+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как выбрать тепловое реле для электродвигателя: 5 характеристик


Обеспечение защиты электродвигателей

На работу различных видов двигателей (синхронный или асинхронный), могут влиять некоторые условия. Поэтому для защиты электродвигателя, в схему подключения встраивают дополнительные устройства.

Виды защиты электрических двигателей:

  • Защита от КЗ;
  • От перегрузки;
  • Тепловая (защита от перегрева).

В первую очередь, для корректной работы двигателей (однофазного или трехфазного) в определенных электросетях, необходимо определить, какое устройство лучше подойдет для защиты.

Обратите внимание! Устройство, установленное для защиты двигателя, должно отвечать правилам ПУЭ и отключать подачу электроэнергии к потребителю в автоматическом режиме.

Наряду со многими устройствами, данную функцию может выполнять простейший механизм в виде плавкой вставки. Соединение данных предохранителей, производится посредством специального выключателя.

Все электродвигатели, рассчитаны на определенный номинальный (рабочий) ток, поэтому, для защиты от токовых перегрузок, необходимо подобрать и рассчитать устройство, которое обеспечит данный вид защиты.

Данную работу выполняют плавкие предохранители, работающие с ручным выключателем. При непродолжительных нагрузках, предохранители продолжают работать, но при увеличении нагрузки, срабатывают незамедлительно.

Другим видом плавких предохранителей, являются устройства, быстро срабатывающие. Данные предохранители , способны выдерживать нагрузки до 500 % номинального тока. Использовать такие предохранители рекомендуется в сетях, не подверженных высоким переходным токам.

При условии, что пусковой ток электродвигателя достаточно высокий, для защиты используют предохранители, которые срабатывают на перегрузку с некоторой задержкой. Если время перегрузки превышает установленное, предохранитель размыкает цепь.

Тепловые реле для защиты электродвигателей: как выбрать

При работе двигателя, может выделяться достаточное количество тепла, которое приводит к разрушению изоляции обмотки и другим повреждениям. Для обеспечения защиты от воздействия тепла на электродвигатель, используют тепловое реле.

Как произвести выбор реле:

  • По мощности;
  • Номинальному току.

Основным фактором, определяющим правильный выбор теплового реле, является номинальный (рабочий) ток устройства (уставка). Для этого, на корпусе двигателя или в паспорте устройства, необходимо найти значение с обозначением – in.

Обратите внимание! Правилами ПУЭ прописано, что рабочий ток устройства определяется исходя из значений безопасности помещения.

Для правильного подбора, используется специальная таблица, в которой указаны все допустимые значения различных устройств, согласно которых производится расчет. Стоит отметить, что выбор значений защитного устройства, определяет и рабочая сеть (220 или 380 В). Например, на данном двигателе, могут указываться сразу два значения токов ( 220 – 5 А, и 380 – 2.9 А).

Предположим, необходимо осуществить выбор теплового реле, для двигателя, мощность которого составляет 1,1 кВт, при подключении к сети 380 Вольт.

В данном случае (in) двигателя равняется 2,8 А. При этом, стоит учитывать и допустимые значения теплового реле (125 % от значений двигателя), которое составляет 3,5 А. Таким образом, для обеспечения оптимальной защиты электродвигателя, лучше всего использовать устройство в котором диапазон рабочего тока регулируется в пределах от 2,5 до 4 Ампер.

Бывает так, что данные электродвигателя неизвестны или не читаемы. В таком случае, можно воспользоваться специальными измерительными клещами.

Выбор магнитного пускателя для электродвигателя

Для своевременного включения и выключения электродвигателя, необходимо использования автоматического выключателя (автомата). Для этих целей используют два вида устройств.

Виды устройств:

  • Контактор;
  • Пусковое реле.

Стоит отметить, что в состав обычного контактора, входят только электромагнитная катушка и контактная группа. Что обеспечивает только включение и отключение подачи питания к электродвигателю. Поэтому различная аппаратура, может быть защищена от сгорания данным устройством.

Обратите внимание! Пусковое реле, обладает более широким спектром элементов, которые осуществляют защиту сразу по нескольким направлениям.

В состав пускателя, входит контактор, который является главным элементом схемы. В различных модификациях данных устройств, дополнительно могут устанавливаться и тепловое реле, которое срабатывает при определенных температурных перегрузках.

Стоит отметить, что некоторые модели пускателей, оснащаются двумя контакторами. Данные устройства, подходят для реверсивного управления электродвигателем.

Подбор устройства для двигателя или двигателя насоса производится согласно следующим параметрам: токовые нагрузки и мощность. Точные характеристики различных моделей, можно узнать на сайте производителя или у фирмы поставщика.

Основным параметром при выборе, является мощность устройства, величины которой варьируются от 0 до 6. Устройства с нулевой величиной, рассчитаны на мощность не превышающую 6 А, величина с маркировкой 6, предусматривает подключение устройства к оборудованию с мощностными показателями от 160 А.

Данные устройства, подразделяют и по нагрузке (индуктивная и малоиндуктивная), которые определяются напряжением в сети 220 или 380 Вольт.

Мощность пускателей, для различных машин, является необходимым условием при подборе. Так как при работе устройства с превышением допустимой мощности или при максимальном значении, увеличивается число срабатываний устройства.

Как подобрать электродвигатель: условия

В настоящее время, использование электродвигателей достаточно широко. Данные устройства, применяются в различном оборудовании (вентиляционные системы, насосные станции или электротранспорт). Для каждого вида машин, нужен правильный выбор и настройка двигателей.

Критерии выбора:

  • Тип тока;
  • Мощность устройства;
  • Работа.

По типу электрического тока, электродвигатели разделяют на устройства, работающие на переменном и постоянном токе.

Обратите внимание! В настоящее время, использование двигателей работающих на переменном токе не сильно распространено.

Стоит отметить, что двигатели на постоянном токе, зарекомендовали себя с лучшей стороны, но из-за необходимости установки дополнительного оборудования для обеспечения их работы, требуются и дополнительные финансовые затраты.

Двигатели, работающие на переменном токе, нашли достаточно широкое применение. Их разделяют на два вида (синхронные и асинхронные).

Синхронные устройства, используют для оборудования, в котором важно постоянное вращение (генераторы и компрессоры). Отличаются и различные характеристики синхронных двигателей. Например, скорость вращения варьируется в пределах от 120 до 1000 оборотов в минуту. Мощность устройств достигает 10 кВт.

В промышленности, распространено использование асинхронных двигателей. Стоит отметить, что данные устройства обладают более высокими показателями вращения. Для их изготовления, в основном используют алюминий, что позволяется изготавливать легкие роторы.

Исходя из того, что во время работы двигатель, производит постоянное вращение различных устройств, необходимо правильно подбирать его мощность. Стоит отметить, что для различных устройств, существует специальная формула, согласно которой и производится выбор.

Определяющим фактором нагрузки на двигатели, является режим работы. Поэтому, выбор устройства производят согласно и данной характеристике. Существует несколько режимов работы, которые маркируются (S1 – S9). Каждый из девяти режимов, подходит для определенной работы двигателя.

Тепловое реле для электродвигателя (видео)

Используя данную информацию, вы с пониманием дела, сможете подойти к выбору электродвигателя для различных видов использования. Стоит отметить, что для обеспечения безопасности, необходима (электронная или механическая) релейная защита.

Тепловое реле кнопка м а. Тепловые реле

Правильно подобрать тепловое реле — одно из важнейших условий защиты электродвигателя от перегрузки. Напомню, что «защита электродвигателя от перегрузки должна устанавливаться в тех случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска и для ограничения длительности пуска при пониженном напряжении. Защита должна выполняться с выдержкой времени и может быть осуществлена тепловыми реле.» (из Инструкции по монтажу и пуску электродвигателей)

Чтобы подобрать тепловое реле, сперва определяем номинальный ток двигателя Iн. Этот ток указан на шильдике двигателя (см. фото ниже). В нашем случае это ток Iн = 14 Ампер

Потом исходя из номинального тока двигателя подбираем тепловое реле и соответствующий ему пускатель нужной величины. Реле имеет шкалу, калиброванную в амперах. Обычно шкала соответствует значению тока уставки (тока несрабатывания реле). Срабатывания реле происходит в пределах 5-20% от превышения тока уставки потребляемым током электродвигателя. Т.е., при перегрузке электродвигателя на 5-20% (1,05*Iн — 1,2*Iн), произойдет срабатывание теплового реле в соответствии с его токовременной характеристикой. Поэтому выбираем реле таким образом, чтобы ток несрабатывания теплового реле был на 5-10% выше от номинального тока защищаемого электродвигателя (см. таблицу ниже).

Таблица для подбора тепловых реле

Мощность
электромотора
кВт
Реле РТЛ
(для ПМЛ)
Регулировка
тока
А
Реле РТ
(для ПМК)
Регулировка
тока
А
0,37РТЛ-10050,6…1РТ 13050,6…1
0,55РТЛ-10060,95…1,6РТ 13061…1,6
0,75РТЛ-10071,5…2,6РТ 13071,6…2,5
1,5РТЛ-10082,4…4РТ 13082,5…4
2,2РТЛ-10103,8…6РТ 13104…6
3РТЛ-10125,5…8РТ 13125,5…8
4РТЛ-10147…10РТ 13147…10
5,5РТЛ-10169,5…14РТ 13169…13
7,5РТЛ-102113…19РТ 132112…18
11РТЛ-102218…25РТ 132217…25
15РТЛ-205323…32РТ 235323…32
18,5РТЛ-205530…41РТ 235528…36
22РТЛ-205738…52РТ 335737…50
25РТЛ-205947…64
30РТЛ-206154…74

Тепловое реле – устройство, замыкающее-размыкающее цепь под влиянием сигналов агрегатов, работающих от изменения температуры среды. Нагрев проводников электричеством замечали исследователи, количественное описание дает закон Джоуля-Ленца. Благодаря знанию зависимости, биметаллические конструкции применяют, контролируя ток, температуру.

Тепловое реле

Кратко о тепловых реле

Тепловые реле холодильников совмещают с пускозащитными. Применяются многими двигателями. Отличие защитных в электромагнитной конструкции, где катушка может мгновенно отработать резкое повышение тока. Тепловые работают с интегрированием эффекта некоторым отрезком времени. Медная обмотка иногда перегревается. В мясорубках случается, когда заклинивает вал. Ток повышает лимитирующую величину. Чтобы избежать опасности, изготовитель включает в механическую передачу пластиковые шестерни, ломающиеся, спасающие ситуацию. Конечно, лучше применять тепловые реле.

Принцип действия основан на свойствах биметаллических пластин. Двухслойные материалы, составленные парой металлов с неодинаковым коэффициентом линейного расширения. В результате при изменении температуры биметаллическая пластина гнется. Контакты используются повсеместно, начиная электрическими утюгами, заканчивая чайниками! Измерение тока происходит преимущественно в тепловых реле. В остальных случаях нагрев вызывается изменением температуры прибора: пара, ТЭНа.

В тепловых реле принцип используется, вариантом (см. патент US292586 A), но распространен больше другой – с защитой по току. В последнем случае используется упомянутый закон Джоуля-Ленца. С течением времени тепловой эффект накапливается, при соблюдении условий реле срабатывает. Обрыв цепи блокирует дальнейший рост температуры. Условия срабатывания реле тесно связаны с конструкцией двигателя.

Любому типу компрессора холодильника подобрана пара, работающая безотказно. Не соблюдая целостности тандема компрессор-двигатель, можно вызвать неисправности.

Для трёхфазных цепей используются двух- или трехполюсные тепловые реле. Включаются меж двумя линиями (нейтраль короткозамкнутая), в нормальном режиме ток здесь мал. При большой мощности вместо непосредственного присоединения к цепи используются трансформаторы тока. Эффект получается аналогичный: при обрыве фазы равновесие нарушается, нагрузка теплового реле увеличивается. В результате происходит разогрев биметаллической пластины, цепь обрывается. Двигатель спасается от перегрева, других негативных последствий.

Тепловое реле не защищает против короткого замыкания, само нуждается в охране от подобной ситуации. В противном случае цепь легко сгорает.

История создания тепловых реле

Идея регулировки температуры возникла в XVII веке. Английский изобретатель Корнелиус Дреббель применил в двух изобретениях: печь, инкубатор для цыплят. Конструкции требовали ответственного подхода. Дреббель сумел реализовать концепцию, используя ртуть. Любопытный факт: на момент начала третьего десятилетия термометров, не существовало. Работающих на ртути. Историки склонны изобретение термометра приписывать Корнелиусу Дреббелю. Касательно печей новшество заключалось в следующем:

  • Топка снабжалась воздухом через сопло, снабжаемое регулируемой заслонкой.
  • В зависимости от конструкции сооружение оборудовалось подобием реторты, дно которой размещалось в пепле, либо углях.
  • Изменяющийся уровень ртути позволял осуществлять поддержание температуры на заданном уровне путем регулирования объема подаваемого воздуха.


Аналогичного рода конструкция предложена инженерами компании Вестингауз Электрик в 1917 году (патент US1477455 A). Уровень ртути позволял замкнуть-размокнуть цепь в зависимости от изменяющейся температуры. Еще раньше для контроля параметров среды стали применять свойства биметаллических пластин. Патент Вестингауз Электрик принят только 11 декабря 1923 года, шведско-швейцарская компания ABB занималась выпуском тепловых реле для защиты работающих двигателей с 1920 года. Термостаты для инкубатора, печи под авторства Дреббеля рассмотрены комиссией организованного в 1660 году Королевского общества (Англии). И примерно через 40 лет после создания нашли признание ученого совета.

Свойства биметаллических пластин известны с 1726 года. Точнее говоря, к этой дате приурочено первое их официальное применение. Джон Харрисон, плотник по профессии, кое-что знал о металлах. Нашел оригинальный способ подарить маятниковым часам независимость от температуры. Подвес изготовил из стержней двух разных металлов, что проиллюстрировано на изображении, взятом из издания Общества Ньюкомена (1946 год). По мере изменения температуры длина маятника остается постоянной. Период колебаний поддерживается с высокой точностью.

Джон Харрисон не останавливается на достигнутом, в палубных часах конструкции 1761 года применяет балансную пружину свернутой биметаллической ленты. По замыслу конструктора новшество скомпенсирует капризы климата. Теперь время позволит определить географические координаты вне зависимости от температуры. Идеи Дреббеля и Харрисона использовал в 1792 году Жан Симон Боннемейн, – сегодня называемый отцом централизованного снабжения горячей водой. Применял идеи терморегуляторов для курятников (1777 год). Историки отмечают любопытный факт: несмотря на знаменитость Жан остается личностью загадочной. Доподлинно неизвестен день рождения.


Инкубатор Боннемейна напоминает печь-буржуйку. Снизу цилиндрическая конструкция подогревается открытым пламенем, продукты сгорания обтекают стенки и уходят наружу. Температура контролируется биметаллической пластиной (из железа и латуни), погруженной в воды, заполняющую пространство меж стенок. Неудивительно, что в скором времени инженер придумал первую котельную. Температура пламени регулируется скоростью подачи воздуха в топку, биметаллический стержень управляет заслонкой. Последовали многие другие изобретения аналогичного толка.

В некоторой степени к тепловым реле можно отнести изобретение Джеймса Кьюли (интернет обошел внимание подробности жизни), датированное 1816 годом. В британском патенте №4086 упоминается некий балансный термометр. Весы, вага которых представлена трубкой с двумя утолщениями на концах. Поделена в центре двумя секциям, одна заполнена спиртом, другая – ртутью. При изменении температуры нарушается баланс, поскольку объёмы в утолщениях неравные. И нужно, подстраивая длины плеч винтом, добиться равновесия. Показания считываются с зубчатого лимба, жестко привязанного к трубке. Изобретатель отмечал возможность использования изобретения для контроля микроклимата зданий.

Эра электричества тепловых реле

Долгое время термостаты не находили применения в сфере электричества. Справедливости ради заметим, применялось преимущественно фабриками, цехами, питая двигатели. До появления электрических лампочек накала было далеко. Устройством, давшим зеленый свет применению тепловых реле, историки считают электромагнитный клапан регулирования тока жидкости трубы. Наработка заявлена патентом US355893 A, опубликованным 11 января 1887 года. Документ говорит: термостат (тип не указан) размещен в жилых помещениях, электромагнитный клапан позволит регулировать под его командованием скорость тока горячей воды системы отопления.

Продолжительная работа механизма на максимуме вызывает перегрев обмоток и порчу изоляции, в результате чего происходит межвитковое замыкание, перерастающее в обширное выгорание полюсов двигателя и дорогостоящий ремонт. Чтобы этого не происходило, в цепь питания устанавливается реле, которое называют тепловым или «теплушкой». По цепи питания данный аппарат контролирует величину тока и при длительном отклонении от номинала установки, размыкает контакты, лишая питания цепь управления, размыкая пусковое устройство. В этой статье мы расскажем, как выбрать тепловое реле для двигателя по мощности и току.

Методика выбора

Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.

Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.

Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.

Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4. 9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.


Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.

Что делать, если паспортные данные не известны?

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.


Кстати, недавно мы рассмотрели , с чем настоятельно рекомендуем вам ознакомиться!

В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.

Тепловые реле — устройство, принцип действия, технические характеристики

Тепловое реле — электрический аппарат, предназначенный для защиты электродвигателя от токовых перегрузок. Наиболее распространёнными типами тепловых реле являются ТРН, ТРП, РТТ и РТЛ.

Принцип действия теплового реле.

Срок службы электрооборудования в значительной степени напрямую зависит от перегрузок, воздействующих на него при работе оборудования. Для любого оборудования довольно просто найти зависимость времени протекания тока от его величины, при котором достигается длительная и надежная эксплуатация оборудования.

При номинальных токах допустимое время его протекания равно бесконечности. Протекание токов больше номинального приводит к повышению рабочих температур и значительному сокращению срока службы в первую очередь за счет износа изоляции. Вследствие этого, чем больше перегрузки, тем меньше должно быть время их воздействия.

Идеальная защита оборудования — зависимость tср (I) для тепловых реле проходит ниже кривой для защищаемого оборудования.

Наиболее широкое распространение получило тепловое реле с биметаллической пластиной для защиты от перегрузки.

Биметаллическая пластина, используемая в тепловом реле, состоит из пластин имеющих различный температурный коэффициент расширения (одна — больший, другая — меньший). В местах прилегания пластины жестко крепятся друг к другу за счет горячего проката или сварки. При нагревании неподвижной биметаллической пластины происходит изгиб ее в сторону части с меньшим коэффициентом расширения. Именно данное свойство используется при работе теплового реле.

Также широко применяются пластины, состоящие из инвара (меньший коэффициент) и хромоникелевой или немагнитной стали (больший коэффициент).

Нагрев пластины теплового реле происходит за счет выделяемого тепла при протекании тока нагрузки через биметаллическую пластину. Зачастую используется нагревательный элемент, по которому также протекает ток нагрузки. Наилучшие характеристики имеют комбинированные тепловые реле, в которых ток нагрузки протекает и через биметаллическую пластину и через нагревательный элемент.

При нагревании биметаллическая пластина тепловых реле воздействует на контактную систему своей свободной частью.

Времятоковые характеристики тепловых реле

Основной характеристикой для всех тепловых реле является зависимость времени отключения от токов нагрузки (времятоковые характеристики). До начала перегрузки в общем случае через тепловое реле протекает ток Iо, нагревающий биметаллическую пластину до начальной температуры qо.

При проверке характеристик времени срабатывания теплового реле необходимо учитывать из холодного или горячего состояния происходит срабатывание тепловых реле.

Также необходимо помнить что нагревательный элемент теплового реле является термически неустойчивым при протекании токов короткого замыкания.

Выбор теплового реле.

Номинальный ток выбираемого теплового реле выбирается исходя из номинальных нагрузок защищаемого оборудования (электродвигателя). Ток выбираемого теплового реле должен составлять 1,2 — 1,3 от номинального тока электродвигателя (ток нагрузки), то есть тепловое реле срабатывает при 20 — 30 % перегрузке на протяжении 20 минут.

Значение времени нагрева электродвигателя напрямую зависит от длительности перегрузок. В случае кратковременной перегрузки нагреваются лишь обмотки электродвигателя и время нагрева составляет от 5 до 10 минут. При длительных перегрузках в нагреве участвует вся конструкция двигателя, и время составляет от 40 до 60 минут. Поэтому наиболее целесообразным считается применение теплового реле в схемах, где время включения электродвигателя превышает 30 минут.

Влияние внешних температур на работу теплового реле.

Нагрев биметаллической пластины теплового реле зависит как от воздействующих токов, но и от воздействия температуры окружающей среды. В связи с этим при росте температуры окружающей среды уменьшается значение тока срабатывания.

При сильно отличающейся температуре от номинальной, проводится плановая дополнительная регулировка теплового реле, или подбирается нагревательный элемент в котором учитывается температура окружающей среды.

Для уменьшения воздействия температуры окружающей среды на токи срабатывания тепловых реле, необходимо подбирать наиболее близкую температуру срабатывания.

Для обеспечения правильной работы и обеспечения тепловой защиты тепловое реле необходимо размещать в помещении, что и защищаемый механизм (электродвигатель). Нежелательно располагать тепловое реле в непосредственной близости от источников тепла, таких как нагревательные печи, система отопления и т.п. В настоящее время для обеспечения наилучшей защиты используются реле с температурной компенсацией (серия ТРН).

Конструкция теплового реле.

Изгибание биметаллической пластины происходит достаточно медленно. В случае если с пластиной непосредственно будет связан подвижный контакт, то небольшая скорость движения не обеспечивает гашения дуги, которая возникает при размыкании цепи. Поэтому воздействие на контакт осуществляется через устройство ускорения. Наиболее эффективным является так называемый «прыгающий» контакт.

В момент, когда напряжение не подается, пружина создает момент относительно нулевой точки замыкающего контакта. При нагреве биметаллическая пластина изгибается, что ведет к изменению положения пружины. Пружина создает момент, который способен разомкнуть контакт за время, которое обеспечивает надежное гашение дуги. Пускатели и контакторы комплектуются однофазными тепловыми реле типа ТРП или двухфазными ТРН реле.

Реле тепловые ТРП

Токовые однополюсные тепловые реле ТРП с номинальным током теплового элемента от 1 до 600 А используемые для защиты трехфазных асинхронных электродвигателей от тепловых перегрузок, работающих в сети с напряжением 500 В и частоте 50 или 60 Гц. Тепловое реле ТРП с номинальным током до 150 А применяются в сети постоянного тока и напряжением до 440 В.

Реле тепловые РТЛ

Тепловое реле типа РТЛ используется для обеспечения защиты оборудования от длительных токовых перегрузок. Они также используются для защиты от несимметричности токов в фазах а так же выпадения одной фазы. Рабочий диапазоном тока электротеплового реле РТЛ от 0.1 до 86 А.

Реле тепловые РТЛ устанавливаются как на пускатели типа ПМЛ, так и отдельно, в данном случае реле должно снабжается клеммниками КРЛ. Степень защиты реле РТЛ и клеммников КРЛ могут иметь ІР20 а также могут быть устанавленны на стандартную дин-рейку. Номинальный ток контактора 10 А.

Реле тепловое РТТ

Тепловое реле РТТ предназначено для защиты трехфазного асинхронного электродвигателя с короткозамкнутым ротором от кратковременной перегрузки, в том числе при выпадении фазы и не симметрии.

Реле тепловое РТТ предназначено в качестве комплектующего изделия в схеме управления электроприводами и встройки в магнитный пускатель типа ПМА в цепях переменного тока с напряжением 660 В и частотой 50 или 60 Гц, а цепи постоянного тока с напряжением 440 В.


РТЛ 1001-1022 (0,14-21,5А)196,30р.
РТЛ 2053-2061 (28,5-64А)317,00р.
РТT 5-10 1-10 А197,00р.
РТТ-111 0,8-25 А197,00р.
РТТ-141 1-25 А (на заказ)197,00р.
РТТ-211 16-40А327,00р.
РТТ-211 50А, 63А1 031,00р.
РТТ-321(311,221) 63-160А1 369,00р.

Тепловое реле служит для тепловой защиты электродвигателя. Реле защищает двигатель от перекоса фаз или пропадании фазы, от механической перегрузки и заклинивания ротора.

Тепловое реле двигателя, так же, как и защитный автомат, имеет время-токовую характеристику, которая показывает, что тепловое реле не может сработать при превышении тока уставки мгновенно. Подробнее про эти характеристики — .

Важно, что спасти от короткого замыкания тепловое реле не может — просто не успеет. Поэтому в цепь питания двигателя всегда перед пускателем ставят , предохраняющий от КЗ.

Во всех современных «теплушках» есть одна пара нормально открытых (НО, NO) контактов и одна пара нормально закрытых (НЗ, NC). Обычно схему питания контактора строят так, что при срабатывании теплового реле НЗ контакты разрывают цепь питания катушки контактора, а НО контакты замыкаются и включают цепь индикации аварии.

Тепловая защита электродвигателя заключается в том, что при прохождении через силовые контакты теплового реле тока двигателя нагревается специальная биметаллическая пластина, которая приводит в действие сигнальные контакты. Контакты слаботочные, и включаются в цепь управления пускателем.

При срабатывании реле необходимо устранить причину аварии, затем привести реле в исходное состояние. Для этого на корпусе имеется красная кнопка возврата, на которой напечатана буква R (Reset). В некоторых моделях возврат осуществляется автоматически.


Тепловое реле РТЛ. Контакты для механической и электрической фиксации в пускателе

Как правило, тепловое реле крепится непосредственно на выходные . И без пускателя не используется. Соответственно, тепловое реле включено с двигателем последовательно.

Для различных вариантов пускателей необходимо передвинуть выводы (контакты) теплового реле для правильной фиксации. На фото видно (слева), как рекомендовано передвинуть ножки для разных пускателей. Фиксация также обеспечивается специальным крючочком, который зацепляется за пускатель.

Выбор теплового реле по мощности двигателя

У теплового реле есть один основной параметр, показывающий ток, при котором реле отключит электродвигатель. Ниже приводится таблица по выбору теплового реле для электродвигателей .

Номинальный
ток пускателя, А

Тип реле

Диапазон регулирования максимального тока, А

Мощность
электродвигателя, кВт

Может, это будет интересно:

Распространенные марки тепловых реле — РТЛ и РТИ, которые по параметрам идентичны, и отличаются в основном креплением и конструкцией.

В интернете гуляет табличка выбора теплового реле двигателя по мощности, где подробно перечислены параметры тепловых реле серии РТЛ. Стоит сказать об ошибке — во второй строке внизу вместо «РТЛ-ЮООМ» следует читать «РТЛ-1000М». Кто-то распознавал бездумно.

/ Выбор электротеплового реле — таблица параметров, pdf, 34.01 kB, скачан:5014 раз./

И ещё фото старенькой теплушки, фото новых легко найти в интернете.

Подробно про схему подключения теплового теле и схему подключения пускателя к трехфазному двигателю рассказано . Рекомендую.

Тепловое реле | Заметки электрика

Здравствуйте, уважаемые посетители и гости сайта «Заметки электрика».

В этой статье я расскажу Вам про назначение, устройство, схему подключения теплового реле на примере LR2 D1314 от фирмы «Schneider Electric». Тепловой компонент рассматриваемого реле имеет номинальный ток 10 (А), а токовый диапазон уставок его составляет от 7 до 10 (А). Об остальных технических характеристиках поговорим чуть позже. А теперь давайте перейдем к определению и назначению теплового реле.

Как Вы уже знаете, тепловое реле, или другими словами реле перегрузки, устанавливается в схемах магнитного пускателя, как нереверсивного типа, так и реверсивного.

Более подробно об этом Вы можете ознакомиться здесь:

Назначение теплового реле

Тепловое реле — это электрический коммутационный аппарат, который предназначен для защиты трехфазных двигателей от токовой перегрузки недопустимой продолжительностью (например, при заклинивании ротора или механической его перегрузки), а также от обрыва любой из фаз питающего напряжения (по функции аналогично реле контроля фаз).

Вот список самых распространённых (известных) серий тепловых реле: ТРП, ТРН, РТТ, РТИ (аналог LR2 D13), РТЛ

О каждой серии тепловых реле я постараюсь написать отдельную статью, подписывайтесь на рассылку новостей сайта «Заметки электрика».

Прошу заметить, что тепловое реле не защищает электродвигатель от коротких замыканий по причине того, что оно срабатывает с выдержкой времени, т.е. не мгновенно — это отчетливо можно увидеть по графику (кривой) срабатывания теплового реле. Для защиты двигателя от короткого замыкания в силовую цепь перед магнитным пускателем устанавливаются автоматические выключатели или предохранители.

 

Технические характеристики теплового реле LR2 D1314

Вот его внешний вид:

Вид сбоку:

Я уже говорил выше, что тепловое реле LR2 D1314 имеет конструктивное исполнение один в один, как у теплового реле РТИ.

Ниже я приведу основные технические характеристики, рассматриваемого в данной статье, теплового реле LR2 D1314 от компании «Schneider Electric»:

  • номинальный ток теплового компонента — 10 (А)
  • предел регулирования тока уставки теплового расцепителя — 7-10 (А)

  • напряжение силовой (главной) цепи — 220 (В), 380 (В) и 660 (В)

  • два вспомогательных контакта — нормально-замкнутый NC (95-96) и нормально-разомкнутый NO (97-98)

  • коммутируемая мощность вспомогательных контактов — около 600 (ВА)
  • порог срабатывания — 1,14±0,06 от номинального тока
  • чувствительность к асимметрии фаз — срабатывает при 30% от номинального тока по одной фазе, при условии, что по другим фазам протекает номинальный ток
  • класс отключения — 20 (см. график кривой срабатывания теплового реле)

Кривая срабатывания теплового реле с классом отключения 20 — показывает среднее время срабатывания реле в зависимости от кратности тока уставки:

Согласно ГОСТ 30011.4.1-96 (п.4.7.3, таблица 2) время срабатывания теплового реле (класс 20) при кратности тока уставки реле 7,2 составляет 6 — 20 секунд.

Рассмотрим устройство передней панели теплового реле LR2 D1314

Рассмотрим устройство передней панели.

На ней имеется кнопка-переключатель (синего цвета) режима повторного взвода (включения) реле:

  • «А» — автоматический взвод
  • «Н» — ручной взвод

На данный момент выставлен автоматический режим повторного взвода — синяя кнопка-переключатель утоплена. Это значит, что при срабатывании теплового реле схему питания двигателя можно беспрепятственно и повторно включить.

Чтобы переключиться на ручной режим, нужно открыть защитное стекло и повернуть синюю кнопку-переключатель влево — он выступит наружу.  В ручном режиме после срабатывания теплового реле необходимо в ручную нажать синюю кнопку-переключатель, иначе нормально-замкнутый контакт NC (95-96) останется разомкнутым, тем самым не даст собрать схему питания и управления электродвигателя.

Также на передней панели теплового реле LR2 D1314 располагается красная кнопка «Тест» («Test»). С помощью нее имитируется работа внутренних механизмов реле и его вспомогательных контактов.

Кнопку «Test» я нажимаю с помощью небольшой отвертки.

У данного типа теплового реле имеется индикация срабатывания в виде желтого (оранжевого) флажка в окошке. Также по этому флажку можно ориентироваться о текущем состоянии вспомогательных контактов реле. Когда в окошке находится желтый флажок, то значит нормально-замкнутый контакт NC (95-96) находится в разомкнутом состоянии, а нормальный-разомкнутый контакт NO (97-98) — в замкнутом.

Ну вот мы плавно подобрались к красной кнопке «Стоп». Красная кнопка «Стоп» выполнена в виде выступающего «грибка» и нужна для принудительного размыкания нормально-замкнутого контакта NC (95-96). При этом катушка магнитного пускателя теряет питание и двигатель отключается от сети.

Еще на передней панели теплового реле LR2 D1314 имеется регулятор уставки, с помощью которого регулируется и настраивается уставка срабатывания теплового реле. В нашем случае ток уставки реле находится в пределах от 7 до 10 (А). Регулировка производится путем поворота регулятора до совмещения нужной уставки реле и риски-треугольника.

После всех настроек и регулировок защитная крышка теплового реле закрывается и пломбируется. Для этого на ней имеется специальное «ушко». Таким образом, доступ к регулировке уставок реле будет закрыт и никто из посторонних в процессе эксплуатации не сможет их изменить.

Схема подключения теплового реле LR2 D1314

Представляю Вашему вниманию схему теплового реле LR2 D1314:

Входные силовые цепи (медные выводы) не маркируются и подключаются непосредственно к пускателю или контактору. Маркировка выходных главных (силовых) цепей теплового реле имеют маркировку: T1 (2), Т2 (4), Т3 (6) и к ним подключается электродвигатель.

У данного типа реле существует две пары вспомогательных контактов:

  • нормально-замкнутый NC (95-96)
  • нормально-разомкнутый NO (97-98)

Нормально-замкнутый контакт используется в схеме управления магнитным пускателем и подключается, например, перед кнопкой «Стоп». Нормально-разомкнутый контакт чаще всего используется в цепях сигнализации для вывода световой индикации на панель оператору или диспетчеру при срабатывании теплового реле.

Для примера я подключил тепловое реле на выводы T1 (2), Т2 (4), Т3 (6) магнитного пускателя ПМЛ-1100. Вот так это выглядит:

Крепится тепловое реле к пускателю с помощью силовых выводов и специального крючка, который плотно фиксирует корпус реле в неподвижном состоянии.

В зависимости от величины и типа пускателей или контакторов выводы («ножки») теплового реле регулируются путем изменения своего межосевого расстояния.

На корпусе есть «подсказка» с рекомендациями по выставлению «ножек» теплового реле в зависимости от типа пускателя или контактора.

 

Конструкция и внутреннее устройство теплового реле LR2 D1314

Ну чтож, заглянем внутрь реле.

Для этого открутим 3 крепежных винта.

Затем тонкой отверточкой очень аккуратно вскроем защелки по периметру корпуса. Почему аккуратненько — да потому что корпус выполнен из пластика, который очень хрупкий и можно с необычайной легкостью сломать крепежные защелки.

Снимаем верхнюю крышку реле.

На фотографии видны три биметаллические пластины, которые установлены в каждом полюсе (фазе).

Откручиваем винты выходных клемм и вытаскиваем из корпуса биметаллические пластины.

Затем снимаем спусковой механизм теплового реле.

Принцип работы системы рычагов спускового механизма.

Вот так выглядит тепловое реле LR2 D1314 без биметаллических пластин и спускового механизма.

Чтобы добраться до контактной системы теплового реле, нужно снять регулятор уставок и выкрутить винт.

На фотографии ниже изображены контакты теплового реле в режиме готовности.

А сейчас показаны контакты при срабатывании теплового реле:

Я уже упоминал в начале статьи, что при нажатии на кнопку «Стоп» принудительно размыкается нормально-замкнутый контакт NC (95-96), при этом нормально-разомкнутый контакт не изменяет своего положения. Вот подтверждение моих слов.

А вот фотография всех деталей теплового реле LR2 D1314.

 

Принцип работы теплового реле LR2 D1314

Несколько слов о конструкции биметаллической пластины.

Биметаллическая пластина состоит из 2 пластин разных материалов, у которых коэффициент линейного теплового расширения значительно отличается друг от друга. Например:

  • сплав железа с никелем (инвар) со сталью
  • ниобий со сталью

Соединяются эти две пластины с помощью сварки или клепки.

Один конец биметаллической пластины закреплен (неподвижный), а другой — подвижный и соприкасается со спусковым механизмом теплового реле. Когда биметаллическая пластина нагревается от проходящего через нее тока, она начинает изгибаться в сторону материала, у которого коэффициент линейного теплового расширения меньше.

А теперь рассмотрим принцип работы теплового реле LR2 D1314.

В нормальном режиме работы электродвигателя через биметаллические пластины трех полюсов (трех фаз) протекает ток нагрузки электродвигателя — пластины нагреваются до определенной начальной температуры, которая не вызывает их изгиб. Предположим, что по некоторой причине ток нагрузки двигателя увеличился, соответственно, по биметаллическим пластинам будет протекать ток больше номинального, который и вызовет их подогрев (температура станет больше начальной). При этом подвижная часть биметаллических пластин начнет изгибаться и приведет в действие спусковой механизм теплового реле.

После срабатывания теплового реле нужно подождать определенное время, пока не остынут биметаллические пластины и не разогнутся в нормальное положение. Да и включать сразу же электродвигатель в сеть после срабатывания теплового реле совершенно нецелесообразно, ведь в первую очередь нужно определить причину и устранить ее.

P.S. Пожалуй на этом я закончу статью о тепловом реле LR2 D1314 от фирмы «Schneider Electric». В следующих статьях я расскажу Вам как правильно выбрать тепловое реле, а также покажу как его настроить и проверить на стенде. Если у Вас имеются вопросы по материалу статьи, то готов выслушать Вас — форма комментариев всегда открыта.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Тепловое реле — защита для электродвигателя

 

Для того, что бы защитить электродвигатель  от токов высокой нагрузки в дополнение к защитному автомату необходимо поставить тепловое реле.  Принцип работы теплового реле до безобразия прост.  В тот момент, когда на электродвигателе возникает нагрузка сверх нормы, тепловое реле отсекает питание от катушки магнитного пускателя.  

Отсекание фазы на катушку происходит за счёт нагрева биметаллических пластин, которые расходятся при высокой нагрузке.  Завод изготовитель рассчитывает расширение пластин,  которые нагреваются  при прохождении через них тока сверх  допустимой нормы.

 

 

Говоря проще, когда возникла нагрузка,  биметаллические пластины расширились, и оборвали питание магнитного пускателя.  Тепловое реле необходимо выбирать исходя из мощности  электродвигателя. Для более точной настройки,  все тепловые реле имеют настраиваемый диапазон,  который можно выставить вплоть до одного ампера.

 

 

Тепловое реле подключается  между магнитным пускателем и электродвигателем.   В некоторых моделях через тепловое реле  проходят все три фазы,  но в  основном через теплушку пропускается две фазы, а третья идет напрямую от магнитного пускателя.

 

С силовыми концами  идущими на электродвигатель, мы разобрались, теперь давайте рассмотрим, как сделать что бы при высокой нагрузке, магнитный пускатель отсекал питание на электродвигатель.

 

 

Для того чтобы подключить тепловое реле, вам необходимо прочитать статью подключение магнитного пускателя.  Если вы это уже знаете, то идем дальше. Как вы помните, фаза идущая на стоповую кнопку берется с верхних контактов пускателя.

Фазу идущую на кнопки необходимо пропустить через специальные контакты на тепловом реле. Принцип прост, фаза зашла – фаза вышла. Если  на электродвигателе возникла нагрузка  пластины между этими контактами разомкнуться и пускатель отключиться.  Местоположение контактов на реле вы найдете сами, Всего там идёт пять зажимных контактов, три силовые и два на управление.  Как видите всё просто и без лишней болтовни.

 

 

Для того чтобы правильно выбрать тепловое реле необходимо взглянуть на мощность электродвигателя и на его номинальные характеристики тока , которые указаны на табличке электродвигателя.  Бывает такое, что табличка отсутствует, тогда берите клещи и замеряйте токи на каждой фазе желательно при нагрузке. Если электродвигатель не горячий смело ориентируйтесь  на показания прибора.  Допустим, у вас показало 16 ампер, прибавляйте 20% процентов на пусковые токи и выбирайте тепловое реле, где можно выставить 20 ампер и смело его подключайте. 

При срабатывании на тепловом реле выскакивает кнопочка, которую потом можно включить.  Если срабатывание начинает происходить часто, а нагрузка на ваш взгляд не повышается то вполне возможно, что у вас межвитковое замыкание, о котором вы тоже можете прочитать на нашем сайте про электричество.

< Охлаждение и устранение нагрева электродвигателей

Производители Теплового реле тока из России

Продукция крупнейших заводов по изготовлению Теплового реле тока: сравнение цены, предпочтительных стран экспорта.

  1. где производят Тепловое реле тока
  2. ⚓ Доставка в порт (CIF/FOB)
  3. Тепловое реле тока цена 25.10.2021
  4. 🇬🇧 Supplier’s Thermal current relay Russia

Страны куда осуществлялись поставки из России 2018, 2019, 2020, 2021

  • 🇰🇿 КАЗАХСТАН (9)
  • 🇺🇿 УЗБЕКИСТАН (7)
  • 🇮🇷 ИРАН, ИСЛАМСКАЯ РЕСПУБЛИКА (6)
  • 🇹🇲 ТУРКМЕНИЯ (2)
  • 🇲🇳 МОНГОЛИЯ (2)
  • 🇦🇲 АРМЕНИЯ (2)
  • 🇺🇸 СОЕДИНЕННЫЕ ШТАТЫ (1)
  • 🇧🇪 БЕЛЬГИЯ (1)
  • 🇪🇪 ЭСТОНИЯ (1)
  • 🇦🇿 АЗЕРБАЙДЖАН (1)
  • 🇧🇬 БОЛГАРИЯ (1)
  • 🇺🇦 УКРАИНА (1)
  • 🇸🇾 СИРИЙСКАЯ АРАБСКАЯ РЕСПУБЛИКА (1)
  • 🇮🇳 ИНДИЯ (1)
  • 🇨🇳 КИТАЙ (1)

Выбрать Тепловое реле тока: узнать наличие, цены и купить онлайн

Крупнейшие экспортеры из России, Казахстана, Узбекистана, Белоруссии, официальные контакты компаний. Через наш сайт, вы можете отправить запрос сразу всем представителям, если вы хотите купить Тепловое реле тока.
🔥 Внимание: на сайте находятся все крупнейшие российские производители Теплового реле тока, в основном производства находятся в России. Из-за низкой себестоимости, цены ниже, чем на мировом рынке

Поставки Теплового реле тока оптом напрямую от завода изготовителя (Россия)

Крупнейшие заводы по производству Теплового реле тока

Заводы по изготовлению или производству Теплового реле тока находятся в центральной части России. Мы подготовили для вас список заводов из России, чтобы работать напрямую и легко можно было купить Тепловое реле тока оптом

реле

Изготовитель Устройства для защиты электрических цепей на силу тока не более А

Поставщики Реле на напряжение не более В на силу тока более А

Крупнейшие производители Реле на напряжение не более В на силу тока не более А

Экспортеры пульты

Компании производители Цифровые панели управления со встроенной вычислительной машиной на напряжение не более В

Производство переключатели

Изготовитель Устройства для защиты электрических цепей на силу тока более А

Защита асинхронного двигателя — способы и схемы

Если правильно эксплуатировать асинхронный двигатель, он прослужит очень долго. Однако существуют факторы, способные сократить срок его службы, и их требуется нейтрализовать. В случае входа в аварийный режим электромотор должен быть быстро и своевременно отключен, иначе он сгорит.

К стандартным и часто встречающимся аварийным ситуациям относятся:

  • Короткое замыкание (КЗ). В этом случае срабатывает защита, которая отключает мотор от сети.
  • Перегрузка, из-за которой происходит перегрев двигателя.
  • Уменьшение или исчезновение напряжения.
  • Отсутствие напряжения на одной фазе.

Для защиты служат плавкие предохранители, магнитные пускатели или реле. Плавкие предохранители является одноразовыми, и после сгорания их приходится заменять. Автоматические переключатели с коммутациями срабатывают и при перегрузках, и при КЗ. Реле и магнитные пускатели бывают многократного действия с автоматическим самовозвратом или с ручным возвратом.

Защита от КЗ настраивается с учетом 10-кратного превышения номинального тока токами пуска и торможения. При местных замыканиях в обмотках мотора защита должна срабатывать, когда ток меньше, чем при пуске. В защите также предусматривают задержку отключения, и она срабатывает, если за это время потребляемый из сети ток сильно возрастет. Если защита от перегрузки действует слишком часто, скорее всего, мощность мотора не соответствует его назначению. Ложные срабатывания устраняют, соответственно выбирая и регулируя компоненты защиты.

Следует помнить, что любые способы и схемы защиты асинхронного электродвигателя должны быть не только просты, но и надежны.

Короткие замыкания, а также защита от перегрузок

Плавкие вставки – простейшая защита от коротких замыканий для моторов мощностью до 100 кВт. Если перегорят не все 3 предохранителя, могут отключиться только 1 или 2 фазные обмотки.

Если переходный процесс длится 2-5 секунд, номинальный ток предохранителя не должен быть меньше 40 % величины пускового тока, а если 10-20 секунд – то минимум 50 %. При неизвестной величине пускового тока и мощности Р мотора меньше 100 кВт примерная величина номинального тока I вставки выбирается так:

  • при U 500 вольт I = 4,5 Р;
  • при U 380 вольт I = 6 Р;
  • при U 2200 вольт I = 10,5 Р.

Тепловая защита

Тепловое реле – это биметаллическая пластина, нагреваемая током обмоток мотора. Деформируясь, она активизирует контакты, отключающие мотор. Тепловые реле могут встраиваться в магнитные пускатели. Следует принимать в расчет максимальное напряжение в сети, при котором допускается применение теплового реле, и ток, при котором реле работает долгое время и не активизируется.

Тепловое реле не может реагировать на токи короткого замыкания. Не действуют на него и недолгие перегрузки, которые недопустимы. Поэтому рекомендуется совмещать использование теплового реле с плавкими вставками.

Специальный датчик тепла защищает электромотор от перегрева еще успешнее. Он устанавливается на самом электромоторе. Некоторые двигатели имеют встроенный биметаллический датчик, представляющий собой контакт, который подключен к защите.

Понижение напряжения и исчезновение фазы

Если асинхронный электромотор работает с полной нагрузкой, а напряжение при этом понижено, то он начинает быстро нагреваться. Если в него встроен температурный сенсор, включится тепловая защита.

Если же температурного сенсора не имеется, надо обеспечить защиту электродвигателя от падения напряжения. В таком случае используются реле. Когда уменьшается напряжение, они срабатывают и подают сигнал на отключение электродвигателя. Исходное состояние защиты может восстанавливаться вручную или автоматически; при этом происходит задержка во времени для каждого электромотора при их группе. В противном случае при одновременном групповом запуске после восстановления напряжение в сети может снова понизиться, и произойдет новое отключение.

Правила устройства и эксплуатации электроустановок требуют защиты от исчезновения фазы тока только в случаях экономически нецелесообразных последствий. Экономически выгоднее не изготавливать и устанавливать такую защитную систему, а устранить причины, приводящие к режиму работы только на двух фазах.

Новейшими устройствами для защиты электромоторов можно назвать автоматические выключатели, способные к воздушному гашению дуги. В некоторых конструкциях совмещаются возможности рубильника, контактора, максимального реле и термореле. В подобных моделях мощная взведенная пружина размыкает контакты. Ее освобождение зависит от того, каков исполнительный элемент – электромагнитный или тепловой.

Таким образом, защита асинхронного двигателя, способы и схемы которой изложены выше, должна реализовываться пользователем в обязательном порядке.


Тепловые реле для электродвигателя — принцип действия, защита

08.09.2015

Тепловые реле предохраняют электродвигатель от перегрева, вызванного главным образом его перегрузкой, а также потерей фазы или отклонениями параметров сети от их номинальных значений.

Принцип действия тепловых реле основан на изгибании биметаллического элемента при его нагреве. Биметаллический элемент выполнен из двух металлических пластин с разными коэффициентами линейного расширения. При нагреве одна из пластин удлиняется в большей степени, а поскольку пластины скреплены, происходит изгиб всего элемента. Таким образом, в случае превышения тока определенного значения биметаллический элемент нагревается и изгибается, приводя в действие контакт реле. Очевидно, что при увеличении тока уменьшается время срабатывания реле. Зависимость времени срабатывания реле от тока называется характеристикой теплового реле.


Рис. 1. Характеристика теплового реле

На рисунке 1 приведен пример характеристики реле в холодном состоянии, где Iустн – номинальный ток уставки, а Iуст – ток, который протекает через реле в определенный момент времени. Под номинальным током уставки понимается наибольший ток, который в течение длительного времени при данной настройке реле не приводит к его срабатыванию.

Тепловые реле надежно защищают электродвигатель от перегрузок только в случае его эксплуатации в режиме S1 (продолжительный режим работы). Температурные условия мест, в которых установлены реле и защищаемый двигатель должны быть полностью идентичны. Если двигатель работает в повторно-кратковременном режиме, то защита его от перегрузок тепловым реле неэффективна, кроме того, возможны ложные срабатывания.

В случае, когда величины токов электродвигателя имеют относительно большие значения, тепловое реле может включаться через трансформаторы тока.

Тепловое реле необходимо выбрать таким образом, чтобы его номинальные значения напряжения и тока соответствовали аналогичным значениям двигателя, далее необходимо выставить ток уставки согласно следующим выражениям:

Iустн=Iдн, если Тср=Тн,

где Iдн – номинальное значение линейного тока двигателя, Тср – температура окружающей среды, в которой установлено тепловое реле, Тн – температура калибровки реле;

, если ,

Современные электродвигатели выполняются с изоляцией класса F и превышением температуры по классу В. Таким образом, даже при температуре окружающей среды 400С обеспечивается температурный запас 250С, благодаря чему электродвигатель может выдерживать кратковременные перегрузки без разрушения изоляции. Реле, подобранные согласно данным рекомендациям, обеспечивают надежную защиту двигателей при длительных перегрузках 15-20%. Таким образом, обеспечивается надежная продолжительная работа электродвигателя и обеспечивается заложенный заводом-изготовителем ресурс работы.

Если же нагрузка двигателя неравномерная (в одни короткие периоды времени больше номинальной, в другие наоборот – меньше), во избежание ложных срабатываний защиту необходимо несколько загрубить. С этой целью токи уставки Iуст, полученные по формулам, приведенным выше, следует увеличить на 10%.

Важно! Тепловое реле не защищает двигатель от коротких замыканий, поэтому его использование возможно только совместно с устройствами защиты от токов короткого замыкания (автоматические выключатели, предохранители, реле максимального тока).


Как выбрать тепловое реле? Как выбрать тепловое реле? Иллюстрация метода выбора теплового реле

Тепловое реле в основном используется для защиты двигателя от перегрузки, поэтому при выборе вы должны понимать состояние двигателя, такое как рабочая среда, пусковой ток, характер нагрузки, рабочая система, допустимая перегрузочная способность, и т. д.
1. В принципе, ампер-секундная характеристика теплового реле должна быть как можно ближе или даже совпадать с характеристикой перегрузки двигателя или под характеристикой перегрузки двигателя, и в то же время, когда двигатель перегружен и запускается на короткое время, тепловое реле не должно быть затронуто.Влияние (бездействие).
2. Когда тепловое реле используется для защиты двигателя в долгосрочной рабочей системе или в прерывистой долгосрочной рабочей системе, его обычно выбирают в соответствии с номинальным током двигателя. Например, значение уставки теплового реле может быть равным 0,95-1,05 номинального тока двигателя, или среднее значение уставки тока теплового реле может быть равно номинальному току двигателя, а затем регулировать.
3. Когда тепловое реле используется для защиты электродвигателя от повторяющихся кратковременных операций, тепловое реле имеет только определенный диапазон адаптируемости.Если за короткий промежуток времени выполняется много операций, следует использовать тепловое реле с трансформатором тока быстрого насыщения.
4. Для двигателей специального назначения с положительным и обратным вращением и частыми включениями и выключениями тепловые реле не должны использоваться в качестве устройств защиты от перегрузки, но для защиты следует использовать реле температуры или термисторы, встроенные в обмотки двигателя.

Текстовый символ теплового реле: FR
Графический символ теплового реле:


Графические символы для компонентов теплового реле Графические символы для нормально разомкнутых контактов теплового реле Графические символы для нормально замкнутых контактов теплового реле

Как выбрать правильное тепловое реле? -F & Q-Shenzhen Yuan Zhi Electronics Co., ООО

2018-03-01

Как правильно выбрать и использовать термореле — тема старая. Тем не менее, многие агрегаты все еще приводили к случайному сгоранию двигатель из-за необоснованного выбора или использования теплового реле. реле биметаллическое, плавкий сплав, термистор, термомагнитный и многие другие другие виды, основаны на использовании текущего теплового воздействия изготовлено защитное реле, широко используется в защите двигателя от перегрузки Таким образом, выбор и использование тепловых реле в дополнение к соблюдать общие положения, но также обращать внимание на следующие пункты: 1.Схема управления пуском звезда / треугольник, установка теплового реле расположение другое, выбор теплового реле не то же самое: цепочка теплового реле главной цепи в целом линия, когда текущее значение настройки должно быть защищено номинальным двигателем ток То же значение, главная цепь в цепи термореле дельта рабочая цепь в заданном значении должна быть защищена номиналом двигателя текущее значение 1 / 1,732,2. Тепловые реле обычно имеют две формы сброса с ручным и автоматическим сбросом.Этот реле, тепловое реле использует два вида сброса в форме преобразования, путем регулируя винт сброса, чтобы завершить завод теплового реле, производитель обычно настроен на автоматический сброс состояния. В использования, тепловое реле должно быть настроено на ручной или автоматический сброс состояние в соответствии с конкретными условиями контура управления. В нормальных условиях следует следить за защитой теплового реле. действие, даже если тепловое реле автоматически сбрасывается, будьте защищены реле, выбор двигателя теплового реле не должен выполняться автоматически принцип перезапуска, в противном случае тепловое реле должно быть установлено в ручной режим состояние сброса.Это сделано для того, чтобы двигатель не перезапустил поврежденное оборудование несколько раз после того, как неисправность не была устранена. (Например, ручной запуск с кнопочным управлением и остановка вручную схемы управления обычно используются. Термореле можно установить в автоматический режим. режим сброса. Схема автоматического запуска с автоматическим управлением компонентами должен установить тепловое реле в режим ручного сброса 3. Для тепловых реле с разными уровнями номинального тока, но одинаковыми диапазон регулировки термоэлементов (например, тепловые реле У серии JR16 есть установка теплового элемента 14A-16A для обоих тепловых реле на 20A и 60A Диапазон регулировки) выбора, следует проверить тепловое реле используется при температуре окружающей среды, а двигатель защищен от окружающей среды температура.Когда температура окружающей среды теплового реле выше, чем у защищаемого температура окружающей среды двигателя выше 15 ℃, следует использовать реле, тепловые реле используют тепловое реле большего номинального уровня тока; когда тепловая температура окружающей среды реле ниже, чем температура защищаемого двигателя. Если температура окружающей среды ниже 15 ℃, используйте тепловое реле меньшего номинального тока. Для многократной кратковременной работы защиты двигателя от перегрузки испытание должно повторяться в полевых условиях, реле, тепловые реле, используемые для регулировки подбор может быть более надежной защитой.В Первый способ — установить немного меньший ток уставки теплового реле. чем номинальный ток двигателя. Если будет обнаружено, что он постоянно работая во время работы, постепенно отрегулируйте значение настройки тепловое реле до тех пор, пока оно не будет соответствовать эксплуатационным требованиям.

Prev: Можно объяснить принцип работы реле?

Далее: IC (ic) относятся к электронным устройствам или электронному …

Как устроено тепловое реле?

Тепловое реле обычно состоит из нагревательного элемента, управляющего контакта и системы действия, механизма сброса, устройства установки тока и элемента компенсации температуры. Когда деформация достигает определенного расстояния, шатун толкается, чтобы размыкать цепь управления, так что контактор теряет питание и главная цепь отключается, тем самым реализуя защиту двигателя от перегрузки.

При фактической работе двигателя, такой как перетаскивание производственного оборудования на работу, если машина неисправна или цепь ненормальная, двигатель столкнется с перегрузкой, скорость двигателя уменьшится, ток в обмотке увеличится, и температура обмотки двигателя увеличится.Если ток перегрузки мал и время перегрузки короткое, а обмотка двигателя не превышает допустимого превышения температуры, перегрузка допустима. Однако, если время перегрузки велико и ток перегрузки велик, повышение температуры обмотки двигателя превысит допустимое значение, что приведет к старению обмотки двигателя, сокращению срока службы двигателя и даже сгоранию обмотки двигателя в серьезных случаях. . Поэтому такую ​​перегрузку мотор не переносит. Тепловое реле должно использовать принцип теплового воздействия тока для отключения цепи двигателя в случае перегрузки, которую двигатель не может выдержать, чтобы обеспечить защиту двигателя от перегрузки.(Каков принцип работы теплового реле?)

Принцип работы теплового реле

Когда тепловое реле используется для защиты двигателя от перегрузки, термоэлемент подключается последовательно с обмоткой статора двигателя , нормально замкнутый контакт теплового реле включен последовательно в цепь управления электромагнитной катушкой контактора переменного тока, а ручка регулировки тока установки регулируется так, чтобы шток переключения в елочку и шток толкателя находились на нужном расстоянии .

Когда двигатель работает нормально, термический элемент нагревается током термического элемента, то есть номинальным током двигателя. Биметаллический лист изгибается после нагрева, так что толкатель только контактирует со штоком переключения передач в елочку, но не может толкать рычаг в елочку. В это время нормально замкнутый контакт находится в замкнутом состоянии, контактор переменного тока остается замкнутым, и двигатель работает нормально.

Если двигатель перегружен, ток в обмотке увеличивается, и ток в термоэлементе также увеличивается, температура биметаллического листа повышается, а степень изгиба увеличивается.Он толкает стержень переключения передач в елочку, который толкает нормально замкнутый контакт, так что контакт размыкается, что приводит к отключению цепи катушки контактора переменного тока, размыканию контактора и отключению питания двигателя, а двигатель защищен остановившись.

1 — Кулачок регулирования тока, 2 — Листовая пружина (2a, 2b), 3 — Кнопка ручного сброса, 4 — Дуговая пружина, 5 — Основной металлический лист, 6 — Наружная направляющая пластина, 7 — Внутренняя направляющая пластина, 8 — Нормально закрытый статический контакт, 9 — Подвижный контакт, 10 — Рычаг, 11 — Нормально открытый статический контакт (регулировочный винт сброса), 12 — Компенсирующий биметаллический лист, 13 — Толкатель, 14 — Шатун, 15 — Нажимная пружина

Термический элемент

Термический элемент является сердцем теплового реле :

1.В тепловом реле прямого нагрева используется биметаллический лист в качестве теплового элемента, позволяющего напрямую пропускать электрическую серу. Поскольку сам биметаллический лист имеет определенное сопротивление, он может выделять тепло, когда через него проходит ток. Поскольку биметаллический лист используется как в качестве чувствительного, так и в качестве нагревательного элемента, этот метод нагрева имеет характеристики : простая структура, небольшой объем, экономия материала, небольшая постоянная времени нагрева и быстрое изменение температуры.

2.Косвенный нагрев — это выделение тепла через термоэлемент, который электрически не связан с биметаллическим листом. Термоэлементы выполнены нитевидными или обвязаны биметаллическим листом. Поскольку тепло, выделяемое термоэлементом, передается биметаллическому листу через воздух, постоянная времени нагрева велика, а скорость, отражающая изменение температуры, относительно мала .

3. Комбинированный нагрев представляет собой комбинацию прямого и косвенного нагрева.Постоянная времени нагрева смеси находится между двумя вышеуказанными формами. Значение сопротивления можно легко отрегулировать путем параллельного или последовательного соединения различных сопротивлений, и он имеет преимущества прямого и косвенного нагрева, поэтому получил широкое распространение.

4. Нагрев трансформатора тока в основном используется для теплового реле большой мощности и пускового теплового реле большой нагрузки.

Управляющий контакт и система действия

В настоящее время широко используемой конструкцией теплового реле является подвижный контакт пружинного типа.Когда двигатель перегружен, нормально замкнутый контакт будет отключен. После остановки двигателя биметаллический лист теплового реле охладится и вернется в исходное состояние. Подвижный контакт нормально замкнутого контакта автоматически возвращается в исходное положение под действием пружины. Однако традиционная пружина подвижного контакта пружинного типа легко отпадает, в результате чего вспомогательный контакт не электризуется, в результате чего тепловое реле не может использоваться. Существующий более безопасный метод заключается в модернизации подвижного контакта пружинного типа до динамического контакта с листовой пружиной и установке контактного моста в контактный мост с листовой пружиной , чтобы вибрация подвижного контакта была больше, когда он контактирует с статический контакт.Из-за влияния инерции движения и столкновения контактный мост пружинного типа будет производить динамическую упругую деформацию. В разные динамические моменты исходный контактный мост с плоской листовой пружиной будет отличаться, а кривизна вызывает изгиб и растяжение, что дополнительно приводит в движение сферический подвижный контакт, вызывая фрикционное качение относительно статического контакта, что приводит к более полному повреждению сопротивления поверхностной мембраны, обеспечивает эффект контактной проводимости и повышает надежность оборудования.

Механизм возврата и защита от обрыва фазы

После того, как термоэлемент нагревается и изгибается, ток в главной цепи отключается путем нажатия пускового устройства, чтобы сработало тепловое реле. Биметаллический лист охлаждают, восстанавливая исходное состояние. Очевидно, на это нужно время. Есть два способа сброса теплового реле: ручной и автоматический. Ручной сброс обычно составляет не менее 5 минут, автоматический сброс — не более 10 минут.

Режим сброса можно выбрать с помощью кнопки сброса. В нормальном состоянии, когда кнопка сброса указывает на A (автоматический сброс), NC замкнут, а NO отключен; в состоянии отключения, когда кнопка сброса указывает на A, NC размыкается, а NO закрывается. После отключения и остановки двигателя подвижный контакт не может быть сброшен. Подвижный контакт можно сбросить только после нажатия кнопки сброса. В это время тепловое реле находится в состоянии ручного сброса. Если перегрузка двигателя является неисправностью, чтобы избежать легкого повторного запуска двигателя, тепловое реле должно перейти в режим ручного сброса.В состоянии ручного сброса принцип сброса такой же. Чтобы переключить тепловое реле из режима ручного сброса в режим автоматического сброса, просто поверните кнопку сброса в положение A (автоматический сброс).

Некоторые типы тепловых реле также имеют защиту от обрыва фазы. Структурная схема представлена ​​на рисунке ниже. Функция защиты от обрыва фазы теплового реле обеспечивается механизмом дифференциального усиления, состоящим из внутренних и внешних толкателей. Когда двигатель работает нормально, ток теплового элемента через тепловое реле нормальный, и как внутренний, так и внешний толкающие стержни перемещаются вперед в соответствующее положение; при обрыве фазы источника питания ток фазы равен нулю, а биметаллический лист фазы охлаждается и сбрасывается, что заставляет внутренний толкатель перемещаться вправо, а биметаллический лист двух других фаз увеличивает степень изгиба из-за увеличения тока, который заставляет внешний толкатель перемещаться влево Функция дифференциального усиления подталкивает нормально замкнутый контакт к размыканию через короткое время после обрыва фазы, так что контактор переменного тока размыкается и двигатель защищается при сбое питания.

Установка тока устройства и температурная компенсация

Установочный ток относится к максимальному току, который проходит через нагревательный элемент в течение длительного времени без срабатывания теплового реле. Когда ток, проходящий через нагревательный элемент, превышает 20% установленного значения тока, тепловое реле срабатывает в течение 20 минут. Установочный ток теплового реле можно изменить, установив ручку тока. При выборе и настройке теплового реле значение тока настройки должно соответствовать номинальному току двигателя.

Конструкция высокоточной установки тока реле тепловой перегрузки включает в себя опору (1), компенсирующее двойное золото (3), регулировочный винт (4) и установочный кулачок (5).

Реле тепловой перегрузки — наиболее широко используемый электрический компонент для защиты двигателя. В процессе эксплуатации заказчику необходимо отрегулировать значение тока уставки теплового реле перегрузки в соответствии с фактическим рабочим состоянием двигателя. Если точность настройки теплового реле перегрузки невысока, это легко может вызвать аварийное отключение или перегрев двигателя.

Левый рычаг тяги переключения передач в елочку также изготовлен из биметаллического листа. При изменении температуры окружающей среды биметаллический лист в главной цепи будет в определенной степени деформироваться и изгибаться. В это время левый рычаг тяги переключения передач в елочку также будет деформироваться и изгибаться в том же направлении, чтобы сохранить расстояние между рычагом в форме елочки и толкателем в основном неизменным, чтобы обеспечить точность срабатывания теплового реле. Этот эффект называется температурной компенсацией.

Из рисунка ниже видно, как решить проблему низкой общей точности традиционной структуры путем компенсации двойного золота.

Отверстие для заклепки и резьбовое отверстие устанавливаются на компенсационном двойном металле. Отверстие для клепки совпадает с бобышкой для клепки, а отверстие с резьбой соединяется с резьбой регулировочного винта. На двойном компенсационном металлическом элементе отверстие для элемента, совмещенное с заклепочной втулкой, спроектировано таким образом, что компенсационный двойной металл и U-образные части склепываются и фиксируются.

Под действием плоскости опорной ступеньки и характеристик формования горячей клепкой компенсационный двойной золотой компонент обеспечивает точность позиционирования, тем самым повышая точность настройки тока, вызванную работой кулачка, и решает проблему точности настройки низкого тока традиционной конструкции .

Рекомендовать артикул:

Каков принцип и функция реле?

Как выбрать реле?

Каковы общие неисправности реле?

Обзор тепловых реле перегрузки

Тепловые реле перегрузки — это защитные электрические устройства, используемые для защиты двигателей или другого электрооборудования и электрических цепей от перегрузки. Тепловое реле перегрузки в основном используется для защиты от перегрузки асинхронных двигателей.После того, как ток перегрузки проходит через термоэлемент, биметаллический лист нагревается и изгибается, чтобы подтолкнуть механизм действия к контакту …

Каталог

I Что такое тепловое реле перегрузки?

Тепловые реле перегрузки — это защитные электрические устройства, используемые для защиты двигателей или другого электрического оборудования и электрических цепей.

Тепловое реле перегрузки в основном используется для защиты асинхронных двигателей от перегрузки.Его принцип работы :

после того, как ток перегрузки проходит через термоэлемент, биметаллический лист нагревается и изгибается, чтобы подтолкнуть механизм действия для приведения в действие контакта, тем самым отключая схему управления двигателем, чтобы выключить двигатель с помощью мощности. выключен, играя роль защиты от перегрузки. Поскольку теплопередача занимает много времени во время нагрева и изгиба биметаллического листа, тепловое реле перегрузки не может использоваться для защиты от короткого замыкания, а может использоваться только для защиты от перегрузки.

Тепловое реле перегрузки широко используется в качестве компонента защиты двигателя от перегрузки из-за своего небольшого размера, простой конструкции и низкой стоимости.

II Состав тепловых реле перегрузки

Тепловое реле перегрузки состоит из биметаллического листа , нагревательного элемента, механизма действия и контактной системы . Биметаллический лист изготавливается путем сварки двух слоев металлических листов с большой разницей в коэффициенте расширения. При использовании нагревательный элемент подключается последовательно к источнику питания двигателя, а контакт подключается последовательно в цепи управления катушкой контактора.

Когда двигатель перегружен, ток большой, что приводит к нагреву и изгибу биметаллического листа. А через механизм действия подвижный контакт и статический контакт разъединяются, так что катушка контактора обесточивается, и двигатель отключается от источника питания.

Рисунок 1. Структура реле тепловой перегрузки

(1) Биметаллический лист : Биметаллический лист является наиболее важной частью теплового реле перегрузки.Он объединяет два металлических листа с разными коэффициентами линейного расширения путем механической прокатки.

При комнатной температуре (то есть до нагрева) все обычно бывает плоским, как показано на Рисунке 2 (а). При повышении температуры металлический лист 1 (называемый активным слоем ) с большим коэффициентом линейного расширения пытается сделать большее расширение, в то время как металлический лист 2 с малым коэффициентом линейного расширения (так называемый ведомый слой ) ) можно сделать только меньшее расширение.Поскольку два слоя материалов плотно прикреплены и не могут быть растянуты свободно, биметаллический лист переходит из плоского состояния в изогнутое, как показано на рисунке 2 (b). Таким образом, активный слой может расширяться немного больше, а управляемый слой — меньше. Это причина того, что биметаллический лист после нагрева может вызывать деформацию изгиба.

Рис. 2. Принцип работы биметаллической полосы

(2) Нагревательный элемент : Нагревательный элемент обычно изготавливается из медно-никелевого сплава, хромоникелевого сплава или хромо-алюминиевого сплава и т. Д., а его форма представляет собой нить, лист или ленту и т. д. Его функция заключается в использовании теплового эффекта, возникающего при прохождении электрического тока через резистивный нагревательный элемент, для приведения чувствительного элемента в движение.

(3) Управление контакты , коэффициенты действия управляющие контакты и системы действия или механизмы действия. В большинстве из них используется носовая пружина, пружина сжатия или механизм прыжка Лафи. Система действия часто оснащена устройством температурной компенсации, чтобы гарантировать, что рабочие характеристики теплового реле перегрузки остаются в основном неизменными в определенном диапазоне температур.

(4) Механизм сброса: Есть ручной сброс и автоматический сброс, которые можно свободно регулировать в соответствии с требованиями использования.

III Классификация тепловых реле перегрузки

По количеству фаз существует трех типов тепловых реле перегрузки: однофазные реле тепловой перегрузки , двухфазные тепловые реле перегрузки и трех -фазные тепловые реле перегрузки. Каждый тип имеет разные характеристики и модели в зависимости от номинального тока нагревательного элемента.Трехфазные тепловые реле перегрузки часто используются в трехфазных двигателях переменного тока для защиты от перегрузки.

По своему назначению трехфазные тепловые реле перегрузки бывают двух типов: типы без фазовой защиты и типы с фазной защитой.

IV Характеристики тепловых реле перегрузки

1. Характеристики защиты

Поскольку время срабатывания контакта теплового реле перегрузки связано со степенью перегрузки защищаемого двигателя, до анализа принципа работы реле реле тепловой перегрузки, мы должны сначала выяснить взаимосвязь между током перегрузки двигателя и временем включения двигателя, когда не превышается допустимое повышение температуры.Эта зависимость называется перегрузочной характеристикой двигателя.

Когда во время работы двигателя возникает ток перегрузки, это неизбежно вызывает нагрев обмотки. В соответствии с соотношением теплового баланса нетрудно сделать вывод, что время проводимости двигателя обратно пропорционально квадрату его тока перегрузки при допустимом повышении температуры:

Рисунок 3. Взаимосвязь между временем проводимости и ток перегрузки

Чтобы адаптироваться к характеристикам перегрузки двигателя и играть роль защиты от перегрузки, тепловое реле перегрузки должно иметь характеристики с обратнозависимой выдержкой времени .По этой причине в тепловом реле перегрузки должен быть установлен резистивный нагревательный элемент. Таким образом, тепловой эффект, создаваемый током перегрузки через резистивный нагревательный элемент, используется для приведения в действие чувствительного элемента, тем самым приводя в действие контактное действие для завершения защиты.

Взаимосвязь между током перегрузки , проходящим через тепловое реле перегрузки, и временем срабатывания контакта теплового реле перегрузки называется характеристикой защиты теплового реле перегрузки, как показано на кривой кривой 2 на рисунке 3.Учитывая влияние различных ошибок, характеристика перегрузки двигателя и характеристика защиты реле представляют собой не одну кривую, а полосу. Очевидно, что чем больше погрешность, тем ремешок шире; чем меньше погрешность, тем уже ремешок.

Из кривой 1 на рисунке видно, что при перегрузке двигателя безопасно работать с кривой 1. Следовательно, характеристики защиты теплового реле перегрузки должны быть смежными с характеристиками перегрузки двигателя.Таким образом, если произойдет перегрузка, тепловое реле перегрузки сработает до того, как двигатель достигнет своего допустимого предела перегрузки, чтобы отключить питание двигателя, чтобы предотвратить повреждение.

2. Прочие основные характеристики

(1) Контакт управления

Нормально разомкнутые и нормально замкнутые контакты реле тепловой перегрузки должны обеспечивать срабатывание цепи катушки контактора переменного тока более 1000 раз. при указанном рабочем токе.

(2) Ампер-секунда Характеристики

Это также называется токово-временной характеристикой, которая представляет собой взаимосвязь между временем срабатывания и протекающим током теплового реле перегрузки и обычно является характеристикой с обратнозависимой выдержкой времени. . Чтобы надежно реализовать защиту двигателя от перегрузки, ампер-секундная характеристика теплового реле перегрузки должна быть ниже допустимой характеристики перегрузки двигателя.

(3) Регулировка тока

Диапазон регулировки тока тепловых реле перегрузки обычно составляет от 66% до 100%, а максимальный — от 50% до 100%.

(4) Температурная компенсация

Чтобы уменьшить ошибку действия, вызванную изменением температуры окружающей среды, необходимо принять меры температурной компенсации.

(5) Время сброса

Время автоматического сброса реле тепловой перегрузки не должно превышать 5 минут, а время ручного сброса должно быть не более 2 минут.

(6) Термическая стабильность

Термическая стабильность — это способность выдерживать ток перегрузки . Требования к термостойкости термоэлемента следующие: при максимальном токе настройки 10-кратный максимальный ток настройки применяется к номинальному току 100 А и ниже, и в 8 раз максимальный ток настройки применяется к току настройки выше 100 А. После этого реле тепловой перегрузки должно надежно сработать 5 раз.

В Причины срабатывания реле тепловой перегрузки

Срабатывание реле тепловой перегрузки в основном вызвано перегрузкой или неправильным выбором .Реле тепловой перегрузки используется для защиты электроприборов от перегрузки. Дизайн должен соответствовать электроприборам. Если тепловое реле перегрузки слишком мало или электрическое оборудование имеет сопротивление, часто срабатывает перегрузка. После срабатывания реле тепловой перегрузки контактор потеряет питание и отключится.

Другие причины:

(1) Значение настройки теплового реле перегрузки слишком мало;

(2) Слишком большой ток нагрузки двигателя, может быть короткое замыкание между витками или передаточная часть двигателя не является гибкой;

(3) Низкое качество реле тепловой перегрузки или плохой контакт контактов.

(4) Неудовлетворительное качество контактора или плохой контакт контактов.

VI Как сбросить реле тепловой перегрузки после срабатывания

Существует два способа сброса реле тепловой перегрузки: ручной сброс и автоматический сброс.

1. Ручной сброс

После срабатывания защиты от перегрузки теплового реле перегрузки необходимо вручную нажать кнопку сброса, чтобы нормально замкнутый контакт снова замкнулся.Ручной сброс следует выполнить через 2-3 минуты после отключения, поскольку нагревательный лист для внутренней гибки нуждается в охлаждении.

2. Автоматический сброс

После срабатывания тепловой защиты реле перегрузки нормально замкнутый контакт автоматически замыкается, и время автоматического сброса обычно составляет не более 5 минут.

Метод сброса можно выбрать с помощью винта настройки сброса.

Вставьте прямую отвертку в регулировочное отверстие на нижней стороне теплового реле перегрузки и затяните регулировочный винт сброса по часовой стрелке (до конца), что является методом автоматического сброса.Если вы ослабите винт регулировки сброса против часовой стрелки, так что винт откручивается на определенное расстояние, это становится ручным сбросом.

Новое тепловое реле перегрузки обычно имеет кнопку регулировки на верхней крышке. Когда кнопка регулировки повернута на H , выполняется ручной сброс, а при повороте кнопки регулировки на A происходит автоматический сброс.

Рис. 4. Ручной сброс и автоматический сброс

Когда реле тепловой перегрузки используется для защиты двигателя от перегрузки, чтобы гарантировать, что нормально замкнутый контакт реле тепловой перегрузки может быть сброшен и замкнут после неисправности, тепловое реле перегрузки обычно устанавливается в режим ручного сброса.

VII Меры предосторожности при использовании

(1) Тепловое реле перегрузки может использоваться только для защиты двигателя от перегрузки и обрыва фазы, но не для защиты от короткого замыкания.

(2) Выбор точки установки.

● Разница температур между местом установки реле тепловой перегрузки и защищаемым оборудованием не должна быть слишком большой;

● В месте установки не должно быть источника вибрации;

● при установке реле тепловой перегрузки с другими электрическими приборами, чтобы другие нагревательные приборы не влияли на его характеристики, его следует устанавливать ниже.

(3) Направление установки реле тепловой перегрузки должно быть таким же, как указано в руководстве по продукту, а отклонение не должно превышать 5 °.

(4) Соединительный провод, используемый для теплового реле перегрузки, должен соответствовать техническим характеристикам. Если сечение соединительного провода слишком мало, осевая теплопередача будет медленной, и реле тепловой перегрузки выйдет из строя. Если соединительный провод слишком толстый, аксиальная теплопроводность происходит быстро, а реле тепловой перегрузки срабатывает медленно или отказывается двигаться.

Материал проволоки — обычно медь , если используется проволока с алюминиевым сердечником, концы следует покрыть лужением.

(5) Крепежные винты реле тепловой перегрузки должны быть затянуты, в противном случае контактное сопротивление и температура нагревательного элемента увеличатся, что приведет к неисправности реле тепловой перегрузки.

(6) Реле тепловой перегрузки с автоматическим сбросом должно быть установлено в автоматическое положение, и оно автоматически сбрасывается через 3-5 минут после срабатывания защиты.Для реле тепловой перегрузки с ручным сбросом кнопка сброса должна быть нажата после срабатывания защиты.

VIII Причины бездействия или неисправности

Причины бездействия или неисправности теплового реле перегрузки следующие:

1.

Причины бездействия

Причина бездействия выход из строя теплового реле перегрузки может быть:

(1) значение уставки тока слишком велико;

(2) термоэлемент сгорел или запломбирован;

(3) механизм затвора застрял или пряжка отваливается.

(4) При ремонте ток уставки может быть отрегулирован соответствующим образом в соответствии с допустимой нагрузкой, а термоэлемент или механизм действия могут быть отремонтированы.

2.

Причины неисправности

Причины могут быть следующими:

(1) текущее установленное значение слишком мало;

(2) тепловое реле перегрузки не согласовано с нагрузкой;

(3) время запуска двигателя слишком велико или слишком много раз непрерывного запуска;

(4) линия или нагрузка протекает или закорочено;

(5) реле тепловой перегрузки подвержено сильным ударам или вибрации.

Во время технического обслуживания мы должны выяснить причины и разумно отрегулировать ток уставки или заменить реле тепловой перегрузки, соответствующее нагрузке.

Если двигатель или цепь неисправны, двигатель и цепь питания должны быть отремонтированы; если в рабочей среде слишком много вибраций, следует использовать тепловое реле перегрузки с антивибрационным устройством.

IX Как выбрать тепловые реле перегрузки

1. В принципе, ампер-секундная характеристика теплового реле перегрузки должна быть как можно ближе или даже совпадать с характеристикой перегрузки двигателя, или по перегрузочной характеристике мотора.И при этом на тепловое реле перегрузки не должно воздействовать (бездействие) в момент кратковременной перегрузки и пуска двигателя.

2. Когда тепловые реле перегрузки используются для защиты двигателей при длительной работе или прерывистой длительной работе , они обычно выбираются в соответствии с номинальным током двигателя. Например, значение уставки реле тепловой перегрузки может быть равно 0,95-1,05 номинального тока двигателя, или среднее значение уставки тока реле тепловой перегрузки может быть равно номинальному току двигателя, а затем настроить.

3. Когда тепловое реле перегрузки используется для защиты двигателя при повторной кратковременной работе , тепловое реле перегрузки имеет только определенный диапазон адаптируемости. Если за короткое время выполняется много операций, следует использовать реле тепловой перегрузки с трансформатором тока быстрого насыщения.

4. Для специального рабочего двигателя с положительным и обратным вращением и частым включением и выключением , тепловое реле перегрузки не должно использоваться в качестве устройства защиты от перегрузки, но должно быть защищено термореле или термистором, встроенным в обмотка двигателя.

Что такое тепловое реле?

Тепловые реле — это тип электрического устройства, используемого для защиты двигателей и электрических цепей от перегрузки, часто используется с контакторами. Тепловые реле имеют функцию автоматического переключения контактов за счет теплового расширения и сжатия металлических стержней.

Применение тепловых реле

Тепловые реле оснащены контактором для защиты электрооборудования, особенно электродвигателей при перегрузке по току, перегрузке во время работы.

Примечание: тепловые реле работают только для изменения состояния контакта, но не для отключения питания, поэтому его необходимо объединить с другим переключателем.

Характерной чертой тепловых реле является то, что для работы требуется определенное количество времени, основанное на механизме теплового расширения, а не так быстро (мгновенно), как у электромагнитных переключателей. Следовательно, тепловые реле используются только для защиты от перегрузки, а не от короткого замыкания. Для защиты от короткого замыкания необходимо использовать аптомат, предохранитель.

Тепловые реле, работающие при переменном напряжении до 500 В, частота 50 Гц, имеют диапазон действия от нескольких сотен мА до нескольких сотен А. Диапазон тепловых реле Mitsubishi, LS, Schneider составляет от 0,1 А до 800 А.

Устройство теплового реле

Примечание:

  1. Рычаг
  2. Контакт нормально замкнутый
  3. Нормально разомкнутый контакт
  4. Винт регулировки силы удара
  5. Биметаллический стержень
  6. Нагревательный провод
  7. Рычаг
  8. Кнопка сброса

Можно сказать, что тепловое реле не слишком сложен и очень прост в использовании.

Принцип работы тепловых реле

Верно своему названию, тепловые реле работают по изменению температуры тока. Когда ток перегружен, выделяется огромное количество тепла, которое вызывает нагрев металлической пластины реле, что приводит к расширению. В составе теплового реле двойная металлическая пластина играет чрезвычайно важную роль для эффективной работы устройства. Эта сдвоенная металлическая пластина состоит из двух металлических стержней с разным показателем удлинения.

Обычно первый металлический стержень имеет меньший коэффициент расширения и часто инвар (включая 36% Ni + 64% Fe). Второй металлический стержень обычно изготавливают из латуни или хромоникелевой стали, поскольку его индекс расширения примерно в 20 раз больше, чем у инвара. Две плиты собираются в один лист горячей прокаткой или сваркой.

Когда ток внезапно изменяется, температура воздействует на двойной стальной стержень, так что он изгибается в направлении металлического стержня с меньшим коэффициентом расширения, который теперь можно использовать непосредственно для тока или окружающего провода сопротивления.. Величина изгиба более или менее зависит от длины и толщины металлического стержня.

Классификация тепловых реле

По устройству тепловые реле делятся на два типа: открытого типа и закрытого типа.

— По запросу можно использовать: Одно- и двухполюсного типа.

— По методу нагрева:

+ Прямой нагрев: Электроэнергия протекает напрямую через двойную металлическую пластину.Этот тип имеет простую конструкцию, но при изменении номинального тока пластину необходимо менять. Двойная металлическая, такой тип не удобен.

+ Косвенный нагрев: электрический ток протекает через независимый нагревательный элемент, излучаемое косвенно тепло заставляет металлическую пластину изгибаться. Преимущество этого типа состоит в том, что требуется изменить номинальный ток, нам нужно только заменить нагревательный элемент. Недостатком этого типа является то, что при большой перегрузке нагревательный элемент может достигать довольно высоких температур, но из-за плохой теплопередачи воздуха металлический лист не стал токсичным, и нагревательный элемент сгорел.

+ Комбинированный обогрев: Этот тип относительно хорош, потому что горит прямо и косвенно. Обладает относительно высокой термостойкостью и может работать при многократных перегрузках
больших.

Как выбрать тепловое реле

Тепловые реле используются для защиты двигателя от перегрузки, поэтому при выборе теплового реле необходимо выбрать правильный тип двигателя для защиты. Во многих случаях пользователь выбирает тепловое реле в соответствии с током контактора или аптомата, который является неправильным и приводит к сгоранию двигателя при перегрузке.

Ниже приведена таблица тепловых реле в зависимости от мощности двигателя:

Некоторые примечания при выборе теплового реле:

+ Выберите тепловое реле с регулируемым порогом, соответствующим рабочему диапазону двигателя или немного выше. Самый низкий порог срабатывания теплового реле должен быть ниже середины рабочего диапазона двигателя. Максимальный регулируемый порог теплового реле должен быть выше верхнего предела рабочего диапазона двигателя.

+ Некоторые типы тепловых реле имеют контакт для контактора (обычно небольшие тепловые реле). Поэтому он может установить только контактор правильного типа, совместимый с ним.

+ Некоторые тепловые реле высшего класса имеют встроенную защиту от обрыва фазы.

Управление промышленными двигателями: реле перегрузки



ЦЕЛИ:

— Обсудите различия между предохранителями и перегрузками.

— Список различных типов реле перегрузки.

— Опишите, как работают тепловые реле перегрузки.

— Опишите, как работают магнитные реле перегрузки.

— Опишите, как работают реле перегрузки приборной панели.

Перегрузки

Не следует путать перегрузки с предохранителями или автоматическими выключателями. Предохранители и автоматические выключатели предназначены для защиты цепи от прямого состояние заземления или короткого замыкания. Перегрузки предназначены для защиты мотор от состояния перегрузки.

Предположим, например, что двигатель имеет номинальный ток полной нагрузки 10 ампер. Также предположим, что двигатель подключен к цепи, защищен автоматическим выключателем на 20 ампер, РИС. 1. Теперь предположим, что двигатель перегружается и потребляет 15 ампер. В двигатель потребляет 150% тока полной нагрузки. Это большая перегрузка перегреет двигатель и повредит обмотки.

Но, поскольку сила тока всего 15 ампер, автоматический выключатель на 20 ампер не размыкает цепь для защиты двигателя.Реле перегрузки разработаны для размыкания цепи, когда ток становится от 115% до 125% двигателя ток полной нагрузки. Настройка перегрузки зависит от свойств двигателя, который необходимо защитить.

Свойства перегрузки

Все реле перегрузки должны обладать определенными свойствами. приказ на защиту мотора:

1. У них должны быть средства измерения тока двигателя. Некоторая перегрузка реле делают это путем преобразования тока двигателя в пропорциональную величину. тепла, а другие ощущают ток двигателя по силе магнитного поле.

2. У них должна быть какая-то временная задержка.

Двигатели обычно потребляют ток от 300% до 800% от полной нагрузки двигателя. ток при запуске. Пусковой ток двигателя называется заблокированным. ток ротора. Поскольку реле перегрузки обычно настраиваются на срабатывание при 115% до 125% от тока двигателя полной нагрузки, двигатель никогда не запустится, если реле перегрузки сработало мгновенно.

3. Они разделены на две отдельные секции: измерение тока раздел и раздел контактов.Секция измерения тока подключена последовательно с двигателем и определяет величину тока двигателя. Этот секция обычно подключается к напряжению в диапазоне от 120 вольт. до 600 вольт. Контактная секция является частью цепи управления и работает при напряжении цепи управления. Напряжения цепи управления в целом диапазон от 24 до 120 вольт, хотя некоторые элементы управления работают от сети напряжения 240 или 480 вольт.

Двухэлементные предохранители

Есть некоторые предохранители, которые предназначены для защиты от короткого замыкания. защита и защита от перегрузки.Эти предохранители называются двухэлементными. предохранители с выдержкой времени. Они состоят из двух частей (фиг. 2). Первый содержит плавкая вставка, которая предназначена для быстрого размыкания при большом количестве чрезмерный ток. Это защищает цепь от прямого заземления и короткие замыкания. Вторая секция действует медленнее; он содержит припой ссылка, которая связана с пружиной. Припой — это строго контролируемый сплав, предназначенный для плавления при определенной температуре. Если ток двигателя становится чрезмерным, припой плавится, и пружина разрывает звено.

Требуемая выдержка времени достигается за счет времени, необходимого для припой плавится даже при большом токе. Если ток двигателя возвращается в нормальное состояние после запуска, припой недостаточно нагревается таять.


РИС. 1 Автоматический выключатель не защищает двигатель от перегрузки.


РИС. 2 Двухэлементный предохранитель с выдержкой времени.


РИС. 3 Конструкция типичной перегрузки припоя.


РИС. 4 Реле тепловой перегрузки плавящегося сплава. Пружина толкает контакты открыть, если тепло расплавляет припой и позволяет зубчатому колесу вращаться свободно. Обратите внимание на электрические символы для нормально замкнутой перегрузки. контакт и нагревательный элемент.

Термореле перегрузки

Существует два основных типа реле перегрузки: тепловые и магнитные. Тепловые перегрузки возникают при последовательном подключении нагревателя к двигателю.Количество выделяемого тепла зависит от тока двигателя. Тепловые перегрузки можно разделить на два типа: плавильный припой или припой в ванне и биметаллический ленточный тип.

Поскольку тепловые реле перегрузки работают по принципу нагрева, они чувствительны к температуре окружающей среды (окружающего воздуха). Они едут быстрее если они расположены в теплом месте, чем в прохладном.


РИС. 5A Подогреватель плавящегося припоя.


РИС. 5B Нагреватель плавления припоя для защиты от перегрузки Аллена-Брэдли реле.


РИС. 6 Однофазное реле перегрузки, типичное для плавления сплава.

Тип плавления припоя

Перегрузки из-за плавления припоя часто называют перегрузками в ванне с припоем. Чтобы создать этот тип перегрузки, латунный вал помещают внутрь латунного трубка. Зубчатое колесо соединено с одним концом латунного вала.А припой из специального сплава, плавящийся при очень определенной температуре, сохраняет латунный вал механически соединен с латунной трубкой (фиг. 3). В зубчатое колесо удерживает набор подпружиненных контактов в замкнутом состоянии (РИС. 4). Вокруг латунной трубки или рядом с ней размещается электрический нагреватель. Обогреватель подключен последовательно с двигателем. Ток двигателя заставляет нагреватель производить тепло. Если сила тока достаточно велика в течение достаточно длительного периода со временем припой плавится и позволяет латунному валу вращаться внутри трубка, вызывая размыкание контакта.Тот факт, что некоторое время должно пройти до того, как припой станет достаточно горячим, чтобы расплавиться. время задержки для этого реле перегрузки. Большая перегрузка вызывает припой. чтобы быстрее расплавились и контакты открылись быстрее, чем при меньшем количестве тока перегрузки.

Нагреватели с плавящимся припоем имеют другую конструкцию: разных производителей, но все работают по одному принципу. Два разных типы узлов нагревателя плавящегося сплава показаны на фиг.5, части А и В. Типичное реле перегрузки из плавящегося сплава показано на фиг. 6. После срабатывания реле перегрузки необходимо подождать, пока реле остыть в течение двух или трех минут, прежде чем его можно будет сбросить.

Это время охлаждения необходимо, чтобы припой стал твердым. снова после того, как он растает.

Уставку тока отключения можно изменить, заменив нагреватель. Производители предоставьте таблицы, которые показывают, какой размер нагревателя должен быть установлен для разные величины тока двигателя.Необходимо использовать диаграмму что соответствует конкретному типу реле перегрузки. Не все диаграммы представить информацию таким же образом. Обязательно прочтите инструкцию содержится в таблице при выборе размеров нагревателя. Типичный диаграмма загрузки нагревателя показана на фиг. 7.


РИС. 7 Типовая диаграмма перегрузки нагревателя.


РИС. 8 Биметаллическая полоса изготавливается путем склеивания двух разных типов металла вместе.

Биметаллическое реле защиты от перегрузки

Второй тип теплового реле перегрузки — это перегрузка с биметаллической лентой. Как и плавильный сплав, он работает по принципу преобразования ток двигателя в пропорциональное количество тепла. Разница в том что тепло используется для изгиба или деформации биметаллической ленты. Биметалл полоса изготавливается путем соединения двух разных типов металла, которые расширяются с разными скоростями (ФИГ.8). Поскольку металлы расширяются с разной скоростью, полоса изгибается или коробится при изменении температуры (фиг. 9). Количество основы определяется по

1. Тип металла, из которого изготовлена ​​биметаллическая лента.

2. Разница температур между двумя концами полосы.

3. Длина полосы.

Нагреватель перегрузки нагревает биметаллическую ленту при протекании тока двигателя через это. Под воздействием тепла биметаллическая полоса деформируется.Если биметалл полоса становится достаточно горячей, это вызывает размыкание набора контактов (РИС. 10). После размыкания контакта перегрузки время охлаждения составляет около 2 минут. необходим для того, чтобы биметаллическая полоса вернулась в положение, позволяющее контакты должны быть повторно замкнуты. Фактор выдержки времени для этой перегрузки реле — время, необходимое для того, чтобы биметаллическая полоса искривилась в достаточной степени. количество, чтобы открыть нормально замкнутый контакт. Большой объем перегрузки ток заставляет биметаллическую полосу быстрее деформироваться и открывает связаться раньше.

Большинство биметаллических ленточных реле перегрузки имеют несколько особенностей: не доступны с реле перегрузки плавящегося припоя. Как генерал Как правило, диапазон срабатывания можно регулировать поворотом ручки, как показано на фиг. 10. Эта ручка регулирует расстояние, на которое биметаллическая полоса должна деформироваться, прежде чем открытие контактов. Эта регулировка позволяет изменять чувствительность. из-за изменения температуры окружающего воздуха. Если ручка установлена ​​в 100% положение (ФИГ.11) перегрузка срабатывает при токе полной нагрузки номинал, определяемый размером установленного нагревателя перегрузки. В холоде в зимние месяцы эта настройка может быть слишком высокой для защиты двигателя. В ручку можно отрегулировать в холодных условиях для работы в любой точке от От 100% до 85% тока полной нагрузки двигателя. В жаркие летние месяцы двигатель может «неприятно сработать» из-за высоких температур окружающей среды. В жарких условиях ручка регулировки позволяет реле перегрузки срабатывать. можно отрегулировать в пределах от 100% до 115% от тока полной нагрузки двигателя.


РИС. 9 Биметаллическая полоса коробится при изменении температуры.


РИС. 10 Биметаллическая лента реле перегрузки.

Еще одно отличие от припоя плавящегося типа состоит в том, что многие биметаллические ленточные реле перегрузки могут быть настроены как на ручной, так и на автоматический сброс настроек. Пружина, расположенная сбоку реле перегрузки, позволяет это настройки (РИС. 12). При установке в ручное положение контакты должны сбросить вручную, нажав рычаг сброса.Это наверное самый обычная настройка реле перегрузки. Если реле перегрузки было настроен на автоматический сброс, контакты снова замыкаются после биметаллическая полоса достаточно остыла. Это может быть угрозой безопасности если это могло вызвать внезапный перезапуск машины.

Реле перегрузки следует устанавливать в положение автоматического сброса только при нет опасности травмирования или повреждения оборудования при контакты перегрузки внезапно снова замыкаются.


РИС. 11 Ручка регулировки позволяет регулировать текущую настройку. от 85% до 115% от номинальной мощности нагревателя.


РИС. 12 Многие биметаллические ленточные реле перегрузки могут быть настроены на ручной или автоматический сброс.


РИС. 13 Реле одиночной перегрузки используется для защиты однофазного двигателя.

Трехфазные перегрузки

Реле перегрузки, рассмотренные до сих пор, предназначены для определения тока. одиночного проводника, по которому подается питание на двигатель (фиг.13). Приложение для этого типа реле перегрузки предназначено для защиты однофазного или постоянного тока мотор. NEC требуется только одно устройство датчика перегрузки для защиты прямого текущий двигатель или однофазный двигатель, независимо от того, работает ли он от 120 или 240 вольт. Однако трехфазные двигатели должны иметь датчик перегрузки. (нагреватели или магнитные катушки) в каждой из трехфазных линий.

В некоторых пускателях двигателей это достигается за счет использования трех устройств с однократной перегрузкой. реле для независимого определения тока в каждой из трехфазных линии (фиг.14). Когда это будет сделано, нормально замкнутый контакт каждого реле перегрузки подключено последовательно, как показано на фиг. 15. Если кто-нибудь реле должны размыкать нормально замкнутый контакт, питание на стартер катушка прерывается, и двигатель отключается от сети.

Также изготавливаются реле перегрузки, содержащие три нагревателя перегрузки и один набор нормально замкнутых контактов, фиг. 16. Эти реле обычно используется для защиты трехфазных двигателей.Хотя есть только один набор нормально замкнутые контакты, если возникает перегрузка на любом из трех нагревателей, это приводит к размыканию контактов и отключению катушки стартер двигателя (РИС. 17).


РИС. 14 Три однофазных реле перегрузки используются для измерения тока. в каждой линии трехфазного двигателя.


РИС. 15 Когда используются три однофазных реле перегрузки для защиты трехфазный двигатель, нормально замкнутые контакты каждого реле перегрузки соединены последовательно.


РИС. 16 Трехфазное тепловое реле перегрузки.

Магнитные реле перегрузки

Реле перегрузки магнитного типа работают, определяя силу магнитное поле, создаваемое током, протекающим к двигателю. Величайший разница между реле перегрузки магнитного и теплового типа составляет что магнитные типы нечувствительны к температуре окружающей среды. Магнитного типа реле перегрузки обычно используются в областях, которые демонстрируют экстремальные изменения по температуре окружающей среды.Магнитные реле перегрузки можно разделить на два основных типа: электронные и дашпоты.

Электронные реле перегрузки

Электронные реле перегрузки используют трансформатор тока для определения ток двигателя. Проводник, подающий питание на двигатель, проходит через сердечник тороидального трансформатора (фиг. 18). Как течет ток через проводник переменное магнитное поле вокруг проводника индуцирует напряжение в тороидальном трансформаторе.Количество наведенных напряжение пропорционально количеству тока, протекающего через дирижер. Это тот же основной принцип работы, что и большинство амперметров клещевого типа. Напряжение, индуцированное в тороидальном трансформаторе передается через подключенный электронный интерфейс, который обеспечивает время задержки, необходимое для запуска двигателя. Многие электронные реле перегрузки программируются и могут быть настроены на величину полной нагрузки ток двигателя, максимальный и минимальный уровни напряжения, процент перегрузки, и другие факторы.Трехфазное электронное реле перегрузки показано на ИНЖИР. 19.


РИС. 17 Трехфазное реле перегрузки содержит три нагревателя перегрузки. но один комплект нормально замкнутых контактов.


РИС. 18 электронных устройств измерения перегрузки измеряют ток двигателя путем измерения напряженность магнитного поля.


РИС. 19 Трехфазное электронное реле перегрузки.


РИС. 20 Таймер дашпота состоит в основном из поршня, вала и емкости.


РИС. 21 Базовая конструкция таймера дашпота.


РИС. 22 Настройка открытия отверстий влияет на время задержки таймер дашпота.


РИС. 23 Реле перегрузки Dashpot содержат катушки, серия с мотором.

Реле перегрузки приборной панели

Реле перегрузки Dashpot получили свое название от устройства, которое используется для выполнения время задержки, позволяющее запустить двигатель.Таймер дашпота в основном контейнер, поршень и вал (фиг. 20). Поршень помещен внутрь емкость, а емкость заполнена специальным маслом называется дашпот-маслом (фиг. 21). Масло Dashpot поддерживает постоянную вязкость в широком диапазоне температур. Тип и вязкость используемого масла является одним из факторов, определяющих время задержки для таймер. Другой фактор — это настройка открытия отверстия. отверстия в поршне (РИС.22). Отверстия с отверстиями позволяют маслу проходить через поршень, когда он поднимается через масло. Открытие отверстий под диафрагмы можно настроить, регулируя скользящий клапан на поршне.

Реле перегрузки приборной панели содержит катушку, включенную последовательно с двигателем (РИС. 23).

По мере протекания тока через катушку вокруг нее создается магнитное поле. катушка. Сила магнитного поля пропорциональна двигателю. Текущий.Это магнитное поле втягивает вал таймера дашпота в катушка. Движение вала замедляется из-за того, что поршень необходимо вытеснить масло в емкости. Если двигатель работает нормально, ток двигателя упадет до безопасного уровня до того, как вал будет вытянут достаточно глубоко в катушку, чтобы размыкать нормально замкнутый контакт (РИС. 24). Однако если двигатель перегружен, магнитное поле будет сильным. достаточно, чтобы продолжать втягивать вал в катушку, пока он не откроет контакт перегрузки.Когда питание отключено от двигателя, магнитный поле схлопывается, и поршень возвращается на дно контейнера.

Обратные клапаны позволяют поршню вернуться на дно контейнера почти сразу после пропадания тока двигателя.

Перегрузки Dashpot обычно предоставляют некоторый метод, который разрешает реле для настройки на различные значения тока полной нагрузки. Чтобы сделать эту настройку, вал соединен с резьбовым стержнем (РИС.25). Это позволяет вал, который нужно удлинить или укоротить внутри катушки. Чем больше длины вала, тем меньше тока требуется для втягивания вала в катушка достаточно далеко, чтобы размыкать контакты. Паспортная табличка в списках катушек различные настройки тока для конкретного реле перегрузки (РИС. 26). Регулировка осуществляется перемещением вала до тех пор, пока линия на вал, представляющий желаемый ток, находится заподлицо с верхней частью приборной панели контейнер (ФИГ.27). Реле защиты от перегрузки показано на фиг. 28.


РИС. 24 Нормально замкнутые контакты реле перегрузки щитка приборов.


РИС. 25 Длину вала можно регулировать для разных значений тока.


РИС. 26 На паспортной табличке указаны различные значения тока.


РИС. 27 Линия на валу, которая представляет желаемое количество current устанавливается заподлицо с верхней частью контейнера dashpot.


РИС. 28 Реле перегрузки Dashpot.


РИС. 29 Реле перегрузки с нормально замкнутым и нормально замкнутым открытый контакт. Нормально закрытый контакт обозначается OL, а нормально закрытый. открытый контакт помечен как ALAR. (Общий контакт обозначен как COM.)


РИС. 30 Реле перегрузки содержит однополюсный двухходовой комплект. контактов. Нормально закрытая секция (NC) защищает двигатель в событие состояния перегрузки и нормально разомкнутая секция (NO) поворачивается на индикаторной лампе, чтобы предупредить оператора о том, что двигатель отключился при перегрузке.

Контакты перегрузки

Хотя все реле перегрузки содержат набор нормально замкнутых контактов, некоторые производители также добавляют набор нормально разомкнутых контактов. Эти два набора контактов имеют форму однополюсного, двухконтактного переключатель или два отдельных контакта.

Однополюсный двухпозиционный переключатель имеет общую клемму (C), нормально закрытый контакт (NC) и нормально открытый контакт (NO) (ИНЖИР.29). Есть несколько причин для добавления нормально открытого набора контактов. Стартер, показанный на фиг. 30 использует нормально закрытую секцию для отключения пускателя двигателя в случае перегрузки и использует нормально открытый раздел, чтобы включить световой индикатор, чтобы сообщить оператора, что сработала перегрузка.

Реле перегрузки, показанное на фиг. 31 содержит два отдельных набора контактов, один нормально открытый, а другой нормально закрытый.Другое распространенное использование для нормально разомкнутый набор контактов реле перегрузки должен обеспечивать входной сигнал к программируемому логическому контроллеру (ПЛК). Если более нагрузка отключается, нормально замкнутый набор контактов размыкается и отключается катушка стартера от линии. Нормально разомкнутый набор контактов замыкается и подает сигнал на вход ПЛК (фиг. 32). Заметить, что два промежуточных реле CR1 и CR2 используются для разделения ПЛК и стартер двигателя.

Это часто делается из соображений безопасности. Реле управления предотвращают больше чем один источник питания от пускателя или ПЛК. Обратите внимание, что пускатель и ПЛК имеют отдельный источник питания. Если бы власть была отключение от стартера во время обслуживания или ремонта, это может привести к травма, если питание от ПЛК было подключено к какой-либо части стартер.


РИС. 31 Реле перегрузки с нормально замкнутым и нормально замкнутым открытый контакт.


РИС. 32 Нормально разомкнутые контакты подают сигнал на вход программируемый логический контроллер.

Защита двигателей большой мощности Двигатели большой мощности часто имеют потребляемый ток в несколько сотен ампер, что позволяет определить размер перегрузки утеплители сложные. В этом случае обычной практикой является использование трансформаторы тока для уменьшения силы тока до перегрузки нагреватели (РИС. 33). Трансформаторы тока, показанные на фиг.33 имеют передаточные числа из 150: 5. Это означает, что при протекании тока 150 ампер через первичная, то есть линия, подключенная к двигателю, вторичная обмотка трансформатора. вырабатывает ток 5 ампер, если вторичные клеммы закорочены вместе. Вторичные обмотки трансформаторов тока подключены к нагреватели от перегрузки для защиты двигателя (РИС. 34).


РИС. 33 Трансформаторы тока используются для уменьшения тока перегрузки.


РИС. 34 Трансформаторы тока уменьшают ток до перегрузочных нагревателей.

Предположим, что двигатель, подключенный к трансформаторам тока на фиг. 34 имеет ток полной нагрузки 136 ампер. Простой расчет показывает что трансформаторы тока с соотношением 150: 5 будут производить вторичную ток 4,533 ампера при 136 амперах, протекающих через первичную обмотку.

150/5 = 136 / X

150X = 680

X = 680/150

Х = 4.533

Нагреватели перегрузки фактически рассчитаны на двигатель с полной нагрузкой. ток 4.533 ампера.

ВИКТОРИНА

1. Каковы два основных типа реле перегрузки?

2. В чем основная разница в характеристиках между тепловыми типами и реле перегрузки магнитного типа?

3. Какие два основных типа реле защиты от перегрева?

4. Какой тип теплового реле перегрузки обычно настраивается вручную? или автоматический режим?

5.Почему необходимо допускать перегрузку типа плавления припоя реле остыть в течение 2–3 минут после срабатывания?

6. Все реле перегрузки разделены на две части. Что это два раздела?

7. Какое устройство используется для измерения силы тока двигателя в электронном реле перегрузки?

8. Какие два фактора определяют установку времени для таймера контрольной точки?

9. Сколько датчиков перегрузки требуется NEC для защиты постоянного тока? мотор?

10.Большой двигатель имеет номинальный ток полной нагрузки 425 ампер. Текущий трансформаторы с соотношением 600: 5 используются для понижения тока до нагреватели перегрузки. Каким должен быть номинальный ток полной нагрузки нагреватели перегрузки?

При каких перегрузках следует устанавливать электродвигатели? — MVOrganizing

На что следует установить перегрузку двигателя?

2) Неправильно настроена тепловая перегрузка. Основное требование для настройки защиты от перегрузки для двигателей составляет 125% от их тока полной нагрузки в соответствии с NEC; тем не менее, убедитесь, что вы прочитали инструкции по реле перегрузки.

Что такое перегрузка двигателя?

Перегрузка двигателя возникает, когда двигатель находится под чрезмерной нагрузкой. Первичные симптомы, сопровождающие перегрузку двигателя, — это чрезмерное потребление тока, недостаточный крутящий момент и перегрев. Чрезмерный нагрев двигателя — основная причина отказа двигателя.

Как рассчитать перегрузку звезда-треугольник?

Реле перегрузки в обмотке: в обмотках означает, что перегрузка помещается после точки, где проводка к контакторам разделена на основную и треугольную.В этом случае перегрузка всегда измеряет ток внутри обмоток. Настройка реле перегрузки (в обмотке) = 0,58 X FLC (линейный ток).

Как работает двигатель с перегрузкой?

Реле перегрузки защищают двигатель, считывая ток, идущий в двигатель. Во многих из них используются небольшие нагреватели, часто биметаллические элементы, которые изгибаются при нагревании током, подаваемым в двигатель. Когда ток слишком велик в течение слишком длительного времени, нагреватели размыкают контакты реле, проводя ток к катушке контактора.

Что вызывает перегрузку двигателя?

Перегрузка двигателя может быть вызвана увеличением нагрузки, приводимой в движение двигателем, отказом подшипников в двигателе или ведомой нагрузке, либо проблемами с электричеством, такими как низкое входное напряжение или однофазность.

Как выбрать перегрузку двигателя?

3. Реле тепловой перегрузки

  1. Мин. Настройка реле тепловой перегрузки = 70% x ток полной нагрузки (фаза)
  2. Мин. Уставка теплового реле перегрузки = 70% x4 = 3 ампер.
  3. Макс. Настройка реле тепловой перегрузки = 120% x ток полной нагрузки (фаза)
  4. Макс. Уставка теплового реле перегрузки = 120% x4 = 4 Ампер.

Как рассчитать перегрузку?

Перегрузки определены с использованием 125% FLA, 7A x 1.25 = 8,75 А. Максимально допустимый размер перегрузок — 9,8 А. Перегрузка может составлять 140% от FLA, если перегрузка срабатывает при номинальной нагрузке или не позволяет двигателю запуститься, 7A x 1,4 = 9,8A.

Что такое защита от перегрузки класса 10?

Реле перегрузки класса 10, например, должно отключать двигатель за 10 секунд или меньше при 600% тока полной нагрузки (обычно достаточно времени для достижения двигателем полной скорости). Для многих промышленных нагрузок, особенно для высокоинерционных нагрузок, требуется класс 30.

Что такое защита от перегрузки?

Защита от перегрузки — это защита от перегрузки по току, которая может вызвать перегрев защищаемого оборудования. Следовательно, перегрузка также является разновидностью перегрузки по току. Защита от перегрузки обычно работает по кривой с обратнозависимой выдержкой времени, когда время отключения становится меньше по мере увеличения тока.

Что такое напряжение перегрузки?

Перенапряжение — это напряжение, превышающее максимальное значение рабочего напряжения в электрической цепи.

Что такое перегрузка компрессора?

Когда компрессор отключается и сильно нагревается, используется термин: тепловая перегрузка. Внешний змеевик загрязнен или перевернут, поэтому система не может отводить тепло, это заставляет компрессор работать больше и, следовательно, нагреваться. 2. Компрессор работает в режиме «короткого цикла».

Что такое тепловая защита от перегрузки?

Реле тепловой перегрузки — это экономичные электромеханические устройства защиты главной цепи. Они обеспечивают надежную защиту двигателей в случае перегрузки или обрыва фазы.

Какие два основных типа тепловых реле перегрузки?

Существует два основных типа реле перегрузки: тепловые и магнитные. Тепловые перегрузки возникают при последовательном подключении нагревателя к двигателю. Количество выделяемого тепла зависит от тока двигателя. Тепловые перегрузки можно разделить на два типа: тип плавления припоя или тигель с припоем и тип биметаллической ленты.

Что вызывает срабатывание тепловой перегрузки?

Причины могут включать большое изменение нагрузки (напр.g., измельчитель металлолома подается слишком много за один раз), перекос, сломанный приводной механизм или неправильные настройки привода двигателя. Проблемы с питанием (например, низкое напряжение или низкий коэффициент мощности) также могут вызвать состояние перегрузки.

Что такое тепловая защита двигателя?

Тепловая защита — это метод защиты двигателя вентилятора, который активируется, когда двигатель, работающий при номинальном напряжении, по какой-либо причине блокируется, но питание все еще остается. Он использует тепловое реле внутри двигателя, чтобы разорвать цепь катушки обмотки при температуре ниже уровня, который может вызвать возгорание.

Все двигатели нуждаются в защите от перегрузки?

КАЖДОМУ двигателю необходима защита от перегрузки того или иного типа. Некоторые малые двигатели имеют конструктивную защиту по сопротивлению. Некоторые двигатели могут быть защищены от перегрузки автоматами или предохранителями. У некоторых двигателей есть внутренние датчики температуры, которые отключают пускатель двигателя.

Что нужно сделать, прежде чем можно будет сбросить перегрузку двигателя?

Проверить контактор пускателя двигателя, предохранители и реле перегрузки. 4) Устраните основную причину перегрузки и сбросьте перегрузки, нажав кнопку сброса.Запустите двигатель и проверьте ток на работающем двигателе и сравните его с номинальным значением FLA и размером нагревателя при перегрузке с помощью клещевого амперметра.

Почему в двигателе используется термистор?

Термистор — это небольшой датчик нелинейного сопротивления, который может быть встроен в изоляцию обмотки двигателя, чтобы обеспечить тесную тепловую связь с обмоткой. Он изготовлен из оксида металла или полупроводника.

Каков принцип работы термистора?

Принцип работы термистора заключается в том, что его сопротивление зависит от его температуры.Мы можем измерить сопротивление термистора с помощью омметра.

Можно ли обойти термистор?

Можно ли обойти термистор до покупки нового? Вы могли бы обойти это, если бы у вас было что-то, что было бы правильным сопротивлением; однако вы не можете просто перепрыгнуть через него, так как это не сработает.

Как работают термисторы?

Термисторы меняют сопротивление при изменении температуры; это резисторы, зависящие от температуры. Они идеально подходят для сценариев, в которых необходимо поддерживать одну определенную температуру, они чувствительны к небольшим изменениям температуры.Они могут измерять жидкость, газ или твердые тела, в зависимости от типа термистора.

Как прочитать термистор?

Характеристики термистора Обычно выражаются в процентах (например, 1%, 10% и т. Д.). Например, если указанное сопротивление при 25 ° C для термистора с допуском 10% составляет 10000 Ом, то измеренное сопротивление при этой температуре может находиться в диапазоне от 9000 Ом до 11000 Ом.

Термистор — это датчик?

Термисторы, производные от термина термочувствительные резисторы, представляют собой очень точный и экономичный датчик для измерения температуры.Доступный в 2 типах, NTC (отрицательный температурный коэффициент) и PTC (положительный температурный коэффициент), это термистор NTC, который обычно используется для измерения температуры.

Что такое термисторные датчики?

Термистор — это специальный тип переменного резистивного элемента, который изменяет свое физическое сопротивление при изменении температуры. Термистор — это твердотельное устройство для измерения температуры, которое действует как электрический резистор, но чувствительно к температуре.

Какие типы термисторов?

Два основных типа термисторов — это NTC (отрицательный температурный коэффициент) и PTC (положительный температурный коэффициент). Термисторы измеряют температуру с помощью сопротивления.

В чем разница между RTD и термистором?

RTD — это тип прибора, используемый для измерения температуры, тогда как термистор — это терморезистор, сопротивление которого изменяется в зависимости от температуры. RTD изготовлен из металлов с положительным температурным коэффициентом, тогда как термистор изготовлен из полупроводниковых материалов.

Почему у RTD 3 провода?

Для компенсации сопротивления подводящего провода трехпроводные термометры сопротивления имеют третий провод, который обеспечивает измерение сопротивления подводящего провода и вычитает это сопротивление из считываемого значения. Поскольку 3-проводные термометры сопротивления настолько эффективны и доступны по цене, они стали отраслевым стандартом.

Где используется RTD?

Иногда называемые термометрами сопротивления, RTD обычно используются в лабораторных и промышленных приложениях, поскольку они обеспечивают точные и надежные измерения в широком диапазоне температур.

Как выбрать

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *