+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Регулятор мощности для паяльника своими руками

Моделей паяльников в магазинах множество — от дешёвых китайских до дорогих, со встроенным регулятором температуры, продаются даже паяльные станции.

Другое дело, нужна ли та же станция, если подобные работы нужно выполнять раз в год, а то и реже? Проще купить недорогой паяльник. А у кого-то дома сохранились простые, но надёжные советские инструменты. Паяльник, не оснащённый дополнительным функционалом, греет на полную, пока вилка в сети. А отключённый, быстро остывает. Перегретый паяльник способен испортить работу: им становится невозможно прочно припаять что-либо, флюс быстро испаряется, жало окисляется и припой скатывается с него. Недостаточно нагретый инструмент и вовсе может испортить детали — из-за того что припой плохо плавится, паяльник можно передержать впритык к деталям.

Чтобы сделать работу комфортнее, можно собрать своими руками регулятор мощности, который ограничит напряжение и тем самым не даст жалу паяльника перегреваться.

Регуляторы для паяльника своими руками. Обзор способов монтажа

В зависимости от вида и набора радиодеталей, регуляторы мощности для паяльника могут быть разных размеров, с разным функционалом. Можно собрать как небольшое простое устройство, в котором нагрев прекращается и возобновляется нажатием кнопки, так и габаритное, с цифровым индикатором и программным управлением.

Возможные виды монтажа в корпус: вилка, розетка, станция

В зависимости от мощности и задач регулятор можно поместить в несколько видов корпуса. Самый простой и довольной удобный — вилка. Для этого можно использовать зарядное устройство для сотового телефона или корпус любого адаптера. Останется только найти ручку и поместить её в стенке корпуса. Если корпус паяльника позволяет (там достаточно места), можно разместить плату с деталями в нём.

Регулятор мощности своими руками в вилкеРегулятор мощности своими руками в вилкеТакой регулятор мощности всегда находится вместе с паяльником — его нельзя забыть или потерять

Другой вид корпуса для несложных регуляторов — розетка. Она может быть как одинарной, так и представлять собой тройник-удлинитель. В последнем можно очень удобно поставить ручку со шкалой.

Регулятор мощности своими руками в одинарной розеткеРегулятор мощности своими руками в одинарной розеткеКорпус удобен для размещения платы с деталямиРегулятор мощности в бытовом тройникеРегулятор мощности в бытовом тройникеНа месте одной и розеток стоит ручка переключателя со шкалой

Вариантов монтажа регулятора с индикатором напряжения тоже может быть несколько. Все зависит от сообразительности радиолюбителя и фантазии. Это может быть как очевидный вариант — удлинитель с вмонтированным туда индикатором, так и оригинальные решения.

Регулятор мощности в розетке с цифровым индикаторомРегулятор мощности в розетке с цифровым индикаторомСчетчик на корпусе дает точные цифры для работ, где важна строго определённая температураРегулятор мощности в корпусе обычной мыльницыРегулятор мощности в корпусе обычной мыльницыПлата закреплена внутри винтами

Собрать можно даже подобие паяльной станции, установить на ней подставку для паяльника (её можно купить отдельно). При монтаже нельзя забывать о правилах безопасности. Детали нужно изолировать — например, термоусадочной трубкой.

Варианты схем в зависимости от ограничителя мощности

Регулятор мощности можно собрать по разным схемам. В основном различия состоят в полупроводниковой детали, приборе, который будет регулировать подачу тока. Это может быть тиристор или симистор. Для более точного управления работой тиристора или симистора в схему можно добавить микроконтроллер.

Можно сделать простейший регулятор с диодом и выключателем — для того чтобы оставить паяльник в рабочем состоянии на какое-то (возможно, длительное) время, не давая ему ни остывать, ни перегреваться. Остальные регуляторы дают возможность задать температуру жала паяльника более плавно — под различные нужды. Сборка устройства по любой из схем производится схожим способом. В фотографиях и видеороликах приведены примеры того, как можно собрать регулятор мощности для паяльника своими руками. На их основе можно сделать прибор с нужными лично вам вариациями и по собственной схеме.

Тиристор — своеобразный электронный ключ. Пропускает ток только в одном направлении. В отличие от диода у тиристора 3 выхода — управляющий электрод, анод и катод. Открывается тиристор посредством подачи импульса на электрод. Закрывается при смене направления или прекращении подачи проходящего через него тока.

ТиристорТиристорТиристор, его главные составные части и отображение на схемах

Симистор, или триак — вид тиристора, только в отличие от этого прибора, двусторонний, проводит ток в обоих направлениях. Представляет собой, по сути, два тиристора, соединённые вместе.

СимисторСимисторСимистор, или триак. Основные части, принцип действия и способ отображения на схемах. А1 и А2 — силовые электроды, G — управляющий затвор

В схему регулятора мощности для паяльника — зависимости от его возможностей — включают следующие редиодетали.

Резистор — служит для преобразования напряжения в силу тока и обратно. Конденсатор — основная роль этого прибора в том, что он перестаёт проводить ток, как только разряжается. И начинает проводить вновь — по мере того как заряд достигает нужной величины. В схемах регуляторов конденсатор служит для того, чтобы выключить тиристор. Диод — полупроводник, элемент, который пропускает ток в прямом направлении и не пропускает в обратном. Подвид диода — стабилитрон — используется в устройствах для стабилизации напряжения. Микроконтроллер — микросхема, при помощи которой обеспечивается электронное управление устройством. Бывает разной степени сложности.

ДиодДиодДиоды не проводят ток в обратном направленииДиод — обозначениеДиод — обозначениеТак обозначается диод на схемахСтабилитроныСтабилитроныСтабилитроны используются для стабилизации напряженияконденсаторконденсаторКонденсатор используется в основном для выключения тиристораРезисторРезисторВнешний вид резистора и способ отображения на схемеМироконтроллерМироконтроллерМикроконтроллер дает возможность программного управления устройством

Схема с выключателем и диодом

Такой тип регулятора самый простой в сборке, с наименьшим количеством деталей. Его можно собирать без платы, на весу. Выключатель (кнопка) замыкает цепь — на паяльник подаётся всё напряжение, размыкает — напряжение падает, температура жала тоже. Паяльник при этом остаётся нагретым — такой способ хорош для режима ожидания. Подойдёт выпрямительный диод, рассчитанный на ток от 1 Ампера.

Схема с выключателем и диодомСхема с выключателем и диодомСамый простой в монтаже регулятор
Сборка двухступенчатого регулятора на весу
  1. Подготовить детали и инструменты: диод (1N4007), выключатель с кнопкой, кабель с вилкой (это может быть кабель паяльника или же удлинителя — если есть страх испортить паяльник), провода, флюс, припой, паяльник, нож.
  2. Зачистить, а потом залудить провода.
  3. Залудить диод. Припаять провода к диоду. Удалить лишние концы диода. Надеть термоусадочные трубки, обработать нагревом. Можно также использовать электроизоляционную трубку — кембрик. Подготовить кабель с вилкой в том месте, где удобнее будет крепить выключатель. Разрезать изоляцию, перерезать один из находящихся внутри проводов. Часть изоляции и второй провод оставить целыми. Зачистить концы разрезанного провода.
  4. Расположить диод внутри выключателя: минус диода — к вилке, плюс — к выключателю.
  5. Скрутить концы разрезанного провода и проводов, подсоединённых к диоду. Диод должен находиться внутри разрыва. Провода можно спаять. Подключить к клеммам, затянуть винты. Собрать выключатель.
Регулятор с выключателем и диодом — пошагово и наглядно

Регулятор на тиристоре

Регулятор с ограничителем мощности — тиристором — позволяет плавно устанавливать температуру паяльника от 50 до 100%. Для того чтобы расширить эту шкалу (от нуля до 100%), в схему нужно добавить диодный мост. Сборка регуляторов и на тиристоре, и на симисторе совершает сходным образом. Метод можно применить для любого устройства такого типа.

Тиристорный регуляторТиристорный регуляторПример монтажа тиристорного регулятора на плате
Сборка тиристорного (симисторного) регулятора на печатной плате
  1. Сделать монтажную схему — наметить удобное расположение всех деталей на плате. Если плата приобретается — монтажная схема идёт в комплекте.
  2. Подготовить детали и инструменты: печатную плату (её нужно сделать заранее согласно схеме или купить), радиодетали — см. спецификацию к схеме, кусачки, нож, провода, флюс, припой, паяльник.
  3. Разместить на плате детали согласно монтажной схеме.
  4. Откусить кусачками лишние концы деталей.
  5. Смазать флюсом и припаять каждую деталь — сначала резисторы с конденсаторами, потом — диоды, транзисторы, тиристор (симистор), динистор.
  6. Подготовить корпус для сборки.
  7. Зачистить, залудить провода, припаять к плате согласно монтажной схеме, установить плату в корпус. Заизолировать места соединения проводов.
  8. Проверить регулятор — подключить к лампе накаливания.
  9. Собрать устройство.
Схема с маломощным тиристором

Тиристор небольшой мощности недорогой, занимает мало места. Его особенность — в повышенной чувствительности. Для управления им используются переменный резистор и конденсатор. Подходит для устройств мощностью не более 40 Вт.

Схема с маломощным тиристором и световым индикаторомСхема с маломощным тиристором и световым индикаторомТакой регулятор не требует дополнительного охлаждения

Спецификация

Схема с мощным тиристором

Управление тиристором осуществляется за счёт двух транзисторов. Уровень мощности регулирует резистор R2. Регулятор, собранный по такой схеме, рассчитан на нагрузку до 100 Вт.

Регулятор на тиристоре КУ202НРегулятор на тиристоре КУ202НРегулятор оптимален для нагрузки до 100 Вт

Спецификация

Сборка тиристорного регулятора по приведённой схеме в корпус — наглядно

https://youtube.com/watch?v=4DG4_w2fe4E

Сборка и проверка тиристорного регулятора (обзор деталей, особенности монтажа)
Схема с тиристором и диодным мостом

Такое устройство даёт возможность регулировки мощности от нуля до 100%. В схеме использован минимум деталей.

Схема с тиристором и диодным мостомСхема с тиристором и диодным мостомСправа — диаграмма преобразования напряжения

Спецификация

Регулятор на симисторе

Схема регулятора на симисторе с небольшим количеством радиодеталей. Позволяет регулировать мощность от нуля до 100%. Конденсатор и резистор обеспечат чёткую работу симистора — он будет открываться даже при низкой мощности.

Схема симисторного регулятораСхема симисторного регулятораВ качестве индикатора в таком регуляторе мощности используется светодиод
Сборка симисторного регулятора по приведённой схеме пошагово

Регулятор на симисторе с диодным мостом

Схема такого регулятора не очень сложная. При этом варьировать мощность нагрузки можно в довольно большом диапазоне. При мощности более 60 Вт лучше посадить симистор на радиатор. При меньшей мощности охлаждение не нужно. Метод сборки такой же, как и в случае с обычным симисторным регулятором.

Схема регулятора на симисторе с диодным мостомСхема регулятора на симисторе с диодным мостомПри меньшей мощности нагрузки симистор можно взять и слабееРегулятор на симисторе — вариант монтажа на платеРегулятор на симисторе — вариант монтажа на платеОбразец монтажа регулятора на симисторе с диодным мостом на печатную платуРегулятор с симистором и диодным мостом — образецРегулятор с симистором и диодным мостом — образецРегулятор с симистором — образец монтажа в корпус

Регулятор мощности с симистором на микроконтроллере

Микроконтроллер позволяет точно установить и отобразить уровень мощности, обеспечить автоматическое отключение регулятора, если с ним долго не работают. Способ монтажа такого регулятора существенно не отличается от монтажа любого симисторного регулятора. Паяется на печатной плате, которая изготавливается предварительно. Очень важно поставить правильную прошивку.

Схема симисторного регулятора с микроконтроллеромСхема симисторного регулятора с микроконтроллеромТакой регулятор может заменить паяльную станцию

Спецификация

Рекомендации по проверке и наладке

Перед монтажом собранный регулятор можно проверить мультиметром. Проверять нужно только с подключённым паяльником, то есть под нагрузкой. Вращаем ручку резистора — напряжение плавно изменяется.

В регуляторах, собранных по некоторым из приведённых здесь схем, уже будут стоять световые индикаторы. По ним можно определить, работает ли устройство. Для остальных самая простая проверка — подключить к регулятору мощности лампочку накаливания. Изменение яркости наглядно отразит уровень подаваемого напряжения.

Регуляторы, где светодиод находится в цепи последовательно с резистором (как на схеме с маломощным тиристором), можно наладить. Если индикатор не горит, нужно подобрать номинал резистора — взять с меньшим сопротивлением, пока яркость не будет приемлемой. Слишком большой яркости добиваться нельзя — сгорит индикатор.

Как правило, регулировка при правильно собранной схеме не требуется. При мощности обычного паяльника (до 100 Вт, средняя мощность — 40 Вт) ни один из регуляторов, собранных по вышеприведённым схемам, не требует дополнительного охлаждения. Если паяльник очень мощный (от 100 Вт), то тиристор или симистор нужно установить на радиатор во избежание перегрева.

Симистор с радиаторомСимистор с радиаторомРадиатор предотвратит перегрев устройства

Регулятор мощности для паяльника можно собрать своими руками, ориентируясь на собственные возможности и потребности. Существует немало вариантов схем регулятора с различными ограничителями мощности и разными средствами управления. Здесь приведены некоторые, самые простые из них. А небольшой обзор корпусов, в которые можно смонтировать детали, поможет выбрать формат устройства.

tehznatok.com

Регулятор мощности паяльника | Для дома, для семьи

Здравствуйте уважаемые читатели сайта sesaga.ru. В этой статье я расскажу Вам, как собрать простой регулятор мощности для паяльника, позволяющий плавно изменять напряжение на нагревательном элементе, тем самым поддерживая оптимальную температуру жала паяльника.

Регулятор мощности для паяльника

Если жало недостаточно прогретое, то припой плавится медленно, и паяльник приходится дольше держать прижатым к выводам деталей, что может привести их к выходу из строя.

Пайка перегретым жалом так же получается непрочной. Припой не держится на таком жале, а просто скатывается с него.

Отсюда вывод: чтобы пайка не была мучением, а рабочая часть паяльника была всегда хорошо прогрета, для него нужно поддерживать оптимальную температуру.

Внимание! Эта конструкция имеет бестрансформаторное питание от сети переменного тока. Собирая ее, обращайте особое внимание на соблюдение техники безопасности при работе с электроустановками.

Принципиальная схема регулятора мощности.

Эту схему я собрал так давно, что даже и не помню когда. Она была опубликована в журнале «Радио» № 2-3 за 1992 г. автора И. Нечаева, и за все время эксплуатации регулятора не было ни одного отказа.

Схема регулятора мощности паяльника

Как Вы видите, схема очень простая, и состоит всего из двух частей: силовой и схемы управления.

К силовой части относится тиристор VS1, с анода которого снимается регулируемое напряжение, через которое паяльник включается в сеть 220В.

Схема управления, собранная на транзисторах VT1 и VT2, управляет работой тиристора. Питается она через параметрический стабилизатор, образованный резистором R5 и стабилитроном VD1. Стабилитрон VD1 служит для стабилизации и ограничения возможного повышения напряжения, питающего схему управления. Резистор R5 гасит лишнее напряжение, а переменным резистором R2 регулируется выходное напряжение регулятора мощности.

Вот такой небольшой набор нам понадобится, для сборки регулятора мощности для паяльника.

Набор элементов для регулятора мощности

Конструкция и детали.

В схеме используются два кремниевых транзистора: КТ315 и КТ361. Так как корпуса у них одинаковые, то различаются они по месту расположения буквенной маркировки. На рисунке эти места обозначены стрелками.

Цоколевка и внешний вид транзисторов

У транзистора КТ315 буква всегда расположена в левом верхнем углу корпуса, а у КТ361 буква всегда наносится в середине корпуса. Все остальные обозначения это: год выпуска, месяц, партия.

На следующем рисунке изображены диод и стабилитрон. Здесь нужно обратить внимание на цоколевку их выводов. Как правило, цоколевка наносится на корпусе элемента в виде полоски, точки или нескольких точек со стороны

обозначаемого вывода.

Также встречаются диоды, у которых на корпусе нанесено условное обозначение диода, применяемое на принципиальных схемах. Как именно нанесено обозначение относительно выводов, значит, такое расположение анода и катода соответствует действительности.

У импортных диодов и стабилитронов наносится полоска со стороны вывода катода, а у мощных, цоколевка наносится в виде условного обозначения диода.

Внешний вид диода и стабилитрона

У Советских и Российских диодов цоколевка немного отличается от импортной. Здесь используется и полоска, и точки, и условное обозначение диода. К тому же еще обозначаются и вывод анода, и вывод катода. Так что, в любом случае, желательно использовать справочник или измерительный прибор для более точного определения выводов.

В схеме регулятора мощности, в качестве регулируемого элемента, используется тиристор. Сам по себе тиристор напоминает диод, только у него есть еще один вывод – управляющий электрод.

Цоколевка и внешний вид тиристора

В закрытом состоянии тиристор не пропускает ток, и если на его управляющий электрод подать отпирающее напряжение, то тиристор откроется, и через анод и катод потечет ток. Чем больше будет ток отпирающего напряжения, тем больший ток будет пропускать тиристор через себя.

Если возникнут проблемы с приобретением резистора R5, то его можно будет сделать из двух резисторов, соединенных последовательно. Все остальные детали простые, поэтому на них останавливаться не будем.

В качестве корпуса регулятора мощности, как вы уже догадались, возьмем накладную розетку. Когда будете покупать, то обратите внимание, чтобы сама розетка была сделана из пластмассы, а не из керамики.

Пластмассовая часть розетки

Это нужно для того, если вдруг тиристор не будет влезать в корпус, то от пластмассы всегда можно срезать лишний кусок.

Собирать регулятор будем из двух частей. Низковольтную часть лучше собрать на фольгированном стеклотекстолите, плотном картоне или любом другом диэлектрическом материале — так будет аккуратней. А вот высоковольтную часть сделаем навесным монтажом, как показано на рисунке ниже.

Монтажная схема регулятора мощности

Здесь отверстия обозначены черными точками, а все соединения между точками и деталями — дорожки, показаны синими линиями.
Плата схемы управления и силовая часть соединяются между собой тремя красными проводниками.

Плата схемы управления регулятора мощности.

Если у Вас нет опыта, то монтаж лучше сделать на плотном картоне. Заодно поймете, как элементы собираются в схему, да и для такой схемки тратить текстолит и хлорное железо расточительно. Тем более, практически все радиолюбители начинали именно с картона или фанеры. Я сам свой первый транзисторный приемник собрал на картоне.

Здесь все очень просто. В картоне прокалываете отверстия, и в них вставляете радиодетали. С обратной стороны картона загните выводы, и спаяйте их между собой, собирая схему.

Кусок картона возьмите с запасом. Лишнее потом отрежете.

Вот такая плата схемы управления у меня получилась.

Плата схемы управления регулятора мощности

P.S. Я немного разучился собирать схемы на картоне, получилось не совсем красиво, но это лучше, чем навесной монтаж.

Силовая часть регулятора мощности.

К аноду и катоду тиристора припаиваем диод VD2. Резистор R6 припаивается к управляющему электроду и катоду тиристора. Резистор R5 одним выводом подпаивается к аноду тиристора, а вторым к катоду стабилитрона VD1. С управляющего электрода тиристора проводник уйдет на эмиттер транзистора VT1.

Монтажная схема силовой части регулятора

Теперь силовую часть и плату управления собираем в единую схему. Должно получиться вот так.

Монтажная схема регулятора в сборе

Все, что мы с Вами собрали, осталось подключить к розетке будущего регулятора мощности.

Здесь будьте предельно внимательны

. Одна ошибка, и можно потерять тиристор, диод, или вообще сделать короткое замыкание.

На всякий случай сделал рисунок, где указал, куда следует припаивать и подключать провода от схемы регулятора и шнура 220В к розетке, в которую будет вставляться паяльник.

Подключаем схему к розетке регулятора мощности

Перед установкой всех компонентов в корпус необходимо проверить работу регулятора мощности. Для этого вставляем паяльник в розетку регулятора, измерительный прибор переводим в режим измерения переменного напряжения на самый высокий предел

. В мультиметре это 750В.

Включаем вилку регулятора в сетевую розетку 220В и вращаем переменный резистор. Если Вы все сделали правильно, то на приборе напряжение должно плавно изменяться.

Бывает так, что при вращении резистора в сторону, например, увеличения, напряжение уменьшается. Или наоборот. Здесь, просто надо поменять местами крайние выводы переменного резистора.

Из личного опыта. Рекомендую установить на выходе регулятора значение напряжения 150 Вольт и запомнить или отметить положение движка переменного резистора при этом значении. Чтобы уже потом при пайке производить регулирование температуры жала паяльника от этого значения в большую или меньшую сторону.

Теперь осталось все вот это поместить в корпус.

Вначале крепите переменный резистор, следом укладываете тиристор, потом крепите под винт розетку, ну и плату вставляете туда, куда она влезет. У меня получилось вот так.

Регулятор мощности в сборе

От розетки, которую Вы купили, должна остаться крышка, закрывающая дно. Вот ей, я и предлагаю закрыть нижнюю часть регулятора.
Для этого в крепежные отверстия розетки нужно паяльником вплавить гайки диаметром 3мм, а крышку прикрепить винтами с плоской шляпкой. Должно получиться приблизительно вот так.

Крепление задней крышки регулятора мощности

Вот и все. Собранная правильно из исправных деталей схема регулятора мощности для паяльника начинает работать сразу, и в налаживании не нуждается.

P.S. Эту идею подсказал читатель T@NK. В свою конструкцию регулятора он установил стрелочный вольтметр — что очень удобно. Но таких маленьких головок, чтобы можно было ее установить в розетку, промышленность не выпускает, поэтому предлагаю установить светодиод, что тоже будет удобно. На принципиальной схеме вновь добавляемые элементы выделены красным цветом.

Доработка схемы регулятора мощности для паяльника

По яркости свечения светодиода Вы будете приблизительно видеть, какое напряжение поступает на паяльник в данный момент. Светодиод можно установить прямо над ручкой переменного резистора.

Резистор подбирайте исходя из яркости свечения светодиода. Начните от номинала 100 килоом. Припаиваете резистор и светодиод, устанавливаете движок переменного резистора на максимум, и включаете регулятор мощности в розетку. Паяльник должен быть подключен.

Если светодиод не «горит», уменьшаете номинал резистора, например, до 91 килоома и пробуете. Предварительно проверьте измерительным прибором, какая яркость у светодиода — такой яркости и добивайтесь. Ярче делать не надо – сгорит.

Если светодиод опять не «горит» или «горит» слабо, значит, снова уменьшаете номинал резистора. Таким образом, подгоняете резистор под яркость свечения светодиода. Когда яркость свечения будет приемлемая, покрутите движок переменного резистора: в одну сторону яркость свечения будет уменьшаться, а в другую увеличиваться.

Внимание! Не забываем все манипуляции с регулятором делать только тогда, когда он выключен из розетки. Конструкция имеет бестрансформаторное питание.

Также рекомендую посмотреть ролик, в котором автор нескольких статей этого сайта picdiod усовершенствовал регулятор и демонстрирует его работу. А для тех, кто захочет повторить его конструкцию, picdiod предоставляет чертежи печатных плат в формате lay, которые можно скачать по этой ссылке.

А если Вы предполагаете использовать этот регулятор для включения и отключения освещения, то почитайте статью об автомате плавного включения и отключения освещения, который за счет плавной подачи напряжения на лампу накаливания продлевает ей срок жизни.

Удачи!

sesaga.ru

Регулятор мощности для паяльника на тиристоре, симисторе и микроконтроллере, сделанный своими руками

При работе с электрическим паяльником температура его жала должна оставаться постоянной, что является гарантией получения высококачественного паяного соединения.

Однако в реальных условиях этот показатель постоянно меняется, приводя к остыванию или перегреву нагревательного элемента и необходимости устанавливать в цепях питания специальный регулятор мощности для паяльника.

Зачем он нужен

Колебания температуры жала паяльного устройства могут быть объяснены следующими объективными причинами:

  • нестабильность входного питающего напряжения;
  • большие тепловые потери при пайке объёмных (массивных) деталей и проводников;
  • значительные колебания температуры окружающей среды.

Для компенсации воздействия этих факторов промышленностью освоен выпуск ряда устройств, имеющих специальный диммер для паяльника, обеспечивающий поддержание температуры жала в заданных пределах.

Однако при желании сэкономить на обустройстве домашней паяльной станции регулятор мощности вполне может быть изготовлен своими руками. Для этого потребуется знание основ электроники и предельная внимательность при изучении приводимых ниже инструкций.

Принцип работы контролера паяльной станции

Известно множество схем самодельных регуляторов нагрева паяльника, входящих в состав эксплуатируемой в домашних условиях станции. Но все они работают по одному и тому же принципу, заключающемуся в управлении величиной мощности, отдаваемой в нагрузку.

Распространённые варианты самодельных электронных регуляторов могут отличаться по следующим признакам:

  • вид электронной схемы;
  • элемент, используемый для изменения отдаваемой в нагрузку мощности;
  • количество ступеней регулировки и другие параметры.

Независимо от варианта исполнения любой самодельный контроллер паяльной станции представляет собой обычный электронный коммутатор, ограничивающий или увеличивающий полезную мощность в нагревательной спирали нагрузки.

Вследствие этого основным элементом регулятора в составе станции или вне её является мощный питающий узел, обеспечивающий возможность варьирования температуры жала в строго заданных пределах.

Образец классической подставки под паяльник со встроенным в неё регулируемым модулем питания приводится на фото.

Преобразователи на управляемых диодах

Каждый из возможных вариантов исполнения устройств отличается своей схемой и регулирующим элементом. Существуют схему регуляторов мощности на тиристорах, симисторах и другие варианты.

Тиристорные устройства

По своему схемному решению большинство известных блоков регулировки изготавливаются по тиристорной схеме с управлением от специально формируемого для этих целей напряжения.

Двухрежимная схема регулятора на тиристоре низкой мощности приводится на фото.

Посредством такого прибора удаётся управлять паяльниками, мощность которых не превышает 40 Ватт. Несмотря на небольшие габариты и отсутствие вентиляционного модуля преобразователь практически не греется при любом допустимом режиме работы.

Такое устройство может работать в двух режимах, один из которых соответствует состоянию ожидания. В этой ситуации ручка варьируемого по величине резистора R4 установлена в крайне правое по схеме положение, а тиристор VS2 полностью закрыт.

Питание поступает на паяльник через цепочку с диодом VD4, на котором величина напряжения снижается примерно до 110 Вольт.

Во втором режиме работы регулятор напряжения (R4) выводится из крайне правой позиции; причём в среднем его положении тиристор VS2 немного приоткрывается и начинает пропускать переменный ток.

Переход в это состояние сопровождается зажиганием индикатора VD6, срабатывающего при выходном питающем напряжении порядка 150 Вольт.

Путём дальнейшего вращения ручки регулятора R4 можно будет плавно увеличивать мощность на выходе, поднимая его выходной уровень до максимальной величины (220 Вольт).

Симисторные преобразователи

Ещё один способ организации управления паяльником предполагает применение электронной схемы, построенной на симисторе и также рассчитанной на нагрузку небольшой мощности.

Эта схема работает по принципу снижения эффективного значения напряжения на полупроводниковом выпрямителе, к которому подключается полезная нагрузка (паяльник).

Состояние регулировочного симистора зависит от положения «движка» переменного резистора R1, меняющего потенциал на его управляющем входе. При полностью открытом полупроводниковом приборе поступающая в паяльник мощность снижается примерно в два раза.

Простейший вариант управления

Самый простой регулятор напряжения, являющийся «усечённым» вариантом двух рассмотренных выше схем, предполагает механическое управление мощностью в паяльнике.

Такой регулятор мощности востребован в условиях, когда предполагаются длительные перерывы в работе и не имеет смысла держать паяльник всё время включённым.

В разомкнутом положении выключателя на него поступает небольшое по амплитуде напряжение (примерно 110 Вольт), обеспечивающее невысокую температуру нагрева жала.

Для приведения устройства в рабочее состояние достаточно включить тумблер S1, после чего наконечник паяльника быстро нагревается до требуемой температуры, и можно будет продолжить пайку.

Такой терморегулятор для паяльника позволяет в промежутках между пайками снижать температуру жала до минимального значения. Эта возможность обеспечивает замедление окислительных процессов в материале наконечника и заметно продлевает срок его эксплуатации.

На микроконтроллере

В том случае, когда исполнитель полностью уверен в своих силах, ему можно будет взяться за изготовление термостабилизатора для паяльника, работающего на микроконтроллере.

Этот вариант регулятора мощности выполняется в виде полноценной паяльной станции, имеющей два рабочих выхода с напряжениями 12 и 220 Вольт.

Первое из них имеет фиксированную величину и предназначается для питания миниатюрных слаботочных паяльников. Эта часть устройства собирается по обычной трансформаторной схеме, которую из-за её простоты можно не рассматривать.

На втором выходе собранного своими руками регулятора для паяльника действует переменное напряжение, амплитуда которого может меняться в диапазоне от 0 до 220 Вольт.

Схема этой части регулятора, совмещённая с контроллером типа PIC16F628A и цифровым индикатором выходного напряжения, приводится так же на фото.

Для безопасной эксплуатации оборудования с двумя отличающимися по величине выходными напряжениями самодельный регулятор должен иметь различные по конструкции (несовместимые между собой) розетки.

Подобная предусмотрительность исключает возможность ошибки при подключении паяльников, рассчитанных на разные напряжения.

Силовая часть такой схемы выполнена на симисторе марки ВТ 136 600, а регулировка мощности в нагрузке осуществляется посредством коммутатора кнопочного типа с десятью положениями.

Переключением кнопочного регулятора можно изменять уровень мощности в нагрузке, обозначаемый цифрами от 0 до 9-ти (эти значения выводятся на табло встроенного в устройство индикатора).

В качестве примера такого регулятора, собранного по схеме с контроллером SMT32, может быть рассмотрена станция, рассчитанная на подключение паяльников с жалами марки Т12.

Этот промышленный образец устройства, управляющего режимом нагрева подключаемого к нему паяльника, способен регулировать температуру жала в диапазоне от 9-ти до 99-ти градусов.

С его помощью также возможен автоматический переход в режим ожидания, при котором температура наконечника паяльника снижается до установленного инструкцией значения. Причём длительность этого состояния может регулироваться в интервале от 1 до 60-ти минут.

Добавим к этому, что в этом устройстве также предусмотрен режим плавного снижения температуры жала в течение того же регулируемого промежутка времени (1-60 минут).

В завершении обзора регуляторов мощности паяльных устройств отметим, что их изготовление в домашних условиях не является чем-то совсем недоступным для рядового пользователя.

При наличии определённого опыта работы с электронными схемами и после внимательного изучения приведённого здесь материала любой желающий может справиться с этой задачей вполне самостоятельно.

svaring.com

Регулятор мощности в вилке паяльника

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Регулятор мощности в вилке паяльника

О регуляторах мощности для паяльников очень много написано статей и приведено множество разнообразных схем, в том числе и на сайте РадиоКот. Интерес к данному типу устройств, как видно не ослабевает, да это и понятно, ведь от него зависит качество пайки, долговечность жала паяльника и самого паяльника. И тот кто делает первые шаги в электронике, в первую очередь должен позаботится о комфортных условиях пайки. Наверно кто-то скажет: « ну вот опять о регуляторе мощности », но тем не менее хочется поделится ещё одной конструкцией, именно для паяльника, возможно она окажется кому нибудь полезной (а точнее несколькими конструкциями на данную тему).

Работая в сфере промышленной автоматики, частенько приходится производить ремонтные работы с участием паяльника на различных объектах, отдалённых от основного рабочего места, и бывает забываешь брать с собой регулятор, да и иногда приходится одалживать паяльник лицам, которые возвращают потом его с обгоревшим жалом. Кроме того, я не единственный пользователь этого паяльника, так как работаю по сменам, после этого приходится опять браться за напильник и приводить жало в порядок, к тому же из-за повышенного напряжения в сети (238В) он быстро перегревался. Размышляя над всем этим, мне пришла идея, вместо стандартной вилки паяльника использовать миниатюрный регулятор мощности, который был бы непосредственно закреплён на шнуре паяльника и сопровождал бы его всюду где он нужен. За основу была взята схема с амплитудно-фазовым принципом работы и содержащая наименьшее число деталей, дополненная индикатором включения регулируемой фазы, что упрощает регулировку за счёт визуализации по яркости свечения светодиода. Смотри схему и плату:

Плату конечно нужно проектировать под конкретный корпус. Плата 63Х32

Использование одного полупериода для регулировки себя оправдывает в отличии от двухполупериодных регуляторах с использованием симисторов, которые хороши для регулировки освещения и нагревательных приборов, не требующих дежурного режима. Паяльник всегда должен быть нагретым, даже если им какое-то время не пользуются. Это хорошо реализуется за счёт одного полупериода — повернул рукоятку влево до отказа и он всегда будет готов к работе. При необходимости осуществлять пайку — повернул рукоятку в право до зажигания индикатора и далее по яркости индикатора и можно паять. Индикатор зажигается при напряжении на нагрузке= 150…160В и далее яркость плавно увеличивается при увеличении напряжения до 220В. Ниже 150..160В индикатор гаснет, вернее, еле заметно подсвечивается, напряжение при этом на нагрузке соответствует 127…130В в зависимости от напряжения в сети. Для каждого паяльника своё оптимальное напряжение. Подобный регулятор я использую дома вот уже почти 30 лет и за всё время он не разу не отказал и паяльник служит столько же . Вот этот антиквариат : (проверка работоспособности, дежурный режим).

 

В качестве корпуса для вилки я использовал корпус от зарядного устройства для сотового телефона смотри фото: (плата и корпус)

Момент зажигания индикатора 150…..160В

 

Теперь регулятор мощности всегда с паяльником, как неразлучные друзья. И я забыл о проблемах с жалом паяльника. ( В данном варианте можно использовать паяльник не более 40 Вт.). Используемые детали:

VS1 = КУ101Е; С1= 22мкФ Х 63В К50-29; R2 = ОМЛТ -0.5 10К; R3= СП-04 0.5Вт 47К; VD1= SY103/05 ; R1= ОМЛТ 0.5 47К ; VD2= LED от китайского зарядного устройства. VD3= КД209А,Б

В плате сделан вырез для резистора СП-04. Если использовать СП4-1 то вырез не нужен.

Вот ещё один вариант исполнения переносного регулятора мощности для паяльника. В данном варианте используется схема с импульсно-фазовым управлением. В отличии от предыдущей схемы, импульсно фазовый способ осуществляет более точное регулирование, смотри схему:


Данный регулятор так же снабжён индикатором мощности ( в конструкции он пока отсутствует). Регулировка осуществляется плавно от 130В до 220В. Резистор R1= 100К, но установлен на 120К для более чёткого выражения зоны ( 45 град. Поворота рукоятки где напряжение практически не изменяется и соответствует 130В). В этом варианте используются более мощные диоды Д246Б и тиристор КУ202Л, что позволяет подключать нагрузку до 500Вт ( паяльник на 100Вт). Если использовать двухполупериодное регулирование, включив тиристор в диагональ моста из диодов Д246Б, то регулировка осуществляется от 50В до 220В. Регулятор собран в корпусе от сетевого источника питания-адаптера (пустые корпуса продаются в специализированных магазинах и стоят 40р). В корпус вмонтированы двойная клемма для вилки паяльника (от старого ТВ) и регулировочный резистор R1 120К СП-04 0.5Вт. Используются номиналы в скобках. Под рукояткой резистора сделана шкала, проградуированная в Вольтах действующего значения 127…..220В, для точной установки мощности паяльника, смотри фото: (Плата и внешний вид) Плата 57х46

Ну уж и за одно ещё регулятор мощности для паяльника, реализующий широтно-импульсный принцип регулирования для одного полупериода напряжения. Схема этого регулятора была опубликована в одном из старых журналов радио (без транзистора VT3) и немного другой схемотехникой управления выходным тиристором. После изготовления прибора по схеме из журнала устройство не совсем хорошо работало: при повышенном напряжении сети 238В тиристор во время паузы самопроизвольно включался, при напряжении в сети 227….230В -отрабатывал импульсы и паузы, но при этом другие экземпляры тиристоров в обще не включались (видимо, рабочий экземпляр попался с заниженными параметрами). В процессе наладки было установлено, что причиной не работоспособности являлся недостаточный ток управляющего электрода тиристора КУ202Л, поэтому был в ведён дополнительный каскад усиления на транзисторе КТ940А, смотри схему:

При этом проблемы устранились, все экземпляры тиристоров КУ202Л и КУ202Н с доработанной схемой работали.

Индикатор на тиратроне показывает длительности включения и отключения тиристора, по которым можно судить о средней мощности на паяльнике: 50% ( при минимальном импульсе), 75% (при равенстве длительности импульса и паузы) , 100% (при максимальной длительности импульса)

Фото прибора:

В регуляторе использованы транзисторы МП26А PNP Ik max= 150mA Ukэ =70В Uэбо = 70В h31= 20…..50. Тиратрон МТХ-90 VD1=Д814A VS1= КУ202Л VT3 =КТ940А.

Все резисторы МЛТ 0.25Вт. Кроме R9=18К 2Вт. И R11= 3.3К 0.5Вт.

В качестве корпуса для прибора так же можно использовать корпус от сетевого адаптера.

Файлы:
Регулятор мощности в вилке паяльника
РМП-М-аф.Lay
Регулятор мощности в вилке паяльника
РМП-М-иф.Lay
РМП-М-шим (схема)

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Простой регулятор температуры паяльника | Мастер-класс своими руками

Для приличного качества проведения паяльных работ, домашнему мастеру, и тем более радиолюбителю, пригодится простой и удобный регулятор температуры жала паяльника. Впервые схему устройства, я увидел в журнале «Юный техник» начала 80-х, и собрав несколько экземпляров, использую до сих пор. схема регулятора

Для сборки устройства потребуются:
-диод 1N4007 или любой другой, с допустимым током 1А и напряжением 400 – 600В.
-тиристор КУ101Г.
-электролитический конденсатор 4,7 микрофарад с рабочим напряжением 50 – 100В.
-сопротивление 27 – 33 килоом с допустимой мощностью 0,25 – 0,5 ватт.
-переменный резистор 30 или 47 килоом СП-1, с линейной характеристикой.

регулятор температуры паяльника

Для простоты и наглядности я нарисовал размещение и взаимное соединение деталей.

регулятор температуры паяльника

Перед сборкой необходимо изолировать и отформовать выводы деталей. На выводы тиристора надеваем изоляционные трубочки длинной 20мм., на выводы диода и резистора 5мм. Для наглядности можно использовать цветную ПВХ изоляцию, снятую с подходящих проводов, или присаживаем термоусадку. Стараясь не повредить изоляцию загибаем проводники, руководствуясь рисунком и фотографиями.

Простой регулятор температуры паяльника

Все детали монтируются на выводах переменного резистора, соединяясь в схему четырьмя точками пайки. Заводим проводники компонентов в отверстия на выводах переменного резистора всё подравниваем и припаиваем. Укорачиваем выводы радиоэлементов. Плюсовой вывод конденсатора, управляющий электрод тиристора, вывод сопротивления, соединяем вместе и фиксируем пайкой. Корпус тиристора является анодом, для безопасности, изолируем его.

регулятор температуры паяльника

Для придания конструкции законченного вида, удобно воспользоваться корпусом от блока питания с сетевой вилкой.

регулятор температуры внутри

На верхней грани корпуса сверлим отверстие диаметром 10 мм. В отверстие вставляем резьбовую часть переменного резистора и фиксируем его гайкой.

Для подключения нагрузки я использовал два разъёма с отверстиями под штыри диаметром 4 мм. На корпусе размечаем центры отверстий, с расстоянием между ними 19 мм. В просверленные отверстия диаметром 10 мм. вставляем разъёмы, фиксируем гайками. Соединяем вилку на корпусе, выходные разъёмы и собранную схему, места пайки можно защитить термоусадкой. Для переменного резистора необходимо подобрать ручку из изоляционного материала такой формы и размера, чтобы закрыть ось и гайку. Собираем корпус, надёжно фиксируем ручку регулятора.

Простой регулятор температуры паяльника

Проверяем регулятор, подключив в качестве нагрузки лампу накаливания 20 — 40 ватт. Вращая ручку, убеждаемся в плавном изменении яркости лампы, от половины яркости до полного накала.

Простой регулятор температуры паяльника

При работе с мягкими припоями (например ПОС-61), паяльником ЭПСН 25, достаточно 75% мощности (положение ручки регулятора примерно посередине хода). Важно: на всех элементах схемы присутствует напряжение питающей сети 220 вольт! Необходимо соблюдать меры электробезопасности.

Автор: Лаврентьев Сергей
[email protected]

sdelaysam-svoimirukami.ru

Простой регулятор мощности для паяльника – схема


Собери простой регулятор мощности для паяльника за час

Эта статья о том, как собрать самый простой регулятор мощности для паяльника или другой подобной нагрузки. https://oldoctober.com/

Схему такого регулятор можно разместить в сетевой вилке или в корпусе от сгоревшего или ненужного малогабаритного блока питания. На сборку устройства уйдёт от силы час-два.


Самые интересные ролики на Youtube


Близкие темы.

Стабильный регулятор мощности своими руками

Как сделать цифровой осциллограф из компьютера своими руками?

Как за час сделать импульсный блок питания из сгоревшей лампочки?


Вступление.

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://oldoctober.com/

Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Описание конструкции >>> Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.

Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.


Как это работает?

Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.

Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.

На картинке видно, что куда поступает и откуда выходит.

Ремарка.

В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.


Схема проверки симисторов.

Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть. Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван. Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.


Схема проверки и тиристоров.

При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.

Схемные решения.

Простой регулятор мощности можно собрать на симисторе или тиристоре. Я расскажу и о тех и о других схемных решениях.


Регулятор мощности на симисторе КУ208Г.

Схема проверки и тиристоров.

VS1 – КУ208Г

HL1 – МН3… МН13 и т.д.

R1 – 220k

R2 – 1k

R3 – 300E

C1 – 0,1mk

На этой схеме изображён, на мой взгляд, самый простой и удачный вариант регулятора, управляющим элементом которого служит симистор КУ208Г. Этот регулятор управляет мощностью от ноля до максимума.


Назначение элементов.

HL1 – линеаризует управление и является индикатором.

С1 – генерирует пилообразный импульс и защищает схему управления от помех.

R1 – регулятор мощности.

R2 – ограничивает ток через анод — катод VS1 и R1.

R3 – ограничивает ток через HL1 и управляющий электрод VS1.


Регулятор мощности на мощном тиристоре КУ202Н.

Схема проверки и тиристоров.

VS1 – КУ202Н

VD1 — 1N5408

R1 – 220k

R3 – 1k

R4 – 30k

C1 – 0,1mkF

Похожую схему можно собрать на тиристоре КУ202Н. Её отличие от схемы на симисторе в том, что диапазон регулировки мощности регулятора составляет 50… 100%.

Схема проверки и тиристоров.

На эпюре видно, что ограничение происходит только по одной полуволне, тогда как другая беспрепятственно проходит через диод VD1 в нагрузку.

Регулятор мощности на маломощном тиристоре.

Схема проверки и тиристоров.

VS1 – BT169D

VD1 – 1N4007

R1 – 220k

R3 – 1k

R4 – 30k

R5* – 470E

C1 – 0,1mkF

Данная схема, собранная на самом дешёвом маломощном тиристоре B169D, отличается от схемы приведённой выше, только наличием резистора R5, который вместе с резистором R4 являются делителем напряжения и снижают амплитуду сигнала управления. Необходимость этого вызвана высокой чувствительностью маломощных тиристоров. Регулятор регулирует мощность в диапазоне 50… 100%.


Регулятор мощности на тиристоре с диапазоном регулировки 0… 100%.

Схема проверки и тиристоров.

VS1 – BT169D

VD1… VD4 – 1N4007

R1 – 220k

R3 – 1k

R4 – 30k

R5* — 470E

C1 – 0,1mkF

Чтобы регулятор на тиристоре мог управлять мощностью от ноля до 100%, нужно добавить в схему диодный мост.

Схема проверки и тиристоров.

Теперь схема работает аналогично симисторному регулятору.

Конструкция и детали.

Схема проверки и тиристоров.

Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».

Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.

Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.

Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.


Схема проверки и тиристоров.

Так выглядят регуляторы мощности, которые я использую много лет.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.

Дополнительный материал.

Схема проверки и тиристоров.

Цоколёвка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря могучему металлическому корпусу эти приборы могут без дополнительного радиатора рассеивать мощность 1… 2 Ватта без существенного изменения параметров.


Схема проверки и тиристоров.

Цоколёвка мелких популярных тиристоров, которые могут управлять напряжением сети при среднем токе 0,5 Ампера.

Тип прибора Катод Управ. Анод
BT169D(E, G) 1 2 3
CR02AM-8 3 1 2
MCR100-6(8) 1 2 3

28 Апрель, 2011 (23:10) в Источники питания, Сделай сам

oldoctober.com

Схемы тиристорных регуляторов мощности паяльника, подробно

Чтобы пайка была красивой и качественной, необходимо правильно выбрать мощность паяльника, обеспечить температуру жала. Все это зависит от марки припоя. На ваш выбор предоставляю несколько схем тиристорных регуляторов регулирования температуры паяльника, которые можно изготовить в домашних условиях. Они просты легко заменят промышленные аналоги, к тому же цена и сложность будет отличаться.

Электрические принципиальные схемы регуляторов температуры паяльника

Осторожно! Прикосновение к элементам тиристорной схемы может привести к получению травмы опасной для жизни!

Чтоб регулировать температуру жала паяльника используются паяльные станции, которые в автоматическом и ручном режимах поддерживает заданную температуру. Доступность паяльной станции ограничивается размером кошелька. Я решил эту проблему, изготовив ручной регулятор температура, имеющий плавную регулировку. Схема легко дорабатывается до автоматического поддержания заданного режима температуры. Но я сделал вывод, что ручной регулировки достаточно, так как температура помещения и ток сети стабильны.

Классическая тиристорная схема регулятора

Классическая схема регулятора была плоха тем, что имела излучающие помехи, издаваемые в эфир и сеть. Радиолюбителям эти помехи мешают при работе. Если доработать схему, включив в нее фильтр, размеры конструкции значительно увеличатся. Но это схема может использоваться и в других случаях, например, если необходимо отрегулировать яркость ламп накаливания или нагревательных приборов, мощность которых 20-60 Вт. Поэтому я представляю эту схему.

Чтобы понять, как это работает, рассмотрим принцип работы тиристора. Тиристор представляет собой полупроводниковый прибор закрытого или открытого типа. Чтоб открыть его, на управляющий электрод подается напряжение равное 2-5 В. Оно зависит от выбранного тиристора, относительно катода (буква k на схеме). Тиристор открылся, между катодом и анодом образовалось напряжение равное нулю. Через электрод его невозможно закрыть. Он будет открыт до того времени, пока значение напряжения катода (k) и анода (a) не будет близко к нулю. Вот такой принцип. Схема работает следующим образом: через нагрузку (обмотка паяльника или лампа накаливания) подается напряжение на диодный мост выпрямителя, выполненный диодами VD1-VD4. Он служит для преобразования переменного тока в постоянный, который меняется по синусоидальному закону (1 диаграмма). В крайнем левом положении сопротивление среднего вывода резистора равно 0. При увеличении напряжения происходит зарядка конденсатора С1. Когда напряжение С1 будет равно 2-5 В, на VS1 пойдет ток через R2. При этом произойдет открытие тиристора, закорачивание диодного моста, максимальный ток пройдет через нагрузку (диаграмма сверху). Если повернуть ручку резистора R1, произойдет увеличение сопротивления, конденсатор С1 будет заряжаться дольше. Следовательно, открытие резистора произойдет не сразу. Чем мощнее R1, тем больше времени уйдет на заряд С1. Вращая ручку вправо или влево, можно регулировать температуру нагрева жала паяльника.

На фото выше предоставлена схема регулятора, собранная на тиристоре КУ202Н. Чтоб управлять этим тиристором (в паспорте указан ток 100мА, реально – 20 мА), необходимо уменьшить номиналы резисторов R1, R2, R3 исключаем, емкость конденсатора увеличиваем. Емкость С1 необходимо повысить до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще один вариант схемы, только упрощенный, деталей минимум. 4 диода заменены одним VD1. Отличие данной схемы заключается в том, что регулировка происходит при положительном периоде сети. Отрицательный период, проходя через диод VD1, остается без изменений, мощность можно регулировать от 50% до 100%. Если исключить VD1 из схемы, мощность можно будет регулировать в диапазоне от 0% до 50%.

Если применить динистор КН102А в разрыв от R1 и R2, придется заменить С1 на конденсатор емкостью 0,1 мкФ. Для этой схемы подойдут такие номиналы тиристоров: КУ201Л (К), КУ202К (Н,М,Л), КУ103В, напряжением для них более 300 В. Диоды любые, обратное напряжение которых не меньше, чем 300 В.

Выше упомянутые схемы успешно подойдут для регулировки ламп накаливания в светильниках. Регулировать светодиодные и энергосберегающие лампы не удастся, так как они имеют электронные схемы управления. Это приведет к миганию или работе лампы на полную мощность, что в конечном итоге выведет ее из строя.

Если вы хотите применить регуляторы для работы в сети 24,36 В, придется уменьшить номиналы резисторов и заменить тиристор на соответствующий. Если мощность паяльника 40 Вт, напряжение сети 36 В, он будет потреблять 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Эта схема отличается от предыдущей полным отсутствием изучаемых радиопомех, так как процессы протекают в тот момент, когда напряжение сети равно 0. Приступая к созданию регулятора, я исходил из следующих соображений: комплектующие должны иметь низкую цену, высокую надежность, малые габариты, сама схема должна быть проста, легко повторяемая, КПД должен быть близким к 100%, помехи должны отсутствовать. Схема должна иметь возможность модернизации.

Принцип работы схемы следующий. VD1-VD4 выпрямляют напряжение сети. Получающееся постоянное напряжение изменяется по амплитуде равной половине синусоиды частотой 100 Гц (1 диаграмма). Ток, проходя через R1 на VD6 — стабилитрон, 9В (2 диаграмма), имеет другую форму. Через VD5 импульсы заряжают С1, создавая 9 В напряжения для микросхем DD1, DD2. Для защиты применяется R2. Он служит для ограничения напряжения, поступаемого на VD5, VD6 до 22 В и формирует тактовый импульс для работы схемы. R1 передает сигнал на 5, 6 вывод элемента 2 либо не логическую цифровую микросхему DD1.1, которая в свою очередь инвертирует сигнал и преобразует его в короткий прямоугольный импульс (3 диаграмма). Импульс исходит с 4-го вывода DD1 и приходит на вывод D №8 триггера DD2.1, который работает в RS режиме. Принцип работы DD2.1 такой же и, как и DD1.1 (4 диаграмма). Рассмотрев диаграммы №2 и 4, можно сделать выводы, что отличия практически нет. Получается, что с R1 можно подать сигнал на вывод №5 DD2.1. Но это не так, R1 имеет множество помех. Придется устанавливать фильтр, что не целесообразно. Без двойного формирования схемы стабильной работы не будет.

Схема управления регулятора собрана на базе триггера DD2.2, работает она по следующему принципу. C вывода №13 триггера DD2.1 поступают импульсы на 3 вывод DD2.2, перезапись уровня которых происходит на выводе №1 DD2.2, которые на данном этапе находятся на D входе микросхемы (5 вывод). Противоположный уровень сигнала находится на 2 выводе. Предлагаю рассмотреть принцип работы DD2.2. Предположим, что на 2 выводе, логическая единица. С2 заряжается до необходимого напряжения через R4, R5. Когда появится первый импульс с положительным перепадом на 2 выводе образуется 0, через VD7 произойдет разрядка С2. Последующий перепад на 3 выводе установит на 2 выводе логическую единицу, С2 начнет накапливать емкость через R4, R5. Время зарядки зависит от R5. Чем оно больше, тем дольше будет происходить зарядка С2. Пока конденсатор С2 не накопит 1\2 емкости, на 5 выводе будет 0. Перепад импульсов на 3 входе не будет влиять на изменение логического уровня на 2 выводе. При достижении полного заряда конденсатора, произойдет повторение процесса. Количество импульсов, заданных резистором R5, будет поступать на DD2.2. Перепад импульсов будет происходить только в те моменты, когда напряжение сети будет переходить через 0. Вот почему отсутствуют помехи на данном регуляторе. С 1 вывода DD2.2 на DD1.2 подаются импульсы. DD1.2 исключает влияние VS1 (тиристор) на DD2.2. R6 установлен для ограничения тока управления VS1. На паяльник подается напряжение за счет открытия тиристора. Это происходит из-за того, что на тиристор поступает положительный потенциал с управляющего электрода VS1. Этот регулятор позволяет производить регулировку мощности в диапазоне 50-99%. Хоть резистор R5 – переменный, за счет включенного DD2.2 регулировка паяльника осуществляется ступенчатым образом. Когда R5 = 0, происходит подача 50% мощности (5 диаграмма), если повернуть на определенный угол, будет 66% (6 диаграмма), затем 75% (7 диаграмма). Чем ближе к рассчитанной мощности паяльника, тем плавне работа регулятора. Допустим, имеется паяльник на 40 Вт, его мощность можно регулировать в районе 20-40 Вт.

Конструкция и детали регулятора температуры

Детали регулятора располагаются на стеклотекстолитовой печатной плате. Плата помещена в пластиковый корпус от бывшего адаптера, имеющего электрическую вилку. Ручка из пластика надета на ось резистора R5. На корпусе регулятора имеются отметки с цифрами, позволяющие понимать, какой температурный режим выбран.

Шнур паяльника припаян к плате. Подключение паяльника к регулятору можно сделать разъемным, чтобы иметь возможность подключить другие объекты. Схема потребляет ток не превышающий 2мА. Это даже меньше, чем потребление светодиода в подсветке выключателя. Специальные меры по обеспечению режим работы устройства не требуются.

При напряжении 300 В и токе 0,5 А применяются микросхемы DD1, DD2 и серии 176 либо 561; диоды любые VD1-VD4. VD5, VD7 — импульсные, любые; VD6 — маломощный стабилитрон с напряжением 9 В. Конденсаторы любые, резисторе тоже. Мощность R1 должна быть 0,5 Вт. Дополнительной настройки регулятора не потребуется. Если детали исправны и при подключении не возникало ошибок, он заработает сразу.

Схема была разработана давно, когда лазерных принтеров и компьютеров не было. По этой причине печатная плата изготавливалась по дедовскому методу, использовалась диаграммная бумага, шаг сетки которой 2,5 мм. Далее чертеж приклеивался «Моментом» на бумагу по плотнее, а сама бумага на фольгированный стеклотекстолит. Зачем сверлились отверстия, дорожки проводников и контактных площадок вычерчивались вручную.

У меня сохранился чертеж регулятора. На фото показан. Изначально применялся диодный мост номиналом КЦ407 (VD1-VD4). Их разрывало пару раз, пришлось заменить 4 диодами типа КД209.

Как снизить уровень помех от тиристорных регуляторов мощности

Чтоб уменьшить помехи, излучаемые тиристорным регулятором, применяют ферритовые фильтры. Они представляют собой ферритовое кольцо, имеющее обмотку. Эти фильтры встречаются в импульсных блоках питания телевизоров, компьютеров и других изделий. Любой тиристорный регулятор можно оснастить фильтром, который будет эффективно подавлять помехи. Для этого необходимо пропустить через ферритовое кольцо сетевой провод.

Ферритовый фильтр следует устанавливать вблизи источников, издающих помехи, непосредственно в месте установки тиристора. Фильтр может быть расположен как снаружи корпуса, так и внутри. Чем больше количество витков, тем качественней фильтр будет подавлять помехи, но и достаточно продеть провод, идущий к розетке, через кольцо.

Кольцо можно изъять из интерфейсных проводов компьютерной периферии, принтеров, мониторов, сканеров. Если посмотреть на провод, который соединяет монитор или принтер с системным блоком, можно заметить цилиндрическое утолщение на нем. Именно в этом месте расположен ферритовый фильтр, служащий для защиты от высокочастотных помех.

Берем нож, разрезаем изоляцию и извлекаем ферритовое кольцо. Наверняка у ваших друзей или у вас завалялся старый интерфейсный кабель од кинескопного монитора или струйного принтера.

По материалам сайта: ydoma.info

teremguru.com

Схема

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *