+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Лампы люминесцентные мощность и характеристики, делаем проверку

Люминесцентные лампы являются одними из самых популярных источников света. Они показывают очень высокие технические характеристики и способны удовлетворить любые потребности пользователей и внешней среды. Широкий ассортимент позволяет сделать выбор очень качественно и легко. Но случаются и неприятные ситуации, тогда лампы не хотят работать либо проявляются другие неисправности.

Поможем разобраться с вопросом проверки мощности лампы и как проверить люминесцентную лампу, и расскажем для чего это делается. Но мощность не единый показатель, который следует проверить, необходимо убедиться также в общей работоспособности устройства и выявить неисправности, в этом мы вам также поможем.

Классификация люминесцентных ламп

Люминесцентные лампы существуют в ограниченном варианте исполнения. По большему счёту существуют только два варианта, линейные и компактные. Есть ещё кольцевые и U-образные, но их зачастую относят к разновидностям линейных. Они обладают той же структурой, размером и формой стеклянной трубки.

Люминесцентные источники света разделяют на устройства общего освещения и специализированные приборы. Для общего освещения обычно используют устройства с мощностью от пятнадцати до восьмидесяти ват. При этом могут присутствовать дополнительные характеристики света и различного спектра освещения.

Они могут имитировать обычное освещение различного цвета и оттенка. Критериями разделения таких ламп является мощность, тип разряда, по типу излучения, за формой колбы и по способу распределения света.

Различные формы

Каждый из представленных вариантов обладает отдельными подгруппами, которые более точно характеризуют устройство. Например, мощность может быть 15 ват, такая лампа будет маломощной. При использовании прибора на 80 ват, лампа называется сверхмощной.

Излучение света разделяется на такие типы:

  • Естественный свет.
  • Излучение цветного спектра света.
  • Специальные типы излучения для особых случаев и условий.

Маркировка производится с помощью буквенных обозначений. Начинается она с буквы Л, это показывает что устройство люминесцентное. Следующая буква показывает спектр излучаемого света, например, Д – естественное дневное освещение, Б – белый свет и прочие варианты, где буква соответствует первой букве используемого цвета освещения.

Если источник света выдаёт тёплый свет, тогда перед обозначением цвета будет буква Б, соответственно холодный обозначается буквой Х.

Маркировка для отечественной продукции

Также дополнительные обозначения осуществляют помощью следующих букв:

  • Ц – улучшенное качество передачи света.
  • ЦЦ – сверх качественная передача.
  • Р – показывает что тип рефлекторный.
  • Б – устройство быстрого или мгновенного старта.

В самом конце указывают обозначение из цифр, которое отображает мощность прибора в ватах.

Зависимость рабочих характеристик от напряжения

Люминесцентные лампы работают от напряжения в 220 вольт, и при частоте пятьдесят герц, что вполне соответствует нашей стандартной домашней сети. Колебания этих показателей сказывается практически на всех технических характеристиках люминесцентного устройства. Таким образом, ухудшая его работоспособность и качество освещения.

Какие показатели изменяются и насколько это критично:

  • Мощность устройства может как падать, так и повышаться при значительных колебаниях входящего напряжения. Таким образом, приобретая сверхмощную лампу для освещения вашего дворика, вы можете получить некачественное слабое освещение из-за низкого показателя входящего напряжения. Многие начинают наговаривать сразу на устройство и связывать падение мощности с браком конструкции, не разобравшись с корнем проблемы. Стоит измерять напряжение в вашей домашней сети, после чего делать выводы о неисправности.
  • Качество светового потока. При слишком большой амплитуде изменения сетевого напряжения или при резких перепадах, качество света значительно снижается. Так, при смене частоты тока, коэффициент мерцания значительно увеличивается, лампа начинает излучать сильно мерцающий свет, который перенапрягает глаза и вредит зрению человека. Также свет может быть не насыщенным и тусклым, что тоже увеличивает напряжение глаз и может повредить зрение, если находится в таких условиях продолжительное время. Особенно это сказывается, если работать при таком освещении.
  • Срок эксплуатационной службы прибора. Скачки и нестабильное напряжение способствует быстрому изнашиванию и ухудшению работоспособности прибора. Производители утверждают, что допустимой границей колебания тока, является десять процентов от номинального показателя. Превышение этой отметки может сократит срок службы изделия до пятидесяти процентов.

Проверка мощности

Измерение мощности лампочки позволяет создать для неё более подходящие условия и использовать по назначению. Вам ведь не нужна сверхмощная лампа для чтения книги или маломощная для выполнения мелких работ.

Благодаря измерению мощности можно распределить лампочки на необходимые места в соответствии с требованиями. Как правило, проверка производится на тех лампах, где маркировка стёрлась.

Проще всего осуществить измерение мультиметром. С его помощью измерение будет произведено быстро и с высокой точностью. Но если такого прибора нет под рукой, можно воспользоваться другим способом, который также довольно эффективный.

Вам понадобится иметь вольтметр и амперметр. Подключаются они к схеме включения лампы, амперметр последовательно, а вольтметр параллельно. После чего следует включить подачу тока на устройство. Затем снимаете показатели с обоих измерителей и записываете. Разделив полученную силу тока на напряжение, которое показал вольтметр, вы получите значение в ватах.

Этот показатель и будет номинальной мощность вашей лампочки.

Тестируем работоспособность

Проверка работоспособности является очень лёгким проверочным процессом. Первое что следует сделать, это, конечно же, попробовать подключить лампу к сети напрямую или установить в соответствующий светильник. После чего можно сделать выводы про исправность и функционирование устройства.

Причины поломоки их ремонт

Более детальная проверка будет заключаться в тестировании каждого элемента по отдельности, но этой займёт значительно больше сил и потребует от вас определённых познаний в данной области.

Причины поломок и их ремонт

Существует множество вариантом неисправности люминесцентных ламп, мы подготовили для вас наиболее распространённые виды и способы их решения.

Разобравшись с причиной неисправности можно легко решить её, давайте приступим к изучению нашего списка:

  • Устройство не включается – причина такое неисправности может заключаться в потере работоспособности лампы или обрыве проводов, схем и контактов. Необходимо заменить лампу, если это не помогло, следует искать причину в соединениях и проводах, возможно, где-то присутствует разрыв схемы.
  • Лампа начинает мигать, но никак не зажигается до стабильного свечения – Это происходит из-за замыкания в проводах или между контактами. Необходимо проверить изоляцию и при необходимости заменить провода. Если это не помогло, возможно, следует заменить саму лампу.
  • Тусклое свечение на обеих, или одном конце устройства – это случается из-за нарушения герметичности колбы. Такое устройство необходимо заменять, ремонту оно не подлежит.
  • Потемнение концов и полное выключение в процессе работы – причиной такого явления может стать неисправный балласт. Вам следует произвести его полную замену и снова протестировать устройство.
  • Циклическое затухание и зажигание лампы – чаще всего причиной такой неисправности становится стартер. Его следует заменить, как в случае с поломанным балластом.
  • Перегорание и почернение концов во время включения – такое случается, когда входящее напряжение не соответствует номинальному. Балластное сопротивление не выдерживает повышенной нагрузки, и лампа сразу перегорает. Также причиной может быть неисправность балласта. В этом случае балласт также заменяется на новый.

Питание лампы дневного света постоянным током

Питание лампы дневного света постоянным током

Питание лампы дневного света постоянным током

 

Наиболее часто применяемые устройства импульсного (стартерного) зажигания люминесцентных ламп обладают некоторыми существенными недостатками: неопределенным временем зажигания, перегрузкой электродов лампы при ее включении, повышенным уровнем радиопомех.

Как показывает практика, в стартерных устройствах (упрощенная схема одного из них приведена на рис. 1) наибольшему нагреву подвергаются участки нитей накала, к которым подводится сетевое напряжение. Здесь зачастую нить перегорает.

Более перспективны — безстартерные устройства зажигания, где нити накала по своему прямому назначению не используются, а выполняют роль электродов газоразрядной лампы — на них подается напряжение, необходимое для поджига газа в лампе.

Вот, к примеру, устройство, рассчитанное на питание лампы мощностью до 40 Вт (рис. 2). Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ — через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться — ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы. Конденсатор C1 компенсирует реактивную мощность.

В этом и последующих устройствах пары контактов разъема каждой нити накала можно соединить вместе и подключить к «своей» цепи — тогда в светильнике будет работать даже лампа с перегоревшими нитями.

Схема другого варианта устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 3. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А «пусковые» конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой — СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. 4. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов — этому способствуют диоды VD1,VD2.

Дополнив обычный светильник с лампой накаливания данным устройством с люминесцентной лампой, можно улучшить общее или местное освещение. Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

Несколько лучший вариант питания мощной люминесцентной лампы — использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис. 5. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

В рассмотренных устройствах используются диодные мосты КЦ405А или КЦ402А, а также выпрямительные диоды КД243Г-КД243Ж или другие, рассчитанные на ток до 1 А и обратное напряжение 400 В. Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы — МБМ, К42У-2, К73-16. Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 — для лампы мощностью 20 Вт, 1УБИ40 — 40 Вт, 1УБИ80-80ВТ). Вместо одной лампы мощностью 40 Вт допустимо включить последовательно две по 20 Вт.

Часть деталей узла монтируют на плате из одностороннего фольгированного стеклотекстолита, на которой оставлены площадки для подпайки выводов деталей и соединительных лепестков для подключения узла к цепям светильника. После установки узла в корпус подходящих габаритов его заливают эпоксидным компаундом.

 

Блог — Радиолюбитель — Электронный балласт компактной люминесцентной лампы дневного света

Лампы накаливания хотя и стоят дешево, но потребляют много электроэнергии, поэтому многие страны отказываются от их производства (США, страны Западной Европы). Взамен им приходят компактные люминесцентные лампы дневного света (энергосберегающие), их закручивают в те же патроны Е27, что и лампы накаливания. Однако стоят они в 15-30 раз дороже, зато в 6-8 раз дольше служат и в 4 раза меньше потребляют электроэнергии, что и определяет их судьбу. Рынок переполнен разнообразием таких ламп, в основном китайского производства. Одна из таких ламп, фирмы DELUX, показана на фото.

Ее мощность 26 Вт -220 В, а блок питания, называемый еще электронным балластом, расположен на плате размерами 48×48 мм (рис.1) и находится в цоколе этой лампы.

Ее радиоэлементы размещены на монтажной плате навесным монтажом, без применения ЧИП-элементов. Принципиальная схема нарисована автором из осмотра монтажной платы и показана на рис.2.

Примечание к схеме: на схеме отсутствует точка, обозначающая соединение динистора, диода D7 и базы транзистора EN13003A

Вначале уместно напомнить принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для зажигания люминесцентной лампы необходимо разогреть ее нити накала и приложить напряжение 500…1000 В, т.е. значительно больше, чем напряжение электросети. Величина напряжения зажигания прямо пропорциональна длине стеклянной колбы люминесцентной лампы. Естественно, для коротких компактных ламп она меньше, а для длинных трубчатых ламп — больше. После зажигания лампа резко уменьшает свое сопротивление, а значит, надо применять ограничитель тока для предотвращения КЗ в цепи. Схема электронного балласта для компактной люминесцентной лампы представляет собой двухтактный полумостовой преобразователь напряжения. Вначале сетевое напряжение с помощью 2-полупериодного моста выпрямляется до постоянного напряжения 300…310 В. Запуск преобразователя обеспечивает симметричный динистор, обозначенный на схеме Z, он открывается, когда, при включении электросети, напряжение в точках его подключения превысит порог срабатывания. При открывании, через динистор проходит импульс на базу нижнего по схеме транзистора, и преобразователь запускается. Далее двухтактный полумостовой преобразователь, активными элементами которого являются два транзистора n-p-n, преобразует постоянное напряжение 300…310 В, в высокочастотное напряжение, что позволяет значительно уменьшить габариты блока питания. Нагрузкой преобразователя и одновременно его управляющим элементом является тороидальный трансформатор (обозначенный в схеме L1) со своими тремя обмотками, из них две управляющие обмотки (каждая по два витка) и одна рабочая (9 витков). Транзисторные ключи открываются противофазно от положительных импульсов с управляющих обмоток. Для этого управляющие обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Отрицательные выбросы напряжения с этих обмоток гасятся диодами D5, D7. Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке. Переменное напряжение с рабочей обмотки подается на люминесцентною лампу через последовательную цепь, состоящую из: L3 — нити накала лампы -С5 (3,3 нФ 1200 В) — нити накала лампы — С7 (47 нФ/400 В). Величины индуктивностей и емкостей этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя. При резонансе напряжений в последовательной цепи, индуктивное и емкостное сопротивления равны, сила тока в цепи максимальна, а напряжение на реактивных элементах L и С может значительно превышать прикладываемое напряжение. Падение напряжения на С5, в этой последовательной резонансной цепи, в 14 раз больше, чем на С7, так как емкость С5 в 14 раз меньше и его емкостное сопротивление в 14 раз больше. Следовательно, перед зажиганием люминесцентной лампы максимальный ток в резонансной цепи разогревает обе нити накала, а большое резонансное напряжение на конденсаторе С5 (3,3 нФ/1200 В), включенного параллельно лампе, зажигает лампу. Обратите внимания на максимально допустимые напряжения на конденсаторах С5=1200 В и С7= 400 В. Такие величины подобраны неслучайно. При резонансе напряжение на С5 достигает около 1 кВ и он должен его выдерживать. Зажженная лампа резко уменьшает свое сопротивление и блокирует (закорачивает) конденсатор С5. С резонансной цепи исключается емкость С5, и резонанс напряжений в цепи прекращается, но уже зажженная лампа продолжает светиться, а дроссель L2 своей индуктивностью ограничивает ток в зажженной лампе. При этом преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь процесс зажигания длится меньше 1 с. Следует отметить, что на люминесцентную лампу все время подается переменное напряжение. Это лучше, чем постоянное, так как обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок ее службы. При питании ламп от постоянного тока срок ее службы уменьшается на 50%, поэтому постоянное напряжения на газоразрядные лампы не подают.

Назначения элементов преобразователя.
Типы радиоэлементов указаны на принципиальной схеме (рис.2).
1. EN13003A- транзисторные ключи (на монтажной схеме производители их почему-то не обозначили). Это биполярные высоковольтные транзисторы средней мощности, n-p-n проводимости, корпус ТО-126, их аналоги MJE13003 или КТ8170А1 (400 В; 1,5 А; в импульсе 3 А), можно и КТ872А (1500 В; 8 А; корпус Т26а), но по габаритам они больше. В любом случае надо правильно определить выходы БКЭ, так как у разных производителей могут быть разные их последовательности, даже у одного и того же аналога.
2. Тороидальный ферритовый трансформатор, обозначенный производителем L1, размеры кольца 11x6x4,5, вероятная магнитная проницаемость 2000, имеет 3 обмотки, две из них по 2 витка и одна 9 витков.
3. Все диоды D1-D7 однотипные 1N4007 (1000 В, 1 А), из них диоды D1-D4 — выпрямительный мост, D5, D7 — гасят отрицательные выбросы управляющего импульса, a D6 — разделяет источники питания.
4. Цепочка R1СЗ обеспечивает задержку пуска преобразователя с целью «мягкого пуска» и не допущения броска пускового тока.
5. Симметричный динистор Z типа DB3 Uзс.max=32 В; Uoc=5 В; Uнеотп.и.max=5 В) обеспечивает первоначальный запуск преобразователя.
6. R3, R4, R5, R6 — ограничительные резисторы.
7. С2, R2 — демпферные элементы, предназначенные для гашения выбросов транзисторного ключа в момент его закрытия.
8. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. Вначале дроссель участвует в резонансе напряжений (совместно с С5 и С7) для зажигания лампы, а после зажигания своей индуктивностью гасит ток в цепи люминесцентной лампы, так как зажженная лампа резко уменьшает свое сопротивление.
9. С5 (3,3 нФ/1200 В), С7 (47 нФ/400 В) — конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания С7 поддерживает свечения.
10. С1 — сглаживающий электролитический конденсатор.
11. Дроссель с ферритовым сердечником L4 и конденсатор С6 составляют заградительный фильтр, не пропускающий импульсные помехи преобразователя в питающую электросеть.
12. F1 — мини-предохранитель в стеклянном корпусе на 1 А, находится вне монтажной платы.

Ремонт.
Перед тем как ремонтировать электронный балласт, необходимо «добраться» до его монтажной платы, для этого достаточно ножом разъединить две составные части цоколя. При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением!

Перегорание (обрыв) макальных спиралей люминесцентной лампы, при этом электронный балласт остается исправным. Это типичная неисправность. Восстановить спираль невозможно, а стеклянные люминесцентные колбы к таким лампам отдельно не продаются. Какой же выход? Или приспособить исправный балласт к 20-ватному светильнику, имеющему прямую стеклянную лампу, вместо его «родного» дросселя (светильник будет работать надежнее и без гула) или использовать элементы платы как запчасти. Отсюда рекомендация: закупайте однотипные компактные люминесцентные лампы — легче будет ремонтировать.

Трещины в пайке монтажной платы. Причина их появления — периодическое нагревание и последующее, после выключения, остывание места пайки. Нагревается место пайки от элементов, которые греются (спирали люминесцентной лампы, транзисторные ключи). Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины.

Повреждение отдельных радиоэлементов. Отдельные радиоэлементы могут повредиться как от трещин в пайке, так и от скачков напряжения в питающей электросети. Хотя в схеме и есть предохранитель, но он не защитит радиоэлементы от скачков напряжений, как это мог бы сделать варистор. Предохранитель сгорит от пробоев радиоэлементов. Безусловно, самым слабым местом из всех радиоэлементов данного устройства являются транзисторы.

Список радиоэлементов

 

Как работает стартер лампы дневного света, как проверить дроссель на светильнике?

Люминесцентные лампы от сети напряжением 220 вольт напрямую не включаются. Для них нужен специальный блок, который называется пускорегулирующая аппаратура, укорочено ПРА. Этот блок состоит из трех элементов: дроссель, конденсатор и стартёр. Нас в этой статье будет интересовать стартер для ламп дневного света (ЛДС), что он собой представляет, какие функции на него возложены.

По сути, стартёр – это стеклянная колба, заполненная газом (обычно используется или неон, или смесь гелий с водородом). То есть, это газоразрядная лампа миниатюрного типа, внутри которой тлеет разряд. Здесь же расположены электроды, поддерживающие данный разряд. Существует стартеры двух типов: симметричные и несимметричные. В первом все электроды являются подвижными, во втором – один стационарный. Электроды изготавливаются из биметалла. Чаще всего в люминесцентных светильниках используются конструкции симметричные.

Газоразрядная лампа помещается в металлический или пластмассовый корпус. Крепится она на специальной панели диэлектрического типа, где установлены два контакта. Здесь же устанавливается и конденсатор, который подсоединен к газоразрядной лампе параллельно.

Как работает

Когда в схему, где установлен стартер, подается напряжение, оно попадает на его электроды, между которыми появляется тлеющий разряд. Сила тока разряда незначительная, в пределах от 20 до 50 мА. Именно этот разряд начинает нагревать электроды, которые под действием тепла изгибаются и через какое-то время соприкасаются друг с другом. То есть, электрическая цепочка замыкается, и ток подается далее на дроссель, конденсатор и на лампы дневного света. При этом тлеющий разряд прекращается.

Обратите внимание, что напряжение включение стартера должно быть чуть меньше номинального сети, то есть, 220 вольт, но при этом оно должно быть больше, чем напряжения включения самих ламп дневного света.

Итак, электроды соприкоснулись между собой, что дальше? Так как между ними нет тлеющего разряда, соответственно нет температуры, которая их нагревает. Происходит их остывание, что в конечном итоге приведет к размыканию электродов и цепочки. Именно в этот момент появляется так называемое импульсное напряжение высокой величины внутри дросселя. От него и происходит зажигание люминесцентного осветительного устройства. В процессе работы самой лампы дневного света в цепочке ток имеет значение, равное силе тока источника света. Падение же напряжения, а соответственно и силы тока, делится между самой осветительным прибором и дросселем на равные части.

Зажигание

Как происходит зажигание стартера для лампы? Необходимо отметить, что на эффективность зажигания влияют две позиции:

  • величина силы тока на катодах лампы в момент размыкания электродов;
  • продолжительность нагрева катодов.

Электромагнитная сила внутри дросселя зависит от силы тока в нем. Понятно, что недостаточность силы тока не приведет к зажиганию люминесцентного устройства. А сила тока напрямую зависит от напряжения в цепи. И если последний показатель ниже номинального, то есть большая вероятность, что лампа сразу не зажжется. Поэтому стартер будет в автоматическом режиме пытаться снова и снова проделать ту же операцию, пока она не загорится. Периодичность попыток стандартная – 10 секунд.

Если в питающей сети напряжение падает ниже 80% от номинального, то этого недостаточно, чтобы электроды нагрелись до необходимой температуры. То есть, при таком падении осветительное устройство просто не зажигается.

Конденсатор

Конденсатор в системе ПРА устанавливается параллельно стартеру. Эти два прибора взаимосвязаны. Основное назначение конденсатора:

  • снижение помех в процессе замыкания и размыкание электродов стартера;
  • увеличения длительности действия импульса при размыкании электродов;
  • предотвращение спаивания электродов за счет высокого импульсного напряжения.

Чаще всего в ПРА используются конденсаторы емкостью 0,003-0,1 мкФ.

Как долго работает

Со временем эксплуатации стартера напряжение, создающее тлеющий разряд, снижается. Это может привести к обратному эффекту, когда при работающем люминесцентном светильнике электроды стартера вдруг начнут самопроизвольно замыкаться, что приведет к гашению самой лампы. Тут же будет происходить размыкание электродов, а соответственно и зажигание светильника. Оба процесса моментальные, что приводит к миганию светильника. Это не только влияет на эффективность его работы, но и снижает срок эксплуатации дросселя, потому что при такой работе он будет просто перегреваться.

Поэтому совет – периодически проверять стартер, и при необходимости менять его на новый. Как только увидели, что светильник замигал, не откладывайте замену в долгий ящик.

Схема подключения люминесцентного светильника

Схема подключения лампы дневного света – это несколько вариантов, зависящих от количества ламп дневного света в светильнике. Вот самая простейшая из них на рисунке ниже:

Здесь четко видно, что две спирали лампы дневного света подключаются: одна через дроссель, вторая через стартер. Такое соединение чаще всего применяется, когда необходимо подключить один источник света. Если, к примеру, есть необходимость подключить светильник с двумя лампами дневного света, то приходится устанавливать два стартера на каждую, как это хорошо видно на рисунке схемы ниже (вариант номер два):

При этом необходимо учитывать, что мощность дросселя не должна быть меньше мощности двух источников света. К примеру, если у него мощность 40 Вт (этот показатель наносится на корпус элемента), то две лампы в сумме должны иметь мощность не больше 40 Вт (к примеру, по 20 Вт).

Одной из ярких представителей этой категории осветительных приборов является марка ЛВО 4х18. То есть, это металлический прибор с четырьмя лампами, мощностью каждой по 18 Вт. ЛВО 4х18 чаще всего используются в качестве встраиваемых осветительных устройств. Их обычно монтируют в потолках Армстронг, в гипсокартонных потолочных конструкциях и в других видах потолков. Причины популярности марки ЛВО 4х18 – это невысокая цена от отечественного производителя, простота установки, эффективное свечение и простая схема подключения.

Как работают стартеры люминесцентных ламп

Стартер представляет собой небольшую газоразряд­ную лампу тлеющего разряда. Стеклянная кол­ба наполняется инертным газом (неон или смесь гелий-водород) и помещается в металлический или пластмас­совый корпус, на верхней крышке которого имеется смо­тровое окно.

Схемы включения люминесцентных ламп: а-стартерная с дросселем; б—с лампой накаливания в качестве балласта; EL1 — лампа люминесцентная; КК — стартер; С — конденсатор; LL — дроссель; EL2 — лампа накаливания.

В некоторых конструкциях стартеров смотровое окно отсутствует. Стартер имеет два электро­да. Различают несимметричную и симметричную кон­струкции стартеров. В несимметричных стартерах один электрод неподвижный, а второй подвижный, изготовлен
из биметалла.

В настоящее время наибольшее распро­странение получила симметричная конструкция старте­ров, у которых оба электрода изготовляются из биметалла. Эта конструкция имеет ряд преимуществ по сравнению с несимметричной.

Напряжение зажигания в стартере тлеющего разряда выбирается таким образом, чтобы оно было меньше номинального напряжения сети, но больше рабочего на­пряжения, устанавливающегося на люми­несцентной лампе при ее горении.

Схема подключения двух люминесцентных ламп через стартер.

При включении схемы на на­пряжение сети оно полностью окажется приложенным к стартеру. Электроды стар­тера разомкнуты, и в нем возникает тлеющий разряд. В цепи будет проходить небольшой ток (20-50 мА). Этот ток на­гревает биметаллические электроды, и они, изгибаясь, замкнут цепь, и тлеющий разряд в стартере прекратится.

Через дроссель и последовательно соединенные катоды начнет проходить ток, который будет подогревать катоды лампы. Величина этого тока определяется индуктивным сопротивлением дросселя, выбираемым таким образом, что­бы ток предварительного подогрева като­дов в 1,5 2,1 раза превышал номинальный ток лампы. Длительность предваритель­ного подогрева катодов определяется вре­менем, в течение которого электроды стар­тера остаются замкнутыми.

Когда элек­троды стартера замкнуты, они остывают, и по прошествии определенного промежутка времени, называемого временем контактирования, электроды раз­мыкаются. Так как дроссель обладает большой индуктивностью, то в момент размыкания электродов стар­тера в дросселе возникает большой импульс напряже­ния, зажигающий лампу.

После зажигания лампы в цепи установится ток, рав­ный номинальному рабочему току лампы. Этот ток обу­словит такое падение напряжения на дросселе, что на­пряжение на лампе станет примерно равным половине номинального напряжения сети. Так как стартер вклю­чен параллельно лампе, то напряжение на нем будет равно напряжению на лампе и в связи с тем, что оно недостаточно для зажигания тлеющего разряда в стар­тере, его электроды останутся разомкнутыми при горе­нии лампы.

Стартеры тлеющего заряда.

Возможность зажигания лампы зависит от длитель­ности предварительного подогрева катодов и величины тока, проходящего через лампу в момент размыкания электродов стартера. Если разрыв цепи произойдет при малом значении тока, то величина индуктированной в дросселе э. д. с. и, следовательно, приложенного к лампе напряжения может оказаться недостаточной для ее зажигания, и лампа не зажжется. Поэтому, если при первой попытке стартер не зажжет лампу, он сразу же автоматически будет повторять описанный процесс до тех пор, пока не произойдет зажигание лампы. Со­гласно ГОСТ на стартеры зажигание лампы должно быть обеспечено за время до 10 сек.

Параллельно электродам стартера включен конден­сатор емкостью 0,003-0,1 мкф. Этот конденсатор обыч­но размещается в корпусе стартера. Конденсатор выпол­няет две функции: снижает уровень радиопомех, возни­кающих при контактировании электродов стартера и создаваемых лампой; с другой стороны, этот конденса­тор оказывает влияние на процессы зажигания лампы. Конденсатор уменьшает величину импульса напряже­ния, образуемого в момент размыкания электродов стар­тера, и увеличивает его длительность.

При отсутствии конденсатора напряжение на лампе очень быстро воз­растает, достигая нескольких тысяч вольт, но продолжи­тельность его действия очень небольшая. В этих усло­виях резко снижается надежность зажигания ламп. Кро­ме того, включение конденсатора параллельно электро­дам стартера уменьшает вероятность сваривания или, как говорят, залипания электродов, получающегося в ре­зультате образования электрической дуги в момент размыкания электродов. Конденсатор способствует быстрому гашению дуги.

Принципиальная схема включения люминесцентной лампы.

Применение конденсаторов в стартёре не обеспечи­вает полного подавления радиопомех, создаваемых лю­минесцентной лампой. Поэтому необходимо дополни­тельно на входе схемы установить два конденсатора емкостью не менее 0,008 мкф каждый, соединен­ных последовательно, и среднюю точку заземлить.
Одним из рекомендуемых способов снижения уровня радиопомех является применение дросселей с симметри­рованной обмоткой где обмотка дросселя разделе­на на две совершенно одинаковые части, имеющие рав­ное число витков, намотанных на один общий сердеч­ник.

Каждая часть дросселя соединена последовательно с одним из катодов лампы. При включении такого дрос­селя с лампой оба ее катода работают в одинаковых условиях, что снижает уровень радиопомех. В настоящее время, как правило, выпускаемые промышленностью дроссели изготовляются с симметрированными обмот­ками.

В схеме из-за наличия дросселя ток через лампу и напряжение сети не будут совпадать по фазе, т. е. они не будут одновременно достигать своих нулевых и максимальных значений. Как известно из теории переменного тока, в этом случае ток будет отставать по фазе от напряжения сети на некоторый угол, величина которого определяется соотношением индуктивного со­противления дросселя и активного сопротивления всей сети. Такие схемы называются отстающими.

В ряде случаев использования люминесцетных ламп требуется создавать такие условия, когда ток через лам­пу опережал бы по фазе напряжение сети. Такие схемы называются опережающими. Для выполнения этого условия последовательно с дросселем включается кон­денсатор, емкость которого рассчитывается таким обра­зом, чтобы его емкостное сопротивление было больше индуктивного сопротивления дросселя.

Устройство люминесцентной лампы.

В опережающем балласте в период зажигания лампы ток предварительного подогрева катодов имеет недостаточную величину. Для устранения этого явления необходимо на время зажигания лампы увеличить ток предварительного подогрева, что можно сделать, если частично компенсировать емкость индуктивностью. В цепь стартера включается дополнительная индуктивность в виде компенсирующей катушки.

При замыкании электродов стартера эта компенсирующая катушка включается последовательно с дросселем и конденсатором, общая индуктивность схемы возраста­ет, а вместе с ней увеличивается ток предварительного подогрева. После размыкания электродов стартера ком­пенсирующая катушка отключается, и в рабочем режиме лампы она не участвует. Индуктивность дополнительной катушки компенсирует емкость конденсатора, установ­ленного в стартере. Поэтому в схему вводится дополни­тельный конденсатор емкостью не менее 0,008 мкф, включаемый параллельно лампе и выполняющий в этом случае роль помехоподавляющего конденсатора.

Один из недостатков рассмотренных схем — низкий коэффициент мощности. Он составляет величину 0,5-0,6. Пускорегулирующие аппараты (ПРА), выполненные на основе этих схем, относятся к группе так называемых некомпенсированных аппаратов. При использовании та­ких аппаратов согласно правилам устройства электро­установок (ПУЭ) для повышения низкого коэффициента мощности необходимо предусматривать групповую ком­пенсацию коэффициента мощности, обеспечивающую до­ведение его для всей осветительной установки до вели­чины 0,9-0,95.

При невозможности или экономической неэффектив­ности применения групповой компенсации коэффициента мощности используют схемы, в которых дополнительно параллельно лампе включается конденсатор достаточной емкости, выбранный таким образом, чтобы коэффициент мощности схемы повысился до величины 0,85 -0,9 . ПРА, изготовленный по этой схеме, называют компенсированным. Расчеты показывают, что для ламп мощ­ностью 20 и 40 вт при напряжении 220 в емкость кон­денсатора составляет 3-5 мкф.

Основной недостаток стартерных схем зажигания — их низкая надежность, которая обусловлена ненадежно­стью работы стартера. Надежная работа стартера также зависит от уровня напряжения в питающей сети. Со сни­жением напряжения в питающей сети увеличивается время, необходимое для разогрева биметаллических элек­тродов, а при уменьшении напряжения более чем на 20% номинального стартер вообще не обеспечивает кон­тактирования электродов, и лампа не будет зажигаться. Значит, с уменьшением напряжения в питающей сети время зажигания лампы увеличивается.

Схема запуска сгоревшей люминисцентной лампы.

У люминесцентной лампы по мере старения наблю­дается увеличение ее рабочего напряжения, а у старте­ра, наоборот, с ростом срока службы напряжение зажи­гания тлеющего разряда уменьшается. В результате этого возможно, что при горящей лампе стартер начнет срабатывать и лампа гаснет.

При размыкании электродов стартера лампа вновь загорается и наблюдается мига­ние лампы. Такое мигание лампы, помимо вызываемого им неприятного зрительного ощущения, может привести к перегреву дросселя, выходу его из строя и порче лам­пы. Подобные же явления могут иметь место при ис­пользовании старых стартеров в сети с пониженным уровнем напряжения. При появлении миганий лампы необходимо заменить стартер на новый.

Стартеры имеют значительные разбросы времени кон­тактирования электродов, и оно очень часто недостаточ­но для надежного предварительного подогрева катодов ламп. В результате стартер зажигает лампу после не­скольких промежуточных попыток, что увеличивает дли­тельность переходных процессов, снижающих срок служ­бы ламп.

Общий недостаток всех одноламповых схем — невоз­можность уменьшить создаваемую одной люминесцент­ной лампой пульсацию светового потока. Поэтому такие схемы можно применять в помещениях, где устанавли­вается несколько ламп, а в случае их использования для группы ламп рекомендуется с целью уменьшения пульса­ции светового потока лампы включать в различные фазы трехфазной цепи. Необходимо стремиться к тому, чтобы освещенность в каждой точке создавалась не менее чем от двух-трех ламп, включенных в разные фазы сети.

Двухламповые схемы включения. Применение двух­ламповых схем включения дает возможность уменьшить пульсацию суммарного светового потока, так как пуль­сации светового потока каждой лампы происходят не одновременно, а с некоторым сдвигом по времени. По­этому суммарный световой поток двух ламп никогда не будет равен нулю, а колеблется около некоторого сред­него значения с частотой, меньшей, чем при одной лам­пе. Кроме того, эти схемы обеспечивают высокий коэф­фициент мощности комплекта лампа — ПРА.

Наибольшее распространение получила двухлампо­вая схема, называемая часто схемой с расщепленной фазой. Схема состоит из двух элементов-ветвей: отстающей и опережающей. В первой ветви ток отстает по фазе от напряжения на угол 60°, а во второй — опе­режает на угол 60°. Благодаря этому ток во внешней цепи будет почти совпадать по фазе с напряжением, и коэффициент мощности всей схемы составит величину 0.9-0.95.

Эту схему можно отнести к группе компенси­рованных, и по сравнению с одноламповой некомпенси­рованной схемой она обладает тем преимуществом, что не требуется принимать дополнительных мер для повы­шения коэффициента мощности. При изготовлении ПРА по этой схеме общий расход конструкционных материалов меньше, чем для двух и одноламповых аппаратов. В настоящее время выпускается большое количество различных типов аппаратов, выполненных по этой схеме.

Схема ЭПРА для ЛБ-40

на главную

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1).

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети ~220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max=32 B; Uос=5 В; Uнеотп.и.max=5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

Ремонт

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.


на главную
.

как устроена, какое напряжение на лампе

Вот уже продолжительное время, весь мир напряженно думает о дополнительной экономии электрической энергии. Этому способствует использование энергосберегающих ламп, которые известны миру более 50 лет. Это достойная альтернатива традиционным лампам накаливания. Единственным спорным моментом является вопрос ее утилизации. Ниже предлагается рассмотреть, как устроена люминесцентная лампа, на что обратить внимание потенциальному покупателю.

Описание

Визуально люминесцентная лампа представляет собой стеклянную колбу. Как правило, выполняется в белом цвете, по краям выступают соответствующие контакты подключения. Форма может быть выполнена в виде:

  • Трубки или стержня
  • Тора
  • Спирали
Лампа в виде спирали

В процессе производства из колбы выкачивается воздух, после чего закачивается в конструкцию инертный газ. В результате действия электричества инертный газ приводит к последующему свечению самого изделия. При этом создаются потоки холодного, теплого света, последний называется «дневным». От этого и возникло второе название ламп. Лампа светить бы не могла, если на поверхность колбы с внутренней стороны не был нанесен люминофор. В самом изделии находится ртуть.

Внимание! Из-за наличия ртути в составе относительно актуальности использования лампы до сих пор не угасают многочисленные споры у экологов во всем мире.

Виды ламп

Технические характеристики

Перед совершением покупки необходимо знать, какое напряжение на люминесцентной лампе и почему обязательно стоит обратить внимание на данный показатель при выборе изделия:

  • Накаливание мощностью 20 Вт будет соответствовать люминесцентной, мощностью 5-7 Вт.
  • Накаливание мощностью 40 Вт будет соответствовать люминесцентной, мощностью 10-13 Вт.
  • Накаливание мощностью 60 Вт будет соответствовать люминесцентной, мощностью 15-16 Вт.
  • Накаливание мощностью 75 Вт будет соответствовать люминесцентной, мощностью 18-20 Вт.
  • Накаливание мощностью 100 Вт будет соответствовать люминесцентной, мощностью 25-30 Вт.
  • Накаливание мощностью 150 Вт будет соответствовать люминесцентной, мощностью 40-50 Вт.
  • Накаливание мощностью 200 Вт будет соответствовать люминесцентной, мощностью 60-80 Вт.
Характеристики изделия

Достоинства и недостатки

К преимуществам данного изделия можно отнести энергоэффективность. Под данным определением принято понимать количество потребляемой во время эксплуатации светильником с подключенными люминесцентными лампами электрической энергии.

Внимание! Отмечается, что изделие куда выгоднее обычной лампы накаливания и может запросто использоваться в дальнейшем во время эксплуатации как альтернативный источник света.

Благодаря устройству светильника с люминесцентными лампами качество излучения в разы выше. При учете, что цветовая передача лампы накаливания сравнительно невысока, под действующим светом люминесцентной лампы можно запросто различать истинные цвета без искажений.

К достоинствам стоит отнести и долговечность. Они могут запросто обеспечивать свечение вплоть до 10000 часов.

Мягкий свет благоприятно влияет на зрение, при этом само освещение куда более комфортное, поскольку излучение равномерно распределено по всей поверхности изделия. К примеру, если взять лампу накаливания, то яркая спираль быстро вызывает усталость глаз.

К недостаткам относится зависимость от условий сети, а также определенное количество запусков. Выходит из строя, как правило, ранее заявленного производителем срока. Нельзя не отметить и наличие паров ртути в конструкции.

Преимущества использования

Принцип работы

Инертный газ необходим для обеспечения тлеющего разряда. Ртуть же является актуальным компонентом, который позволяет усиливать разряд. Люминофор потребуется для последующего преобразования ультрафиолетового света, что актуально в свете видимого спектра. Электроды потребуются в дальнейшем для подключения лампы в электрическую схему, создания соответствующих разрядов электронов.

Устройство и принцип работы

Как только напряжение подается на контакты, электроды начинают испускать электроны, которые, перемещаясь по колбе, создают разряд. Специально для этого, в схему дополнительно включают устройство, которое создает разовый электрический разряд, актуальный для старта свечения. Данное устройство носит название стартер фото, его задача сводится к тому, чтобы в кратковременном отрезке увеличивать силу тока примерно в 3-4 раза.

Внимание! Чтобы обеспечивать полноценный запуск, последующую работу люминесцентной лампы, потребуется дополнительное устройство, которое называется дросселем. Это название фактически устарело, но продолжает активно использоваться.

Область применения

Актуальным решением станет использование лампы для освещения жилых домов, а также медицинских, общественных и учебных заведений. Помимо этого, нашла широкое применение в спортивных, а также торговых комплексах, прочно войдя в жизнь каждого пользователя. Постепенно люминесцентные конструкции все же сумели вытеснить традиционные лампы накаливания.

Актуальными данные элементы стали по той причине, что по технико-экономическим показателям они значительно эффективнее обычных ламп накаливания. Традиционная лампочка в этом случае будет расходовать только 6-8% на выполнение освещения, остальная же энергия будет трансформироваться в нагрев. В данном случае стоит отметить, что у люминесцентных источников данный показатель будет на 80% выше, что и обеспечит выгоду от его последующей покупки. Могут обеспечивать создание разного спектра, как дневного, естественного, так и холодного или теплого. Это позволит без проблем разнообразить и украсить палитру интерьера.

Применение изделий

Помимо этого, они часто используются как источник контролируемого ультрафиолетового излучения, который отличается полезностью для жителей наиболее крупных мегаполисов. Их отличает продолжительность эксплуатации, доходит порой до 20000 часов, а также возможность легко устанавливать взамен неактуальных ламп накаливания.

Подключение к сети

Перед тем как выполнить подключение, стоит продумать разметку. Следует относиться к этому процессу с должным вниманием, ведь от этого во многом зависит качество последующей работы. Пометки необходимо делать в тех местах, где планируется установить как лампочку, так и выключатель. Выключатель ставится возле двери на высоте порядка 80-90 сантиметров от пола. Важно следить, чтобы при открытии двери выключатель не был перекрыт, чтобы оставался к нему полноценный доступ.

Подключение к светильнику

Внимание! Отмечаются маршруты последующей проводки, она должна идти непосредственно от выключателя и вплоть до распределительного элемента, после чего также нужно отметить и путь от лампочки до той же распределительной коробки или розетки.

Люминисцентные лампы на данный момент намного опережают по уровню энергоэффективности давно устаревшие лампы накаливания. Они прочно вошли в обиход как жителей квартир, так и владельцев промышленных зданий, чему способствует их широкая палитра спектра освещения и экономичность.

Газоразрядные лампы | Электрооборудование и автоматизация сельскохозяйственных агрегатов

Страница 2 из 59

В соответствии с новыми нормами по освещению для осветительных установок рекомендуется применять в первую очередь газоразрядные лампы как наиболее экономичные.

Рис. 1.5. Вольт-амперная характеристика газоразрядного промежутка:
1 — тихий разряд; 2 — переходная область; 3 — нормальный тлеющий разряд; 4 — аномальный тлеющий разряд; 5 —дуговой разряд.
Работа газоразрядных источников света основана на использовании электрического разряда в газовой среде и парах металла. Чаще всего для этого применяют аргон и пары ртути. Излучение происходит за счет перехода электронов атомов ртути с орбиты с высоким содержанием энергии на орбиту с меньшей энергией. При этом возможно несколько видов электрических разрядов (например, тихий, тлеющий, дуговой). Дуговой разряд имеет наибольшую плотность электрического тока и как следствие этого создает наибольший световой поток.
На рисунке 1.5 изображена вольтамперная характеристика электрического разряда в газе при изменении тока от нуля до предельного значения.
При определенных плотностях тока характер процесса ионизации межэлектродного промежутка — лавинообразный. В этом случае с увеличением тока сопротивление межэлектродного промежутка резко уменьшается, что ведет, в свою очередь, к еще большему увеличению тока и, как следствие этого, к аварийному режиму. Такой режим может возникнуть, если включить газоразрядный источник света непосредственно в сеть. При увеличении напряжения от нуля до значения (рис. 1.5) ток плавно увеличивается. Дальнейшее увеличение напряжения до значения UT приводит к неустойчивой точке в, после которой ток резко возрастает за счет уменьшения сопротивления промежутка при лавинообразной ионизации. Ограничить этот ток, а следовательно, и стабилизировать режим работы в области 5 можно путем включения токоограничивающего сопротивления, называемого балластным, так как мощность на нем расходуется бесполезно Значение балластного сопротивления можно определить графически. Для этого, имея вольтамперную характеристику газоразрядного источника излучения, необходимо задаться рабочей точкой А и величиной напряжения сети Uc.
Тогда
(1.17)
Точка А характеризуется двумя видами сопротивления: статическим
и динамическим

Рис. 1.6. Изменение положения рабочей точки при изменении напряжения сети (а) и сопротивления балласта (б).
Рис. 1.7. Влияние величины Ua/Ue на стабильность работы газоразрядной лампы npи изменении напряжения питающей сети.
Динамическое сопротивление на падающем участке рассматриваемой волы амперной характеристики отрицательно.
Изменить положение рабочей точки А можно либо путем изменения сопротивления R (рис. 1.6,6), либо путем изменения напряжения сети Uc (рис. 1.6,с). При этом изменяется как статическое Rлc, так и динамическое Rлд сопротивление лампы. Необходимо отметить, что статическое сопротивление лампы Rлд вместе с сопротивлением балласта определяют рабочий ток в каждой точке, а динамическое— устойчивость горения дуги. Устойчивость горения дуги определяется из условия
(1-18)
Это условие соблюдается на участке вольт-амперной характеристики правее точки Д. При этом чем дальше вправо рабочая точка отстоит от точки Д, тем устойчивей горит дуга, так как уменьшается реакция тока на случайные небольшие изменения напряжения сети Uc.
Работа газоразрядной лампы в любой рабочей точке возможна при различных значениях напряжения сети Uc. Для этого необходимо подобрать сопротивление балласта таким, чтобы рабочий ток оставался постоянным (рис. 1.7). Однако стабильность работы лампы при этом будет различной. Чем выше напряжение питающей сети Uc и соответственно сопротивление балласта Rб, тем меньше влияют отклонения напряжения на ток лампы. Но следует помнить, что при этом возрастают потери мощности в балластном сопротивлении. Учитывая это, в практике рекомендуется балластное сопротивление брать таким, чтобы соблюдалось условие, позволяющее получить достаточную устойчивость работы газоразрядных ламп при минимальных потерях в балласте.
Для работы на постоянном токе используются активные балласты, на переменном — индуктивные и емкостные (иногда и активные).
Все газоразрядные источники по значению рабочего давления делятся на лампы низкого, высокого и сверхвысокого давления.
Люминесцентные лампы низкого давления представляют собой стеклянную цилиндрическую колбу, внутренняя поверхность которой покрыта люминофором. В торцы колбы вварены стеклянные ножки. На ножках смонтированы вольфрамовые электроды в виде биспиралей, покрытые слоем оксида (окисла щелочно-земельных металлов), обеспечивающего хорошую эмиссию электронов. Для защиты от бомбардировки в анодный период к электродам приварены проволочные экраны. На концах колба имеет цоколи со штырьками. Из колбы лампы откачан воздух и введен в нее аргон при давлении около 400 Па с небольшим количеством ртути (30-50мг.).
В люминесцентных лампах световая энергия возникает в результате двойного преобразования энергии электрического тока. Во-первых, электрический ток, протекая между электродами лампы, вызывает электрический разряд в парах ртути, сопровождающийся излучением (электролюминесценция). Во-вторых, возникающая при этом лучистая энергия, большая часть которой представляет собой ультрафиолетовое излучение, воздействует на люминофор, нанесенный на стенки колбы лампы и преобразуется в световое излучение (фотолюминесценция). В зависимости от состава люминофора получают видимые излучения различного спектрального состава. Наша промышленность выпускает люминесцентные лампы пяти типов: дневного света ЛД, дневного света с улучшенной цветопередачей ЛДЦ, холодно-белого света ЛХБ, белого света ЛБ и тепло-белого ЛТБ. Колбы люминесцентных ламп чаще всего имеют прямолинейную, образную и кольцевую формы. Люминесцентные лампы выпускаются мощностью 15, 20, 30, 40, 65 и 80 Вт. В сельском хозяйстве применяются лампы преимущественно мощностью 40 и 80 Вт (табл. 1.3).
Таблица 1.3
Характеристики люминесцентных ламп, используемых в сельском хозяйстве


Тип лампы

Мощность,
Вт

Напряжение на лампе, В

Сила тока, А

Световой поток, лм

ЛДЦ40-4

 

 

 

2100

ЛД 40-4

 

 

 

2340

ЛХБ 40-4

40

103

0,43

2600

ЛТБ 40-4

 

 

 

2580

ЛБ 40-4

 

 

 

3000

ЛДЦ 80-4

 

 

 

3560

ЛД 80-4

 

 

 

4070

ЛХБ 80-4

80

102

0,86

4440

ЛТБ 80-4

 

 

 

4440

ЛБ 80-4

 

 

 

5220

В настоящее время выпускаются новые лампы с улучшенной цветопередачей типа ЛЕ.
По сравнению с лампами накаливания люминесцентные лампы имеют более благоприятный спектральный состав излучения, большую световую отдачу (60 … 70 лм-Вт-1) и больший срок службы (10 000 ч).
Кроме того, в сельском хозяйстве применяются специальные лампы низкого давления: фитолампы — для выращивания растений, эритемные — для УФ облучения животных и птиц, бактерицидные— в установках обеззараживания. Эритемные и фитолампы имеют специальный люминофор, бактерицидные — без люминофора (табл. 1.4)
Все люминесцентные лампы низкого давления включаются в сеть через балластное сопротивление.

Характеристики эритемных, бактерицидных и фитоламп


Тип лампы

Мощность,
Вт

Напряжение,
В

Эритемный поток, мэр

Бактерицидный поток, б

Световой поток, лм

ЛЭ15

15

54

300

_

    

ЛЭЗО-1

30

103

580

ЛЭР40

40

103

1600

ДБ15

15

58

2

ДБЗО-1

30

108

6

ЛФ40-1

40

103

1680

ЛФ40-2

40

103

1600

Следует помнить, что зажигание люминесцентных ламп без специальных мероприятий осуществляется при напряжении U3, как правило, больше сетевого Uc. Одним из способов снижения напряжения зажигания U3 является предварительный подогрев электродов, облегчающий эмиссию электронов. Этот подогрев можно осуществлять, используя стартерные и бесстартерные схемы (рис. 1.8).

Рис. 1.8. Схема включения люминесцентной лампы низкого давления:
1 — зажим сетевого напряжения; 2 — дроссель; 3, 5 — электроды лампы; 4 — трубка; 6, 7 — электроды стартера; 8 — стартер.
Стартер представляет собой миниатюрную неоновую лампу, один или оба электрода которой выполнены из биметалла. При нагревании эти электроды могут между собой замыкаться. В исходном состоянии они разомкнуты. При подаче напряжения на зажимы 1 все оно оказывается практически приложенным к зажимам стартера 6 и 7 и в его колбе 8 возникает тлеющий разряд. За счет протекающего при этом тока выделяется тепло, которое нагревает подвижной биметаллический контакт 7, и он замыкается с неподвижным контактом 6. Ток в цепи в этом случае резко возрастает. Его величина оказывается достаточной для нагрева электродов 5 и 5 люминесцентной лампы, выполненных в виде спиралей. За 1…2 с электроды лампы разогреваются до 800…900°С. Так как разряда в это время в колбе стартера нет, электроды его остывают и размыкаются.
В момент разрыва цепи в дросселе 2 возникает э. д. с. самоиндукции, значение которой пропорционально индуктивности дросселя и скорости изменения тока в момент разрыва цепи. Образовавшееся за счет э. д. с. самоиндукции повышенное напряжение (700… 1000 В) оказывается приложенным к электродам лампы, подготовленным к зажиганию. Между электродами возникает дуговой разряд, и лампа 4 начинает светиться. В этом режиме сопротивление лампы оказывается примерно одинаковым с сопротивлением последовательно включенного дросселя и напряжение на ней снижается приблизительно до половины напряжения сети Это же напряжение приложено к стартеру, включенному параллельно лампе, но стартер больше не зажигается, ибо напряжение его зажигания устанавливается в пределах

Таким образом, стартер и дроссель выполняют важные в процессе зажигания и работы функции. Стартер: 1) замыкает цепь «спирали электродов — дроссель», ток, протекающий при этом, нагревает электроды, облегчая зажигание лампы за счет термоэлектронной эмиссии; 2) разрывает после разогрева электродов лампы электрическую цепь и тем самым вызывает импульс повышенного напряжения на лампе, обеспечивающего пробой газового промежутка.
Дроссель: 1) ограничивает ток при замыкании электродов стартера; 2) генерирует импульс напряжения для пробоя лампы за счет э. д. с. самоиндукции в момент размыкания электродов стартера; 3) стабилизирует горение дуги после зажигания.
Так как стартер является самым ненадежным элементом в схеме зажигания, разработаны и бесстартерные схемы. Предварительный подогрев электродов в этом случае осуществляется от специального накального трансформатора.
Для люминесцентных ламп низкого давления выпускаются специальные пускорегулирующие аппараты (ПРА).
Стартерные ПРА обозначаются 1УБИ, 1УБЕ, 1УБК (цифра указывает число ламп, работающих от одного ПРА, У — стартерный, Б — балласт, И — индуктивный, Е — емкостный; К — компенсированный, т.. е. повышающий коэффициент мощности осветительной установки до 0,9…0,95). Для двух ламп соответственно 2УБИ, 2УБЕ, 2УБК.
Бесстартерные аппараты имеют в своем обозначении букву А: АБИ, АБЕ, АБК. Например, марка ПРА 2АБК-80/220-АНП расшифровывается так: двухламповый бесстартерный аппарат, компенсированный, мощность каждой лампы 80 Вт, напряжение сети 220 В, антистробоскопический (А), для независимой установки (Н), с пониженном уровнем шума (П).
Одним из недостатков газоразрядных ламп является пульсация светового потока, вызывающая стробоскопический эффект — мелькание быстро движущегося предмета. Для уменьшения величины пульсации светового потока рекомендуется включать лампы на разные фазы или применять специальные антистробоскопические ПРА.

Рис. 1 9. Лампа ДРТ (а) и схема ее включения (б):
1 — трубка из кварцевого стекла; 2 — электрод; 3 — хомут с держателем; 4 — токопроводящая полоса.
Рис. 1.10 Четырехэлектродная лампа ДР-С (а) и схема ее включения (б):
1 — ртутно-кварцевая горелка; 2 — колба; 3 — люминофор; 4 — поджигающие электроды; 5 — основные электроды; 6 — токоограничивающие резисторы.
При включении люминесцентных ламп на напряжение повышенной частоты увеличивается их световая отдача, уменьшаются размеры балласта и потери в нем, уменьшается величина пульсации светового потока.
Газоразрядные лампы высокого давления. Наиболее распространенными в сельскохозяйственном производстве являются лампы типа ДРТ — дуговая, ртутная, трубчатая и ДРЛ — дуговая, ртутная, люминесцентная.
Лампа ДРТ представляет собой прямую трубку 1 из кварцевого стекла (рис. 1.9,а), в торцы которой впаяны электроды 2. Трубка заполнена аргоном и небольшим количеством ртути. Так как кварцевое стекло хорошо пропускает УФ излучение, лампа в основном используется для УФ облучения животных и птицы и для обеззараживания воды, продуктов, воздуха и т. д.
Включается в сеть лампа через дроссель (рис. 1.9,6). Зажигание осуществляется кратковременным нажатием кнопки S. При этом через дроссель L и конденсатор С1 протекает ток. При размыкании кнопки ток резко уменьшается и за счет э. д. с. самоиндукции дросселя резко повышается напряжение на электродах лампы, что способствует ее зажиганию. Металлическая полоса Я, подключенная через конденсатор С2, обеспечивает перераспределение электрического поля внутри лампы, что облегчает зажигание лампы.
Лампы ДРЛ используются для освещения. Они могут быть как двух- так и четырехэлектродными. В настоящее время выпускаются только четырехэлектродные лампы, конструкция и схема включения которых показаны на рисунке 1.10. Ртутно-кварцевая горелка I является источником УФ излучений. Колба 2 выполнена из термостойкого стекла и с внутренней стороны покрыта люминофором 3, который преобразует УФ излучение горелки в световое. Для облегчения зажигания четырехэлектродная лампа имеет поджигающие электроды 4. Разряд возникает сначала между поджигающим и основным электродами 5, а затем между основными электродами (рабочий промежуток).
Перспективными для освещения являются металлогалоидные лампы высокого давления типа ДРИ. В колбы этих ламп добавляются иодиды натрия, таллия и индия, что позволяет увеличить световую отдачу в 1,5…2 раза по сравнению с лампами ДРЛ.
Для использования в теплицах на базе лампы ДРЛ разработаны специальные фитолампы типа ДРФ и ДРЛФ. Колба этих ламп выполнена из стекла, выдерживающего при нагретом состоянии брызги холодной воды и покрыта специальным люминофором, имеющим повышенную фитоотдачу. В верхней части колбы нанесен отражающий слой.

Люминесцентные балласты — электрические 101

В люминесцентных лампах используется балласт, который преобразует линейное напряжение в напряжение для запуска и работы лампы (ей). Новые люминесцентные балласты обычно рассчитаны как на 120 вольт, так и на 277 вольт. Некоторые из них рассчитаны всего на 120 вольт, другие — только на 277 вольт (используются в коммерческой среде).

КЛЛ

для дома имеют встроенный балласт в основании лампы.В коммерческих КЛЛ используется отдельный балласт. У балластов есть электрическая схема, на которой показано, как они подключаются к патронам.

Есть четыре основных типа люминесцентных балластов:

Электронные балласты с мгновенным запуском используют высокое пусковое напряжение (около 600 вольт) для очень быстрого запуска (менее 0,1 секунды). Для максимальной энергоэффективности электроды не подогреваются, но лучше всего подходят для ограниченного количества переключений (от 10 000 до 15 000 циклов переключения до отказа).ПРА мгновенного пуска подключаются параллельно.

Электромагнитные балласты с быстрым пуском или пуском с триггера используются в светильниках T12 и более старых моделей T8 и подключаются последовательно.

Электронные балласты быстрого запуска нагревают электроды при подаче пускового напряжения (около 500 вольт) для быстрого запуска ламп примерно за 0,5–1,0 секунды. Нагрев электродов продолжается, пока лампы включены, и они потребляют немного больше энергии (около 2 Вт на лампу), чем пусковые балласты с мгновенным запуском. Они могут проработать от 15 000 до 20 000 циклов переключения до отказа.ПРА для быстрого пуска подключаются последовательно.

Запрограммированный пуск Электронные балласты запускаются быстро примерно за 1,0 — 1,5 секунды. Они предварительно нагревают электроды контролируемым образом перед подачей пускового напряжения. Программируемые пусковые балласты минимизируют нагрузку на электроды и увеличивают срок службы лампы при частом запуске (зоны с датчиками присутствия). Они могут проработать до 50 000 циклов переключения до отказа. Запрограммированные пусковые балласты подключаются последовательно.

Лампы

T8 с новым электронным балластом потребляют примерно на 20– 30% энергии меньше, чем магнитный балласт T12.При выходе из строя магнитного балласта T12 его следует заменить электронным балластом T8. ПРА Т12 доступны, но лампы Т12 сняты с производства. В зависимости от осветительной арматуры и способа ее установки может быть проще и примерно по той же цене заменить светильник вместо балласта. Новый гаражный люминесцентный светильник может стоить меньше, чем замена балласта.

Типы ламп, совместимые с этим балластом

(4) F32T8 — До четырех люминесцентных ламп, 32 Вт, лампа Т8.

(4) F25T8 — До четырех люминесцентных ламп, 25 Вт, лампа Т8.

(4) F17T8 — До четырех люминесцентных ламп, 17 Вт, лампа Т8.

Светильники с балластами иногда имеют таблички с указанием необходимого типа лампы и балласта (F32T8).

Флуоресцентные этикетки балласта

На этикетке балласта показаны две важные метки.

  • Таблица совместимости ламп (типы ламп, которые могут использоваться с этим балластом)
  • Схема подключения балласта (показывает, как балласт подключается к лампам)

Диаметр люминесцентных трубок

Люминесцентные лампы имеют две общие формы: прямую и форму U-.Наиболее распространены типы T12, T8 и T5. Т обозначает трубку, а цифра обозначает диаметр в 1/8 дюйма. Диаметр лампы определяется типом балласта. В светильнике с балластом T12 должна использоваться лампа T12. В светильнике с балластом T8 должна использоваться лампа T8 и т. Д.

Подбор балласта к лампе

При подборе балласта к лампе необходимо выполнить три требования. В приведенном выше примере к лампе типа F32T8 предъявляются следующие три требования:

1.Люминесцентная лампа

2. 32 Вт

3. T8.

Люминесцентные лампы T12 Снято с производства

Люминесцентные лампы T12 больше не производятся из-за низкой энергоэффективности. Хотя эти лампы все еще есть в наличии в некоторых магазинах, замена балласта на более эффективный электронный балласт T8 могла бы быть лучшим выбором.

Все, что вам нужно знать о балластах — блог 1000Bulbs.com

Если в вашем офисе, на складе или в здании используются люминесцентные лампы или светодиодные ламповые лампы Plug and Play, для бесперебойной работы вам необходим балласт.Вы знаете, что балласт — важная часть приспособления, но знаете, почему и как он работает?

Что такое балласт?

Проще говоря, балласт — это сердце люминесцентной лампы, которая передает энергию (перекачивает кровь) через лампу. Балласт обеспечивает правильное количество напряжения для запуска ламп и регулирует величину тока, протекающего к ним при включении. Чтобы запустить люминесцентную лампу, необходимо создать дугу между двумя электродами в лампе.Эта дуга возникает, когда балласт быстро подает правильное количество напряжения и электрического тока для зажигания дуги. Затем он сразу же ограничивает потребляемое напряжение и ток до уровня, достаточного для получения стабильного светового потока. Без этого регулирования люминесцентная лампа, получающая энергию непосредственно от источника высокого напряжения, неконтролируемо увеличивала бы потребление тока. Это приведет к перегреву лампы и ее возгоранию в течение нескольких секунд. ПРА предназначены для работы с определенным количеством ламп определенного типа при определенном напряжении.Это означает, что не все балласты совместимы со всеми люминесцентными лампами.

Какие типы балластов?

Люминесцентные балласты двух типов: магнитные и электронные. Магнитные балласты — это более старая технология, которая обычно используется либо в методах предварительного нагрева, либо в методах быстрого запуска. Эти балласты, как правило, дешевле других, но имеют тенденцию гудеть и мерцать примерно 120 раз в секунду. Методы предварительного нагрева и быстрого запуска нагревают катоды лампы до того, как балласт подает напряжение для запуска лампы.Электронные балласты работают относительно тихо, устраняя мерцание, характерное для магнитных балластов, и более энергоэффективны. Этот тип балласта может быть быстрым, мгновенным или запрограммированным.

Балласты мгновенного пуска зажигают свет быстрее всего. Однако они разработаны, чтобы оставаться включенными или выключенными в течение более длительных циклов. Частое включение и выключение может сократить срок службы лампы в долгосрочной перспективе. Их называют мгновенным запуском, потому что они запускают лампу мгновенно, пропуская через лампу около 600 Вольт, чтобы запустить катоды.Запрограммированный запуск, также известный как запрограммированный быстрый запуск, пускорегулирующие устройства запускаются медленнее, но не имеют разрушительного воздействия мгновенного пускового балласта при использовании с более частыми циклами включения-выключения. Этот тип балласта представляет собой интеллектуальный балласт для быстрого пуска. Этот тип балласта определяет температуру катодов лампы и использует достаточно энергии, необходимой для их зажигания. Поскольку холодные катоды требуют больше энергии для зажигания, эти балласты более энергоэффективны, чем другие балласты. Они разработаны для помещений с частыми циклами включения / выключения, таких как лестничные клетки, коридоры или ванные комнаты, оборудованные датчиками присутствия / отсутствия людей.

Когда следует заменять балласт?

Хотя замена не является обычной необходимостью, примерно через три года можно увидеть некоторое ухудшение характеристик балласта приспособления. Они имеют тенденцию выходить из строя постепенно, поэтому лампы переходят от незначительных проблем с поддержанием полной светоотдачи к полному отказу от света. Все балласты в какой-то момент выходят из строя, поэтому важно знать признаки отказа. Если ваш свет кажется тусклым, гудящим, быстро мерцающим или меняющим цвет, возможно, пришло время отремонтировать ваш прибор.

Мы что-нибудь пропустили? Оставьте любые другие вопросы о балластах в разделе комментариев ниже или свяжитесь с одним из наших экспертов по освещению по телефону 1-800-624-4488, с понедельника по пятницу, с 7:00 до 19:00 по центральному поясному времени.

Как работают люминесцентные лампы

Как работают люминесцентные лампы
Elliott Sound Products Как работают люминесцентные лампы

© 2007 Род Эллиотт (ESP)


Лампы и энергетический индекс
Главный указатель

Содержание
1 Введение

Статья «Традиционные люминесцентные ламповые лампы и их альтернативы» рассматривает работу люминесцентных ламп в довольно простых терминах, но здесь мы рассмотрим лампы и их балласты (как «традиционные» магнитные, так и электронные) и немного углубимся в их внутреннюю часть. выработки.Используются альтернативные схемы балласта (например, схема «опережение / запаздывание»), и это показано в предыдущей статье. Здесь это не рассматривается, потому что речь идет о том, как они работают, а не о способе подключения фитингов.

Принцип работы люминесцентной лампы сильно отличается от простой лампы накаливания, и современные люминесцентные лампы (особенно компактные люминесцентные лампы или КЛЛ) используют электронные балласты для регулирования напряжения на лампе и тока через нее.При первом запуске необходимо обеспечить значительно более высокое напряжение, чем обычно, чтобы вызвать возникновение внутренней дуги, а после запуска ток должен быть ограничен до безопасного значения для трубки.

В этой статье показаны некоторые способы достижения этих целей, начиная с базового индуктивного балласта, который был основой производства люминесцентных ламп на протяжении многих лет.

Обратите внимание, что показанные здесь формы сигналов представляют собой комбинацию моделирования и реальных измерений.При необходимости смоделированные формы сигналов корректируются для соответствия измеренным. Причина этого подхода проста … симулятор не может представить нагрузку с отрицательным импедансом с соответствующими напряжениями удара и другими характеристиками, которые представляет люминесцентная лампа. Точно так же очень сложно (и потенциально смертельно) пытаться уловить все напряжения и токи, которые существуют в цепях реальных люминесцентных ламп.

Хотя принятый подход действительно вносит некоторые незначительные ошибки в показанные формы сигналов, они относительно незначительны, а конечный результат находится в пределах любого традиционного производственного допуска для балластов, ламп и других компонентов.


2 Индуктивный балласт

Для объяснения индуктивного балласта я использовал старую «компактную» люминесцентную лампу, которая идеально подходит для тестирования. Хотя он по-прежнему работает, световой поток несколько ниже, чем должен быть, но это лишь немного меняет некоторые измеренные значения. Принципы не меняются.

Сама лампа имеет следующие характеристики …

Диаметр трубки 11,3 мм (нестандартная)
Длина 533 мм (21 дюйм)
Сопротивление нити (холодная) 12.8 Ом
Сопротивление нити (горячее) 23 Ом
Балластное сопротивление105 Ом
Балластная индуктивность 2,11 H
Стартер Обычный неоновый 9010 Стартер 9010 Неоновый конденсатор 9099 1,2 нФ

Диаметр люминесцентных ламп обычно обозначается как T8 (например). Это означает, что диаметр составляет 8 x 1/8 дюйма, что составляет 1 дюйм (25.4 мм). Ранние лампы были T12 (1½ дюйма или 38 мм в диаметре), но они были уменьшены в размерах до T8, когда были представлены (тогда) «новые» высокоэффективные типы. Стандартная 4-футовая трубка (1200 мм) раньше рассчитывалась на 40 Вт, но их замена была 36 Вт, а светоотдача была улучшена. Последнее воплощение — T5 (диаметр 16 мм), в котором используется меньшее расстояние между выводами и другой фитинг надгробной плиты. Они также короче (1163 мм) и не подходят для стандартного светильника. разработан для более ранних ламп.

В случае моего тестового образца диаметр трубки намного меньше обычного, потому что лампа обозначена как компактная, поэтому ее складывают, чтобы уменьшить общую длину.Упоминается сопротивление нити, потому что оно будет упомянуто позже в этой статье. Схема представлена ​​ниже и является стандартной во всех отношениях.


Рисунок 1 — Схема люминесцентной лампы

Катушка индуктивности — это балласт, и на самом деле это гораздо более важный компонент, чем он может показаться. Он не только ограничивает максимальный ток трубки, но и используется для генерации импульсов высокого напряжения, необходимых для запуска плазменной дуги внутри трубки. Сама люминесцентная лампа имеет на каждом конце нагреватель, небольшое количество ртути и инертный газ (обычно аргон).Стенка трубки покрыта люминофором, который излучает видимый свет при возбуждении интенсивным коротковолновым ультрафиолетовым светом, излучаемым ртутным дуговым разрядом. Дополнительный конденсатор (C2) предназначен для коррекции коэффициента мощности — подробнее об этом позже.

Маленькая лампочка — стартер. Биметаллическая полоса запечатана в стеклянную оболочку с (обычно) неоновым газом внутри. При подаче питания напряжения более чем достаточно, чтобы вызвать дугу в неоновом пускателе, но не настолько, чтобы вызвать дугу в самой лампе.Тепло от неоновой дуги заставляет биметаллическую полосу изгибаться, пока она не замыкает контакты. Затем дуга в неоновом стартере прекращается, и сеть подключается через балласт и нити на каждом конце трубки через выключатель стартера.

Когда в пускателе нет дуги (или накала), биметаллическая полоса охлаждается, и примерно через секунду или около того выключатель размыкается. Прерывание тока через катушку индуктивности вызывает возврат напряжения — импульс высокого напряжения, который (будем надеяться) зажжет дугу в трубке.Если дуга не запускается с первого раза, процесс повторяется до тех пор, пока не начнется. Вот почему стандартные люминесцентные лампы при включении несколько раз мигают. Нити — это нагреватели, которые действуют как катоды (эмиттеры электронов) и необходимы для обеспечения достаточного количества тепла для испарения ртути и обеспечения хорошего потока электронов для возбуждения плазмы. Когда лампа работает нормально, потока электронов достаточно для поддержания приемлемой рабочей температуры нити накала. Обе нити действуют как катоды и аноды поочередно, потому что полярность меняется 50 (или 60) раз в секунду.

Плазма имеет интересную характеристику … отрицательное сопротивление! Как только начинается дуга, более высокий рабочий ток вызывает падение сопротивления и меньшее напряжение появляется на трубке. Если бы это продолжалось, трубка очень быстро разрушилась бы. Балласт предотвращает это, потому что он вводит последовательный импеданс для ограничения тока. Сопротивление не сработает, потому что оно слишком расточительно и не обеспечивает накопления энергии для генерации всплеска обратного напряжения, чтобы повторно зажигать дугу при каждом изменении полярности.


Рисунок 2 — Рабочие осциллограммы

На рисунке 2 вы можете видеть, что когда ток трубки (зеленая кривая) максимален, напряжение (красная кривая) на трубке минимально. Эффект можно увидеть сразу после каждого скачка напряжения. По мере увеличения тока напряжение падает (для этой трубки минимум составлял ± 126 В). Пик в точке пересечения нуля формы волны тока генерируется балластом, и именно он повторно зажигает дугу для каждого полупериода подключенной сети.На рисунке 3 показано напряжение на балласте — быстрые переходы соответствуют пикам, приложенным к лампе, и происходят около пика напряжения, где ток прерывается, когда проходит через ноль.


Рисунок 3 — Напряжение и ток в балласте

Форма волны напряжения на балласте по существу представляет собой разницу между приложенным сетевым напряжением и напряжением на лампе. Для работы на 120 В напряжение явно меньше, но лампе все еще нужно где-то между 300-400 В, чтобы зажигать (или повторно зажигать) дугу, поэтому балласт должен иметь возможность компенсировать разницу с помощью обратного импульса на каждом нуле. -пересечение тока.У меня нет люминесцентной лампы или балласта на 120 В, поэтому я не могу предоставить полную информацию. То, что люминесцентные лампы вообще работают с напряжением 120 В, несколько примечательно, но легко понять, почему электронные балласты так популярны в США. Многие балласты для стран с напряжением 120 В используют «балласт» автотрансформатора, который увеличивает доступное напряжение и действует как ограничитель тока.


3 Системные потери

В системе несколько потерь, причем балласт является одним из основных факторов.Балласт, использованный в моих тестах, имеет сопротивление постоянному току 105 Ом, поэтому расходуется почти 7 Вт. Потери на самом деле выше, потому что стальные листы очень быстро нагреваются, поэтому «потери в железе» значительны. Это можно уменьшить только за счет использования стали более высокого качества и более тонких листов. Оба значительно увеличат стоимость.

Каждая нить накала имеет горячее сопротивление 23 Ом, и при работе лампы на каждой нити присутствует напряжение почти 6 В. Помните, что во время работы конец нити накала, идущий к стартеру, отключается (за исключением очень маленькой емкости на стартере).Измеренное напряжение представляет собой градиент, вызванный током плазмы, и каждая нить накала рассеивает около 1,5 Вт (всего 3 Вт). Только в этих компонентах люминесцентная лампа расходует 10 Вт подаваемой мощности в виде тепла (7 Вт для балласта, 3 Вт для нити накала).

Хотя балластные отходы можно уменьшить с помощью более качественного блока, потеря накала необходимы для работы лампы. Это относится ко всем люминесцентным лампам, за исключением специализированных типов с холодным катодом, но для них требуется такой же специализированный электронный балласт.CCFL (люминесцентные лампы с холодным катодом) чаще всего встречаются в ЖК-мониторах и телевизорах, но теперь их заменяют светодиоды в новых моделях.

Есть еще одна потеря, которую пользователь не видит и даже не оплачивает. Эти потери являются результатом низкого коэффициента мощности люминесцентных ламп, и это вызвано преимущественно индуктивной нагрузкой. Индуктивная нагрузка вызывает запаздывающий коэффициент мощности, когда максимальный ток возникает после максимального напряжения. Вы также можете рассматривать это как точку, в которой нагрузка (лампа и индуктор) фактически возвращает некоторую мощность источнику питания.Для поставщика электроэнергии это означает, что трансформаторы, кабели и генераторы переменного тока должны выдерживать больший ток, чем должен быть. Это становится очень дорогостоящим, когда очень много нагрузок имеют низкий коэффициент мощности.


Рисунок 4 — Напряжение Vs. Текущие, нескорректированные и исправленные

На рисунке 4 вы можете видеть, что нескорректированная форма волны тока имеет видимые искажения около точки пересечения нуля. Как вы также можете видеть, среднеквадратичный ток также значительно выше, чем указано в номинальной мощности.Реактивные нагрузки имеют разные значения мощности и ВА, но для резистивной (или нереактивной) нагрузки они одинаковы.

В этом случае ток без C2 составляет 256 мА, а при добавлении C2 он падает до 162 мА. При приложенном напряжении 240 В это означает, что …

Без компенсации Общая мощность = 38 Вт
ВА = 61,4 Коэффициент мощности = 0,62
Компенсированная Общая мощность = 38 Вт
ВА = 38.9 Коэффициент мощности = 0,97

Коэффициент мощности можно рассчитать, используя фазовую задержку или разделив фактическую мощность на ВА (Вольт * Ампер). Что касается фазового угла, ток отстает от напряжения на 57,4 °, а коэффициент мощности рассчитывается путем взятия косинуса фазового угла — 0,53 в данном случае. Цифры разные, потому что форма волны тока не является чистой синусоидой — она ​​имеет искажения. Добавление конденсатора сдвигает фазу искажения, так что форма сигнала компенсированного тока становится плоской (что-то вроде ограничения усилителя).Хотя это вносит гармоники в сеть, их влияние далеко не так плохо, как в некомпенсированной цепи, о чем свидетельствует скорректированный коэффициент мощности. Добавление конденсатора правильного номинала в чисто индуктивную цепь (без искажения формы сигнала) даст коэффициент мощности, равный единице — идеальный вариант.

Обратите внимание, что использование косинуса фазового угла (CosΦ) является сокращением, и можно использовать только , когда оба напряжение и ток являются синусоидальными волнами.Он вообще не работает для сигналов с сильно искаженными формами, например, генерируемых электронными нагрузками, и даст неверный результат. ответ для индуктивных нагрузок, которые включают искажения (например, люминесцентные лампы). Вы получите , всегда получите правильный ответ, если разделите реальную мощность на ВА.

Также доступны пускорегулирующие аппараты с «быстрым пуском» и пускорегулирующие устройства без стартера. Они выходят за рамки данной статьи, которая предназначена для описания основных принципов, а не для подробного описания всех имеющихся балластов люминесцентного освещения.


4 электронных балласта

Электронные балласты становятся все более распространенными, потому что их можно сделать более эффективными, чем типичные магнитные балласты, и для них требуется гораздо меньше материала. Это делает их дешевле (в изготовлении, но не обязательно для покупки вами), чем люминесцентные лампы с обычным балластом. В частности, теперь во всех компактных люминесцентных лампах (КЛЛ) используется электронный балласт, который обычно поставляется вместе с самой лампой. Хотя это удобно, это ужасная трата ресурсов, потому что все электронные компоненты просто выбрасываются, когда лампа выходит из строя.Лампы T5 в настоящее время становятся стандартом для люминесцентного освещения, и для максимального срока службы электронный балласт является обязательным.

В некоторой степени повышение эффективности по сравнению с магнитным балластом может быть иллюзией — по крайней мере, частично. Поскольку они намного легче, есть реальная и определенная экономия на транспортных расходах, но магнитные балласты могут быть такими же эффективными, как и электронная версия, а может быть, даже больше. Как бы то ни было, переход к электронным балластам сейчас не остановить, и по мере того, как цена будет снижаться, их использование будет продолжать расти.У электронных балластов есть и другие преимущества, о которых мы поговорим позже.

Типичная (более или менее) принципиальная схема электронного балласта, используемого в КЛЛ, показана ниже. Те, которые используются для обычных люминесцентных ламп, будут очень похожи, но, как правило, будут использовать обновленные компоненты. В то время как электроника в КЛЛ может прослужить всего 15000 часов, фиксированный электронный балласт, как ожидается, прослужит около 100000 часов или более (более 10 лет непрерывной работы).На самом деле электронный балласт должен быть в состоянии прослужить столько же, сколько и его магнитный аналог, поэтому срок службы 40 лет не так глуп, как может показаться.


Рисунок 5 — Схема электронного балласта [2]

Схема на Рисунке 5 представляет собой немного упрощенную версию схемы, показанной в листе данных Infineon. Он полностью скорректирован по коэффициенту мощности и имеет защиту для обнаружения неисправных (или отсутствующих) ламп. Характерным режимом отказа люминесцентных ламп является «выпрямление», когда одна нить накала (катод) становится значительно слабее другой.Если не обнаружено, смещение постоянного тока приведет к отказу коммутирующих устройств, что сделает балласт бесполезным (маловероятно, что кто-то отремонтирует их, когда они выйдут из строя).

Электронный балласт действительно имеет ряд преимуществ перед магнитной версией. Поскольку дуга полностью погаснет примерно через 1 мс, при использовании более высокой частоты, чем сеть 50 или 60 Гц, дуга останется. Его не нужно наносить повторно, а просто меняет направление [1]. Кроме того, светоотдача увеличивается примерно на 10% выше 20 кГц, поэтому улучшается световая отдача.

До тех пор, пока коэффициент мощности всех этих электронных балластов не будет скорректирован, они будут вызывать проблемы с распределением. К сожалению, во многих странах не требуется, чтобы приборы малой мощности (обычно менее 75 Вт) имели коррекцию коэффициента мощности, но, учитывая распространение КЛЛ и электронных балластов в обычных люминесцентных лампах, это придется изменить. Поскольку освещение используется в каждом доме, проблема неисправленного коэффициента мощности выйдет из-под контроля, если что-то не будет сделано.

В отличие от магнитного балласта (индуктора), коэффициент мощности электронного балласта нельзя скорректировать простым добавлением конденсатора. Как видно на диаграмме выше (хотя это может быть не сразу очевидно), на выходе входного мостового выпрямителя имеется очень маленький конденсатор емкостью 220 нФ. Первый полевой МОП-транзистор работает как повышающий преобразователь и переключается на протяжении каждого полупериода. Таким образом, среднеквадратичный ток, потребляемый из сети, поддерживается в фазе с напряжением, а форма волны тока является приблизительно синусоидальной.Это дает очень хороший коэффициент мощности — возможно лучше 0,9. Чтобы предотвратить возвращение импульсов высокоскоростного переключения в сеть, необходима обширная фильтрация, на что указывает фильтр EMI (электромагнитных помех) на входе.

Для компактных люминесцентных ламп (КЛЛ) используется несколько более простая схема, так как схемы предназначены для выбрасывания. Лично я считаю это бессмысленным расточительством и надеюсь, что это не будет продолжаться (или, по крайней мере, будет введена переработка, чтобы восстановить как можно больше).Достаточно типичный инвертор CFL показан ниже …


Рисунок 6 — Типовая схема электронного балласта CFL

Я говорю «достаточно типичный», потому что реальные схемы сильно различаются. Доступны специализированные микросхемы драйверов MOSFET, но большинство дешевых (потребительских) CFL будут использовать вариант вышеупомянутого. Обратите внимание, что резистор 0,47 Ом, показанный на входе, обычно представляет собой плавкий резистор, и он используется в первую очередь в качестве предохранителя. Почему бы не использовать настоящий предохранитель? Резисторы дешевле.Большинство деталей будет выбрано таким образом, чтобы выжить в течение указанного срока службы лампы, поэтому передовые методы проектирования обычно игнорируются, если можно ожидать, что деталь с более низким номиналом (и более дешевая) прослужит около 10 000 часов.

Трансформатор (T1) обеспечивает обратную связь с транзисторами и генерирует базовый ток, необходимый для надежного переключения. Цикл инициируется DIAC — двунаправленным устройством, которое имеет резкий переход из непроводящего состояния в проводящее.Поскольку он имеет характеристики, очень похожие на устройство с отрицательным импедансом, его часто используют в диммерах, люминесцентных балластах и ​​даже в стробоскопах. Для получения дополнительной информации щелкните здесь, чтобы перейти к руководству по DIAC.

Обратите внимание, что схемы, показанные выше, предназначены только для информации, и их нельзя строить так, как показано. Для некоторых компонентов требуются очень специфические характеристики, трансформаторы и индукторы имеют решающее значение. В схемах нет ничего неправильного, им просто не хватает всей информации, необходимой для их построения.Речь идет о том, как эти вещи работают, а не о том, как их построить.


5 Коэффициент мощности Коэффициент мощности

не совсем понятен большинству энтузиастов электроники, и это вполне понятно, потому что он мало востребован в общих электронных схемах. Есть аспекты коэффициента мощности, которые даже не понимают многие инженеры, которым следует знать лучше. Когда создаются несинусоидальные формы волны тока, даже многие инженеры делают двойную попытку, потому что они не могут быть использованы для работы с электронными нагрузками.Я рассмотрю здесь оба случая, а также намереваюсь показать методы пассивной и активной коррекции коэффициента мощности. Хотя пассивный PFC (коррекция коэффициента мощности) привлекает своей простотой, на самом деле он оказывается более дорогим из-за необходимости в большой катушке индуктивности. Активный PFC кажется сложным (и это действительно так, если вам нужно его спроектировать), но однажды спроектированный использует относительно дешевые компоненты.

Самый простой случай — индуктивная нагрузка. Это относится ко многим электрическим машинам, включая двигатели, трансформаторы и (конечно) балласты люминесцентного освещения (магнитные типы).Когда двигатель или трансформатор полностью нагружены, он проявляет себя как резистивная нагрузка и имеет отличный коэффициент мощности. При малых нагрузках эта же часть оказывается индуктивной, и это приводит к отставанию тока от напряжения. Если нагрузка работает в этом режиме большую часть своего срока службы, необходимо применить поправку, чтобы вернуть PF как можно ближе к единице.

Коэффициент мощности резистивной нагрузки равен , всегда единиц — это идеально. Каждый вольт и каждый ампер используются для выработки тепла.Распространенными примерами являются электрические обогреватели, тостеры, чайники и лампы накаливания. Не все нагрузки резистивные, поэтому давайте рассмотрим типичный пример (но упрощенный для простоты описания и понимания).

Электрическая машина обычно работает с половинной нагрузкой, но может потребоваться полная мощность при запуске или для того, чтобы выдерживать переходные нагрузки. Это может быть двигатель или трансформатор — две из наиболее распространенных используемых электрических машин (люминесцентная лампа с магнитным балластом немного сложнее).В каждом случае индуктивная и резистивная составляющие нагрузки будут равны (для половинной мощности), а формы сигналов напряжения, тока и мощности выглядят следующим образом …


Рисунок 7 — Электрическая машина на половинной мощности

Как и ожидалось, когда резистивная и индуктивная составляющие равны, наблюдается сдвиг фазы на 45 °, при этом ток отстает от напряжения (запаздывающий коэффициент мощности). Приложенное напряжение — 240 В, резистивная часть нагрузки — 120 Ом, индуктивное реактивное сопротивление — также 120 Ом, мощность — 240 Вт.Нам следует, чтобы потреблял 1 А от сети (240 В x 1 А = 240 Вт), но вместо этого потреблял 1,414 А. Дополнительный ток необходимо подавать, но он полностью расходуется впустую. Что ж, это не совсем так — его возвращают в сеть. Однако, если многие нагрузки делают то же самое, то оно просто рассеивается в виде тепла в трансформаторах, линиях электропередачи и генераторах электростанций. Очень мало реальных нагрузок являются емкостными, поэтому в схему добавляется конденсатор.

При сдвиге фаз 45 ° коэффициент мощности равен 0.707, и мы получаем 1,42 А от сети вместо 1 А. Чтобы восстановить ток так, чтобы он был в фазе с напряжением, нам нужно добавить в схему конденсатор. Конденсатор фактически является противоположностью катушки индуктивности и (сам по себе) будет создавать ведущий коэффициент мощности — ток будет предшествовать напряжению. Добавив в схему конденсатор нужного номинала, коэффициент мощности можно восстановить до единицы, что приведет к значительному снижению тока, потребляемого из сети. Для этого примера 13 мкФ почти идеальны, но даже 10 мкФ уменьшат фазовый сдвиг запаздывания до 14.2 °, и это увеличивает коэффициент мощности до 0,96 — обычно считается максимально близким к идеальному.

Весь процесс несколько нелогичен. То, что нагрузка может потреблять больше тока, чем должно, достаточно легко понять, но то, что повторное прохождение большего тока через конденсатор уменьшит сетевой ток, кажется, не имеет никакого смысла. Все дело в относительной фазе двух токов, и это действительно работает. В противном случае наша энергосистема оказалась бы в крайне тяжелом положении.


Рисунок 8 — Люминесцентный свет при нормальной работе

На несколько упрощенной диаграмме выше показаны формы сигналов напряжения и тока люминесцентной лампы. Упрощение связано с тем, что симуляторы не включают в себя нелинейные нагрузки с отрицательным сопротивлением, но на основной принцип (и результирующие формы сигналов) это существенно не влияет. Как видите, форма сигнала тока слегка искажена, и это влияет на форму сигнала после применения компенсации. Фактически, гармоники, генерируемые искажением, сдвинуты по фазе, поэтому окончательная форма волны тока выглядит как обрезанная синусоида.Однако после компенсации коэффициент мощности очень хороший, 0,98 — отличный результат.

Без компенсации потребляемый ток составляет 276,5 мА (что дает коэффициент мощности 0,57), а после компенсации он падает до 159,5 мА. Мощность в нагрузке (сама лампа) составляет 29,8 Вт, а резистивный компонент балласта (R1) рассеивает 7,8 Вт — это теряется в виде тепла. Все потраченное впустую тепло снижает общую эффективность, но это неизбежно, поскольку реальные компоненты имеют реальные потери.

Ситуация становится намного хуже, когда используется нелинейная (электронная) нагрузка.На рисунке 9 показаны эквивалентная схема и осциллограммы — ток протекает только на пике приложенного напряжения. Хотя этот ток находится в фазе с напряжением, коэффициент мощности ужасен, потому что форма волны тока не похожа на синусоиду. Резкие пики тока имеют сравнительно высокое среднеквадратичное значение, но мощность, подаваемая и передаваемая в нагрузку, намного меньше.


Рисунок 9 — Осциллограммы мощности электронной нагрузки

Скорректированный ток не показан по той простой причине, что для коррекции формы сигнала необходимы значительные дополнительные компоненты.В отличие от случая, когда ток нагрузки является синусоидальным (или близок к нему), простое добавление конденсатора не принесет ничего полезного. Пики тока таковы, что их можно удалить только с помощью фильтра, предназначенного для пропускания только частоты сети. Как показано, ток составляет 296 мА, но, как видно, пиковое значение составляет почти 2 А. Нагрузка рассеивает 28 Вт, но «полная мощность» (ВА) составляет 71,4 ВА. Это дает коэффициент мощности 0,39 — действительно очень плохо. Если вам интересно, куда пропала разница в 1 Вт между источником и нагрузкой, она теряется в диодах.

Добавив фильтр (пассивный PFC), состоящий из катушки индуктивности и пары конденсаторов, это можно улучшить, но требование относительно большой индуктивности значительно увеличивает вес и стоимость. Один Генри примерно настолько мал, насколько вы можете использовать для определения номинальной мощности нагрузки, и хотя большее значение будет работать лучше, оно также будет снова больше, а также будет иметь более высокие потери. По этим причинам пассивная коррекция коэффициента мощности обычно не используется с импульсными источниками питания.


Рисунок 10 — Пассивная коррекция коэффициента мощности

За счет добавления катушки индуктивности и конденсатора, как показано на рисунке, коэффициент мощности значительно улучшается.Форма волны тока все еще не очень хорошая, но намного лучше, чем схема без коррекции. Среднеквадратичный ток снижен с 296 мА до 136 мА, что дает 32,6 ВА. Мощность нагрузки составляет 29 Вт, поэтому коэффициент мощности теперь составляет 0,88, что намного более достойно. Как показано на рисунке 9, электроника практически не имеет потерь. Излишне говорить, что это не так, но речь идет скорее о PFC, чем о потерях в цепи.

Катушка индуктивности (L1) представляет собой относительно большой компонент, и из-за этого будет сравнительно дорогим.Для снижения стоимости и веса лучше использовать электронную схему коррекции коэффициента мощности, и она также будет более эффективной. Меньшие потери мощности означают меньше потерь тепла и более прохладную электронику.


Рисунок 11 — Схема активной коррекции коэффициента мощности

Схема, показанная здесь, почти идентична схеме на Рисунке 5, но упрощена, чтобы ее было легче понять. Входящая сеть проходит через фильтр электромагнитных помех, состоящий из C1 и L1. Затем он идет на мостовой выпрямитель, но вместо большого электролитического конденсатора все, что нужно, — конденсатор 220 нФ (C2).Выходной сигнал является пульсирующим постоянным током и изменяется от почти нуля до полного пикового напряжения (340 В для источника питания 240 В RMS). Затем он передается на очень умный повышающий преобразователь режима переключения — L2, Q1 и D5. Это увеличивает любое мгновенное напряжение на его входе до пикового напряжения — в этом случае моделируемый преобразователь стабилизируется на уровне 446 В (несколько выше, чем обычно используется).

Время включения и выключения тщательно контролируется для поддержания тока, который пропорционален форме волны входящего переменного тока, поэтому рабочий цикл (коэффициент включения-выключения) постоянно изменяется для поддержания правильного повышенного напряжения и пропорционального тока.D6 включен для обеспечения быстрой зарядки крышки основного фильтра (C3) от сети, а также обеспечивает подзарядку крышки. Это позволяет упростить схему управления.

Выходное напряжение повышающего преобразователя (обычно) регулируется, но регулирование не обязательно должно быть прекрасным, что опять же в некоторой степени упрощает схему. В схеме, показанной на рисунке 5, вы видите, что катушка индуктивности повышающего преобразователя (1,58 мГн) имеет вторичную обмотку. Это используется, чтобы сообщить IC контроллера, когда был достигнут правильный ток.В упрощенной схеме, показанной на рисунке 11, это не используется — период переключения фиксирован (схема была смоделирована, чтобы я мог получить форму тока, показанную ниже). Хотя эта упрощенная версия не так хороша, как «настоящая», она работает довольно хорошо — по крайней мере, в симуляторе.


Рисунок 12 — Формы сигналов активной коррекции коэффициента мощности

Как видите, форма сигнала тока довольно искажена, но измеренные характеристики симулятора впечатляют, несмотря на его относительную простоту.При 60 Вт в нагрузке (балласт и люминесцентная лампа) фактическая мощность сети составляет 61 Вт (потери в диодах, как и раньше), а при сетевом токе 266 мА он потребляет 64 ВА. Таким образом, коэффициент мощности составляет 0,94 — действительно очень удовлетворительный результат. Это значительно лучше, чем схема пассивной коррекции коэффициента мощности, и этого следовало ожидать. Весь анализ, который я видел, показывает, что активная схема коррекции коэффициента мощности превосходит пассивную схему как с точки зрения общей эффективности, так и коэффициента мощности. Катушки индуктивности имеют небольшие размеры (электрически и физически), а потери будут намного ниже, чем в любой пассивной цепи PFC.

Если вам интересно, мощность лампы в два раза больше, чем в двух предыдущих примерах, из-за того, что повышающий преобразователь имеет более высокое выходное напряжение, чем желаемое. Мне очень не хотелось тратить много времени на попытки подобрать уровни мощности, а моя упрощенная версия не регулируется. Успешно запустить симуляцию для импульсного преобразователя было непросто, а симуляция требует много времени из-за высокочастотного переключения.

Сейчас довольно стандартно, что искажение формы волны обозначается как THD (полное гармоническое искажение), которое в случае активной схемы PFC равно 11.7%. Делайте из этого то, что хотите.


6 Температура

Для правильной работы всех ртутных люминесцентных ламп очень важна температура. Есть относительно узкая полоса над и под которой уменьшается дуга, что приводит к более низкому, чем ожидалось, светоотдаче. Когда трубка холодная, в ней остается меньше паров ртути, поэтому дуга не может достичь полной силы из-за недостатка молекул ртути для поддержания разряда на желаемом уровне.

Когда температура слишком высока, давление пара увеличивается, увеличивая эффективное сопротивление дуги и снова уменьшая ток разряда. Для большинства компактных ламп (а также, вероятно, большинства стандартных люминесцентных ламп) температура трубки должна быть около 40 ° C для максимальной светоотдачи. При 0 ° C светоотдача составляет всего 40% — действительно очень тусклая лампа. Более высокие температуры не так сильны, но слишком горячая лампа все равно будет сильно разряжена.


Рисунок 13 — Светоотдача в зависимости отТемпература

Когда температура приближается к -38,83 ° C, световой поток полностью прекращается. Это температура, при которой ртуть замерзает, поэтому пары ртути не могут поддерживать дугу и излучать УФ-излучение. Кроме того, при понижении температуры напряжение, необходимое для зажигания дуги, увеличивается, и при 0 ° C лампе для зажигания потребуется примерно на 40% больше напряжения по сравнению с напряжением зажигания при нормальной температуре окружающей среды.

Во многих частях света 0 ° C (или ниже) — это нормальная температура окружающей среды в течение многих месяцев в году, поэтому лампу будет труднее запустить и она будет иметь низкую мощность, пока лампа не нагреется немного. .В таком климате трубку следует закрывать, чтобы защитить ее от ветра, который может значительно снизить температуру и светоотдачу.

Относительная светоотдача (RLO) [3]
Температура окружающей среды Открытое приспособление Закрытое приспособление *
-10 ° C 25%
0 ° C 50% 80%
10 ° C 80% 100%
25 ° C 100% 98%
Световой поток в сравнении с .Температура окружающей среды
* Примечание — закрытый светильник обеспечивает повышение температуры на + 10 ° C по сравнению с окружающей средой.

Как и все материалы по этой теме, существуют различия в способе подачи материала, и разные типы трубок могут существенно отличаться друг от друга. Цифры в основном согласуются с приведенным выше графиком, но небольшое примечание предполагает, что указанные температуры находятся в состоянии теплового равновесия. Для стабилизации может потребоваться некоторое время, поэтому исходная светоотдача при первом включении лампы будет одинаковой для открытых и закрытых светильников.Поскольку объем светильника по отношению к лампе не указан, будут большие отклонения, если размер корпуса больше или меньше (неустановленных) значений, используемых в таблице.


Ссылки
  1. Электронный балласт для люминесцентных ламп, Учебный модуль для студентов — Цзинхай Чжоу, Политехнический институт Вирджинии и Государственный университет
  2. ICB1FL02G Интеллектуальная ИС управления балластом для балластов люминесцентных ламп, техническое описание, версия 1.2, февраль 2006 г., Infineon Technologies AG
  3. Работа люминесцентных систем при низких температурах (Sylvania)


Лампы и индекс энергии
Основной указатель
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2007. Воспроизведение или повторная публикация любыми средствами, электронными, механическими или электромеханическими, строго запрещены. в соответствии с международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только для личного использования, а также разрешает сделать одну (1) копию для справки. Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.
Страница создана и авторские права © Июнь 2007.

Start it Up — Как работают люминесцентные лампы

Классическая конструкция люминесцентных ламп, которая по большей части пришла на второй план, использовала специальный механизм выключателя стартера для зажигания лампы. Вы можете увидеть, как эта система работает, на схеме ниже.

При первом включении лампы путь наименьшего сопротивления проходит через байпасную цепь и через выключатель стартера . В этой цепи ток проходит через электроды на обоих концах трубки.Эти электроды представляют собой простые нити , как в лампе накаливания. Когда ток проходит через байпасную цепь, электричество нагревает нити. Это отрывает электроны от поверхности металла, отправляя их в газовую трубку, ионизируя газ.

В то же время электрический ток вызывает интересную последовательность событий в выключателе стартера. Обычный выключатель стартера представляет собой небольшую газоразрядную лампу, содержащую неон или другой газ.Колба имеет два электрода, расположенных рядом друг с другом. Когда электричество первоначально пропускается через байпасную цепь, электрическая дуга (по сути, поток заряженных частиц) прыгает между этими электродами, чтобы установить соединение. Эта дуга зажигает лампочку так же, как большая дуга зажигает люминесцентную лампу.

Один из электродов представляет собой биметаллическую полосу , которая изгибается при нагревании. Небольшое количество тепла от зажженной лампы сгибает биметаллическую полосу, так что она входит в контакт с другим электродом.Поскольку два электрода соприкасаются друг с другом, току больше не нужно прыгать по дуге. Следовательно, через газ не протекают заряженные частицы, и свет гаснет. Без тепла от света биметаллическая полоса охлаждается, отклоняясь от другого электрода. Это размыкает цепь.

К тому времени, когда это произойдет, нити уже ионизировали газ в люминесцентной лампе, создав электропроводящую среду. Для возникновения электрической дуги трубке требуется лишь скачок напряжения на электродах.Этот толчок обеспечивается балластом лампы , трансформатором особого типа, включенным в цепь.

Когда ток протекает через байпасную цепь, он создает магнитное поле в части балласта. Это магнитное поле поддерживается протекающим током. При размыкании переключателя стартера ток кратковременно отключается от балласта. Магнитное поле схлопывается, что вызывает внезапный скачок тока — балласт высвобождает накопленную энергию.

Этот выброс тока помогает создать начальное напряжение, необходимое для образования электрической дуги в газе. Вместо того, чтобы проходить через байпасную цепь и перепрыгивать через зазор в выключателе стартера, электрический ток течет через трубку. Свободные электроны сталкиваются с атомами, выбивая другие электроны, что создает ионы. В результате получается плазма , газ, состоящий в основном из ионов и свободных электронов, движущихся свободно. Это создает путь для электрического тока.

Удар летящих электронов сохраняет две нити в тепле, поэтому они продолжают испускать новые электроны в плазму. Пока есть переменный ток и нити не изношены, ток будет продолжать течь через трубку.

Проблема с такой лампой в том, что она загорается через несколько секунд. В наши дни большинство люминесцентных ламп рассчитаны на то, чтобы загораться почти мгновенно. В следующем разделе мы увидим, как работают эти современные конструкции.

Световод: люминесцентные балласты

Световод

Для работы всех газоразрядных ламп, в том числе люминесцентных, требуется балласт.Балласт обеспечивает высокое начальное напряжение для инициирования разряда, а затем быстро ограничивает ток лампы для безопасного поддержания разряда. Производители ламп указывают электрические входные характеристики лампы (ток лампы, пусковое напряжение, пик-фактор тока и т. Д.), Необходимые для достижения номинального срока службы лампы и характеристик выходного светового потока. Аналогичным образом Американский национальный институт стандартов (ANSI) публикует рекомендуемые характеристики входной мощности для всех ламп типа ANSI. Балласты предназначены для оптимальной работы ламп уникального типа; однако некоторые пускорегулирующие устройства могут адекватно работать с несколькими типами ламп.В этих случаях оптимальные характеристики лампы обычно не достигаются при всех условиях. Менее чем оптимальные условия могут повлиять на пусковые характеристики лампы, светоотдачу и срок службы.

Тип цепи и режим работы

Люминесцентные балласты производятся для трех основных типов люминесцентных ламп: предварительного нагрева, быстрого запуска и мгновенного запуска.

Операция предварительного нагрева Электроды лампы нагреваются до начала разряда.«Выключатель стартера» замыкается, позволяя току течь через каждый электрод. Выключатель стартера быстро охлаждается, размыкая выключатель и вызывая напряжение питания на дуговой трубке, вызывая разряд. Во время работы на электроды не подается вспомогательное питание.

Операция быстрого запуска Электроды лампы нагреваются до и во время работы. Балластные трансформаторы имеют две специальные вторичные обмотки для подачи на электроды надлежащего низкого напряжения.

Операция мгновенного запуска Электроды лампы не нагреваются перед работой. Балласты для ламп мгновенного пуска предназначены для обеспечения относительно высокого пускового напряжения (по сравнению с лампами предварительного нагрева и быстрого пуска) для инициирования разряда на ненагретых электродах.

Быстрый запуск — самый популярный режим работы для 4-футовых 40-ваттных ламп и 8-футовых ламп высокой мощности. Преимущества быстрого запуска включают плавный запуск, длительный срок службы и возможность регулирования яркости.Лампы мощностью менее 30 Вт обычно работают в режиме предварительного нагрева. Лампы, работающие в этом режиме, более эффективны, чем режим быстрого запуска, поскольку для постоянного нагрева электродов не требуется отдельная мощность. Однако эти лампы имеют тенденцию мерцать при запуске и имеют более короткий срок службы. Восьмифутовые «тонкие» лампы работают в режиме мгновенного пуска. Мгновенный запуск более эффективен, чем быстрый запуск, но, как и в режиме предварительного нагрева, срок службы лампы короче. Лампа F32T8 высотой 4 фута 32 Вт — это лампа для быстрого пуска, обычно работающая в режиме мгновенного пуска с электронными высокочастотными балластами.В этом режиме работы эффективность лампы повышается с некоторым сокращением срока службы лампы.

Энергоэффективность

Люминесцентные лампы достаточно эффективны при преобразовании входной мощности в свет. Тем не менее, большая часть энергии, подаваемой в систему балласта люминесцентных ламп, производит ненужную тепловую энергию.

Есть три основных средства повышения эффективности системы балластных люминесцентных ламп:

  • Уменьшить балластные потери
  • Включить лампу (лампы) на высокой частоте
  • Уменьшить потери на электроды лампы


Новые, более энергоэффективные балласты, как магнитные, так и электронные, используют один или несколько из этих методов для повышения эффективности системы балласта лампы, измеряемой в люменах на ватт.Потери в магнитных балластах были уменьшены за счет замены алюминиевых проводов на медные и за счет использования магнитных компонентов более высокого качества. Потери балласта также могут быть уменьшены за счет использования одного балласта для управления тремя или четырьмя лампами вместо одной или двух. Тщательная схемотехника увеличивает эффективность электронных балластов. Кроме того, электронные балласты, которые преобразуют частоту источника питания 60 Гц в высокую частоту, работают с люминесцентными лампами более эффективно, чем это возможно при 60 Гц. Наконец, в схемах быстрого запуска некоторые магнитные балласты повышают эффективность за счет отключения питания электродов лампы после запуска.

Балластный фактор

Одним из наиболее важных параметров балласта для проектировщика / инженера по свету является коэффициент балласта. Балластный коэффициент необходим для определения светоотдачи конкретной балластной системы лампы. Балластный коэффициент — это мера фактического светового потока для конкретной системы балласта лампы по сравнению с номинальным световым потоком, измеренным с эталонным балластом в условиях испытаний ANSI (на открытом воздухе при 25 ° C [77 ° F]). Для балласта ANSI для стандартных 40-ваттных ламп F40T12 требуется балластный коэффициент равный 0.95; такой же балласт имеет балластный коэффициент 0,87 для 34-ваттных энергосберегающих ламп Ф40Т12. Однако многие балласты доступны как с высоким (в соответствии со спецификациями ANSI), так и с низким балластным коэффициентом (от 70 до 75%). Важно отметить, что значение балластного фактора является характеристикой не просто балласта, а балластной системы лампы. Балласты, которые могут работать с несколькими типами ламп (например, балластный блок F40 мощностью 40 Вт может работать с лампами F40T12 мощностью 40 Вт, F40T12 34 Вт или F40T10 мощностью 40 Вт), как правило, будут иметь разный балластный коэффициент для каждой комбинации ( е.g., 95%, <95% и> 95% соответственно).

Балластный фактор не является показателем энергоэффективности. Хотя более низкий балластный коэффициент уменьшает световой поток лампы, она также потребляет пропорционально меньшую входную мощность. Таким образом, тщательный выбор системы балласта лампы с определенным балластным коэффициентом позволяет дизайнерам лучше минимизировать потребление энергии, «настраивая» уровни освещения в помещении. Например, в новом строительстве, как правило, лучше всего использовать высокий балластный коэффициент, поскольку для удовлетворения требований к уровню освещенности потребуется меньше светильников.При модернизации или в областях с менее важными визуальными задачами, таких как проходы и коридоры, балласты с более низким балластным фактором могут быть более подходящими.

Чтобы избежать резкого сокращения срока службы лампы, балласты с низким балластным коэффициентом (<70%) должны работать с лампами только в режиме быстрого запуска. Это особенно актуально для 32-ваттных ламп F32T8, работающих на высокой частоте.

Найти балластный коэффициент для комбинаций лампы и балласта может быть непросто, так как немногие производители балластов предоставляют эту информацию в своих каталогах.Однако, если входная мощность для конкретной системы балласта лампы известна (обычно ее можно найти в каталогах), можно оценить балластный коэффициент.

Мерцание

Электромагнитные балласты предназначены для согласования входного напряжения 60 Гц с электрическими требованиями ламп. Магнитный балласт изменяет напряжение, но не частоту. Таким образом, напряжение лампы пересекает ноль 120 раз в секунду, что приводит к колебаниям светоотдачи 120 Гц. Это приводит к мерцанию около 30% для стандартных галофосфорных ламп, работающих на частоте 60 Гц.Мерцание обычно незаметно, но есть свидетельства того, что мерцание такой силы может вызывать побочные эффекты, такие как напряжение глаз и головная боль.

Большинство электронных балластов, с другой стороны, работают на высоких частотах, что снижает мерцание лампы до практически незаметного уровня. Процент мерцания конкретного балласта обычно указывается производителем. Для данного балласта процент мерцания будет функцией типа лампы и состава люминофора.

Слышимый шум

Одной из характеристик электромагнитных балластов с железным сердечником, работающих на частоте 60 Гц, является создание слышимого шума.Шум может увеличиваться при высоких температурах, и он усиливается некоторыми конструкциями светильников. В лучших балластах используются высококачественные материалы и обработка для снижения шума. Шум оценивается A, B, C или D в порядке убывания предпочтения. Балласт с рейтингом «А» будет тихо гудеть; балласт с рейтингом «D» будет издавать громкое жужжание. Количество балластов, их уровень шума и характер окружающего шума в комнате определяют, будет ли система создавать звуковые помехи.

Практически все энергоэффективные магнитные балласты для ламп F40T12 и F32T8 имеют рейтинг «А», за некоторыми исключениями, такими как низкотемпературные балласты.Тем не менее, шум магнитных балластов может быть заметен в особенно тихой среде, например в библиотеке. С другой стороны, хорошо спроектированные электронные балласты высокой частоты не должны издавать заметного гудения. Все электронные балласты имеют рейтинг «А» по ​​звуку.

Затемнение

В отличие от ламп накаливания, люминесцентные лампы не могут быть должным образом затемнены с помощью простого настенного устройства, такого как те, которые используются для ламп накаливания. Чтобы люминесцентная лампа регулировала яркость во всем диапазоне без сокращения срока службы лампы, напряжение ее нагревателя электродов должно поддерживаться, в то время как ток дуги лампы снижается.Таким образом, лампы, работающие в режиме быстрого запуска, являются единственными люминесцентными лампами, подходящими для применения в широком диапазоне диммирования. Мощность, необходимая для поддержания постоянного напряжения на электродах во всех условиях диммирования, означает, что диммирующие балласты будут менее эффективными при работе ламп на пониженных уровнях.

Диммирующие балласты доступны как в магнитной, так и в электронной версиях, но использование электронных диммирующих балластов дает явные преимущества. Для регулирования яркости ламп магнитным пускорегулирующим устройствам требуется ПРА, содержащее дорогостоящие устройства переключения большой мощности, которые регулируют входную мощность, подаваемую на ПРА.Это экономически целесообразно только при управлении большим количеством балластов в одной ответвленной цепи. Кроме того, светильники должны управляться в больших зонах, которые определяются схемой системы распределения электроэнергии. Поскольку система распределения фиксируется на ранних этапах процесса проектирования, системы управления, использующие балласты с магнитным регулированием яркости, негибкие и неспособны приспособиться к изменениям в схемах использования.

Диммирование ламп с электронным балластом, с другой стороны, осуществляется внутри самого балласта.Электронные балласты изменяют выходную мощность ламп с помощью сигнала низкого напряжения в выходной цепи. Переключающие устройства большой мощности для кондиционирования входной мощности не требуются. Это позволяет управлять одним или несколькими балластами независимо от системы распределения электроэнергии. В системах электронного балласта с регулируемой яркостью можно использовать низковольтную сеть управления для группирования балластов в зоны управления произвольного размера. Эта сеть управления может быть добавлена ​​во время ремонта здания или даже, в некоторых случаях, во время модернизации освещения.Низковольтную проводку не нужно прокладывать в кабелепроводе, что помогает снизить затраты на установку. Кроме того, менее затратно изменить размер и протяженность зон освещения путем перенастройки низковольтной проводки при изменении схемы использования. Низковольтная проводка также совместима с фотоэлементами, датчиками присутствия и входами системы управления энергопотреблением (EMS).

Диапазон диммирования балластов сильно различается. С большинством электронных диммируемых балластов уровни освещенности могут варьироваться от полной мощности до минимум примерно 10% от полной мощности.Тем не менее, также доступны электронные балласты с регулировкой яркости с полным диапазоном, которые управляют лампами с световым потоком до 1%. Балласты с магнитным диммированием также предлагают множество вариантов диммирования, включая диммирование во всем диапазоне.

Адаптировано из Advanced Lighting Guidelines: 1993 (второе издание), первоначально опубликованного Комиссией по энергетике Калифорнии.

Дополнительные световоды

Standard 120V T12 Rapid Start High Output High Output Electronic Ballast 1-2 Tubes

Описание

В системе люминесцентного освещения балласт регулирует ток, подаваемый на лампы, и обеспечивает напряжение, достаточное для запуска ламп.Без балласта для ограничения тока люминесцентная лампа, подключенная непосредственно к источнику питания высокого напряжения, быстро и неконтролируемо увеличивает потребление тока.

Электронные балласты изменяют поток электричества в лампочке с помощью ряда индукционных катушек, которые отделены друг от друга. Они также изменяют частоту электрического тока без изменения напряжения. В то время как магнитные балласты в люминесцентных лампах работают на частоте 60 Гц, электронные балласты значительно увеличивают эту частоту до 20 000 Гц.Из-за очень высокой частоты вы не увидите мерцания огней и не услышите жужжание люминесцентных ламп с электронными балластами.

Этот электронный пусковой балласт с высокой выходной мощностью подходит для различных целей. Его можно использовать для многих люминесцентных ламп T12 с 1 и 2 лампами. Этот балласт принимает сетевое напряжение 120 вольт и преобразует его в рабочее напряжение, соответствующее лампам.

Применения

. Лампа

Current Crest

Фактор

Количество

из

Лампы 1

Номинальные

Лампы

Вт

90SI

Входная мощность03

Мин.Пуск

Темп.

Вход

Ток

(A)

Макс

THD

(%)

Мощность

Коэффициент

BEF


F96T12HO

2

110

F)

1.65

10

0,99

1,7

0,46
F96T12HO / ES 2 95 170 15 ° 1 10 0,99 1,7 0,52
F72T12HO 2 85 148 -29 ° C (-20 ° F) 1,15 10 0.98 1,7 0,61
F60T12HO 2 75 124 -29 ° C (-20 ° F) 1,05 10 0,98 1,7 0,84
F48T12HO 2 60 104 -29 ° C (-20 ° F) 0,88 10 0,98 1,7 1,08
F96T12100 110109 -29 ° C (-20 ° F) 0.82 10 0,98 1,7 0,83
F96T12HO / ES 1 95 95 15 ° C (60 ° F) 0,80 10 0,9 1,7 1,11

Технические характеристики

Серия
Входное напряжение 120 В
Входной ток 0,80 до 1,65 A 2
Тип балласта9 Электронный метод запуска Быстрый запуск
Подключение лампы
Входная частота 60 Гц
Макс.Темп. 75 ° C
Тепловая защита Класс P
Тип 1 Наружный
Содержит печатные платы Нет
Уровень звукового давления A
Открытый ток 387
Схема защиты лампы Да
Автоматический перезапуск Да
Код производителя 61119
Описание E296T12RS120108 / N / 9010/9010 / AS Ресурсы

Веб-сайт производителя

Лист данных

1 В крепежных элементах с 2 трубками используйте только 2 лампы одинакового размера и номиналов
2 Входной ток зависит от типа / размера используемой трубки

Какое напряжение у люминесцентных и ультрафиолетовых ламп?

Возможно, вы заметили, что в технических характеристиках люминесцентных ламп, компактных люминесцентных ламп и ультрафиолетовых ламп указаны ватты, но почти никогда — вольт.Почему нет?

Балласты, невидимые внутри светильника, необходимы для работы всех люминесцентных ламп. Балласты изменяют линейное напряжение, к которому они подключены (120 В, 277 В и т. Д.), Поэтому в лампочку подается правильный ток. Поскольку балласты скрыты, легко предположить, что лампочки просто работают от сетевого напряжения от здания. Это не так, так как напряжение на патроне лампы нужно регулировать. Это работа балласта.

Ввинчиваемые лампы КЛЛ, обычно используемые в домашних условиях и для некоторого специализированного оборудования, могут вызвать некоторую путаницу у потребителей.Эти лампы ничем не отличаются от других люминесцентных ламп, и для работы им нужен балласт. Однако они производятся с балластом, встроенным в саму лампу. Часто на одном конце ввинчиваемой лампы CFL есть основание большего размера, в котором находится балласт. Он расположен между ввинчивающимся основанием и трубками (чаще всего в домах спиральной формы).

Ответ на наш вопрос теперь ясен. Напряжение КЛЛ или люминесцентной лампы не имеет значения для потребителя, который просто покупает лампочку на замену существующему светильнику.Балласт в приспособлении позаботится об этом.

Для нового оборудования установщики часто выбирают светильники с балластом для работы лампочек. Многие люминесцентные балласты теперь имеют универсальное напряжение, что означает, что они могут работать от сети с напряжением от 120 до 277 вольт. Для международного или промышленного использования доступны балласты 347–480 В.

Еще более сложным является тот факт, что люминесцентные или ультрафиолетовые лампы с более высокой мощностью (часто используемые в соляриях или муниципальном водоочистном оборудовании) могут не иметь доступного балласта на уровне 120 В, требующего 208 или выше.

ПРА для люминесцентных ламп рассчитаны и протестированы только для работы с определенными лампами, поэтому очень важно согласовать ПРА и лампу. В некоторых случаях балласт может работать с лампой, которая не указана в его технических характеристиках, но может перегружать или недогружать лампу. Или лампа была просто неизвестна производителю во время разработки балласта, и лампа будет работать нормально.

Для других источников света требуются балласты собственного типа, в том числе балласты для эксимерных ламп, балласты HID и драйверы светодиодов.

Эта проблема упрощает замену лампочек, но может вызвать еще большую путаницу, если балласт выходит из строя. Часто бывает так, что к моменту замены балласта производитель уже давно снял с производства конкретный балласт в приспособлении. К счастью, большинство производителей ведут списки снятых с производства и рекомендуемых замен, хотя они могут не подходить для старого блока питания.

. Ламп

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *