+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Способы подключения ламп: последовательное, параллельное

Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна.

Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях.

Последовательная схема подключения

В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания.

Имеем:

  • две лампы вкрученные в патроны
  • два провода питания выходящие из патронов

Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет.

Просто берете любой конец провода от каждой лампы и скручивает их между собой.

На два оставшихся конца вам необходимо подать напряжение 220 Вольт (фазу и ноль).

Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку. И далее встречается с нулем.

Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.

При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по 100 Ватт с рабочим напряжением 220 Вольт, то на каждую из них будет приходиться плюс-минус 110 Вольт.

Соответственно и светить они будут менее чем в половину от своей изначальной мощности.

Грубо говоря, если вы подключите параллельно две лампы по 100Вт каждая, то в итоге получите светильник мощностью в 200Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки. Вот результат измерения силы тока такой сборки при фактическом питающем напряжении 240В.

Исходя из формулы расчета получаем, что две лампочки светят с мощностью равной всего: P=I*U=69.6Вт

При этом, падение яркости будет равномерным только при условии, что лампочки у вас одинаковой мощности.

Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому.

Что это дает нам в практическом смысле при реализации данных схем?

Какая лампочка будет светить ярче и почему

Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.

Возьмите к примеру лампочки, кардинально отличающиеся по мощности — 25Вт и 200Вт и соедините последовательно.

Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.

Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.

При этом величина силы тока, способная разжечь 25-ти ваттку, никак не способна «поджечь» двухсотку. Грубо говоря, источник света с лампой 200Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.

Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто.

Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете 220В.

Как будет светиться в этом случае данная гирлянда? Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть.

Помимо существенного падения напряжения, вторым отрицательным моментом такой схемы, является ее ненадежность.

Если у вас сгорит всего одна из лампочек в этой цепочке, то сразу же потухнут и все остальные.

Еще нужно сделать замечание, что такая последовательная схема будет хорошо работать на обычных лампах накаливания. На некоторых других видах, в том числе светодиодных, никакого эффекта можете и не дождаться.

У них в конструкции может быть заложена электронная схема, которой нужно питание порядка 220В. Безусловно, они могут работать и от пониженных значений в 150-160В, но 90В и менее, для них уже будет недостаточно.

Ошибки при сборке схемы и подключении выключателя

Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения.

В результате, у вас будет наблюдаться следующий эффект. При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении — другая.

При этом невозможно будет добиться того, чтобы потухли обе сразу. Как такое возможно?

Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки.

Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение 220V, и он как положено загорается.

При этом первый источник остается без питания, т.к. с обоих сторон к нему подведена «одноименка».

А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться.

В то время как большей, практически потухнет. Все как и было описано выше.

  • Где же можно в быту, применить такую казалось бы не практичную схему?
  • Самое широко известное использование подобных конструкций — это елочные новогодние гирлянды.
  • Также можно сделать последовательную подсветку в длинном проходном коридоре и без особых затрат получить освещение в стиле лофт.

Постоянно горят лампочки в подъезде или дома из-за большого напряжения? Самый дешевый выход — включить последовательно еще одну.

Вместо одной 60Вт, включаете две сотки и пользуетесь ими практически «вечно». Из-за пониженного напряжения в 110В, вероятность выхода их из строя снижается в сотни раз.

Еще одно оригинальное применение, которым я все таки не рекомендую пользоваться, но отдельные электрики в безвыходных ситуациях к нему прибегают. Это так называемая фазировка трехфазных цепей.

Как выполнить фазировку вводов лампочками накаливания

Допустим, вам нужно подключить параллельно между собой два трехфазных (380В) ввода, от одного источника питания. Вольтметра, мультиметра или тестера у вас под рукой нет. Что делать?

Ведь если перепутать фазы, то запросто можно создать междуфазное КЗ! И здесь вам опять поможет последовательная сборка всего из двух лампочек.

  1. Собираете их по самой первой приведенной схеме и подсоединив один конец провода питания на фазу ввода №1, другим концом поочередно касаетесь жил ввода №2.
  2. При одноименных фазах, лампочки светиться не будут (например фА ввод№1 — фА ввод№2).
  3. А при разных (фА ввод№1 — фВ ввод№2) — они загорятся.

Такой эксперимент только с одной лампой, вам бы никогда не удался, так как она бы моментально взорвалась от повышенного для нее напряжения в 380В.

А в последовательной сборке с двумя изделиями одинаковой мощности, к ним будет приложено напряжение в пределах нормы. Но самое лучшее и практичное применение — это использовать данную схему вовсе не для освещения, а для обогрева.

То есть, ваши источники света в первую очередь будут работать не как светильники, а как обогреватели.

Как сделать такую простую и незамысловатую инфракрасную печку, читайте в статье по ссылке ниже.

Что-то подобное зачастую применяется в инкубаторах.

Схема параллельного подключения

Теперь давайте рассмотрим параллельную схему соединения.

При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение 220V.

Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку.

В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники.

На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.

Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными.

Данная схема применяется повсеместно — в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т.д.

  • И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.
  • Напряжение на них подается одновременно и всегда составляет номинальные 220В.
  • Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном.

Как было указано выше, оно тоже имеет свои преимущества в определенных ситуациях и может здорово помочь с решением множества задач (декоративная подсветка, светильники-обогреватели, «вечная» лампочка и т.д).

Источник: https://svetosmotr.ru/posledovatelnoe-i-parallelnoe-soedinenie-lampochek/

Последовательное подключение лампочек: схема, смешанное подключение, плюсы и минусы

При размещении сетевых осветительных приборов (ламп или светодиодных лент) сомнений в том, как подключать их между собой, как правило, не возникает.

Если они рассчитаны на напряжение 220 Вольт, традиционно применяемый способ включения – соединение в параллель.

Последовательное подключение лампочек используется лишь в редких случаях, когда на их основе делаются гирлянды, например.

Другая распространенная причина применения этого способа – желание повысить срок эксплуатации осветительных изделий, используя их на неполную рабочую мощность.

Последовательное соединение

Последовательная схема подключения

Нетиповое последовательное подключение лампочек к сети 220 Вольт отличается следующими характеристиками:

  • через все включенные в цепь осветительные элементы течет одинаковый ток;
  • распределение падений напряжений на них будет пропорционально внутренним сопротивлениям;
  • соответственно этому распределяется мощность, расходуемая на каждом осветителе.

При последовательном соединении лампочек в схеме с общим выключателем рассчитанные на 220 Вольт осветители будут гореть не в полную силу.

При установке в цепочку двух лампочек накаливания с различной мощностью P ярче горит та из них, что обладает большим сопротивлением, то есть менее энергоемкая.

Объясняется это очень просто: из-за большего внутреннего сопротивления напряжение на ней будет более значительным по величине.

Поскольку в формулу для P этот параметр входит в квадрате P=U2/R – то при фиксированном сопротивлении на ней рассеивается большая мощность (она горит ярче).

Преимуществом последовательного включения ламп является более щадящий режим работы из-за меньшей мощности, потребляемой на каждой из них. Во всех остальных отношениях такой способ подсоединения нежелателен, поскольку его отличают следующие характерные недостатки:

  • при выходе из строя одной лампы обесточивается вся цепь, так что осветительная линия полностью перестает работать;
  • при установке различных по мощности лампочек они дают разное свечение;
  • невозможность использования последовательной схемы при соединении энергосберегающих ламп (для них нужно полное напряжение 220 Вольт).

Последовательный вариант оптимально подойдет для создания «мягкого света» в светильниках-бра или при изготовлении гирлянд из низковольтных светодиодных элементов.

Параллельное включение

Параллельное соединение лампочек

  • Классическое параллельное подключение ламп отличается от последовательного способа тем, что в этом случае ко всем осветителям прикладывается полное сетевое напряжение.
  • При параллельном подключении лампочек через каждое из ответвлений протекает «свой» ток, зависящий от сопротивления данной цепочки.
  • Проводники, подводимые к цоколям и патронам ламп, подсоединяются к одному проводу в виде параллельной сборки. К бесспорным преимуществам этого метода относят следующие его особенности:
  • при перегорании одной из лампочек остальные продолжают работать;
  • в каждой из ветвей они горят в полную мощность, поскольку ко всем одновременно приложено полное напряжение;
  • допускается использовать энергосберегающие лампочки;
  • для подключения к сети достаточно вывести из комнатной люстры нужное количество фазных проводников и оформить их в виде коммутируемой группы.

Недостатков у этого метода практически нет, за исключением большого расхода проводников при сильно разветвленных цепях. Без проблем можно подключить несколько лампочек к одному проводу за счет использования принципа разводки. Типовая схема параллельного соединения лампочек с выключателем ничем особым не отличается от обычного включения. В этом случае в нее дополнительно вводится клавишный переключатель.

Законы смешанного соединения

Смешанное включение осветителей описывается следующим образом:

  • В его основе лежит параллельное соединение нескольких электрических ветвей.
  • В некоторых из ответвлений нагрузки включаются последовательно в виде ряда лампочек, располагающихся одна за другой.

В отдельные параллельные ветви допускается подключать различные типы потребителей, включая лампы накаливания, а также галогенные или светодиодные источники.

При рассмотрении особенностей смешанного соединения обязательно учитываются следующие закономерности:

  • Через каждый из последовательно включенных участков цепи протекает один и тот же ток.
  • При прохождении через звено с параллельно включенными потребителями он разветвляется, а на выходе снова становится однолинейным.
  • С увеличением количества элементов в рабочей цепи абсолютная величина тока в ней уменьшается.
  • Напряжение на одном звене равно произведению токовой составляющей на общее сопротивление ветви (закон Ома).
  • При росте числа элементов в цепи напряжение на каждом из них соответственно уменьшается.

Смешанный способ подключения имеет ряд преимуществ, определяемых достоинствами каждой из двух основных схем соединения. От последовательного он «унаследовал» его экономичность, а от параллельного – возможность работать даже при выходе из строя элемента в одной из комбинированных цепочек.

Рекомендуется при использовании смешанной схемы группировать в последовательные цепи лампы одинаковой мощности, а в параллельные ветви ставить осветители с различным энергопотреблением.

Типы ламп и схемы подключения

Перед монтажом различных видов осветительных приборов желательно ознакомиться с принципом работы и их внутренним устройством, а также с особенностями схемы включения в питающую сеть. Также важно знать, что каждая из разновидностей способна работать длительное время лишь при строгом соблюдении правил эксплуатации.

Люминесцентные лампы

Люминесцентные лампы часто устанавливают в служебных помещениях

Помимо традиционных ламп накаливания для освещения служебных и частично бытовых пространств нередко применяются их люминесцентные трубчатые аналоги. Они чаще всего устанавливаются на следующих объектах:

  • в цехах и на конвейерных линиях промышленных производств;
  • в административных зданиях и в различных боксах;
  • в гаражах, торговых залах и подобных им местах общественного пользования.

Значительно реже они используются в домашних условиях – иногда ставят на кухне для организации подсветки рабочей зоны.

Особенностью люминесцентных осветителей является невозможность прямого подключения к сети 220 Вольт, так как для пробоя газового столба требуется высокое напряжение. Для их включения используется особая электронная схема, в состав которой входят такие элементы запуска как дроссель, стартер и высоковольтный конденсатор (в некоторых случаях он не обязателен).

В последние годы неэкономичные и сильно гудящие во время работы дроссельные преобразователи заменяются так называемым «электронным балластом». Порядок его подключения обычно указывается в виде схемы, изображенной на корпусе прибора.

При использовании электронного адаптера подключается одна газоразрядная лампа, либо устанавливается сразу две штуки, соединенные последовательно.

Галогенные источники и светодиодные лампы

При монтаже подвесных потолков традиционно устанавливают галогенные лампы

Осветители первого типа традиционно устанавливаются при монтаже подвесных и натяжных потолков. Они также идеально подходят при необходимости освещения зон с повышенной влажностью, так как выпускаются в нескольких модификациях. Одно из них рассчитано на работу от 12-ти Вольт. Для их получения в районе потолочных перекрытий устанавливается преобразователь, рассчитанный на соответствующее выходное напряжение.

Для светодиодных ламп характерно наличие встроенного драйвера, позволяющего получать нужное напряжение питания (12 или 24 Вольта). Образцы светодиодных осветителей, рассчитанные на работу от 220 Вольт, включаются подобно лампам накаливания. Но в отличие от обычных осветителей включать их в виде последовательной цепочки не рекомендуется.

Важно правильно подбирать тип ламп для определения нужного порядка их подключения.

Не допускается соединять в последовательную цепочку энергосберегающие осветители, при монтаже люминесцентных и галогенных светильников руководствуются схемами их включения.

При пониженном сетевом напряжении энергосберегающие лампы быстро выходят из строя, а люминесцентные осветители могут совсем не загореться.

Источник: https://StrojDvor.ru/elektrosnabzhenie/kak-luchshe-podklyuchit-lampochki-posledovatelno-ili-parallelno/

Основные схемы подключения ламп | Полезные статьи — Кабель.РФ

О том, как подключать к электросети обыкновенные лампочки, знают практически все, но вот подключение низковольтных галогенных или люминесцентных ламп часто становится проблемой. В большинстве случаев используется иная схема подключения лампы — сложная, но более экономичная.

Подключение галогенных ламп

Рисунок 1. Схема подключения галогенной лампы через трансформатор В целях повышения безопасности эксплуатации и экономии электроэнергии все чаще применяется схема подключения лампы освещения, предполагающая использование пониженного напряжения. Низковольтные галогенные лампы такие же яркие, как и обычные, но при этом потребление энергии существенно сокращается.

Подключение галогенных ламп осуществляется при помощи специальных источников питания (трансформаторов) на 6 В, 12 В или 24 В. Кроме того, использование такой схемы подключения с применением понижающего трансформатора продлевает жизнь лампочек.

Сама схема подключения довольно проста: галогенные лампы соединяются между собой параллельно и подсоединяются к трансформатору, при этом общая мощность всех ламп не должна превышать мощности используемого трансформатора. Управление освещением осуществляется простым выключателем, подключаемым к трансформатору на стороне 220 В.

Единственное, чем такая схема подключения галогенных ламп неудобна — нужно где-то поместить трансформатор, что не всегда удобно, несмотря на небольшие размеры устройства.

Подключение люминесцентных ламп

Рисунок 2. Схема подключения одной люминесцентной лампы через стартер Рисунок 3. Схема подключения двух люминесцентных ламп через стартер Люминесцентные лампы проще всего включать в электрическую сеть по распространенной стартерной схеме. Такая схема подключения дневной лампы не только проста, но и эффективна. По подобной схеме можно подключать и несколько ламп (тандемная схема).

Здесь применяется специальный «пускатель» — стартер, который представляет собой биметаллический контакт. Есть два распространенных типа стартеров, на которых может базироваться схема подключения люминесцентных ламп: рассчитанных на сетевое напряжение в 127 В и 220 В.

Способы подключения ламп

Рисунок 4. Последовательное подключение ламп Галогенные, люминесцентные и прочие энергосберегающие лампы можно подключать двумя способами: последовательно и параллельно.

Последовательное подключение. Подразумевает подключение нуля и фазы к первой лампе, подключение к ней следующей и т. д. Эта схема применяется довольно редко, так как имеет ряд недостатков: уменьшение яркости ламп, а также тот факт, что если одна лампа в цепи перегорит, все последующие за ней тоже перестают работать.

Рисунок 5. Параллельное подключение ламп Параллельное соединение. Подразумевает, что все элементы электрической цепи будут своими контактами подключены к фазе и нулю. Если в такой схеме перегорит одна лампа, остальные будут и дальше гореть.

Кабельно-проводниковая продукция для подключения ламп

Как правило, для подключения большинства типов ламп вполне достаточно использование медного многожильного провода с сечением жил 0,5–1,5 мм (например, ПВС 2х1,5 или ПВС 3х1,5).

Источник: https://cable.ru/articles/id-404.php

Правила параллельного и последовательного соединения ламп

  • В связи с ростом популярности точечных светильников осветительных приборов в квартирах и частных домах стало больше.
  • При необходимости заменить лампочку проблем не возникает, сложнее добавить дополнительные источники света.
  • Если подобные работы выполняются самостоятельно, требуется умение определять преимущества каждого вида соединения и составлять схемы.

Особенности и характеристики схем подключения ламп

Способ и порядок подключения лампы зависит от ее вида. Методы, используемые для лампочек накаливания, не подойдут для галогенок, люминесцентных светильников или светодиодов.

Параллельной

При использовании схемы параллельного подключения источники света подключаются к фазе и нулю. Например, если нужно соединить 2 лампочки, скручиваются их питающие провода. Важно, чтобы сечение соответствовало нагрузке. Напряжение на всех светильниках одинаковое, они горят с яркостью, установленной производителем.  Перегорание отдельного элемента не влияет на функциональность остальных.

Справка! На практике при наличии нескольких источников света при параллельном соединении провода не скручиваются. Используется кабель, к которому подключаются все элементы.

Параллельное подключение может быть:

  • лучевое – на каждый светильник отдельный кабель;
  • шлейфное – фаза и ноль сначала идут на первый осветительный прибор, потом часть кабеля идет в остальные (кроме последнего, к которому подключаются две части).

При использовании параллельной лучевой модели перегорание одного элемента не мешает работе остальных. Перед тем, как выбрать шлейфную модель, необходимо учесть, что нарушение одного соединения выведет из строя элементы, расположенные после него. Но проблема решается быстро за счет легкого определения проблемного места.

При подключении галогенных источников с трансформатором необходимо учесть, что они присоединяются к вторичной обмотке преобразователя через клеммные колодки.

Главный недостаток люминесцентных ламп – мерцание. От него избавляет пускорегулирующая аппаратура, но она стоит дорого. Для снижения пульсации применяется специальная схема для двух светильников со сдвигом фазы на одном из них. Две лампочки соединяются параллельно, к одной подключается конденсатор, сдвигающий фазу.

Последовательной

  Где плюс и минус: определяем полярность светодиода

Сравнение достоинств и недостатков схем

Преимущества и недостатки последовательного подключения

Вид лампы Преимущества Недостатки
Накаливания, галогеновые, люминесцентные Продлевается срок службыСнижается мерцание люминесцентных ламп Падение напряженияПри выходе из строя отдельного элемента остальные не работаютУ источников света должна быть одинаковая мощность
Светодиодная Оптимальный вариант для обеспечения одинакового тока на всех источниках Для большого количества лампочек требуется источник питания с большой мощностиПри выходе из строя отдельного элемента перестают работать остальные

Преимущества и недостатки параллельного подключения

Вид лампы Преимущества Недостатки
Накаливания галогеновые, люминесцентные Возможно подключить к сети любое количество светильников по щлейфной схеме
  1. Перегорание отдельного элемента лучевой модели не влияет на работу остальных
  2. Накал полный на всех лампочках
  3. Можно подключить люстру с несколькими лампами
  4. Немного соединительных контактов
Повышение стоимости при использовании лучевой схемы за счет большого расхода кабеля и необходимости в клеммной колодкеПри щлейфной модели нарушение одного соединения мешает работе остальных
Светодиодная Можно соединить некоторое количество диодов, если их суммарная мощность не превышает мощность источника питанияПри перегорании отдельного источника остальные работают Схема не работает, если диоды подсоединяются через один резисторКонструкция громоздкая и дорогая из-за большого количества деталейПри выходе из строя отдельного элемента на остальных увеличивается нагрузка

В какой схеме лампочки одинаковой мощности будут светить ярче и почему

При использовании последовательной схемы вольтаж снижается с увеличением количества элементов. Лампочки горят в полнакала или даже меньше, так как напряжение делится равномерно. Общая мощность при последовательном соединении 2-х элементов по 100 Вт ниже, чем у одного (уровень освещенности снижается).

При параллельном соединении двух светильников на каждый подается 220 В, они работают в полный накал. Общая мощность увеличивается в 2 раза (уровень освещенности повышается).

Применение обеих схем в быту

Самые популярные изделия с последовательным соединением – гирлянды.

Эту модель можно использовать и для других целей:

  • сделать дешевую подсветку в длинном коридоре;
  • сэкономить на покупке лампочек из-за частого перегорания подключением дополнительной;
  • продлить срок эксплуатации источников света (если вместо одной на 60 Вт подключить 2 по 100 Вт).

Справка! Опытные электрики данное свойство используют для определения фаз в трехфазной сети.

В мастерских и гаражах мощные лампы накаливания или галогенки используют для обогрева. Два элемента по 1кВт соединяют последовательно и помещают в металлическую емкость, которую устанавливают на кирпич. Температура такого обогревателя примерно 60оС. Но следует учесть минус – лампы перегорают очень скоро.

Параллельная схема используется в помещениях любого назначения (в подсветке, люстрах), на улицах. Она позволяет включать отдельные источники света независимо от работы остальных, достаточно подключить несколько выключателей. Обычно не только светильники, но и все электроприборы в жилых домах соединяются параллельно и подключаются к бытовой сети на 220 В.

Для подключения светодиодных светильников часто используется смешанная модель. Создается несколько последовательных цепочек, которые между собой соединяются параллельно.

Частые ошибки при сборке схемы и подключении выключателя

Неграмотный специалист чаще всего вместо фазы вводит в выключатель ноль. Светильники могут работать, но в выключенном состоянии они будут под напряжением, что опасно при необходимости заменить лампы.

По неопытности заводят в выключатель и фазу, и ноль.

Важно! Ноль всегда уходит на осветительный прибор.

Третья ошибка – присоединение питающего провода на отвод вместо общего контакта. В результате работает только часть люстры.

Случается, что нулевой провод осветительного прибора подключается не к нулю в коробке, а к фазе.

Чтобы избежать ошибок с выключателем, следует внимательно отнестись к проводам. Желательно перед установкой выключателя промаркировать их, чтобы в процессе монтажа соединить одноименные.

Как выполнить фазировку вводов лампочками накаливания

Фазировка выполняется при необходимости параллельно подключить к источнику питания 2 трехфазных ввода. Путать фазы нельзя, чтобы не создалось межфазное короткое замыкание.

Используются 2 лампы накаливания с последовательным соединением. Один конец провода подключается к фазе, вторым нужно коснуться остальных жил. Если фазы одинаковые, лампочки не горят.

Важно! Не стоит подобным образом экспериментировать с одной лампочкой – она в сети 380 В сразу перегорит. Последовательное соединение двух элементов снижает напряжение в 2 раза.

Основные выводы

Некоторые владельцы городских квартир проводят ремонт самостоятельно. В процессе требуется монтаж новой электропроводки. Для проведения этой работы необходимо ориентироваться в основах электрики и уметь определять оптимальные варианты подключения, учитывающие особенности интерьера и предпочтения членов семьи.

Хотя большинства электроприборов в жилых помещениях подключаются параллельно, знания о том, как подключить лампочки последовательно, тоже не помешают. Они помогут, если появится желание устроить дешевую систему освещения в стиле лофт или сэкономить на покупках.

При самостоятельном выполнении работ важно обладать знаниями о видах проводов, кабелей, выключателей, способах их соединения, сферах использования. Если не ни знаний, ни опыта, подключение лампочек лучше доверить специалисту.

ПредыдущаяСледующая

Источник: https://svetilnik.info/lampy-i-svetilniki/parallelnoe-podklyuchenie-lampochek.html

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого.

Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток.

Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой.

Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка.

Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям.

Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры.

Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно.

Если их соединить последовательно, то при включении одной лампочки мы включим все остальные.

При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока
  • Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:
  • А = I х U х t, где А – работа тока, t – время течения по проводнику.
  • Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:
  • А=I х (U1 + U2) х t
  • Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения.

Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока
  1. При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:
  2. Р=U х I
  3. После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:
  4. Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

  • qобщ= q1 = q2 = q3
  • Для определения напряжения на любом конденсаторе, необходима формула:
  • U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

  1. С= q/(U1 + U2 + U3)
  2. Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:
  3. 1/С= 1/С1 + 1/С2 + 1/C3
  4. Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

  • С= (q1 + q2 + q3)/U
  • Это значение рассчитывается как сумма каждого прибора в схеме:
  • С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:

  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов.

Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/raschjoty/posledovatelnoe-i-parallelnoe-soedinenie/

При параллельном подключении напряжение. Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы

Д ля проведения 3-го занятия потребуются:
1.Устройство собранное в течении 2-го занятия.
2.Электрический патрон, подобный использованному ранее.
3.Отрезок кабеля ВВГ 2*1.5, длинною около 0,5 метра.
4.Электрическая лампочка.
Подсоединяем патрон к кабелю, вворачиваем лампочку — получаем в результате то же изделие, что и в конце 1-го занятия, за исключением отсутствующей эл. вилки.

Берем устройство, собранное в течении 2-го занятия — аккуратно срезаем изоляцию на участке около 1см. провода, идущего на эл. патрон. Снимаем крышку с выключателя, что бы получить доступ к его электрическим клеммам.



Присоединяем второй патрон с лампочкой номер 2, как показано на рисунке ниже.



Таким образом, один конец оказывается присоединен с помощью скрутки к проводу идущему напрямую к лампочке номер 1. Второй конец присоединяется к клемме выключателя вместе с другим проводом идущим на электрическую лампочку номер 1. Изолируем место скрутки проводов, с помощью изоленты, закрываем крышку-корпус выключателя. Втыкаем эл. вилку в розетку, нажимаем выключатель — обе лампочки горят. Такое соединение называется параллельным.


Эл. схема параллельного подключения выглядит вот так.


Особенностью такого соединения, является возможность, задействовать одновременно несколько потребителей электроэнергии, рассчитаных на одно и то же напряжение. Эл. лампочек может быть не две, как в нашем примере, а гораздо больше.

На яркость свечения отдельно взятой лампы, увеличение их количества (до определенного предела) практически не влияет, напряжение эл. сети уменьшается незначительно. Но потребление электроэнергии в сети возрастает с каждым, дополнительно подключенным приемником электроэнергии — растет сила тока, начинают греться провода. Что бы предотвратить возгорание изоляции, при превышении эл. током определенного порога, срабатывает автоматический выключатель, и все гаснет.

В нашем быту, как правило, мы постоянно сталкиваемся именно с таким подключением эл. устройств. Различные электроприборы, группы точечных, и других светильников — все это примеры параллельного соединения.
Можно сказать, что все электроприемники, например, в отдельно взятой квартире так или иначе, в итоге оказываются подключенными параллельно, к жилам вводного питающего кабеля.

В случае, если Вас, заинтересовала эта тема, с теоретической точки зрения, дополнительную интересующую информацию, легко почерпнуть в любом учебнике по электротехнике. Параллельное и последовательное соединение, подробно описано там с позиции законов Кирхгофа и Ома, со всеми формулами и выкладками. Несколько упрощенный вариант этой темы вы можете посмотреть

Необязательное лирическое дополнение.

В моем детстве (конец 70-х), огромной популярностью пользовались, самодельные цветомузыкальные установки. Радиолюбители собирали свои электронные схемы, как правило, используя в выходных каскадах тиристоры ку202н. Это позволяло, применять в качестве источника света, самые обычные лампочки 220-240 вольт. Их покрывали разноцветными лаками, устанавливали в рассеивающие экраны, автомобильные фары — очень ярко и очень красиво. К тому времени, у меня не было, ни достаточных познаний в радиоэлектронике, ни тиристоров, ни магнитофона. Была ламповая радиола Кантата-203, большое количество лампочек от карманного фонаря(2,5 вольт) и огромное желание что-нибудь сделать.

Опытным путем было определено — маленькая лампочка подсоединенная к выходу динамика начинала моргать в такт музыке, чем громче, тем ярче. Лампочка маленькая — света, соответственно, тоже мало. Что же делать? Тут и пришло на помощь параллельное соединение. Паять к тому времени, я уже немного умел (научили на уроках «труда»),взял два достаточно длинных проводка, да и припаял с десяток лампочек. Один проводок к цокольным контактам, второй к боковым. Подключил к «Кантате», влупил громкость на полную — красота! Половину лампочек покрасил зелеными чернилами, половину красными. Прилепил это все пластилином к большой стекляшке от старой люстры, найденной на помойке — настоящая получилась вещь!

Большее количество лампочек добавлять не стал (а хотелось!) — яркость начинала падать, звук в динамиках — хрипеть. Даже у Советских ламповых радиол, запас мощности был ограничен. Соединял я в дальнейшем параллельно и динамики, радиола выдержала, но кассетный магнитофон «Электроника» моего друга, таких издевательств не вынес — сдох. Но точечные светильники и силовая сеть 220 вольт, это совсем другое дело. Можно брать их хоть четыре(светильников), хоть шесть — да и подключать, к двум проводам, торчащим из потолка (где был старый светильник), самое главное делать это очень надежно.


Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт

Параллельное подключение лампочек

Перед человеком, слабо разбирающимся в электричестве, возникают проблемы подключения нескольких лампочек. Когда проводка уже сделана, вся работа заключается в замене перегоревших ламп. Но бывают ситуации, когда нужно добавить еще одну или более лампочек к существующей системе. Здесь уже понадобятся элементарные знания электротехники и умение составить схему подключения.

В моду вошли точечные светильники, в результате количество источников света в домах и квартирах значительно увеличилось, а освещению стали уделять особое внимание. На фото выше изображены светильники для подвесного потолка с параллельным соединением. Через клеммные колодки лампы подключаются к фазному (L) и нулевому (N) проводам.

На первый взгляд здесь нет ничего сложного, но для длительной и надежной работы все должно быть сделано по правилам, которые нужно знать.

Схема подключений

Для создания подключений лампочек, прежде всего, надо изобразить упрощенную электрическую схему соединений и подключения к питанию. Она составляется по определенным правилам:

  • проводники графически обозначаются прямыми неразрывными линиями;
  • соединения обозначаются точками (если их больше двух), если точки нет, значит, провода пересекаются;
  • электрическая арматура и проводка на плане изображаются по ГОСТ 21.614 и ГОСТ 21.608.

Параллельное и последовательное соединение

Для того чтобы зажечь самую простую лампу накаливания, нужно подключить ее контакты на фазу (L) и ноль (N). Два провода к ней подходят из распределительной коробки или из розетки. Параллельная схема предусматривает подключение нескольких лампочек на общие фазный и нулевой провода (рис. а ниже). Здесь параллельно подключены три лампы накаливания. Для удобства в схеме установлен выключатель. Принципиальная схема (рис. б) изображает соединения нагляднее.

Достоинством параллельного соединения является возможность подключения потребителей электроэнергии к напряжению сети. К лампам на рис. выше можно добавить еще несколько, но ток при этом увеличится, а напряжение останется прежним.

Сила тока ( I) в питающих проводах равна сумме сил токов всех участков ( I 1 . I 2 . I 3 ), подключенных параллельно (рис. б выше):

Сопротивление (R ) для трех нагрузок определяется из выражения:

Типы ламп и схемы подключения

Подключение ламп накаливания, приведенное выше, не представляет особой сложности. Но схема галогенных и люминесцентных ламп имеет некоторые отличия.

Галогенные

Питание пониженным напряжением повышает безопасность эксплуатации источников света. При этом яркость остается прежней. Галогенные лампы могут применяться с понижающими трансформаторами на 6, 12 и 24 В (рис. ниже).

Напряжение 220 В подается на малогабаритный электронный трансформатор, который можно встроить даже в корпус выключателя. Низковольтные галогенные лампы часто применяются в подвесных потолках. Их подключают параллельно и соединяют с трансформатором. На фото ниже представлена блок-схема с двумя трансформаторами. Напряжение 220 В подается на них через распределительную коробку. Нулевой провод обозначен синим цветом, а фазный – коричневым, со вставленным в разрыв выключателем.

Группы ламп соединены между собой параллельно в распределительной коробке, после которой производится разветвление питающих проводов на первичные обмотки трансформаторов.

Лампы подключаются ко вторичной обмотке 12 В параллельно между собой. Для их соединения применяются клеммные колодки (на схеме не показаны).

Выходной провод низкого напряжения не должен быть длиннее 2 метров. Иначе возрастают потери напряжения, и лампы будут светиться хуже. Будет лучше, если сделать расчет напряжения для всех ламп.

Пример расчета

Пример расчета напряжения на лампочках в зависимости от потерь в проводах следующий. При питающем напряжении V=12 В к трансформатору подключены параллельно 2 лампочки с сопротивлениями R1 = R2 = 36 Ом. Сопротивления подводящих проводов к ним равны r1 = r2 = r3 = r4 = 1,5 Ом. Требуется найти напряжение на каждой лампочке. Схема изображена на рис. ниже.

Напряжение на первой и второй лампочках составят:

V 1 = VR(2r + R)/(4r 2 +6rR + R 2) = 10,34 В,

V 2 = VR 2 /(4r 2 +6rR + R 2) = 9,54 В.

Из расчета видно, что даже небольшие сопротивления подводящих проводов приводят к существенному падению на них напряжения.

Общая нагрузка в схеме поддерживается на уровне 70-75% от максимальной, чтобы не перегревались трансформаторы.

Люминесцентные

Недостатком люминесцентных ламп является эффект мерцания, что ухудшает восприятие света глазами. Современные электронные ПРА (пускорегулирующие аппараты) решают эту проблему, но цена их выше. Для уменьшения пульсации при использовании электромагнитного балласта применяется двухламповая схема подключения, где на одной из ламп фаза сдвигается во времени. В результате суммарный световой поток выравнивается.

На рис. ниже изображена схема светильника с расщепленной фазой. Две лампы подключены к сети переменного напряжения параллельно. Обе они содержат индуктивные балласты (L 1) и (L 2). Но к лампе (2) подключен дополнительный балластный конденсатор (С б), благодаря которому создается сдвиг тока по фазе на 60 0 .

В результате снижается суммарная пульсация светового потока светильника. Кроме того, ток внешней цепи почти совпадает по фазе с напряжением питания за счет комбинации опережающей и отстающей схем, что позволяет увеличить коэффициент мощности.

про подключения

Про особенности параллельного и последовательного подключения рассказывает ниже.

Таким образом, для того чтобы правильно подключить лампочки в доме или квартире, надо сделать следующее:

  • начертить принципиальную электрическую схему системы освещения;
  • выполнить расчет проводки;
  • подобрать электрооборудование, арматуру и светильники;
  • правильно выполнить монтаж лампочек.

http://elquanta.ru

Когда проводка в квартире или доме уже присутствует и нет надобности подключать дополнительные источники света, то вопрос — как подключить лампу, не является актуальным. Но как же выполнить эту работу когда появляется такая необходимость. Тут без элементарных знаний электротехники и умения составить принципиальную, казалось бы, элементарную схему уже не обойтись.

Все источники света люминесцентные (экономки), светодиодные светильники могут быть подключены, как в принципе и все имеющиеся в электрической цепи сопротивления, параллельно, последовательно, смешанно. Смешанное соединение не используется для подключения ламп, так как в нём просто нет необходимости. А вот на параллельном и последовательном подключении стоит остановить своё внимание поподробнее.

Последовательное и параллельное подключение двух и более источников света

Для того чтобы подключить самую простую лампочку накаливания, как в принципе и любую другую, нужно подключить её один контакт к фазе, а другой к нулю, самому распространённому в бытовых условиях стран СНГ переменному напряжению 220 вольт.

Параллельное подключение устройств освещения подразумевает под собой подключение двух и более источников светового потока в параллель, то есть одни контакты ламп подключаются только к фазе, а все другие только к нулю, как показано на рисунке 1.

Через каждую лампочку пройдёт ток, который будет зависеть от её мощности, так же как и яркость светового потока, излучаемого ими, будет тоже зависеть от мощности каждой лампы. Естественно, что ток I будет равен сумме всех трёх токов, поэтому диаметр сечения основных проводников следует выбирать согласно ему. Это подключение считается самым распространённым и приемлемым, так как к нему можно будет, при необходимости в будущем, добавлять источники света и они не будут влиять на уже установленные.

При последовательном соединении, изображённом на рисунке, ток, протекающий по одной лампочке, будет зависеть от мощности, каждого источника света, а напряжение на них будет разделено на количество ламп и при данном входящем напряжении 220 вольт, будет равняется 110 вольт на каждом источнике света.

Такое подключение нужно обязательно выполнять со светильниками, которые имеют равную мощность. Рассмотреть это можно на примере двух ламп накаливания. Так как если подключить одну лампу 20 Ватт, а другую, например, на 200 Ватт, то лампа с меньшей мощностью тут же выйдет из строя, так как по ней пройдёт ток такой же, как и во второй лампе мощностью 200 Ватт, а это в 10 раз больше её номинала. Такое подключение может быть использовано для увеличения срока службы ламп накаливания, например, в подъездах и на лестничных клетках. Подключив две лампы на 220 вольт и мощностью, например, по 60 Ватт, они будут гореть вполсилы и прослужат очень долго. Нужно учесть, что это возможно только при подключении ламп накаливания. Последовательное подключение двух и более светодиодных ламп (светильников) и экономичных ламп нецелесообразно, так как они и так обладают довольно большим сроком службы.

Подключение лампы на один выключатель или на несколько

Как подключить лампу через выключатель? Главным нюансом при подключении является то, что нулевой провод питания непосредственно подключается к сети 220 вольт, а через выключатель разрывается фаза. Это делается для того чтобы можно было смело решать проблемами с патроном осветительного прибора, отключив лишь выключатель. Если подключение двух выключателей выполнить последовательно, то только при нажатии обеих клавиш лампа загорится. Такие виды подключения выключателей освещения очень редко используются, только при определённых индивидуальных условиях.

Интереснее является подключение так называемого проходного выключателя.

Суть такой схемы подключения одной лампы заключается в том, что включение и отключение лампы может быть произведено как от первого, так и от второго выключателя, вне зависимости в каком положении каждый из них. Например, это удобно, допустим, в длинном коридоре при входе в него человек нажимает на клавишу выключателя 2, и спокойно идёт по освещённому помещению, дойдя до конца коридора, не нужно возвращаться для выключения света, а можно лёгким нажатием выключателя 1, установленного в конце коридора, произвести отключение данного источника света. При таком подключении фаза тоже проходит через выключатели.

Усовершенствование освещения путём установки датчика движения

Главная функция установки датчика движения и подключения его к системе освещения, это автоматическое включение освещения без нажатия на клавишу выключателя освещения. То есть человек зашел помещение или в зону срабатывания датчика и свет включился, после ухода свет самостоятельно (автоматически) выключился. При выборе датчика движения необходимо в первую очередь учесть максимальную мощность ламп освещения.

Схема подключения датчика движения тоже не вызывает особых сложностей. Её можно устанавливать как с выключателем, так и без него. Просто при включении контакта выключателя датчик движения выводится из сети освещения, и осветительный прибор включается напрямую без датчика.

В любом случае работая с напряжением обязательно выполнять требования техники безопасности, а в частности:

  • проверять наличие и отсутствие напряжения на токоведущих элементах, к которым человек дотрагивается при монтаже;
  • автоматы питания освещения должны быть под замком;
  • работы производить исправным инструментом.

Видео о подключении ламп

Точечные светильники могут работать от напряжения 220 В или 12 В. Вне зависимости от напряжения, подключаться они параллельно (в шлейф или отдельными проводами) или последовательно (гирлянда). Разница в том, что питание для споты на 12 В подается через понижающий трансформатор. Он преобразует сетевые 220 вольт в нужные 12. Подробнее о том, как подключить точечные светильники к одно- и двух- клавишным выключателям поговорим подробнее.

Схемы подключения на 220 В

Некоторые точечные светильники работают от 12 В. Для подачи им питания необходимо устанавливать преобразователь (говорят еще трансформатор или драйвер). С развитием технологии появились споты которые могут работать от 220 В. Такая схема хоть немного, но проще, потому в последнее время чаще подключить точечные светильники требуется к сети напрямую, без преобразователей.

Использование встраиваемых светильников позволяет получить равномерное освещение. Кроме того, можно выбрать красивое

Последовательное подключение

Эта схема проста в реализации, для нее требуется мало проводов, но последовательно подключить точечные светильники можно лишь в относительно небольшом количестве — пять-шесть штук. Главный минус такого способа — светиться лампы будут не в полную силу. Еще один недостаток: при выходе из строя одной лампы (перегорании) перестают работать все лампы, так как разрывается цепь. Для восстановления работоспособности приходится проверять каждую.


Схема последовательного включения точечных светильников

Схема очень проста — фаза последовательно обходит все светильники, а к выходу последнего подается ноль. Схема с распределительной коробкой и выключателем расположена ниже.


Разводка электропроводки при последовательном подключении спотов

При работе будьте внимательны: на выключатель должна идти фаза, которая дальше идет на светильники. Ноль (нейтраль) — прямиком подается на последний в цепочке светильник. Это важно для правильной работы схемы а также для безопасности.

Если у вас проводка трехжильная — кроме нуля и фазы есть еще защитный провод «земля», его берут напрямую с «земляной» колодки и подают на каждый из светильников к соответствующей клемме. Можно «землю» взять в близлежащей розетке или на выключателе.


Схема последовательного подключения точечных светильников к двухклавишному (двойному) выключателю

Практическая реализация этой схемы удобнее не с кабелем а с проводами — ведь один провод постоянно разрывается обходя все светильники, а нулевой идет целым куском от распредкоробки до последнего осветительного прибора. Но еще раз повторимся — такой тип подключения почти не используется.

Схемы параллельного подключения

При параллельном подключении все лампы будут светить с нормальной интенсивностью, потому эта схема более популярна даже несмотря на то, что требуется большее количество проводников. Для подключения любого количества встроенных светильников (даже со светодиодными лампами) используют негорючий 2*1,5 или 3*1,5 (трехжильный провод используют если проводка с заземлением). Возможно использование кабель ВВГ нг ls (негорючий с пониженным выделением дыма при горении) но это уже по желанию. Он может быть круглым или плоским = это не важно, но негорючим — обязательно, особенно если перекрытие у вас деревянное.

Способы

Реализовываться параллельное подключение может двумя способами:

Шлейфное подключение

Рассмотрим схемы. На рисунке внизу показано как вести провод при шлейфном способе разводки. Из распредкоробки выходит кабель, он заходит на первый светильник, к выходу этого светильника подключается другой кусок кабеля, который тянется к следующему светильнику. Так подключаются все светильники.


Физически это выглядит так, как на фото внизу. Несколько отрезков кабеля соединяют светильники один за другим.


Если вы хотите осветительные приборы разделить на две группы, их подключают к двухклавишному выключателю. Схема становится несколько сложнее, но только тем, что увеличивается количество проводов.


Пример реализации можно увидеть в видео. Можно использовать другие клеммы, но сам способ показан неплохо.

Лучевое

При лучевом подключении на каждый осветительный прибор идет свой кусок кабеля. Способ затратный по расходу кабеля, но более надежный в плане работы: при поломке не горит только одна точка освещения. В этом случае имеет смысл дотянуть кабель от распределительной коробки по потолку до середины комнаты, там его закрепить. От этой точки начинать тянуть кабели к каждому встраиваемому светильнику.

Обратите внимание на рисунок справа. На нем показано, что от фазного провода расходятся провода к лампам и отдельно от нулевого. Так как проводов в одном месте сходится много надо выбрать надежный способ. Если провода одножильные и ламп не очень много, можно сделать скрутку, но ее потом надо будет хорошо обжать пассатижами, а потом сварить. Не самый простой способ и соединение получается неразъемным. Но надежный. Второй способ проще: на каждом проводнике кабеля установить разъем с нужным количеством входов и подключать провода к ним. Можно использовать клемники Wago на соответствующее количество подсоединяемых проводов. Они надежны, легко устанавливаются, но стоят прилично (подделки лучше не брать).


Параллельное подключение — кабелем к каждому светильнику

Еще вариант — обычные клеммные колодки с винтовым соединением. Они дешевые и вполне надежные, но придется с той стороны, где подключать надо будет кабель, поставить перемычки на все задействованные клеммы. Так на все провода будет подаваться напряжение.


Несмотря на высокую надежность способ используется редко — расходы велики, да и качественно соединить большое количество проводов в одной точке проблематично.

Подключение точечных светильников на 12 В

Схемы точно такие же, но кабель с выключателя заводится на преобразователь, а с выхода преобразователя идет уже на лампы.


Если точечных светильников много, их предпочитают подключить к двум клавишам. В этом случае потребуются два трансформатора (блока питания, переходника). Схема выглядит не намного сложнее — есть две ветки. При желании можно найти выключатели и на три клавиши, а можно поставить рядом несколько. Но, если вам надо изменять освещенность в широких пределах, лучше поставить диммер .


Как вы поняли, схемы отличаются только наличием или отсутствием трансформатора. Так что и остальные схемы реализовать будет несложно.

Выбор мощности преобразователя/трансформатора

Чтобы освещение работало нормально, необходимо чтобы мощность драйвера была на 15-20% больше, чем все подключенные к нему потребители. Например, нужно подобрать понижающий трансформатор для подключения 8 точечных светильников, в которые будут установлены лампы накаливания по 40 Вт. Суммарная мощность всех ламп будет 320 Вт. Трансформатор потребуется на на 380-400 Вт.


Понятно, что чем больше источников света будете подключать, тем более мощный преобразователь потребуется. Но с увеличением мощности растет цена и размеры устройства. Кроме того, мощные трансформаторы найти бывает сложно. Е еще: большую и тяжелую коробку спрятать бывает сложно. Потому в таком случае большую группу ламп делят, и к каждой ставят свой преобразователь, но меньшей мощности (как подключить точечные светильники в этом случае, можно увидеть на схеме выше).

Особенности монтажа

Чтобы правильно подключить точечные светильники надо не только грамотно выбрать схему. Надо соблюсти определенную последовательность действий, которая зависит от типа потолка.


Надо всего лишь подключить несколько точечных светильников — и вы имеете красивый интерьер

В натяжные потолки

Точечные светильники обычно устанавливают с подвесными или натяжными потолками. Если потолки натяжные, все провода укладывают заранее. Их крепят к потолку, не подключая к питанию, размещают и закрепляют на подвесах светильники, затем подключают к ним провода и проверяют работу.


Перед монтажом натяжных потолков питание отключают, вынимают лампы и снимают части, которые могут пострадать от температуры. После в материале прорезают отверстия (светильники видны или их можно нащупать), устанавливают уплотнительные кольца, после чего собирают светильники.

В потолки из гипсокартона

Если , можно действовать по той же схеме, но монтировать светильники надо после того, как потолок будет зашпаклеван. То есть, развести проводку, оставить свободно свисающие концы проводки. Чтобы не возникли проблемы с определением мест расположения осветительных приборов, необходимо нарисовать подробный план с указанием точных расстояний от стен и друг от друга. По этому плану делают разметку и дрелью с коронкой соответствующего размера вырезают отверстия. Так как небольшие подвижки — в несколько сантиметров — могут быть, нарезая кабель оставляйте запас в 15-20 см. Этого будет вполне достаточно (но не забудьте, что провода крепятся к основному потолку и они должны на 7-10 см выходить за уровень гипсокартона. Если концы окажутся слишком длинными, их всегда можно укоротить, а вот нарастить — большая проблема.


Есть второй способ подключить точечные светильники на гипсокартонный потолок. Он используется если источников света немного — четыре-шесть штук. Весь монтаж точечных светильников вместе с проводкой делают после того как завершили работу с потолком. До начала монтажа за уровень потолка заводят кабель/кабели от распределительной коробки. После окончания работ по шпаклевке и шлифовке делают разметку, сверлят отверстия. Через них прокидывают кабель, выводя концы наружу. После монтируют сами светильники.

Все несложно, но этот способ нельзя назвать правильным: кабели просто лежат на гипсокартоне, что точно не соответствует противопожарным нормам. На это еще можно закрыть глаза, если перекрытие бетонное, кабель взят негорючий, сечение провода не маленькое, сделано правильно.


Если же перекрытия деревянные, по ПУЭ требуется прокладка в негорючих цельнометаллических лотках (кабель каналах) или металлических трубах. Смонтировать такую проводку можно только до начала работ с потолком. Нарушать правила монтажа очень нежелательно — дерево, электричество, выделение тепла при работе… не самое безопасное сочетание.

Светодиоды (они же led) на протяжении многих лет активно применяются как в производстве телевизоров, так и в качестве основного освещения дома или квартиры, однако вопрос о том, как правильно выполнить подключение светодиодов актуален и по сей день.

ВАЖНО!!! Опытный электрик слил в сеть секрет, как платить за электроэнергию вдвое меньше, легальный способ…

На сегодняшний день их существует огромное количество, различной мощности (сверхяркие ), работающих от постоянного напряжения, которые можно подключать тремя способами:

  1. Параллельно.
  2. Последовательно.
  3. Комбинированно.

Также существуют специально разработанные схемы, позволяющие подключить светодиод к стационарной бытовой сети 220В. Давайте рассмотрим более детально все варианты подключения led, их преимущества и недостатки, а также как это выполнить своими руками.

Основные принципы подключения

Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.

Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть . Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.

Как определить полярность?

Для решения вопроса существует всего 3 способа:

С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью . В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.

Способы подключения

Условно, подключение происходит по 2 способам:

  1. К стационарной сети промышленной частоты (50Гц) напряжением 220В;
  2. К сети с безопасным напряжением величиной 12В.

Если необходимо подключить несколько led к одному источнику питания, тогда нужно выбрать последовательное или параллельное подключение.

Рассмотрим каждый из вышеприведенных примеров по отдельности.

Подключение светодиодов к напряжению 220В

Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:

в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.

Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:

Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.

После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).

Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:

На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.

Сопротивление R1 номиналом 240 кОм, разряжает конденсатор при выключенной сети, а во время работы схемы не играет никакой роли.

Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:


Подключение светодиодов к сети 12В

12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.

Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.

Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:

В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:

  • R = 1,3 кОм;
  • P = 0,125Вт.

Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.


Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:

  • Последовательное.
  • Параллельное.

Последовательное подключение

При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:


В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.

Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).

Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.

После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).

Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.

Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных применяют смешанное подключение. Что за недостаток, разберем ниже.

Недостатки последовательного подключения
  1. При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
  2. Для питания большого количества led нужен источник с высоким напряжением.

Параллельное подключение

В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.


Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002).

Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).

Это глубокое заблуждение!!! Почему? Ответ Вы найдете ниже

Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.

Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.

Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.


Недостатки параллельного подключения:
  1. Большое количество элементов;
  2. При выходе одного диода из строя увеличивается нагрузка на остальные.

Смешанное подключение

Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:


Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.

Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.

Как подключить мощный светодиод?

Для работоспособности мощных светоизлучающих диодов, так же, как и простых нам потребуется источник питания. Однако в отличии от предыдущего варианта, он должен быть на порядок мощней.

Чтобы засветить мощный светодиод номиналом 1W, источник питания должен выдерживать не менее 350 мА нагрузки. Если номинал 5W, то источник питания постоянного тока должен выдержать нагрузку тока не менее 1,4А.

Для корректной работы мощного светодиода обязательно необходимо использовать интегральный стабилизатор напряжения типа LM, который защищает его от скачков напряжения.


Если необходимо подключить не один, а несколько мощных LED, рекомендуем ознакомиться с правилами последовательного и параллельного подключения, которые были описаны выше.

Ошибки при подключении

Видео

Ошибки подключения могут повлечь за собой неприятные последствия, от банальной поломки светодиодов, до нанесения себе повреждений. Поэтому, настоятельно рекомендуем посмотреть видео, где разбирают часто встречающиеся ошибки.

Заключение

Прочитав статью можно сделать вывод, что все светодиоды, вне зависимости от рабочего напряжения, всегда подключаются параллельно или последовательно — школьный курс физики. Еще стоит помнить, что никакой светодиод не подключается напрямую в сеть 220В, всегда нужно использовать защитные элементы в схеме подключения. Тип применяемых защитных элементов зависит от вида подключаемого светоизлучающего диода.

Похожие статьи

Схема подключения параллельно двух ламп. Параллельное включение выходных ламп

Выходную мощность однотактного УНЧ можно повысить параллельным подключением к лампе выходного каскада еще одной или нескольких ламп. Таким образом, при том же питающем и анодном напряжении анодный ток и, соответственно, выходная мощность каскада увеличиваются в два или более раз. Пример параллельного подключения дополнительной лампы в оконечном каскаде однотактного УНЧ приведен на рис. 1.

Рис.1. Принципиальная схема однотактного УНЧ на одном (а) и двух (б) пентодах

В рассматриваемой схеме (рис. 1, а ) используется так называемое ультралинейное включение пентода, характерным признаком которого является соединение катода с защитной сеткой. Экранирующая сетка пентода подключена к выводу 2 выходного трансформатора Tpl, при этом количество витков между выводами 2 и 3 составляет примерно 43% от количества витков между выводами 1 и 3. Трансформатор Tpl рассчитан так, чтобы полное сопротивление первичной обмотки (выводы 1-3) равнялось величине нагрузочного сопротивления, определяемого для каждой лампы по каталоговой спецификации. Так, например, для лампы типа EL34 это сопротивление составляет примерно 3 кОм. Напряжение автоматического смещения формируется на резисторе R3, который шунтирован электролитическим конденсатором C2.

При параллельном подключении к лампе выходного каскада УНЧ дополнительной лампы (или ламп) потребуется откорректировать величины некоторых элементов. Так, например, при подключении одной дополнительной лампы (рис. 1, б ) величина сопротивления резистора R3 в цепи автоматического смещения должна быть уменьшена примерно в два раза по сравнению с ранее рассмотренной схемой (рис. 1, а ), а значение емкости шунтирующего конденсатора С2 — вдвое увеличено. Это объясняется тем, что при параллельном подключении двух ламп катодный ток возрастает в два раза. Следует отметить, что и мощность резистора R3 также должна быть увеличена в два раза, то есть с 5 до 10 Вт. Для достижения двукратного увеличения выходной мощности также в два раза потребуется уменьшить полное сопротивление первичной обмотки трансформатора Tpl.

Теоретически подобным способом параллельно лампе выходного каскада можно подключить и большее количество аналогичных ламп с практически идентичными параметрами. Поэтому в продаже можно встретить уже подобранные пары и даже четверки ламп для использования в параллельном включении выходного каскада УНЧ.

Как и в однотактном ламповом УНЧ, повысить выходную мощность двухтактного усилителя можно параллельным подключением к лампам выходного каскада еще одной или нескольких ламп. При том же питающем и анодном напряжении анодный ток и, соответственно, выходная мощность каскада увеличиваются в два или более раз. Особенности такого подключения мы поясним на примере простого двухтактного усилителя мощности, принципиальная схема которого приведена на рис. 2 .

Рис.2. Принципиальная схема простого двухтактного усилителя мощности

Данный усилитель представляет собой два одинаковых канала, основу каждого из которых составляет однотактный усилитель, рассмотренный ранее. Пример параллельного подключения дополнительных ламп в оконечном каскаде такого двухтактного УНЧ приведен на рис. 3 .

Рис.3. Принципиальная схема простого двухтактного усилителя мощности с параллельным включением ламп

При выборе параметров элементов для двухтактного лампового УНЧ с параллельным подключением ламп справедливы все замечания и рекомендации, упомянутые ранее для однотактной схемы.

В этом случае ток на каждом из них будет одинаковый, что упрощает контроль над ним. Но бывают случаи, что без параллельного соединения не обойтись.

Например, если есть источник питания, и к нему необходимо подключить несколько светодиодных лампочек, суммарное падение напряжений на которых превышает напряжение источника. Иными словами, питания источника не достаточно для последовательно соединенных лампочек, и они не загораются.

Тогда лампочки включают в цепь параллельно и на каждую ветку ставят свой резистор.

По законам параллельного соединения падение напряжений на каждой ветке будет одинаковым и равным напряжению источника, а ток может отличаться. В связи с этим расчеты по определению характеристик резисторов будут проводиться отдельно для каждой ветки.

Почему нельзя подсоединить все светодиодные лампочки к одному резистору? Потому что технология производства не позволяет сделать светодиоды с идеально равными характеристиками. Светодиоды имеют разное внутреннее сопротивление, и порой различия в нем очень сильны даже для одинаковых моделей, взятых из одной партии.

Большой разброс сопротивления приводит к разбросу в значении тока, а это в свою очередь приводит к перегреву и перегоранию. Значит, надо проконтролировать ток на каждом светодиоде или на каждой ветке с последовательным соединением. Ведь при последовательном соединении ток одинаковый. Для этого и применяют отдельные резисторы. С их помощью стабилизируют ток.

Основные характеристики элементов цепи

Слегка подумав, становится понятным, что одна ветка сможет содержать максимальное количество светодиодов такое же, как при последовательном соединении и питании от этого же источника.

Например, у нас есть источник на 12 вольт. К нему можно последовательно подсоединить 5 светодиодов по 2 вольта. (12 вольт:2 вольта:1,15≈5). 1,15- это коэффициент запаса, поскольку необходимо рассчитывать, что в цепь будет включен еще и резистор.

: I=U/R, где I будет допустимым током, взятым из таблицы характеристик прибора. Напряжение U получится, если из максимального напряжения источника питания вычесть падения напряжений на каждом светодиоде, входящем в последовательную цепочку (тоже берется из таблицы характеристик).

Мощность резистора находится из формулы:

При этом все величины записываются в системе Си. Напомним, что 1 A=1000 мA, 1 мA=0,001 A, 1 Ом=0,001 кОм, 1 Вт=1000 мВт.

Сегодня много онлайн калькуляторов, которые предлагают выполнить эту операцию автоматически, просто подставив известные характеристики в пустые ячейки. Но основные понятия знать все-таки полезно.

Преимущество параллельного включения диодов

Параллельное соединение позволяет добавить 2 или 5, или 10 светодиодов, или больше. Ограничением является мощность источника питания и габариты прибора, в котором вы хотите применить такое соединение.

Лампочки для каждой параллельной ветки берут строго одинаковые, чтобы у них были максимально похожие значения допустимого тока, прямого и обратного напряжения.

Преимущество параллельного соединения светодиодов в том, что если один из них перегорит, вся цепь продолжит работать. Лампочки будут светиться и при перегорании их большего количества, главное, чтобы хоть одна ветка оставалась неповрежденной.

Как видно, параллельное соединение – это довольно полезная вещь. Просто надо уметь правильно собрать цепь, не забывая обо всех свойствах светодиодов и о законах физики.

Во многих схемах параллельное соединение комбинируют с последовательным, что позволяет создать функциональные электрические приборы.

Применение параллельного соединения светодиодов

Схема параллельного подключения с двумя выводами позволяет реализовывать двухцветное свечение лампочек, если используются два кристалла разного цвета. Цвет меняется при изменении полюсов источника (изменение направления тока). Широкое применение такая схема находит в двухцветных индикаторах.

Если два кристалла разного цвета соединить параллельно в одном корпусе и подключить к ним импульсный модулятор, то можно менять цвет в широком диапазоне. Особенно много тонов генерируется при сочетании зеленого и красного цвета светодиодов.


Как видно на схеме, к каждому кристаллу подключен свой резистор. Катод в таком соединении общий, а вся система подключена к управляющему устройству – микроконтроллеру.

В современных праздничных гирляндах иногда применяется смешанный тип соединения, в котором несколько последовательных рядов соединяются параллельно. Это позволяет гирлянде светиться, даже если несколько светодиодных источников выйдут из строя.

При создании подсветки в помещении тоже могут применять параллельное соединение. Смешанные схемы используются при конструкции многих индикаторных электроприборов и для подсвечивающих устройств.

Несколько нюансов монтажа

Отдельно можно сказать о том, как соединяются светодиоды между собой. Каждый кристалл заключен в корпус, из которого идут выводы. На выводах зачастую стоят отметки «-» или «+», что означает соответственно подключение к катоду и к аноду прибора.

Опытные радиолюбители даже на глаз могут определить полярность, поскольку катодный вывод чуть длиннее и чуть больше выступает из корпуса. Подключение светодиодов необходимо осуществлять, строго соблюдая полярность.

Если речь идет о , то в процессе монтажа довольно часто применяют пайку. Для этого используют маломощный паяльник, чтобы ни в коем случае не перегреть кристалл. Время пайки не должно превышать 4-5 секунд. Лучше, если это будет 1-2 секунды. Для этого паяльник разогревают заранее. Выводы сильно не сгибают. Схему собирают на площадке из материала, который хорошо отводит тепло.

Проделаем еще один опыт. Возьмем несколько одинаковых ламп и включим их одну вслед за другой (рис. 1.9). Такое соединение называют последовательным. Его следует отличать от ранее рассмотренного параллельного соединения.

Рис. 1.9. Генератор питает две последовательно включенные лампы. На схеме показаны амперметр и три вольтметра: один измеряет общее напряжение, два других измеряют напряжение на каждой из ламп

При последовательном соединении нескольких участков цепи (скажем, нескольких ламп) ток в каждом из них одинаков.

Итак, возьмем две 100-ваттные лампы, такие же, какие были рассмотрены в предыдущем опыте, и включим их последовательно к генератору с напряжением 100 В.

Лампы будут еле светиться, их накал будет неполным. Почему? Потому что напряжение источника (100 В) разделится поровну между обеими последовательно включенными лампами. На каждой из ламп теперь окажется напряжение уже не 100, а только 50 В.

Напряжение на лампах одинаково потому, что мы взяли две одинаковые лампы.

Если бы лампы были неодинаковы, общее напряжение 100 В разделилось бы между ними, но уже не поровну: например, на одной лампе могло бы оказаться 70 В, а на другой 30 В.

Как мы увидим впоследствии, более мощная лампа получает при этом меньшее напряжение. Но ток в двух последовательно включенных даже разных лампах остается одинаковым. Если одна из ламп перегорит (порвется ее волосок), погаснут обе лампы.

На рис. 1.9 показано, как нужно включить вольтметры, чтобы измерить напряжение на каждой из ламп в отдельности.

Опыт показывает, что общее напряжение на последовательных участках цепи всегда равно сумме напряжений на отдельных участках.

Лампы горели нормально, когда ток был равен 1 А, но для этого нужно было приложить к каждой из них напряжение 100 В. Теперь напряжение на каждой из ламп меньше 100 В, и ток будет меньше 1 А. Он будет недостаточным, чтобы раскалить нить лампы.

Будем теперь регулировать работу генератора: будем повышать его напряжение. Что при этом произойдет? Вместе с увеличением напряжения увеличится ток.

Лампы начнут ярче светиться. Когда, наконец, мы поднимем напряжение генератора до 200 В, на каждой из ламп установится напряжение 100 В (половина общего напряжения) и ток ламп увеличится до 1 А. А это и есть условие их нормальной работы. Обе лампы будут гореть с полным накалом и потреблять нормальную для них мощность — 100 Вт. Общая мощность, отдаваемая при этом генератором, будет равна 200 Вт (две лампы по 100 Вт каждая).

Можно было бы включить последовательно не две лампы, а десять или пять. В последнем случае опыт показал бы нам, что лампы будут гореть нормально, когда общее напряжение будет увеличено до 500 В. При этом напряжение на зажимах каждой лампы (все лампы мы предполагаем одинаковыми) будет 100 В. Ток в лампах будет и теперь равен 1 А.

Итак, мы имеем пять ламп, включенных последовательно; все лампы горят нормально, каждая из них при этом потребляет мощность 100 Вт, значит, общая мощность будет равна 500 Вт.

Параллельное подключение источников питания для увеличения мощности без ухудшения рабочих характеристик


Алексей Телегин, ведущий блога по источникам питания Keysight Technologies

Мы продолжаем знакомить читателей с материалами, посвященными базовым понятиям и подходам в использовании источников питания (ИП), современным решениям в данной области и уникальным функциям, помогающим решить самые сложные задачи, возникающие при тестировании. В этом номере ведущий раздела по системам электропитания объединенного блога Keysight Technologies в России Алексей Телегин обсуждает особенности параллельного подключения ИП.

Различные варианты подключения ИП помогают пользователю решать конкретные прикладные задачи. Известны схемы последовательного подключения ИП для получения большего напряжения, а также параллельного подключения — для получения большего тока (следует отметить, что схемы сопровождает список требований и мер предосторожности). Вопрос «Как получить больше мощности от источников питания?» не теряет своей актуальности.

Параллельное подключение нескольких источников питания для увеличения напряжения связано с определенными проблемами, поскольку между источниками всегда будет наблюдаться некоторый дисбаланс напряжений. Поэтому один блок является источником напряжения, а остальные блоки соединены параллельно и работают в режиме стабилизации тока. Для поддержания такого режима предел выходного напряжения всех источников питания, действующих в режиме стабилизации тока (СС), должен быть установлен на большее значение, чем в ведущем источнике питания, находящемся в режиме стабилизации напряжения (CV) (схема на рис. 1).


Рис. 1 Параллельное подключение источников питания для получения большей мощности

При сохранении высокого уровня нагрузки параллельно соединенные блоки работают в соответствующих режимах (в данном случае как минимум 2/3 нагрузки). Но что произойдет, если не удается поддерживать высокий уровень нагрузки? На самом деле при таком подходе можно работать и при меньших нагрузках. В этом случае необходимо установить одинаковый уровень напряжения на всех блоках. Теперь при полной нагрузке блоки будут работать по той же схеме (см. выше), а блок с самым низким значением напряжения — в режиме стабилизации напряжения. Однако при снятии нагрузки более низковольтные блоки перейдут в нестабилизированный режим работы, а блок с наибольшим напряжением будет сохранять общую выходную мощность в режиме стабилизации напряжения. Эта схема показана на рис. 2 для нагрузки в пределах 0–1/3.


Рис. 2. Состояния параллельно подключенных источников питания при малой нагрузке

В результате наблюдается небольшое ухудшение рабочих характеристик. Переход между предельными значениями наименьшего и наибольшего напряжения влияет на регулирование напряжения. Кроме того, поскольку разным блокам питания приходится переключаться между режимами стабилизации напряжения, стабилизации тока и нестабилизированным режимом работы, значительно страдают характеристики напряжения переходных процессов.

Усовершенствованная версия метода параллельного подключения заключается в создании схемы «ведущий-ведомый» с управляющими сигналами для распределения тока между блоками. В источниках питания Keysight серии N5700A и N8700A реализована схема управления, приведенная на рис. 3.


Рис. 3. Параллельное подключение N5700A (используется измерение по 2-проводной схеме)

При такой схеме подключения ведущий блок, работающий в режиме стабилизированного напряжения, выдает аналоговый выходной сигнал программирования по току ведомому блоку, действующему в режиме стабилизации тока. Соответственно, оба блока равномерно распределяют ток нагрузки в широком диапазоне.

Тем не менее схема из нескольких блоков, в которой только один блок работает в режиме стабилизации напряжения, не обеспечивает такой же хорошей динамической характеристики, как один источник напряжения большей мощности. В источниках питания производительной системы питания Keysight Advanced Power System (APS) серии N6900A/N7900A реализован уникальный инновационный подход, обеспечивающий безупречное функционирование параллельно подключенных блоков питания без ухудшения рабочих характеристик. На рис. 4 показана схема параллельного подключения блоков Keysight APS серии N6900A/N7900A.


Рис. 4. Параллельное подключение источников питания APS серии N6900A/N7900A

В схеме параллельного подключения источников питания APS серии N6900A/N7900A также используется аналоговый управляющий сигнал для приведения в действие механизма распределения тока. При этом в данной схеме отсутствуют ведущее и ведомые устройства. Все блоки находятся в режиме стабилизации напряжения при равномерном распределении тока. Это позволяет пользователю легко рассчитать размеры и параметры планируемой системы электропитания без необходимости учитывать возможное ухудшение рабочих характеристик.

Появились вопросы по источникам питания Keysight?

Компания «Диполь» является официальным премиум-партнером Keysight Technologies. Наши сотрудники – высококвалифицированные специалисты, имеющие более чем 25-летний опыт работы в области контрольно-измерительных систем и оборудования. Мы ответим на любые вопросы и подберем необходимые измерительные приборы для решения ваших задач.

Контакты для связи:
Телефон: +7 (812) 702-12-66
E-mail: [email protected]

Параллельное подключение выключателей. Как подключить проходной выключатель

Проходной выключатель — это, строго говоря, не выключатель, а переключатель . Хотя в народе его называют именно выключателем, потому что он служит для выключения света. Я тоже буду в данной статье придерживаться народных традиций.

Использование проходного выключателя очень удобно там, где необходимо включать или выключать освещение из разных мест. Как следует из его названия, такой выключатель можно ставить в проходах. Другие примеры применения — большие помещения, коридоры, лестницы, и т.п.

Для того, чтобы включить или выключить свет, в данном случае надо переключить один из переключателей (их как правило два, но может быть и больше) в противоположное положение.

Схема подключения проходных выключателей

Проходные выключатели всегда используются только в паре, то есть их может в схеме быть только два, но не один или три. Схема подключения в случае использования двух проходных выключателей будет выглядеть так:

Классическая схема включения освещения из двух точек с проходными выключателями

Я обычно на практике использую кабель ВВГ 3х1,5, в котором три провода — белый, синий, желто-зеленый. Смотри пример монтажа ниже. Так вот, чтобы не запутаться, делаю по правилу: вход схемы (контакт 1 SA1) — белый, вторые и третьи контакты соединяю соответственно синим и желтым, выход схемы (контакт 1 SA2) — белый. К лампочке подходит всегда белый (фаза) и синий (ноль) провода.

Как видно из схемы, лампа EL будет гореть только тогда, когда переключатели SA1 и SA2 будут находиться в одном одинаковом положении — либо верхнем, либо нижнем. Когда положения разные, ток в цепи не течёт.

Управление светом из нескольких мест: перекрестный переключатель

Проходных переключателей в схеме может быть только два. Если требуется управлять освещением из трех и более мест, то применяется схема с перекрестным (двойным проходным) переключателем:


Схема с перекрестным переключателем для включения освещения с трёх мест

Перекрестный переключатель можно сделать из двойного проходного. Для этого достаточно скрепить две клавиши вместе и соединить нужные контакты согласно схеме. Если использовать несколько перекрестных переключателей, то можно управлять освещением с нескольких мест.

Я живу на пятом этаже. Бывает, что поднявшись к себе на этаж, замечаю, что темновато, и надо было включить свет на втором этаже. На втором я об этом не думал, так как там горит лампочка, которая включается на первом. А вот схема, приведенная выше — на несколько этажей — полностью устранила бы эту проблему — включай свет в подъезде где хочешь.

На практике перекрестные переключатели используются очень редко.

Если необходимо включить освещение из нескольких мест, то можно (и лучше, и проще) использовать лестничный выключатель как рассказано в статье про на СамЭлектрик.ру.

Из проходного — обычный выключатель

Бывают ситуации, когда нужно установить выключатель, а под рукой есть только проходной переключатель. Возникает вопрос — как переделать проходной выключатель в обычный?

Не беда, можно установить проходной как обычный, никакой разницы.

Проходной переключатель, если используется один (без пары), становится обычным выключателем. В этом случае один контакт у него либо не используется, либо переключатель может переключать на выбор две линии освещения:


Двухклавишный проходной выключатель представляет собой два независимых проходных переключателя. Использовать два двойных проходных переключателя — всё равно что использовать четыре обычных проходных. Только разница в количестве монтажных коробок.

Поэтому, если нужно переделать проходной выключатель в обычный — нужно просто не подключать один из его крайних выводов, в остальном подключать его так же, как и обычный.

Вот, как раз, ответ на подобный вопрос читателя (см. комментарии, от 16 августа 2017) — что делать, если есть проходные выключатели, а нужны обычные?

Вот схема, показанная на фото выключателя:

В данном случае показан сдвоенный проходной выключатель (т.е. два проходных выключателя в одном корпусе). Контакты 2 и 5 — средние, на них постоянно подается фаза. Соответственно, с контактов 3 и 4 фаза снимается после коммутации, и поступает на лампочку. И ноль на лампочку подается постоянно.

Если лампочки включаются клавишами в разные стороны, то нужно просто подключить лампочку к другому выходному контакту переключателя. Для левого — не к 3, а к 6. Для правого — не к 4, а 1.

Важно! Я не вполне уверен, что средний контакт в переключателе — 2 и 5. Схема нарисована как-то неявно…

В заключении отмечу ещё одно отличие проходных выключателей от обычных. Количество проводов к проходному переключателю — не два, а три. А к перекрестному должно подводиться четыре провода. Это необходимо заранее учитывать при прокладке проводки.

Схема подключения проходного выключателя

Для примера подключения используем двухклавишный проходной выключатель Gunsan Visage, фото которого приведено ниже:

Надоело? Может, это будет интересно:

Продолжение статьи:


Двухклавишный проходной выключатель Gunsan Visage. Внешний вид в сборе спереди.

Кстати, подсветки в таких переключателях не бывает. Я по крайней мере не встречал.

Снимаем клавиши и декоративную панель:



Вид спереди. Сквозь прозрачный пластик хорошо видно контакты переключателя — сразу понятно, что куда подключать.


Вид сзади. Клеммы проходного выключателя

При монтаже к проходному переключателю должно подходить 3 провода, в нашем случае к двухклавишному — 6.


Подключение проходного выключателя

Не надо бояться обилия проводов, подключение одноклавишного от двухклавишного проходного выключателя отличается только тем, что двухклавишный — это фактически два одноклавишных в одном корпусе.

Цвета проводов надо четко запомнить, а лучше зарисовать на схеме, чтобы не ошибиться при монтаже. Выше в цитате приведено мнемоническое правило, которым лучше пользоваться при установке и подключении.

Одеваем крышку, ставим клавиши — и подключение проходного выключателя завершено!

Обновление статьи.

А это — скорее юмор…

Вариант установки «проходного» выключателя

Вариант установки «проходного» выключателя из разных комнат

Проходной — это же ведь с возможностью выключения из разных мест, не так ли?

Цены на жилищно-коммунальные услуги повышаются ежегодно, что заставляет задумываться об экономии, в том числе и электроэнергии. Причем, это касается тех мест, о которых раньше человек даже не задумывался. Например, освещение лестниц и лестничных площадок в многоэтажных домах. В недалеком прошлом, когда цены на электроэнергию были мизерными, лестницы освещались 24 часа в сутки. Эта проблема актуальна и в частных домах, имеющих не один этаж, соединенный между собой лестницей. Чтобы сэкономить средства, свет приходится выключать, но для этого нужно или опять спуститься по лестнице или подняться по ней. Это крайне неудобно, поэтому иногда его попросту не выключают и, он горит до утра, когда не станет светло.

Для удобства освещения на подобных участках были разработаны, так называемые «проходные» выключатели. Их еще называют «дублирующими» или «перекидными». Их можно отличить от классических выключателей наличием большего количества контактов. Поэтому, чтобы их подключить, необходимо знать схему, а тем более, уметь разобраться в принципе их действия. Естественно, что это не совсем просто, но абсолютно реально.

На клавише проходного выключателя расположены две стрелочки (не большие), направленные вверх и вниз.

Такой вид имеет проходной одноклавишный выключатель. На клавише могут находиться двойные стрелочки.

Схема подключения ненамного сложнее схемы подключения классического выключателя. Разница лишь в большем количестве контактов: обычный выключатель имеет два контакта, а проходной – три контакта. Два из трех контактов считаются общими. В схеме включения освещения, задействуются два и более, подобных выключателей.

Отличия – в количестве контактов

Работает выключатель следующим образом: при переключении клавишей вход подключается к одному из выходов. Другими словами, проходной выключатель рассчитан на два рабочих состояния:

  • Вход подключен к выходу 1;
  • Вход подключен к выходу 2.

Промежуточных положений у него нет, поэтому, схема работает так, как необходимо. Поскольку происходит простое подключение контактов, то по мнению многих специалистов их нужно было назвать «переключателями». Поэтому, переходной переключатель можно смело отнести к таким устройствам.

Чтобы не ошибиться, что за выключатель, следует ознакомиться со схемой включения, которая присутствует на корпусе выключателя. В основном, схема имеется на фирменных изделиях, а вот на не дорогих, примитивных моделях ее не увидишь. Как правило, схему можно обнаружить на выключателях фирмы «Lezard», «Legrand», «Viko» и т.д. Что касается дешевых китайских выключателей, то в основном, подобной схемы нет, поэтому приходится концы вызванивать прибором.

Как уже было сказано выше, при отсутствии схемы контакты лучше вызвонить при разных положениях клавиши. Это еще необходимо и для того, чтобы не перепутать концы, так как безответственные производители часто путают клеммы в процессе производства, а это означает, что он правильно работать не будет.

Чтобы прозвонить контакты, необходимо иметь или цифровой, или стрелочный прибор. Цифровой прибор следует перевести переключателем в режим прозвонки. В таком режиме определяются короткозамкнутые участки электропроводки или других радиодеталей. При замыкании концов щупов, прибор издает звуковой сигнал, что весьма удобно, так как нет необходимости смотреть на дисплей прибора. Если имеется стрелочный прибор, то при замыкании концов щупов у него отклоняется стрелка вправо до упора.

В данном случае важно найти общий провод. Для тех, у кого имеются навыки работы с прибором, особых проблем не будет, а вот для тех, кто взял в руки прибор первый раз, задача может оказаться не разрешимой, несмотря на то, что нужно разобраться всего лишь в трех контактах. В таком случае, лучше сначала посмотреть видео, где доходчиво рассказывается, а главное показывается, как это сделать.

Схема подключения двух проходных выключателей

Подобная схема может оказать существенную помощь в организации освещения на лестнице (в двухэтажном доме), в длинном коридоре или в проходной комнате. Достаточно удобной может оказаться организация освещения в спальне, когда один выключатель устанавливается на входе в спальню, а другой – рядом с кроватью. В таком случае не придется постоянно вставать с кровати, чтобы выключить основной свет.

Электрическая схема подключения двух проходных выключателей

Схема подключения очень простая и понятная: на вход одного из переключателей подается фаза, вход другого переключателя подсоединяется к одному из проводов люстры (светильника). Второй конец светильника соединяется напрямую с нулевым проводом. Выходы N1 обоих выключателей соединяются вместе, как и выходы N2.

Схема функционирует довольно просто. Если посмотреть на схему, то в таком положении источник света включен. При последующем переключении любого из выключателей, в произвольном порядке, светильник будет то выключаться, то включаться.

Для того, чтобы было более понятно, следует внимательно посмотреть на рисунок.

Разводка проводов между двумя проходными выключателями.

В случае установки подобных выключателей в помещении, разводку проводов следует выполнить так, как это видно на рисунке ниже. Современные требования допускают разводку проводов на удалении 15 см от потолка. Как правило, провода укладываются в специальные лотки или короба, а концы проводов сосредотачивают в монтажных (распределительных) коробках. Такой подход имеет неоспоримые плюсы. Главное, что поврежденный провод можно всегда заменить. Соединение проводов в монтажных коробках осуществляется с помощью специальных зажимов (контактных колодок). При этом, допускаются и скрутки, которые затем обязательно пропаиваются и надежно изолируются.

Выход второго выключателя подсоединен к одному из проводников идущего к лампе освещения. Белые проводники – это провода, подключающие выходы обоих выключателей.

Разводка проводов по жилому помещению

Каким способом соединяются концы проводов в распределительной коробке, можно узнать, посмотрев соответствующее видео.

Вариант управления освещения с трех точек

Если имеется необходимость в дальнем управлении светильником из трех мест, то придется приобрести еще и перекрестный выключатель. Он переключает одновременно не по одному, а по два контакта, поэтому он имеет по два входа и два выхода.

Как все три выключателя соединить видно на рисунке. Это несколько сложнее предыдущего случая, но понять принцип работы можно.

Схема электрическая включения лампы из трех мест.

Чтобы подключить источник электрического света, согласно данной схемы, необходимо проделать следующие операции:

  1. Нулевой провод подключается к одному из проводов лампы.
  2. Фазный провод подключается к входному контакту одного из проходных выключателей.
  3. Свободный провод лампы подключается к входному контакту второго выключателя (проходного).
  4. Два выходных контакта проходного выключателя подключается к двум входным контактам перекрестного выключателя.
  5. Два выходных контакта второго проходного переключателя подсоединяют к двум выходным контактам перекрестного переключателя.

Схема та же, но показано более доходчиво, куда именно подключать провода.

К каким клеммам подключаются провода.

Примерно так следует развести провода по помещению.


На основе схемы на три точки управления, можно собрать схемы на 4 или на 5 точек. В таких случаях необходимо увеличивать количество перекрестных выключателей. Их следует всегда устанавливать в промежутке между двумя проходными переключателями.

Схема организации вкл/выкл лампы на 5 точек.

Если из этой схемы убрать один из перекрестных переключателей, то получится вариант на 4 точки, а если к ней добавить один перекрестный переключатель, то уже выйдет вариант на 6 точек.

Двухклавишный проходной выключатель: схема подключения

Для того, чтобы из нескольких точек можно было управлять работой двух ламп существуют двухклавишные проходные выключатели. Они располагают шестью контактами. Главное – это определить общие контакты. Они определяются по такому же принципу, как и при поиске общего контакта в одноклавишных проходных выключателях.

В схеме, где используется два двухклавишных проходных выключателя, применяется значительно больше проводов.

Фазный провод подается на входы обоих выключателей, а другие входы выключателей подключаются к одному из концов одной и другой лампы. Свободные концы лампы подключаются к нулевому проводнику. Два выхода одного выключателя соединяются с двумя выходами второго выключателя, а два других выхода этого выключателя подсоединяются к двум другим выходам первого выключателя.

Вариант разводки проводов для подключения двухклавишных проходных выключателей.

Если есть желание управлять работой двух ламп из трех или четырех точек, то придется приобрести по два перекрестных переключателя. Каждая пара выходов двухклавишного выключателя подсоединяется к одной паре одного перекрестного переключателя. И так дальше, пара за парой выходы устройств соединяются между собой.

Управление работой двух ламп освещения из четырех точек.

Если разобраться, то сложного ничего нет, особенно при применении одноклавишных проходных выключателей. Что касается двухклавишных проходных выключателей, то здесь все намного серьезнее и затратнее, как по проводам, так и по выключателям. А если быть более точным, то эта схема менее практичная, но более дорогостоящая.

В современном мире мы все чаще стремимся всеми доступными и не очень способами облегчить свою рутинную жизнь. В этом может помочь даже такая незначительная процедура, как подключение проходного выключателя в доме. На самом деле она далеко не так сложна, как это могло бы показаться на первый взгляд и не требует специальных усилий. Прежде всего, стоит сказать, что же такое проходной выключатель , и зачем, собственно, его устанавливать.

Наиболее актуальны такие простые в своем использовании экземпляры в частных домах или на дачах, так как позволяют подсоединить один источник света сразу к двум выключателям. То есть появляется возможность включать и выключать светильник (или даже несколько сразу) из двух точек. Также можно встретить такие названия, как дублирующий и перекидной, которые применяют к этому же типу переключателя.

Схема подключения проходного выключателя

Откровенно говоря, схема подключения проходного выключателя доступна для понимания практически каждому. Она предполагает использование двух проходных выключателей исключительно одинарного типа. Каждый из этих ординарных выключателей имеет сразу три контакта, среди которых 2 выхода и 1 вход. Нулевой провод от основного источника питания проходит на светильник прямиком через распределительную коробку . Уже в нее проходит фазный провод, далее он уходит на контакт выключателя под номером 1. Через распределительную коробку двойка выходных контактов первого выключателя постепенно соединяется с двумя входными выключателя 2. Дальше с общего контакта отдельного второго проходного выключателя контакт уходит через ту же распределительную коробку прямиком на светильник.

Схема подключения двухклавишного проходного выключателя:

Не более сложным является подключение двухклавишного проходного выключателя. Он дает возможность управлять разными группами отдельных лампочек или светильников. Главное отличие схемы состоит прежде всего в том, что для осуществления задуманного требуется два двойных выключателя, а не одинарных, как это показано в предыдущей схеме. Также они называются двухклавишными. Они имеют уже 6 контактов, среди которых 4 выхода и 2 входа. Подключение двойного проходного выключателя происходит по аналогичному принципу.

Схема подключения трех проходных выключателей:

Схема подключения трех проходных выключателей предназначается для непосредственного управления одним источником освещения из трех отдельных мест сразу. В эту схему включается выключатель спаренного двойного типа. Он в действительности отличен как от двойных, так и от одинарных. Прежде всего, тем, что имеет четыре контакта, по два входа и выхода соответственно. Нажатие на этот двойной выключатель дает возможность переключить сразу два независимых контакта.

Для более детального понимания процесса подключения, конечно же, необходим наглядный пример. Поэтому вы можете посмотреть особенности подключения проходных выключателей на видео и фото непосредственно в нашей статье. Это, однозначно облегчит поставленную задачу.

Но стоит также помнить, что подключение проходного выключателя legrand не ограничено тремя или двумя местами управлениями. Их количество порою возрастает до шести. В таком случае абсолютно все действия проводятся в том же порядке, по схеме, предоставленной в статье.

Видео подключения

Управление светом с 2-х и более мест.

Если использовать проходные выключатели, возможно управление одним источником света из двух, трех и более мест. Рассмотрим, какие бывают варианты подключения проходных включателей.

Этот способ необходим в том случае, если есть длинный коридор. Входя в него, Вы зажигаете свет, дойдя до конца, свет нужно выключить. Именно здесь и используется схема подключения двух проходных выключателей.

Необходимо переключение перекидного вида, т.е. с одной стороны коридора контакты замыкаются, с другой – размыкаются. Для этого устанавливаем разветвительную коробку, из которой выходят два кабеля – нулевой и питания, соответственно, нулевой отходит на первый выключатель, питания – на второй. Провод фазы в этом случае соединяется через коробку с двумя контактами выключателя в конце коридора, и эта фаза перекидывается на лампу.


Бывают также и двойные проходные сенсорные выключатели. Нет ничего сложного в том, как подключить модель с диммером. Данные устройства управляются с 30 метрового расстояния. Провода сенсора подключаются к разрыву в цепи управления лампы. В свою очередь сам монтаж коробки сенсорного выключателя практически не отличается от обычного. Один провод уходит в минус, другой – к фазе. Перед тем, как установить дистанционные проходные переключатели, нужно определить, какие контакты уходят к светильнику, а какие к командному блоку или разветвительной коробке, объединить их в определенные группы.

Тройные включатели

Принципиальных отличий, как подсоединить проходные выключатели Легранд для трехместного управления от методики, изложенной выше, нет. Нужно использовать спаренный вид выключателя и четырехжильные провода. При помощи спаренного выключателя с одного прибора контакты перекидываются на остальные два.


Одинарные тройные переключатели имеют по три контакта – это два входа и один выход. Нулевой провод от кабеля питания уходит на источник света. Выходные контакты соединены со вторым проходным выключателем, а третий контакт уходит на сеть питания.

Кроме того, к любой из таких схем можно подключить специальный пульт дистанционного управления, который работает без проводов. Можно использовать абсолютно любое устройство для включения техники на расстоянии мощностью до 1,5 кВт с целью выключения освещения на определенной дистанции. Для этого к пульту подключаем реле, направляем в сторону лампы и нажимаем на определенную кнопку, которая после будет использоваться нами как командная. После этого, операция зафиксирована в энергозависимой памяти и теперь при нажатии именно этой кнопки будет включаться или выключаться свет, независимо, подключен пульт к реле или нет. Места управления освещением в таком случае не ограничены.

Двухклавишные выключатели

Эти устройства имеют возможность управлять шестью источниками света одновременно. Конструктивное решение выполнено таким образом, что в одном корпусе расположено 2 отдельных выключателя. Они могут подсоединяться следующими образами:

  • 3 контакта или одинарный метод;
  • спаренный или перекрестный способ (для подключения 4 и более светильников).


Покупаем проходные перекрестные выключатели

Перед тем, как подключить проходные выключатели света, нужно подобрать приборы под свои потребности. Сенсорные выключатели имеют от одной до четырех контактных зон, благодаря чему одним прибором можно контролировать до четырех источников света. Такими моделями являются устройства фирм lezard, viko и makel.

Если используются обычные накладные переключатели электричества, рекомендуются приборы двухжильные от фирм Шнайдер Электроникс и abb. Несмотря на то, что цена этих приборов немного ниже. Чем вышеперечисленных фирм, они не отличаются по качеству исполнения.

Что нужно знать, перед тем, купить проходные выключатели:

  • количество источников света;
  • расположение светильников: параллельное или последовательное;
  • сила напряжения сети питания квартиры.

Количество установочных мест, из которых можно управлять светом, неограниченно, любой электрик это подтвердит. Монтаж переключателей производится по всем правилам: герметизация контактов, установка заземления, подключение к УЗО.

Просматривая статистику своего сайта заметил, что многие посетители ищут в интернете схему подключения выключателей без распределительной коробки. Почему они отказываются от нее? Думаю что просто хотят исключить соединения (скрутки) проводов, которые являются слабым звеном во всей схеме. Нет дополнительного соединения проводов — нет плохого контакта, нет окисления проводов, нет неисправностей, связанных с плохим качеством ее расключения. Подключить люстру с выключателем света без распредкоробки вполне возможно. Ниже вы найдете схемы подключения одноклавишного и двухклавишного выключателей без распределительной коробки, а также узнаете плюсы и минусы такого монтажа.

Схема подключения одноклавишного выключателя без распределительной коробки

Такая схема подразумевает собой отсутствие дополнительных скруток проводов между распределительным щитом, выключателем и светильником.

От щитка питания идет двухжильный провод если нет заземления и трехжильный если оно есть. Нам нужно фазный проводник довести целым до выключателя, а нулевой проводник до светильника. Для этого доводим целый провод до светильника. Затем разделываем его до места разделения жил. Обычно это прямо над выключателем. Это нужно для того, чтобы нулевой проводник остался у светильника (его уже можно сразу подключить), а фазный проводник спустился к выключателю. В этом случае получается, что разделывать кабель приходится на несколько метров, в зависимости от расстояния до светильника от выключателя.

Теперь необходимо фазу от клавиши выключателя довести до контакта «L» светильника. Для этого можно использовать одножильный проводник такого же сечения как и двухжильный. Трасса прохождения его будет примерно такая: от выключателя вверх по стене, затем по потолку до светильника.

Вот схема подключения одноклавишного выключателя без распределительной коробки.

Схема подключения двухклавишного выключателя без распределительной коробки

Как быть, если у вас люстра многорожковая и вы хотите ее подключить к двухклавишному выключателю без распределительной коробки?

Тут тоже сложного ничего нет. Провод, идущий от щитка прокладываем и разделываем также, как описано выше для одноклавишного выключателя. На схеме ниже он обозначен «Провод 1».

Теперь нужно от выключателя к люстре вести уже две жилы с разных клавиш. Для этого можно уже использовать полноценный двухжильный кабель. На схеме ниже он обозначен «Провод 2». Разделываем его на 5-10 см. В выключателе подключаем жилы на отходящие контакты. Эти провода будут фазными проводниками, когда клавиши выключателя будут переведены во включенное положение. Затем провод ведем вверх от выключателя и потом по потолку к люстре. Тут опять разделываем на 5-10 см и подключаем в люстре к фазным контактам L1 и L2.

Вот схема подключения двухклавишного выключателя без распределительной коробки.


Плюсами такого монтажа являются:

  • отсутствие дополнительных соединений проводов, в которых часто возникают проблемы;
  • простота подключения, так как нет пучка проводов в распредкоробке, которые необходимо соединять между собой. Новичку тут бывает сложно разобраться, так как приходится скручивать между собой жилы разных цветов;
  • минимум неисправностей.

Минусами такого монтажа являются:

  • отсутствие наружной (двойной) изоляции на жилах кабеля, которые разделываются на несколько метров.

Хотя этот минус можно исключить путем использования одножильных проводов с хорошей изоляцией. Делаем так:

  • один самостоятельный провод от щитка с «шины N» пускаем сразу на светильник на контакт «N»;
  • фазу от щитка с автоматического выключателя также самостоятельным проводом пускаем на выключатель;
  • от выключателя пускаем одножильный или двухжильный провод (в зависимости от количества клавиш) к светильнику.

Как то так!

Улыбнемся:

Из записной книжки электрика:

Очень трудно найти в комнате выключатель, особенно, если он в коридоре.

Последовательное и параллельное подключение

Одним из китов, на котором держатся многие понятия в электронике, является понятие последовательного и параллельного подключения проводников. Знать основные отличия указанных типов подключения просто необходимо. Без этого нельзя понять и прочитать ни одной схемы.

Основные принципы

Электрический ток движется по проводнику от источника к потребителю (нагрузке). Чаще всего в качестве проводника выбирается медный кабель. Связано это с требованием, которое предъявляется к проводнику: он должен легко высвобождать электроны.

Независимо от способа подключения, электрический ток двигается от плюса к минусу. Именно в этом направлении убывает потенциал. При этом стоит помнить, что провод, по котору идет ток, также обладает сопротивлением. Но его значение очень мало. Именно поэтому им пренебрегают. Сопротивление проводника принимают равным нулю. В том случае, если проводник обладает сопротивлением, его принято называть резистором.

Параллельное подключение

В данном случае элементы, входящие в цепь, объединены между собой двумя узлами. С другими узлами у них связей нет. Участки цепи с таким подключением принято называть ветвями. Схема параллельного подключения представлена на рисунке ниже.

Если говорить более понятным языком, то в данном случае все проводники одним концом соединены в одном узле, а вторым – во втором. Это приводит к тому, что электрический ток разделяется на все элементы. Благодаря этому увеличивается проводимость всей цепи.

При подключении проводников в цепь данным способом напряжение каждого из них будет одинаково. А вот сила тока всей цепи будет определяться как сумма токов, протекающих по всем элементам. С учетом закона Ома путем нехитрых математических расчетов получается интересная закономерность: величина, обратная общему сопротивлению всей цепи, определяется как сумма величин, обратных сопротивлениям каждого отдельного элемента. При этом учитываются только элементы, подключенные параллельно.

Последовательное подключение

В данном случае все элементы цепи соединены таким образом, что они не образуют ни одного узла. При данном способе подключения имеется один существенный недостаток. Он заключается в том, что при выходе из строя одного из проводников все последующие элементы работать не смогут. Ярким примером такой ситуации является обычная гирлянда. Если в ней перегорает одна из лампочек, то вся гирлянда перестает работать.

Последовательное подключение элементов отличается тем, что сила тока во всех проводниках равна. Что касается напряжения цепи, то оно равно сумме напряжения отдельных элементов.

В данной схеме проводники включаются в цепь поочередно. А это значит, что сопротивление всей цепи будет складываться из отдельных сопротивлений, характерных для каждого элемента. То есть общее сопротивление цепи равно сумме сопротивлений всех проводников. Эту же зависимость можно вывести и математическим способом, используя закон Ома.

Смешанные схемы

Бывают ситуации, когда на одной схеме можно увидеть одновременно последовательное и параллельное подключение элементов. В таком случае говорят о смешанном соединении. Расчет подобных схем проводится отдельно для каждой из группы проводников.

Так, чтобы определить общее сопротивление, необходимо сложить сопротивление элементов, подключенных параллельно, и сопротивление элементов с последовательным подключением. При этом последовательное подключение является доминантным. То есть его рассчитывают в первую очередь. И только после этого определяют сопротивление элементов с параллельным подключением.

Подключение светодиодов

Зная основы двух типов подключения элементов в цепи, можно понять принцип создания схем различных электроприборов. Рассмотрим пример. Схема подключения светодиодов во многом зависит от напряжения источника тока.

При небольшом напряжении сети (до 5 В) светодиоды подключают последовательно. Снизить уровень электромагнитных помех в данном случае поможет конденсатор проходного типа и линейные резисторы. Проводимость светодиодов увеличивают за счет использования системных модуляторов.

При напряжении сети 12 В может использоваться и последовательное, и параллельное подключение сети. В случае последовательного подключения используют импульсные блоки питания. Если собирается цепь из трех светодиодов, то можно обойтись без усилителя. Но если цепь будет включать большее количество элементов, то усилитель необходим.

Во втором случае, то есть при параллельном подключении, необходимо использование двух открытых резисторов и усилителя (с пропускной способностью выше 3 А). Причем первый резистор устанавливается перед усилителем, а второй – после.

При высоком напряжении сети (220 В) прибегают к последовательному подключению. При этом дополнительно используют операционные усилители и понижающие блоки питания.

Параллельное подключение нагрузки. Мощность при параллельном и последовательном соединении резисторов

Параллельное соединение электрических элементов (проводников, сопротивлений, емкостей, индуктивностей) — это такое соединение, при котором подключенные элементы цепи имеют два общих узла подключения.

Другое определение: сопротивления подключены параллельно, если они подключены одно и той же паре узлов.

Графическое обозначение схемы параллельного соеднинения

На приведенном рисунке показана схема параллельное подключения сопротивлений R1, R2, R3, R4. Из схемы видно, что все эти четыре сопротивления имеют две общие точки (узла подключения).

В электротехнике принято, но не строго требуется, рисовать провода горизонтально и вертикально. Поэтому эту же схему можно изобразить, как на рисунке ниже. Это тоже параллельное соединение тех же самых сопротивлений.

Формула для расчета параллельного соединения сопротивлений

При параллельном соединении обратная величина от эквивалентного сопротивления равна сумме обратных величин всех параллельно подключенных сопротивлений. Эквивалентная проводимость равна сумме всех параллельно подключенных проводимостей электрической схемы.

Для приведенной выше схемы эквивалентное сопротивление можно рассчитать по формуле:

В частном случае при подключении параллельно двух сопротивлений:

Эквивалентное сопротивление цепи определяется по формуле:

В случае подключения «n» одинаковых сопротивлений, эквивалентное сопротивление можно рассчитать по частной формуле:

Формулы для частного рассчета вытекают из основной формулы.

Формула для расчета параллельного соединения емкостей (конденсаторов)

При параллельном подключении емкостей (конденсаторов) эквивалентная емкость равна сумме параллельно подключенных емкостей:

Формула для расчета параллельного соединения индуктивностей

При параллельном подключении индуктивностей, эквивалентная индуктивность рассчитывается так же, как и эквивалентное сопротивление при параллельном соединении:

Необходимо обратить внимание, что в формуле не учтены взаимные индуктивности.

Пример свертывания параллельного сопротивления

Для участка электрической цепи необходимо найти параллельное соединение сопротивлений выполнить их преобразование до одного.

Из схемы видно, что параллельно подключены только R2 и R4. R3 не параллельно, т.к. одним концом оно подключено к E1. R1 — одним концом подключено к R5, а не к узлу. R5 — одним концом подключено к R1, а не к узлу. Можно так же говорить, что последовательное соединение сопротивлений R1 и R5 подключено параллельно с R2 и R4.

Ток при параллельном соединении

При параллельном соединении сопротивлений ток через каждое сопротивление в общем случае разный. Величина тока обратно пропорциональна величине сопротивления.

Напряжение при параллельном соединении

При параллельном соединении разность потенциалов между узлами, объединяющими элементы цепи, одинакова для всех элементов.

Применение параллельного соединения

1. В промышленности изготавливаются сопротивления определенных величин. Иногда необходимо получить значение сопротивления вне данных рядов. Для этого можно подключить несколько сопротивлений параллельно. Эквивалентное сопротивление всегда будет меньше самого большого номинала сопротивления.

2. Делитель токов.

Подробности Категория: Статьи Создано: 06.09.2017 19:48

Как подключить в кукольном домике несколько светильников

Когда вы задумываетесь о том как сделать освещение в кукольном домике или румбоксе, где не один, а несколько светильников, то встает вопрос о том, как их подключить, объединить в сеть. Существует два типа подключения: последовательное и параллельное, о которых мы слышали со школьной скамьи. Их и рассмотрим в этой статье.

Я постараюсь описать всё простым доступным языком, чтобы всё было понятно даже самым-самым гуманитариям, не знакомым с электрическими премудростями.

Примечание : в этой статье рассмотрим только цепь с лампочками накаливания. Освещение диодами более сложное и будет рассмотрено в другой статье.

Для понимания каждая схема будет сопровождена рисунком и рядом с чертежом электрической монтажной схемой.
Сначала рассмотрим условные обозначения на электрических схемах.

Название элемента Символ на схеме Изображение
батарейка/ элемент питания
выключатель
провод
пересечение проводов (без соединения)
соединение проводов (пайкой, скруткой)
лампа накаливания
неисправная лампа
неработающая лампа
горящая лампа

Как уже было сказано, существуют два основных типа подключения: последовательное и параллельное. Есть ещё третье, смешанное: последовательно-параллельное, объединяющее то и другое. Начнем с последовательного, как более простого.

Последовательное подключение

Выглядит оно вот так.

Лампочки располагаются одна за другой, как в хороводе держась за руки. По этому принципу были сделаны старые советские гирлянды.

Достоинства — простота соединения.
Недостатки — если перегорела хоть одна лампочка, то не будет работать вся цепь.

Надо будет перебирать, проверять каждую лампочку, чтобы найти неисправную. Это может быть утомительным при большом количестве лампочек. Так же лампочки должны быть одного типа: напряжение, мощность.

При этом типе подключения напряжения лампочек складываются. Напряжение обозначается буквой U , измеряется в вольтах V . Напряжение источника питания должно быть равно сумме напряжений всех лампочек в цепи.

Пример №1 : вы хотите подключить в последовательную цепь 3 лампочки напряжением 1,5V. Напряжение источника питания, необходимое для работы такой цепи 1,5+1,5+1,5=4,5V.

У обычных пальчиковых батареек напряжение 1,5V. Чтобы из них получить напряжение 4,5V их тоже нужно соединить в последовательную цепь, их напряжения сложатся.
Подробнее о том, как выбрать источник питания написано в этой статье

Пример №2: вы хотите подключить к источнику питания 12V лампочки по 6V. 6+6=12v. Можно подключить 2 таких лампочки.

Пример №3: вы хотите соединить в цепь 2 лампочки по 3V. 3+3=6V. Необходим источник питания на 6 V.

Подведем итог: последовательное подключение просто в изготовлении, нужны лампочки одного типа. Недостатки: при выходе из строя одной лампочки не горят все. Включить и выключить цепь можно только целиком.

Исходя из этого, для освещения кукольного домика целесообразно соединять последовательно не более 2-3 лампочек. Например, в бра. Чтобы соединить большее количество лампочек, необходимо использовать другой тип подключения — параллельное.

Читайте так же статьи по теме:

  • Обзор миниатюрных ламп накаливания
  • Диоды или лампы накаливания

Параллельное подключение лампочек

Вот так выглядит параллельное подключение лампочек.

В этом типе подключения у всех лампочек и источника питания одинаковые напряжения. То есть при источнике питания 12v каждая из лампочек должна иметь тоже напряжение 12V. А количество лампочек может быть различным. А если у вас, допустим, есть лампочки 6V, то и источник питания нужно брать 6V.

При выходе из строя одной лампочки другие продолжают гореть.

Лампочки можно включать независимо друг от друга. Для этого к каждой нужно поставить свой выключатель.

По этому принципу подключены электроприборы в наших городских квартирах. У всех приборов одно напряжение 220V, включать и выключать их можно независимо друг от друга, мощность электроприборов может быть разной.

Вывод : при множестве светильников в кукольном домике оптимально параллельное подключение, хотя оно чуть сложнее, чем последовательное.

Рассмотрим ещё один вид подключения, соединяющий в себе последовательное и параллельное.

Комбинированное подключение

Пример комбинированного подключения.

Три последовательные цепи, соединенные параллельно

А вот другой вариант:

Три параллельные цепи, соединенные последовательно.

Участки такой цепи, соединенные последовательно, ведут себя как последовательное соединение. А параллельные участки — как параллельное соединение.

Пример

При такой схеме перегорание одной лампочки выведет из строя весь участок, соединенный последовательно, а две другие последовательные цеписохранят работоспособность.

Соответственно, и включать-выключать участки можно независимо друг от друга. Для этого каждой последовательной цепи нужно поставить свой выключатель.

Но нельзя включить одну-единственную лампочку.

При параллельно-последовательном подключении при выходе из строя одной лампочки цепь будет вести себя так:

А при нарушении на последовательном участке вот так:

Пример:

Есть 6 лампочек по 3V, соединенные в 3 последовательные цепи по 2 лампочки. Цепи в свою очередь соединены параллельно. Разбиваем на 3 последовательных участка и просчитываем этот участок.

На последовательном участке напряжения лампочек складываются, 3v+3V=6V. У каждой последовательной цепи напряжение 6V. Поскольку цепи соединены параллельно, то их напряжение не складывается, а значит нам нужен источник питания на 6V.

Пример

У нас 6 лампочек по 6V. Лампочки соединены по 3 штуки в параллельную цепь, а цепи в свою очередь — последовательно. Разбиваем систему на три параллельных цепи.

В одной параллельной цепи напряжение у каждой лампочки 6V, поскольку напряжение не складывается, то и у всей цепи напряжение 6V. А сами цепи соединены уже последовательно и их напряжения уже складываются. Получается 6V+6V=12V. Значит, нужен источник питания 12V.

Пример

Для кукольных домиков можно использовать такое смешанное подключение.

Допустим, в каждой комнате по одному светильнику, все светильники подключены параллельно. Но в самих светильниках разное количество лампочек: в двух — по одной лампочке, есть двухрожковое бра из двух лампочек и трехрожковая люстра. В люстре и бра лампочки соединены последовательно.

У каждого светильника свой выключатель. Источник питания 12V напряжения. Одиночные лампочки, соединенные параллельно, должны иметь напряжение 12V. А у тех, что соединены последовательно напряжение складывается на участке цепи
. Соответственно, для участка бра из двух лампочек 12V (общее напряжение)делим на 2 (количество лампочек), получим 6V (напряжение одной лампочки).
Для участка люстры 12V:3=4V (напряжение одной лампочки люстры).
Больше трех лампочек в одном светильнике соединять последовательно не стоит.

Теперь вы изучили все хитрости подключения лампочек накаливания разными способами. И, думаю, что не составит труда сделать освещение в кукольном домике со многими лампочками, любой сложности. Если же что-то для вас ещё представляет сложности, прочитайте статью о простейшем способе сделать свет в кукольном домике, самые базовые принципы. Удачи!

Практически каждому, кто занимался электрикой, приходилось решать вопрос параллельного и последовательного соединения элементов схемы. Некоторые решают проблемы параллельного и последовательного соединения проводников методом «тыка», для многих «несгораемая» гирлянда является необъяснимой, но привычной аксиомой. Тем не менее, все эти и многие другие подобные вопросы легко решаются методом, предложенным еще в самом начале XIX века немецким физиком Георгом Омом. Законы, открытые им, действуют и поныне, а понять их сможет практически каждый.

Основные электрические величины цепи

Для того чтобы выяснить, как то или иное соединение проводников повлияет на характеристики схемы, необходимо определиться с величинами, которые характеризуют любую электрическую цепь. Вот основные из них:

Взаимная зависимость электрических величин

Теперь необходимо определиться , как все вышеперечисленные величины зависят одна от другой. Правила зависимости несложны и сводятся к двум основным формулам:


Здесь I – ток в цепи в амперах, U – напряжение, подводимое к цепи в вольтах, R – сопротивление цепи в омах, P – электрическая мощность цепи в ваттах.

Предположим, перед нами простейшая электрическая цепь, состоящая из источника питания с напряжением U и проводника с сопротивлением R (нагрузки).

Поскольку цепь замкнута, через нее течет ток I. Какой величины он будет? Исходя из вышеприведенной формулы 1, для его вычисления нам нужно знать напряжение, развиваемое источником питания, и сопротивление нагрузки. Если мы возьмем, к примеру, паяльник с сопротивлением спирали 100 Ом и подключим его к осветительной розетке с напряжением 220 В, то ток через паяльник будет составлять:

220 / 100 = 2,2 А.

Какова мощность этого паяльника ? Воспользуемся формулой 2:

2,2 * 220 = 484 Вт.

Хороший получился паяльник, мощный, скорее всего, двуручный. Точно так же, оперируя этими двумя формулами и преобразуя их, можно узнать ток через мощность и напряжение, напряжение через ток и сопротивление и т.д. Сколько, к примеру, потребляет лампочка мощностью 60 Вт в вашей настольной лампе:

60 / 220 = 0,27 А или 270 мА.

Сопротивление спирали лампы в рабочем режиме:

220 / 0,27 = 815 Ом.

Схемы с несколькими проводниками

Все рассмотренные выше случаи являются простыми – один источник, одна нагрузка. Но на практике нагрузок может быть несколько, и соединены они бывают тоже по-разному. Существует три типа соединения нагрузки:

  1. Параллельное.
  2. Последовательное.
  3. Смешанное.

Параллельное соединение проводников

В люстре 3 лампы, каждая по 60 Вт. Сколько потребляет люстра? Верно, 180 Вт. Быстренько подсчитываем сначала ток через люстру:

180 / 220 = 0,818 А.

А затем и ее сопротивление:

220 / 0,818 = 269 Ом.

Перед этим мы вычисляли сопротивление одной лампы (815 Ом) и ток через нее (270 мА). Сопротивление же люстры оказалось втрое ниже, а ток — втрое выше. А теперь пора взглянуть на схему трехрожкового светильника.

Все лампы в нем соединены параллельно и подключены к сети. Получается, при параллельном соединении трех ламп общее сопротивление нагрузки уменьшилось втрое? В нашем случае — да, но он частный – все лампы имеют одинаковые сопротивление и мощность. Если каждая из нагрузок будет иметь свое сопротивление, то для подсчета общего значения простого деления на количество нагрузок мало. Но и тут есть выход из положения – достаточно воспользоваться вот этой формулой:

1/Rобщ. = 1/R1 + 1/R2 + … 1/Rn.

Для удобства использования формулу можно легко преобразовать:

Rобщ. = (R1*R2*… Rn) / (R1+R2+ … Rn).

Здесь Rобщ . – общее сопротивление цепи при параллельном включении нагрузки. R1 … Rn – сопротивления каждой нагрузки.

Почему увеличился ток, когда вы включили параллельно три лампы вместо одной, понять несложно – ведь он зависит от напряжения (оно осталось неизменным), деленного на сопротивление (оно уменьшилось). Очевидно, что и мощность при параллельном соединении увеличится пропорционально увеличению тока.

Последовательное соединение

Теперь настала пора выяснить, как изменятся параметры цепи, если проводники (в нашем случае лампы) соединить последовательно.

Расчет сопротивления при последовательном соединении проводников исключительно прост:

Rобщ. = R1 + R2.

Те же три шестидесятиваттные лампы, соединенные последовательно, составят уже 2445 Ом (см. расчеты выше). Какими будут последствия увеличения сопротивления цепи? Согласно формулам 1 и 2 становится вполне понятно, что мощность и сила тока при последовательном соединении проводников упадет. Но почему теперь все лампы горят тускло? Это одно из самых интересных свойств последовательного подключения проводников, которое очень широко используется. Взглянем на гирлянду из трех знакомых нам, но последовательно соединенных ламп.

Общее напряжение, приложенное ко всей цепи, так и осталось 220 В. Но оно поделилось между каждой из ламп пропорционально их сопротивлению! Поскольку лампы у нас одинаковой мощности и сопротивления, то напряжение поделилось поровну: U1 = U2 = U3 = U/3. То есть на каждую из ламп подается теперь втрое меньшее напряжение, вот почему они светятся так тускло. Возьмете больше ламп – яркость их упадет еще больше. Как рассчитать падение напряжения на каждой из ламп, если все они имеют различные сопротивления? Для этого достаточно четырех формул, приведенных выше. Алгоритм расчета будет следующим:

  1. Измеряете сопротивление каждой из ламп.
  2. Рассчитываете общее сопротивление цепи.
  3. По общим напряжению и сопротивлению рассчитываете ток в цепи.
  4. По общему току и сопротивлению ламп вычисляете падение напряжения на каждой из них.

Хотите закрепить полученные знания ? Решите простую задачу, не заглядывая в ответ в конце:

В вашем распоряжении есть 15 однотипных миниатюрных лампочек, рассчитанных на напряжение 13,5 В. Можно ли из них сделать елочную гирлянду, подключаемую к обычной розетке, и если можно, то как?

Смешанное соединение

С параллельным и последовательным соединением проводников вы, конечно, без труда разобрались. Но как быть, если перед вами оказалась примерно такая схема?

Смешанное соединение проводников

Как определить общее сопротивление цепи? Для этого вам понадобится разбить схему на несколько участков. Вышеприведенная конструкция достаточно проста и участков будет два — R1 и R2,R3. Сначала вы рассчитываете общее сопротивление параллельно соединенных элементов R2,R3 и находите Rобщ.23. Затем вычисляете общее сопротивление всей цепи, состоящей из R1 и Rобщ.23, соединенных последовательно:

  • Rобщ.23 = (R2*R3) / (R2+R3).
  • Rцепи = R1 + Rобщ.23.

Задача решена, все очень просто. А теперь вопрос несколько сложнее.

Сложное смешанное соединение сопротивлений

Как быть тут? Точно так же, просто нужно проявить некоторую фантазию. Резисторы R2, R4, R5 соединены последовательно. Рассчитываем их общее сопротивление:

Rобщ.245 = R2+R4+R5.

Теперь параллельно к Rобщ.245 подключаем R3:

Rобщ.2345 = (R3* Rобщ.245) / (R3+ Rобщ.245).

Rцепи = R1+ Rобщ.2345+R6.

Вот и все!

Ответ на задачу о елочной гирлянде

Лампы имеют рабочее напряжение всего 13.5 В, а в розетке 220 В, поэтому их нужно включать последовательно.

Поскольку лампы однотипные, напряжение сети разделится между ними поровну и на каждой лампочке окажется 220 / 15 = 14,6 В. Лампы рассчитаны на напряжение 13,5 В, поэтому такая гирлянда хоть и заработает, но очень быстро перегорит. Чтобы реализовать задумку, вам понадобится минимум 220 / 13,5 = 17, а лучше 18-19 лампочек.

Содержание:

Как известно, соединение любого элемента схемы, независимо от его назначения, может быть двух видов — параллельное подключение и последовательное. Также возможно и смешанное, то есть последовательно параллельное соединение. Все зависит от назначения компонента и выполняемой им функции. А значит, и резисторы не избежали этих правил. Последовательное и параллельное сопротивление резисторов это по сути то же самое, что и параллельное и последовательное подключение источников света. В параллельной цепи схема подключения подразумевает вход на все резисторы из одной точки, а выход из другой. Попробуем разобраться, каким образом выполняется последовательное соединение, а каким — параллельное. И главное, в чем состоит разница между подобными соединениями и в каких случаях необходимо последовательное, а в каких параллельное соединение. Также интересен и расчет таких параметров, как общее напряжение и общее сопротивление цепи в случаях последовательного либо параллельного соединения. Начать следует с определений и правил.

Способы подключения и их особенности

Виды соединения потребителей или элементов играют очень важную роль, ведь именно от этого зависят характеристики всей схемы, параметры отдельных цепей и тому подобное. Для начала попробуем разобраться с последовательным подключением элементов к схеме.

Последовательное соединение

Последовательное подключение — это такое соединение, где резисторы (равно, как и другие потребители или элементы схем) подключаются друг за другом, при этом выход предыдущего подключается на вход следующего. Подобный вид коммутации элементов дает показатель, равный сумме сопротивлений этих элементов схемы. То есть если r1 = 4 Ом, а r2 = 6 Ом, то при подключении их в последовательную цепь, общее сопротивление составит 10 Ом. Если мы добавим последовательно еще один резистор на 5 Ом, сложение этих цифр даст 15 Ом — это и будет общее сопротивление последовательной цепи. То есть общие значения равны сумме всех сопротивлений. При его расчете для элементов, которые подключены последовательно, никаких вопросов не возникает — все просто и ясно. Именно поэтому не стоит даже останавливаться более серьезно на этой.

Совершенно по другим формулам и правилам производится расчет общего сопротивления резисторов при параллельном подключении, вот на нем имеет смысл остановиться поподробнее.

Параллельное соединение

Параллельным называется соединение, при котором все входы резисторов объединены в одной точке, а все выходы — во второй. Здесь главное понять, что общее сопротивление при подобном подключении будет всегда ниже, чем тот же параметр резистора, имеющего наименьшее.

Имеет смысл разобрать подобную особенность на примере, тогда понять это будет намного проще. Существует два резистора по 16 Ом, но при этом для правильного монтажа схемы требуется лишь 8 Ом. В данном случае при задействовании их обеих, при их параллельном включении в схему, как раз и получатся необходимые 8 Ом. Попробуем понять, по какой формуле возможны вычисления. Рассчитать этот параметр можно так: 1/Rобщ = 1/R1+1/R2, причем при добавлении элементов сумма может продолжаться до бесконечности.

Попробуем еще один пример. Параллельно соединены 2 резистора, с сопротивлением 4 и 10 Ом. Тогда общее будет равно 1/4 + 1/10, что будет равным 1:(0.25 + 0.1) = 1:0.35 = 2.85 Ом. Как видим, хотя резисторы и имели значительное сопротивление, при подключении их параллельнообщий показатель стал намного ниже.

Так же можно рассчитать общее сопротивление четырех параллельно подключенных резисторов, с номиналом 4, 5, 2 и 10 Ом. Вычисления, согласно формуле, будут такими: 1/Rобщ = 1/4+1/5+1/2+1/10, что будет равным 1:(0.25+0.2+0.5+0.1)=1/1.5 = 0.7 Ом.

Что же касается тока, протекающего через параллельно соединенные резисторы, то здесь необходимо обратиться к закону Кирхгофа, который гласит «сила тока при параллельном соединении, выходящего из цепи, равна току, входящему в цепь». А потому здесь законы физики решают все за нас. При этом общие показатели тока разделяются на значения, которые являются обратно пропорциональными сопротивлению ветки. Если сказать проще, то чем больше показатель сопротивления, тем меньшие токи будут проходить через этот резистор, но в общем, все же ток входа будет и на выходе. При параллельном соединении напряжение также остается на выходе таким же, как и на входе. Схема параллельного соединения указана ниже.

Последовательно-параллельное соединение

Последовательно-параллельное соединение — это когда схема последовательного соединения содержит в себе параллельные сопротивления. В таком случае общее последовательное сопротивление будет равно сумме отдельно взятых общих параллельных. Метод вычислений одинаковый в соответствующих случаях.

Подведем итог

Подводя итог всему вышеизложенному можно сделать следующие выводы:

  1. При последовательном соединении резисторов не требуется особых формул для расчета общего сопротивления. Необходимо лишь сложить все показатели резисторов — сумма и будет общим сопротивлением.
  2. При параллельном соединении резисторов, общее сопротивление высчитывается по формуле 1/Rобщ = 1/R1+1/R2…+Rn.
  3. Эквивалентное сопротивление при параллельном соединении всегда меньше минимального подобного показателя одного из резисторов, входящих в схему.
  4. Ток, равно как и напряжение в параллельном соединении остается неизменным, то есть напряжение при последовательном соединении равно как на входе, так и на выходе.
  5. Последовательно-параллельное соединение при подсчетах подчиняется тем же законам.

В любом случае, каким бы ни было подключение, необходимо четко рассчитывать все показатели элементов, ведь параметры имеют очень важную роль при монтаже схем. И если ошибиться в них, то либо схема не будет работать, либо ее элементы просто сгорят от перегрузки. По сути, это правило применимо к любым схемам, даже в электромонтаже. Ведь провод по сечению подбирают также исходя из мощности и напряжения. А если поставить лампочку номиналом в 110 вольт в цепь с напряжением 220, несложно понять, что она моментально сгорит. Так же и с элементами радиоэлектроники. А потому — внимательность и скрупулезность в расчетах — залог правильной работы схемы.

При решении задач принято преобразовывать схему, так, чтобы она была как можно проще. Для этого применяют эквивалентные преобразования. Эквивалентными называют такие преобразования части схемы электрической цепи, при которых токи и напряжения в не преобразованной её части остаются неизменными.

Существует четыре основных вида соединения проводников: последовательное, параллельное, смешанное и мостовое.

Последовательное соединение

Последовательное соединение – это такое соединение, при котором сила тока на всем участке цепи одинакова. Ярким примером последовательного соединения является старая елочная гирлянда. Там лампочки подключены последовательно, друг за другом. Теперь представьте, одна лампочка перегорает, цепь нарушена и остальные лампочки гаснут. Выход из строя одного элемента, ведет за собой отключение всех остальных, это является существенным недостатком последовательного соединения.

При последовательном соединении сопротивления элементов суммируются.

Параллельное соединение

Параллельное соединение – это соединение, при котором напряжение на концах участка цепи одинаково. Параллельное соединение наиболее распространено, в основном потому, что все элементы находятся под одним напряжением, сила тока распределена по-разному и при выходе одного из элементов все остальные продолжают свою работу.

При параллельном соединении эквивалентное сопротивление находится как:

В случае двух параллельно соединенных резисторов

В случае трех параллельно подключенных резисторов:

Смешанное соединение

Смешанное соединение – соединение, которое является совокупностью последовательных и параллельных соединений. Для нахождения эквивалентного сопротивления нужно, “свернуть” схему поочередным преобразованием параллельных и последовательных участков цепи.


Сначала найдем эквивалентное сопротивление для параллельного участка цепи, а затем прибавим к нему оставшееся сопротивление R 3 . Следует понимать, что после преобразования эквивалентное сопротивление R 1 R 2 и резистор R 3 , соединены последовательно.

Итак, остается самое интересное и самое сложное соединение проводников.

Мостовая схема

Мостовая схема соединения представлена на рисунке ниже.



Для того чтобы свернуть мостовую схему, один из треугольников моста, заменяют эквивалентной звездой.

И находят сопротивления R 1 , R 2 и R 3 .


5.1: Что такое «последовательные» и «параллельные» схемы?

Серия

и параллельные схемы

Существует два основных способа соединения более двух компонентов схемы: серии и параллельно . Сначала пример последовательной схемы:

Здесь у нас есть три резистора (с маркировкой R 1 , R 2 и R 3 ), соединенных длинной цепочкой от одного вывода батареи к другому. (Следует отметить, что обозначение нижним индексом — эти маленькие цифры в правом нижнем углу буквы «R» — не связаны со значениями резистора в омах.Они служат только для того, чтобы отличить один резистор от другого.) Определяющей характеристикой последовательной цепи является то, что существует только один путь для прохождения электронов. В этой цепи электроны движутся против часовой стрелки, от точки 4 к точке 3, к точке 2, к точке 1 и обратно до 4.

Теперь давайте посмотрим на другой тип схемы, параллельную конфигурацию:

Опять же, у нас есть три резистора, но на этот раз они образуют более одного непрерывного пути для прохождения электронов.Есть один путь от 8 к 7, от 2 к 1 и снова к 8. Еще один — от 8 до 7, от 6 до 3, до 2, до 1 и снова до 8. И затем есть третий путь от 8 до 7 до 6 до 5 до 4 до 3 до 2 к 1 и снова обратно к 8. Каждый отдельный путь (через рэндов 1 , рэндов 2 и рэндов 3 ) называется ветвью .

Определяющей характеристикой параллельной цепи является то, что все компоненты подключены между одним и тем же набором электрически общих точек. Глядя на схематическую диаграмму, мы видим, что все точки 1, 2, 3 и 4 электрически общие.То же самое с точками 8, 7, 6 и 5. Обратите внимание, что все резисторы, а также батарея подключены между этими двумя наборами точек.

И, конечно же, сложность не ограничивается простыми последовательностями и параллелями! У нас также могут быть цепи, которые представляют собой комбинацию последовательной и параллельной цепи:

В этой схеме у нас есть два контура для прохождения электронов: один от 6 до 5, от 2 до 1 и снова обратно к 6, а другой от 6 до 5 до 4, до 3, от 2 до 1 и снова обратно к 6.Обратите внимание, как оба пути тока проходят через R 1 (от точки 2 до точки 1). В этой конфигурации мы бы сказали, что R 2 и R 3 параллельны друг другу, а R 1 — последовательно с параллельной комбинацией R 2 и R 3 .

Это всего лишь предварительный обзор того, что будет дальше. Не волнуйся! Мы рассмотрим все эти схемы подробно, по очереди!

Изучите основные идеи последовательного и параллельного подключения

Основная идея «последовательного» соединения заключается в том, что компоненты соединяются встык в линию, образуя единый путь для прохождения электронов:

С другой стороны, основная идея «параллельного» подключения состоит в том, что все компоненты подключаются через выводы друг друга.В чисто параллельной схеме никогда не может быть более двух наборов электрически общих точек, независимо от того, сколько компонентов подключено. Есть много путей для прохождения электронов, но только одно напряжение на всех компонентах:

Конфигурации последовательных и параллельных резисторов

имеют очень разные электрические свойства. В следующих разделах мы рассмотрим свойства каждой конфигурации.

Серия

и описание параллельных подключений

Введение

В этом разделе более подробно рассматривается последовательное, параллельное и последовательно-параллельное соединение.В цель этого раздела — объяснить, почему используются определенные соединения, как настроить желаемое соединение, а также выбор наиболее выгодного соединения на основе ваша ситуация.

Почему параллельный?

Строго параллельные соединения в основном используются в небольших, более простых системах и обычно с ШИМ-контроллеры, хотя они и есть исключения.Параллельное подключение панелей увеличит усилители и поддерживайте напряжение на том же уровне. Это часто используется в системах 12 В с несколькими панелями в качестве параллельная проводка панелей 12В позволяет сохранить возможности зарядки 12В.

Обратной стороной параллельных систем является то, что при большом токе трудно преодолевать большие расстояния. без использования очень толстых проводов. Системы мощностью до 1000 Вт могут выдавать более 50 ампер. что очень сложно перенести, особенно в системах, где у вас панелей больше 10 футов от вашего контроллера, и в этом случае вам придется перейти на 4 AWG или более толстый, который может быть дорого в долгосрочной перспективе.Кроме того, для параллельных систем требуется дополнительное оборудование, такое как соединители ответвлений. или коробку комбайнера.

Почему именно серия?

Строго последовательные соединения в основном используются в небольших системах с контроллером MPPT. Последовательное соединение панелей увеличит уровень напряжения и сохранит силу тока. В Причина, по которой последовательные соединения используются с контроллерами MPPT, заключается в том, что контроллеры MPPT фактически могут принимать более высокое входное напряжение и по-прежнему иметь возможность заряжать батареи 12 В или более.Контроллеры Renogy MPPT могут принимать входное напряжение 100 В. Преимущество серий в том, что их легко передача на большие расстояния. Например, у вас может быть 4 панели Renogy 100 Вт последовательно, запустите ее. 100 футов и используйте только тонкий провод 14-го калибра.

Обратной стороной серийных систем являются проблемы с затенением. Когда панели подключаются последовательно, все они смысл зависят друг от друга. Если одна панель затенена, это повлияет на всю строку.Это не будет происходят при параллельном подключении.

Почему последовательно-параллельный?

Панели солнечных батарей

обычно ограничены одним фактором — контроллером заряда. Контроллеры заряда предназначены только для приема определенной силы тока и напряжения. Часто для больших систем в чтобы оставаться в пределах этих параметров силы тока и напряжения, мы должны проявлять изобретательность и использовать последовательное параллельное соединение.Для этого соединения строка создается двумя или более панелями в ряд. Затем необходимо создать равную строку и распараллелить ее. 4 панели последовательно должны быть параллельно с другими 4 панелями, включенными последовательно, иначе произойдет серьезная потеря мощности. Вы можете увидеть больше в пример ниже.

На самом деле нет недостатков в последовательно-параллельном подключении. Обычно они используются при необходимости и других варианты недоступны.

Как настроить вашу систему параллельно.

Параллельное соединение достигается соединением плюсов двух панелей вместе, а также негативы каждой панели вместе. Это можно сделать разными способами, но обычно для меньшие системы это будет использоваться через соединитель ответвления. Разветвитель имеет Y-образную форму и у одного есть два входа для положительного, который меняется на один, а также два входа для отрицательного, что меняется на одного. См. Рисунок ниже.

Модель 2.4.1

Как вы можете видеть, у вас есть слот для отрицательной клеммы панели # 1 и отрицательной клеммы панель №2.А также положительные эквиваленты. Тогда отрицательный выход и положительный выход будут используется для подключения к контроллеру заряда через кабель фотоэлектрической солнечной батареи.

См. Диаграмму ниже.

Модель 2.4.2


Давайте посмотрим на числовой пример. Скажем, у вас есть две солнечные панели по 100 Вт и аккумулятор на 12 В.Поскольку каждая панель рассчитана на 12 В, а аккумулятор, который вы хотите зарядить, — на 12 В, вам необходимо параллельное соединение. в вашей системе, чтобы напряжение оставалось неизменным. Рабочее напряжение составляет 18,9 В, а рабочий ток составляет 5,29 ампер. При параллельном подключении системы напряжение останется прежним, а токи увеличатся на количество параллельных панелей. В этом случае у вас 5,29 ампер x 2 = 10,58 ампер. Напряжение остается на уровне 18,9 Вольт.Чтобы проверить математику, вы можете сделать 10,58 ампер x 18,9 вольт = 199,96 ватт, или почти 200. Вт.

Как настроить вашу систему в серии

Последовательное соединение осуществляется путем соединения плюса одной панели с минусом другая панель вместе. При этом вам не потребуется никакого дополнительного оборудования, кроме выводов панели. при условии. См. Схему ниже.

Модель 2.4,3



Давайте посмотрим на числовой пример. Скажем, у вас есть 2 солнечные панели по 100 Вт и аккумулятор на 24 В. Поскольку каждая панель рассчитана на 12 В, а аккумулятор, который вы хотите зарядить, — на 24 В, вам необходимо система повышения напряжения. В целях безопасности используйте напряжение холостого хода для расчета серии подключений, в данном случае 100-ваттная панель имеет 22.Обрыв цепи 5 Вольт, и 5,29 ампер. Связь последовательно будет 22,5 вольт x 2 = 45 вольт. Ампер останется на уровне 5,29. Причина, по которой мы используем open напряжение цепи — это мы должны учитывать максимальное входное напряжение контроллера заряда.

* Если вы хотите проверить математику, он не будет работать с напряжением холостого хода. Вы можете использовать рабочее напряжение, так что 18,9 вольт x 2 = 37,8 вольт.37,8 В x 5,29 А = 199,96 Вт, или почти 200 Вт.

Как настроить систему последовательно-параллельно

Последовательно-параллельное соединение выполняется как последовательным, так и параллельным соединением. Каждый раз, когда вы группируете панели в серию, будь то 2, 4, 10, 100 и т. Д., Это называется нить. Выполняя последовательно-параллельное соединение, вы, по сути, параллельно соединяете 2 или более равных струны вместе.

См. Диаграмму ниже

Модель 2.4.4



Как вы можете видеть, это последовательное параллельное соединение состоит из 2 цепочек по 4 панели. Струны параллельны все вместе.

Давайте посмотрим на числовой пример этой диаграммы. Это в основном используется в нашем Renogy 40 Amp MPPT. Контроллер, поскольку он может принимать до 800 Вт мощности, но может принимать только 100 вольт, поэтому нельзя делать все последовательно.Параллельное соединение 8 панелей также приведет к слишком высокому сила тока.

В этом примере вы должны использовать напряжение холостого хода 22,5 В и рабочий ток 5.29 ампер. Создавая гирлянду из 4 панелей, у вас будет напряжение 22,5 Вольт x 4 = 90 Вольт, что ниже предела 100 В. Тогда при параллельном включении другой струны напряжение останется 90 вольт и ампер увеличатся вдвое, так что 5.29 ампер x 2 = 10,58 ампер.

* Имейте в виду, что обычно существует еще один фактор, который необходимо учитывать при выборе размеров для контроллера MPPT называется повышающим током. Об этом будет сказано в обвинении. раздел контроллера.

* Если вы хотите проверить математику, он не будет работать с напряжением холостого хода. Вы можете использовать рабочее напряжение, так 18.9 вольт x 4 = 75,6 вольт. 75,6 В x 10,58 А = 799,85 Вт, или почти 800 Вт.

Параллельные и последовательные видеосвязи:

Характеристики параллельной цепи

Обновлено 28 декабря 2020 г.

Автор S. Hussain Ather

Элементы схемы электрических цепей могут быть расположены последовательно или параллельно.В последовательных цепях элементы соединяются с помощью одной и той же ветви, которая пропускает электрический ток через каждую из них один за другим. В параллельных цепях элементы имеют свои отдельные ответвления. В этих цепях ток может проходить по разным путям.

Поскольку ток может проходить по разным путям в параллельной цепи, ток непостоянен во всей параллельной цепи. Вместо этого для ветвей, которые соединены параллельно друг с другом, падение напряжения или потенциала на каждой ветви является постоянным.Это связано с тем, что ток распределяется по каждой ветви в количестве, обратно пропорциональном сопротивлению каждой ветви. Это приводит к тому, что ток становится наибольшим там, где сопротивление наименьшее, и наоборот.

Эти качества позволяют параллельным цепям пропускать заряд по двум или более путям, что делает его стандартным кандидатом в домах и электрических устройствах через стабильную и эффективную систему питания. Он позволяет электричеству течь через другие части цепи, когда какая-либо часть повреждена или сломана, и они могут равномерно распределять мощность по разным зданиям.Эти характеристики можно продемонстрировать на схеме и на примере параллельной цепи.

Схема параллельной цепи

••• Сайед Хуссейн Атер

На схеме параллельной цепи вы можете определить поток электрического тока, создав потоки электрического тока от положительного конца батареи к отрицательному. Положительный конец обозначен плюсом на источнике напряжения, а отрицательный -.

По мере прохождения тока по ветвям параллельной цепи помните, что весь ток, входящий в один узел или точку в цепи, должен равняться всему току, выходящему из этой точки или выходящему из нее.Также имейте в виду, что падение напряжения вокруг любого замкнутого контура в цепи должно равняться нулю. Эти два утверждения представляют собой законы цепей Кирхгофа .

Характеристики параллельной цепи

В параллельных цепях используются ответвления, которые позволяют току проходить по разным маршрутам в цепи. Ток проходит от положительного конца батареи или источника напряжения к отрицательному. Напряжение остается постоянным по всей цепи, в то время как ток изменяется в зависимости от сопротивления каждой ветви.

Примеры параллельных цепей

Чтобы найти полное сопротивление резисторов, установленных параллельно друг другу, используйте формулу

\ frac {1} {R_ {total}} = \ frac {1} {R_1} + \ frac {1} {R_2} + \ frac {1} {R_3} + … + \ frac {1} {R_n}

, в котором сопротивление каждого резистора суммируется в правой части уравнения. На приведенной выше диаграмме общее сопротивление в Ом (Ом) можно рассчитать следующим образом:

  1. 1 / R всего = 1/5 Ом + 1/6 Ом + 1/10 Ом
  2. 1 / R всего = 6/30 Ом + 5/30 Ом + 3/30 Ом
  3. 1 / R всего = 14/30 Ом
  4. R всего = 15/7 Ом или около 2.14 Ом

Обратите внимание, что вы можете «перевернуть» обе стороны уравнения с шага 3 на шаг 4 только тогда, когда есть только один член с обеих сторон уравнения (в данном случае 1 / R всего Слева и 14/30 Ом справа).

После того, как вы рассчитали сопротивление, ток и напряжение, можно рассчитать по закону Ома В = I / R , в котором В — напряжение, измеренное в вольтах, I — ток, измеренный в амперах. , а R — сопротивление в Ом.В параллельных цепях сумма токов, протекающих по каждому пути, является полным током от источника. Ток на каждом резисторе в цепи можно рассчитать, умножив напряжение на сопротивление резистора. Напряжение остается постоянным по всей цепи, поэтому напряжение является напряжением батареи или источника напряжения.

Параллельная и последовательная цепь

••• Syed Hussain Ather

В последовательных цепях ток постоянен на всем протяжении, падение напряжения зависит от сопротивления каждого резистора, а общее сопротивление складывается из каждого отдельного резистора.В параллельных цепях напряжение постоянно, ток зависит от каждого резистора, а величина, обратная величине общего сопротивления, является суммой величин, обратных величине каждого отдельного резистора.

Конденсаторы и катушки индуктивности могут использоваться для изменения заряда в последовательной и параллельной цепях с течением времени. В последовательной цепи общая емкость схемы (заданная переменной C ), потенциал конденсатора накапливать заряд с течением времени, является обратной суммой обратных величин каждой отдельной емкости, и общая индуктивность ( I ), мощность индукторов, выделяющих заряд с течением времени, является суммой каждой индуктивности.Напротив, в параллельной цепи общая емкость является суммой каждого отдельного конденсатора, а величина, обратная величине полной индуктивности, является суммой обратных величин каждой индивидуальной индуктивности.

Последовательные и параллельные цепи также имеют разные функции. В последовательной цепи, если одна часть сломана, ток вообще не будет течь по цепи. В параллельной цепи открытие отдельной ветви останавливает только ток в этой ветви. Остальные ветви будут продолжать работать, потому что у тока есть несколько путей, которые он может пройти по цепи.

Последовательно-параллельная цепь

••• Syed Hussain Ather

Цепи, в которых есть оба разветвленных элемента, которые также соединены таким образом, что ток течет в одном направлении между этими ветвями, как последовательно, так и параллельно. В этих случаях вы можете применять правила как для последовательного, так и для параллельного подключения, в зависимости от схемы. В приведенном выше примере R1 и R2 параллельны друг другу, чтобы сформировать R5 , а также R3 и R4 , чтобы сформировать R6 . .Их можно суммировать параллельно следующим образом:

  1. 1 / R5 = 1/1 Ом + 1/5 Ом
  2. 1 / R5 = 5/5 Ом + 1/5 Ом
  3. 1 / R5 = 6/5 Ом
  4. R5 = 5/6 Ом или около 0,83 Ом
  1. 1 / R6 = 1/7 Ом + 1/2 Ом
  2. 1 / R6 = 2/14 Ом + 7/14 Ом
  3. 1 / R6 = 9/14 Ом
  4. R6 = 14/9 Ом или около 1,56 Ом

••• Syed Hussain Ather

Схема может быть упрощена для создания схемы, показанной непосредственно выше, с R5 и R6 .Эти два резистора могут быть добавлены просто, как если бы цепь была последовательной.

R_ {total} = 5/6 \ Omega + 14/9 \ Omega = 2.38 \ Omega

При напряжении 20 В в качестве напряжения закон Ома требует, чтобы общий ток составлял В / R . , или 20 В / (43/18 Ом) = 360/43 А или около 8,37 А. С помощью этого полного тока вы можете определить падение напряжения на обоих R5 и R6, используя закон Ома ( В = I / R ).

V_5 = \ frac {360} {43} \ times 5/6 = 6.98 \ text {V}

V_5 = \ frac {360} {43} \ times 14/9 = 13.02 \ text {V}

Наконец, эти падения напряжения для R5 и R6 могут быть разделенным обратно на исходные параллельные схемы для расчета тока R1 и R2 для R5 и R2 и R3 для R6 с использованием закона Ома .

I1 = (1800/258 В) / 1 Ом = 1800/258 А или около т 6,98 А.

I2 = (1800/258 В) /5 Ом = 1500/43 А или около т 34.88 A.

I3 = ( 680/129 V ) / 7 Ω = 4760/129 A или примерно 36,90 A .

I3 = ( 680/129 В ) / 2 Ом = 1360/129 А или около 10,54 А.

Датчики приближения: Серии и Параллельное соединение | FAQ | Сингапур

Основное содержание

Вопрос

Какие последовательные и параллельные соединения возможны с датчиками приближения?

Датчики
Модель Тип подключения Соединение Описание
DC 2-Wire И (последовательное соединение) соединены ) в пределах следующего уравнения.
В S — N x В R ≥ Рабочее напряжение нагрузки
N: Количество подключаемых датчиков
В R : Остаточное выходное напряжение датчика приближения
В S : Напряжение питания

Возможно Тем не менее, индикаторы могут загораться некорректно и могут генерироваться импульсы ошибок (длительностью примерно 1 мс), поскольку номинальное напряжение и ток источника питания не подаются на отдельные датчики приближения. Перед началом работы убедитесь, что это не проблема.

ИЛИ (параллельное соединение) Сохраняйте количество подключенных датчиков (N) в пределах следующего уравнения.
N xi ≤ ток сброса нагрузки
N: количество датчиков, которые могут быть подключены
i: ток утечки датчика приближения

Пример: когда в качестве нагрузки используется реле MY (24 В постоянного тока), максимальное количество датчиков, которое может быть подключенным — 4.

AC 2-проводное AND (последовательное соединение) TL-NY, TL-MY, E2K — [] MY [], TL-T [] Y
Выше Датчики приближения не могут использоваться в последовательном соединении.При необходимости подключите через реле.

E2E-X [] Y
Для вышеуказанных датчиков приближения напряжение VL, которое может быть приложено к нагрузке во включенном состоянии, равно VL = VS — (выходное остаточное напряжение x количество датчиков) как для 100 В переменного тока, так и для 200 В переменного тока.
Нагрузка не будет работать, если VL не будет выше рабочего напряжения нагрузки. Это необходимо проверить перед использованием.
При использовании двух или более датчиков, последовательно соединенных схемой И, ограничение составляет три датчика. (Обратите внимание на значение VS на диаграмме слева.)

ИЛИ (параллельное соединение) Как правило, невозможно использовать два или более датчиков приближения параллельно с цепью ИЛИ.

Можно использовать параллельное соединение, если A и B не будут работать одновременно и нет необходимости удерживать нагрузку. Однако ток утечки будет в n раз больше значения для каждого датчика, и часто будут возникать отказы сброса.
(«n» — количество датчиков приближения.)

Если A и B будут работать одновременно, а нагрузка удерживается, параллельное соединение невозможно.
Если A и B работают одновременно и нагрузка удерживается, напряжения обоих A и B упадут примерно до 10 В, когда A включается, и ток нагрузки будет течь через A, вызывая случайную работу. Когда обнаруживаемый объект приближается к B, напряжение на обоих выводах B слишком низкое и составляет 10 В, и переключающий элемент B не будет работать. Когда A снова выключается, напряжения как A, так и B повышаются до напряжения источника питания, и B, наконец, может включиться.

В течение этого периода бывают моменты, когда A и B оба выключаются (приблизительно 10 мс), и нагрузки на мгновение восстанавливаются.В случаях, когда нагрузка должна удерживаться таким образом, используйте реле, как показано на схеме слева.

3-проводный пост. Ток И (последовательное соединение) Сохраняйте количество подключенных датчиков (N) в пределах диапазона следующего уравнения.
iL + (N — 1) xi ≤ Верхний предел управляющего выхода датчика приближения
В S — N x V R ≥ Рабочее напряжение нагрузки
N: Количество подключаемых датчиков
В R : Остаточное выходное напряжение датчика
В S : напряжение источника питания
i: потребление тока датчика
iL: ток нагрузки
Пример: можно использовать максимум два датчика, когда реле MY (24 В постоянного тока) используется для нагрузки .

Примечание:
Когда подключена схема И, работа датчика приближения B приводит к подаче питания на датчик приближения A, и, таким образом, ошибочные импульсы (приблизительно 1 мс) могут генерироваться в A при включении питания. По этой причине будьте осторожны, когда нагрузка имеет высокую скорость отклика, поскольку это может привести к неисправности.

OR (параллельное соединение) Для датчиков с токовым выходом возможно минимум три соединения OR.Возможность использования четырех или более соединений зависит от модели.

Примечание: Когда соединения И / ИЛИ используются с датчиками приближения, эффекты ошибочных импульсов или тока утечки могут помешать их использованию. Перед использованием убедитесь в отсутствии проблем.

Серия

и параллельные схемы: в чем разница?

Один из первых принципов, которые нужно понять, когда вы изучаете электричество, — это различие между параллельной цепью и последовательной цепью.Оба типа цепей питают несколько устройств с помощью электрического тока, протекающего по проводам, но на этом сходство заканчивается.

Чтобы понять разницу между схемой, в которой устройства подключены последовательно , , от схемы, в которой они подключены параллельно, вы должны сначала понять основы электрической схемы.

Проще говоря, все схемы работают, обеспечивая замкнутый контур проводов, по которым может течь электрический ток.Электрический ток — это, по сути, движение электронов по цепи от источника (через горячие провода) и обратно к источнику (через нейтральные провода). Когда свет или другие устройства подключаются к этому контуру цепи, движущийся ток может питать эти устройства. Любое прерывание пути (например, размыкание переключателя) останавливает поток электрического тока — мгновенно прерывая цепь.

Что такое последовательная цепь?

Последовательная цепь — это замкнутая цепь, в которой ток проходит по одному пути.В последовательной схеме устройства по контуру цепи соединены в непрерывный ряд, так что при выходе из строя или отключении одного устройства вся цепь прерывается. Таким образом, все устройства в цепи перестают работать одновременно. Последовательные схемы несколько редки в домашней проводке, но они иногда используются в гирляндах рождественских огней или ландшафтных светильниках, где выход из строя одной лампочки приводит к потемнению всей цепочки.

Когда лампочка гаснет в цепочке праздничных огней, это создает разрыв в проводке.Однако многие современные гирлянды для праздничных фонарей теперь подключаются через параллельную цепь, так что гирлянда может оставаться работоспособной даже при неисправности одной из лампочек. Большинство новых светодиодных праздничных огней имеют параллельную схему подключения.

Что такое параллельная цепь?

Гораздо чаще, чем последовательные цепи, встречаются параллельные, включая большинство домашних цепей, питающих осветительные приборы, розетки и приборы. Параллельная цепь также является замкнутой цепью, в которой ток разделяется на два или более пути, прежде чем вернуться вместе, чтобы завершить полную цепь.Здесь проводка настроена так, что каждое устройство находится в постоянном контакте с трактом главной цепи. Отдельные устройства просто «подключаются» к главному контуру цепи, подобно тому, как съезды на автостраде позволяют автомобилям существовать и выезжать на автостраду, не прерывая ее. Параллельная схема имеет много таких петель «вне рампы / при включении», так что отказ в каком-либо отдельном контуре никогда не приводит к отключению всей схемы.

Большинство стандартных 120-вольтных бытовых цепей в вашем доме являются (или должны быть) параллельными цепями.Розетки, переключатели и осветительные приборы подключены таким образом, что горячий и нейтральный провода поддерживают непрерывный путь цепи, независимый от отдельных устройств, которые получают питание от цепи.

Иногда этот непрерывный путь создается путем «врезки» в провода цепи для питания розетки или осветительной арматуры (косички — это выходная и входная рампы для тока). В других случаях конструкция устройства создает непрерывный непрерывный путь.Например, стандартная розетка розетки имеет металлическую полосу (соединительный язычок) между парами винтовых клемм, которая обеспечивает сохранение пути к следующей розетке. Если розетка выходит из строя, соединительный язычок на устройстве гарантирует, что ток продолжает течь к следующей розетке в цепи.

Когда использовать последовательную цепь вместо параллельной

Один пример домашнего хозяйства, где последовательная проводка полезна, когда одна розетка GFCI (прерыватель цепи замыкания на землю) используется для защиты других стандартных розеток, расположенных «ниже по потоку» от GFCI.

Розетка GFCI имеет винтовые клеммы с меткой «линия», а также винтовые клеммы с меткой «нагрузка». Клеммы нагрузки могут использоваться для расширения проводки до дополнительных обычных розеток за пределами GFCI, что позволяет им также пользоваться защитой GFCI. Однако, если GFCI выйдет из строя, все подключенные нижестоящие розетки также перестанут функционировать. Таким образом, этот участок схемы является примером последовательного подключения.

Другой предмет, который использует последовательную проводку, — это удлинитель.В удлинителе используется один переключатель для управления несколькими приборами и устройствами в параллельной схеме. Однако, если вы выключите удлинитель, вы выключите все приборы и устройства, подключенные к удлинителю.

Подключение параллельной цепи

| CE

Параллельное подключение электрических элементов означает, что у каждого из них будет свой отдельный контур. Следовательно, есть несколько путей, по которым может течь ток.

Где
R 1 и R 2 : Резисторы
В: Источник напряжения
I 1 , I 2 и

4
4
4
4
4 Текущие значения

Напряжение в параллельной проводке


На схеме ниже каждый резистор подключается напрямую и независимо к источнику напряжения.Если бы какой-либо резистор был удален, создав разомкнутую цепь в одном из контуров, ток все равно мог бы течь через другой резистор. Общее падение напряжения в каждом контуре должно быть равно напряжению, подаваемому на контур. Следовательно, в схеме, подобной показанной ниже, где один источник напряжения подает напряжение на несколько нагрузок, подключенных параллельно, падение напряжения на каждой будет одинаковым.

Где
В: Источник напряжения
R 1 и R 2 : Резисторы
В 1 и В 2 : Падение напряжения на каждом резисторе

В = V 1 = V 2

Когда два источника напряжения подключены параллельно, положительный вывод одного источника подключается к положительному выводу другого.Таким образом, напряжения, обеспечиваемые каждым источником, не складываются друг с другом — напряжение, подаваемое в цепь, равно напряжению отдельных источников. Следовательно, источники напряжения, соединенные параллельно, должны иметь одинаковое напряжение.

Если два источника напряжения, подключенные параллельно выше, представляют собой 3-вольтовые фотоэлектрические модули, общее напряжение на резисторе составит 3 вольта. В этой конфигурации положительный (красный) вывод первого модуля подключен к положительному выводу следующего модуля, а отрицательный (черный) вывод первого — к отрицательному выводу следующего.Обратите внимание, что на схеме есть связь между положительной стороной двух источников и между отрицательной стороной. Независимо от того, сколько 3-вольтовых фотоэлектрических модулей соединено вместе в этой конфигурации, напряжение, подаваемое на резистор, всегда будет 3-вольтовым.

В всего = V 1 = V 2 = V 3 = … = V n

Ток в параллельной проводке


In В параллельной цепи есть несколько путей, по которым может течь ток, и он будет делиться в соответствии с сопротивлением в каждой ветви.Общий ток в цепи должен по-прежнему сохраняться, и поэтому, когда он делится (или объединяется) в соединении, сумма тока, входящего в это соединение, будет равна сумме тока, выходящего из него.

I 1 = I 2 + I 3
I 3 = I 4 + I 5

Следовательно, когда несколько источников напряжения соединены параллельно, напряжение не будет увеличиваться, но ток, подаваемый каждым из этих источников напряжения, будет.

Что такое параллельная цепь — как сделать, характеристики, применение

Поведение схемы полностью зависит от конфигурации ее компонентов схемы. В зависимости от конфигурации подключения эти схемы делятся на параллельные и последовательные схемы. В этом посте раскрывается смысл параллельной схемы, как создать параллельную схему, ее различные характеристики, приложения, преимущества и недостатки.

Что такое параллельная цепь

Схема называется параллельной схемой, когда два или более компонента подключены к одному и тому же узлу, и обе стороны компонентов подключены непосредственно к батарее или любому другому источнику. Ток в параллельной цепи имеет два или более путей для прохождения через него.

Наиболее распространенным примером параллельной схемы является подключение автомобильных фар. Если фары автомобиля были включены последовательно, то при выходе из строя одного из фар другой также выключится, что означает потерю запаса прочности.

Рис. 1 — Пример включения фар автомобиля в параллельную цепь

Как сделать параллельную цепь

Два или более компонентов схемы подключены к общему источнику напряжения, образуя параллельную схему. На рисунке ниже показана типичная параллельная схема, в которой резисторы (R1, R2, R3, R4) подключены параллельно. Обе стороны резисторов подключены непосредственно к источнику напряжения. Параллельный путь называется ветвью, и напряжение на всех ветвях одинаковое, но ток может быть разным.

Рис. 2 — Принципиальная схема параллельной цепи

Характеристики параллельной цепи

Основные характеристики параллельной схемы перечислены ниже:

Токи ответвления в параллельной цепи

Согласно закону Ома I = E / R. Это означает, что каждый резистор в этой цепи будет потреблять ток от источника. Следовательно, полный ток, потребляемый от источника, равен сумме токов ответвления, и ток, протекающий по каждому пути, зависит от сопротивления ответвления.Однако напряжение остается прежним и создает разность потенциалов на его выводах.

Полный ток (I t ) можно рассчитать по формуле

I t = I 1 + I 2 + I 3 +…. Я n

Где (I 1 + I 2 + I 3 +… .I n ) — токи ответвления

Предположим, что параллельная схема построена с двумя резисторами (R1 и R2) с разными номиналами (10 Ом и 5 Ом) соответственно.Напряжение 10 В подается на резисторы, в результате чего ток 1 А, потребляемый от батареи через R1, и 2 А, протекающий через R2, выводится из уравнения I = E / R .

Следовательно, два тока ответвления в цепи равны 1А и 2А, что в сумме составляет 3А.

I т = 1 + 2 = 3A

Сопротивления в параллельной цепи

Суммарное сопротивление любого количества резисторов рассчитывается по формуле

Взаимно R1 = 1 / R1 = 1/10 = 0.1

Взаимно с R2 = 1 / R2 = 1/5 = 0,2

Сумма указанных выше обратных величин = 0,3

R t = 1 / 0,3 = 3,33 Ом

Питание в параллельной цепи

После того, как известны значения полного тока и приложенного напряжения, мощность можно рассчитать по формуле P = EI . В приведенном выше примере приложенное напряжение (E) = 10 В и I = 3 А

.

∴P = 10 x 3 = 30 Вт

Приложения параллельной цепи

Применения параллельных цепей включают:

  • Электропроводка к точкам питания в каждом доме выполнена в виде параллельных цепей.
  • В источниках питания постоянного тока в автомобильной промышленности используются параллельные схемы.
  • Компьютерное оборудование разработано с использованием параллельных схем.

Преимущества параллельной схемы

К преимуществам параллельных цепей относятся:

  • На каждый компонент в цепи распределяется одинаковое напряжение.
  • На ток не влияет даже при добавлении или удалении дополнительных компонентов (резисторов) из схемы.

Недостатки параллельной цепи

Недостатки параллельных цепей перечислены ниже:

  • Конструкция более сложна по сравнению с последовательными схемами.
  • Дорого построить.
  • Короткое замыкание может произойти случайно в параллельной проводке и быть опасным.
  • Даже если один из компонентов неисправен, ток все равно может проходить через цепь.
  Также читают: 
 Цепь серии  - принцип работы, характеристики, применение, преимущества 
  Что такое цифровой вольтметр - как он работает, типы, применение, преимущества 
  Что такое технология Li-Fi - как она работает, применение и преимущества  
.
Подключен

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *