Отопление коттеджей с помощью тепловых насосов Mitsubishi Heavy Industries
Воздушные тепловые насосы для отопления коттеджей использовались достаточно давно – в Финляндии и Швеции накоплен большой опыт их применения. Использование инверторных систем кондиционирования Mitsubishi Heavy Industries (Japan) в качестве тепловых насосов для отопления дома (а так же любых жилых зданий и гостиниц) вполне оправдано и экономично. Поводом для написания данной статьи послужил практический пример в нашей стране – в Подмосковье осенью 2013 года для обогрева небольшого коттеджа был установлен воздушный тепловой насос (канальный кондиционер Mitsubishi Heavy Industries FDUM71V) .
Система успешно отработала зиму 2013-2014 года при достаточно низких наружных температурах (до -25С) и показала свою жизнеспособность в российских условиях. Учитывая сегодняшние характеристики оборудования и постоянное совершенствование систем кондиционирование в режиме тепла, постараемся в этой статье определить будущее технологии воздушных тепловых насосов для северных стран.
Отопление воздух — воздух
Традиционно системы кондиционирования воздуха воспринимались именно как системы охлаждения и иногда вентиляции помещений. При работе кондиционера зимой в режиме воздушного теплового насоса эффективность его снижалась, примерно при температуре -5 С тепловой коэффициент падал до значения 1, и при дальнейшем снижении наружной температуры эффективнее было использовать обычные электрообогреватели. Но все это было справедливо для систем кондиционирования воздуха на фреоне R22, с ON-OFF регулированием производительности компрессора. Новые системы кондиционирования Mitsubishi Heavy Industries (Japan) обладают принципиально большим температурным диапазоном использования в режиме тепла – до -20 С.
Рис. 1. Схема обогрева коттеджа с помощью воздушной системы с тепловым насосом.
Благодаря чему существенно расширен температурный диапазон?
Во-первых, это использование фреона R410A, который обладает существенно бОльшим рабочим давлением, чем фреоны R22 или R407C (табл. 1). Это приводит к тому, что при понижении температуры наружного воздуха снижается температура и давление кипения фреона в наружном блоке. Снижение давления приводит к меньшей плотности газа на всасывании компрессора, и, следовательно, к снижению его производительности. Давление фреона R410A изначально больше в 1,5 – 2 раза, чем фреона R22, поэтому снижение производительности компрессора тоже происходит, но не так значительно.
Табл. 1. Давление газообразного фреона в состоянии насыщения, 105 Па.
Температура кипения |
Фреон R22 |
Фреон |
— 50 С |
0,64 |
1,01 |
— 40 С |
1,05 |
1,76 |
— 30 С |
1,64 |
2,70 |
— 20 С |
2,45 |
4,00 |
— 10 С |
3,54 |
5,73 |
0 С |
4,98 |
7,96 |
Во-вторых, использование полиэфирного (PОЕ) масла для смазки компрессора, вместо применяемого ранее минерального (МО). Преимущества полиэфирных масел по сравнению с минеральными – лучшие смазывающие качества, меньшая кинематическая вязкость при низких температурах, меньшая температура застывания. Благодаря этому запуск компрессора при низкой температуре происходит плавно, с меньшей нагрузкой на двигатель.
В-третьих, применение DC-инверторного привода компрессора позволяет добиться высокой экономичности работы, отсутствия повышенных пусковых токов и плавности регулирования производительности даже при низких наружных температурах.
Таким образом, уже сегодня возможно использование систем кондиционирования Mitsubishi Heavy Industries для обогрева коттеджей в зимнее время. Но насколько воздушное отопление дома экономично? Давайте ответим и на этот вопрос:
Расчет теплового насоса
Идеальный нижний температурный уровень Тн равен температуре наружного воздуха. Для условий России данный параметр имеет различные расчетные значения, которые могут колебаться от –45 ˚С до –20 ˚С. Как нечто среднее рассмотрим расчетную температуру наружного воздуха по параметрам Б для города Перми. Она равна –35 ˚С или 238 ˚К.
Сейчас мы можем вычислить значения удельной затраты работы и коэффициента трансформации теплоты (тепловой коэффициент СОР):
Следовательно, при тех параметрах, которые мы приняли в качестве исходных данных, мы можем максимально получить 5,33 кВт тепловой энергии, затратив 1 кВт электрической. Согласитесь, полученная величина выглядит достаточно большой, учитывая, что мы взяли для расчета крайние температурные параметры и большую часть отопительного периода таких низких температур не будет. Однако реальная величина полученной тепловой энергии будет несколько меньше, т.к. в расчетах мы не учли необратимость процессов сжатия в компрессоре и дросселирования в ТРВ, пониженную температуру кипения в наружном блоке и повышенную во внутреннем. При повышении температуры наружного воздуха эффективность теплового насоса увеличивается (рис. 2).
Рис. 2. График производительности наружного блока при снижении наружной температуры.
Согласно принципа работы теплового насоса, ТН охлаждает наружный воздух и полученную энергию отдает в обслуживаемые помещения. Естественно, чем ниже температура наружного воздуха, тем меньше эффективность теплового насоса. Конкретные величины энергопотребления можно получить, зная коэффициент энергетической эффективности кондиционера при понижении температуры наружного воздуха (рис. 3).
Рис. 3. Зависимость теплового коэффициента от температуры наружного воздуха.
Как следует из рисунка, тепловой коэффициент реального воздушного теплового насоса меняется от 3,8 единиц при +10 С, до 2,4 единиц при -20 С и в среднем за отопительный период равен 3. Т.е. использовать новые кондиционеры на 410 фреоне в качестве теплового насоса для отопления дома ровно в три раза выгодней, чем обычные электрообогреватели.
Особенности при использовании кондиционера в качестве обогревателя:
Выбор производительности и типоразмера внутренних и наружных блоков.
Выбор производительности внутренних блоков осуществляется в первую очередь исходя из требуемой мощности обогрева по каждому помещению. Требуемая мощность обогрева коттеджа зависит от многих факторов: района строительства, площади и термического сопротивления ограждающих конструкций, величины инфильтрации через окна и двери. Но в целом для отопления коттеджей средней полосы России требуется от 60 до 100 Вт на 1 м2 помещения. При проектировании мы должны учесть, что чем ниже температура наружного воздуха, тем больше нам требуется тепла для обогрева помещений. С другой стороны, чем ниже температура воздуха вокруг наружного блока – тем меньше эффективность теплового насоса. Поэтому расчет производительности системы нужно делать исходя из самых неблагоприятных условий – температуры наружного воздуха минус 20 С.
При минус 20 С производительность теплового насоса падает примерно до 60% от номинальных значений. Таким образом если наружный блок имеет номинальную производительность на тепло 25 кВт, 60% от этой величины составит 15 кВт тепла, что достаточно для отопления коттеджа площадью 150 – 200 м2. Для больших размеров коттеджей возможно применять несколько систем тепловых насосов либо VRF систему кондиционирования (до 1000 м2 обогреваемой площади с помощью одной системы).
Особенности воздушного режима помещения.
При работе любого обогревателя, для равномерного перемешивания теплый воздух необходимо подавать в нижнюю зону помещения. Если этого не сделать, то может возникнуть большой перепад температур между полом и потолком. Поэтому необходимо либо внутренний блок размещать как можно ниже, либо подавать теплый воздух в нижнюю зону в области пола. В Японии уже давно принято использовать в качестве обогревателей именно воздушные тепловые насосы, поэтому классическое расположение внутреннего блока применяется именно как на рисунке 4.
Рис. 4. Вариант интерьера жилых помещений с установкой внутренних блоков канального типа под окнами.
Утилизация теплоты вытяжного воздуха.
Не нужно забывать про естественный источник теплого воздуха с температурой +20С – вытяжной воздух с санузлов и кухонь. Не использовать эту энергию просто преступление. Поэтому конструктивно необходимо направлять выброс вытяжного воздуха на наружный компрессорно конденсаторный блок. Расход воздуха наружного блока, конечно, значительно больше, чем расход рециркуляционного вытяжного воздуха, но, тем не менее, смесь наружного воздуха и вытяжного будет значительно теплее, чем просто наружный воздух зимой.
Для примера возьмем коттедж с кратностью 2. Значит на 1 м2 площади приходиться 6 м3/ч приточного воздуха и соответственно столько же вытяжного. Расчетная производительность системы отопления около 80 Вт/м2 помещений. Если посмотреть на характеристики наружных блоков, то на 1 кВт производительности по теплу приходиться 300 м3/ч производительности по воздуху вентилятора наружного блока. Приводя к 1 м2 помещений, получаем 38 м3/ч наружного воздуха. Для наружного блока важно, чтобы температура смеси была не ниже –20°С. Значит, минимальная температура наружного воздуха при организации обдува конденсаторов вытяжным воздухом составляет:
Т.е. за счет подогрева вытяжным воздухом минимальная температура наружного воздуха может быть -27С.
Расчетные температуры наружного воздуха для разных городов России
Выше мы выяснили, что за счет утилизации теплоты вытяжного воздуха возможно расширить температурный диапазон работы до –27 °С. Таким образом, климатические условия городов на юге России уже позволяют использовать кондиционеры Митсубиси не только для охлаждения помещений в теплый период, но и для их обогрева в холодный. Отсюда возникает первый вопрос – а для каких городов возможно использование системы воздушного отопления в качестве основного и единственного источника обогрева помещений? Давайте посмотрим на расчетные температуры наружного воздуха по параметрам Б для зимнего периода (см. таблицу).
Город |
Параметры Б, °С (наиболее холодные 5 дней) |
Параметры А, °С (наиболее холодный месяц) |
Москва |
–26 |
–15 |
Санкт-Петербург |
–26 |
–11 |
Пермь |
–35 |
–21 |
Екатеринбург |
–35 |
–20 |
Челябинск |
–34 |
–21 |
Владивосток |
–24 |
–16 |
Ростов-на-Дону |
–22 |
–8 |
Краснодар |
–19 |
–5 |
Новороссийск |
–13 |
–2 |
Сочи |
–3 |
+2 |
Симферополь |
–16 |
–4 |
Таким образом, для средней полосы и юга России установка воздушных тепловых насосов с рекуперацией вытяжного воздуха возможна в качестве основной и единственной системы отопления дома. Для наружной температуры ниже -20С желательно иметь в запасе дополнительный источник тепла (например, камин), но большую часть отопительного периода все равно обеспечивается за счет теплового насоса с эффективностью в 3-4 раза большей, чем простой электрообогреватель.
Тепловой коэффициент воздушного теплового насоса меняется от 3,8 единиц при +10 С, до 2,4 единиц при -20 С. Чтобы понять, какой тепловой коэффициент будет средним за отопительный сезон, необходимо знать, какая температура наружного воздуха зимой является средней. Давайте обратим внимание на частоту определенной температуры наружного воздуха, например для г. Перми (рис. 5).
Рис. 5. Частота определенной температуры наружного воздуха для Перми.
Мы видим две линии: синяя – характеризует самый холодный год за последние 50 лет; фиолетовая – 2007 год. Выводы, которые мы можем сделать их этих графиков:
Показатели наружной температуры для Перми |
Самый холодный за 50 лет |
2007 год |
Самые часто повторяющиеся температуры в течение отопительного периода |
От 0 до +8 С |
От 0 до +8 С |
Средняя температура отопительного периода |
-4,1 С |
-1,5 С |
Число суток с температурой наружного воздуха -20 С и ниже |
21 суток |
13 суток |
Доля часов с температурой наружного воздуха -20 С и ниже (% от всего отопительного периода) |
9% |
5% |
Средний тепловой коэффициент теплового насоса |
2,9 |
3,1 |
Режим оттайки наружного блока и отвод конденсата.
При работе системы тепловых насосов наружный воздух охлаждается и из него выделяется конденсат, который благополучно намерзает на наружном блоке, снижая его производительность. Для удаления этого льда система применяет режим оттайки. Насколько снижается производительность наружного блока за счет режима оттайки? Это зависит главным образом от влагосодержания наружного воздуха. Особенностью влажного воздуха является снижение влагосодержания при снижении его температуры. Поэтому снижение производительности на тепло происходит в большей степени при температуре от +5 С до -10 С (максимум на 14%, рис. 6): А при расчетной температуре минус 20 С падение производительности составляет всего 2%, что не критично для выбора расчетной мощности системы.
Рис. 6. Коррекция мощности наружного блока по теплу на процесс стаивания инея.
Для удаления льда с наружного блока система кондиционирования включает режим оттайки, физический смысл которого сводится к кратковременному переключению кондиционера в режим охлаждения. Внутренние блоки при этом не работают, а компрессор подает фреон с температурой около 70 С на теплообменник наружного блока в течение 10 минут. Образовавшийся иней быстро тает и стекает с наружного блока. Но так как вокруг наружного блока отрицательная температура, то происходит снова замерзание конденсата под наружным блоком в виде огромных сосулек. Т.е. в случае использования системы кондиционирования в режиме тепла – нужно обязательно предусмотреть зимний комплект кондиционера, дооснащённый греющим кабелем для подогрева поддона наружного блока . Также желательно сделать организованное удаление конденсата от наружного блока по дренажным трубопроводам, которые должны быть обязательно подогреваемы и в теплоизоляции.
Выводы: использование новых инверторных систем кондиционирования Mitsubishi Heavy Industries (Japan) в качестве тепловых насосов для отопления дома (а так же любых жилых зданий и гостиниц) вполне оправдано и экономично. Основные преимущества такого вида отопления следующие:
- Стоимость универсальной системы обогрева и охлаждения помещений ниже, чем отдельно система отопления и кондиционирования.
- За счет использования электронной системы регулирования производительности система кондиционирования точно поддерживает требуемую температуру в помещениях и быстро выходит на расчетный режим.
- Отопление дома с помощью теплового насоса очень экономично – даже для условий Москвы средняя температура отопительного периода -3 С, а система в среднем будет давать три – четыре кВт тепла на 1 кВт потребляемой энергии. Для юга России коэффициент энергоэффективности еще больше.
- Энергоноситель – фреон. Значит, при любых отключениях электричества систему разморозить невозможно.
- И самое главное – установив тепловой насос воздух — воздух на основе системы кондиционирования Mitsubishi Heavy Industries, хозяин коттеджа получит не только эффективный обогрев зимой, но и полноценное поддержание комфортной температуры воздуха летом.
Недостатком систем отопления «воздух — воздух» на сегодняшний день является необходимость использования резервного источника тепла для наружной температуры -20С и ниже (например, камин). Но 90% времени обогрев коттеджа будет осуществляться именно от работы теплового насоса.
Автор: Брух Сергей Викторович.
Группа компаний «МЭЛ» — оптовый поставщик систем кондиционирования Mitsubishi Heavy Industries.
www.mhi-systems.ru Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
www.mhi-systems.ru
стоимость, расчет мощности, топ 5 лучших насосов
Тепловой насос «воздух-вода» для дома
Отопление дома с помощью низкопотенциальных источников тепловой энергии на первый взгляд вызывает массу сомнений и нареканий. Практика опровергает все доводы против таких источников тепловой энергии, показывая эффективность и экономичность подобных систем. Рассмотрим один из вариантов конструкции теплового насоса «воздух-вода», позволяющий использовать совершенно бесплатный и неиссякаемый ресурс — атмосферный воздух. Работу теплового насоса «вода-вода» мы рассмотрели в этой статье.
Тепловые насосы, работающие по схеме «воздух-вода», относятся к группе аэротермальных конструкций. Они обеспечивают нагрев теплоносителя в системе отопления дома, источником тепловой энергии для которого является наружный воздух. Возможна также подача воды для системы ГВС.
Особенностью систем «воздух-вода» является сильная зависимость температур теплоносителя в системе отопления от температуры источника — наружного воздуха. Эффективность подобного оборудования постоянно изменяется как в сезонном отношении, так и в погодных условиях. В этом проявляется существенное отличие аэротермальных систем от геотермальных комплексов, чья работа стабильна в течение всего срока службы и не зависит от внешних условий.
Кроме того, тепловые насосы типа «воздух-вода» способны как обогревать, так и охлаждать воздух в помещениях, что делает их востребованными в регионах с относительно холодными зимами и жарким летом. В целом, использование подобных систем наиболее эффективно в относительно теплых районах, а для северных областей требуется дополнительные средства обогрева (обычно используются электронагреватели).
Как работают тепловые насосы воздух-вода?
В основе работы теплового насоса типа «воздух-вода» положен принцип Карно. Говоря более понятным языком, используется конструкция фреонового холодильника. Хладагент (фреон) циркулирует в замкнутой системе, проходя последовательно стадии:
- испарения, сопровождающегося сильным охлаждением
- подогрева от тепла поступающего наружного воздуха
- сильного сжатия, при котором его температура становится высокой
- конденсации с переходом в жидкое состояние
- прохода через дроссель с резким падением давления и испарением
Для нормальной циркуляции хладагента необходимо иметь два отделения — испаритель и конденсатор. В первом температура низкая (отрицательная), для нагрева используется тепловая энергия из воздуха окружающей среды. Второе отделение служит для конденсирования хладагента и передачи тепловой энергии в теплоноситель системы отопления.
По сути, тепловой насос — это два теплообменника, соединенные между собой и совместно обеспечивающие непрерывный цикл Карно — сжатие газа с переходом в жидкую фазу с выделением большого количества тепла и его расширение с испарением и охлаждением.
Роль поступающего извне воздуха — передача тепла в испаритель, где температура очень низкая и требует повышения для предстоящего сжатия. Тепловая энергия воздуха имеется даже при отрицательных температурах и сохраняется до тех пор, пока не произойдет понижение температуры до абсолютного нуля. Низкопотенциальные источники тепловой энергии позволяют получать высокую эффективность системы, но при сильном понижении наружной температуры до -20°C или – 25°C система останавливается и требует подключения дополнительного источника обогрева.
Достоинства и недостатки
Достоинствами тепловых насосов «воздух-вода» являются:
- простота установки, отсутствие земляных работ
- источник тепловой энергии — воздух — имеется везде, он доступен и совершенно бесплатен. Для работы системы требуется только электропитание для циркуляционного оборудования, компрессора и вентилятора
- тепловой насос можно конструктивно объединить с вентиляцией, что позволить существенно повысить эффективность работы обеих систем
- отопительная система безвредна для окружающей среды и не опасна в эксплуатационном отношении
- работа системы практически бесшумна, может управляться при помощи систем автоматики
Недостатками теплового насоса «воздух-вода» являются:
- ограниченность применения. Бытовые модели ТН требуют подключения дополнительных систем отопления уже при -7°C, промышленные образцы способны держать температуру до -25°C, что для большинства регионов России слишком мало
- зависимость эффективности системы от температуры наружного воздуха делает работу системы нестабильной и требует постоянной перенастройки режимов функционирования
- для питания вентиляторов, компрессоров и прочих устройств требуется подключение к стабильному источнику электроэнергии
Планируя использование подобной системы отопления и ГВС, необходимо учитывать эти особенности.
Расчет мощности установки
Порядок расчета мощности установки сводится к определению площади дома, подлежащей обогреву, подсчету необходимого количества тепловой энергии и подбору оборудования, соответствующего полученным значениям. Излагать подробную методику расчета нет смысла, поскольку она чрезвычайно сложна, требует знания многих параметров, коэффициентов и прочих значений. Кроме того, нужен опыт выполнения подобных расчетов, иначе результат окажется совершенно ошибочным.
Для решения проблемы рекомендуется использовать онлайн-калькулятор, найденный в сети. Пользоваться им легко, надо лишь подставить в окошечки свои данные и получить ответ. Если появились сомнения, расчет можно продублировать на другом ресурсе, чтобы получить сбалансированные данные.
Что купить — топ-5 лучших насосов
Приобретение теплового насоса — важная и ответственная процедура. Давать какие-либо рекомендации в этой сфере можно только обладая конкретной информацией о размерах дома, материале стен, степени утепленности, конфигурации помещений, типе отопительной системы и т. д. Не обладая этими данными, рассуждать о лучших насосах бессмысленно. Однако, можно рассмотреть наиболее известных производителей, которые поставляют на рынок качественное оборудование и являются лидерами в этой области:
ALTAL GRUP
Компания базируется в Украине, России и Молдове. Производство оборудования ориентировано на условия российских регионов и может использоваться в суровых условиях
NIBE Industrier AB
Шведская фирма, присутствует на рынке с 1949 года и по праву является лидером в своей области. Производство ведется по самым передовым разработкам, используются лучшие материалы и комплектующие
Viessmann Group
Одна из старейших европейских компаний — основание фирмы датируется 1928 годом. Немецкие специалисты наработали огромный опыт и добились высочайшего качества своей продукции
OCHSNER
Австрийская компания, приступившая к серийному изготовлению тепловых насосов одной из первых и получившая признание пользователей благодаря качеству, надежности и долговечности оборудования
Heliotherm
Еще одна австрийская компания, производящая тепловые насосы и другое оборудование. Реализация продукции производится в Европе, отмечается высокое качество, надежность и широкие функциональные возможности отопительных систем
Рекомендуемые товары
Кроме европейских, распространены комплексы из Китая и других стран Юго-Восточной Азии. Они дешевле, обладают достаточно высокими показателями, но по общему уровню несколько отстают от европейских образцов. Единственным преимуществом у них является цена, хотя расходы на подобное оборудование в любом случае весьма высоки. Если учесть, что установкой теплового насоса дело не ограничивается, надо подгонять под возможности комплекса всю систему отопления, то расходы становятся соотносимыми со стоимостью постройки дома.
В условиях России оптимальным выбором является приобретение бивалентных систем, позволяющих при возникновении сложных условий переключаться на другие источники тепла.
Важно! Большинство специалистов сходятся во мнении, что для большинства регионов России использование тепловых насосов типа «воздух-вода» нецелесообразно из-за чрезмерно сложных зимних условий. Мощность системы резко падает при понижении температуры. Кроме того, наружные воздушные блоки в холода работать не смогут.
Стоимость установки
Установка и пусконаладочные работы производятся по разным расценкам, зависящим от состава работ, используемого оборудования и техники, объемов и прочих факторов. Не менее важным обстоятельством считается общая экономическая обстановка в регионе, состояние покупательной способности населения.
В любом случае, расходы на монтаж и запуск системы потребуют примерно 20% от общей стоимости оборудования, что существенно отразится на кошельке пользователя.
Дороговизна монтажных работ нередко становится причиной самостоятельной установки и запуска системы, что делает возможным мелкий ремонт и обслуживание без привлечения специалистов. Однако, надо иметь в виду, что многие фирмы отказывают в гарантийном или сервисном обслуживании, если установка производилась посторонними людьми.
Воздушный тепловой насос своими руками
Дороговизна оборудования, монтажных работ и обслуживания, вынуждает многих владельцев домов заняться самостоятельным изготовлением тепловых насосов воздух-вода. Это занятие достаточно трудоемкое и требует наличия навыков, но результат позволяет сэкономить весьма большие деньги и получить ценный опыт создания отопительных систем. Рассмотрим основные этапы создания теплового насоса:
Сборка агрегата по схеме
Прежде всего, необходимо запастись основными узлами системы:
- компрессор от холодильника или сплит-системы
- медные трубки диаметром около 1 см, переходники и фитинги к ним
- емкости для создания теплообменников (испарителя и конденсатора)
- дроссельный клапан
- фреон
- крепежные элементы, соединительные детали и т.д
Потребуется горелка для пайки медных трубок, набор соответствующих инструментов, материалов. Для изготовления теплового насоса понадобится схема или рабочий чертеж, позволяющий более детально продумать ход работ и собрать все необходимые узлы и детали. Большинство из них придется покупать, но эти расходы не сравнить с затратами на приобретение готового комплекта.
Сборка наружного блока
Наружный блок обеспечивает забор воздуха и подачу его в испаритель. Для выполнения этих операций понадобится корпус и вентилятор, соединенный с воздуховодом, транспортирующим воздушный поток в испаритель теплового насоса. Некоторые мастера устанавливают испаритель в наружный блок, тем самым сокращая путь транспортировки. Это удобно и повышает компактность комплекса, но такой вариант возможен не всегда. Дело в том, что в испарителе фреон имеет очень низкую температуру, в зимнее время энергии наружного воздуха не хватит, чтобы дать достаточный тепловой импульс хладагенту.
Обычно рекомендуют устанавливать наружный блок на расстоянии в несколько метров от дома. Это не принципиально, монтаж на стену не менее удобен и практичен. Главное условие — стена должна быть подветренной.
Блок с теплообменником-испарителем
Блок испарителя представляет собой металлическую емкость объемом 80 л, медная трубка диаметром 10 мм с толщиной стенок 1 мм или больше. Из трубки делается змеевик — обматывается отрезок трубы или иного предмета цилиндрической формы с таким расчетом, чтобы готовая спираль из трубки свободно входила в бак. Длину трубки придется вычислять, для установки мощностью 5 кВт потребуется 10 м.
Змеевик снабжают двумя отводами для соединения с остальным контуром системы. Отводы пропускают сквозь штуцеры в стенке емкости и герметизируют проходы для обеспечения неподвижности змеевика. Рекомендуется установить дополнительные крепления внутри бака, чтобы прочно зафиксировать змеевик, исключить возможность вибрации или перемещения.
Внутри емкости будет очень низкая температура. Для того, чтобы исключить возможность обмерзания трубки образующимся конденсатом, специалисты советуют установить осушитель или реле оттаивания.
Правила установки компрессора
Для компрессора рекомендуется изготовить отдельный шумоизолированный корпус. Это поможет обеспечить практически полную бесшумность работы комплекса. Вход компрессора присоединяется к выходному патрубку испарителя, а выход — ко входу конденсатора (второго теплообменника). Могут быть использованы следующие виды компрессоров:
- роторные. Недорогие, но шумные устройства с низким ресурсом
- спиральные. Бесшумные, долговечные и эффективные образцы, но имеют высокую цену
- поршневые. Имеют длительный ресурс, высокую мощность, используются преимущественно в промышленном холодильном оборудовании. Цена таких устройств самая высокая
Рекомендуется использовать однофазную конструкцию компрессора, рассчитанного на фреон R22 или, лучше всего, R422. Эта марка хладагента наиболее простая и эффективная в работе.
Конструирование накопительной емкости (конденсатора)
Конструкция конденсатора похожа на испаритель, но требует герметизации, так как внутри будет находиться не воздух, а теплоноситель системы отопления. Понадобится бак емкостью 100 л (подойдет готовый из-под бойлера или любой другой, имеющий тот же объем). В верхней и нижней частях бака необходимо установить штуцеры для поступления теплоносителя (воды), там же понадобятся отверстия для прохода медной трубки.
Изготавливается змеевик, диаметр спирали должен быть немного меньше внутреннего диаметра бака. Для изготовления змеевика понадобится 12 метров трубки диаметром не менее 26 мм. Концы выводятся в отверстия корпуса, после чего выходы тщательно запаиваются и герметизируются.
Для установки змеевика бак придется разрезать вдоль, после закрепления половинки свариваются или соединяются другим способом, обеспечивающим полную герметичность. В результате получается емкость, сквозь которую проходит медный змеевик, чей внутренний объем не соединяется с объемом бака. Внутрь емкости ведут два штуцера — входной и выходной, по которым будет циркулировать теплоноситель.
Соединение внешнего блока с испарителем
Для соединения испарителя с внешним блоком рекомендуется использовать трубы из полиэтилена низкого давления диаметром 32 мм. Одна используется для подачи воздуха, другая — для вывода. Трубы рекомендуется утеплить, закопать в траншею или защитить любым другим способом. Оставлять их на открытом воздухе или поверхности земли можно, если наружный блок находится рядом с домом.
Соединение испарителя, компрессора и бака
Соединение медных трубок производится при помощи пайки. Здесь нужен опыт, если его нет, то надо пригласить специалиста-холодильщика, занимающегося промышленными установками. Люди, занимающиеся монтажом водопроводных систем и сантехники, хоть и производят пайку меди, здесь не компетентны, так как понадобится установка различной запорной арматуры, вентилей, переходников и прочих элементов.
Для этого нужен соответствующий инструмент, знание правил и тонкостей монтажа холодильного оборудования. Кроме того, понадобится заправить систему фреоном, что также потребует установки соответствующих элементов и наличия опытного специалиста.
Внедрение систем управления установкой
Для контроля и управления режимом работы теплового насоса могут быть использованы различные элементы:
- плата с электроникой и дисплей от кондиционера, позволяющие регулировать давление и температуру хладагента
- датчик вращения вентилятора, изменяющий скорость воздушного потока и регулирующий теплообмен в испарителе
- таймер, датчики температуры, пускатели и прочие элементы управления
Использование этих устройств позволит оптимальным образом настроить работу теплового насоса и по мере необходимости регулировать ее.
Особенности обслуживания
Обслуживание комплекса заключается в периодической очистке элементов системы, добавлении масла в компрессор и вентилятор, смазке и прочем уходе за механическими деталями. Также понадобится иногда отогревать обледеневшие узлы системы (особенно в зимнее время). Необходим регулярный осмотр целостности трубопроводов, герметичности соединений, состояния запорной арматуры и т. д. Проверять электрическую часть системы — питающий кабель, целостность изоляции, качество соединения проводов. Выполнение этих действий позволит вовремя обнаруживать изъяны и принимать меры для их устранения.
energo.house
оборудование для частного дома и принцип действия
Автономные системы отопления воздухом приобретают большую популярность. Дешевый теплоноситель, минимальные затраты на обустройство – положительные качества конструкции. Минус в счетах на оплату электроэнергии, но если применить тепловой насос воздух воздух, недостаток можно практически свести к нулю. Использование оборудования позволяет снизить расходы в 3-5 раз.
Что такое тепловой насос типа воздух-воздух?
Конструкционно воздушный тепловой насос (ТН) выглядит как сплит-система из двух блоков – наружного и закрепляемого внутри помещения. Также схож принцип работы, но с отличием в способности ТН прогревать помещение.
Стоит знать! Производители предлагают тепловые насосы с регулировкой систем и настройкой для нагревания и кондиционирования воздушных потоков.
Виды тепловых насосов
Линейка товаров различается по марке, мощности, наличию дополнительных приборов, функционала.
Модели могут дополняться:
- приборами для фильтрования, чистки, обеззараживания потоков воздуха;
- устройствами косвенного нагрева;
- электрогенератором;
- блоками автоматического управления, настройки.
Также в схему интегрируются ионизаторы, озонаторы и другие агрегаты для поддержания комфортного микроклимата в помещении. Если выбирается отопление воздух воздух для дома, офиса, наиболее качественными считаются приборы от японских изготовителей, которые дополнительно оборудованы устройствами извлечения низкопотенциальной энергии из воздуха, что существенно снижает затраты на обслуживание схемы.
К популярным моделям относятся:
- Daikin. Схема доступна для интеграции в систему «умный дом», в наличии автоматический контроль регулировки с фиксацией для установки комфортной подачи теплоносителя. Товарная линейка предложена для жилых домов, помещений коммерческого, производственного назначения, в наличии системы с подогревом/охлаждением.
- Mitsubishi. Модель Zubadan отличается высоким уровнем рабочих параметров и сниженным расходом электрической энергии, способна работать при внешних температурах до -25 С.
Подбор насоса теплового осуществляется с учетом требований системы отопления воздушного типа, а также предпочтений пользователя.
Преимущества и недостатки
К плюсам относят:
Рекомендуем к прочтению:
- Экологичность. Отопление тепловым насосом воздух-воздух не требует обустройства системы твердотопливными котлами, то есть нет нужды сжигать дрова, жидкое топливо – энергия добывается из воздуха.
- Универсальность. Посредством применения ТН можно как нагревать, так и охлаждать помещения без покупки, применения дополнительных агрегатов.
- Монтаж. Справиться с установкой оборудования под силу домашнему мастеру без особого опыта. В комплекте уже идут все расходные элементы и блоки, а при наличии некоторого навыка можно собрать агрегат из подручных материалов.
- Безопасность. Нет ни одного элемента, который может привести к возгоранию, поэтому даже при нарушениях функционала системы не будет значительных последствий.
- Высокая энергоэффективность. Коэффициент теплоотдачи составляет 4-5 кВт при потреблении всего 1кВт электрической энергии.
- Длительный срок пользования. При соблюдении правил монтажа, эксплуатации приборы прослужат очень долго, а цена оборудования от заводского поставщика доступна для любого пользователя.
Чтобы организовать теплоподачу, необходимо правильно закрепить оборудование для воздушного отопления по модулям – внешний монтируется на фасаде, а внутри комнаты устанавливается прилагаемый в комплекте конвектор. Если необходимо подавать тепло в разные комнаты, то система дополняется воздуховодами. Для поддержания конструкции в рабочем состоянии необходима регулярная чистка и техническое обслуживание всех элементов.
Что касается недостатков, то их немного – оборудование шумит при работе, причем чем больше потребляется энергии, тем выше уровень шума. А увеличиваются затраты энергии при понижении температуры за окном. Также следует знать, что при снижении показателя термометра от -15 С, эффективность ТН падает, поэтому систему следует оснастить резервным источником нагрева, особенно важно это для регионов с холодными зимами.
Принцип действия и общие характеристики
Рассматриваемая схема отличается простым функционалом:
- Холодный воздух с улицы нагревается в процессе прохождения через ребра теплообменника, где испаряется фреон и воздушные массы получают нужную тепловую энергию. Этот прибор размещен снаружи в блоке, который монтируется на фасаде.
- Далее газ направляется в компрессор, сжимается до состояния конденсата. И теперь конденсат оседает во втором теплообменнике, расположенном уже во внутреннем блоке системы.
- Конденсат переходит в жидкое состояние, при этом хладон передает тепловой заряд воздушным потокам, прогоняемым через конденсатор под воздействием центробежного вентилятора.
- При переходе вещества через расширительный клапан, показатель давления жидкого фреона снижается, хладагент перемещается в испаритель и цикличность возобновляется.
Таким образом получается, что система воздушного отопления является замкнутой и цикличной. Но таковы общие принципы работы схемы агрегатов по инверторной технологии, контроллер позволяет задавать индивидуальные программы снижения или повышения производительности оборудования. Достигается свойство особенностями процесса сжимания фреона в газообразном состоянии – компрессор может добавлять тепло к заряду, полученному рабочим телом от наружного воздуха, что позволяет регулировать показатели температуры потоков воздуха.
Расчет и выбор теплового насоса
Стандартная формула 0,7 кВт на 10 м2 применяется при просчете мощности любого оборудования. Так, пользователь без сложных математических формул получает примерный показатель мощности прибора. К примеру, для прогревания дома площади 200 м2 с постоянным проживанием (учитывается средний показатель потерь тепла при отсутствии явных щелей), с высотой потолков до 270 см достаточно агрегата мощностью в 14 кВт. Если в схему интегрируется бак для подачи ГВС, то к параметру мощности нужно добавить 15-20%. Такой насос сможет прогреть потоки воздуха до +23 С в течение всего холодного сезона, причем затраты на отопление значительно снижаются.
Выбирая ТН, нужно учитывать показатели мощности, производительности, простоту установки и цену агрегатов. Стоимость повышается при наличии дополнительных устройств для охлаждения воздушных потоков, встроенных баков для воды, ионизаторов, увлажнителей и прочего.
Система отопления с тепловым насосом
Тепловые насосы воздух-воздух могут применяться для обогрева отдельного помещения или являться основным узлом автономной системы отопления частного дома. При этом газовый, электрический котел превращается в резервный источник нагрева, включать его рекомендуется при значительном понижении внешней температуры. Профессионалы рекомендуют применять оборудование для воздушного отопления частного дома при создании локальных тепломагистралей.
Рекомендуем к прочтению:
Вся конструкция отличается компактностью, при этом тепловые насосы удобно интегрируются в уже функционирующую схему, например, с жидким теплоносителем, принимая на себя значительные или полные нагрузки. Гибкая подача тепла с возможностью регулировки микроклимата, а также простота замены одного прибора без нарушения работы всей системы – плюсы.
Но есть у локальной схемы и минусы:
- направить потоки нагретого воздуха без системы воздуховодов невозможно, а обустройство трубопровода не всегда выгодно в экономическом плане;
- суммовая эффективность приборов меньше, чем при применении одного мощного котла;
- монтаж нескольких наружных блоков может испортить эстетику фасада;
- ограничения протяженности трассы, связывающей наружный и внутренний блок, не позволяют использовать ТН повсеместно;
- от идеи оборудования автономной схемы отопления для большого количества комнат внутри одного строения небольшого формата придется отказаться – это невозможно по техническим причинам.
Если тепловой насос воздух-воздух применяется при обустройстве централизованной системы отопления, недостаток только в высверливании дырок для крепления воздуховодов.
Рассмотрев минусы, нужно отдать должное плюсам, которых намного больше:
- Есть возможность контроля температуры нагрева в любой комнате, всем помещении. Также система позволяет интегрировать в схему оборудование для очистки, увлажнения, ионизации.
- При соблюдении технологии монтажа контроль притока/вытяжки воздушных потоков обеспечивает снижение теплопотери. Для устранения недостатка применяются системы рекуперации.
- К плюсам относится простота обслуживания приборов. Например, при значительных понижениях внешней температуры прогреть один блок намного проще, чем отогревать весь трубопровод магистрали.
На заметку! В регионах с аномальными понижениями температуры специалисты рекомендуют продумать воздухоподготовку с применением почвенного теплообменника. Система требует правильного размещения и расчетов, но обеспечит работу ТН при любых заморозках.
Комплектующие системы воздушного отопления
Система оборудования для воздушного отопления включает внутренний и внешний блоки, контур для перемещения хладагента, вентилятор с функцией нагнетания воздуха и трубопроводы (каналы) для транспортировки потоков воздуха.
Для обустройства локальной системы нужны только 2 блока, один из которых устанавливается на крышу строения, второй монтируется внутрь помещения. Лучше выбирать точку, удобную для выхода тепловых потоков и перемещения по комнате с высокой эффективностью.
Важно! Вентиляторы и воздуховоды требуются при обустройстве централизованной магистрали. Необходимо просчитать длину каналов, определиться с точками монтажа и мощностью приборов. Составление проекта требует опыта, поэтому работы поручаются профессионалам.
Области применения воздушной системы отопления
Свойства быстро очищать воздух и прогревать помещения локально объясняют популярность воздушного отопления в промышленных, производственных помещениях, офисах. Локальные конструкции в частных домах необходимы при перебоях с топливом, электричеством.
Простой расчет показывает, что при подведении газопровода к участку пользователь затратит не менее 10500$, при этом предполагаются дальнейшие вложения на обустройство системы трубопроводов, котла, поддержание работы насоса. В этом случае тепловой насос воздух-воздух обойдется намного дешевле, работать будет с первой минуты подключения системы и гарантирует пожизненное снижение затрат. А вот электрический, газовый или твердотопливный котел может стать резервным источником, подключаемым только при значительном похолодании.
dizain-vannoy.ru
Как работает тепловой насос системы воздух-воздух, секреты расчета и выбора
Тепловые насосы воздух-воздух чаще всего применяются там, где невозможно оборудовать контур теплообменника под землей. Причиной этого могут быть финансовые ограничения, отсутствие грунтовых вод или свободного места на участке для горизонтального монтажа системы, наличие твердых пластов на малой глубине и другие обстоятельства. В этих случаях тепловой насос системы воздух-воздух – единственная разумная альтернатива. Решение подойдет тем людям, кто хочет построить экологически чистую отопительную конструкцию, но располагает небольшой суммой для реализации проекта.
Как работает тепловой насос воздух-воздух
В основе работы системы лежит тот же принцип, который применяется и в геотермальных насосных агрегатах. Главное отличие состоит в том, что тепло отбирается не из почвы или водной среды, а из внешнего воздушного пространства. При этом строение отапливается посредством нагрева воздуха внутри помещений.
Тепловой насос для отопления дома воздух-воздух имеет сравнительно простую конструкцию. Для его использования не нужно бурить скважины и прокладывать контур под землей. В конструкцию агрегата входят внутренний и внешний блоки. Наружная часть системы называется испарительной и монтируется так, чтобы примыкать к зданию с улицы.
Принцип работы агрегата достаточно прост. Внешний блок извлекает тепло из окружающих воздушных масс, которое затем разогревает хладагент. Тот начинает закипать и преобразовываться в газ. После этого компрессор выполняет сжатие субстанции, увеличивая ее температуру. Тепло направляется внутрь конденсатора, расположенного в здании. Схема работает перманентно и контролируется автоматикой. Процесс останавливается только тогда, когда системе удается обеспечить заданный температурный режим в помещении.
При возникновении вопросов по работе оборудования можно обратиться за разъяснением к работникам, монтирующим систему. Они подробнее расскажут, как работает тепловой насос, просветят насчет правил эксплуатации техники.
Преимущества использования
Высокий КПД теплового насоса воздух-воздух достигается при создании наименьшей разницы между температурой воздуха, из которого забирается тепло, и температурой в системе отопления. Выполнить это условие проще всего в зоне с умеренным климатом и мягкими зимами. В северных широтах с низкими температурами эффективность такого оборудования снижается.
Решение имеет многочисленные преимущества. Плюсы обогрева дома тепловыми насосами воздух-воздух:
- простая конструкция системы, удобная установка и эксплуатация. Не нужно бурить скважины, заниматься прокладкой коммуникаций, выделять отдельное помещение для оборудования;
- подходит для любого климата;
- оборудованиt можно монтировать в построенном здании с действующей стандартной отопительной системой. Решение обеспечивает экономию денежных средств на прокладке дополнительных коммуникаций. Монтаж требует внесения незначительных корректив в существующую конструкцию;
- установка обходится дешевле, если сравнивать решение с другими разновидностями теплонасосов;
- долгий срок службы;
- небольшой срок окупаемости;
- уровень энергопотребления ниже средних значений;
- оборудование функционирует в автономном режиме, имеет компактные габариты, не создает шумового загрязнения;
- схема теплового насоса воздух-воздух позволяет использовать его летом для охлаждения пространства. При наличии высокоэффективных воздушных фильтров внутри дома легко обеспечивается комфортный микроклимат.
Как производится расчет мощности оборудования
Небольшой объем тепла присутствует в воздушном пространстве даже тогда, когда температура опустилась до -20 градусов по Цельсию. Важно, что оно пригодно для отопления дома с помощью автономной конструкции. Для расчета требуемых параметров обычно используется специальное программное обеспечение. Можно воспользоваться онлайн-системами, которые имеют поля для указания числовых значений. В них можно указать площадь помещения и высоту потолков. Иногда допускается задание диапазона температур, характерного для региона.
Теплонасос способен функционировать и при сильных морозах, но работать он будет при этом с меньшей отдачей. Благоприятным для системы является температурный диапазон от -10 до +10 градусов по Цельсию. Чтобы не ошибиться при выборе насоса, стоит учесть факторы:
- объем хладагента;
- общая площадь поверхности змеевиков во внешнем и внутреннем блоках;
- планируемый объем отдачи тепла.
Так как система имеет сравнительно простую конструкцию, установить ее сможет даже мастер с небольшим опытом обращения с техникой. Но расчеты желательно доверить специалистам. Как минимум, у них следует получить консультацию. Эксперты помогут определить нужные коэффициенты, произведут расчет теплового насоса воздух-воздух с учетом всех факторов. В средней полосе России для дома площадью 100 квадратных метров хватит агрегата мощностью 5 киловатт.
Минусы теплонасоса системы воздух-воздух
Есть у представленной системы и свои недочеты. Кроются они, как и достоинства, в самом принципе действия теплового насоса воздух-воздух. Главным минусом является зависимость уровня производительности от погодных факторов. Уже при -20 градусах по Цельсию коэффициент энергетической эффективности снижается до единицы. При нуле за окном этот показатель составляет 2-2,5 единицы. Это означает, что 1 кВт потраченной энергии обеспечивает 2-2,5 кВт тепла. Если воздух прогрет до положительных значений, коэффициент энергоэффективности вырастает до 3-4 единиц.
При -25°С такие теплонасосы малоэффективны. Поэтому при принятии решения о покупке соответствующего оборудования стоит тщательно оценить этот фактор. В некоторых случаях целесообразно использовать такие системы в качестве дополнительного источника тепла, когда погодные условия обеспечивают их эффективную эксплуатацию.
altenergiya.ru
схемы, устройство и сооружение своими руками
В связи с регулярным повышением стоимости теплоносителей востребованными становятся альтернативные методы отопления. К примеру, практичный тепловой насос воздух-вода, использующий для обогрева энергию воздуха. Установка не требует дорогостоящих расходных материалов, удобна в эксплуатации, безопасна.
В связи с немалой ценой заводской сборки агрегата у многих возникает интерес к самостоятельному сооружению этой системы. Мы расскажем, что потребуется домашнему мастеру для устройства самодельного теплового насоса. У нас вы узнаете, какими техническими средствами следует запастись.
Содержание статьи:
Особенности тепловой системы воздух-вода
Тепловой насос, которому посвящена эта статья, в отличие от других модификаций подобного устройства (в частности, и грунт-вода), обладает рядом достоинств:
- экономит электричество;
- для установки не потребуются масштабные земельные работы, бурение скважин, получение специальных разрешений;
- если подключить систему к солнечным батареям, то можно обеспечить полную ее автономность.
Веское преимущество тепловой системы, извлекающей энергию ветра и передающей ее воде, заключается в стопроцентной экологической безопасности.
Перед тем, как приступать к конструированию насоса, необходимо выяснить, в каких случаях система проявляет себя максимально эффективно, а когда ее использование нецелесообразно.
Тепловая насосная система, извлекающая энергию из воздушной массы, может использоваться для подогрева всех видов теплоносителей, применяющихся на территории СНГ: воды, воздуха, пара
Специфика применения и работы
Тепловой насос продуктивно работает исключительно в температурном диапазоне от -5 до +7 градусов. При температуре воздуха от +7 система будет вырабатывать больше тепла, чем необходимо, а при показателе ниже -5 – недостаточно для обогрева. Это связано с тем, что концентрированный фреон, находящийся в конструкции, закипает при температуре -55 градусов.
Галерея изображений
Фото из
Установка теплового насоса воздух вода
Компоненты системы воздух-вода
Внутренний блок системы воздух-вода
Составляющие внешнего блока насоса
Тепловой насос в системах парового и водяного отопления
Подготовка воды для поставки в контуры ГВС
Теплый пол — один из главных потребителей
Приборы низкотемпературных отопительных контуров
Теоретически система может вырабатывать тепло и в 30-градусный мороз, но его будет недостаточно для обогрева, ведь теплопроизводительность напрямую зависит от разности температуры кипения хладагента и температуры воздуха.
Поэтому жителям Северных регионов, где холода наступают раньше, эта система не подойдет, а в домах Южных областей она сможет эффективно прослужить несколько холодных месяцев.
Если в помещении установлены стандартные батареи, то тепловой насос будет работать менее эффективно. Лучше всего устройство воздух-вода сочетается с конвекторами и иными радиаторами с большой площадью, а также с , «теплые стены» водного типа.
Также само помещение должно быть хорошо утеплено снаружи, обладать встроенными многокамерными окнами, обеспечивающими лучшую теплоизоляцию, чем обычные деревянные или пластиковые.
Тепловой насос лучше всего взаимодействует с водяной системой «теплый пол», не требующей нагрева теплоносителя свыше 40 – 45º С
Самодельный сможет эффективно обогревать дома площадью до 100 кв. м и гарантировано выдавать мощность в 5 кВт. Следует понимать, что фреон невозможно залить достаточно качественно в конструкцию, созданную в бытовых условиях, поэтому следует рассчитывать на температуру его кипения до -22 градусов.
Устройство домашней сборки идеально подойдет для снабжения теплом гаража, теплицы, подсобных помещений, и др. Система обычно используется в качестве дополнительного обогрева.
Электрокотел или иное традиционное оборудование для отопительного сезона потребуется в любом случае. Во время сильных морозов (-15-30 градусов) тепловой насос рекомендуется выключать, чтобы избежать растрат электроэнергии, ведь в этот период его эффективность составляет не больше 10%.
Тепловые насосы поставляют достаточное количество энергии для обогрева воды в крытых частных бассейнах (+)
Принцип действия системы
Рабочее вещество в конструкции – воздух. Через наружный блок, устанавливающийся на улице, кислород по трубам поступает в испаритель, где взаимодействует с хладагентом.
Фреон под действием температуры становится газообразным (поскольку закипает при -55 градусах) и в нагретом виде под давлением поступает в компрессор. Устройство сжимает газ, тем самым увеличивая его температуру.
Горячий фреон поступает в контур накопительного бака (конденсатора), где происходит отдача тепла воде, которую впоследствии можно использовать для организации отопления и ГСВ. В конденсаторе фреон лишается только части своего тепла, и все еще находится в газообразном состоянии.
Проходя через дроссель, хладагент распрыскивается, в результате чего его температура понижается. Фреон становится жидким и в таком виде переходит в испаритель. Цикл повторяется.
На рисунке схематически показана реализация принципа элементарного теплового насоса, разделенного компрессором и расширителем на два контура – высокого и низкого давления
Желающим самостоятельно соорудить из бросовых материалов и отслужившей техники, к примеру, из старого холодильника, поможет информация, изложенная в рекомендуемой нами статье.
Сооружение теплового насоса воздух-вода
Система теплового насоса состоит из четырех основных элементов:
- наружного блока;
- емкости теплообменника-испарителя;
- блока для компрессора;
- накопительной емкости (конденсатора).
Рассмотрим особенности конструирования каждого из блоков.
Сборка наружного блока
Для создания внешнего блока понадобится:
- Корпус. Традиционно подходит блок из-под сплит-системы, стиральной машины, другой габаритной техники, иногда сооружают самостоятельно путем приваривания металлических элементов. Важно после сборки обработать металл антикоррозийной краской порошкового типа.
- Вентилятор. Изделие можно позаимствовать из старой рабочей или приобрести отдельно.
Модель вентилятора должна обладать широкими пластиковыми лопастями и, желательно, с отсоединяемым мотором, чтобы предоставилась возможность подключить его к датчику.
Для сборки наружного блока понадобиться корпус и вентилятор из-под системы кондиционирования. Примерные параметры блока – 75х85х30 см
В наружный блок можно установить испаритель и вспомогательные элементы для его работы, но целесообразнее эти детали поместить в отдельный корпус.
Устанавливают наружный блок на расстоянии 2-10 м от дома. Важно построить под него фундамент и поставить навес, чтобы защитить конструкцию от осадков. Также необходимо закрепить решетку перед вентилятором, чтобы избежать попадания грязи, мусора, листьев в лопасти вентилятора и трубы.
Дополнительно желательно установить обогреватели, защищающие боковины и панели от обледенения. В этом случае дополнительное прогревание корпуса не понадобится. Место для установки блока должно быть хорошо вентилируемым, находиться в отдалении от источников открытого огня.
Блок с теплообменником-испарителем
Испаритель можно приобрести в готовом виде, воспользовавшись услугами поставщиков в сети, или создать самостоятельно. Для этого понадобиться 80-литровый бак и медная проволока диаметром 10 мм и толщиной не менее 1 мм.
Длина высчитывается индивидуально с учетом требуемой мощности. Для устройства 5 кВт можно взять 10 м. В испарителе будет происходить нагрев и циркуляция фреона, а также контакт с воздухом.
Для создания теплообменника нужно сконструировать змеевик. Для этого проволоку обматывают вокруг толстостенной трубы с диаметром, не превышающим ширину бака. Важно оставить срезы, выступающие за высоту корпуса. Они понадобятся для соединения змеевика с другими элементами системы – компрессором и накопительным баком.
Для создания змеевика медную трубку со стенками около 1 мм обматывают вокруг газового баллона, трубы или наполненной водой пластиковой бутылки
В корпус врезают 2 штуцера для подсоединения трубопроводов, создают два разъема для выхода проволоки. Соединения герметизируют. Крепят готовую конструкцию с помощью L-образных кронштейнов.
Рекомендуется дополнительно установить на испаритель реле оттаивания, поскольку в баке будет происходить циркуляция воздуха, температура которого отрицательная. В этом случае конденсат, скапливающийся в системе, может привести к обледенению испарителя. Также, чтобы исключить образования влаги, можно внедрить в систему фильтр-осушитель.
Правила установки компрессора
Для установки компрессора потребуется отдельный корпус со звуко- и виброизоляцией, поскольку практически все модификации устройства шумят во время работы. Компрессор можно взять б/у из-под холодильника, кондиционера или приобрести новую модель.
Для тепловых насосов подойдут следующие виды компрессоров:
- Роторные компрессоры являются самыми недорогими, но обладают рядом недостатков – шумят, обладают малой эффективностью и служат 8-10 лет.
- Спиральные модификации устанавливают во все современные модели кондиционеров, холодильников. Они долговечны (15-20 лет), бесшумные, эффективные, но отличаются высокой стоимостью.
- Поршневые модели преимущественно устанавливают на промышленные холодильники. Изделия обладают хорошим КПД, долговечные (15-20 лет), но крайне шумные и дорогие.
Для теплового насоса необходимо подобрать компрессор однофазной модификации. Перед покупкой важно узнать, с каким видом фреона работает устройство. Желательно приобрести модель, работающую на R22, лучше на R422. С хладагентом данного вида работать проще, чем с любым другим видом фреона.
Компрессор подсоединяют трубками к блоку испарителя и конденсатора. Благодаря устройству фреон увеличивает свою температуру.
Конструирование накопительной емкости (конденсатора)
Для изготовления конденсатора понадобиться корпус из-под 100-литрового бойлера или любой другой нержавеющий бак такого же объема. Также необходим змеевик, выполненный из медной трубки. На насос мощностью 5 кВт можно взять 12-метровую проволоку. По трубке змеевика будет проходить горячий фреон, благодаря чему происходит нагревание воды.
Шаг №1: Создание змеевика
Для изготовления змеевика понадобиться медная проволока диаметром не меньше 26 мм и толщиной стенки от 1 мм. Ее необходимо намотать на трубу, имеющую меньшее поперечное сечение, чем у бака.
Высота спирали должна совпадать с высотой корпуса. Важно оставить выпуски трубы за пределами емкости, чтобы иметь возможность подсоединить змеевик с испарителем и компрессором.
Шаг №2: Подготовка корпуса
Для установки змеевика бак необходимо разрезать. Сверху и снизу понадобиться создать отверстия для выходов медной проволоки, а также вырезать дополнительные отсеки для установки 2-х штуцеров, один из которых предназначен для выхода воды, а другой – для ее входа. После проделанных процедур бак необходимо герметизировать.
Теплообменник-компрессор можно приобрести отдельно в виде готовой конструкции. С помощью устройства заводской сборки можно увеличить мощность и КПД установки.
Хладагент с маркировкой R22 согласно Монреальским постановлениям к 2030 году запланировано вывести из обращения. Для наполнения системы лучше использовать его заменитель – хладагент R422
Соединение внешнего блока с испарителем
Для соединения наружного блока и испарителя потребуется проведение 2 полиэтиленовых труб ПНД 32. Через одну трубу воздух будет проходить, через другую – выходить.
Трубы можно закопать в землю, предварительно досыпав в ров любой песчаный материал, или оставить на поверхности, если наружный корпус располагается недалеко от дома.
Соединение испарителя, компрессора и бака
В этой системе циркулирует фреон. Для присоединения змеевиков с компрессором и дросселем, необходимо обратиться к специалистам по холодильной технике. Человеку, не имеющего опыта в паяльных работах, даже при наличии инструментов и материалов сложно будет грамотно соединить все элементы в одну систему, чтобы обеспечить работу конструкции.
Более того, потребуется много дополнительных материалов – трубок разных диаметров, различных модификаций , клапанов для травления воздуха, предохранительных клапанов, а также клипс для труб, хомутов, труборезов для нарезки участков трубопровода.
Нужны будут и другие специализированные устройства, которые есть в наличие в любой мастерской по ремонту холодильников и кондиционеров.
Качественная закачка фреона также осуществляется с использованием специального оборудования. Поэтому для объединения теплообменников, компрессора и дросселя в рабочую систему удобнее и выгоднее обратиться к профессионалам.
Внедрение систем управления установкой
Для слежения за давлением и температурой фреона можно использовать плату с дисплеем из-под любого кондиционера. В процессе паяльных работ с помощью специалистов конструкцию можно грамотно внедрить в установку.
Также возможно подключить специальное устройство – датчик вращения вентилятора. Он регулирует скорость вращения лопастей, а также автоматизирует обороты циркуляционного насоса фреона.
Дополнительно можно установить таймер, электропускатель, устройство, защищающее компрессор от перегрева. Все эти детали можно приобрести в ремонтных мастерских или на рынке запчастей.
Расчет мощности теплового насоса воздух-вода
Для обогрева помещения с площадью от 100 кв. м потребуется тепловой насос большей мощности. Вычислить необходимую мощность установки можно приблизительно, используя таблицу:
Данные таблицы помогут рассчитать площадь змеевика для создания установки той или иной мощности
Чтобы определить, какая мощность должна быть у компрессора, трубы каких диаметров следует использовать и другие важные данные при конструировании теплового насоса воздух-вода, необходимо обратиться к одному из способов:
- Воспользоваться онлайн-калькуляторами, размещенными на сайтах производителей теплообменников.
- Применить программное обеспечение CoolPack 1,46, Copeland.
- Пригласить специалиста, который произведет необходимые измерения и расчеты.
Площадь змеевика-конденсатора (ПЗК) можно вычислить по формуле:
ПЗК = М/0,8ДТ,
где М — мощность установки в кВт; 0,8 — коэффициент теплопроводности при контакте воды и меди; ДТ — разность температуры между поступающим и выходящим воздухом в системе.
Параметры теплового насоса, приведенные выше, подойдут для помещения до 100 кв. метров. Мощность установки – 5 кВт. Если приобретать специальные теплообменники, то вполне возможно увеличить мощность установки до 10-15 кВт.
На рисунке представлена система, в которой теплообменники, компрессор, дроссель объединены в одном баке. В конструкции используются заводские теплообменники (+)
Обслуживание самодельной установки
Для качественной работы тепловой насос нуждается в дополнительном обслуживании. Если использовать устройство зимой (учитывая, что в корпусе не установлен дополнительный обогрев), то периодически блок придется отогревать, поскольку на его поверхности будет образовываться ледяная корка.
Также необходимо периодически:
- Очищать лопасти вентилятора от мусора – листьев, пыли, грязи, снега и т.д.
- Производить смазку компрессора согласно инструкции к нему.
- Менять масло в компрессоре и вентиляторе.
Кроме того, для нормального функционирования системы необходимо регулярно Проверять целостность медного трубопровода, силового кабеля, питающего компрессор, вентилятор и другие устройства.
Выводы и полезное видео по теме
С принципом действия и устройством теплового насоса, перерабатывающего энергию ветра, ознакомит следующий ролик:
Самодельный тепловой насос системы воздух-вода является одним из эффективных и недорогих устройств для дополнительного обогрева жилья. Изготовить и установить эту систему сможет любой желающий.
Пишите, пожалуйста, комментарии в находящемся ниже блоке. Возможно, у вас есть интересные сведения и фото по теме статьи? Задавайте вопросы, делитесь собственным мнением и полезными для посетителей сайта советами.
sovet-ingenera.com
Ещё один дом с воздушным отоплением тепловым насосом и рекуператором: victorborisov — LiveJournal
Недавно мы с Иваном Константиновым завершили очередной объект, на котором выполнили полный комплекс работ по установке системы отопления и вентиляции. Дом очень красивый и технологичный, поэтому я решил поделиться с вами деталями этого объекта.
Смотрим!
Это современный одноэтажный газобетонный дом с плоской кровлей площадью 116 квадратных метров. Строительство дома началось в конце прошлого года с использованием самых передовых технических решений. Дом имеет 3 спальни, два санузла, сауну и большую кухню-гостиную.
Помимо консультаций на этапах строительства, мы с Ваней полностью взяли на себя задачу по поставкам, проектированию и монтажу системы отопления и вентиляции. В районе строительства отсутствует магистральный газ поэтому выбор теплового насоса уже был предопределён. А т.к. современный дом невозможен был системы приточно-вытяжной вентиляции, то было принято решение эффективно совместить две этих системы точно также, как я сделал в своём собственном доме.
Начинаем с расчёта теплопотерь и проектирования схемы магистралей. Мы будем подавать воздух с учётом теплопотерь в каждом конкретном помещении, возвратный воздух будет забираться на полу в холле. К рециркулируемому воздуху будет подмешиваться свежий и чистый уличный воздух, который будет подаваться через рекуператор. Вытяжной воздух забирается в санузлах и подаётся в рекуператор.
После того, как была организована доставка теплового насоса и рекуператора — выезжаем на монтаж.
Большая часть привезённых комплектующих для системы отопления и вентиляции. Здесь около тонны оцинкованного металла.
Сначала делаются отверстия под воздуховоды в несущих стенах и перегородках. Газобетон просто так сдаваться не хочет, пришлось попотеть. Перегородки в доме сделаны из силикатного кирпича — его демонтировать гораздо проще.
Начинаем сборку внутреннего блока теплового насоса. К нему нужно пристыковать всасывающий и подающий воздуховоды и уже в таком виде монтировать.
После этого переходим к утеплению воздуховодов, сборке, проклейке швов. Эта работа заняла два дня.
Далее устанавливаем внешний блок теплового насоса на заранее изготовленную раму на отдельном фундаменте рядом с домом и прокладываем фреоновую магистраль.
Вальцуем трубки и вакуумируем магистраль теплового насоса. Также монтируем на стене приточно-вытяжую установку с рекуператором.
Внутри дома завершаем монтаж воздуховодов и передаём объект штукатурщикам. Общее время, которое потребовалось на монтаж данной системы — 4 рабочих дня. Так быстро получилось благодаря грамотному проектированию и слаженной работе.
Строительство идёт очень быстро, разница между этой и следующей фотографией всего 1 месяц.
Зачем тянуть время если уже можно заниматься благоустройством сада?
Остался заключительный этап — пуско-наладочные работы и балансировка системы. В качестве системы отопления мы использовали воздушный тепловой насос Cooper&Hunter полупромышленной серии. Он способен работать на обогрев даже при -20 градусах по Цельсию и выдавать до 12 кВт тепла.
Внутри дома установлены все подающие магистрали. В дальнейшем они будут скрыты за потолком из гипсокартона.
Раздающие решетки расположены вдоль внешних стен в соответствии с расчётными теплопотерями для каждого помещения. Везде использовали компактные однорядные решетки размером 100х200 мм. На фото решетка закрыта плёнкой т.к. мы их закрывали на период штукатурных работ.
Спальня с огромными панорамными окнами. С учётом теплопотерь здесь потребовалось разместить две раздающих решетки.
А в соседней спальне, где всего лишь одно окно — достаточно одной решетки.
Возвратный воздуховод на полу в холле. Он также будет зашит в гипсокартонный короб. Здесь же установлен рециркуляционный сетчатый фильтр многократного использования.
Раздающие решетки в огромной кухне-гостиной. Чтобы система была сбалансирована здесь потребовалось разместить 4 раздающих решетки и ещё одна решетка находится в прихожей (в дальнем правом углу).
После монтажа берём анемометр и балансируем систему — нужно сделать так, чтобы в каждое помещение подавалось строго определённое количество воздуха. Для этого на всех ответвлениях от магистрали установлены клапаны расхода воздуха. Настраиваются они один раз и навсегда.
А вот сердце всей отопительной системы. В доме нет отдельного технического помещения и всё оборудование было размещено на стене и потолке в комнате отдыха (душевой) перед сауной. Слева на фотографии у нас приточно-вытяжная установка с рекуператором тепла и влаги — Turkov Zenit HECO 350. Она забирает свежий воздух с улицы, фильтрует его и нагревает энергией, которая забирается из грязного вытяжного воздуха, выбрасываемого на улицу. Справа — внутренний блок воздушного теплового насоса, к которому подаётся свежий воздух от рекуператора.
Такая система позволяет убить двух зайцев одновременно — система отопления совмещается с системой вентиляции. И такая система получается дешевле, чем если отдельно делать систему отопления (например, тёплые полы) и отдельно систему вентиляции.
Кроме этого использование теплового насоса позволяет платить за отопление в 3 раза меньше, чем при использовании других источников тепловой энергии (прямой нагрев электричеством, дизельное топливо, сжиженный газ).
Пульты управления двух систем. Слева — тепловой насос C&H, справа — рекуператор Turkov. Первым можно управлять дистанционно с помощью адаптера IR-wifi, второй имеет штатный модуль Wi-Fi и своё собственное приложение для смартфона.
Монтаж и отладка системы отопления и вентиляции на этом объекте завершена, но строительство ещё продолжается — осталось ещё немного и осенью можно будет заселяться.
Небольшой видеообзор от Ивана:
Остались вопросы? Задавайте их в комментариях!
И не забудьте подписаться на мой блог, чтобы не пропустить новые статьи!
victorborisov.livejournal.com