+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Подключение счетчика электроэнергии в низковольтную сеть большой мощности

В одной из предыдущих статей мы уже рассматривали измерительные трансформаторы тока, их сферы применения, технические характеристики и особенности режима работы.

Как отмечалось ранее, для подключения счетчика в сеть большой мощности (с большими токами) необходимо применять специальные устройства — измерительные трансформаторы тока. Речь идет о низковольтных сетях до 0,66 кВ, где уровень номинального тока 100 А и выше. Счетчики прямого включения не предназначены для использования в таких мощных сетях, поэтому и требуется снизить уровень рабочего тока до величины, удобной для измерения приборами учета — 5 А.

Способ подключения в сеть счетчика, при котором токовые обмотки счетчика подключаются к измерительным выводам трансформатора тока называют полукосвенным. При этом способе подключения счетчика используется рабочее напряжение сети (обмотки напряжения подключаются к электросчетчику напрямую).

Существует также и косвенный способ подключения счетчика, однако он применяется для учета электроэнергии в установках с напряжением более 1 кВ. При косвенном подключении счетчика кроме трансформаторов тока применяются трансформаторы напряжения, снижающие высокое значение напряжение до 100 В.

Класс точности и его значение для учета электроэнергии

Правила Устройства Электроустановок (сокращенно ПУЭ) устанавливают классы точности для трансформаторов тока различных категорий применений. Так, для коммерческого учета должны устанавливаться трансформаторы тока с классом точности не более 0,5, а для технического учета необходим класс точности не выше 1,0.

Также встречаются трансформаторы тока с практически одинаковыми классами точности 0,5 и 0,5S. В чем заключается между ними разница? Погрешность обмотки ТТ с классом точности 0,5 не нормируется ниже 5%. Это значит, что при нагрузке в главной цепи ниже 5% электрическая энергия не будет учитываться.

Класс точности 0,5S говорит о том, что трансформатор тока будет передавать сигнал на счетчик при уровне нагрузки не ниже 1%.

Схемы подключения счетчика через трансформаторы тока

Подключить трехфазный счетчик электроэнергии в мощную низковольтную сеть с глухозаземленной нейтралью можно по приведенным ниже схемам.

Цепи тока и напряжения в этой схеме, которую еще называют «десятипроводной» (по количеству используемых проводов), разделены. Подобное разделение цепей напряжения и тока позволяет повысить электробезопасность и легко проверять правильность подключения.

Следующая схема, в которой все выводы И2 измерительных трансформаторов тока соединяются в общую точку и присоединяются к нулевому проводнику, называется «звезда»

(т. к. трансформаторы тока соединены по одноименной схеме). Она экономична с точки зрения использования проводов, однако усложняет проверку схемы включения счетчика представителями энергоснабжающих организаций.

«Семипроводная» схема на сегодняшний день является устаревшей, но так или иначе до сих пор встречается. Эта схема, будучи самой экономичной, опасна для обслуживающего персонала и потому должна быть модернизирована до десятипроводной.

Подключения счетчика электроэнергии через переходную испытательную коробку (КИП)

Как указано в ПУЭ (п 1.5.23.), подключать трехфазные счетчики электроэнергии следует через испытательные коробки, упомянутые выше. Они (коробки испытательные переходные) позволяют производить замену счетчика, не отключая нагрузку, так как все необходимые переключения можно произвести в КИП.

Также встречаются низковольтные сети с изолированной нейтралью (система IT). Если быть более точным, то в сети с такой системой заземления нейтральный проводник может быть как полностью изолирован, так и заземлен при помощи специальных приборов, обладающих большим электрическим сопротивлением.

Такая система (IT) применяется на объектах, к которым предъявляются высокие требования по надежности и безопасности электроснабжения. Например, изолированная система IT применяется для  электрических установок угольных шахт, для мобильных дизельных и бензиновых электростанций, а также для аварийного освещения и электроснабжения больниц. Подключить счетчик электроэнергии к трансформаторам тока в сеть с изолированной нейтралью можно по следующей схеме.

Измерительные трансформаторы тока — это устройства, преобразующие большие значения тока  главных цепей до величины 5 А, удобной для измерения счетчиками электроэнергии. Именно это и определяет их основное назначение: питание цепей учета электроэнергии (коммерческий и технический) в мощных установках, там где счетчики прямого включения просто не могут применяться.

Трансформатор тока для счетчика трехфазного

Схема подключения трехфазного счетчика через трансформаторы тока

  1. Принцип работы измерительных трансформаторов
  2. Коэффициент трансформации электросчетчика
  3. Установка счетчика с трансформаторами тока

В электрических сетях, с напряжением 380 вольт, потребляемой мощностью свыше 60 кВт и током более 100 ампер, используется схема подключения трехфазного счетчика через трансформаторы тока.

Данный вариант известен как косвенное подключение. Подобная схема дает возможность измерения высокой потребляемой мощности приборами учета, рассчитанными на низкие показатели мощности. Разница между высокими и низкими значениями компенсируется с помощью специального коэффициента, определяющего окончательные показатели счетчика.

Принцип работы измерительных трансформаторов

Принцип действия данных устройств довольно простой. По первичной обмотке трансформатора, включенной последовательно, протекает фазовый ток нагрузки. За счет этого возникает электромагнитная индукция, создающая ток во вторичной обмотке устройства. В эту же обмотку осуществляется включение токовой катушки трехфазного электросчетчика.

В зависимости от коэффициента трансформации, ток во вторичной цепи будет значительно меньше фазного тока нагрузки. Именно этот ток обеспечивает нормальную работу счетчика, а снимаемые показатели умножаются на величину коэффициента трансформации.

Таким образом, трансформаторы тока или измерительные трансформаторы преобразуют высокий первичный ток нагрузки в безопасное значение, удобное для проведения измерений. Трансформаторы тока для электросчетчиков нормально функционируют при рабочей частоте в 50 Гц и вторичном номинальном токе в 5 ампер. Поэтому, если коэффициент трансформации составляет 100/5, это означает максимальную нагрузку в 100 ампер, а значение измерительного тока – 5 ампер. Следовательно, в этом случае показания трехфазного счетчика умножаются в 20 раз (100/5). Благодаря такому конструктивному решению, отпала необходимость в изготовлении более мощных приборов учета. Кроме того, обеспечивается надежная защита счетчика от коротких замыканий и перегрузок, поскольку сгоревший трансформатор меняется значительно легче по сравнению с установкой нового счетчика.

Существуют определенные недостатки при таком подключении. Прежде всего, измерительный ток в случае малого потребления, может быть меньше стартового тока счетчика. Следовательно, счетчик не будет работать и выдавать показания. В первую очередь это касается счетчиков индукционного типа с очень большим собственным потреблением. Современные электросчетчики такого недостатка практически не имеют.

Особое внимание при подключение нужно обращать на соблюдение полярности. Первичная катушка имеет входные клеммы. Одна из них предназначена для подключения фазы и обозначается Л1. Другой выход – Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку.

Для вторичных цепей используется проводник, поперечное сечение которого должно быть не ниже 2,5 мм2. Рекомендуется применять разноцветные промаркированные провода с обозначенными выводами. Нередко подключение вторичной обмотки к счетчику осуществляется с помощью опломбированного промежуточного клеммника. Использование клеммника позволяет проводить замену и обслуживание счетчика без отключения электроэнергии, поступающей к потребителям.

Схемы подключения

Подключение измерительного трансформатора к счетчику может быть выполнено разными способами.

Запрещается использовать трансформаторы тока с приборами учета, предназначенными для прямого включения в электрическую сеть. В подобных случаях вначале изучается сама возможность такого подключения, выбирается наиболее подходящий трансформатор, в соответствии с индивидуальной электрической схемой.

Если измерительные трансформаторы имеют различный коэффициент трансформации, они не должны подключаться к одному и тому же к счетчику.

Перед подключением необходимо внимательно изучить схему расположения контактов, имеющихся на трехфазном счетчике. Общий принцип действия электросчетчиков является одинаковым, поэтому контактные клеммы располагаются на одних и тех же местах во всех приборах. Контакт К1 соответствует питанию цепи трансформатора, К2 – подключение цепи напряжения, К3 является выходным контактом, подключаемым к трансформатору. Таким же образом подключается фаза «В» через контакты К4, К5 и К6, а также фаза «С» с контактами К7, К8, К9. Контакт К10 является нулевым, к нему подключаются обмотки напряжения, расположенные внутри счетчика.

Чаще всего применяется наиболее простая схема раздельного подключения вторичных токовых цепей. К фазному зажиму от входного автомата сети подается фазовый ток. Для удобства монтажа с этого же контакта выполняется подключение второй клеммы катушки напряжения фазы на счетчике.

Выход фазы является окончанием первичной обмотки трансформатора. Его подключение осуществляется к нагрузке распределительного щита. Начало вторичной обмотки трансформатора соединяется с первым контактом токовой обмотки фазы счетчика. Конец вторичной обмотки трансформатора соединяется с окончанием токовой обмотки прибора учета. Таким же образом подключаются остальные фазы.

В соответствии с правилами выполняется соединение и заземление вторичных обмоток в виде полной звезды. Однако это требование отражено не в каждом паспорте электросчетчиков. поэтому во время ввода в действие иногда приходится отключать заземляющий шлейф. Выполнение всех монтажных работ должно происходить в строгом соответствии с утвержденным проектом.

Существует и другая схема подключения трехфазного счетчика через трансформаторы тока. применяемая очень редко. В данной схеме используются совмещенные цепи тока и напряжения. Возникает большая погрешность в показаниях. Кроме того, при такой схеме невозможно своевременно выявить обмоточный пробой в трансформаторе.

Большое значение имеет правильный выбор трансформатора. Максимальная нагрузка требует величины тока во вторичной цепи не менее 40% от номинала, а минимальная нагрузка – 5%. Все фазы должны чередоваться в установленном порядке и проверяться специальным прибором – фазометром.

Установка счетчика с трансформаторами тока

Подключение счетчика через трансформаторы тока

Трансформаторы тока (далее ТТ) – это устройства, предназначенные для преобразования (снижения) тока до значений, при которых возможна нормальная работа приборов учета.

Проще говоря, они используются в щитах учета для измерения расхода электроэнергии потребителей большой мощности, когда непосредственное или прямое включение счетчика недопустимо из-за высоких токов в измеряемой цепи, способных привести к сгоранию токовой катушки и выводу прибора учета из строя.

Конструктивно эти устройства представляют собой магнитопровод с двумя обмотками: первичной и вторичной. Первичная (W1) подключается последовательно к измеряемой силовой цепи, к вторичная (W2) – к токовой катушке прибора учета.

Первичная обмотка выполняется с большим сечением и меньшим количеством витков чем вторичная, часто выполняется в виде проходной шины. Снижение тока (собственно, коэффициент трансформации) – это отношение тока W1 к W2 (100/5, 200/5, 300/5, 500/5 и т. д.).

Помимо преобразования измеряемого тока до допустимых для измерения значений, ввиду отсутствия связи W1 с W2 в ТТ происходит разделение измерительных и первичных цепей.

Схемы подключения счетчика через трансформаторы тока

Для правильного учета электроэнергии с применением ТТ необходимо соблюдать полярность подключения их обмоток: начало и конец первичной имеют обозначение Л1 и Л2, вторичной – И1 и И2.

Схемы полукосвенного подключения трехфазных электросчетчиков (с применением только ТТ) могут быть выполнены в разных вариантах:

Семипроводная. Это устаревшая и наименее предпочтительная в плане электробезопасности схема ввиду наличия связи токовых и измерительных цепей – токовые цепи электросчетчика находятся под напряжением.

Десятипроводная схема. Более предпочтительная и рекомендуемая для использования в настоящее время. Отсутствие гальванической связи токовых цепей прибора учета и цепей напряжения делает подключение счетчика более безопасным.

Схема подключения электросчетчика через испытательную колодку .Согласно требований ПУЭ п. 1.5.23 должна применяться при включении образцового счетчика через ТТ. Наличие испытательной коробки позволяет осуществлять шунтирование, отключение токовых цепей, подключение прибора учета без отключения нагрузки, пофазное снятие напряжение с измеряемых цепей.

Подключение выполняется на основе десятипроводной схемы, ее отличие от последней состоит в наличии специального испытательного переходного блока между электросчетчиком и ТТ.

С соединением ТТ в “звезду”. Одни выводы вторичных обмоток ТТ соединяются в одной точке, образуя соединение “звезда”, другие – с токовыми катушками счетчика, также соединяемые по схеме “звезда”.

Недостаток такого способа подключения учета – большая сложность коммутации и проверки правильности сборки схемы.

Информация

Данный сайт создан исключительно в ознакомительных целях. Материалы ресурса носят справочный характер.

При цитировании материалов сайта активная гиперссылка на l220.ru обязательна.

Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.

1. Номинальное напряжение трансформатора тока

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0.

3. Номинальный ток вторичной обмотки

4. Номинальный ток первичной обмотки

Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.

Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.

А сейчас вспомним математику и рассмотрим на примере данные требования.

Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.

Выполним проверку измерительного трансформатора Т-066 200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Как видим 3,5А>2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100 – 35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Вывод: измерительный трансформатор Т-066 200/5 для нагрузки 140А выбран правильно.

По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.

При выборе трансформаторов тока можно руководствоваться данными таблицы:

Для правильного выбора трансформаторов тока (ТТ) для расчетных счетчиков, нам нужно правильно выбрать коэффициент трансформации трансформатора тока, исходя из того, что расчетная нагрузка присоединения, будет работать в аварийном режиме.

Коэффициент трансформации считается завышенным, если при 25%-ной нагрузке присоединения в нормальном режиме, ток во вторичной обмотке будет меньше 10% от номинального тока подключенного счетчика – 5 А.

Для того, чтобы присоединенные приборы, работали в требуемом классе точности (напоминаю что для счетчиков коммерческого учета класс точности трансформаторов тока должен быть – 0,2; 0,2S; для технического учета – 0,5; 0,5S), необходимо чтобы, подключаемая вторичная нагрузка Zн не превышала номинальной вторичной нагрузки трансформатора тока, для данного класса точности, при этом должно выполняться условие Zн ≤ Zдоп. Подробно это рассмотрено в статье: «Выбор трансформаторов тока на напряжение 6(10) кВ».

Еще одним условием правильности выбора трансформаторов тока, является проверка трансформаторов тока на токовую ΔI и угловую погрешность δ.

Угловая погрешность учитывается только в показаниях счетчиков и ваттметров, и определяется углом δ между векторами I1 и I2.

Токовая погрешность определяется по формуле [Л1, с61]:

  • Kном. – коэффициент трансформации;
  • I1 – ток первичной обмотки ТТ;
  • I2 – ток вторичной обмотки ТТ;

Пример выбора трансформатора тока для установки расчетных счетчиков

Нужно выбрать трансформаторы тока для отходящей линии, питающей трансформатор ТМ-2500/6. Расчетный ток в нормальном режиме составляет – 240,8А, в аварийном режиме, когда трансформатор будет перегружен на 1,2, ток составит – 289А.

Выбираем ТТ с коэффициентом трансформации 300/5.

1. Рассчитываем первичный ток при 25%-ной нагрузке:

2. Рассчитываем вторичный ток при 25%-ной нагрузке:

Как видим, трансформаторы тока выбраны правильно, так как выполняется условие:

I2 > 10%*Iн.счетчика, т. е. 1 > 0,5.

Рекомендую при выборе трансформаторов тока к расчетным счетчикам использовать таблицы II.4 – II.5.

Таблица II.5 Технические данные трансформаторов тока

Таблица II.4 Выбор трансформаторов тока

Максимальная расчетная мощность, кВАНапряжение
380 В10,5 кВ
Нагрузка, АКоэффициент трансформации, АНагрузка, АКоэффициент трансформации, А
101620/5
152330/5
203030/5
253840/5
304650/5
355350/5 (75/5)
406175/5
507775/5 (100/5)
6091100/5
70106100/5 (150/5)
80122150/5
90137150/5
100152150/5610/5
125190200/5
150228300/5
160242300/5910/5
1801010/5 (15/5)
200304300/5
240365400/51315/5
2501415/5
300456600/5
320487600/51920/5
400609600/52330/5
5608531000/53240/5
6309601000/53640/5
75011401500/54350/5
100015201500/55875/5

Учитывая необходимость подключения трансформаторов тока для питания измерительных приборов и реле, для которых нужны различные классы точности, высоковольтные трансформаторы тока выполняются с двумя вторичными обмотками.

1. Справочник по расчету электрических сетей. И.Ф. Шаповалов. 1974г.

Общие требования

Схемы подключения счетчиков через трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.

При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.

При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.

Счетчик трансформаторного включения имеет 10 либо 11 выводов:

Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.

В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм 2 по меди и не менее 4 мм 2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)

Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:

ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме.

Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

Подключения счетчика через трансформаторы тока

Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:

Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:

2.1 Десятипроводная схема

Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:

Фактически десятипроводная схема будет иметь следующий вид:

Преимущества десятипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Высокая надежность. Учет по каждой фазе собирается независимо друг от друга. В случае нарушения цепей учета по одной из фаз работа учета на других фазах не нарушается.

Недостатки десятипроводной схемы:

  1. Большой расход проводника, для сборки вторичных цепей учета.

2.2 Семипроводная схема

Принципиальная семипроводная схема подключения электросчетчика через трансформаторы тока:

Фактически семипроводная схема будет иметь следующий вид:

Преимущества семипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Экономия проводника, для сборки вторичных цепей учета за счет объединения вторичных токовых цепей.

Недостатки семипроводной схемы:

  1. Низкая надежность. В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.

2.3 Схема с совмещенными цепями

Принципиальная схема подключения электросчетчика через трансформаторы тока с совмещенными цепями.

При данной схеме цепи напряжения объединяются с токовыми цепями путем установки перемычек на трансформаторах от контакта Л1 к контакту Л2.

Фактически схема с совмещенными цепями будет иметь следующий вид:

Схема с совмещенными цепями не соответствует требованиям действующих правил и в настоящее время не применяется, однако она все еще встречается в старых электроустановках.

3. Подключение счетчика через трансформаторы тока и напряжения

В случае необходимости организации учета электрической энергии в сети выше 1000 Вольт применяется схема косвенного включения счетчика при которой токовые цепи подключаются к счетчику через трансформаторы тока, а цепи напряжения подключаются через трансформаторы напряжения:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Подключение счетчика через трансформатор тока. Особенности метода, плюсы и минусы, схемы. Полезные видео.

При подключении счетчика в электросеть 380V с током до 100А и мощностью >60кВт нужно пользоваться трансформаторами тока, а не включаться напрямую. Такой метод способствует замерам больших нагрузочных токов маломощными приборами учета. Проводится подключение трехфазного счетчика через трансформаторы тока по разным схемам и принципиально отличается от прямого включения в фазные линии.

Плюсы и минусы включения через ТТ

Если включить в измерительную цепь токовый трансформатор, вы сможете понизить токи до чисел, указанных в коэффициенте преобразования прибора. Если кратко описать устройство ТТ, становится ясно, что это индуктивный преобразователь с двумя обмотками: в первичной обмотке витков, как правило, больше, чем во вторичной, но бывает и наоборот.

Когда первичная катушка подключается последовательно в линию, во второй цепи образуется меньшая фазовая нагрузка. Туда же осуществляют подключение катушки счетчика через трансформаторы. Так вы обеспечите дополнительную защиту электросчетчика от перегрузок и короткого замыкания: в случае чего сгорит преобразователь, а не дорогостоящий счетчик.

Нас интересует такая токовая характеристика преобразователя, как коэффициент трансформации, или преобразования. Ток в 1-ной и 2-ной цепи по своему значению может отличаться в 4 — 100 раз, потому коэффициенты бывают разными:

  • 20/5;
  • 30/5;
  • 40/5;
  • 50/5;
  • 75/5;
  • 100/5;
  • 150/5;
  • 200/5;
  • 300/5;
  • 400/5;
  • 500/5.

При выборе коэффициента преобразования вы должны понимать, что нормальный режим работы электросчетчика предполагает сетевую частоту 50 Гц и номинальный ток в 5А. Коэффициент преобразования 100/5, например, означает, что кратность передачи равняется 20-ти, и вы сможете при правильном подключении трансформаторов тока к трехфазному счетчику обеспечить ток в нагрузочной цепи на уровне 100А.

Что выделяют из недостатков схемы подключения трехфазного счетчика через трансформаторы тока:

  • сбои в работе устройства учета бывают в ситуации, когда измерительный ток во вторичной обмотке не доходит до границы срабатывания считывающего механизма, — такое случается при незначительном потреблении в линейных цепях; проблема актуальна для электромеханических моделей, но не электронных счетчиков;
  • во время подключения трансформаторов тока к трехфазному счетчику надо внимательно учитывать полярность ТТ;
  • трансформатору нужно обеспечить пространство для монтажа;
  • специальные службы буду проводить проверки приборов.

Важные нюансы при включении счетчика с помощью ТТ

  1. До покупки определитесь с типом счетчика, местом монтажа, классом напряжения и продумайте схему подключения счетчика через трансформаторы тока.
  2. Внимательно прочтите паспорт прибора, рассмотрите схему на клеммной крышке с маркировкой и номерами выводов.
  3. Электромонтажные работы с токовыми цепями проводятся в строгом соответствии с ПУЭ. Электропровода токовых цепей в сечении должны превышать 2,5 мм2.
  4. Очень удобно эксплуатировать и обслуживать систему в дальнейшем, если сделать буквенную и цифровую маркировку проводки вторичных цепей. Цветом можно выделить другие провода трансформатора.
  5. Чтобы облегчить ремонт и замену 3-фазного электросчетчика, предусмотрите дополнительные контакты. Вам не придется отсоединять потребителей от электроэнергии при ремонтных работах.

Как выбирают ТТ? Значение тока максимальное во вторичной обмотке не должно превышать 40% от номинала, минимум составляет 5%. Порядок фазных напряжений, подключаемых к счетчику, контролируют фазометром.

Соблюдения полярности подключения обмоток — ключевой момент. Три пары клемм входа размещены на первичной обмотке, один из их контактов Л1 нужен, чтобы подключить правильный фазный провод. Второй контакт Л2 ведет проводку к 3-фазной нагрузке. И1, И2 — клеммы на измерительной обмотке, катушка 3-фазного электросчетчика подсоединяется к ним в параллель. Какое будет сечение у кабеля, идущего к клеммам первичной катушки, зависит от тока нагрузки, во вторичных цепях к счетчику подключен проводник от 2,5 мм2 и более.

Варианты схем подключения

Какая схема подключения трансформаторов тока к трехфазному счетчику подойдет в вашем случае? Давайте разберем плюсы и минусы популярных вариантов.

10-проводная принципиальная схема

Удобная, тщательная и безопасная схема подключения трехфазного счетчика через трансформатор тока, но не без недостатков. С одной стороны, схема позволяет при смене устройства учета не отсекать электроустановки, цепи напряжения можно спокойно выключать посредством испытательной коробки, заземление токовых цепей не дает потенциалу образовываться на выводах вторичных цепей. Независимый учет проводится по каждой фазе, если все-таки он нарушится по одной фазе, на других это не проявится. С другой стороны, 10-проводная схема предполагает значительный расход проводника.

Назначение контактных зажимов в десятипроводной схеме подключения:

  • входные зажимы фазовых проводов А, В, С — первый, четвертый и седьмой; выходные — третий, шестой, девятый;
  • входные зажимы измерительных обмоток фаз — второй, пятый, восьмой;
  • входной 0 провод идет на десятый зажим;
  • нулевой провод — на одиннадцатый.

Информация по контактам трансформатора: вход силовой линии показан как Л1, вход измерительной обмотки как И1, выход силовой линии — Л2, выход измерительной обмотки — И2. Заземляющий провод РЕ подсоединяется к 0-вой шине.

Схема подключения “звездой”

Все выходы измерительных обмоток И2 должны сойтись в одном узле тока и подсоединиться к одиннадцатому зажиму устройства учета. Третий, шестой и девятый выходные зажимы фазовых проводов, а также десятый входной нулевого провода надо соединить вместе и подключить к нулевой шине.

Плюс такого подключения — меньше проводов, минус — в плохой наглядности соединений, что может затруднить проверку энергоснабженцам.

7-проводное подключение

Чем отличаются принципиальная и фактическая семипроводная схема
у принципиальной выводы И2 закорочены и заземлены у фактической выводы И1 закорочены и заземлены

Эта схема экономит проводник, поскольку вторичные токовые цепи объединены, однако недостаточно надежна. Ненадежность работы связана со сбоем учета по всем фазам, если случится нарушение совмещенной токовой цепи. Сейчас является устарелой.

Видео для понимания процесса

Обратите внимание на интересные видео из Сети:

Трансформатор тока подключение сечение. Подключение счетчиков через трансформаторы.

Доброе время суток, дорогие читатели!

Давненько я ничего не писал. Тому есть причина. Делаю ремонт.

Хотел было снять несколько роликов о монтаже проводки в квартире, но понял что это не совсем интересно.

Поэтому сегодня статья о счетчиках электрической энергии.

Пафосный и занудный вариант ее я выбросил и решил писать, как будто рассказываю рядовому гражданину, например Вам, который ничего о счетчиках е знает.

Когда-то у меня в перечне работ лаборатории был вид работ: проверка и наладка цепей учета. Даже методика была. А в электрических сетях служба по контролю за учетом электроэнергии вообще входила в состав лаборатории, по крайней мере у нас в Рязани…

Впрочем, начнем.

Итак, счетчики бывают однофазные и трехфазные. Первые в основном применяются в частном секторе (дома, квартиры, гаражи), вторые везде.

По типу подключения счетчики делятся на:

счетчики прямого включения

на рисунке изображено подключение однофазного счетчика.

счетчики включаемые через трансформаторы тока. Про трансформаторы тока статья уже на сайте. Читайте с удовольствием.



на рисунке изображено подключение трехфазного счетчика через трансформаторы тока.

Чем обуславливается выбор типа подключения? Ожидаемым током нагрузки .

Обычно счетчики прямого включения рассчитаны не более чем на 100 А. Обращайте внимание на максимальный допустимый ток счетчика в паспорте или на самом счетчике, т.к. бывают счетчики на 6 А, которые применяют либо для подключения через трансформаторы тока, либо там где нагрузка мала.

Чем обусловлен выпуск счетчиков на разный максимальный возможный ток? Минимизацией погрешности измерений . Предпочтительнее всего когда нагрузка счетчика не превышает 2/3 максимального возможного тока.

Почему бы не выпускать счетчики подключаемые только через трансформаторы тока? Потому что трансформаторы тока так же вносят ошибку в результат измерений.

Поэтому энергоснабжающие организации выбрали золотую середину: стараются убрать трансформаторы тока с коэффициентом трансформации менее 100/5, предписывая установку счетчиков прямого включения в этом случае.

Какие часто возникают вопросы по однофазным счетчикам?

Благодаря тому, что межповерочный интервал счетчика электрической энергии составляет 16 лет (уточнить его можно в паспорте на счетчик) о нем благополучно забыли. Но счетчик это измерительный прибор, который необходимо поверять через определенный промежуток времени, чтобы удостовериться, что он все еще правильно учитывает электроэнергию. С недавних пор об этом вспомнили и пошли гражданам предписания о необходимости поверить прибор учета, а то и заменить.

Чем обосновано требование замены счетчика? Ранее класс точности счетчика должен был быть не хуже 2,5, теперь требования ужесточились, и требуются счетчики с классом точности не хуже 2,0.

Отмечу, что чем меньше число обозначающее класс точности, тем точнее измерение.

В процессе своей деятельности я сталкивался со счетчиками класс точности которых 0,2.

Кроме самого счетчика имеется куча требований к антуражу:

— Высота установки счетчика 0,8 – 1,7 м от пола до клемной колодки.

— Провода для подключения должны быть сечением не менее 2,5 мм 2 если они из меди и не менее 4 мм 2 если они из алюминия. И желательно чтобы жила была не многопроволочной.

— Перед счетчиком должно быть коммутирующее устройство – автоматический выключатель или выключатель нагрузки – это сейчас, а ранее применялись пакетные выключатели. Лучше если оно будет двухполюсным. Т.е. при отключении коммутирующего устройства обрывается не только фаза,но и ноль.

Для чего это нужно? Для безопасного обслуживания прибора учета.

— После счетчика обычно ставятся автоматические выключатели.

Советую замену счетчика отдать на откуп энергоснабжающей организации.

Почему? Дело в том что эта услуга не так дорога, зато работа будет выполнена настоящими профессионалами, которые потом еще счетчик и опломбируют. Если же Вы сами счетчик поменяете или установите, с Вас все равно возьмут те же деньги за проверку правильности подключения и последующую опломбировку.

Схема подключения счетчика всегда приводится в паспорте на счетчик и часто дублируется на обратной стороне крышки клемной колодки:


На рисунке обратная сторона крышки однофазного счетчика.

Гораздо больше вопросов по трехфазным счетчикам.

Трехфазные счетчики бывают на 380 В и на 100 В. Вторые применяются для установки приборов учета на стороне 6 – 10кВ с питанием их от трансформаторов напряжения.

Читайте статью о трансформаторах напряжения на сайте с удовольствием.

Кроме того есть масса особенностей при включении счетчика через трансформаторы тока. Кстати, схемы их подключения так же приводятся в паспорте на счетчик.



На рисунке простейшая схема включения счетчика через трансформаторы тока.

Следует учитывать обязательно направление протекания тока через трансформаторы тока. Если один из трансформаторов перевернуть (Л1 и Л2 поменять местами), а И1 и И2 оставить подключенными по прежнему, то показания счетчика будут неверны.

Аналогично будет и если И1 и И2 одного из трансформаторов тока поменять местами.

Так же нельзя напряженческие проводники и токовые от разных фаз подключать на одну группу контактов счетчика. (например, контакты 1, 2, 3 предназначены для подключения фазы “А” и если на клеммах 1 и 3 подключены токовые цепи фазы “А”, то на клемму 2 сажать проводник с напряжением фазы “В” нельзя)

Для правильности измерений электронными счетчиками так же важна правильность чередования фаз. Правильность чередования фаз у современных счетчиков можно легко определить используя специальное программное обеспечение или прибор “ВАФ”.

Это не касается электромагнитных счетчиков.

Еще Вы можете столкнуться со счетчиком для измерения только реактивной энергии. Их легко определить по типу. В нем обязательно будет буква “Р”, а на клеммнике не будет клеммы для подключения нуля.

Современные электронные счетчики измеряют и активную и реактивную мощность и еще много чего.

А на возникшие у Вас вопросы по поводу учета электроэнергии я обязательно отвечу.

На сем прощаюсь и желаю успехов!

Разобравшись со схемой подключения однофазного электросчетчика перейдем к изучению схемы подключения трехфазного. Трехфазный счетчик состоит из трех однофазных, укомплектованных в одном корпусе с объединенным устройством суммирования и отображения киловатт*часов. При небольших токовых нагрузках до 5/60 и 5/100 А трехфазные счетчики можно включать напрямую в сеть (трансформаторы тока встроены в счетчик). Если же величина тока в трех фазах выше 100 А, то токовые обмотки () или датчики тока () счетчика подключается к сети через вторичные обмоткам измерительных трансформаторов. Кроме того, если счетчик рассчитан на номинальное напряжение 100 В, то параллельные обмотки подключаются через трансформаторы напряжения.

Схема подключения счетчика напрямую

Подключение трехфазного счетчика напрямую аналогично присоединению к сети однофазного, где вместо одной фазы, к примеру «А», подключаются все 3 фазы «А, В, С». Перед включением счетчика напрямую согласно ПУЭ необходимо перед ним ставить вводной коммутационный аппарат ( , или рубильник с предохранителями) на расстоянии, не дальше 10 метров от счетчика.

Самым оптимальным вариантом является трехфазный автоматический выключатель с номинальным током, меньшим по величине тока трехфазного счетчика. Данная схема используется для ведения учета в частных домах, гаражах, не больших магазинах.

Схема подключения трехфазного счетчика через трансформаторы тока

Если в трехфазной сети величина тока по фазам превышает значение номинального тока трехфазного счетчика, то для подключения прибора учета электроэнергии используются трансформаторы тока. Трансформаторы тока служат в основном для увеличения пределов измерения контрольно-измерительных приборов, нашем случае счетчика, рассчитанных на потребляемый ток до 5 А. Состоят из шинопровода (первичная обмотка Л1, Л2) и вторичная обмотка И1, И2.

Как видно из рисунка, токовые обмотки (1-3, 4-6, 7-9)счетчика нужно подключать к выводам И1 и И2 вторичной обмотки измерительного трансформатора. Обмотки напряжения (2, 5, 8) присоединяются к шинопроводам Л1 и к нулевому проводу, к которым будет приложено напряжение 220 В. Схема соединения токовых и параллельных обмоток называется «звездой»! Трансформаторы тока выпускают следующих значений токов 10/5 А, 15/5 А, ….100/5 А и т.д.

Схема подключения трехфазного счетчика через трансформаторы тока и напряжения

Для ведения учета электроэнергии в напряжением не 127 В, 220 В, 380 В, а выше (35 кВ, 110 кВ) совместно с трансформаторами тока используются трансформаторы напряжения, которые преобразуют во вторичной обмотке 100 Вольт для питания электросчетчика. Трансформаторы напряжения выпускают следующих напряжений: 6000/100 В, 10000/100 В.

Первичные обмотки трансформаторов напряжения подключаются к фазам А, В, С высоковольтной цепи и собираются в схему «звезда». Вторичные обмотки подключаются к обмоткам напряжения счетчика и к нулевому проводу, образуя также схему «звезда». Схема трансформаторов тока аналогична выше изложенной.

Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.

1 Номинальное напряжение трансформатора тока.

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

2 Класс точности.

Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0.

3 Номинальный ток вторичной обмотки.

Обычно 5А.

4 Номинальный ток первичной обмотки.

Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.

Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.

А сейчас вспомним математику и рассмотрим на примере данные требования.

Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.

Выполним проверку измерительного трансформатора Т-066 200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Как видим 3,5А>2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100 – 35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Вывод: измерительный трансформатор Т-066 200/5 для нагрузки 140А выбран правильно.

По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.

При выборе трансформаторов тока можно руководствоваться данными таблицы:

Добрый день, уважаемые читатели сайта «Заметки электрика».

Решил написать подробную статью на тему подключения счетчиков электроэнергии через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН).

Все схемы подключения электросчетчиков в данной статье относятся, как к индукционным счетчикам, так и к электронным.

О том, как правильно выбрать трансформаторы тока и трансформаторы напряжения я расскажу Вам в следующей статье. Чтобы не пропустить выходы новых статей на сайте — подпишитесь на рассылку новостей.

Итак, приступим.

ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ3 — трансформаторы тока.

Общая точка вторичных обмоток трансформаторов тока и напряжения должна быть заземлена с целью безопасности.

ТТ1 — ТТ3 — трансформаторы тока.

Пунктиром на схеме показано соединение, которое может отсутствовать.

Эта схема подключения счетчика аналогична схеме выше, но без использования трансформаторов напряжения. Примером такого подключения является счетчик .

ТТ1 — ТТ2 — трансформаторы тока. Трансформаторы напряжение отсутствуют.

ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Более подробно и наглядно по этой схеме подключения Вы можете узнать из моих следующих статей:


ТН1 — ТН2 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Подключение счетчика через трансформаторы тока. Выводы

В завершении статьи о подключении счетчика через трансформаторы тока и напряжения, хочу напомнить Вам, что практически у любого счетчика на крышке от клеммных зажимов изображена схема его подключения с маркировкой и нумерацией выводов. А также имеется паспорт, где все подробно описано.

Однако, лучше все таки заранее знать тип счетчика, место установки, класс напряжения и соответственно схему его подключения.

Электромонтаж токовых цепей и цепей напряжения должен проводиться строго по ПУЭ. Требования ПУЭ к сечению проводов токовых цепей — не меньше 2,5 кв. мм, а цепей напряжения — не меньше 1,5 кв.мм. Все сечения указаны только для медного провода.

P.S. В данной статье размещены не все схемы подключения электросчетчиков, а только самые распространенные и востребованные. Если Вас интересуют и Вы знаете другие схемы, то с удовольствием обсудим их в комментариях.

Чтобы облегчить восприятие материала этой статьи по подключению счетчика через трансформаторы тока и напряжения, я приведу Вам наглядные примеры на каждую из вышеперечисленных схем, используя фото- и видео-ролики, созданные лично мною.

Следите за обновлениями или подпишитесь на новости сайта.

Подключение счетчика через трансформаторы тока • Energy-Systems

О каких особенностях подключения счетчика через трансформаторы тока следует знать?

Назначение электросчётчиков прекрасно известно любому человеку, пусть даже страшно далёкому от сферы электроэнергетики. Служат счётчики для того, чтобы вести учёт потребляемой электроэнергии в электросетях переменного тока с 50-ти герцевой частотой. Подключаются они к 3-х или же к 4-х проводным электросетям посредством измерительных трансформаторов тока в 5 ампер и 100 вольт.

Наибольшую заинтересованность у потребителей электроэнергии чаще всего вызывают вопросы правильного и грамотного подключения счётчиков через трансформаторы тока к электрическим сетям, поскольку без этого невозможно нормально организовать работоспособную систему электроснабжения на любом объекте, без всякой зависимости от его назначения. Стоит акцентировать внимание на том, что в данном конкретном случае абсолютно не принципиально, какой тип счётчика применяется – индукционный или электронный, главное – это какую наиболее оптимальную схему нужно подобрать для осуществления такого подключения к электричеству.

Ещё одним крайне важным и требующим серьёзного внимания вопросом является соблюдение полярности первичной и вторичной обмоток трансформатора тока, их начала и конца, а также сама по себе полярность обмоток с полярностью трансформатора.

Перед тем как переходить непосредственно к подключению электросчётчика, стоит обратить внимание на ряд следующих моментов. Схема правильного подключения электросчётчика практически всегда изображается на его крышке вместе с маркировкой и информацией о выводе. Плюс ко всему подобный процесс всегда детально расписывается в прилагаемом к прибору паспорте изделия. В любом случае лучше загодя обладать информацией о таких моментах, как место монтажа счётчика, его тип и предполагаемая схема подключения в каждом конкретном случае.

Необходимо ещё учитывать тот факт, что все электромонтажные работы должны организовываться только согласно ПУЭ, при этом никаких исключений не допускается. Провод должен быть, конечно же, медным с сечением 2,5 кв. мм (это для токовых цепей) и 1,5 кв. мм (для цепей напряжения). Напоследок ещё необходимо отметить, что для облегчения использования и обслуживания электросчётчика в дальнейшем, есть смысл при установке и подключении пользоваться цветными проводами.

Несколько вариантов схем подключения трехфазного счетчика с трансформаторами тока

Вариант № 1.

Эта схема представляет собой организацию подключения электрического счетчика к 3-х проводной сети, состоящей из трёх фаз, количество трансформаторов тока 2.

 

Вариант № 2.

Этот вариант схемы подключения трехфазного счетчика с трансформаторами тока заключает в себе организацию подключения электрического счетчика к 3-х проводной сети, состоящей из трёх фаз, количество трансформаторов тока 3.

Вариант № 3.

Наконец, третий вариант схемы предполагает осуществление подключения электрического счетчика к 3-х проводной сети, состоящей из трёх фаз, количество трансформаторов тока 2, количество трансформаторов напряжения 2.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости выполнения электромонтажных работ.

Онлайн расчет стоимости проектирования

Основные схемы подключения трансформатора

Основные схемы подключения трансформатора

Что такое трансформатор тока?
Трансформатор тока (ТТ) представляет собой индуктивное устройство, преобразующее напряжение в сети. Его первичная обмотка подключается к источнику электроэнергии, а вторичная замыкается на защитный прибор с малым внутренним сопротивлением. Ток протекает через первичную обмотку, преодолевая ее сопротивление.

В процессе движения по виткам первичной обмотки возникает магнитный поток, который улавливается магнитопроводом. Витки вторичной обмотки расположены перпендикулярно виткам первичной обмотки. Под воздействием электродвижущей силы ток во вторичной обмотке преодолевает сопротивление в катушке, в результате чего падает напряжение на зажимах вторичной цепи.

Коэффициент трансформации определяется на стадии проектирования трансформатора, поэтому важно правильно выбрать модель устройства и заказать трансформатор в Бресте в зависимости от назначения и особенностей эксплуатации.

Сфера применения трансформаторов
Трансформаторы тока устанавливаются во многих бытовых электроприборах и промышленном электрооборудовании, для работы которых требуется более высокое или низкое напряжение, чем 220 В или 380 В. Для питания галогенных светильников необходимо напряжение 12 В, то есть почти в 20 раз ниже, чем в сети, и ТТ его понижает до требуемой величины.

Также трансформатор используются для учета электроэнергии. Широко распространены измерительные ТТ, которые подключаются к приборам измерения (вольтметрам, амперметрам и прочим) и осуществляют передачу токов на них. Выпускаются как компактные модели, которые помещаются в корпус бытовых приборов, так и модели для установки под открытым небом на линиях электросетей.

Основные преимущества изделий
Использование трансформаторов тока дает следующие преимущества:

Унификация измерительных приборов, градуировка их шкал в соответствии с измеряемым первичным током;
Повышается уровень безопасности при работе с различными реле и измерительными приборами за счет разделения цепей высшего и низшего напряжения;
Увеличивается максимальный диапазон напряжений и пределов измерения для различных измерительных приборов;
Обеспечивается питание токовых обмоток реле защиты и измерительных приборов;
Надежная изоляция от высокого первичного напряжения.

Параметры для выбора схемы подключения
Подключить самостоятельно трансформатор, предназначенный для бытового использования несложно – достаточно строго следовать схеме подключения. Но для эффективной и безопасной работы электроприборов необходимо правильно подобрать саму схему. При выборе необходимо учитывать:

Количество фаз в сети – трехфазные модели имеют 4 выхода, а однофазные только 2, поэтому схема подключения трехфазного трансформатора имеет ряд отличий;
Тип трансформатора тока – повышающий или понижающий;
Какой параметр тока необходим потребителю – для работы бытовой техники нужен постоянный ток, а в сети – переменный, и для его преобразования требуется подключение вторичной обмотки трансформатора тока через выпрямитель.

Популярные схемы подключения
Если ТТ используется для подключения через них вольтметров, амперметров и других высокочувствительных приборов, измеряющих ток небольшой силы, подключение трансформаторов тока производится по следующей схеме:

Схема подключения трансворматора для тока небольшой силы.

Первичная обмотка Л1-Л2 соединяется с линейным проводом, а вторичная обмотка ТТ И1-И2 соединена с токовой обмоткой измерительного прибора. Выводы Л1, И1 соединены перемычкой и подключены к фазному проводу. Третий зажим соединяется с нулевым проводом.

Для трехфазной электросети чаще всего используются три однофазных трансформатора, которые подключаются по схеме:

Если требуется подключение понижающего устройства, следует руководствоваться схемой:

Схема подключения понижающего трансворматора.

Чаще всего она используется для создания систем освещения. Небольшой размер ТТ дает возможность монтировать их непосредственно в каркасе потолка. Трансформатор располагается между выключателем и светильниками. Светильники подключаются параллельно.

Что важно учитывать при подключении?
Для облегчения монтажа производители наносят на них маркировку: ТАа, ТА1, КА1, что позволяет без ошибок соединить элементы.

При установке трансформатора на трехфазные линии необходимо учитывать, что, если напряжение в сети составляет от 6 до 35 кВ, трансформаторы могут быть установлены только на двух фазах, поскольку в таких сетях отсутствует нулевой провод.

Стоимость услуг

  • 1

    TTU-AL 630/6 (г. Волжский)

    шт

    53 000

  • 2

    TTU-Al 630/6 (г. Волжский)

    шт

    53 000

  • 3

    ТМ 400/6 (г. Волжский)

    шт

    34 600

  • 4

    ТМ-400/6 (г. Волжский)

    шт

    34 600

  • 5

    ТМ-400/6 (г. Волжский)

    шт

    34 600

  • 6

    ТМ-400/6 (г. Волжский)

    шт

    34 600

  • 7

    ТМ-400/6 (г. Волжский)

    шт

    34 600

  • 8

    ТМ-400/6 (г. Волжский)

    шт

    34 600

  • 9

    ТМ-400/10 (г. Волжский)

    шт

    34 600

  • 10

    ТМ-400/10 (г. Волжский)

    шт

    34 600

  • 11

    ТМ-400/10 (г. Волжский)

    шт

    34 600

  • 12

    ТМ-400/10 (г. Волжский)

    шт

    34 600

  • 13

    ТМ-400/10 (г. Волжский)

    шт

    34 600

  • 14

    ТМ-400/10 (г. Волжский)

    шт

    34 600

  • 15

    ТМ 400/10 (г. Волжский)

    шт

    34 600

  • 16

    ТМ-250/10 (г. Волжский)

    шт

    30 100

  • 17

    ТМ 320/6 (г. Волжский)

    шт

    31 700

  • 18

    ТМ-320/6 (г. Волжский)

    шт

    31 700

  • 19

    ТМ-250/6 (г. Волжский)

    шт

    30 100

  • 20

    ТМ-250/6 (г. Волжский)

    шт

    30 100

  • 21

    ТМ-250/6 (г. Волжский)

    шт

    30 100

  • 22

    ТМ-250/6 (г. Волжский)

    шт

    30 100

  • 23

    ТМ 250/6 (г. Волжский)

    шт

    30 100

  • 24

    ТМ-250/6 (г. Волжский)

    шт

    30 100

  • 25

    ТМ-250/6 (г. Волжский)

    шт

    30 100

  • 26

    ТМ250/10 (г. Волжский)

    шт

    30 100

  • 27

    ТМ-25 (г. Волжский)

    шт

    16 900

  • 28

    ТМ-25 (г. Волжский)

    шт

    16 900

  • 29

    ТМ-250/6 (г. Волжский)

    шт

    10 800

  • 30

    ТМ 25/10 (г. Волжский)

    шт

    16 900

  • 31

    ТМ25/10 (г. Волжский)

    шт

    16 900

  • 32

    Трансформатор ТСМА-60/6 (г.Михайловка)

    шт

    22 200

  • 33

    Трансформатор ТМГ11-100/-10-Y1 (г.Михайловка)

    шт

    23 100

  • 34

    Трансформатор ТМГ 250/10-Y1 (г.Михайловка)

    шт

    41 500

  • 35

    Трансформатор ТМ-250/6-У1 (г.Михайловка)

    шт

    30 100

  • 36

    Трансформатор ТМ-250/10/0,4 (г.Михайловка)

    шт

    30 100

  • 37

    Трансформатор ТМ-250/10/0,4 (г.Михайловка)

    шт

    30 100

  • 38

    Трансформатор ТМ-160/10/0,4 (г.Михайловка)

    шт

    25 700

  • 39

    Трансформатор ТМ-100/10/0,4 (г.Михайловка)

    шт

    20 500

  • 40

    ТМ-400/10/0,4 (г. Калач-на-Дону)

    шт

    34 600

  • 41

    ТМ-50/10/0,4 (г. Калач-на-Дону)

    шт

    18 200

  • 42

    ТМ-250/10/0,4 (г. Калач-на-Дону)

    шт

    30 100

  • 43

    ТМ-400/10/0,4 (г. Калач-на-Дону)

    шт

    34 600

  • 44

    ТМ-400/10/0,4 (г. Калач-на-Дону)

    шт

    34 600

  • 45

    ТМ-400/10/0,4 (г. Калач-на-Дону)

    шт

    34 600

  • 46

    ТМ-250/10/0,4 (г. Калач-на-Дону)

    шт

    30 100

  • 47

    ТМ-250/10/0,4 (г. Калач-на-Дону)

    шт

    30 100

  • 48

    ТМ-400/10/0,4 (г. Калач-на-Дону)

    шт

    34 600

  • 49

    ТМ-160/10/0,4 (г. Калач-на-Дону)

    шт

    25 700

  • 50

    ТМ-63/10/0,4 (г. Калач-на-Дону)

    шт

    21 400

  • 51

    ТМ-100/10/0,4 (г. Калач-на-Дону)

    шт

    20 500

  • 52

    ТМ-100/10/0,4 (г. Калач-на-Дону)

    шт

    20 500

  • 53

    ТМ-63/10/0,4 (г. Калач-на-Дону)

    шт

    21 400

  • 54

    ТМ-400/10/0,4 (г. Калач-на-Дону)

    шт

    34 600

  • 55

    ТМ-250/10/0,4 (г. Калач-на-Дону)

    шт

    30 100

  • 56

    Трансформатор ТМ-630 (г. Урюпинск)

    шт

    53 000

  • 57

    Трансформатор ТМ-400/10 (г. Урюпинск)

    шт

    34 600

  • 58

    Трансформатор ТМ-400/10 (г. Урюпинск)

    шт

    34 600

  • 59

    Трансформатор ТМ-250/10 (г. Урюпинск)

    шт

    30 100

  • 60

    Трансформатор ТМ-250/10 (г. Урюпинск)

    шт

    30 100

  • 61

    Трансформатор ТМ-160 (г. Урюпинск)

    шт

    25 700

  • 62

    Трансформатор ТМ-160 (г. Новоаннинский)

    шт

    25 700

  • 63

    Трансформатор ТМ-160 (г. Новоаннинский)

    шт

    25 700

  • 64

    Трансформатор ТМ-160 (г. Новоаннинский)

    шт

    25 700

  • 65

    Трансформатор ТМ-250 (г. Новоаннинский)

    шт

    30 100

  • 66

    Трансформатор ТМ-250 (г. Новоаннинский)

    шт

    30 100

  • 67

    Трансформатор ТМ-160/10 (г. Новоаннинский)

    шт

    25 700

  • 68

    Трансформатор ТМ-160 кВА (г. Новоаннинский)

    шт

    25 700

  • 69

    Трансформатор ТМ-100 кВА (г. Новоаннинский)

    шт

    20 500

  • 70

    Трансформатор ТМ-320/6/0,4 (р.п. Городище)

    шт

    31 700

  • 71

    Трансформатор ТМ-400/10/0,4 (р.п. Городище)

    шт

    34 600

  • 72

    Трансформатор ТМ-400/10/0,4 (р.п. Городище)

    шт

    34 600

  • 73

    Трансформатор ТМ-400/10/0,4 (р.п. Городище)

    шт

    34 600

  • 74

    Трансформатор ТМ-630/10/0,4 (р.п. Городище)

    шт

    53 000

  • 75

    Трансформатор ТМ-60/10/0,4 (склад ф.КМЭС)

    шт

    21 400

  • 76

    Трансформатор ТМ-400/10/0,4 (склад ф.КМЭС)

    шт

    34 600

  • 77

    Трансформатор ТМ-100/10/0,4 (склад ф.КМЭС)

    шт

    20 500

  • 78

    Трансформатор ТМ-250/10/0,4 (склад ф.КМЭС)

    шт

    30 100

  • 79

    Трансформатор ТМ-160/10/0,4 (склад ф.КМЭС)

    шт

    25 700

  • 80

    Трансформатор ТМ-160/10/0,4 (склад ф.КМЭС)

    шт

    25 700

  • 81

    Трансформатор ТМ-160/10/0,4 (склад ф.КМЭС)

    шт

    25 700

  • 82

    Трансформатор ТМ-100/10/0,4 (склад ф.КМЭС)

    шт

    20 500

  • 83

    Трансформатор ТМ-250кВА (склад ф.КМЭС)

    шт

    30 100

  • 84

    Трансформатор ТМ-250кВА (склад ф.КМЭС)

    шт

    30 100

  • 85

    Трансформатор ТМ-160/6/0,4 (склад ф.КМЭС)

    шт

    25 700

  • 86

    Трансформатор ТМ-400/10/0,4кВ (с.Ст.Полтавка)

    шт

    34 600

  • 87

    Трансформатор ТМ-160/6 (р.п.Ср.Ахтуба)

    шт

    25 700

  • 88

    Трансформатор ТМ-250/6 (р.п.Ср.Ахтуба)

    шт

    30 100

  • 89

    Трансформатор ТМ-180/6 (р.п.Ср.Ахтуба)

    шт

    26 700

  • 90

    Трансформатор ТСМА-160/10 (г.Палласовка)

    шт

    34 200

  • 91

    Трансформатор ТМ-320/10 (р.п.Быково)

    шт

    31 700

  • 92

    Трансформатор ТМ-180/10 (р.п.Быково)

    шт

    26 700

  • 93

    Трансформатор ТМ-250/10 AL (г. Жирновск)

    шт

    30 100

  • 94

    Трансформатор ТМ-400/10 (г. Жирновск)

    шт

    34 600

  • 95

    Трансформатор ТМ-315/10 (г. Жирновск)

    шт

    31 700

  • 96

    Трансформатор ТМ-250/6 (г. Жирновск)

    шт

    30 100

  • 97

    Трансформатор ТМ 250/10-У1 (г. Жирновск)

    шт

    30 100

  • 98

    Трансформатор NТ 250/10/0.4 (г. Жирновск)

    шт

    30 100

  • 99

    Трансформатор ТМ-400/6 (г. Жирновск)

    шт

    34 600

  • 100

    Знак дорожный тип 3.31 Конец всех ограничений (Временный) – 71 шт (г. Волгоград)

    шт

    35 180

  • 101

    Знак дорожный Зона действия предупреждающий 30м 8.2.1 (Временный) -2 шт (г. Волгоград)

    шт

    700

  • Как подключить трансформаторы тока?

    Как подключить трансформаторы тока?

    Первичная обмотка трансформатора тока обычно имеет только один виток. На самом деле это не виток или виток вокруг сердечника, а просто проводник или шина, проходящая через «окно». У первичной обмотки никогда не бывает больше нескольких витков, в то время как вторичная обмотка может иметь очень много витков, в зависимости от того, насколько ток должен быть понижен. В большинстве случаев первичная обмотка трансформатора тока представляет собой одинарный провод или шину , а вторичная обмотка намотана на многослойный магнитопровод, размещенный вокруг проводника, в котором необходимо измерить ток, как показано на рисунке 1.

    Если первичный ток существует и вторичная цепь ТТ замкнута, обмотка создает и поддерживает противодействующую или обратную ЭДС по отношению к первичной намагничивающей силе.

    Если вторичная обмотка размыкается током первичной обмотки, счетчик ЭДС снимается; а сила намагничивания первичной обмотки создает во вторичной обмотке чрезвычайно высокое напряжение, которое опасно для персонала и может вывести из строя трансформатор тока.

    Рисунок 1 — Трансформатор тока ВНИМАНИЕ:
    По этой причине вторичная обмотка трансформатора тока всегда должна быть закорочена перед извлечением реле из корпуса или удалением любого другого устройства, с которым работает ТТ.Это защищает ТТ от перенапряжения .

    Трансформаторы тока используются с амперметрами, ваттметрами, измерителями коэффициента мощности, ватт-часами, компенсаторами, защитными и регулирующими реле и катушками отключения автоматических выключателей. Один трансформатор тока может использоваться для управления несколькими приборами, при условии, что совокупные нагрузки приборов не превышают тех, на которые рассчитан трансформатор тока.

    Вторичные обмотки обычно рассчитаны на 5 ампер. На рисунке 2 показаны различные трансформаторы тока.Часто трансформаторы тока имеют несколько ответвлений на вторичной обмотке для регулировки диапазона тока, который можно измерить на первичной обмотке.

    Рисунок 2 — Фотография трансформаторов тока

    Соответствующее содержание EEP с рекламными ссылками

    Установка и подключение трансформаторов тока — Continental Control Systems, LLC

    ПРЕДУПРЕЖДЕНИЕ ПО БЕЗОПАСНОСТИ! Трансформаторы тока (ТТ) обычно устанавливаются в электрооборудование со смертельно опасным высоким уровнем напряжения. Прежде чем пытаться установить трансформаторы тока, прочтите страницу безопасности при установке трансформаторов тока.

    ВНИМАНИЕ! Измерители WattNode предназначены для работы только с трансформаторами тока с выходным напряжением 0,333 В переменного тока. Этот тип ТТ имеет встроенный нагрузочный резистор, который выдает безопасный выходной сигнал низкого напряжения. Использование трансформаторов тока любого другого типа приведет к неправильным измерениям мощности и может необратимо повредить измеритель WattNode.

    • В отличие от трансформаторов тока с передаточным отношением с токовыми выходами, эти трансформаторы тока имеют внутреннюю нагрузку для обеспечения безопасного выходного напряжения 0,333 В переменного тока, поэтому закорачивающие блоки не нужны.

    Ключевые точки

    • Установите трансформаторы тока на фазный провод, соответствующий фазе входного напряжения.
    • Установите трансформаторы тока так, чтобы стрелка или этикетка «Эта сторона по направлению к источнику» была обращена к выключателю, питающему нагрузку.
    • Подключите белый и черный выводы ТТ к соответствующим входным клеммам ТТ с белыми и черными точками.

    Загрузить: Инструкция по установке и подключению ТТ (AN-130) (PDF, 3 страницы)

    Открытие и закрытие CT

    ТТ Accu-CT Series с разъемным сердечником открываются, сжимая рифленые панели, чтобы освободить защелку и потянуть / повернуть верхнюю часть.Убедитесь, что сопрягаемые поверхности чистые. Обломки увеличивают зазор, снижая точность. Оберните трансформатор тока вокруг проводника и поверните верхнюю часть обратно в закрытое положение, пока защелка не закроется. Закрепите проводник в нижней части U-образной секции ТТ, используя кабельную стяжку через окно ТТ и вокруг проводника.

    CTML Series ТТ с разъемным сердечником открываются, потянув за защелку. Убедитесь, что сопрягаемые поверхности чистые. Обломки увеличивают зазор, снижая точность.Оберните трансформатор тока вокруг проводника и сожмите его до тех пор, пока не услышите щелчок защелки.

    Модели ТТ с разъемным сердечником серии CTS и CTBL серии могут быть открыты для установки вокруг проводника или шины. Эти трансформаторы тока состоят из двух частей: С-образного корпуса и I-образного сечения, которое снимается для установки. Чтобы открыть ТТ с разъемным сердечником модели CTS, вытяните I-образную секцию прямо из C-образного корпуса. Чтобы открыть трансформатор тока шины модели CTBL, сначала удалите винты с накатанной головкой, которыми крепится I-образная секция.Требуется сильное усилие, особенно если ТТ новый.

    Съемная секция подходит только для одной стороны, поэтому при ее снятии обратите внимание на то, как части стального сердечника подходят друг к другу. При закрытии ТТ обязательно совместите концы таким же образом. Если кажется, что ТТ заклинивает и не закрывается, возможно, детали стального сердечника выровнены неправильно. Не применяйте чрезмерную силу! Вместо этого переместите или покачайте съемную часть, пока ТТ не закроется без чрезмерного усилия.

    После повторной сборки трансформатора тока с разъемным сердечником модели CTS можно закрепить нейлоновую кабельную стяжку по периметру трансформатора тока, чтобы предотвратить случайное открывание.На моделях шин CTBL установите на место нейлоновые винты и затяните их пальцами. Не используйте отвертку!

    Обратите внимание, что С-образный корпус и съемная I-образная секция ТТ с открыванием калибруются как единое целое. Для большей точности эти детали не следует заменять местами с другими трансформаторами тока.

    ТТ с твердым сердечником требует, чтобы измеряемый фазный провод был отключен на одном конце, чтобы его можно было пропустить через отверстие в ТТ. Это несложно, когда калибр провода небольшой, но становится непрактичным с проводами большего калибра и несколькими параллельными проводниками.

    Фазовые жилы

    Для правильных измерений трансформаторы тока должны быть установлены на фазном проводе, соответствующем подключению входа напряжения. Подключения входа напряжения находятся на пятипозиционной зеленой клеммной колодке с винтовыми зажимами. Например, трансформатор тока ØA должен быть установлен на том же фазовом проводе, который подключен к входу напряжения ØA. Аналогично, ØB CT устанавливается на той же фазе, что и вход ØB Voltage, а вход ØC CT устанавливается на входе ØC Voltage. Для идентификации проводов может помочь использование цветной ленты или этикеток.

    Чтобы уменьшить магнитные помехи между трансформаторами тока на соседних фазах, рекомендуется разделять их примерно на 1 дюйм (25 мм). Это также помогает предотвратить образование перемычки между выводами фазных проводов или шин и пылью и мусором, что может вызвать пробой дуги.

    Для обеспечения максимальной точности отверстие ТТ не должно быть больше чем на 50% больше, чем фазовый провод. Если отверстие ТТ намного больше, чем проводник, расположите провод по центру отверстия ТТ.Если это невозможно, попробуйте расположить проводник в нижней части U-образной половины трансформатора тока, подальше от конца отверстия, где происходит утечка магнитного потока.

    Пластиковые кабельные стяжки могут использоваться для фиксации положения ТТ на фазном проводе. Кабельная стяжка также может быть закреплена по периметру некоторых моделей трансформаторов тока, чтобы предотвратить их случайное размыкание. Проводник находится вдали от открытого конца трансформатора тока.

    См. Страницу выбора ТТ для получения дополнительной информации о выборе ТТ.

    Ориентация и полярность

    ТТ

    отмечены символом (стрелкой) или этикеткой, которые указывают на правильную механическую ориентацию ТТ на измеряемом проводе. Найдите на ТТ стрелку или метку «Эта сторона по направлению к источнику» и установите ТТ этикеткой или стрелкой в ​​сторону источника тока: обычно счетчика электросети или автоматического выключателя.

    В дополнение к установке трансформаторов тока с правильной механической ориентацией, электрическая полярность, на что указывают их белый и черный провода, также должна быть правильной.Каждая пара проводов ТТ подключается к соответствующей клемме на черной шестипозиционной клеммной колодке с винтовыми зажимами. Клеммы обозначены ØA CT, ØB CT и ØC CT. Полярность каждой пары клемм обозначена белой и черной точкой на этикетке. Обязательно подключите белый провод к фазной клемме, совмещенной с белой точкой, а черный провод — к клемме с черной точкой.

    Помните, что для правильной работы и физическая ориентация, и электрическая полярность каждой фазы должны быть правильными.Если фаза перевернута электрически или механически, и ток течет в обратном направлении, измеритель WattNode будет измерять, в зависимости от модели, нулевую или отрицательную энергию для этой фазы.

    Провода отведения ТТ

    Если подводящие провода ТТ длиннее, чем необходимо, их можно укоротить. Короткие подводящие провода ТТ помогают свести к минимуму электрические помехи. Если подводящие провода ТТ должны быть длиннее 8 футов, их можно удлинить. Как правило, лучше установить WattNode рядом с измеряемыми проводниками, а не удлинять провода трансформатора тока.

    Однако можно удлинить провода трансформатора тока на 100 футов (30 м) или более, используя экранированный кабель витой пары. Чтобы свести к минимуму шум линии электропередачи из-за помех чувствительным сигналам трансформатора тока, удлинительные провода следует прокладывать в кабелепроводах (кабелепроводах) без каких-либо силовых проводов. Дополнительную информацию см. На странице «Удлинение провода трансформатора тока».

    Диаметр выводных проводов витой пары ТТ составляет около 0,213 дюйма. Это примерно диаметр изолированного проводника №8 AWG THWN или THHN.Три витые пары подойдут для кабелепровода диаметром 1/2 дюйма, но если вы бежите на любое расстояние и имеете изгибы, кабельный канал диаметром 3/4 дюйма может быть лучшим выбором.

    Выполнение подключений

    Поскольку входы CT датчика WattNode чувствительны к повреждению из-за электростатического разряда (ESD), всегда заземляйте себя на мгновение, прикоснувшись к электрическому корпусу или другому заземленному металлическому объекту, прежде чем прикасаться к датчику. Это хорошая практика для всего электронного оборудования, чувствительного к электростатическому разряду.

    Для подключения выводных проводов ТТ к входным клеммам ТТ сначала снимите примерно 6 мм изоляции с конца одного из проводов, скрутите оголенные жилы вместе, вставьте конец в клеммную колодку и надежно затяните винт. Подключить провода к клеммной колодке будет проще, если сначала вставить колодку в счетчик.

    Неиспользуемые входы ТТ могут вызвать электрические помехи, поэтому рекомендуется закоротить неиспользуемые входные клеммы ТТ, подключив проволочную перемычку длиной около 1 дюйма между белой и черной клеммами ТТ.Обычно это не вызывает беспокойства, если к соответствующей входной клемме напряжения не подключено сетевое напряжение.

    См. Также


    Ключевые слова: ТТ, трансформатор тока, установка, электромонтаж, подключение

    3 совета по успешной установке измерителя ТТ

    Что такое измеритель ТТ?

    Измеритель ТТ — это устройство, которое измеряет силу тока в одном или нескольких проводниках с помощью датчиков, называемых трансформаторами тока (ТТ). Трансформаторы тока бывают разных размеров и номинальных значений силы тока, что позволяет одним измерителем измерять все виды электрических нагрузок.Помимо силы тока, эти измерительные приборы измеряют напряжение, чтобы в конечном итоге рассчитать мощность. Обычно эти измерители используются для контроля мощности отдельных цепей в электрическом распределительном щите. Они бывают самых разных форм-факторов и могут выполнять такие задачи, как измерение использования серверных стоек в киловатт-часах или подсчет количества арендаторов. Универсальность CT-счетчиков делает их популярным выбором для многих профессионалов в области энергетики. Однако универсальность может усложнить их установку и настройку.Установщики, которые придерживаются трех приведенных ниже советов, сталкиваются с меньшими проблемами и получают более счастливые клиенты.

    Общие сведения о фазировании

    Фаза электрической системы представляет собой одну линию питания. Обычно электрические панели имеют несколько фаз, питающих выключатели внутри нее. Например, жилая панель на 120/240 В переменного тока имеет две отдельные фазы (часто называемые фазой «А» и фазой «В»), и выключатели в этой панели получают питание от одной фазы или другой. При измерении мощности цепи необходимо умножить результат измерения напряжения на измерение тока.Кроме того, чтобы правильно рассчитать мощность, ток выключателя на фазе A необходимо умножить на напряжение фазы A. Это означает, что расчет мощности будет неточным, если вы умножите измеренный ток на напряжение другой фазы.

    Чтобы избежать смешения фаз тока и напряжения, возьмите с собой портативный амперметр на место установки и проверьте разность потенциалов (вольт) между клеммой фазы A на главном выключателе и выключателем, на котором расположен трансформатор тока.Если разность потенциалов равна нулю, значит, они синфазны.

    Запишите свою работу

    Запишите все, прежде чем покинуть место установки. Включите информацию о расположении и номере модели ТТ, позиции входа, к которой ТТ подключается на счетчике, рабочем напряжении и т. Д.… Используйте свой телефон, чтобы сделать несколько фотографий, если у вас есть возможность. Наличие этой информации под рукой после ухода с места установки может предотвратить опрокидывание грузовика для устранения неполадок в дальнейшем. Помните, что к некоторым системам измерения ТТ могут быть подключены десятки ТТ, поэтому запись информации важна для того, чтобы все было организовано.

    Поговорите с администраторами сети

    Если вы хотите расстроить сетевого администратора, лучше всего начать подключать случайные устройства к их сети, а не рассказывать им об этом. Более здоровый подход — спросить производителя счетчика, есть ли у него технический документ или заявление по безопасности, в котором описаны технические детали сетевого подключения, и доставить его администратору сети. Кроме того, им потребуется время для ознакомления, поэтому лучше не ждать, пока вы установите систему, чтобы доставить ее им.


    Автор: Эд Пантзар, менеджер по маркетингу компании eGauge Systems

    Определение размеров трансформатора тока | Выберите подходящий трансформатор тока

    Главная »Новости» Как правильно подобрать трансформатор тока

    Опубликовано: , автор: Weschler Instruments

    Трансформатор тока (CT) используется для измерения переменного тока в однофазных или трехфазных цепях.В базовом трансформаторе тока приборного класса один первичный проводник проходит через сердечник.

    Вторичная обмотка имеет несколько витков для обеспечения более низкого выходного тока, как показано на схеме. Это позволяет размещать измеритель вдали от сильноточной цепи. КИП обычно имеет вторичную обмотку переменного тока 1 А или 5 А, которая подключается к амперметру, измерителю мощности или счетчику энергии. ТТ доступны в различных размерах и стилях со стандартными соотношениями от 50: 5 до 4000: 5.Модели с разъемным сердечником легко модернизируются вокруг существующей проводки. Модели с твердым сердечником предлагают более низкую стоимость.

    Трансформаторы тока различаются по размеру (номинальная мощность в ВА), коэффициенту передачи и точности. Рейтинг VA определяет максимальное вторичное сопротивление (нагрузку), которое может работать с заявленной точностью.

    Типичный аналоговый амперметр с трансформаторным номиналом имеет движение переменного тока 5 А (M). Провода от входных клемм (t1 и t2) вносят небольшое дополнительное последовательное сопротивление. Для работы 50 или 60 Гц измерения сопротивления от t1 до t2 достаточно для определения нагрузки амперметра.Добавьте два сопротивления проводов, чтобы получить полную нагрузку ТТ. Некоторые аналоговые измерители заменяют механизм 5A небольшим внутренним трансформатором тока и электронной схемой, которая управляет механизмом. Тот же метод используется для измерения нагрузки амперметра в этих устройствах.

    Во многих цифровых счетчиках аналоговый измерительный элемент (M) заменен шунтирующим резистором (обычно 0,01 Ом) и электронной измерительной схемой. Некоторые цифровые измерители могут заменить шунтирующий резистор внутренним трансформатором тока для изоляции. В обоих случаях измерение сопротивления измерителя и общей нагрузки трансформатора тока такое же, как указано выше.

    В «Таблице длины проводов трансформатора тока» ниже указана максимальная общая длина подводящих проводов (Rlead1 + Rlead2) по номиналу ВА для ТТ с вторичной обмоткой 5A. Если расстояние от измерителя составляет 10 футов, то общая длина провода для диаграммы составляет 20 футов. Указанные значения основаны на многожильном проводе, сопротивлении 0,02 Ом метра и температуре 50 ° C. Более высокие температуры увеличивают сопротивление свинца (0,4% / ° C для меди). Обратите внимание, что клеммы на трансформаторе тока также вносят вклад в нагрузку на трансформатор тока, поэтому предполагается подключение с низким сопротивлением.

    Компания Weschler Instruments предлагает широкий выбор трансформаторов тока как с твердым сердечником, так и с разъемным сердечником. Все еще не уверены, какой стиль или соотношение сторон подходят для вашего приложения? Свяжитесь с нами сегодня и расскажите о своих потребностях, и один из наших высококвалифицированных продавцов поможет вам.


    Понимание соотношения, полярности и класса

    Когда переменный ток проходит через электрический проводник, такой как кабель или шина, он создает магнитное поле, перпендикулярное течению тока.Фото: Викимедиа.

    Основная функция трансформатора тока — обеспечивать управляемый уровень напряжения и тока, пропорциональный току, протекающему через его первичную обмотку, для работы измерительных или защитных устройств.

    В своей основной форме трансформатор тока состоит из многослойного стального сердечника, вторичной обмотки вокруг сердечника и изоляционного материала, окружающего обмотки.

    Когда переменный ток проходит через электрический проводник, такой как кабель или шина, он создает магнитное поле, перпендикулярное течению тока.

    Если этот ток проходит через первичную обмотку трансформатора тока, внутренний железный сердечник намагничивается, что вызывает напряжение во вторичных обмотках. Если вторичная цепь замкнута, через вторичную обмотку будет протекать ток, пропорциональный коэффициенту трансформатора тока.

    ТТ с разомкнутой цепью

    ОПАСНО: Трансформаторы тока должны оставаться закороченными до тех пор, пока не будут подключены к вторичной цепи. Трансформаторы тока обычно подключаются к клеммной колодке, где можно установить закорачивающие винты, чтобы связать изолированные точки вместе.

    Важно, чтобы к трансформатору тока всегда была подключена нагрузка или нагрузка, когда он не используется, в противном случае на клеммах вторичной обмотки может возникнуть опасно высокое вторичное напряжение.


    Типы трансформаторов тока

    Существует четыре типичных типа трансформаторов тока: оконных, проходных, стержневых и обмотанных . Первичная обмотка может состоять просто из первичного проводника тока, проходящего один раз через отверстие в сердечнике трансформатора тока (оконного или стержневого типа), или она может состоять из двух или более витков, намотанных на сердечник вместе с вторичной обмоткой (намотанная тип).

    Оконные и линейные трансформаторы тока

    являются наиболее распространенными трансформаторами тока, встречающимися в полевых условиях. Фото: ABB

    1. Окно CT

    Оконные трансформаторы тока

    имеют конструкцию без первичной обмотки и могут иметь конструкцию со сплошным или разъемным сердечником. Эти трансформаторы тока устанавливаются вокруг проводника и являются наиболее распространенным типом трансформаторов тока в полевых условиях.

    При установке оконных трансформаторов тока со сплошной сердцевиной необходимо отключить первичный провод. Трансформаторные трансформаторы тока с оконным разделением сердечника могут быть установлены без предварительного отключения первичного проводника и обычно используются в приложениях для мониторинга и измерения мощности.

    ТТ нулевой последовательности — это тип оконного ТТ, который обычно используется для обнаружения замыкания на землю в цепи путем суммирования тока по всем проводникам одновременно. В нормальном режиме работы эти токи будут векторно равны нулю.

    Оконный трансформатор тока нулевой последовательности

    Когда происходит замыкание на землю, поскольку часть тока идет на землю и не возвращается на другие фазы или нейтраль, трансформатор тока обнаруживает этот дисбаланс и отправляет сигнал вторичного тока на реле.ТТ нулевой последовательности устраняют необходимость в использовании ТТ с несколькими окнами, выходы которых суммируются, за счет использования одного ТТ, окружающего все проводники.

    2. Стержневой CT

    Трансформаторы тока типа

    работают по тому же принципу, что и оконные трансформаторы тока, но имеют постоянную шину, установленную в качестве первичного проводника. Доступны типы стержней с более высоким уровнем изоляции и обычно крепятся болтами непосредственно к текущему устройству ухода.

    Трансформатор тока стержневого типа

    3.Втулка CT

    Трансформаторы тока проходного изоляционного типа

    в основном представляют собой оконные трансформаторы тока, специально разработанные для установки вокруг высоковольтного ввода. Обычно к этим трансформаторам тока нет прямого доступа, и их паспортные таблички находятся на шкафу управления трансформатором или выключателем.

    SF6 вводные трансформаторы тока 110 кВ. Фото: Викимедиа

    4. Рана КТ

    Трансформаторы тока с обмоткой

    имеют первичную обмотку и вторичную обмотку , как и обычный трансформатор. Эти трансформаторы тока встречаются редко и обычно используются при очень низких коэффициентах передачи и токах, как правило, во вторичных цепях трансформатора тока для компенсации малых токов, согласования различных соотношений трансформаторов тока в суммирующих приложениях или для изоляции различных цепей трансформатора тока.

    Этот тип трансформаторов тока имеет очень высокую нагрузку , и при использовании трансформаторов тока с обмоткой следует уделять особое внимание нагрузке на ТТ источника.


    CT Класс напряжения

    Класс напряжения CT определяет максимальное напряжение , с которым CT может контактировать напрямую. Например, оконный трансформатор тока 600 В не может быть установлен на оголенном проводе 2400 В или вокруг него, однако оконный трансформатор тока на 600 В может быть установлен вокруг кабеля 2400 В, если трансформатор тока установлен вокруг изолированной части кабеля и изоляция рассчитана правильно.


    Коэффициент ТТ

    Коэффициент ТТ — это отношение первичного токового входа к вторичного токового выхода при полной нагрузке. Например, трансформатор тока с соотношением 300: 5 рассчитан на 300 ампер первичной обмотки при полной нагрузке и будет производить 5 ампер вторичного тока , когда через первичную обмотку протекает 300 ампер.

    Если первичный ток изменится, вторичный ток на выходе изменится соответствующим образом. Например, если через первичную обмотку номиналом 300 А протекает 150 А, вторичный ток будет равен 2.5 ампер.

    Коэффициент передачи трансформатора тока эквивалентен коэффициенту напряжения трансформаторов напряжения. Фото: TestGuy.

    В прошлом для измерения тока обычно использовались два основных значения вторичного тока. В Соединенных Штатах инженеры обычно используют выход на 5 ампер . Другие страны приняли выход 1-ампер .

    С появлением микропроцессорных счетчиков и реле в промышленности наблюдается замена вторичной обмотки на 5 или 1 ампер на вторичную обмотку мА .Обычно устройства с мА-выходом называются «датчиками тока », в отличие от трансформаторов тока.

    Примечание. Коэффициенты ТТ выражают номинальный ток ТТ, а не просто отношение первичного тока к вторичному. Например, ТТ 100/5 не будет выполнять функцию ТТ 20/1 или 10 / 0,5.


    CT Полярность

    Полярность трансформатора тока определяется направлением, в котором катушки намотаны вокруг сердечника ТТ (по часовой стрелке или против часовой стрелки), и тем, каким образом вторичные выводы выводятся из корпуса трансформатора.

    Все трансформаторы тока имеют вычитающую полярность и имеют следующие обозначения для правильной установки:

    • h2 — Первичный ток, направление линии
    • h3 — Первичный ток, направление нагрузки
    • X1 — Вторичный ток (многоскоростные трансформаторы тока имеют дополнительные вторичные клеммы)

    ТТ с разъемным сердечником, рассчитанный на 200 А. Обратите внимание на маркировку полярности в центре сердечника, указывающую направление источника.Фото: Continental Control Systems, LLC

    В трансформаторах с вычитающей полярностью первичный вывод h2 и вторичный X1 находятся на одной стороне трансформатора. Полярность трансформатора тока иногда указывается стрелкой, эти трансформаторы тока следует устанавливать так, чтобы стрелка указывала в направлении протекания тока.

    Очень важно соблюдать правильную полярность при установке и подключении трансформаторов тока к реле измерения мощности и защитных реле.

    Условные обозначения на электрическом чертеже полярности CT

    Обозначение полярности на электрических чертежах и схемах трансформаторов тока может быть выполнено несколькими различными способами. Три наиболее распространенных условных обозначения схем — это точки, квадраты и косые черты. Маркировка полярности на электрических чертежах обозначает угол h2, который должен быть обращен к источнику.

    Как проверить полярность CT

    Маркировка трансформаторов тока иногда неправильно наносилась на заводе.Вы можете проверить полярность ТТ в полевых условиях с батареей 9 В, используя следующую процедуру тестирования:

    1. Отключите все питание перед проверкой и подключите аналоговый вольтметр к вторичной клемме проверяемого ТТ. Положительная клемма счетчика подключена к клемме X1 ТТ, а отрицательная клемма подключена к X2 .
    2. Пропустите кусок провода через верхнюю сторону окна ТТ и на мгновение коснитесь положительного конца 9-вольтовой батареи со стороной h2 (иногда отмеченной точкой) и отрицательным концом к сторона h3 .Важно избегать постоянного контакта, который может привести к короткому замыканию аккумулятора.
    3. Если полярность правильная, мгновенный контакт вызывает небольшое отклонение аналогового измерителя в положительном направлении . Если отклонение отрицательное, полярность трансформатора тока меняется на обратную. Клеммы X1 и X2 необходимо переключить, и можно провести тест.

    Маркировка трансформаторов тока иногда неправильно наносилась на заводе.Вы можете проверить полярность ТТ в полевых условиях, используя 9-вольтовую батарею.

    Связано: Объяснение 6 электрических испытаний трансформаторов тока


    CT Класс точности

    Поскольку идеальных трансформаторов не существует, возникают небольшие потери энергии, такие как вихревые токи и тепло, вызванное током, протекающим через обмотки. Вторичный ток, который возникает в этих ситуациях, не полностью воспроизводит форму волны тока в энергосистеме.

    Степень, в которой величина вторичного тока отличается от расчетного значения, ожидаемого в силу соотношения ТТ, определяется классом точности ТТ.Чем больше число, используемое для определения класса, тем больше допустимое отклонение вторичного тока от расчетного значения (погрешность).

    За исключением классов с наименьшей точностью, класс точности ТТ также определяет допустимое смещение фазового угла между первичным и вторичным токами. В зависимости от класса точности трансформаторы тока делятся на Точность измерения или Точность защиты (реле) . CT может иметь рейтинги для обеих групп.

    Точность измерения ТТ
    Точность измерения

    ТТ рассчитаны на заданные стандартные нагрузки и рассчитаны на высокую точность от очень низкого тока до максимального номинального тока ТТ. Из-за своей высокой степени точности эти трансформаторы тока обычно используются коммунальными предприятиями для целей выставления счетов .

    ТТ реле точности
    Точность реле

    не так точна, как ТТ точности измерения. Они разработаны для работы с разумной степенью точности в более широком диапазоне токов.Эти трансформаторы тока обычно используются для подачи тока на реле защиты. Более широкий диапазон значений тока позволяет защитному реле работать при различных уровнях неисправности.

    Вы можете узнать класс точности ТТ, посмотрев на его паспортную табличку или этикетку производителя. Класс точности ТТ состоит из комбинации цифр, букв и цифр, как указано в ANSI C57.13 , и разбит на три части:

    1. номинальное соотношение рейтинг точности
    2. рейтинг класса
    3. максимальная нагрузка

    Класс точности ТТ состоит из комбинации цифр и букв, как указано в ANSI C57.13

    1. Номинальное соотношение Рейтинг точности

    Это число является просто номинальным коэффициентом точности , выраженным в процентах . Например, трансформатор тока с классом точности 0,3B0.1 сертифицирован производителем как имеющий точность в пределах 0,3 процента от его номинального значения коэффициента для первичного тока, составляющего 100 процентов номинального коэффициента.

    2. Рейтинг класса

    Вторая часть класса точности ТТ — это буква, обозначающая приложение, для которого рассчитан ТТ.Трансформатор тока может иметь двойные номиналы и использоваться для измерения или защиты, если оба номинала указаны на паспортной табличке.

    • C — Указывает, что ТТ имеет низкий поток утечки, что означает, что точность может быть рассчитана до производства
    • T — Указывает, что ТТ может иметь значительный поток утечки, и точность должна определяться на заводе.
    • H — Указывает, что точность ТТ применима во всем диапазоне вторичных токов от пяти до 20-кратного номинального значения ТТ.Обычно это трансформаторы тока с обмоткой.
    • L — Указывает, что точность ТТ применяется при максимальной номинальной вторичной нагрузке только при 20 номинальных значениях. Точность передаточного числа может быть в четыре раза больше указанного значения, в зависимости от подключенной нагрузки и тока короткого замыкания. Обычно это оконные, проходные или стержневые трансформаторы тока.

    3. Максимальная нагрузка

    Третья часть класса точности ТТ — это максимальная нагрузка, разрешенная для ТТ. Как и все трансформаторы, трансформатор тока может преобразовывать только конечное количество энергии.Ограничение энергии ТТ называется максимальной нагрузкой. Если этот предел превышен, точность ТТ не гарантируется.

    Для ТТ измерительного класса нагрузка выражается как сопротивление Ом . Например, коэффициент трансформатора тока номиналом 0,3B0,1 имеет точность 0,3 процента , если сопротивление подключенной вторичной нагрузки не превышает 0,1 Ом . ТТ класса измерения 0,6B8 будет работать с точностью 0,6 процента , если вторичная нагрузка не превышает 8.0 Ом .

    Нагрузка трансформатора тока класса реле выражается как вольт-ампер и отображается как максимально допустимое вторичное напряжение, если через вторичный контур протекает 20-кратное номинальное значение трансформатора тока (100 А для вторичного трансформатора тока 5 А). Например, защитный ТТ 2,5C100 имеет точность в пределах 2,5 процента , если вторичная нагрузка меньше 1 Ом (100 вольт / 100 ампер).

    Как рассчитать нагрузку CT
    1. Определите нагрузку устройства, подключенного к ТТ, в ВА или импедансе в омах.Эта информация обычно находится на паспортной табличке устройства или в техническом паспорте.
    2. Добавьте импеданс вторичного провода. Измерьте длину провода между трансформатором тока и нагрузкой устройства, подключенного к вторичной цепи (найдено на шаге 1).
    3. Убедитесь, что общая нагрузка не превышает указанные пределы для ТТ.

    Комментарии

    Всего комментариев 3

    Оставить комментарий Войдите или зарегистрируйтесь, чтобы комментировать.

    Трансформаторы тока для счетчика энергии с подключением через Интернет

    Трансформаторы тока для измерения:
    Твердый сердечник и разделенный сердечник

    Для измерения энергии и мощности измеритель WEM-MX требует подачи напряжения и тока. Первичный ток необходимо снизить до уровня, который можно измерить измерителем. Трансформаторы тока (ТТ) уменьшают первичный ток и обеспечьте вторичный ток 5 ампер. Energy Tracking также предоставляет трансформаторы тока с 0.333 В переменного тока вторичный. WEM-MX имеет базовую точность 0,2%, а конечная точность системы зависит от типа трансформаторов тока и рабочая среда. В шумной среде трансформаторы тока с вторичной обмоткой 5 А являются идеальным вариантом из-за их низкого восприимчивость к шуму. В качестве альтернативы, если трансформаторы тока монтируются далеко от измеряемой нагрузки, мы рекомендуем: использование трансформаторов тока 333 мВ, которые более экономичны и не страдают от ухудшения характеристик при подключении на большие расстояния.Если расстояние превышает 20 футов, мы рекомендуем использовать скрученный экранированный кабель. Пожалуйста, свяжитесь с нашей службой технической поддержки для получения рекомендаций.

    Energy Tracking предлагает оба типа трансформаторов тока.

  • Твердый сердечник
  • Раздельное ядро ​​
  • Трос / пояс Роговского ТТ
  • Solid Core: Этот тип трансформатора тока обычно используется там, где питание может быть отключено, и имеет низкую стоимость.


    Разделенный сердечник: Этот тип трансформатора тока используется там, где невозможно отключить питание.Первичный ток несущий канал должен быть изолирован по соображениям безопасности. Установка должна выполняться квалифицированным электриком.

    В обоих типах ТТ клеммы вторичной обмотки должны быть закорочены или подключены к счетчику до первичной обмотки. цепь находится под напряжением.


    Трансформаторы тока с вторичной обмоткой 333 мВ: Они доступны в версиях с твердым сердечником и с разъемным сердечником. Укажите основные усилители и размер окна.Доступные размеры окна: 0,75 дюйма, 1,25 дюйма или 2,00 дюйма. Размер трансформаторов тока шины: 3 «X 5».

    Щелкните здесь для получения более подробной информации и номеров деталей


    Трансформаторы тока доступны в различных размерах, оконных проемах и стилях от 50 до 6000 ампер. Пожалуйста, свяжитесь с нами, чтобы сообщить свои требования. Нажмите здесь, чтобы увидеть номера деталей


    Тросовые трансформаторы тока с вторичной обмоткой 333 мВ: Тросовые трансформаторы тока доступны в различных размерах, оконных проемах и стилях от 250 до 5000 ампер.Пожалуйста, свяжитесь с нами, чтобы сообщить свои требования.


    | Компания | Решения | Электросчетчик WEM-MX | Регистратор импульсных данных WEPM | ET Analytics | Снимки экрана WEM-MX и аналитика ET. | Последние новости | Отчеты | Обзор | Дома

    Подключение трансформатора тока к анализатору мощности

    Если вы измеряете ток, который не превышает максимального номинального входного тока анализатора мощности, с которым вы работаете, вы можете подключить токоведущий кабель непосредственно к токовым входам анализатора мощности.Однако во многих случаях измеряемый ток будет превышать пределы входного тока вашего анализатора мощности. В этих случаях вы можете использовать трансформатор тока для преобразования тока в сигнал напряжения или тока, который может быть измерен непосредственно анализатором мощности.

    Способы подключения трансформатора тока

    Существует три основных метода подключения внешнего трансформатора / преобразователя тока (ТТ) к анализатору мощности.

    Метод A — Токовые выходные клеммы вторичной обмотки ТТ подключаются непосредственно к токовым входным клеммам анализатора мощности.Внутренний шунт на анализаторе мощности действует как нагрузочный резистор и обеспечивает точное измерение тока, которое хорошо охарактеризовано. Более того, передача тока от вторичной обмотки ТТ к входным токовым соединениям имеет лучшую помехозащищенность. Выберите элемент ввода с диапазоном, который максимизирует охват диапазона для измеряемого тока. Например, максимальный входной ток 1 А будет использовать больший процент входного элемента 2 А, чем входной элемент 30 А, поскольку входной элемент 2 А поддерживает более низкие диапазоны тока.

    Рис. 1. Для метода A токовый выход вторичной обмотки ТТ подключается непосредственно к внутреннему шунту на анализаторе мощности.

    Метод B — Токовые выходные клеммы вторичной обмотки ТТ подключаются к внешнему шунту, который подключен непосредственно к входу напряжения на анализаторе мощности. Бывают случаи, когда эта опция может обеспечить превосходный процент диапазона.

    Рис. 2. При использовании метода B токовый выход ТТ подает сигнал на нагрузочный резистор, подключенный ко входу напряжения анализатора мощности.

    Метод C — Токовые выходные клеммы вторичной обмотки ТТ подключаются непосредственно к нагрузочному резистору, расположенному рядом с ТТ. Выход напряжения нагрузочного резистора подключен к входу напряжения анализатора мощности. Этот метод чувствителен к шуму и может вызвать небольшое падение напряжения в зависимости от длины и расположения кабельной трассы.

    Рис. 3. При использовании метода C выходное напряжение трансформатора тока напрямую подает входное напряжение на анализатор мощности.

    Токопроводящий кабель через трансформатор тока для повышения точности измерений

    С помощью любого из этих методов, если ваш ток, который нужно измерить, меньше доступного входного диапазона ТТ, вы можете потенциально повысить точность измерения, обмотав токоведущий кабель вокруг апертуры ТТ. Это увеличивает ток, наблюдаемый ТТ, тем самым используя больший доступный динамический диапазон ТТ и повышая точность измерения.

    Проведение токоведущего кабеля через апертуру ТТ умножает ток, наблюдаемый ТТ, на коэффициент, приблизительно равный количеству петель.

    Рассмотрим пример, в котором вы хотите измерить ток до 60 А с помощью ТТ на 200 А. Если вы пропустите токоведущий кабель один раз через трансформатор тока, вы используете только 60 А от мощности трансформатора тока, а доступная емкость 120 А останется неиспользованной.

    Подключен

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *