+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

ЭПРА для люминесцентных ламп T8

ЭПРА Navigator 94 425 NB-ETL-118-EA3
Артикул: 94425
Электронный пускорегулирующий аппарат (ЭПРА) для одной люминесцентной лампы T8 с цоколем G13 мощностью 18 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА Navigator 94 426 NB-ETL-218-EA3
Артикул: 94426
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 18 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА Navigator 94 427 NB-ETL-136-EA3
Артикул: 94427
Электронный пускорегулирующий аппарат (ЭПРА) для одной люминесцентной лампы T8 с цоколем G13 мощностью 36 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА Navigator 94 428 NB-ETL-236-EA3
Артикул: 94428
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 36 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА Navigator 94 429 NB-ETL-158-EA3
Артикул: 94429
Электронный пускорегулирующий аппарат (ЭПРА) для одной люминесцентной лампы T8 с цоколем G13 мощностью 58 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА Navigator 94 430 NB-ETL-258-EA3
Артикул: 94430
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 58 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА Navigator 94 449 NB-ETL-418-EA3
Артикул: 94449
Электронный пускорегулирующий аппарат (ЭПРА) для четырех люминесцентных ламп T8 с цоколем G13 мощностью 18 Ватт.

Navigator (Навигатор)

подробнее »

ЭПРА FOTON FL1х36W 180х40х30mm
Артикул: 603982
Электронный пускорегулирующий аппарат (ЭПРА) для люминесцентных ламп T8 с цоколем G13 мощностью 36 Ватт.

Foton Lighting (Фотон)

подробнее »

ЭПРА FOTON FL2x36/4х18W 335х35х30mm
Артикул: 606440
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 36 Ватт или четырех мощностью 18 Ватт.

Foton Lighting (Фотон)

подробнее »

ЭПРА FOTON FL2х18W 180х40х30mm
Артикул: 603999
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 18 Ватт.

Foton Lighting (Фотон)

подробнее »

ЭПРА FOTON FL2х36W 180х40х30mm
Артикул: 604002
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 36 Ватт.

Foton Lighting (Фотон)

подробнее »

ЭПРА FOTON FL2х58W 230х40х30mm
Артикул: 604019
Электронный пускорегулирующий аппарат (ЭПРА) для двух люминесцентных ламп T8 с цоколем G13 мощностью 58 Ватт.

Foton Lighting (Фотон)

подробнее »

ЭПРА FOTON FL4х18W 182х43х30mm
Артикул: 604026
Электронный пускорегулирующий аппарат (ЭПРА) для четырех люминесцентных ламп T8 с цоколем G13 мощностью 18 Ватт.

Foton Lighting (Фотон)

подробнее »

Как проверить баластник для люминесцентных ламп, ремонт

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы.

Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов.

Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель.

Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Pagri. Дроссель электронный (балласт)

Электронный балласт (дросель)

Электронный дроссель для лампы (ЭПРА) — это электронный балласт, который содержит в себе электронную схему преобразователя переменного напряжения сети 50 Гц в ток более высокой частоты (20-60 кГц), который и используется для питания лампы.

Запускать люминесцентные лампы с помощью электронного дросселя можно несколькими способами:

1. Электронный балласт разогревает катоды лампы и подает на них зажигающий потенциал. Высокая частота подаваемого напряжения увеличивает КПД системы и устраняет мерцание люминесцентной лампы. Разные балласты запускают лампы по-разному – может происходить или плавный пуск с нарастанием яркости до рабочей за пару секунд, или мгновенный запуск лампы.
2. При использовании комбинированных методов в зажигании лампы участвует не только процесс разогрева катодов, но и образование колебательного контура в цепи питания лампы (так работают сетевые дроссели ДРЛ, сетевые дроссели ДНАТ к соответствующим лампам). Параметры контура подбирают так, чтобы до начала разряда он входил в электрический резонанс. Тогда существенно повышается напряжение, прикладываемое к катодам лампы, а также растет ток подогрева катодов. Как правило, в таком варианте запуска нити накала катодов подключены последовательно через конденсатор, и эта схема служит частью колебательного контура. Рост напряжения запуска и тока катодов приводит к легкому и быстрому зажиганию лампы. Когда в колбе начинается разряд, колебательный контур изменяет свои параметры и выходит из резонанса. Напряжение на лампе падает до рабочего, уменьшается и ток катодов.

Преимущества электронного балласта:

— лампы дневного света с электронным балластом не мерцают и не гудят, как при использовании традиционного дросселя;
— электронный балласт компактнее и легче электромагнитного дросселя;
— люминесцентную лампу можно запустить практически мгновенно в режиме «холодного старта».

Недостатком режима «холодного старта» является существенное сокращение срока службы лампы. Поэтому экономичнее использовать схему «горячего старта», то есть предварительного разогрева электродов в течение 0,5-1 сек. Такой режим пускорегулирующего аппарата увеличивает время зажигания лампы, но в то же время увеличивает и срок ее службы.

В отличие от электромагнитного балласта, когда при запуске люминесцентной лампы требуется отдельный стартер, электронная схема сама формирует необходимые напряжения и токи в нужной последовательности.

Электронный дроссель для лампы (ЭПРА) — это электронный балласт, который содержит в себе электронную схему преобразователя переменного напряжения сети 50 Гц в ток более высокой частоты (20-60 кГц), который и используется для питания лампы.

Запускать люминесцентные лампы с помощью электронного дросселя можно несколькими способами:

1. Электронный балласт разогревает катоды лампы и подает на них зажигающий потенциал. Высокая частота подаваемого напряжения увеличивает КПД системы и устраняет мерцание люминесцентной лампы. Разные балласты запускают лампы по-разному – может происходить или плавный пуск с нарастанием яркости до рабочей за пару секунд, или мгновенный запуск лампы.
2. При использовании комбинированных методов в зажигании лампы участвует не только процесс разогрева катодов, но и образование колебательного контура в цепи питания лампы (так работают сетевые дроссели ДРЛ, сетевые дроссели ДНАТ к соответствующим лампам). Параметры контура подбирают так, чтобы до начала разряда он входил в электрический резонанс. Тогда существенно повышается напряжение, прикладываемое к катодам лампы, а также растет ток подогрева катодов. Как правило, в таком варианте запуска нити накала катодов подключены последовательно через конденсатор, и эта схема служит частью колебательного контура. Рост напряжения запуска и тока катодов приводит к легкому и быстрому зажиганию лампы. Когда в колбе начинается разряд, колебательный контур изменяет свои параметры и выходит из резонанса. Напряжение на лампе падает до рабочего, уменьшается и ток катодов.

Преимущества электронного балласта:

— лампы дневного света с электронным балластом не мерцают и не гудят, как при использовании традиционного дросселя;
— электронный балласт компактнее и легче электромагнитного дросселя;
— люминесцентную лампу можно запустить практически мгновенно в режиме «холодного старта».

Недостатком режима «холодного старта» является существенное сокращение срока службы лампы. Поэтому экономичнее использовать схему «горячего старта», то есть предварительного разогрева электродов в течение 0,5-1 сек. Такой режим пускорегулирующего аппарата увеличивает время зажигания лампы, но в то же время увеличивает и срок ее службы.

В отличие от электромагнитного балласта, когда при запуске люминесцентной лампы требуется отдельный стартер, электронная схема сама формирует необходимые напряжения и токи в нужной последовательности.

ЭПРА – электронный балласт для люминесцентных ламп на IR2155. Схема

Что такое ЭПРА? ЭПРА — это электронный пускорегулирующий аппарат, который является балластом для люминесцентных ламп.

По сравнению со стандартным дросселем и стартером использование схемы ЭПРА  для люминесцентных ламп имеет ряд преимуществ:

  1. Люминесцентная лампа ЭПРА включается сразу без предварительного мерцания.
  2. Лампа питается высокочастотным напряжением, что в свою очередь снижает зрительное напряжение.
  3. Продевает срок службы лампы.
  4. Выше энергоэффективность (КПД).

Пожалуй, единственным недостатком является высокая цена в магазине.

Схема приведенного в данной статье электронного балласта для люминесцентных ламп построена на микросхеме IR2155, которая представляет собой драйвер МОП транзисторов (MGD) с внутренним генератором.

Несколько моментов, которые необходимо учитывать при проектировании ЭПРА:

  • Частота коммутации должна быть выше 30 кГц.
  • Частота переключения должна быть низкой для минимизации размеров дросселя.
  • Стартовый конденсатор для ламп с током I > 300mA должен иметь емкость около 10nF

Схему балласта образно можно поделить на три части.

Первая часть является источником питания. На входе источника питания установлены входной предохранитель и NTC термистор. Это необходимо для ограничения пускового тока и защиты выпрямительных диодов. Термистор при подаче питания через некоторое время разогревается и его сопротивление падает до нуля. Термистор можно найти в любом нерабочем блоке питания компьютера.

Конденсаторы C1 и C2 вместе с дросселем Lf образуют фильтр. Эти элементы так же можно взять из БП компьютера. Значения C1 и C2 не являются критическими и могут быть в пределах 100n…470n на 250 вольт.

Далее идет стандартный выпрямительный мост на диодах 1N4007. Величина емкости фильтрующего конденсатора С3 выбирают равной 0,5мкФ — 1мкФ на каждый ватт мощности используемой лампы и рассчитанного на напряжение не менее 400В.

Сопротивление балластного резистора R1 составляет около 27к на 6 Вт. Он состоит из трех параллельно соединенных резисторов сопротивлением 82к/2Вт каждый.

Вторая часть является драйвером. Резистор R2 и конденсатор C5 образуют RC-цепь определяющую частоту работы внутреннего генератора микросхемы.

Частоту можно рассчитать следующим образом:

F = 1 / (1,4 * (R2 + 75) * C5)

К примеру, для получения частоты в 35кГц необходимо взять резистор R2 сопротивлением 36к и конденсатор C5 емкостью 560р.

Микросхема IR2155 содержит так же Hi и Lo драйвер MOSFET транзисторов. Таким образом, в схему добавлены диод D1 и конденсатор С6. Диод должен быть высокочастотным, например, FR105 или FR107. Обычные диоды здесь не подходят, такие как, например, 1N4007 и тому подобное. Конденсатор C6 емкостью 100n. Транзисторы T1 и T2 — полевые и рассчитанные на рабочее напряжение не менее 400 вольт. Я выбрал IRF740, но можно использовать и другие экземпляры: IRF840 и т. д. Элементы Rb (10 Ом) и Cb (1n на 600В) служат для уменьшения времени переключения.

Третья часть – цепь подключение лампы. Он состоит из блокирующего конденсатора 470n на 400 вольт. Значение это не является критическим и может быть в районе 100n…1000n. Дроссель Ls вместе с конденсатором Cs образуют резонансный контур. Резонанс должен быть близко к частоте возбуждения, в противном случае лампа не будет гореть. Индуктивность дросселя около 1,35mH. Дроссель намотан на катушку с сердечником EE площадью 40 мм2, его так же можно найти в БП от компьютера. Обмотка содержит 150 витков провода диаметром 0,4 мм. Немагнитный зазор должен быть около 0,8 мм.

Конденсатор Cs емкостью 15n и должны быть рассчитан, по крайней мере, на 630 вольт. Резонансная частота работы составляет 35 кГц. PTC (варистор) — является положительным термистором. В холодном состоянии его сопротивление имеет практически нулевое значение и поэтому шунтирует конденсатор Cs. При нагреве сопротивление увеличивается, и заряд на конденсаторе Cs зажигает люминесцентную лампу. PTC используется только для прогрев электродов лампы. Его, конечно же, можно не устанавливать, но с ним срок службы лампы значительно увеличивается.

Из всего выше сказанного можно сделать вывод, что схема не сложная, все детали, за исключением IR2155, можно «добыть» из старого БП компьютера. вместо IR2155 можно применить IR2153 и IR2151.

Внимание. Элементы схемы не имеют гальванической развязки с электросетью 220 вольт. Необходимо соблюдать технику безопасности при настройке и эксплуатации устройства!

http://choze.aspone.cz/ezp.aspx

ЭЛЕКТРОННЫЙ БАЛЛАСТ ДЛЯ ЛАМП ЛДС

   Очередная прогулка по магазинам завершилась покупкой балласта для ламп дневного освещения. Балласт на 40 ватт, способен питать одну мощную ЛДС или две маломощные по 20 ватт. 


   Интересно то, что цена такого балласта недорога, всего 2 доллара. Для некоторых, покажется, что все-таки 2$ за балласт дороговато, но после вскрытия, оказалось, что в нем использованы компоненты в разы дороже общей цены балласта. Одна только пара мощных высоковольтных транзисторов 13009 уже стоят более доллара каждый. 


   Кстати, срок службы ЛДС зависит от способа запуска лампы. Из графиков видно, что холодный старт резко сокращает срок службы лампы.

   Особенно в случае применения упрощенных электронных балластов, которые резко выводят ЛДС в рабочий режим. Да и способ питания лампы постоянным током также снижает срок службы. Незначительно — но всё-таки снижает. Примеры — на схемах ниже:


   Простая схема электронного балласта (без микросхемы управления) почти мгновенно зажигает лампу. И для долговечности лампы это плохо. За короткое время нить накала не успевает разогреться, а высокое напряжение, приложенное между ее нитями, вырывает из нити накала требуемое количество электронов, необходимое для зажигания лампы, и этим разрушает накал, понижая его эмиссионную способность. Типовая принципиальная схема электронного балласта:


   Поэтому рекомендуется выбирать белее серьёзную схему, с задержкой подачи питания (клик для увеличения):


   В схеме купленного балласта особенно порадовал сетевой фильтр — чего нет в электронных трансформаторов для галогенных ламп. Фильтр оказался не простой: дроссель, варистор, предохранитель (не резистор как в ЭТ, а самый настоящий предохранитель), емкости перед и после дросселя. Дальше идет выпрямитель и два электролита — это не похоже на китайцев.


   После уже идет стандартная, но в разы улучшенная схема двухтактого преобразователя. Тут сразу на глаза бросаются две вещи — теплоотводы транзисторов и применение более мощных резисторов в силовых цепях, обычно китайцам без разницы, где ток в цепи больше или меньше, они используют стандартные резисторы 0,25вт.


   После генератора идут два дросселя, именно благодаря им происходит повышение напряжения, тут тоже все очень аккуратно, никаких претензий. Даже в мощных электронных трансформаторах китайские производители редко используют теплоотводы для транзисторов, но здесь как видим они есть, и не только есть, но и очень аккуратны — транзисторы прикручены через дополнительные изоляторы и через шайбы. 


   С обратной стороны плата тоже сияет аккуратностью монтажа, никаких острых выводов и испорченных дорожек, олово так-же не пожалели, все очень красиво и качественно.

   Подключил устройство — оно отлично работает! Я уже начал думать, что сборку делали немцы, под суровым контролем, но тут вспомнил цену и почти поменял свое мнение о китайских производителях — молодцы парни, поработали на славу! Обзор подготовил АКА КАСЬЯН.

   Форум по электронным преобразователям

   Форум по обсуждению материала ЭЛЕКТРОННЫЙ БАЛЛАСТ ДЛЯ ЛАМП ЛДС

Дроссель для люминесцентных ламп: 36вт, электронный, устройство, назначение

До настоящего времени дроссель для ламп был незаменимым узлом люминесцентного светильника (ЛЛ), выпущенная английской компанией General Electric в 1934 году. Она создала первые трубки с горячим катодом, в которых использовался положительный разряд в колонке в ртутной атмосфере низкого давления, для генерации коротковолнового УФ-излучения. Последнее стимулировало флуоресцентное порошковое покрытие на внутренней поверхности разрядной трубки. Хотя в той конструкции еще отсутствовали многие современные функции, но именно General Electric стал первопроходцем на рынке флуоресцентных ламп.

Дроссель для лампочек

Популярность люминесцентных ламп подтверждается тем фактом, что она и сегодня вырабатывает больше количества света на планете, чем любой другой источник. Пик производства был достигнут к 1970-му году. По современным оценкам, сегодня на их долю приходится около 80% мирового искусственного освещения.

Люминесцентное освещение

Люминесцентный вид освещения предлагает низкую стоимость системы, очень большой срок службы. Он полностью диммируемый и простой в использовании, и, кроме того, достигает высокой световой отдачи. Большая площадь трубки хорошо подходит для эффективного и безбликового освещения больших пространств.

Флуоресцентная лампа использует электричество, чтобы ртутный газ смог излучать ультрафиолетовый (УФ) свет. Когда этот свет, который невидим невооруженным глазом, взаимодействует с покрытием порошка люминофора внутри трубки, он начинает светиться и излучать яркий свет. Для того чтобы контролировать пропускаемое электричество, используют дроссель или в западной терминологии — дроссель балласт или механизм управления. Он представляет собой небольшое устройство, подключенное к электрической цепи источника света, которое ограничивает количество тока, проходящего через него.

Дроссель для лампочек

Поскольку напряжение в бытовой сети имеет более высокое значение, чем необходимо для работы светильника, дроссель первоначально дает источнику скачок напряжения для запуска, а затем только поддерживает минимальное количество для безопасной работы.

Процесс, который происходит внутри флуоресцентного света, вовлекает молекулы ртутного газа, нагреваемые электричеством. Без дросселя, контролирующего этот процесс, на лампу поступало бы много тока, который вывел бы ее из строя.

Флуоресцентные лампы используют два вида балластов:

  1. Магнитные, которые устарели и сегодня уже не используются в новых моделях ламп. Работа их построена на принципах электромагнетизма, когда электрический ток проходит через провод, он генерирует вокруг себя магнитную силу. Балласт содержит катушку из медной проволоки. Магнитное поле, создаваемое проводом, задерживает большую часть тока. Это количество может колебаться в зависимости от толщины и длины медной проволоки.
  2. Электронный дроссель для люминесцентных ламп использует более сложные схемы и компоненты, может с большей точностью контролировать ток, проходящий через люминесцентные лампы. По сравнению со своими магнитными аналогами они меньше, легче, эффективнее и, благодаря подаче энергии на гораздо более высокой частоте, практически не вызывают мерцание или жужжание.

Важно! Магнитные балласты не могут функционировать без помощи стартера. Этот небольшой цилиндрический элемент расположен позади светильника и заполнен газом, который при нагревании позволяет зажечь свет.

Характеристики

Базовые функции балластов: обеспечивает процесс подогрева катодов для старта процесса электронной эмиссии, создает напряжение стартового разряда и последующее ограничение рабочего тока. В режиме переменного тока, он обеспечивает сдвиг фаз (cos f) между I и U, называемым коэффициент мощности. Эта величина обозначается в паспорте и маркировки балласта. Активная мощность рассчитывается по соотношению: P = U х I х cosf, очевидно, что низкий cos f дает рост использования реактивной энергии.

Маркировка балласта

В связи, с чем балласты группируются по уровню мощности:

  • С— низкий показатель;
  • В— супернизкий;
  • D — средняя возможность поглощения.

Классификация и по уровню шума:

  • С — очень низкий шумовой эффект;
  • А — особо низкий показатель;
  • П — пониженный шум;
  • Н — норма.

Технические характеристики балласта должны соответствовать показателям мощности лампы, иначе она работать не будет.

Люминесцентные ламы требуют установку дросселей различной мощности:

  • Вт до 15.0 Вт — небольшие настольные светильники;
  • 16.0 Вт до 36.0 Вт — потолочные и настенные бытовые осветительные устройства;
  • 37.0 Вт до 80.0 Вт — мощные промышленные осветительные системы с несколькими единичными точками света.

На территории России выпуск люминесцентных ламп и комплектующих производятся достаточно большими партиями — от миллиона ламп в год. Производство организовано на предприятиях: «ЛИСМА-ВНИИС» им. Лодыгина, «Фотон», Саранский завод точных приборов, компании «СЭПО-ЗЭМ». Среди западных производителей популярностью пользуются греческая компания Schwabe Hellas и финская Helvar. Считается, что балласты и стартеры лучше приобретать известных марок, таких как Navigator или Luxe.

Как работает

Первоначально, подается переменное напряжение, которое пройдя через дроссель, попадает на лампу. Так как мощность передается через балласт, который является индуктором, он ограничивает ток и препятствует возникновению короткого замыкания в лампе. Далее ток проходит через нити накаливания и нагревает их, а также присутствующие в трубке газы.

Работа люминесцентных ламп

Разрядная трубка заполнена газообразным аргоном и имеет внутри фосфорное покрытие, а также содержит небольшое количество ртути. Затем ток поступает на стартер, внутри которого есть биметаллическая полоса, расширяемая при нагревании и замыкающая цепи, минуя лампу и создавая короткое замыкание. Когда цепь замкнута, напряжение падает до нуля. После того биметаллическая полоса остынет, она возвращается в исходное положение, открывая цепь. Так как в балласте имеется индуктор и собственное магнитное поле.

Во время размыкания цепи, магнитное поле разрушается и это создается «индуктивный удар с всплеском высокого напряжения, проходящего через нить накала, создавая дугу, для возбуждения фотонов в газовой среде аргона. Их эмиссия вызывает излучение ультрафиолетового света, который, проходя через фосфорное покрытие лампы, преобразуется в видимый свет.

Назначение дросселя

Принципиальные схемы электронных балластов разные. Но все они поддерживают фактическую типовую структурную схему:

  1. Сначала подключается последовательный резистор. Он подключен для ограничения тока перегрузки и короткого замыкания. В некоторых электронных балластах вместо последовательного резистора используется предохранитель. Этот резистор имеет очень низкое значение до 22 Ом.
  2. Затем подключается схема фильтра электромагнитных помех, который состоит из одного последовательного индуктора и одного параллельного конденсатора.
  3. Затем используется выпрямительная схема для преобразования переменного тока в постоянный. Схема мостового выпрямителя состоит из четырех PN диодов.
  4. Конденсатор подключен параллельно для фильтрации постоянного тока, поступающего из выпрямительной цепи.

Применяется инверторная схема с использованием двух транзисторов. Эти транзисторы создают высокочастотный переменный ток и повышающий трансформатор. С частотой в электронном балласте от 20.0 кГц до 8.00 кГц. Как правило, транзистор создает прямоугольный токовый сигнал. Повышающий трансформатор повышает уровень напряжения до 1000.0 В. В начальный момент и после того, как лампочка накаливания загорается, напряжение на ней снижается до 230 В. Таким образом главное назначение дросселя в люминесцентной лампе — сдерживать ток при работе осветительного прибора.

Конструкция

Конструктивно он выполнен из индуктивной катушки, намотанной на ферримагнитный сердечник, имеющего сходство с трансформатором, но с одной обмоткой из медного эмаль-провода.

Типовая структура дросселя:

  • Проволока с изолированным покрытием;
  • сердечник ферритовой конструкции, обеспечивающий индуктивность;
  • компаунд для заливки — негорючее вещество, для дополнительного обеспечения межвитковой изоляции;
  • корпус из термоустойчивых полимеров для размещения функциональных узлов.

Катушка

Дроссель в схеме ЛЛ должен выполнить скачок, чтобы возникло ЭДС самоиндукции катушки по правилу Ленца. Чтобы увеличить эти свойства, провод накручивают на сердечник, тем самым увеличивая электромагнитный поток.

Таким образом, по устройству балласт — это обыкновенная катушка, работающая по типу электротрансформатора.

Катушка дросселя

Обратите внимание! Перед применением нужно их точно рассчитать, чтобы обеспечить работоспособность ламп. Особенно в момент старта свечения, когда потребуется разряд достаточно высокого напряжения, чтобы пробить газовую среду.

После чего балласт, примет на себя функции гасящего устройства. Поскольку для того чтобы ЛЛ светилась, больших параметров тока не требуется, в связи с чем этот класс светильников обладает повышенной экономичностью.

Сердечник для балласта

Индуктивность дросселя люминесцентных ламп обеспечивается сердечником, поэтому он выполняется из пластин с ферромагнитными свойствами, изолированные друг от друга, чтобы препятствовать токам Фуко, создающим недопустимые помехи в работе. Он служит мощным функциональным барьером, как при снижении входного напряжения, так и при его подъеме.

Сердечник

Конструкция относится к низкочастотным схемам. Переменный ток в бытовых электросетях имеет большой диапазон колебаний: от 1. 0 до миллиарда Гц и выше и группируется по таким градациям:

  1. Звуковые низкие частоты с диапазоном от 20.1 Гц до 20.1 кГц.
  2. Ультразвуковые от 20.1 кГц до 100.1 кГц.
  3. Сверхвысокие свыше 100.1 кГц.

Дополнительная информация. Сердечник присутствует только у низкочастотных дросселей, в высокочастотных вариантах сердечники не устанавливаются. Для намотки медного провода, применяют пластиковые каркасы или обыкновенные резисторы. В этом случае трансформатор выполнен в форме секционной, многослойной намотки.

Как подобрать

В паспортной документации для дросселя указывается, какие типы, и конфигурации ламп предназначены для работы с ним. Для правильного выбора нужно обратить внимание на следующие данные:

  1. Контрольный список параметров выбора дросселя ЛЛ.
  2. Тип запуска — мгновенный или запрограммированный.
  3. Обычный балластный коэффициент (от 0,77 до 1,1) является значением по умолчанию для большинства ламп.
  4. Входное напряжение — 120/230/380В.
  5. Минимальная начальная температура от −17С до 20С.
  6. Схема — параллель это норма. Это позволяет другим лампам оставаться зажженными, даже если одна лампа в приборе гаснет.
  7. Контроль анти-стратификации — нежелательные яркие и тусклые области, которые могут образовывать структуру стоячей волны по всей длине лампы. Полоски более вероятны, когда лампа работает при низких температурах.
  8. Оценка звука: балласт с рейтингом «А» будет тихо гудеть; балласт с рейтингом «D» вызовет ярко выраженный шум.
  9. Гарантия производителя.

Как подключить дроссель

Установка люминесцентного дросселя не сложная, но, как и всегда, при работе с электрическими цепями, лучше доверить ее квалифицированному специалисту, если у пользователя не соответствующей группы допуска по электробезопасности.

Алгоритм установки дросселя на ЛЛ:

  1. При установке люминесцентного осветительного прибора сначала отключают питание от сети.
  2. Снимают пластину рассеивателя, закрывающую лампу и удаляют саму лампу.
  3. При получении доступа к дросселю снимают с него крышку и отсоединяют все провода. Перед этим рекомендуется удостовериться, что питание прибора не выполняется, используя тестер напряжения.
  4. После приобретения необходимого балласта выполняют зачистку проводов для подсоединяют по указанной схеме.
  5. Включают электропитание только тогда, когда все вышеперечисленные шаги были выполнены в обратном порядке ибалласт будет полностью установлен.

Обратите внимание! Согласно европейским нормам старые дросселя утилизируют, поскольку они содержат токсины, вредные для окружающей среды.

Как заменить

В последнее время очень часто такая операция вызвана необходимостью замены магнитных дросселей на электронные. Этот процесс довольно прост и понятен, но также должен выполнятся специалистами электриками.
Процесс замены балласта с магнитного на электронный:

  1. Отключают питание на прибор.
  2. Открывают светильник, снимают колбу и балластный кожух.
  3. С помощью кусачек обрезают силовые (коричневые) и нейтральные (синие) провода, идущие в прибор.
  4. Закрывают провода проволочными гайками.
  5. Кусачками, отрезают провода и снимают магнитный балласт.
  6. Присоединяют электронный балласт в место, где был магнитный.
  7. Подключают провода питания и нейтрали к соответствующим балластным проводам.
  8. Закрепляют провода проволочными гайками.
  9. Возвращают колбу лампы и дроссельный кожух обратно.
  10. Включают питание на лампу.

Правильно установленные и функционирующие электрические осветительные балласты должны долго проработать, обеспечивая безопасный, хорошо регулируемый ток для ламп освещения без раздражающего мерцания и гудения.

Схема дневного освещения

Дроссель, хоть и выполняет сегодня важную роль в установке ЛЛ, но уже не является незаменимым, его место занял электронный пускорегулирующий аппарат ЭПРА (электронный балласт). Собственникам помещений,планирующим устанавливать такое освещение нужно учитывать, что 1 июля 2018 года в России запрещено применение трубчатых ЛЛ, а также ртутных ламп, а с начала 2020 года будут запрещены люминесцентные и натриевые светильники.

Электронный балласт для люминесцентных ламп 8

Электронный балласт для люминесцентных ламп 8 — 144 Вт

Я разработал простой и недорогой электронный балласт для одной или нескольких люминесцентных ламп суммарной мощностью до 144Вт.
Электронный балласт имеет гораздо более высокий КПД, чем обычный магнитный балласт, устраняет стробоскопический эффект и мигание, обеспечивает быстрый запуск без мерцания и продлевает срок службы люминесцентных ламп. Также исключается использование стартеров накаливания и проблемы с компенсацией. фазового сдвига.Более того, люминесцентная лампа с высокочастотным возбуждением дает примерно на 10% больше света при той же мощности. Сравнение их традиционных силовых индукторов и электронный балласт для типовых ламп, показанных ниже:

ФЛУОРЕСЦЕНТНЫЕ ТРУБКИ 18W 2x 18W 3x 18W 4x 18W 36Вт 2x 36Вт 3x 36Вт 4x 36Вт 58Вт 2x 58Вт
Собственное потребление обычного (магнитного) балласта 9W 18W 27W 36W 9 Вт 18 Вт 27 Вт 36 Вт 13Вт 26Вт
Собственное потребление электронного балласта 2,5 Вт 2,9 Вт 3,5 Вт 4,3 Вт 2,8 Вт 3,8 Вт 4,9 Вт 6 Вт 3,2 Вт 4,2 Вт

Схема работает как полумост с полевыми МОП-транзисторами. Они питаются от интегральной схемы IR2153. Рабочая частота 35 кГц (идеальная частота для люминесцентных ламп с ВЧ-возбуждением). Этот балласт может питать практически любые люминесцентные лампы. Значения C1 и L1 адаптируются к мощности (т.е. току). желаемой люминесцентной лампы. Для тонких люминесцентных ламп (размер Т5, диаметр 16 мм, 4 — 21 Вт) и Небольшой люминесцентный ДЗ (П-образный или 2U, 5 — 18Вт, без встроенного стартера — 4-контактный) можно использовать конденсатор и дроссель практически от любой энергии. спасательные лампы (КЛЛ). Емкость пускового конденсатора от 2n2 до 3n3.Конвертеры можно подключать сломанные ламповые спасательные лампы с оригинальным дросселем и пусковым конденсатором. Выходное напряжение а частота соответствует полубридже, используемому в компактных люминесцентных лампах (прямоугольная форма волны примерно 160 В 35 кГц). Для больших люминесцентных ламп (T8 26 мм или 38 мм и больших люминесцентных T12 DZ, 15 — 65 Вт, от 0,38 до 0,43 А) необходимо намотайте катушку с соответствующей индуктивностью и достаточными размерами или объедините от 2 до 3 дросселей от КЛЛ в параллели. Большие люминесцентные лампы оцениваются от 0.От 38 до 0,43 А. Ток через люминесцентную лампу можно точно настроить, изменив катушки индуктивности (изменение воздушного зазора) или небольшое изменение рабочей частоты. Изменение возможно в диапазоне примерно 30-40 кГц и достигается изменением значений компонентов в генераторе (330p, 68k). Пусковой конденсатор С1, С2 выбирается близким к резонансу с дросселем. Для больших люминесцентных ламп подбираются около 10 нФ. После переключения повышенное напряжение около 500В, лампа загорается.C1, C2 должны быть рассчитаны на 1000 В. Конденсатор C3 защищает полевые МОП-транзисторы от пиков напряжения из-за индуктивности и снижает значение скорости нарастания напряжения (dU / dt). Его мощность выбрана так во избежание резкого переключения (от 5-6 нФ до 1 А тока на люминесцентные лампы). Должен быть пульс, номинальное напряжение 1000 В. Благодаря высокой эффективности, общую мощность люминесцентных ламп можно точно оценить по току, который измеряется на фильтрующем электролите. Напряжение здесь около 300 В. Вычитал собственное потребление балласта около 3Вт.Балласт может добавить еще лампы параллельно. У каждого тогда свои конденсаторы и катушки индуктивности.

Используемые транзисторы (IRF840 или STP9NK50Z) не нуждаются в радиаторе с выходной мощностью до 72 Вт. Собственное потребление контура составляет около 2,5 — 6 Вт (под нагрузкой). Входное питание подключено к фильтру радиопомех и термистору. для ограничения пикового пускового тока при включении. При малой мощности его можно заменить обычным резистором. Напряжение 15В для цепи IR2153 получается силовым резистором от выпрямленного сетевого напряжения 300В.Стабилитрон нет нужно — что уже встроено в IO (Uz = 15V). Устойчивость к атмосферным осадкам 33k имеет потерю около 2,3 Вт и является самым большим рассеивателем в цепи. Но потеря балласта тем не менее намного меньше, чем при использовании обычных катушек индуктивности. (Если вы хотите избавиться от этого рассеяния, вы можете использовать микромощный пусковой резистор около 1 МОм и получать мощность для IR2153 от выхода полумост через небольшой конденсатор, как это сделано в большинстве электронных балластов. ) Емкость фильтрующего электролитного конденсатора зависит от мощности ламп. Он рассчитан примерно на 0,3 — 1 мкФ на ватт.

Предупреждение! Вся схема гальванически подключена к сети! Все его части должны быть защищенным от случайного контакта. Неправильная конструкция может вызвать взрыв люминесцентных ламп.



Схема электронного балласта для люминесцентных ламп.


Комплектный самодельный ЭПРА для ламп 2х 36Вт.


Испытание самодельного ЭПРА на лампах DZ 36W. Катушки имеют 200 витков проволоки диаметром 0,35 мм, они на ферритовом сердечнике EE 40 мм2 и имеют воздушный зазор 1,3 мм между Es. C1 и C2 — 10n 1000V, C3 — 4n7 1000V.

дом

Какие бывают типы балластов?

Слышали ли вы когда-нибудь жужжание лампочки?

Технически нет. Жужжание, которое вы слышите, исходит от балласта, а не от самой лампы.

Я знаю, что такое неловкое освещение.Балласты, лампочки — все равно, не правда ли?

Ну не совсем так. Если вам нужно немного узнать, что такое балласт, попробуйте прочитать эту статью «Что такое балласт?»

Если у вас уже есть основы балласта и вы готовы делать покупки, нажмите здесь, чтобы зарегистрировать свой бизнес по сниженным ценам.

Сравнение магнитных балластов и электронных балластов

Есть два семейства ламп, которые работают с балластом: люминесцентные и HID. Причем в каждом семействе есть два типа балластов: магнитные и электронные.

Магнитные балласты — это более старая балластная технология. Что касается семейства люминесцентных ламп, то в линейных люминесцентных лампах T12 и двухконтактных люминесцентных лампах используются магнитные балласты. Для HID, в некоторых металлогалогенных лампах и HPS-лампах используются магнитные балласты.

Магнитные балласты обычно являются причиной жужжания и мерцания, поскольку они постепенно регулируют электричество.

Сегодня большинство люминесцентных и HID ламп работают от электронного балласта . Электронные балласты могут выдавать электричество на нескольких частотах без изменения входного напряжения.Это устраняет любое мерцание и жужжание.

Процесс замены магнитных балластов на электронные балласты довольно прост и понятен. Это направление, в котором движется индустрия освещения, так почему бы не поменять их раньше, чем позже, чтобы оптимизировать свое пространство с помощью лучшего и более тихого освещения?

Типы люминесцентных балластов

Флуоресцентные балласты используют три различных типа пусковых технологий: быстрый, мгновенный и программируемый.

Балласты для быстрого пуска

Балласты для быстрого запуска работают как разогрев духовки. Представьте, что духовка постоянно разогревается, чтобы вы могли в любой момент испечь печенье.

ПРА для быстрого пуска используют этот метод предварительного нагрева, поэтому при включении света лампа сразу включается.

Вы когда-нибудь нажимали выключатель света и получали стробоскопический эффект? Балласты при быстром запуске не мерцают, поэтому вы не получите эффекта дискотеки при включении света.

У балластов быстрого старта есть два недостатка:

  1. Балласты для быстрого пуска не очень энергоэффективны.
  2. Лампы в паре с балластами быстрого запуска не будут надежно включаться, если они находятся в климате ниже 50 градусов, например, в морозильной камере, или на улице в холодном климате.

Балласты мгновенного пуска

Лампы мгновенного запуска не используют метод предварительного нагрева. Вместо этого они посылают на лампу высокое напряжение при зажигании.

Обычно балласты с мгновенным запуском потребляют на лампу на 1,5-2 Вт меньше, чем балласты с быстрым запуском. Лампы мгновенного пуска также надежно запускаются при температуре до нуля градусов.

Программируемый пуск балласта

Запрограммированные пусковые балласты обычно работают в паре с датчиками присутствия или движения. Если вы неоднократно включаете и выключаете флуоресцентные лампы в короткие промежутки времени, вы фактически потребляете больше энергии, чем если бы вы оставили свет включенным.

Еще одно преимущество запрограммированного пускового балласта: он увеличивает количество циклов запуска лампы при сохранении энергоэффективности.

Если в вашем здании есть комната для встреч или отдыха, которая часто используется, или другое место, где в течение дня есть несколько циклов включения-выключения, запрограммированный пусковой балласт может быть лучшим сочетанием с вашим освещением.

Балласты с программируемым пуском надежны и при низких температурах.

Типы балластов HID

Есть только два типа методов запуска для балластов HID.

Пусковой балласт датчика

Пусковые балласты для пробников — это более старый тип, который не очень удобен для СПРЯТАННЫХ ламп.Электроны прыгают по дуговой трубке между двумя рабочими электродами. После запуска лампы пусковой электрод зонда удаляется из цепи.

Но при таком способе пуска лампам требуется много времени, чтобы прогреться и достичь полной яркости. Период повторной забастовки также намного дольше.

Пусковой импульсный балласт

Пусковые пусковые балласты не используют пусковой электрод. Вместо этого они используют воспламенитель высокого напряжения, который работает рядом с балластом.Эта технология запускает лампу импульсами.

Использование пускового балласта с импульсным запуском может действительно продлить срок службы лампы, поэтому световой поток не обесценивается так быстро. Пусковые балласты импульсного запуска также более энергоэффективны, чем пусковые балласты пробника.

Типы аварийного балласта

Аварийные балласты относятся к отдельной категории. Их цель — запитать лампу при пониженной светоотдаче до 90 минут.

Кроме того, знаете ли вы, что большинство аварийных балластов перезаряжаются после каждого использования? Это довольно интересная функция, но если балласт часто используется или подходит к концу, обязательно замените его.Перезаряжаемый аккумулятор в конечном итоге перестанет держать заряд.

Вы покупаете аварийный балласт? Вот четыре вопроса, на которые вам нужно ответить, чтобы найти нужный продукт:

  1. Какую лампу она питает?
  2. Сколько ламп он запитывает?
  3. Сколько времени нужно для питания ламп?
  4. Есть ли требования или ограничения по размеру приспособления?

Если у вас есть ответы на эти четыре вопроса, вы сможете получить точный аварийный балласт.

Все еще не уверены, какой балласт вам нужно купить? Наши специалисты по освещению всегда готовы помочь.

Или, если вы готовы совершить покупку, зарегистрируйте свой бизнес в нашем интернет-магазине, чтобы получить скидку.

В эту статью добавлены новейшие технологии освещения. Первоначально он был опубликован в 2016 году.

Люминесцентные балласты — электрические 101

В люминесцентных лампах используется балласт, который преобразует линейное напряжение в напряжение для запуска и работы лампы (ей). Новые люминесцентные балласты обычно рассчитаны как на 120 вольт, так и на 277 вольт. Некоторые из них рассчитаны всего на 120 вольт, другие — только на 277 вольт (используются в коммерческих помещениях).

КЛЛ

для дома имеют встроенный балласт в основании лампы. В коммерческих КЛЛ используется отдельный балласт. У балластов есть электрическая схема, на которой показано, как они подключаются к патронам.

Есть четыре основных типа люминесцентных балластов:

Электронные балласты с мгновенным запуском используют высокое пусковое напряжение (около 600 вольт) для очень быстрого запуска (менее 0.1 секунду). Для максимальной энергоэффективности электроды не подогреваются, но лучше всего подходят для ограниченного количества переключений (от 10 000 до 15 000 циклов переключения до отказа). ПРА мгновенного пуска подключаются параллельно.

Электромагнитные балласты с быстрым пуском или пуском с триггера используются в светильниках T12 и более старых моделей T8 и подключаются последовательно.

Электронные балласты быстрого запуска нагревают электроды при подаче пускового напряжения (около 500 вольт) для быстрого запуска ламп примерно через 0.От 5 до 1,0 секунды. Нагрев электродов продолжается, пока лампы включены, и они потребляют немного больше энергии (около 2 Вт на лампу), чем пусковые балласты с мгновенным запуском. Они могут работать от 15 000 до 20 000 циклов переключения до отказа. ПРА для быстрого пуска подключаются последовательно.

Программируемый пуск Электронные балласты запускаются быстро примерно за 1,0 — 1,5 секунды. Они предварительно нагревают электроды контролируемым образом перед подачей пускового напряжения. Программируемые пусковые балласты минимизируют нагрузку на электроды и увеличивают срок службы лампы при частом запуске (зоны с датчиками присутствия).Они могут проработать до 50 000 циклов переключения до отказа. Запрограммированные пусковые балласты подключаются последовательно.

Лампы

T8 с новым электронным балластом потребляют примерно на 20– 30% меньше энергии, чем магнитные балласты T12. При выходе из строя магнитного балласта T12 его следует заменить электронным балластом T8. ПРА Т12 доступны, но лампы Т12 снимаются с производства. В зависимости от осветительной арматуры и способа ее установки может быть проще и примерно по той же цене заменить светильник вместо балласта.Новый гаражный люминесцентный светильник может стоить меньше, чем замена балласта.

Типы ламп, совместимые с этим балластом

(4) F32T8 — До четырех люминесцентных ламп, 32 Вт, лампа Т8.

(4) F25T8 — До четырех люминесцентных ламп, 25 Вт, лампа T8.

(4) F17T8 — До четырех люминесцентных ламп, 17 Вт, лампа Т8.

Светильники с балластами иногда имеют таблички с указанием необходимого типа лампы и балласта (F32T8).

Люминесцентные этикетки балласта

На этикетке балласта показаны две важные метки.

  • Таблица совместимости ламп (типы ламп, которые могут использоваться с этим балластом)
  • Схема подключения балласта (показывает, как балласт подключается к лампам)

Диаметр люминесцентных трубок

Люминесцентные лампы имеют две общие формы: прямую и форму u-. Наиболее распространены типы T12, T8 и T5.Т обозначает трубку, а цифра обозначает диаметр в 1/8 дюйма. Диаметр лампы определяется типом балласта. В светильнике с балластом T12 должна использоваться лампа T12. В светильнике с балластом T8 должна использоваться лампа T8 и т. Д.

Подбор балласта к лампе

При подборе балласта к лампе необходимо выполнить три требования. В приведенном выше примере к лампе типа F32T8 предъявляются следующие три требования:

1. Люминесцентная лампа

2.32 Вт

3. T8.

Люминесцентные лампы T12 Снято с производства

Люминесцентные лампы T12 больше не производятся из-за низкой энергоэффективности. Хотя эти лампы все еще есть в наличии в некоторых магазинах, замена балласта на более эффективный электронный балласт T8 могла бы быть лучшим выбором.

Как перейти с магнитного балласта на электронный балласт | Home Guides

В старых люминесцентных светильниках использовался магнитный балласт для управления потоком электричества через лампочки.Магнитные приспособления требовали отдельного пускателя, чтобы запустить поток электронов через трубки. Свету требовалось время, чтобы прогреться, и он мигал, особенно когда было холодно. Новые электронные балласты гораздо более энергоэффективны, не требуют стартера и не так подвержены воздействию низких температур, как магнитные предшественники. Если у вас более старый прибор, вы можете переключиться с магнитного балласта на электронный балласт за несколько минут с помощью некоторых основных ручных инструментов.

Выключите прерыватель цепи, управляющей люминесцентным светом.Ослабьте винты и снимите пластину переключателя, закрывающую выключатель люминесцентного света, с помощью отвертки. Держите конец бесконтактного электрического тестера рядом с проводами на стороне переключателя света. Если индикатор тестера загорелся, выключите дополнительные выключатели или главный автоматический выключатель и повторите попытку, пока индикатор тестера не перестанет светиться. Установите на место крышку переключателя.

При необходимости поместите стремянку под осветительный прибор. Снимите рассеиватель света с корпуса светильника и снимите лампочки.Ослабьте винты и снимите съемную панель.

Снимите гайки с черного и белого проводов, соединяющих балласт с электрической цепью. Обрежьте все провода магнитного балласта на расстоянии не более двух дюймов от корпуса балласта. Ослабьте крепежные винты и снимите балласт.

Поместите электронный балласт в монтажные прорези приспособления. Затяните крепежные винты, чтобы закрепить балласт. Если площадь основания нового электронного балласта отличается по размеру от размера магнитного балласта, проденьте металлический саморез через корпус приспособления, чтобы удерживать балласт на месте.

Снимите 1/2 дюйма изоляции с концов каждого из проводов, отрезанных от магнитного балласта на шаге 3, с помощью приспособлений для зачистки проводов. Если необходимо зачистить провода от балласта, удалите с них изоляцию на 1/2 дюйма.

Скрутите красный провод от балласта к красному и синему проводам от патронов. Закрепите соединение проволочной гайкой. Подключите один из синих проводов от балласта к черным проводам от патронов 120-вольтового светильника.В качестве альтернативы, если прибор на 277 вольт, подключите синий провод к желтым проводам. Закрепите провода проволочной гайкой. Подключите другой синий провод к белым проводам от патронов лампы.

Подключите балласт к питанию от панели выключателя, подключив черный провод от панели выключателя к черному проводу на балласте с помощью проволочной гайки. Подключите белый провод от прерывателя к белому проводу от балласта.

Заправьте провода в отсек для проводов и установите крышку панели.Установите на место лампочки и диффузор.

Включите прерыватель и проверьте работу света.

Ссылки

Ресурсы

Советы

  • Если в цепи 277 вольт вместо 120 вольт, все соединения будут такими же, за исключением того, что будут желтые провода вместо черных проводов, идущих от одного из патронов лампы.

Предупреждения

  • Не пытайтесь выполнять какие-либо электрические работы в цепи, не проверив сначала, что на панели выключателя отключено питание, и не проверив цепь с помощью бесконтактного электрического тестера.

Writer Bio

Крис Бейлор пишет на различные темы, уделяя особое внимание деревообработке, с 2006 года. Вы можете увидеть его работы в таких публикациях, как «Consumer’s Digest», где он написал «Лучшее приобретение электроинструментов за 2009 год» и Лучшие покупки для аппаратов высокого давления 2013 года.

Полихлорированный дифенил (ПХД), содержащий балласты люминесцентного света (ПРА) в школьных зданиях

Цель этой веб-страницы — предоставить школьным администраторам и обслуживающему персоналу информацию об опасностях, создаваемых ПХД в балластах люминесцентных ламп, содержащих ПХД, о том, как правильно обращаться с этими предметами и утилизировать их, а также как правильно модернизировать осветительные приборы в вашей школе, чтобы устранить потенциальные опасности, связанные с печатными платами.

Следует отметить, что процедуры, описанные на этой странице (за исключением требований по утилизации), являются руководством для владельцев и операторов зданий. Государства могут иметь обязательные и более строгие требования, чем EPA.

На этой странице:


Какие риски?

Неповрежденный FLB от типичных печатных плат FLB

до 1979 года содержится в конденсаторах FLB и внутреннем заливочном материале старых магнитных осветительных приборов T12.Конденсатор регулирует количество электричества, поступающего в осветительную арматуру, а заливочный материал изолирует FLB и снижает «гудящий» шум. Поскольку все используемые в настоящее время FLB, содержащие ПХБ, превысили установленный срок службы, они подвержены утечкам или разрывам. Это может привести к повышенному контакту с жильцами здания. Остатки из этих источников трудно и дорого очищать. Кроме того, неповрежденные FLB, содержащие ПХБ, могут выделять небольшое количество ПХБ в воздух при нормальном использовании осветительных приборов. EPA рекомендует удалить все FLB, содержащие ПХД, из осветительных приборов.

ПРИМЕЧАНИЕ: EPA имеет ограниченные данные, предполагающие, что более старые балластные конденсаторы с высокоинтенсивным разрядом (HID) могут быть источником воздействия ПХД. EPA рекомендует школьным администраторам и владельцам зданий рассмотреть возможность удаления и замены балластов HID, содержащих ПХД.

В 1976 году Конгресс запретил производство ПХД в США из-за их токсического действия. В июле 1979 года EPA прекратило обработку и использование ПХД, за исключением полностью закрытого оборудования.Некоторые ПХБ, установленные до запрета 1976 г. или после 1979 г., могут содержать ПХД и могут по-прежнему использоваться в школах США.

Агентство

EPA разрешило использование небольших конденсаторов в FLB в 1982 году. Однако, если конденсаторы протекают, то разлив должен быть очищен в течение 24 часов, а протекающие FLB должны быть утилизированы надлежащим образом. Это соответствует разделу 761. 125 (c) (1) Свода федеральных правил 40 (CFR) — «Требования к очистке от разливов ПХБ» и разделу 761.62 40 CFR — «Утилизация массовых отходов продукта на основе ПХД».Правила EPA также требуют, чтобы все FLB, построенные в период с 1 июля 1979 г. по 1 июля 1998 г., не содержащие ПХД, имели маркировку «Без ПХД».

ПХБ-содержащие FLB в школьных зданиях

Этот FLB вызвал пожар в школе в южной Калифорнии в 1999 году.

Школы в Соединенных Штатах, построенные до 1979 года, могут иметь FLB, содержащие ПХД. Только магнитные FLB T12 (не FLB T8 или T5) могут содержать печатные платы. Буква «T» обозначает лампу, которая идет с FLB, как «трубчатую».Число после буквы «Т» обозначает диаметр лампы в восьмых долях дюйма.

По мере старения FLB ухудшаются, и EPA определило, что неповрежденные и непротекающие FLB могут выбрасывать ПХД в воздух. В зависимости от количества часов работы, рабочей температуры и циклов включения / выключения типичный ожидаемый срок службы магнитного FLB составляет от 10 до 15 лет. Общая частота отказов в течение срока службы небольших конденсаторов в FLB составляет около 10 процентов (47 FR 37342, 25 августа 1982 г.). Частота отказов FLB значительно увеличивается после этого типичного ожидаемого срока службы.Все осветительные приборы, выпущенные до 1979 года, по-прежнему превышают свой типичный ожидаемый срок службы, увеличивая риск утечек, условий курения или возгорания.

У самых старых FLB, содержащих печатную плату, может отсутствовать защита от тепловой перегрузки. Термозащищенные FLB помечены буквой «P» в соответствии с требованиями Национального электротехнического кодекса. FLB без маркировки «P» не содержат механизма предотвращения перегрева и подвержены более высокому риску выхода из строя и образования задымления. Возможное распространение ПХД может усугубиться неправильным обращением со стороны персонала, который не знает о наличии ПХД в ПП.FLB, который был поврежден или неправильно обращался, может увеличить воздействие на печатные платы.

Отчеты школ по всей стране показывают, что отказы FLB не редкость. Государственные школы Нью-Йорка также обнаружили удаленные шкафы FLB в коридорах 16 своих школьных зданий. Эти шкафы представляют собой большие электрические панели высокого напряжения, вмещающие до двадцати FLB.

Воздействие ПХД из FLB в школах

Чаще всего люди подвергаются воздействию ПХД из FLB через вдыхание воздуха, загрязненного PCB, или прикосновение к материалам, загрязненным PCB, после утечки или возгорания FLB.Там, где они остаются, протекающие FLB могут продолжать выделять ПХБ в течение нескольких лет и создавать повышенные уровни ПХБ в воздухе. ПХД — стойкие биоаккумулятивные токсиканты. Это означает, что они наиболее вредны, когда воздействие накапливается в течение длительного периода времени.

Поскольку вероятность вреда увеличивается с дополнительным воздействием, лучшей защитой является удаление протекающих FLB. Неповрежденные конденсаторы FLB также могут привести к присутствию печатных плат в школьной среде. Остатки печатной платы от ранее вышедших из строя конденсаторов FLB могут оставаться в светильниках даже после замены FLB. Протекающие или лопнувшие конденсаторы могут значительно повысить уровень содержания ПХБ в помещениях.

Необходимо принять меры, чтобы дети и учителя не проводили постоянно время в местах с повышенным уровнем ПХБ в воздухе. Зона поражения, класс, коридор, кафетерий или аудитория должны быть закрыты для учащихся и учителей во время мероприятий по очистке и дезактивации. EPA разработало уровни воздействия для оценки ПХД в воздухе в помещении школы, чтобы помочь определить, есть ли у вас опасения по поводу воздействия вдыхания.Превышение этих уровней не означает, что возникнут побочные эффекты. Однако, поскольку уровни воздействия увеличиваются и сохраняются с течением времени, EPA меньше уверено в том, что воздействия не приведут к неблагоприятным последствиям.

Подробнее о влиянии ПХД на здоровье.


Определение FLB, которые могут содержать ПХД

Сравнение изображений FLB, содержащих и не содержащих PCB.

Следующие критерии используются для определения FLB, которые могут содержать печатные платы:

  • FLB, изготовленные до 1 июля 1979 г. , могут содержать печатные платы
  • FLB, изготовленные в период с 1 июля 1979 г. по 1 июля 1998 г. и не содержащие печатных плат, должны иметь маркировку «Без печатных плат».
  • Если FLB не имеет маркировки «Без печатных плат», лучше всего предположить, что он содержит печатные платы, за исключением случаев, когда известно, что он произведен после 1979 года.
  • FLB, произведенные после 1998 года, не нуждаются в маркировке

Если FLB содержит печатные платы, они расположены внутри небольшого конденсатора внутри FLB или в заливочном материале (черная смолистая субстанция, которая покрывает внутренние электрические компоненты).В конденсаторе будет примерно от одной до половины унции печатных плат, а в заливочном материале будет меньше. Если FLB выходит из строя или перегревается, конденсатор может сломаться, что приведет к выделению из него масел и заливочных материалов.

ПХБ

могут присутствовать в виде желтой маслянистой жидкости или в смолистом заливочном материале, который вытекает из FLB. Конденсатор не всегда протекает при выходе из строя FLB, а протекающий конденсатор всегда вызывает отказ FLB. Утечка или разрыв FLB может увеличить уровень ПХБ в воздухе.Поэтому следует принять меры для ограничения или предотвращения личного облучения.

Определение наличия ПХБ-содержащих FLB в школьном здании

Любая конструкция, построенная или отремонтированная до 1979 года, может иметь ПХБ-содержащие FLB, если она не подверглась полной модернизации освещения после 1979 года. В некоторых случаях содержащие ПХБ FLB, которые были изготовлены до 1979 года, хранились, а затем использовались в некоторых установленных люминесцентных светильниках. или отремонтированы после 1979 года.

Чтобы определить, есть ли в вашей школе FLB, содержащие ПХД, EPA рекомендует провести визуальный осмотр FLB в репрезентативном количестве осветительных приборов (а не только в лампах).В седьмой главе Руководства HUD по оценке и контролю опасностей, связанных с краской на основе свинца в жилищном строительстве, приводится пример того, как определить репрезентативное число.

Советы по идентификации ПХБ-содержащих FLB

Рисунок 1: Блок-схема того, как идентифицировать ПХБ-содержащие ППР

Рисунок 1: Как идентифицировать ПХБ-содержащие ПРА (щелкните, чтобы увеличить) может помочь вам определить, могут ли в вашей школе быть ПХБ-содержащие ПРА.FLB содержатся в осветительной арматуре. Поскольку вам может потребоваться открыть светильники для просмотра FLB, выберите репрезентативное количество приборов каждого типа, используемых в школе, для проверки в первую очередь. Осмотр может быть выполнен путем удаления части приспособления, например металлической панели, закрывающей FLB. Расширьте ваш осмотр, если вы обнаружите ПХБ-содержащие FLB.

EPA рекомендует следующие шаги для предотвращения воздействия при обнаружении утечек FLB:

  • Носите защитную одежду, включая химически стойкие перчатки, выбранные с учетом устойчивости к ПХД, одноразовые бахилы и одноразовую спецодежду в соответствии с предписаниями Управления по охране труда.
  • Уберите мебель и другие предметы в классе из-под светильников.
  • Накройте пол полиэтиленовой пленкой для улавливания любых материалов, протекающих из FLB или приспособления.
  • Проветрите комнату или используйте дополнительную вентиляцию или защиту органов дыхания, чтобы снизить риск вдыхания паров.
  • Записывайте проверенные зоны (например, номера классных комнат) и расположение светильников.

Рассмотрите следующие варианты, если на FLB нет утверждения «No PCBs»:

  1. Предположим, что FLB содержит печатные платы
  2. Свяжитесь с производителем и сообщите марку светильника, номер модели и серийный номер, чтобы определить, содержит ли FLB печатные платы.Если производитель не уверен, предположите, что это так.

Определение необходимости замены FLB, содержащих печатную плату

Важно всегда учитывать последствия для здоровья, если оставить ПХБ-содержащие FLB на месте, а также то, что может произойти в случае выхода из строя FLB, утечки дыма или возгорания. Отказ FLB может произойти без предупреждения в любой момент. Инцидент также может повысить уровень ПХБ в воздухе, что может создать проблемы для здоровья сотрудников или студентов, подвергшихся воздействию. В случае утечки FLB могут быть понесены значительные затраты на покрытие следующего:

  • Наем опытного персонала по очистке
  • Перемещение учащихся и учителей из пораженной зоны во временные помещения во время очистки и дезактивации, что может нарушить школьные программы и функции
  • Очистка и дезактивация открытого оборудования и поверхностей до требуемых уровней (40 CFR раздел 761.61 или 761,79)
  • Соблюдение экологических норм для надлежащего хранения и утилизации загрязненного оборудования и материалов для очистки (40 CFR, разделы 761.65 и 761.60)

Откладывание модернизации и модернизации освещения путем оставления ПХД-содержащих FLB на месте может привести к воздействию ПХД на ваших учеников и сотрудников и иметь дополнительные финансовые последствия (например, потерянные учебные дни, затраты на ликвидацию аварийных разливов и т. Д.).

14 июля 2009 года Министерство энергетики (DOE) издало окончательное правило, озаглавленное «Стандарты энергосбережения и процедуры испытаний для люминесцентных ламп общего назначения и рефлекторных ламп накаливания».Правило повысило стандарты энергоэффективности для некоторых люминесцентных ламп, продаваемых в США. После обнародования правила DOE производство некоторых ламп T12, используемых в светильниках, в которых используются ПХБ-содержащие FLB, было прекращено после 14 июля 2012 года. Это произошло из-за того, что они не соответствовали новым стандартам эффективности.

26 января 2015 года Министерство энергетики издало еще одно окончательное постановление о дальнейшем повышении стандартов энергоэффективности для люминесцентных ламп. В результате этих правил ожидается, что предложение ламп T12 со временем будет уменьшаться, а стоимость оставшихся — увеличиваться.Это добавляет дополнительный стимул к модернизации освещения Т12, содержащего печатные платы. В дополнение к нормативам, относящимся к люминесцентным лампам, Министерство энергетики также повысило стандарты энергоэффективности для производимых FLB (включая FLB T12). Хотя эти недавно изготовленные FLB не содержат печатных плат, стандарты энергоэффективности, согласно Министерству энергетики, усложнят производство FLB T12, что, в свою очередь, приведет к дальнейшему вытеснению люминесцентных ламп T12 с рынка.


Экономия средств, связанная с модернизацией старого освещения

Замена старых осветительных приборов может не только повысить энергоэффективность и снизить затраты на электроэнергию, но также может повысить стоимость имущества,

обеспечивает лучшее освещение (по внешнему виду и качеству света) и снижает вероятность возникновения аварийных ситуаций.Модернизация может выполняться на индивидуальной основе FLB (например, при визуальном осмотре) или как часть модернизации освещения, при которой весь осветительный прибор заменяется более новыми, более энергоэффективными приборами. Полная модернизация освещения устраняет опасности, связанные с печатными платами, и повышает энергоэффективность на 30-50 процентов (более подробную информацию см. На веб-сайте Energy Star).

Модернизация освещения для устранения ПХБ-содержащих FLB следует рассматривать как компонент любых усилий по ремоделированию.Лампа T12 и соответствующий FLB менее энергоэффективны, чем другое освещение FLB (например, освещение T8 или T5). Стоимость замены этих приспособлений обычно окупается менее чем за семь лет в зависимости от часов работы и местных затрат на электроэнергию. Подробная информация о возможной экономии и потенциальном финансировании, которое может быть получено за счет инвестиций в новое освещение, доступна на веб-сайте Energy Star. На веб-сайте также представлена ​​информация о возможном финансировании замены старых приспособлений.

В большинстве штатов существует несколько агентств и организаций, имеющих финансирование для поддержки проектов по энергоэффективности или предоставления способов получения финансовой помощи для повышения энергоэффективности здания. Некоторые из этих программ предусматривают переход на более энергоэффективное освещение. Кроме того, во многих штатах, населенных пунктах и ​​коммунальных предприятиях действуют программы скидок за энергоэффективность и других льгот, которые могут включать переход на более энергоэффективное освещение. Министерство энергетики опубликовало руководство (PDF) (46pp, 1.92Мб) в апреле 2013 года для оказания помощи школам в финансировании модернизации энергоэффективности.


Рекомендуемые процедуры очистки и дезактивации

Опытный подрядчик или обслуживающий персонал удаляет, очищает и обеззараживает ПХБ-содержащие FLB, которые протекают, дымятся или воспламеняются. Это включает обращение с ПХБ-содержащими отходами, образующимися в результате ликвидации подобных инцидентов, и их удаление.

Действия по очистке и обеззараживанию после утечки, состояния курения или пожара FLB, содержащего ПХБ

Эти шаги представляют собой руководство в помощь владельцам и операторам зданий.В отдельных зданиях и / или комнатах могут встречаться уникальные обстоятельства. Свяжитесь с вашим региональным координатором PCB EPA, если у вас возникнут вопросы.

Препарат

  1. Изолируйте пораженное место от центральной вентиляции и проветрите это место отдельно, чтобы предотвратить распространение мусора и пыли на другие участки.
  2. Рабочие должны носить средства индивидуальной защиты (СИЗ), включая одноразовые комбинезоны, химически стойкие перчатки и одноразовые бахилы, выбранные с учетом соответствующей устойчивости к проникновению ПХБ, респираторы, оборудованные фильтрами от органических паров, и защитные очки.
  3. Вытащите мебель и другие предметы в классе из-под светильников и накройте их пластиковой пленкой, чтобы задержать любой материал, который может вытекать из светильника.
  4. Выключите осветительные приборы или комнатные выключатели. Если есть, выключите и заблокируйте предохранители или блоки автоматических выключателей, управляющие переключателями.

Инспекция

  1. Снимите крышку лампы или решетку (перегородку) светильника, чтобы открыть люминесцентную лампу (лампу).
  2. Если люминесцентная лампа не загрязнена печатными платами, ее можно повторно использовать или переработать как универсальные отходы.Если люминесцентная лампа загрязнена ПХД, осторожно извлеките ее и поместите в контейнер, одобренный Департаментом транспорта (DOT).
  3. Визуально осмотрите открытую часть светильника на предмет возможной утечки печатной платы или остатков от пожара или курения. Если светильник показывает признаки утечки печатной платы, выполните очистку в соответствии с этапом 2 раздела «Очистка и утилизация», а затем вернитесь к этому этапу.

Удаление

  1. Снимите крышку корпуса FLB (лоток) внутри осветительной арматуры, чтобы обнажить FLB.
  2. Для визуального осмотра крышки и проводов снимите FLB, защелкнув и удалив провод с лицевой стороны FLB; и внешняя часть FLB и открытая внутренняя часть осветительной арматуры, включая корпус (с удаленным FLB).
  3. Если обнаружены протечки или пятна на FLB или осветительной арматуре, осторожно удалите их и поместите предметы непосредственно в утвержденный контейнер DOT.

Очистка и утилизация

  1. Если на осветительной арматуре не обнаружено утечек или пятен, но есть асбестосодержащий материал (ACM), такой как проволока с покрытием, его следует утилизировать как отходы ACM.В противном случае прибор не является отходом ПХБ и может быть переработан или утилизирован как твердые бытовые отходы.
  2. Удалите разливы из осветительных приборов, загрязненных ПХД, и протекающих FLB за пределами осветительной арматуры (например, полы, столы, стены и т. Д.) (40 CFR раздел 761.61 или 761.79).
  3. Выявление и надлежащее управление потоками отходов ПХД, включая утвержденные контейнеры DOT, утвержденные хранилища (40 CFR, раздел 761.65), манифесты (40 CFR, раздел 761.207) и записи (40 CFR, раздел 761.180), как показано ниже:
    1. Утечка FLB — отходы сыпучих продуктов PCB для сжигания.
    2. Светильники, загрязненные ПХД и связанными с ними отходами очистки (пластиковая пленка, СИЗ и т. Д.) — Отходы восстановления ПХД для утилизации на утвержденной свалке.
    3. Светильники, не загрязненные ПХД с проводами ACM — отходы ACM для захоронения на утвержденной свалке.
      Люминесцентные лампы, не загрязненные ПХД — универсальные отходы для вторичной переработки.

Этапы модернизации для герметичных печатных плат, содержащих печатные платы, в школах

В этом разделе рассматриваются непротекающие или незагрязненные иным образом FLB.Если вы столкнулись с утечкой, возгоранием или дымом FLB, содержащего ПХБ, вернитесь к предыдущему разделу «Шаги по очистке и обеззараживанию после утечки, состояния курения или возгорания FLB, содержащего ПХБ».

Модернизация освещения должна выполнять опытный подрядчик или опытный штатный персонал. Предлагаемые шаги включают:

Препарат

  1. Выключите осветительные приборы или комнатные выключатели. Кроме того, выключите и заблокируйте предохранители или блоки автоматических выключателей, которые напрямую управляют переключателями светильников или светильников.

Инспекция

  1. Снимите крышку лампы или решетку (перегородку) светильника, чтобы открыть люминесцентную лампу (лампу).
  2. Если люминесцентная лампа не загрязнена печатными платами, ее можно повторно использовать или переработать как универсальные отходы. Если люминесцентная лампа загрязнена печатными платами, осторожно удалите ее и поместите в утвержденный контейнер DOT.
  3. Визуально осмотрите открытую часть осветительной арматуры на предмет возможной утечки или остатков печатной платы. Если в осветительной арматуре появляются признаки утечки ПХБ, немедленно обратитесь к разделу «Шаги по очистке и обеззараживанию после утечки ПХБ-содержащего ПХД, состояния курения или пожара».

Удаление

  1. Снимите крышку корпуса FLB (лоток) внутри осветительной арматуры, чтобы обнажить FLB.
  2. Для визуального осмотра крышки и проводов снимите FLB, защелкнув и удалив провод с лицевой стороны FLB; и внешняя часть FLB и открытая внутренняя часть осветительной арматуры, включая корпус (с удаленным FLB).
  3. Поместите FLB непосредственно в утвержденный контейнер DOT.

Выбытие

  1. Если на осветительном приборе не обнаружено утечек или пятен, но есть ACM, утилизируйте его отходы ACM.В противном случае прибор не является отходом ПХБ и может быть переработан или утилизирован как твердые бытовые отходы.
  2. Выявление и надлежащее управление потоками отходов ПХД, включая, при необходимости, использование утвержденных контейнеров DOT, утвержденных складских помещений (40 CFR раздел 761.65), деклараций (40 CFR раздел 761.207) и записей (40 CFR раздел 761.180), как предусмотрено ниже:
    1. Утечка FLB — отходы сыпучих продуктов PCB для сжигания.
    2. Светильники, загрязненные ПХД и связанными с ними отходами после очистки (пластиковая пленка, СИЗ и т. Д.)) — Отходы восстановления ПХД для захоронения на утвержденной свалке.
    3. Светильники, не загрязненные ПХД с проводами ACM — отходы ACM для захоронения на утвержденной свалке.
      Люминесцентные лампы, не загрязненные ПХД — универсальные отходы для вторичной переработки.

Ознакомьтесь с требованиями TSCA по утилизации FLB , чтобы узнать о дополнительных вариантах утилизации ПХД и FLB, не содержащих ПХД.

Типы электронных балластов люминесцентного света Функции и преимущества — Электротехника 123

Электронный балласт люминесцентного света обеспечивает начальное высокое напряжение для отвода газа внутри люминесцентных ламп / ламп.Балласт преобразует электрическую частоту в очень высокую частоту, которая инициирует процесс газового разряда, контролируя напряжение и ток через лампы.

Существуют различные типы световых балластов, включая электромагнитные, гибридные и электронные. На этой странице мы говорим больше об электронных балластах, которые в основном обеспечивают пусковое напряжение. После этого он поддерживает постоянный ток и гарантирует, что цепь останется стабильной.

Как мы знаем, обычное электричество приходит с частотой 50-60 Гц, которую электронный балласт увеличивает и подает на лампу с частотой 20 000 Гц или выше.Преимущество этого заключается в том, что он устраняет стробоскопический эффект мерцания, который может быть связан с частотой линии, связанной с люминесцентным освещением.

Принцип электронного балласта

Электронные балласты часто основаны на топологии SMPS, сначала выпрямляя входную мощность, а затем прерывая ее с высокой частотой. Усовершенствованные электронные балласты позволяют регулировать яркость с помощью широтно-импульсной модуляции или путем изменения частоты на более высокое значение.

Высокая выходная частота электронного балласта обновляет люминофор в люминесцентной лампе так быстро, что отсутствует заметное мерцание.Индекс мерцания используется для измерения воспринимаемых диапазонов модуляции света от 0 до 1, где 0 указывает на меньшую вероятность мерцания, а 1 указывает на максимальную.

Благодаря более высокому КПД самого балласта и более высокому КПД лампы на более высокой частоте, электронные балласты обеспечивают более высокий КПД системы для ламп низкого давления, таких как люминесцентные лампы.

Типы электронных балластов

Существует три основных типа электронных балластов: мгновенный запуск, быстрый запуск и запрограммированный запуск.

  1. Электронные балласты с мгновенным запуском запускают лампы без задержки (<0,1 секунды) или мерцания, обеспечивая пусковое напряжение, достаточно высокое для того, чтобы инициировать разряд через лампы, не дожидаясь необходимости нагрева электродов лампы. Для этого типа балластов пусковое напряжение составляет около 600 В. Лампы, связанные и управляемые балластами мгновенного пуска , обычно работают от 10 000 до 15 000 циклов переключения до выхода из строя.
  2. Электронные балласты быстрого запуска лампы быстрого запуска (0.5–1,0 секунды) без мерцания за счет нагрева электродов лампы и одновременной подачи пускового напряжения. Лампы, работающие от балластов с быстрым запуском, обычно работают от 15 000 до 20 000 циклов переключения до выхода из строя.
  3. Электронные балласты с программируемым запуском — лучший вариант для обеспечения максимального срока службы лампы при частом запуске лампы, например, в зонах, где используются датчики присутствия. Лампы с запрограммированными пусковыми балластами обычно работают до 50 000 циклов переключения до выхода из строя.Следовательно, обеспечивая максимальный срок службы.
Как работает электронный балласт

Электронный балласт использует твердотельную электронную схему для обеспечения надлежащих пусковых и рабочих электрических условий для питания газоразрядных ламп. Балласт может быть «залит» смолой для защиты печатных плат и компонентов от влаги и вибрации.

Существуют различные типы контуров легкого балласта , т. Е. Автоколебательные схемы и схемы, управляемые ИС. Также становится известной новая схема преобразователя конденсаторной пары (CCC), разработанная в лаборатории силовой электроники HKU.

Электронный балласт может быть меньше и легче магнитного балласта аналогичного номинала. Электронный балласт обычно тише магнитного, который из-за вибрации пластин трансформатора создает гудение линейной частоты.

Основные технические характеристики и преимущества:

  1. Пусковые характеристики хорошие при низком давлении, могут запускаться плавно и предварительно нагревать трубы после начальной точки, чтобы избежать The Times.
  2. Адаптивный диапазон напряжения
  3. Предварительный нагрев при запуске, что значительно продлевает срок службы лампы, снижает затраты и повышает защиту окружающей среды.
  4. Высокий коэффициент мощности, все характеристики достигли 0,98.
  5. Давление, расход и функция защиты от аномального состояния выхода
  6. Устраняет стробоскопический свет, более стабильно. Чтобы улучшить зрение, повысить эффективность, снизить разрешение постоянной работы зрительной усталости, помочь защитить зрение.
  7. Малошумный, легкий.

Светодиодное освещение — это новая тенденция, которая сейчас лидирует в оптической промышленности, которая является одним из самых энергоемких секторов в мире.Кроме того, благодаря своей высокой энергоэффективности и долгому сроку службы он стал наиболее важной осью индустрии «низкоуглеродного зеленого роста», а также расширял область своего применения до электричества / электроники / освещения и т. Д. ключевая отрасль зеленого содержания, в котором интегрированы ИТ-технологии и полупроводниковые технологии.

Регулировка яркости флуоресцентных ламп Как работают люминесцентные светильники

Регулировка яркости флуоресцентных ламп Как работают люминесцентные светильники

Люминесцентная лампа работает так же, как неоновая лампа.На каждом конце есть электроды, которые нагреваются, чтобы уменьшить величину ударного тока, необходимого для возбуждения газа в трубке. После возбуждения трубки электроды продолжают оставаться нагретыми из-за передачи тока, но напряжение, необходимое для поддержания возбуждения газа, значительно падает по сравнению с напряжением удара.

Внутренняя часть лампы покрыта смесью люминофора, которая загорается при контакте УФ-излучения со стеклом. Поскольку свет не является прямым результатом свечения нити накала, люминесцентные лампы по своей природе более эффективны, чем лампы накаливания.

Магнитные и электронные балласты используются с люминесцентными лампами. Электронные балласты предпочтительнее, поскольку они легче по весу, излучают меньше тепла и используют высокочастотные формы волны напряжения для устранения видимого мерцания лампы. Электронные балласты обычно работают в диапазоне 32 кГц, например, а не в диапазоне 120 Гц, используемом в магнетиках. Известно, что это иногда вызывает другие проблемы, такие как повышенные линейные гармоники и помехи для инфракрасных устройств управления, но плюсы перевешивают минусы.

Компактные флуоресцентные лампы

Компактные люминесцентные лампы относятся к люминесцентной лампе, размер которой уменьшен за счет сворачивания или складывания, чтобы создать эффект длинной трубки в небольшом пространстве.

Есть два типа компактных люминесцентных ламп:

Встроенный

ПРА встроен в цоколь лампы. Такие типы можно использовать как прямую замену стандартным лампам Эдисона Винт или Байонет. Однако диммирование оставляет желать лучшего.Даже версии встроенного CFL с регулируемой яркостью не обеспечивают плавного затемнения в широком диапазоне.

Неинтегрированный Неинтегрированные компактные люминесцентные лампы

имеют отдельный балласт, аналогичный стандартной люминесцентной лампе.

Диммируемые балласты доступны для неинтегрированных компактных люминесцентных ламп и обеспечивают приемлемые характеристики диммирования.

Компактные флуоресцентные лампы должны быть полностью прожарены в течение 100 часов перед затемнением (см. Дополнительную информацию ниже).Несоблюдение этого правила приведет к потемнению и преждевременному выходу лампы из строя.

Как затемняют люминесцентные светильники

При затемнении флуоресцентных ламп важно понимать, что невозможно создать плавный переход между выключением и уровнем. Поскольку свет генерируется разрядом через газ, подобно дуговой лампе или неоновой трубке, всегда будет «скачок» уровня света при первом ударе трубки. Яркость, до которой «подскакивает» уровень, определяется балластом — см. Раздел ниже, посвященный регулируемым процентам.Всегда помните, что при уменьшении яркости люминесцентных ламп характеристики не будут такими же, как у традиционных ламп накаливания с регулируемой яркостью.

Затемнение люминесцентных светильников регулируется с помощью специального регулируемого балласта. Это связано с тем, что стандартные балласты обычно не способны поддерживать тепло электрода в степени, необходимой для надлежащего возбуждения газа при изменении входного напряжения. Хотя магнитные балласты с регулируемой яркостью действительно существуют, почти все балласты с регулируемой яркостью в наши дни являются электронными.

Электронные балласты изменяют частоту, с которой они работают с лампами, без изменения напряжения на электродах, и, следовательно, могут получить гораздо более широкий диапазон диммирования.В то время как магнитные поля действительно позволяли снизить мощность лампы до 20-40%, электронные балласты могут уменьшаться до 1% на некоторых моделях.

О различных балластах с регулируемой яркостью

Балласты обычно называют количеством проводов, которые их питают. На рынке США доступны три различных типа балласта (110 В, 60 Гц). Балласты бывают двухпроводными, трехпроводными и четырехпроводными. Двухпроводные балласты крайне редки в Европе (более низкая частота означает, что они не работают правильно), поэтому практически все диммируемые флуоресцентные лампы являются трех- или четырехпроводными.

2-проводной

Это очень распространенные балласты, которые проще всего установить. Для них требуется приглушенный горячий и нейтральный (подразумевается заземление), и они доступны в моделях с затемнением на 5% от таких компаний, как Lutronand Advance (Philips). Они устанавливаются и управляются на одном диммере так же, как и источник лампы накаливания, за исключением того, что установлен нижний порог. Эта настройка предотвращает работу ламп ниже рекомендуемого напряжения, предотвращая преждевременный выход из строя как ламп, так и балластов.

ПРА

2-проводные выпускаются как с прямой, так и с обратной фазой. Чтобы уменьшить яркость балласта с обратной фазой, вам потребуется использовать модуль диммера с обратной фазой, такой как диммер ETC ELV10, в совместимой диммерной стойке.

3-проводной

Эти балласты также распространены и обычно довольно недорогие. Тем не менее, они используют два регулятора яркости для управления и питания, так как им требуется регулировка яркости, горячее переключение и нейтраль (понимается заземление). Advance и Lutron делают их в моделях 1%, 5% и 10%.Используется порог, подобный 2-проводным моделям, и в момент, когда один диммер переходит в полный режим (не диммер), а другой начинает плавное уменьшение до полного. Модуль диммера является особенным, поскольку по коду у него должен быть только один выключатель для обоих выходов.

4-проводной

В 4-проводном балласте

используются горячий (не тусклый) и нейтральный (понимается заземление) плюс два низковольтных провода для управления 0-10 В постоянного тока (аналоговый) или протоколы управления DSI или DALI (цифровые). Доступны модели с контролем 5% и 10%. Опять же, порог используется для установки минимальной мощности и управляющего напряжения.Используйте стандартные модули диммера в сочетании с платой управления 0–10 В постоянного тока, такой как плата FLO при диммировании Unison. Обратите внимание, что ток поступает от балласта и опускается на плату FLO, поэтому стандартный ЦАП может не работать. Подробнее об этом позже.

О различных процентах диммирования

Всегда есть много вопросов, связанных с процентами диммирования, которые производители публикуют для балластов. Проценты основаны на светоотдаче, измеренном с помощью люксметра.Человеческий глаз воспринимает увеличение света не линейно, а как функцию, близкую к «квадратичному закону», но люксметры действительно используют линейную шкалу. Поэтому, глядя на минимальный уровень яркости люминесцентного светильника, глаз будет видеть больше света, чем рекламируемый процент. Вот диаграмма, которая поможет вам лучше сравнить рекламируемый или измеренный свет с воспринимаемым светом.

Тип балласта (то, что продают производители) Измеряемый свет (то, что видит метр) Воспринимаемый свет (то, что вы видите)
1% 1% 10%
5% 5% 22.4%
10% 10% 32%
20% 20% 46%

Балласт 5% является наиболее распространенным из всех типов балласта. Покупатели систем часто не понимают, почему их люминесцентные лампы не тускнеют до 5%. Пожалуйста, помогите им понять, почему 5% означает светоотдачу, а не воспринимаемый свет или контрольный уровень.

Важные советы по установке

  • Хорошая идея — «приправить» лампы на 100 часов перед тем, как погаснуть. Хотя это больше не требуется производителями ламп или балластов, оно имеет тенденцию к повышению производительности. Рекомендуется приобрести и установить в кладовке несколько запасных светильников, чтобы обеспечить зону выгорания лампы. Единственным исключением из вышеперечисленного являются компактные люминесцентные лампы, которые необходимо обязательно прогреть в течение 100 часов, прежде чем затемнить. Несоблюдение этого правила приведет к потемнению и преждевременному выходу лампы из строя.
  • Убедитесь, что приспособления надежно заземлены. Лампа должна находиться в непосредственной близости от металлической заземляющей пластины, чтобы уменьшить мерцание и увеличить срок службы лампы. Расстояние должно быть 0,5 дюйма в пределах +/- 0,25 дюйма.
  • Не используйте разные типы балластов или ламп в одной цепи. Вопреки распространенному мнению, балласты могут взаимодействовать друг с другом по одной цепи. То же самое и с лампами, поскольку они горят по-разному и никогда не должны смешиваться в светильнике.
  • Используйте следующую таблицу, чтобы определить правильный модуль диммера ETC для ваших балластов:
2-проводный (прямая фаза) 2-проводный (обратная фаза) 3-х проводный 4-х проводный
120VAC (США) D15 / D20 ELV10 D15F / D20F D15 / D20
230VAC (CE, Европа) ED15 / Матрица iSCR Матрица iSine ED15AFRF / Матричный флуоресцентный ED15 / ER15
277VAC (США) AD20 AD20F AD20

В прошлом ETC производила несколько модулей прямой фазы, которые лучше справлялись с низкими нагрузками, известные как L10 (110 В) и AL5 (277 В).В серии L использовались технологии MOSFET и IGBT для более точного регулирования маломощных нагрузок. Из-за улучшений управления затемнением в корпусе Unison DRd и модулях управления Sensor CEM + / CEM3 эти модули были сняты с производства и больше не нужны.

Как настроить систему ETC Legacy Unison для затемнения люминесцентных ламп

При настройке модуля затемнения на процессоре Unison убедитесь, что вы выбрали правильный тип модуля и соответствующий тип нагрузки. Когда вы выбираете люминесцентные лампы, вас спросят, какой процент балласта вы используете.Кривая и порог будут установлены автоматически. Рекомендуется установить уровень в% немного выше требуемого значения от производителя балласта, это позволит избежать мерцания в будущем.

Как настроить систему датчика ETC для затемнения люминесцентных ламп

Датчик

немного отличается тем, как он должен быть настроен для правильного затемнения флуоресцентных ламп. Вы должны сначала установить кривую, которую хотите использовать. Большинство людей выбирают линейный, но есть и модифицированный линейный, у которого более мягкий нижний конец кривой.После этого установите порог примерно на 60% и измерьте выходное среднеквадратичное напряжение для диммера при его минимальном значении. Требуется, чтобы напряжение в 0,47 раза превышало входное линейное напряжение. Если 60% неверно, выберите другой порог, который ближе к желаемому выходу, и проверьте его с помощью измерителя. С этим типом настройки (допустим, 60% порог) ваш фейдер будет иметь большую область перемещения (от 0 до 59%), где ничего не произойдет.

Другая информация

В устаревших системах Unison вы можете установить для зоны минимальный уровень 60, максимальный или полный и установить флажок «Использовать ноль как выключенный».«Это даст фейдеру настенной станции полный контроль над балластом во всем диапазоне фейдера и при этом отключится в нижней части хода фейдера. Это очень хорошее решение.

При запуске балластов с консоли управления DMX найдите время, чтобы запрограммировать профиль, имитирующий программирование Unison, или запишите все ваши реплики с затронутыми каналами в диапазоне от 59 до полного. Таким образом, синхронизированное затухание по-прежнему будет работать со всеми флуоресцентными и нефлуоресцентными каналами параллельно.

Устранение неполадок при затемненных флуоресцентных лампах

1. Лампы разного уровня на разных балластах

  • Смесь ламп разных типов и возрастов.

2. Концы ламп почернели

  • Лампы не простаивали 100 часов.
  • Лампы работали долгое время на очень низких уровнях.
  • Лампы отработали ниже рекомендованного уровня.

3. Лампы мигают или мигают только на низком уровне

  • Лампы не простаивали 100 часов.
  • Балласт загоняется слишком низко.Проверьте настройку нижнего среднеквадратичного напряжения.

4. Лампы мерцают или мигают на всех уровнях

  • 3-проводной балласт потускнел, и переключенные провода поменялись местами.
  • Лампы не были полностью выдержаны в течение 100 часов.
  • Лампы и пускорегулирующие устройства не согласованы.
5.Лампы включаются на полную мощность на нижнем уровне управления и не тускнеют.
  • У 4-проводного балласта отсутствует или неправильная проводка для управления.

6. Лампы не тускнеют до минимального уровня

  • Лампы не простаивали 100 часов.
  • Светильники неправильно заземлены.
  • Старые лампы.

Какие балласты нельзя использовать с оборудованием ETC

Убедитесь, что вы используете правильный модуль (ELV10) при диммировании управляющих балластов с обратной фазой. Все остальные диммерные модули Sensor и Unison обеспечивают управление прямой фазой. Использование балластов, не предназначенных для этих систем, вызовет множество проблем и приведет к неправильному затемнению. Самый распространенный производитель этих балластов — ESI. Lightolier производит блок преобразователя в одно- и двухканальной моделях для адаптации управляющего сигнала прямой фазы к управлению обратной фазой, но стоимость весьма значительна.Большинство выпускаемых сегодня балластов с регулируемой яркостью являются электронными, и с ними легко работать. Однако, поскольку люди модернизируют старые объекты, также используются регулируемые магнитные балласты. Большинство магнетиков можно приглушить, но, как всегда, если есть сомнения, сначала проверьте их. (С вопросами обращайтесь к разработчикам приложений) Магнитные пускорегулирующие устройства должны иметь термическую защиту для предотвращения перегрева несинусоидальных сигналов.

Существует множество стандартов наименования люминесцентных ламп; вот краткое изложение

Диаметр

Число с префиксом T указывает диаметр трубы.

Т-номер

Диаметр

Т12

1,5 дюйма

T8

1,0 дюйма

T5

0.5 дюймов

Длина и мощность

Длина и мощность трубки взаимозависимы.

Мощность

Длина

40 Вт

48 дюймов (1220 мм)

30 Вт

36 дюймов (910 мм)

20 Вт

24 дюйма (610 мм)

13 Вт

21 дюйм (530 мм)

15 Вт

18 дюймов (460 мм)

14 Вт

15 дюймов (380 мм)

8 Вт

12 дюймов (300 мм)

6 Вт

8 дюймов (230 мм)

4 Вт

6 дюймов (150 мм)

.
Ламп

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *