. И. Г. Игловский, Г. В. Владимиров – «Справочник по электромагнитным реле», Л., Энергия, 1975 г.
2. М. Т. Левченко, П. Д. Черняев – «Промежуточные и указательные реле в устройствах релейной защиты и автоматики», Энергия, Москва, 1968, (Б-ка электромонтера, вып. 255).
3. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Как подключить реле промежуточное?

Промежуточное реле необходимо для выполнения вспомогательных функций. Оно широко применяется в системах управления и автоматики. Основное назначение элемента – это распределение и переключение нагрузок в электросетях. Реле необходимо для преобразования или передачи одного сигнала в другой. Используется как для постоянного, так и для переменного тока. Как правило, изделие применяют для управления более мощными устройствами: силовыми контакторами, исполнительными устройствами системы автоматики и сигнализации. В этой статье мы расскажем читателям сайта

Сам Электрик

о том, как выполняют подключение промежуточного реле, предоставив схему монтажа и видео инструкцию.

Способы включения устройства

Как подключить механизм в систему? Подключение приспособления в электрическую цепь происходит по двум вариантам:

  1. Параллельно подключенные. При таком способе устройства бывают основные выходные и быстродействующие. У последних время срабатывания составляет 0,02 секунды. Как правило, у механизма стандартное время срабатывания колеблется между 0,02 и 0,1 секундой.
  2. Последовательно подключенные. Используется в случаях мгновенного кратковременного срабатывания.

Когда есть нормальное стабильное напряжение источника питания, то промежуточное реле должно надежно срабатывать. Помимо этого, предусмотрена надежная их работа при аварийном понижении напряжения до 40–60%. По особенности в конструкции такой элемент преобразования может быть с одной обмоткой, двумя или тремя (последние встречаются крайне редко).

Подключение промежуточного реле является важным для любого оборудования или прибора. Ведь это позволяет не только автоматически прерывать цепь, но и с его помощью можно расширять функциональные способности других реле, которые расположены в этой электрической цепи.

Долговечность устройства зависит от количества его срабатывания. То есть она характеризуется численностью циклов срабатывания и возвратом в свое первоначальное положение. Степень защищенности аппаратуры от различных нежелательных факторов, что окружают конструкцию, оценивается по такому критерию, как время перехода контактов из одного положения в другое.

Схемы подключения

После того как промежуточное реле было установлено в электрический шкаф, следует осуществить его подключение в электрическую схему. Для этого применяются контакты самой катушки и непосредственные контактные элементы. Реле имеет, как правило, несколько пар контактов NO нормально открытые и NC нормально закрытые. Нормальным положением считается отсутствие подачи сигнала на катушку. Так как катушка не обладает полярностью, то подключение контактов осуществляется произвольно.

Устанавливается такой аппарат в схемах управления и автоматики. Располагается между исполнительным устройством (например, контактор) и источником задания. На рисунке изображена электрическая схема приспособления:

На картинке изображено промежуточное реле без подачи напряжения. Если его подать, то контакты переключатся. Напряжение в катушке может быть различное: 220, 24 и 12 вольт.

Как подключить приспособление указано на рисунке ниже:

В некоторых случаях реле промежуточного типа используется как контактор, тогда схема установки будет выглядеть следующим образом:

Как видно, промежуточное реле обладает тремя группами контактов, которые управляют нагрузкой и одной группой для удержания тока в катушке. Можно установить дополнительно контактор, тогда устройство подключается сначала к контактору.

Также данный аппарат можно подключать к датчику движения. Благодаря ему, к системе датчика движения есть возможность подключать несколько мощных ламп. Монтаж происходит следующим образом: обмотка приспособления подключается к датчику, а силовой контакт переключает нагрузку в системе светильников. Как установить такой датчик, показано ниже:

Еще один вариант установки электронного пускателя — к терморегулятору. Схема изображена на картинке (нажмите, чтобы увеличить):

В этом случае подключение терморегулятора и пускателя производится в последовательном порядке к первой фазе и нулевому проводу (на схеме они обозначаются как Т1 и К1 соответственно). Монтаж остальных контактов пускателя осуществляется равномерно между другими фазами.

Напоследок рекомендуем просмотреть полезное видео по теме:

Вот и все, что хотелось рассказать вам о том, как правильно подключить данный аппарат. Надеемся, предоставленная видео инструкция и схемы подключения промежуточного реле были для вас полезными!

Материалы по теме:

  • Подключение магнитного пускателя на 220 и 380 В
  • Что такое модульный контактор
  • Как подключить терморегулятор к обогревателю

Промежуточное реле (или вспомогательное) – это часть электронного оборудования часто используемое при контроле работы различных электронных машин, которая управляет сразу несколькими цепями в сетях мощных устройств.

Использование реле

Назначение промежуточного реле выполняется, когда нужно:

  • Произвести замыкание/размыкание нескольких взаимосвязанных цепей одновременно. Допустим, одним из контактов нужно вывести аварийный сигнал на табло прибора, а другим произвести выключение.
  • Обеспечить контроль над более мощным устройством, которое коммутирует (мгновенно изменяет параметры) в цепях большие значения силы тока. Например, в приводе требуется подать напряжение на соленоид выключателя с силой тока, которая доходит до значения в 63 А при включении, но осуществить это используя одно вспомогательного реле не выйдет.

Здесь возникает вопрос, как подключить промежуточное реле? Для начала нужно будет подать напряжение на вспомогательное реле, включающее контактор с большей мощностью. Затем он и осуществит коммутацию нужного значения силы тока.

Схемы подключения промежуточного реле

Шунтовая схема, которая предусматривает включение обмотки реле через полное напряжение и сериесная схема с последовательным подключением обмотки реле к выключателю.

Характеристики и классификация вспомогательных реле

Классификация производится по различным признакам. По типу переключений разделяют минимальные и максимальные реле, одни действуют на понижение какого-либо параметра, а другие на возрастание соответственно. По методике работы известны косвенные реле, работающие с помощью других устройств и прямые, которые сразу выполняют переключение.

Согласно назначению данные устройства делятся на комбинированные, логические и измерительные реле. Комбинированные представляют собой группу некоторого количества реле, которые соединены общей взаимосвязью. Логические реле действуют индивидуально и часто используются в дискретных цепях. Измерительные реле имеют регулировку работы в некотором диапазоне значений.

Место соединения

Приборы по месту соединения делятся на первичные и вторичные реле. При подключении напрямую в электрическую цепь используют первичные реле, а при подключении через индуктивную (или же емкостную) связь применяют вторичные реле.

Защитные реле

Также есть так называемые защитные реле, которые практически идентичны по своему назначению и подразделяются на полупроводниковые, магнитоэлектрические, поляризационные, индукционные и электромагнитные реле. Это обуславливает различие вспомогательных реле по принципу их работы.

Ранее в большинстве случаев использовали реле с электромагнитным принципом работы. Сейчас наиболее популярными стали полупроводниковые на основе полупроводниковых элементов.

Когда встает вопрос как выбрать промежуточное реле, в первую очередь стоит обратить внимание на его характеристики. Ведь по внешнему виду данный прибор практически не отличается. Это обусловлено тем, что структура данного электронного устройства приблизительно одинаковая, которая включает панель, катушку, магнитопровод, полюсный наконечник, якорь, регулировочные шпильки, пружинный механизм и контактный блок. Реле рассчитывают, как для постоянного, так и для переменного напряжения.

Выбор реле

Приведем основные характеристики промежуточного реле, на которые стоит обращать внимание: вид тока, степень вибраций, габариты, количество пыли, тип и число контактов, взрывоопасность среды, допустимые значение токов на контактах, влажность окружающей среды, ток коммутации, интервал температур при эксплуатации, мощности потребления и напряжение питания.

Вспомогательные реле, выполняющие необходимые функции в промышленности (например, в самолетах и машиностроении), зачастую снабжены специальными колодками для крепления на дин-рейку. Для крепления на этих рейках производятся колодки с большим диапазоном размеров разъемов, что позволяет более комфортно эксплуатировать прибор в рамках одного устройства для разных значений напряжения.

Одной из важнейших характеристик считается время переключения контактов из одного положения в другое. Судя по этим данным возможно сделать вывод об уровне защиты оборудования от негативных факторов среды. Если время переключения реле составляет меньше 0,06 с, то возможно уменьшение инерции за счет использования шихтованного сердечника, который состоит из тонких склеенных пластин из металла.

Работоспособность реле, как правило, колеблется в некотором диапазоне значений температур, при которых оборудование может выполнять сове функциональное назначение. К факторам, которые влияют на работоспособность реле можно причислить устойчивость сплавов к условиям окружающей среды (погоде) и уровень защиты корпуса.

Для реле с электромагнитным принципом работы габариты довольно важны. Механические устройства довольно часто применяются в цепях с повышенными напряжениями. Такие цепи постоянно имеют нужду в применении достаточно мощных контактов. Полупроводниковые ключи не выдерживают образующихся при такой работе температур.

При применении реле технике из промышленности очень важен критерий механических нагрузок. В связи с этим определенные типы промежуточных реле конструируются и проектируются для разных условий эксплуатации.

Фото промежуточного реле

Здравствуйте, уважаемые читатели сайта sesaga.ru. Промежуточные электромагнитные реле применяются во многих электронных и электрических схемах и предназначены для коммутации электрических цепей. Они используются для усиления и преобразования электрических сигналов; запоминания информации и программирования; распределения электрической энергии и управления работой отдельных элементов, устройств и блоков аппаратуры; сопряжения элементов и устройств радиоэлектронной аппаратуры, работающих на различных уровнях напряжений и принципах действия; в схемах сигнализации, автоматики, защиты и т. п.

Промежуточное электромагнитное реле представляет собой электромеханическое устройство, которое может коммутировать электрические цепи, а также управлять другим электрическим устройством. Электромагнитные реле делятся на реле постоянного и переменного тока.

Работа электромагнитного реле основана на взаимодействии магнитного потока обмотки и подвижного стального якоря, который намагничивается этим потоком. На рисунке показан внешний вид промежуточного реле типа РП-21.

1. Устройство реле.

Реле представляет собой катушку, обмотка которой содержит большое количество витков медного изолированного провода. Внутри катушки находится металлический стержень (сердечник), закрепленный на Г-образной пластине, называемой ярмом. Катушка и сердечник образуют электромагнит, а сердечник, ярмо и якорь образуют магнитопровод реле.

Над сердечником и катушкой расположен якорь, выполненный в виде пластины из металла и удерживаемый при помощи возвратной пружины. На якоре жестко закреплены подвижные контакты, напротив которых расположены соответствующие пары неподвижных контактов. Контакты реле предназначены для замыкания и размыкания электрической цепи.

2. Как работает реле.

В исходном состоянии, пока на обмотку реле не подано напряжение, якорь под воздействием возвратной пружины находится на некотором расстоянии от сердечника.

При подаче напряжения в обмотке реле сразу начинает течь ток и его магнитное поле намагничивает сердечник, который преодолевая усилие возвратной пружины, притягивает якорь. В этот момент контакты, закрепленные на якоре, перемещаясь, замыкаются или размыкаются с неподвижными контактами.

После отключения напряжения ток в обмотке исчезает, сердечник размагничивается, и пружина возвращает якорь и контакты реле в исходное положение.

3. Контакты реле.

В зависимости от конструктивных особенностей контакты промежуточных реле бывают нормально разомкнутые (замыкающие), нормально замкнутые (размыкающие) или перекидные.

3.1. Нормально разомкнутые контакты.

Пока напряжение питания не подано на катушку реле, его нормально разомкнутые контакты всегда разомкнуты. При подаче напряжения реле срабатывает и его контакты замыкаются, замыкая электрическую цепь. На рисунках ниже показана работа нормально разомкнутого контакта.

3.2. Нормально замкнутые контакты.

Нормально замкнутые контакты работают наоборот: пока реле обесточено, они всегда замкнуты. При подаче напряжения реле срабатывает и его контакты размыкаются, размыкая электрическую цепь. На рисунках показана работа нормально разомкнутого контакта.

3.3. Перекидные контакты.

У перекидных контактов при обесточенной катушке средний контакт, закрепленный на якоре, является общим и замкнут с одним из неподвижных контактами. При срабатывании реле средний контакт вместе с якорем перемещается в сторону другого неподвижного контакта и замыкается с ним, одновременно разрывая связь с первым неподвижным контактом. На рисунках ниже показана работа перекидного контакта.

Многие реле имеют не одну, а несколько контактных групп, что позволяет осуществлять управление несколькими электрическими цепями одновременно.

К контактам промежуточных реле предъявляются особые требования. Они должны иметь малое переходное сопротивление, большую износоустойчивость, малую склонность к привариванию, высокую электропроводность и большой срок службы.

В процессе работы контакты своими токоведущими поверхностями прижимаются друг к другу с определенным усилием, создаваемым возвратной пружиной. Токоведущая поверхность контакта, соприкасающаяся с токоведущей поверхностью другого контакта называется контактной поверхностью, а место перехода тока из одной контактной поверхности в другую называется электрическим контактом.

Соприкосновение двух поверхностей происходит не по всей кажущейся площади, а лишь отдельными площадками, так как даже при самой тщательной обработке контактной поверхности на ней все равно будут оставаться микроскопические бугорки и шероховатости. Поэтому общая площадь соприкосновения будет зависеть от материала, качества обработки контактных поверхностей и усилия сжатия. На рисунке показаны контактные поверхности верхнего и нижнего контактов в сильно увеличенном виде.

В месте перехода тока с одного контакта в другой возникает электрическое сопротивление, которое называется переходным сопротивлением контакта. На величину переходного сопротивления существенное влияние оказывает величина контактного нажатия, а также сопротивление окисных и сульфидных пленок, покрывающих контакты, так как они являются плохими проводниками.

В процессе длительной работы поверхности контактов изнашиваются и могут покрываться налетами копоти, окисными пленками, пылью, непроводящими частицами. Также износ контактов может быть вызван механическими, химическими и электрическими факторами.

Механический износ происходит при скольжении и ударах контактных поверхностей. Однако главной причиной разрушения контактов являются электрические разряды, возникающие при размыкании и замыкании цепей в особенности цепей постоянного тока с индуктивной нагрузкой. В момент размыкания и замыкания на контактных поверхностях происходят явления плавления, испарения и размягчения контактного материала, а также перенос металла с одного контакта на другой.

В качестве материалов для контактов реле применяют серебро, сплавы твердых и тугоплавких металлов (вольфрам, рений, молибден) и металлокерамические композиции. Наибольшее применение получило серебро, обладающее малым контактным сопротивлением, высокой электропроводностью, хорошими технологическими свойствами и относительно невысокой стоимостью.

Следует помнить, что абсолютно надежных контактов нет, поэтому для повышения их надежности применяют параллельное и последовательное включение контактов: при последовательном включении контакты могут разорвать большой ток, а параллельное включение повышает надежность замыкания электрической цепи.

4. Электрическая схема реле.

На принципиальных схемах катушка электромагнитного реле изображается прямоугольником и буквой «К» с цифрой порядкового номера реле в схеме. Контакты реле обозначаются этой же буквой, но с двумя цифрами, разделенными точкой: первая цифра указывает на порядковый номер реле, а вторая на порядковый номер контактной группы этого реле. Если же на схеме контакты реле расположены рядом с катушкой, то их соединяют штриховой линией.

Запомните. На схемах контакты реле изображают в состоянии, когда на него напряжение еще не подано.

Электрическую схему и нумерацию выводов реле производитель указывает на крышке, закрывающей рабочую часть реле.

На рисунке видно, что выводы катушки обозначены цифрами и , и что реле имеет три группы контактов:

7 — 1 — 48 — 2 — 59 — 3 — 6

Здесь же под электрической схемой указаны электрические параметры контактов, показывающие, какой максимальный ток они могут пропустить (коммутировать) через себя.

Контакты данного реле коммутируют переменный ток не более 5 А при напряжении 230 В, и постоянный ток не более 5 А при напряжении 24 В. Если же через контакты пропускать ток больше указанного, то они очень скоро выйдут из строя.

На некоторых типах реле производитель дополнительно нумерует выводы со стороны присоединений, что очень удобно.

Для удобства эксплуатации, замены и монтажа реле применяют специальные колодки, которые устанавливаются на стандартную DIN-рейку. В колодках предусмотрены отверстия для контактов реле и винтовые контакты для подключения внешних проводников. Винтовые контакты имеют нумерацию контактов, которая соответствует нумерации контактов реле.

Также на катушках реле указывают род тока и рабочее напряжение обмотки реле.

На этом пока закончим, а во второй части рассмотрим основные параметры и подключение электромагнитных реле, где на примерах простых схем разберем работу реле.

До встречи на страницах сайта.
Удачи!

Литература:

1. И. Г. Игловский, Г. В. Владимиров – «Справочник по электромагнитным реле», Л., Энергия, 1975 г.
2. М. Т. Левченко, П. Д. Черняев – «Промежуточные и указательные реле в устройствах релейной защиты и автоматики», Энергия, Москва, 1968, (Б-ка электромонтера, вып. 255).
3. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

виды, назначение, конструктивные особенности и установка

Промежуточные реле имеют в электротехнике специфическую роль. Применяются они, как правило, в тех областях, где обычные реле не выполняют поставленной задачи и нужны какие-то особенные функции. Основной функцией устройства является обеспечение питанием потребителей переменного и постоянного тока.

О видах промежуточных реле, с фото и иллюстрациями, сфере их применения, принципе действия, конструкции и технических характеристиках пойдет речь в данной статье.

Краткое содержимое статьи:

Виды промежуточных реле

Классификация производится по нескольким параметрам. Различают следующие виды промежуточных реле по типу переключения:

  • минимальные – срабатывание происходит в момент, когда определенная характеристика в цепи снижается до определенного значения;
  • максимальные – реле срабатывает в момент увеличения определенного параметра в цепи до порогового значения.

В зависимости от назначения устройства делятся на следующие категории:

  • комбинированные – работающие в группе взаимозависимые устройства;
  • логические – работают в цепи с цифровыми реле, работающими на микропроцессорах;
  • измерительные – имеют механизм подстройки для срабатывания на определенный уровень сигнала.

В зависимости от способа работы устройства:

  • прямые – непосредственно замыкающие и размыкающие электрическую цепь:
  • косвенные – работающие в группе с другими устройствами и не размыкающие цепь непосредственно после поступившего сигнала.

По методу подключения в цепь:

  • первичные – непосредственно включенные в цепь;
  • вторичные – подсоединение происходит через конденсаторы или катушки индуктивности.

Есть также группа схожих с промежуточными защитных реле, по принципу действия делящихся на индукционные, полупроводниковые, электромагнитные и поляризационные.

Устройство промежуточного реле

Невзирая на большое количество разновидностей реле данного типа, конструкция их во многом сходна. Основой устройства является управляющий соленоид, также оно состоит из контактов, сердечника и пружины. В зависимости от номиналов тока и напряжения, а также типа цепи – переменного или постоянного тока, производятся различные модели промежуточных реле.

Внешних особых различий в конструкции нет. Основная разница в материале магнитопровода – у реле для переменного тока сердечник набирают из отдельных стальных пластин, тогда как для постоянного тока его изготавливают цельнометаллическим.

Благодаря такому конструктивному решению снижаются энергопотери из-за нагревания стального сердечника из пластин, через который проходит переменный ток.

Характеристики

Значимые для эксплуатации характеристики следующие:

  • тип тока – переменный/постоянный;
  • размеры реле;
  • максимальная длительность работы реле;
  • значение коммутационного тока;
  • потребляемая мощность;
  • рабочее напряжение;
  • значения минимальной и максимальной рабочих температур;
  • относительная влажность, концентрация пыли и уровень вибраций, при которых допустима эксплуатация реле.

Часть реле для удобства эксплуатации оснащена разъемами под DIN-рейки. Существует много вариантов расположения разъемов устройств для такого вида крепления.

Реле с разными номиналами тока и напряжения изготавливают с различным расположением контактов, чтобы исключить возможность замены вышедшего из строя реле другим, но с неподходящими параметрами.

Принцип действия промежуточного реле

Как только на катушку приходит ток, якорь втягивается под действием возникшей электромагнитной силы, замыкая подвижные контакты на якоре и неподвижные контакты на корпусе. При замыкании контактов включается цепь управления. Это может быть система защиты, сигнализация, цепь запуска электродвигателя. Групп контактов, в зависимости от назначения реле, может быть несколько.

Применение промежуточных реле

Применяются, как правило, во вспомогательных целях в следующих случаях:

  • В системах защиты с замедленным срабатыванием.
  • Для приведения в действие более мощного реле. В некоторых случаях бывают такие значения пускового тока, что реле не выдержит нагрузки и перегорит. Для этих целей используют специальные пускатели, на которые подают ток с промежуточного реле.
  • При необходимости одновременного включения и выключения нескольких цепей, например, отключение электродвигателя и включение сигнализации.

Фото промежуточное реле

Кабель-адаптер Tripp Lite U209-000-R USB / Serial DB-9 (RS-232) (можно найти в Интернете у различных торговых посредников)

— это последовательный адаптер USB-RS-232, который можно использовать для подключения к ПК, не имеющим порта RS-232.

Простая / расширенная настройка:

Рисунок 3: Выбор простой расширенной настройки

Первый экран мастера драйвера реле предоставляет возможность запрограммировать каждый канал с простыми или расширенными настройками.

Простая настройка позволяет пользователю изменять только самые важные настройки, используя заводские настройки по умолчанию для более сложных настроек.

Примечание: Простая установка должна использоваться, если нет особой необходимости изменять расширенный параметр.

Функции канала:

Рисунок 4: Выбор функции канала

Есть несколько вариантов функций.

Отключено (Вход)

Функция Disabled (Input) отключает драйвер реле канала. Эта функция является «безопасной» конфигурацией неиспользуемого канала. Отключенные каналы также можно безопасно использовать в качестве входов напряжения. Напряжение канала может использоваться как управляющая переменная для других функций. Он может измерять напряжение, подаваемое от различных сенсорных устройств, состояние переключателя ВКЛ / ВЫКЛ или сигнализировать о пороге измеряемого напряжения.

Порог

Функция порога включает или выключает канал в соответствии с уставкой высокого и низкого порога.Когда регулирующая переменная достигает любого из этих заданных значений, функция включает или выключает канал. Кроме того, задержки и таймеры минимума / максимума могут улучшить его поведение. Могут использоваться различные управляющие переменные, включая значения напряжения, тока и температуры.

Это делает его очень полезным для многих наиболее распространенных функций, включая LVD, простое включение / выключение управления зарядкой, управление охлаждающими вентиляторами в зависимости от температуры или даже управление освещением, основанное на напряжениях фотоэлектрической батареи.

Авария / Ошибка

Функция аварийного сигнала / сбоя активирует канал в ответ на сбой или аварийный сигнал, генерируемый устройством Morningstar. Любая комбинация имеющихся неисправностей и / или сигналов тревоги от устройства Morningstar может контролироваться одновременно. При возникновении неисправности или сигнала тревоги настроенный канал включается.

ПРИМЕЧАНИЕ: Каждый канал, сконфигурированный с функцией аварийного сигнала / неисправности, может отслеживать состояние аварийного сигнала / неисправности только одного устройства в сети шины счетчика.

Общие приложения

включают настройку звуковых или визуальных индикаторов при возникновении тревоги или неисправности в устройстве Morningstar или сигнализацию другого электронного оборудования при возникновении сигнала тревоги или неисправности в устройстве Morningstar.

GenStart

Настройте один или несколько каналов для управления генератором. С помощью гибких параметров этой функции пользователь может управлять 1, 2 или 3-проводными схемами. Обратитесь к документации генератора для получения информации о необходимых сигналах, времени и рабочих характеристиках. В то время как некоторые генераторы могут работать с базовой пороговой функцией на основе пороговых значений напряжения батареи, функция GenStart обеспечивает скоординированное включение / выключение как с одним, так и с несколькими каналами, что может потребоваться для разных генераторов.

MODBUS
TM Ведомый

Требуется для управления каналом напрямую через последовательный порт с использованием протокола MODBUS TM . Путем записи значения регистра (команда катушки) можно указать выходное состояние канала. В противном случае переменные драйвера реле (напряжения в каналах, температура) могут быть считаны из регистров хранения через MODBUS TM независимо от назначенной функции управления.

Тип управления (устройство):

Рисунок 5: Выбор типа управления (устройства)

Тип управления определяет устройство, с которого будут запрашиваться переменные данные и использоваться в функциях порогового значения, сигнализации / сбоя и запуска генератора.

Используйте автономный режим для опроса внутренних переменных RD-1 или выберите устройство из списка устройств Morningstar, на которое должен отвечать драйвер реле. Автономный режим предпочтительнее, так как он не требует подключения к Meterbus.

Чтобы выбрать устройство Morningstar в сети MeterBus, необходимо выбрать адрес управления в окне после выбора устройства. Это возможно только при расширенной настройке. Драйвер реле использует адрес Meterbus по умолчанию выбранного устройства с простыми настройками.

Дополнительные параметры

  • Адрес MeterBus (если в устройстве был изменен адрес MeterBus по умолчанию)
  • Расширенная настройка порога и запуска генератора
    • Время задержки для ожидания выполнения определенного условия. (Также для Gen Start)
    • Threshold Minimum High / Low Times устанавливает минимальное время для состояний канала.
    • Threshold Maximum High / Low Times устанавливает максимальное время для состояний канала.
    • GenStart Максимальное время работы, чтобы ограничить время, в течение которого генератор может работать одновременно.
    • Максимальное время выключения GenStart, чтобы генератор работал периодически.
  • Timing Control (для данных опроса или в автономном режиме)
    • Примеры периодов определяют, как часто драйвер реле проверяет условие
    • Параметры тайм-аута для связи (не для автономной версии)
      • Время ожидания до объявления тайм-аута связи
      • Настройка безопасного канала при тайм-ауте связи

Пожалуйста, прочтите раздел «Мастер установки драйвера реле» в разделах справки MSView для получения полной информации об этих настройках.

Типы реле и реакция канала на включение / выключение

Прежде чем программировать драйвер реле, важно учесть тип используемых реле и то, как логика включения / выключения канала повлияет на это конкретное реле. Для получения информации о номинальных значениях напряжения и тока реле обратитесь к дилеру или дистрибьютору электронных компонентов или посетите их веб-сайты, многие из которых предоставляют выбор спецификаций реле реле.

Основные типы реле следующие.

  • Нормально открытый (NO) [ВКЛ. Канал включает (замыкает) релейный переключатель]
  • Нормально замкнутый (NC) [ВКЛ. Канал выключает (открывает) релейный переключатель]
  • Двухполюсный (DP) [ВКЛ. Канал активирует пару похожих (нормально разомкнутых или нормально замкнутых) релейных переключателей]
  • Double Throw (DT) [Канал ON выключает (открывает) реле NC и включает (закрывает) переключатель реле NO]
  • Реле задержки времени [Срабатывание реле запускает таймер задержки, времени включения или других функций внутреннего таймера.]
  • Реле с фиксацией [Импульс ВКЛ / ВЫКЛ запускает реле, которое будет сохранять свое контактное положение, пока не получит еще один импульс ВКЛ / ВЫКЛ. Это можно использовать для экономии энергии.]

Драйвер реле Boolean Logic

Рисунок 6: Логическая логика драйвера реле

Часто бывает полезно использовать несколько реле и / или каналов вместе для реализации булевой логики для системы. На этой схеме показано несколько каналов, подключенных к одному реле для логики ИЛИ и управления несколькими реле с разными каналами для логики И.Поскольку по каждому каналу может потребляться ток до 750 мА, можно также управлять несколькими реле или нагрузками из одного канала.

Логическое управление

  • Логика ИЛИ может использоваться для запуска одного из нескольких условий в системе.
  • Логика
  • AND может использоваться для требования нескольких требований для запуска переключателя.

Пороговая функция Приложения:

Общий выключатель низкого напряжения

Тип управления:

  • Измерение напряжения батареи подключенного контроллера (выбор устройства и напряжения батареи)
  • Измерение напряжения батареи с помощью драйвера реле (выбор автономного режима и входного напряжения)
  • Через измерение напряжения входного канала (выберите автономный драйвер или драйвер реле и напряжение на канале)

Простая настройка:

LVD = 11.5В; LVR = 12,6 В

Решение для реле NC
Рисунок 7: Решение для реле NC

Когда входное напряжение больше (>) 12,6 В повернуть ВЫКЛ

Включается, когда оно меньше (<) 11,5 В

Решение для релейного переключателя NO
Рисунок 8: Решение для релейного переключателя NO

Когда входное напряжение больше (>) 12,6 В включить ВКЛ

Выключить, когда оно меньше (<) 11,5 В

Расширенная настройка пороговых значений

Рисунок 9: Настройка порога

Расширенные настройки обеспечивают задержки и минимальное / максимальное время максимума / минимума.

Хотя драйвер реле не имеет компенсации тока для LVD, как это имеет место с контроллерами Morningstar, задержка (от низкого к высокому; от высокого к низкому) и минимальное время низкого / высокого (выход канала) предотвратит переключение больших нагрузок назад и вперед между LVD и LVR быстро.

Задержки предотвращают преждевременное срабатывание LVD или LVR при кратковременном напряжении.

Минимальное время высокого / низкого уровня обеспечивает минимальное время, в течение которого LVD остается отключенным или LVR остается подключенным.

Пример NO реле: LVD = 11,5 В; LVR = 12,6 В; 5-минутные задержки; 10 минут минимальное время высокого / низкого уровня

Maximum Low / High Time не будет учитываться для настроек LVD, но может быть полезен для других приложений, чтобы ограничить время для состояния ON или OFF.

Приложения дополнительных пороговых функций

Эти приложения используют пороговое значение для переменной, доступной для драйвера реле.

  • Автономные пороги
    • Напряжение силовой цепи
    • Вход напряжения на одном из входов канала (входное напряжение должно быть <напряжения питания RD-1)
  • Переменные, доступные при подключении MeterBus к другим продуктам Morningstar
    • Контроллеры Morningstar или другие драйверы реле, подключенные к той же сети Meterbus
    • Может включать напряжение аккумулятора, ток аккумулятора, напряжение массива, температуру радиатора и другие параметры.
  • Управление включением / выключением вентилятора шкафа в зависимости от входной температуры
    • Канал включения / выключения вентилятора
    • Под контролем
      • Температура радиатора подключенного контроллера
      • Вход во вторичный канал через термистор / резистор ckt
      • Внутренние или удаленные (RTS) данные о температуре от подключенного контроллера
      • RD-1 температура окружающей среды
  • Управление резервным генератором через состояние батареи
    • Под контролем
      • Состояние зарядки подключенного контроллера
      • Измерение напряжения батареи подключенного контроллера
      • Измерение напряжения аккумулятора драйвера реле
  • Общий выключатель низкого напряжения
    • Измерение напряжения аккумуляторной батареи через подключенный контроллер
    • Измерение напряжения аккумуляторной батареи через драйвер реле
    • Измерение напряжения через входной канал
  • Ступенчатый выключатель низкого напряжения
    • Из тех же источников, что и выше
    • Поэтапное отключение различных нагрузок
      • Более критические нагрузки могут оставаться включенными при более низком напряжении батареи
      • Канал, используемый для отключения каждой ступени
      • Поэтапное переподключение
      • Порядок отключения не должен быть обратным
      • Новый заказ можно настроить на переподключение

Возможные применения датчика / порога преобразователя

  • Контроль движения
    • Вход напряжения датчика движения на канал
    • Вторичный канал управляет светом и т. Д. На основе напряжения датчика движения
    • Можно комбинировать с настроенным каналом отключения по низкому напряжению
      • Реле датчика движения и реле лвд, подключенные последовательно
      • Оба должны быть включены для включения света, но только один должен быть выключен для выключения света
  • Управление насосом уровня воды
    • Вход напряжения датчика уровня воды (или другой жидкости) на канал
    • Вторичный канал управляет насосом по напряжению датчика уровня
    • Можно комбинировать с настроенным каналом отключения по низкому напряжению, как указано выше
    • Может использоваться для нескольких насосов или другого оборудования (сброса давления или других клапанов и т. Д.)
    • Резервная насосная система
      • Второй вход напряжения может использоваться для обнаружения отказа первичного насоса
      • При выходе из строя первичного насоса запустить вторичный насос
  • Управление клапаном сброса давления
    • Принцип аналогичен управлению насосом уровня воды
  • Отопление и охлаждение помещений
    • управление включением / выключением в зависимости от входной температуры (см. Управление включением / выключением вентилятора)
    • Включить LVD с помощью логики (И)
    • Включите пороги более высокого напряжения и тока зарядки / мощности, чтобы использовать избыточную мощность, когда батареи почти полностью заряжены.
      • Включить задержки для ожидания более высокого SoC после порога высокого напряжения
      • Maximum High Time может ограничить количество энергии, используемой в любой момент времени
      • Уменьшение или отключение нагрузок на основе уменьшенной мощности зарядки (<мощности нагрузки) для предотвращения разрядки аккумулятора.
  • Wind Diversion с TS-MPPT
    • Базовое управление переадресацией заряда ВКЛ / ВЫКЛ в зависимости от напряжения батареи
    • Можно комбинировать с управлением отклонением TriStar PWM с характеристикой% рабочего цикла.

Настройка сигнализации / неисправности

Настройка аварийного сигнала / неисправности проста и будет зависеть от подключенного устройства.

Рисунок 10: Настройка сигнализации / неисправности

Настройка GenStart

Для GenStart доступно множество опций. Драйвер реле имеет встроенный метод для 3 часто используемых методов GenStart. Дополнительное логическое управление может быть объединено с настройками RD-1 GenStart для получения дополнительных опций и обратной связи.

Простой двухпроводной GenStart (также см. Настройки триггера GenStart после раздела Расширенные настройки GenStart)

Генераторы

обычно имеют два однопроводных метода управления запуском / остановом генератора.

Первый использует функцию запуска, показанную ниже для канала 1, просто для включения переключателя, позволяющего генератору работать, а затем его выключения, чтобы остановить работу генератора.

Второй, показанный ниже для канала 3, использует систему переключения защелкивающегося типа с мгновенным переключателем ВКЛ / ВЫКЛ для запуска генератора и мгновенным переключателем ВКЛ / ВЫКЛ для остановки генератора.

RD-1 GenStart также будет настроен на включение указанной ниже нагрузки для канала 2 после того, как генератор успеет прогреться.Нагрузка также будет отключена перед остановкой генератора.

Рисунок 11: Сигналы GenStart

Ниже приведен пример экрана настройки времени для двухпроводной настройки рабочего таймера.

Рисунок 12: Настройка двухпроводного таймера запуска

Ниже приведен пример экрана установки времени для двухпроводной установки с мгновенным включением / выключением. Обратите внимание, что Crank предназначен для сигнала мгновенного включения для запуска генератора.

Рисунок 13: Двухпроводная установка с мгновенным включением / выключением

Простой 3-проводный запуск генератора (также см. Настройки триггера GenStart после раздела Расширенные настройки GenStart)

Трехпроводная система также будет включать переключатель для запуска генератора.

В дополнение к запуску двигателя Relay Driver также предоставляет возможность для одного предварительного запуска двигателя предварительно нагреть двигатель перед запуском генератора, если это необходимо. Ниже показан предварительный запуск двигателя, который немного проворачивает двигатель перед попыткой запуска и запуска генератора. Pre-Crank не является обязательным.

Рисунок 14: Простой 3-проводный GenStart

Расширенные настройки GenStart (См. Также настройки триггера GenStart ниже)

Максимальное включение = 3 часа; Ограничивает максимальное время непрерывной работы генератора.

Минимальное включение = 30 минут; Предотвращает короткое время работы.

Максимальное выключение = 21 день; Устанавливает рекомендуемое время для включения генератора.

Минимальное выключение = 5 часов; Предотвращает слишком частую работу генератора.

Рисунок 15: Настройки триггера GenStart

Настройки триггера GenStart

Параметры запуска GenStart обычно основаны на низком напряжении, чтобы предотвратить LVD системы для критических нагрузок. Вот пример использования системы с номинальным напряжением 24 В.

Также возможно создать триггер GenStart из других переменных, таких как ток нагрузки для больших нагрузок постоянного тока, чтобы предотвратить разряд аккумулятора.Однако существует только одна настройка GenStart, поэтому единственный способ добавить дополнительные триггеры — использовать логическую логику с дополнительными каналами RD-1 или другими внешними переключателями.

Использование дополнительных пороговых значений или других внешних переключателей для включения / отключения GenStart

Ниже приведены некоторые пороговые функции, которые могут использоваться с логикой AND для
Включение или отключение переключения сигнала GenStart.

  • Высокий ток контроллера заряда (отключение)
  • Высокий ток управления нагрузкой (разрешение)
  • Температура (слишком высокая или слишком низкая) (Отключить)
  • Generator Load Off (Отключить, если генератор не запустился)
  • Электронный указатель уровня топлива (отключить при низком уровне)
  • Переключатель таймера ВКЛ / ВЫКЛ для многократного проворачивания / отключения из-за включения цепи нагрузки генератора (для холодных мест)
  • Ручные переключатели
  • Управление RD-1 MODBUS (требуется выделенный канал)
  • Входное напряжение RD-1 или напряжение канала

Роль реле и принцип его работы

Теплые подсказки: эта статья содержит около 4000 слов, а время чтения составляет около 18 минут.

Введение

Реле — это электронное устройство управления, которое имеет систему управления (также называемую входным контуром) и управляемую систему (также называемую выходным контуром). Обычно используется в цепи автоматического управления. Фактически он использует небольшой ток для управления большим. «Автоматический выключатель» тока. Таким образом, он играет роль автоматической регулировки, защиты и преобразования цепи в цепи.

Каталог


Ⅰ Что такое реле

1.1 Описание реле

Реле — это устройство автоматического управления, которое изменяет выход, когда входная величина (электричество, магнетизм, звук, свет, тепло) достигает определенного значения.

Реле — это электронное устройство управления, которое имеет систему управления (также называемую входным контуром) и управляемую систему (также называемую выходным контуром). Обычно используется в цепи автоматического управления. Фактически он использует небольшой ток для управления большим. «Автоматический выключатель» тока. Таким образом, он играет роль автоматической регулировки, защиты и преобразования цепи в цепи.

Реле — это электронное устройство управления, которое имеет систему управления (также называемую входным контуром) и управляемую систему (также называемую выходным контуром). Обычно используется в цепи автоматического управления. Фактически он использует небольшой ток для управления большим. «Автоматический выключатель» тока. Таким образом, он играет роль автоматической регулировки, защиты и преобразования цепи в цепи.

1.2 Символ реле

Поскольку реле состоит из двух частей: катушки и контактной группы, графический символ реле на принципиальной схеме также включает две части: один длинный квадрат обозначает катушку; и один набор символов контактов указывает комбинацию контактов.Когда бесконтактная схема относительно проста, контактная группа часто рисуется непосредственно на одной стороне рамки катушки. Этот рисунок называется централизованным представлением.

1.3 Принцип работы реле

Почему и как использовать реле | Принцип работы реле

Реле обычно относятся к электромагнитным реле, которые имеют механическое действие. Суть реле заключается в использовании контура (обычно небольшого тока) для управления включением и выключением другого контура (обычно большого тока), и в этом процессе управления два контура обычно изолированы, и его основной принцип заключается в использовать Электромагнитный эффект используется для управления механическим контактом для достижения цели переключения, и на катушку с сердечником подается напряжение — ток катушки создает магнитное поле — магнитное поле поглощает переключающий контакт действия якоря, и весь процесс » малый ток — магнито-механический — большой ток »процесс.

На рисунке выше изображена динамическая диаграмма контрольной лампы реле. Реле имеет нормально разомкнутый контакт и нормально замкнутый контакт. Подвижный контакт — это общий конец. Это реле постоянного тока, то есть когда катушка реле передает питание постоянного тока (на рисунке используется батарея). Источник питания), катушка с железным сердечником будет выводить соответствующее магнитное поле, якорь будет притягиваться, и подвижный контакт будет перемещаться от стороны нормально закрытого контакта к стороне нормально открытого контакта, что эквивалентно нормально разомкнутому контакту.Это. Как показано на рисунке, кнопка пуска / остановки, аккумулятор и катушка реле образуют контур управления. Пока этот контур включен, через катушку будет проходить ток и будет создаваться магнитное поле.

Нормально разомкнутый контакт, лампа и источник питания другой лампы (другой аккумулятор на рисунке) образуют петлю. Когда нормально разомкнутый контакт замкнут, контур замкнут, и ток будет от источника питания управления.Положительный конец, протекающий через лампочку, проходит через замкнутый нормально разомкнутый контакт, а затем возвращается к отрицательному полюсу, так что лампочка загорается.

Когда кнопка пуска / останова отключена, катушка теряет ток, так что якорь не имеет магнитного притяжения и будет сброшен пружиной, так что другой конец подвижного контакта вернется со стороны нормально открытого контакта в нормально замкнутый контакт. Здесь цепь лампы под напряжением отключена принудительно, а в лампе нет тока, и естественно будет темно.

Структура реле

Поэтому реле некоторые старые электрики еще называют «магнетизмом». Он использует функцию электромагнита для управления включением или отключением другой цепи. Внутри электромагнитного реле нужны катушки, железные сердечники и пружины. Он состоит из основных аксессуаров, таких как контакты. Контакты обычно имеют нормально разомкнутые контакты и нормально замкнутые контакты. У двоих часто есть общий конец. Когда катушка не находится под напряжением, нормально закрытый контакт и общий конец закорочены, а нормально открытый контакт и общий конец разомкнуты.После подачи питания на катушку нормально открытый контакт и общий конец закорочены, а нормально закрытый контакт и общий конец разомкнуты, просто поменяны местами, так что можно управлять напряжением (током) катушки, и цепь серией контактов можно управлять.

При проектировании выберите подходящую контактную емкость, напряжение катушки (AC DC), чтобы можно было реализовать контроль изоляции двух цепей. Например, кнопка, которая может быть сконструирована для контакта с людьми, имеет напряжение 12 вольт, а катушка выбрана на 12 вольт.Это безопаснее, люди просто прикоснутся к напряжению катушки, и они не смогут сами подавать электричество. На стороне контакта можно управлять напряжением 220 В или выше, чтобы напрямую управлять запуском и остановом устройства, такого как двигатель, или другой нагрузки с относительно большим током, так что функция управления «четыре или два фунта »могут быть реализованы.

Реле было изобретено американскими учеными около 1831 года. Его именем назван блок индуктора.Электромагнитный эффект был открыт раньше Фарадея, но не был запатентован. После более чем 100 лет разработки реле сформировали различные формы, такие как реле времени, реле температуры, герконовые реле, тепловые реле, дифференциальные реле, оптические реле, акустические реле, реле Холла, а теперь и твердотельные реле, от механических до электронный, в различных формах.

Ⅱ Назначение реле

2.1 Обзор функций реле

a. Расширьте диапазон управления: например, когда управляющий сигнал многоконтактного реле достигает определенного значения, он может переключать, отключать и включать несколько цепей одновременно в соответствии с различными формами контактной группы.

б. Усиление : например, чувствительные реле, промежуточные реле и т. Д. С очень небольшой степенью контроля могут управлять цепью очень высокой мощности.

г. Интегрированный сигнал: Например, когда несколько сигналов управления вводятся в реле с несколькими обмотками в заданной форме, после всестороннего синтеза достигается заданный эффект управления.

г. автомат, дистанционное управление, мониторинг: Например, реле на автомате вместе с другими электрическими приборами может образовывать схему программного управления, таким образом достигая автоматической работы.

2.2 Роль промежуточного реле

2.2.1 Промежуточное реле

Общая схема часто делится на две части: главную цепь и цепь управления. Реле в основном используется для цепи управления.Контактор в основном используется для главной цепи. Реле может реализовать функцию управления одним или несколькими сигналами с помощью одного управляющего сигнала для завершения запуска и остановки. Управление, связь и другие органы управления, основным объектом управления является контактор; Контакты контактора относительно большие, а несущая способность высокая, благодаря чему осуществляется контроль от слабого электричества к сильному электричеству, а объектом управления является электрический прибор.

2.2.2 Использование промежуточного реле

а. Вместо контакторов малой мощности

Контакты промежуточного реле имеют определенную нагрузочную способность. Когда грузоподъемность мала, ее можно использовать для замены небольших контакторов, таких как электрические жалюзи и некоторые мелкие приборы. Это имеет то преимущество, что может не только служить целям управления, но также экономить место и делать управляющую часть устройства более хрупкой.

б. Увеличить количество контактов

В системе управления цепями контакт контактора должен управлять несколькими контакторами или другими компонентами.Его не следует подключать к другим формам, потому что это не способствует техническому обслуживанию, но в линию добавляется промежуточное реле, которое не изменяет форму управления. И легко ремонтируется.

г. Увеличьте контактную емкость

Хотя контактная емкость промежуточного реле не очень велика, оно также имеет определенную нагрузочную способность, а ток, необходимый для его приведения в действие, небольшой, поэтому промежуточное реле можно использовать для увеличения контактной емкости.

г. Тип преобразователя

В промышленных линиях управления такая ситуация часто возникает. Управление требует использования нормально замкнутого контакта контактора для достижения цели управления, но нормально замкнутый контакт самого контактора израсходован, и задача управления не может быть выполнена. В это время промежуточное реле может быть подключено параллельно с исходной катушкой контактора, а нормально замкнутый контакт промежуточного реле может использоваться для управления соответствующими компонентами, а тип контакта переключается для достижения требуемой цели управления. .

e. Тип преобразователя

В некоторых схемах управления для переключения некоторых электрических компонентов часто используются промежуточные реле, которые управляются размыканием и замыканием их контактов. Например, схема автоматического размагничивания, обычно используемая в цветных телевизорах или дисплеях, триоды управляют включением и выключением промежуточных реле, тем самым обеспечивая управление катушками размагничивания. Роль преемственности.

ф. Напряжение преобразования

Напряжение в линии управления промышленной линии управления составляет 24 В постоянного тока.Контактор KM2 должен управлять включением и выключением электромагнитного клапана KT, а напряжение катушки электромагнитного клапана составляет 220 вольт переменного тока. Подключение катушки электромагнитного клапана непосредственно к контакту контактора не принципиально, но при этом учитываются правила обслуживания и вопросы безопасности. Промежуточное реле должно быть установлено в другом месте для управления электромагнитным клапаном через промежуточное реле. Это может отделить постоянный ток от переменного, высокого и низкого напряжения. Это удобно для будущего обслуживания и способствует безопасному использованию.

г. Устранение помех в цепи

В промышленных системах управления или компьютерных линиях управления, хотя существуют различные меры по подавлению помех, явление помех более или менее присутствует. Общий наведенный ток не вызывает срабатывания промежуточного реле. Только когда нажата кнопка в исходной строке, промежуточное реле будет активировано, чтобы дать ПЛК нормальный входной сигнал, таким образом достигая цели устранения помех.

Ⅲ Типы реле

a. В соответствии с принципом работы или структурными характеристиками реле
1) Электромагнитное реле: Электрическое реле, которое работает за счет силы всасывания, создаваемой между сердечником электромагнита и якорем цепью внутри входной цепи.

2) Твердотельное реле: Тип реле, в котором электронный компонент выполняет свою функцию без механических движущихся частей, а вход и выход изолированы.

3) Реле температуры: Реле, которое срабатывает, когда наружная температура достигает заданного значения.

4) Герконовое реле: реле, которое размыкает, замыкает или переключает линию с помощью геркон, герметизированный в трубке и имеющий двойное действие электрической пружины и магнитной цепи якоря.

5) Реле времени: При добавлении или удалении входного сигнала выходной части необходимо задержать или ограничить время на замыкание или размыкание своего управляемого линейного реле до указанного времени.

6) Реле высокой частоты: Реле, используемое для переключения высокочастотных РЧ линий с минимальными потерями.

7) Поляризованное реле: Реле с поляризованным магнитным полем и управляющим действием, которое работает совместно с магнитным полем, создаваемым катушкой управления. Направление срабатывания реле зависит от направления тока, протекающего через управляющую катушку.

8) Другие типы реле: , такие как оптические реле, акустические реле, тепловые реле, измерительные реле, реле на эффекте Холла, дифференциальные реле и т. Д.

б. По размеру реле
1) Микро реле
2) Ультра-маленькое миниатюрное реле
3) Маленькое миниатюрное реле

Примечание: Для герметичных или закрытых реле размеры являются максимальными размерами корпуса реле в трех взаимно перпендикулярных направлениях, за исключением размеров монтажных, извлекаемых, выступающих, обжимных, фланцевых и уплотнительных швов.

г. В соответствии с классификацией нагрузки реле
1) Реле малой мощности
2) Реле слабой мощности
3) Реле средней мощности
4) Реле высокой мощности

г.Согласно защитным характеристикам реле
1) Герметичное реле
2) Закрытое реле
3) Открытое реле

e. В соответствии с принципом действия реле
1) Электромагнитный тип
2) Индуктивный тип
3) Выпрямленный тип
4) Электронный тип
5) Цифровой тип и т. Д.

ф. В соответствии с физическими величинами реакций
1) Реле тока
2) Реле напряжения
3) Реле направления мощности
4) Реле импеданса
5) Реле частоты
6) Газовое (газовое) реле

г.В соответствии с ролью реле в схеме защиты
1) Пусковое реле
2) Измерительное реле
3) Реле времени
4) Промежуточное реле
5) Сигнальное реле
6) Выходное реле

Ⅳ Обнаружение реле

4.1 Инструкция по тестированию

a. Измерьте диапазон рабочего напряжения реле (включая минимальное напряжение включения и максимальное напряжение отключения).
г. Измерьте потребляемую мощность (номинальный ток) и внутреннее сопротивление реле.
г. Долговременные условия работы реле, выдерживаемое напряжение.
г. Описание иконки:

Источник постоянного тока, амперметр, вольтметр, измерение сопротивления, зуммер

4.2 Процесс тестирования

a. Измерение внутреннего сопротивления и номинального тока
1) испытание внутреннего сопротивления: проверьте сопротивление между реле 1 и 8 футов, как показано ниже

2) Проверка номинального тока: 24 В постоянного тока для реле 1 и 8 и 30 секунд для считывания данных амперметра

Примечание: Для проверки тока вставьте мультиметр в порт ввода тока и отрегулируйте положение диапазона (мА) в соответствии с текущим файлом.

г. Измерение диапазона рабочего напряжения реле

1) Проверка минимального напряжения замыкания: Источник питания постоянного тока начинается с 0 В, и напряжение постепенно увеличивается до срабатывания зуммера, записывая текущее значение напряжения U1. (Сохраняйте текущее значение постоянного напряжения)

Примечание: Файлы вольтметра и зуммера на рисунке реализованы с помощью мультиметра.

2) Тест на самое высокое напряжение отключения: источник питания постоянного тока начинается с U1, и напряжение постепенно снижается до тех пор, пока зуммер не перестанет подавать сигнал тревоги, и будет записано текущее значение напряжения U2.

г. Измерьте выдерживаемое напряжение нормально разомкнутого нормально замкнутого типа и выдерживаемое напряжение катушки и контакта

1) Подготовка перед испытанием: поверните ручку «ток утечки» на измерителе выдерживаемого напряжения на «0,5» мА, «время»

Ручка достигает «60» с, ручка «Диапазон напряжения» достигает «5» кВ, ручка «Регулировка напряжения» достигает 0 В, ручка «Power» достигает «ВЫКЛ», и две выходные линии подключены к высоковольтному выходу «_DC» » , земля.

2) Измерьте испытание выдерживаемого напряжения нормально разомкнутого нормально замкнутого типа: «мощность» -> «ВКЛ», «регулирование напряжения» -> увеличьте до значения аварийного напряжения срабатывания тестера выдерживаемого напряжения, считайте напряжение в это время, как показано ниже:

3) Выдерживаемое напряжение катушки и контакта: «мощность» -> «ВКЛ», «регулировка напряжения» -> 5 кВ или более, срабатывание тестера выдерживаемого напряжения не срабатывает, выдерживаемое напряжение катушки и контактов больше или равно 5 кВ, как показано ниже:

4.3 Меры предосторожности при тестировании реле

a. При проверке номинального тока катушка в реле будет генерировать электромагнитную индукцию при внезапном приложении напряжения. Ток будет становиться все меньше и меньше. После стабилизации напряжения электромагнитная индукция исчезает, и ток становится стабильным в определенном диапазоне. Как и у OMRON G5RL-14-E, ток при включении составляет около 16–17 мА, а стабильное напряжение составляет около 14–15 мА через 4–5 минут. Но наш тест — это считывание напряжения сразу после 30 секунд включения.

б. При значении выдерживаемого напряжения нормально замкнутого нормально разомкнутого реле после первого срабатывания реле будет генерироваться электромагнитная индукция. Исчезновение электромагнитной индукции требует времени, и второе напряжение срабатывания будет намного меньше. Но тестируем напряжение при первом чтении.

г. Если вы читаете стабильное значение номинального тока, вы должны читать второе значение выдерживаемого напряжения нормально замкнутого нормально разомкнутого типа. Если вы считываете значение номинального тока в течение 30 секунд, вы должны прочитать значение выдерживаемого напряжения нормально замкнутого нормально разомкнутого типа первого действия.

Вам также может понравиться

Электрическое реле: Обзор контактов реле
Как работают реле? Функции и применение реле
Как проверить реле с помощью мультиметра?

Промышленная система управления реле | Подключение цепи реле 24 В постоянного тока

Введение

Промышленные реле используются в автоматизации на протяжении десятилетий . Эти фундаментальные строительные блоки электрических цепей позволили первым автоматизированным системам функционировать без необходимости в современных ПЛК и компьютерах.Хотя сегодня вы не найдете никаких релейных логических схем, они по-прежнему играют важную роль в современных системах управления.

Механическое реле имеет главное преимущество перед твердотельным контактом: оно способно проводить большие токи и питать нагрузки, для которых потребовались бы гораздо более крупные и дорогие полупроводники. У них есть некоторые недостатки; одна из которых заключается в том, что они ломаются намного быстрее из-за повторяющегося движения. Хотя реле не рекомендуется во многих случаях, его все же следует использовать для нагрузок, требующих большой силы тока: двигателей, нагревателей, исполнительных механизмов и т. Д.

В этой статье мы рассмотрим простое реле «ледяной куб» или промышленное реле, рассмотрим основные функции и рассмотрим процесс подключения.

Промышленные механические реле

Механическое реле будет содержать два основных компонента: катушку и один или несколько наборов контактов . Когда катушка находится под напряжением, нормально разомкнутый набор контактов замкнут, а нормально замкнутый разомкнут. Важно знать терминологию, а также разницу между ними.Кроме того, важно быстро определить конфигурацию конкретного реле и цепи на основе схемы на передней панели конкретного реле.

Вот пример:

Реле выше имеет катушку 24 В постоянного тока между контактами A и B. Обратите внимание, что для реле постоянного тока будет назначена полярность клемм, а для реле переменного тока — нет. В этом случае положительный вывод — это вывод A, а отрицательный — вывод B .

Контакты помечены от 1 до 9.Следуя диаграмме, мы можем идентифицировать контакты следующим образом:

нормально разомкнутый

нормально замкнутый

нормально разомкнутый контакт не будет проводить электричество, пока катушка обесточена. Другими словами, вы можете измерить бесконечное сопротивление на любой из клемм, перечисленных в списке «Нормально разомкнутые» выше, когда на катушку реле не подается питание. Как только катушка протекает по току и реле находится под напряжением, контакты будут проводить ток.

Обратное верно для нормально замкнутых контактов. Они будут проводить ток в обесточенном состоянии и перестанут проводить при подаче питания.

Подключение промышленного реле на 24 В постоянного или 110 В переменного тока в системах управления

Для питания катушки реле можно использовать выход ПЛК или вспомогательного устройства, такого как Point IO или Flex IO. Если запрограммировать катушку на включение и выключение, контакты реле перейдут из обесточенного состояния в возбужденное и обратно. Это действие позволит току циркулировать.Создав этот цикл , мы можем построить схему, которая будет питать нагрузку в зависимости от состояния реле .

Используя приведенный выше пример, мы подключим положительный вывод к выходу ПЛК. Отрицательный вывод заземлен на землю источника питания 24 В постоянного тока.

Теперь, когда мы можем управлять реле, мы можем использовать другие клеммы для создания вспомогательных цепей. Релейный контакт — это электрический переключатель, поведение которого можно сравнить с переключателем света. При нажатии переключателя цепь либо включается, либо выключается.Комбинируя несколько реле последовательно или параллельно, можно создать сложную логику, для которой потребуется

Практическое использование реле

Есть время и место для использования любой технологии. У механического реле есть много недостатков, которые в большинстве случаев делают его неидеальным выбором. Тем не менее, это обязательный компонент многих схем, которые я могу придумать.

Избегайте использования реле в цепях, которые могут управляться через твердотельный выход . Другими словами, по возможности используйте стандартный выход, подключенный непосредственно к нагрузке, а не реле.Проблема с использованием механического реле заключается в том, что оно выйдет из строя после определенного количества использований. Твердотельный компонент прослужит намного дольше.

Используйте реле на нагрузках, которые превышают текущие требования стандартного ввода / вывода . Сюда входят нагреватели, клапаны, двигатели и т. Д. В определенных обстоятельствах эти компоненты будут включать в себя встроенное реле и, следовательно, не потребуют отдельного компонента. Примером этого может быть клапан SMC, который имеет внутреннее реле и может управляться стандартным выходом.В этом случае реле не требуется.

Наконец, реле особенно полезны для разделения логических областей схем . Примером этого может быть сигнал «Готово» конкретной машины. Как производитель машин, вы можете предоставить заказчику сигнал, который сообщает ему, когда машина «готова», «работает», «истощена» и т. Д. Используя реле, вы позволяете предприятию использовать их схему, напряжение, и т. д. Вам не нужно заранее думать о том, что будет установлено на месте.

Заключение

Реле играют важную роль в современных системах управления, несмотря на то, что несколько десятилетий назад были их основным блоком. Хотя они не используются так часто, как раньше, реле способны работать с большими нагрузками и разделять логические области цепей.

На многих заводах реле используются для управления двигателями, нагревателями, клапанами и т. Д. . Таким образом, важно понимать функциональность реле, чтобы иметь возможность устранять неисправности и устанавливать такие цепи.

Видеоурок