Устройство, схема и подключение промежуточного реле
Здравствуйте, уважаемые читатели сайта sesaga.ru. Промежуточные электромагнитные реле применяются во многих электронных и электрических схемах и предназначены для коммутации электрических цепей. Они используются для усиления и преобразования электрических сигналов; запоминания информации и программирования; распределения электрической энергии и управления работой отдельных элементов, устройств и блоков аппаратуры; сопряжения элементов и устройств радиоэлектронной аппаратуры, работающих на различных уровнях напряжений и принципах действия; в схемах сигнализации, автоматики, защиты и т.п.
Промежуточное электромагнитное реле представляет собой электромеханическое устройство, которое может коммутировать электрические цепи, а также управлять другим электрическим устройством. Электромагнитные реле делятся на реле постоянного и переменного тока.
Работа электромагнитного реле основана на взаимодействии магнитного потока обмотки и подвижного стального якоря, который намагничивается этим потоком. На рисунке показан внешний вид промежуточного реле типа РП-21.
1. Устройство реле.
Реле представляет собой катушку, обмотка которой содержит большое количество витков медного изолированного провода. Внутри катушки находится металлический стержень (сердечник), закрепленный на Г-образной пластине, называемой ярмом. Катушка и сердечник образуют электромагнит, а сердечник, ярмо и якорь образуют магнитопровод реле.
Над сердечником и катушкой расположен
2. Как работает реле.
В исходном состоянии, пока на обмотку реле не подано напряжение, якорь под воздействием возвратной пружины находится на некотором расстоянии от сердечника.
При подаче напряжения в обмотке реле сразу начинает течь ток и его магнитное поле намагничивает сердечник, который преодолевая усилие возвратной пружины, притягивает якорь. В этот момент контакты, закрепленные на якоре, перемещаясь, замыкаются или размыкаются с неподвижными контактами.
После отключения напряжения ток в обмотке исчезает, сердечник размагничивается, и пружина возвращает якорь и контакты реле в исходное положение.
3. Контакты реле.
В зависимости от конструктивных особенностей контакты промежуточных реле бывают нормально разомкнутые (замыкающие), нормально замкнутые (размыкающие) или
3.1. Нормально разомкнутые контакты.
Пока напряжение питания не подано на катушку реле, его нормально разомкнутые контакты всегда разомкнуты. При подаче напряжения реле срабатывает и его контакты замыкаются, замыкая электрическую цепь. На рисунках ниже показана работа нормально разомкнутого контакта.
3.2. Нормально замкнутые контакты.
Нормально замкнутые контакты работают наоборот: пока реле обесточено, они всегда замкнуты. При подаче напряжения реле срабатывает и его контакты размыкаются, размыкая электрическую цепь. На рисунках показана работа нормально разомкнутого контакта.
3.3. Перекидные контакты.
У перекидных контактов при обесточенной катушке средний контакт, закрепленный на якоре, является общим и замкнут с одним из неподвижных контактами. При срабатывании реле средний контакт вместе с якорем перемещается в сторону другого неподвижного контакта и замыкается с ним, одновременно разрывая связь с первым неподвижным контактом. На рисунках ниже показана работа перекидного контакта.
Многие реле имеют не одну, а несколько контактных групп, что позволяет осуществлять управление несколькими электрическими цепями одновременно.
К контактам промежуточных реле предъявляются особые требования. Они должны иметь малое переходное сопротивление, большую износоустойчивость, малую склонность к привариванию, высокую электропроводность и большой срок службы.
В процессе работы контакты своими токоведущими поверхностями прижимаются друг к другу с определенным усилием, создаваемым возвратной пружиной. Токоведущая поверхность контакта, соприкасающаяся с токоведущей поверхностью другого контакта называется контактной поверхностью
Соприкосновение двух поверхностей происходит не по всей кажущейся площади, а лишь отдельными площадками, так как даже при самой тщательной обработке контактной поверхности на ней все равно будут оставаться микроскопические бугорки и шероховатости. Поэтому общая площадь соприкосновения будет зависеть от материала, качества обработки контактных поверхностей и усилия сжатия. На рисунке показаны контактные поверхности верхнего и нижнего контактов в сильно увеличенном виде.
В месте перехода тока с одного контакта в другой возникает электрическое сопротивление, которое называется
В процессе длительной работы поверхности контактов изнашиваются и могут покрываться налетами копоти, окисными пленками, пылью, непроводящими частицами. Также износ контактов может быть вызван механическими, химическими и электрическими факторами.
Механический износ происходит при скольжении и ударах контактных поверхностей. Однако главной причиной разрушения контактов являются
В качестве материалов для контактов реле применяют серебро, сплавы твердых и тугоплавких металлов (вольфрам, рений, молибден) и металлокерамические композиции. Наибольшее применение получило серебро, обладающее малым контактным сопротивлением, высокой электропроводностью, хорошими технологическими свойствами и относительно невысокой стоимостью.
Следует помнить, что абсолютно надежных контактов нет, поэтому для повышения их надежности применяют параллельное и последовательное включение контактов: при последовательном включении контакты могут разорвать большой ток, а параллельное включение повышает надежность замыкания электрической цепи.
4. Электрическая схема реле.
На принципиальных схемах катушка электромагнитного реле изображается прямоугольником и буквой «К» с цифрой порядкового номера реле в схеме. Контакты реле обозначаются этой же буквой, но с двумя цифрами, разделенными точкой: первая цифра указывает на порядковый номер реле, а вторая на порядковый номер контактной группы этого реле. Если же на схеме контакты реле расположены рядом с катушкой, то их соединяют штриховой линией.
Запомните. На схемах контакты реле изображают в состоянии, когда на него напряжение еще не подано.
Электрическую схему и нумерацию выводов реле производитель указывает на крышке, закрывающей рабочую часть реле.
На рисунке видно, что выводы катушки обозначены цифрами 10 и 11, и что реле имеет три группы контактов:
7 — 1 — 4
8 — 2 — 5
9 — 3 — 6
Здесь же под электрической схемой указаны электрические параметры контактов, показывающие, какой максимальный ток они могут пропустить (коммутировать) через себя.
Контакты данного реле коммутируют переменный ток не более 5 А при напряжении 230 В, и постоянный ток не более 5 А при напряжении 24 В. Если же через контакты пропускать ток больше указанного, то они очень скоро выйдут из строя.
На некоторых типах реле производитель дополнительно нумерует выводы со стороны присоединений, что очень удобно.
Для удобства эксплуатации, замены и монтажа реле применяют специальные колодки, которые устанавливаются на стандартную DIN-рейку. В колодках предусмотрены отверстия для контактов реле и винтовые контакты для подключения внешних проводников. Винтовые контакты имеют нумерацию контактов, которая соответствует нумерации контактов реле.
Также на катушках реле указывают род тока и рабочее напряжение обмотки реле.
На этом пока закончим, а во второй части рассмотрим основные параметры и подключение электромагнитных реле, где на примерах простых схем разберем работу реле.
До встречи на страницах сайта.
Удачи!
Литература:
1. И. Г. Игловский, Г. В. Владимиров – «Справочник по электромагнитным реле», Л., Энергия, 1975 г.
2. М. Т. Левченко, П. Д. Черняев – «Промежуточные и указательные реле в устройствах релейной защиты и автоматики», Энергия, Москва, 1968, (Б-ка электромонтера, вып. 255).
3. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.
sesaga.ru
Устройство, схема и подключение промежуточного реле. Часть 2
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о промежуточном электромагнитном реле. В первой части статьи мы рассмотрели устройство, принцип работы, электрическую схему реле и обозначение реле на принципиальных электрических схемах, а в этой части рассмотрим основные параметры и схемы включения реле.
5. Основные параметры электромагнитных реле.
Основными параметрами, определяющими нормальную работоспособность реле и характеризующие эксплуатационные возможности, являются: 1. Чувствительность. 2. Ток (напряжение) срабатывания. 3. Ток (напряжение) отпускания. 4. Ток (напряжение) удержания. 5. Коэффициент запаса. 6. Рабочий ток (напряжение). 7. Сопротивление обмотки. 8. Коммутационная способность. 9. Износостойкость и количество коммутаций. 10. Количество контактных групп. 11. Временны́е параметры: время срабатывания, время отпускания, время дребезга контактов. 12. Вид нагрузки. 13. Частота коммутаций. 14. Электрическая изоляция.
Все эти параметры подробно приводятся в технических условиях (ТУ), справочниках или в руководствах по применению реле. Однако мы рассмотрим лишь некоторые из них, которыми, как правило, пользуются при повторении радиолюбительских конструкций.
1. Чувствительность реле определяется минимальной мощностью тока, подаваемой в обмотку реле и достаточной для приведения в движение якоря и переключения контактов. Чувствительность различных реле неодинаковая и зависит от конструкции реле и намоточных данных катушки. Чем меньше электрическая мощность тока, необходимая для срабатывания реле, тем реле чувствительнее. Как правило, обмотка более чувствительного реле содержит бо́льшее число витков и имеет бо́льшее сопротивление.
Однако в технической документации параметр чувствительность не указывается, а определяется как мощность срабатывания (Рср) и вычисляется из сопротивления обмотки и тока (напряжения) срабатывания:
2. Ток (напряжение) срабатывания определяет чувствительность реле при питании обмотки минимальным током или напряжением, при котором реле должно четко сработать и переключить контакты. А для их удержания в сработанном положении на обмотку подаются рабочие значения тока или напряжения.
Ток или напряжение срабатывания указывается в технической документации для нормальных условий и является контрольным параметром для проверки реле при их изготовлении и не является рабочим параметром.
3. Ток (напряжение) отпускания приводится в технической документации для нормальных условий и не является рабочим параметром. Отпускание реле (возвращение контактов в исходное состояние) происходит при снижении тока или напряжения в обмотке до значения, при котором якорь и контакты возвращаются в исходное положение.
4. Рабочий ток (напряжение) обмотки указывается в виде номинального значения с двухсторонними допусками, в пределах которых гарантируется работоспособность реле.
Верхнее значение рабочего тока или напряжения ограничивается в основном температурой нагрева провода обмотки, а нижнее значение определяется надежностью работы реле при снижении напряжения источника питания. При подаче на обмотку реле тока или напряжения в указанных пределах реле должно четко срабатывать.
5. Коммутационная способность контактов реле характеризуется величиной мощности, коммутируемой контактами. В технической документации коммутируемая мощность указывается верхним и нижним диапазоном коммутируемых токов и напряжений, в пределах которых гарантируется определенное число коммутаций (срабатываний).
Нижний предел токов и напряжений, коммутируемых контактами, ограничивается величиной переходного сопротивления материала, из которого выполнены контакты. Для большинства промежуточных электромагнитных реле нижним пределом является нагрузка контактов током 10 – 50 мкА при напряжении на контактах 10 – 50 мВ.
Верхним пределом токов и напряжений является нагрузка контактов максимальным коммутирующим током, предусмотренным в технической документации. Верхний предел ограничивается температурой нагрева контактов, при которой снижается механическая прочность контактных материалов, что может привести к нарушению рабочей поверхности.
6. Подключение промежуточных реле.
Схемы включения промежуточных реле практически ни чем не отличаются от схем включения контакторов и магнитных пускателей. Разница состоит лишь в мощности коммутируемой нагрузки. Если контакты промежуточных реле ограничены коммутационной мощностью контактов, составляющей около 5 А, то магнитные пускатели и контакторы способны коммутировать токи более 50 А и напряжения свыше 1000 В.
Разберем подключение реле на примере простых схем.
6.1. Схема с нормально разомкнутым контактом.
Схема питается от источника постоянного тока GB1 напряжением 12 В и состоит из кнопочного выключателя SB1, катушки реле KL1 и лампы накаливания HL1.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, напряжение питания на катушке реле KL1 отсутствует. Контакт реле KL1.1, стоящий в цепи питания лампы HL1, разомкнут, и на лампу не поступает напряжение.
При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 замыкается и включает лампу HL1.
При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.
6.2. Схема с нормально замкнутым контактом.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено, его нормально замкнутый контакт KL1.1 замкнут и напряжение питания 12 В поступает на лампу HL1. Лампа горит.
При замыкании контактов выключателя SB1 напряжение поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 размыкается и разрывает цепь питания лампы HL1. Лампа гаснет.
При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.
6.3. Схема с нормально замкнутым и нормально разомкнутым контактами.
В этой схеме используются сразу два контакта реле KL1.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено и его нормально разомкнутый контакт KL1.1 разомкнут, а нормально замкнутый KL1.2 замкнут. При этом лампа HL1 не горит, а лампа HL2 горит.
При замыкании контактов выключателя SB1 реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкается и включает лампу HL1, а контакт KL1.2 размыкается и выключает лампу HL2.
При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в первоначальное положение.
Рассмотренная схема включения реле не обеспечивает гальваническую развязку между обмоткой реле и нагрузкой, так как они питаются от общего источника напряжения. Т.е. если необходимо коммутировать нагрузку, например, с рабочим переменным напряжением 220 В, то и реле необходимо использовать с обмоткой, рассчитанной на такое же рабочее напряжение. Если же разделить управление обмоткой и нагрузкой, то их можно применять с любым напряжением.
6.4. Схема с гальванической развязкой.
На схеме показаны две цепи – управляющая и исполнительная (силовая):
управляющая цепь питается напряжением 12 В и включает в себя источник постоянного тока GB1, кнопочный выключатель SB1 и катушку реле KL1;
исполнительная цепь, или ее еще называют силовой, питается переменным напряжением 220 В. В нее входят две лампы накаливания HL1 и HL2, рассчитанные на рабочее напряжение 220 В, и два контакта реле KL1.1 и KL1.2, служащие для управления лампами.
При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкаясь включает лампу HL1, а контакт KL1.2 размыкаясь выключает лампу HL2.
6.5. Схема технологической сигнализации.
А теперь рассмотрим схему технологической сигнализации, используемую в системах управления технологическими процессами. Работа такой схемы заключается в контролировании технологических параметров (температура, давление, уровень) и выдаче световой и звуковой информации об отклонении этих параметров за пределы заданных значений.
Для контроля за технологическими параметрами применяют специализированные датчики и приборы, например, сигнализаторы, электроконтактные манометры и т.д., контакты которых задействованы в схеме сигнализации. При выходе параметра за пределы допустимого значения контакт датчика или прибора замыкается или размыкается и этот сигнал запускает сигнализацию в работу.
Рассмотрим упрощенную схему с одним контролируемым параметром.
Схема состоит из двух кнопок SB1 и SB2, двух промежуточных реле KL1 и KL2, сирены HA1, лампы накаливания HL1 и контакта датчика Р1.
При отклонении технологического параметра от заданного значения замыкается контакт датчика Р1 и включаются световая и звуковая сигнализации. Световая сигнализация HL1 включается при срабатывании реле KL2, которое своим нормально разомкнутым контактом KL2.1 подает фазу А1 на лампу. Звуковая сигнализация НА1 включается через замкнутый контакт датчика Р1 и нормально разомкнутый контакт KL1.2. И пока контакт Р1 не разомкнется лампа будет светить, а сирена звенеть.
Чтобы сирена постоянно не звенела, ее отключают нажатием кнопки SB2. При этом фаза А1 через контакт Р1 и контакты кнопки SB2 поступит на катушку реле KL1. Реле сработает и своим нормально разомкнутым контактом KL1.1 встанет на самоподхват, а нормально замкнутым контактом KL1.2 разорвет цепь питания звонка НА1. При возвращении технологического параметра в норму контакт датчика Р1 разомкнется и схема сигнализации вернется в первоначальное состояние.
Для проверки работоспособности сигнализации предусмотрена кнопка SВ1. При ее нажатии фаза А1 через нормально замкнутый контакт KL1.2 поступает на сирену НА1 и сирена начинает звенеть. И одновременно фаза А1 поступает на катушку реле KL2, которое срабатывает и своим контактом KL2.1 включает лампу HL1.
И в дополнение к статье видеоролик о промежуточных реле.
Ну вот в принципе и все, что хотел сказать о промежуточных реле.
Удачи!
Литература:
1. И. Г. Игловский, Г. В. Владимиров – «Справочник по электромагнитным реле», Л., Энергия, 1975 г.
2. М. Т. Левченко, П. Д. Черняев – «Промежуточные и указательные реле в устройствах релейной защиты и автоматики», Энергия, Москва, 1968, (Б-ка электромонтера, вып. 255).
3. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.
sesaga.ru
Как подключить через реле. Схемы
Начинающим автоэлектрикам и людям, дорабатывающим свой автомобиль, зачастую сложно понять фразу «подключить через реле». Что означает подключение через реле и как это сделать? Разберемся в этом.
Прежде чем изучать схему подключения какого-либо автомобильного устройства через реле, нужно знать, что такое реле вообще и как оно работает. Об этом подробно написано здесь. После того, как вы поймете принцип работы этого несложного устройства, разобраться с его подключением будет гораздо легче.
Общий смысл подключения через реле – нагрузка на выключатель, который управляет устанавливаемым оборудованием. Все мощные потребители электричества в автомобиле (например, лампы фар, стартер, бензонасос, подогрев заднего стекла, электроусилитель руля) подключены через реле. Благодаря этому, данными устройствами можно управлять маленькими красивыми кнопочками вместо грубых и больших рубильников. Кроме этого, в отдельных случаях, реле позволяет экономить на проводах.
Реле подключают в «разрыв» электрической цепи. Рассмотрим установку реле на примере бензонасоса. Питание на него подается блоком управления двигателем (дальше – компьютером) и, чтобы дорожки платы компьютера выдержали ток, потребляемый насосом, их пришлось бы делать чересчур мощными. Прохождение сильного тока рядом с чувствительными электронными компонентами компьютера, может влиять на их работу. Чтобы избежать подобных проблем, между компьютером и бензонасосом устанавливается реле и компьютер подключается не к насосу, а к этому маленькому «помощнику».
Реле как бы разделяет провод, идущий от блока предохранителей к насосу на две части, которые могут замыкаться внутри реле при подаче напряжения на управляющие контакты магнита. Как уже было сказано в статье про устройство реле, управляющий ток очень мал и никак не сможет повредить компьютеру. Компьютер подает напряжение на управляющие контакты реле, а уже оно «соединяет» внутри себя силовую цепь и подключает бензонасос.
По такому же принципу реле устанавливается и на любые другие потребители электричества в автомобиле. Рассмотрим подключение противотуманок.
Провода на противотуманные фары идут от блока предохранителей, но по пути они проходят через реле. Управляет процессом включения/выключения фар кнопка на торпеде. При ее нажатии напряжение подается на один из управляющих контактов реле, и оно замыкает силовую цепь – лампы в фарах зажигаются. Второй управляющий контакт реле – «массовый», то есть по нему напряжение уходит на кузов автомобиля, создавая электрическую цепь.
Используя данную схему можно подключить практически любое мощное устройство и управлять им небольшой красивой клавишей. В некоторых случаях реле может стать спасением от заводских недоработок. Так, например, в ВАЗ-2106 ток, идущий на втягивающее реле стартера через замок зажигания, достаточно быстро приводит к неисправности контактной группы замка. Избавляются от данной неприятности установкой промежуточного реле и изменением питания втягивающего реле. После доработки, через контактную группу замка начинает проходить слабый управляющий ток, а уже реле подключает мощное питание стартера.
russia-avto.ru
Подключения промежуточного реле (как, схема)
Название промежуточные реле возникло не от принципиального отличия рабочего механизма устройства от других реле, а скорее от функционального назначения этого вида. Переключение механических контактов производится электромагнитом, в полупроводниковых моделях через р-n-р переходы. Основным назначением промежуточных элементов является управление коммутацией цепей с большим напряжением и током, систем питания или отдельных установок, электродвигателей станков. Отличительным признаком промежуточных реле можно считать наличие нескольких групп с большим количеством контактов. Такая конструкция позволяет управлять целой сетью коммутаций при одном срабатывании. Читайте также статью ⇒ Подключение указательное реле (схема)
Назначение и область применения промежуточных реле
Трудно перечислить отрасли промышленности, отдельные направления индустрии в которых используются промежуточные реле. Во всех отраслях промышленности, приборах для бытового применения, особенно в элементах систем с электронным, электротехническим оборудованием может быть установлено промежуточное реле.
Можно выделить несколько случаев как используют вспомогательные реле в сложных электротехнических комплексах:
- Для коммутации участков в различных независимых друг от друга сетях;
- Для увеличения задержки срабатывания защитных элементов в цепях большими токами нагрузки;
- Во вторичных цепях, для контроля параметров и режимов работы отдельных элементов в цепях высокого напряжения;
Одно реле на производственной линии может выполнять одновременно или последовательно несколько коммутаций в цепях питания или управления. В системах подогрева и водоснабжения при включении глубинного насоса, подается питание на катушку реле, при замыкании группы контактов включается система контроля, за работой насоса. На дисплее оператора отображаются основные параметры наличие напряжения, на насосе, токи нагрузки на каждой фазе, температура и другие в зависимости от сложности схемы, по мере необходимости.
Другая пара одновременно замкнет контакты подачи питания на катушку магнитного пускателя, при срабатывании которого ток пройдет на все три фазы электродвигателя насоса. В случае если пускатель собран по реверсивной схеме, другая группа одновременно отключает реверсивную схему, исключая короткое замыкание.
В системе подогрева сигнал со слабыми токами не способен включать катушки мощных магнитных пускателей или реле. Поэтому промежуточное реле выступает как усилитель управляющего сигнала, сигнал с теплового датчика включает промежуточное реле, контакты которого подают напряжение на обмотки магнитного пускателя, контакты которого замыкаются и питание подается на тэны, кипятильники или другие мощные нагревательные приборы.
Конструкция и принцип работы промежуточного реле
Это изделие можно сравнить с миниатюрным магнитным пускателем, количество групп контактов в котором определяется схемой, где он применяется его функциональным назначением.
Не во всех схемах они могут применяться для коммутации цепей электропитания основное их назначение, передача сигналов управления. Это связано с тонкими пластинами контактной группы, редкие модели способны пропускать длительное время рабочий ток выше 10 А.
Классическая конструкция малогабаритного промежуточного реле включает в себя следующие элементы:
- Основание, на котором крепятся все составляющие;
- Электромагнитная катушка с сердечником;
- Подвижная пластина с рычагом для смещения подвижной группы контактов;
- Пружина привода рычага в исходное состояние после снятия управляющего напряжения с обмотки катушки;
- Панель с группой контактов;
- Клеммы на основании для подключения проводов к контактам коммутации и катушки.
Как пример разновидности можно привести конструкции промежуточного реле в системе управления тепловозов.
Классификация разновидностей промежуточных реле
Вариантов много, рассмотрим основные разновидности:
Реле разделяют по типу переключения
- Минимальные — снижают определенный параметр до установленного порога;
- Максимальные – повышают определенный параметр до установленного порога;
По функциональному назначению
- Комбинированные – соединение группы реле для решения определенной логической задачи;
- Логические – работают с одинаковыми параметрами в дискретных электрических цепях;
- Измерительные – регулируются интервалы определенных параметров.
По способу управления нагрузкой
- Прямого воздействия – контакты реле подключают непосредственно нагрузку;
- Косвенного воздействия – нагрузка подключается через цепи вторичных элементов.
По способу подключения
- Первичные – включаются контактами в цепь напрямую;
- Вторичные – включаются через индуктивные или емкостные элементы.
Промежуточные реле в цепях защиты имеют свои конструктивные особенности и разделяются по следующим признакам:
- Полупроводниковые – не имеют коммутационных контактов, цепи размыкаются и замыкаются р-n-р и n-р-n переходами под воздействием управляющего напряжения. В качестве полупроводниковых элементов используются, варисторы, тиристоры, симисторы и транзисторы.
- Индукционные – управляющее напряжение в обмотке наводится от соседней катушки, не связанной прямым электрическим контактом;
- Магнитоэлектрические – магнит занимает неподвижное положение в конструкции, катушка с контактами на каркасе вращается, замыкая или размыкая цепи;
- Поляризационные – работают, как электромагнитные направление переключения контактов определят полярность подключения на катушке;
Читайте также статью ⇒ Реле напряжения.
Расшифровка аббревиатуры промежуточных реле
Для удобного определения функционального назначения, количества контактов и других параметров реле имеют буквенные и цифровые обозначения:
- П – промежуточное;
- Э – электромагнитное;
- 46 или (ХХ) – серия изделия;
- 1 – сигналы управления импульсные.
Дальнейшие обозначения, могут определять, для каких климатических условий адаптировано изделие и количество контактных групп.
Пример как расшифровываются обозначения
РЭП26-004А526042-40УХЛ4
- РЭП – реле электромагнитное промежуточное
- 26 – серия
- ХХХ – функциональное назначение и количество контактов
назначение | Количество | ||
замыкающие | размыкающие | переключающие. | |
001 | — | — | + |
010 | — | + | — |
100 | + | — | — |
002 | — | — | ++ |
020 | — | ++ | — |
110 | + | + | — |
200 | ++ | — | — |
003 | — | — | +++ |
120 | + | ++ | — |
210 | ++ | + | — |
300 | +++ | — | — |
004 | — | — | ++++ |
220 | ++ | ++ | — |
310 | +++ | + | — |
400 | ++++ | — | — |
- 001 – обозначает, что реле содержит 1 переключающий контакт, 010 – один размыкающий; 400 – четыре замыкающих контакта.
- А….Д – класс износостойкости материалов, из которых сделаны контакты;
- Х – вид тока в обмотке электромагнитной катушки, тип конструкции возврата механизма в исходное состояние,
1 – ~ ток;
5 – постоянный ток;
6 – постоянный ток в токовой катушке;
- ХХ – двухзначный цифровой код показывающий конструкцию крепления корпуса реле на поверхность и метод подключения проводов к клеммам:
Код | разъем | Способ подключения проводов |
16 | —- | Припой |
18 | —- | “фастон” |
76 | —- | печать |
21 | + | винтовые соединения |
26 | + | припой |
78 | + | печать |
- ХХ – код показывающий величину, вид напряжения, тока в обмотке катушки
Коды электрических параметров включающей катушки | ||
постоянный | ~ ток 50 Гц | |
01… 6 В 02…12 В 03… 15 В 04…24 В 06…48 В 09…60 В 11…110 В 13…220В | 21…12 В 22…24 В 24…40 В 26…110 В 27…220 В 28…380В 34…230 В 35…240 В |
Коды от 01 до 13 указывают, что катушки этих реле постоянного тока с различными напряжениями от 6 до 220в. Коды от 21 до 35 указывают что катушки рассчитаны на ~I с U = 12…. 240 В частота 50 Гц.
Последнее обозначение Х указывает о наличии специальных элементов в конструкции:
2 – ручной переключатель реле;
5 – с ручной манипуляцией и электронным индикатором положения реле для изделий на 24В;
6 – с ручным манипулятором и диодом для защиты реле на 24В и меньше;
7 – реле включает все три ранее перечисленные элемента,
40 – это степень защищенности от влаги и пыли IР- 40…56..68;
УХЛ4 – модель для соответствующих климатических условий, данная для севера и средних широт. Буква «О» – указывает, что изделие адаптировано для тропиков.
РЭП26-004А526042-40УХЛ4 – данная аббревиатура указывает что промежуточное реле имеет 4 переключающих контакта с классом А (по износостойкости), постоянного тока, контактное соединение с разъемами, провода крепятся пайкой, катушка 24 В, конструкция имеет ручной манипулятор. Класс защиты IР – 40 для северных и средних широт.
Совет №1. Некоторые пренебрегают степенью защиты изделия, реле имеют тонкие контакты и чувствительны к пыли и влажности. Поэтому степень защиты обязательно надо учитывать особенно на объектах с повышенной влажностью, запыленностью. На взрывоопасных участках рекомендуется применять полупроводниковые изделия, которые не искрят в момент коммутации.
Не смотря на различные конструкции и технические характеристики, все промежуточные реле имеют основные общие параметры, по которым определяется соответствие функциональному назначению.
Основные технические параметры промежуточных реле
Все реле, в том числе и промежуточные, оцениваются по следующим параметрам:
- Величина коммутируемого напряжения;
- Номинальное значение тока на коммутационных контактах;
- Минимальный ток коммутации;
- Допустимый кратковременный ток через контакты коммутации;
- Интервал величины напряжения на катушке электромагнита;
- Потребляемая мощность катушкой включения;
- Время замыкания;
- Время размыкания контактов;
- Износостойкость контактов оценивается количеством срабатывания реле;
- Предельно допустимая мощность нагрузки, которая подключается через контакты реле.
Это общие параметры технических характеристик, в зависимости от конструкций и назначения могут быть дополнительные. Рассмотрим конкретные технические характеристики на примере РЭП – 26 различных модификаций.
параметры | величина |
Интервал коммутируемых напряжений | Переменное 5–381 В Постоянное 5-221 В |
Номинальный ток на контактах | 10,1 А 9,1 А 8,1 А 6А |
Минимальный ток контактов | 0,06 А 0,01А |
Сквозной ток на контактах (А) | 161А |
Интервал изменений напряжения в цепи управления | +5,1 % -15,1% |
мощность потребления катушкой — при пост. токе с 1-3 контактами — при пост. токе с 4 контактами — при переменном токе | 1,6 кВ 2,1 кВ 3,1 кА |
Время срабатывания, не более. | 0,03 сек |
Время отпускания, не более. | 0,03 сек |
Механическая износостойкость. | 30 миллионов срабатываний |
Отключаемая мощность — при переменном токе — при постоянном токе | 1,6кВт 3кВт 150 Вт 250 Вт |
Подключение промежуточного реле в схемы с нагрузкой различного назначения
Большая часть моделей промежуточных реле адаптированы к стандартным условиям монтажа, на плоскую поверхность или на дин-рейку в распределительном шкафу. После установки реле можно подключать в электрическую схему системы:
- В первую очередь проверяется работоспособность реле, для этого подключают контакты катушки ( 13 и 14) к источнику питания, при этом слышен характерный щелчок переключения контактов.
На данной схеме контактора показано положение при отсутствии питания на катушке.
При подаче напряжения 220, 24 или 12в контакты 9 – 10 – 11 – 12 замкнутся на соответствующие пары 5 – 6 – 7 – 8.
В данной схеме подключения реле исполняет роль контактора распределяющего подачу питания на элементы нагрузки.- Нейтральный провод напрямую подключен к одному из контактов катушки;
- Фаза подключается через нормально замкнутую кнопку «Стоп», работающую на размыкание цепи;
- Последовательно кнопки «Стоп» включается кнопка пуск, разомкнутая в нормальном состоянии и работающая на замыкание цепи;
- Второй контакт кнопки пуск подключается к фазе;
- Фазы подключаются к нормально разомкнутым контактам;
- Нагрузка к нормально замкнутым контактам;
- Один из контактов выхода к нагрузки подключается между кнопкой пуск и стоп, после пуска схема обеспечит постоянную подачу напряжения на катушку, контакты будут замкнуты. Отключение реле и нагрузки произойдет при разрыве цепи кнопкой «Стоп».
В качестве нагрузки могут быть самые разные электромеханические элементы, для подключения нагрузки большой мощности промежуточные реле управляют работой магнитного пускателя с контактами способными пропускать большие токи. Промежуточные реле может управляться датчиками, освещенности, терморегулятором или датчиком движения в зависимости от функционального назначения схемы.
Схема управления электро-нагревающей системой через термостат и магнитный пускательПринцип работы этой схемы аналогичен предыдущей. Только пуск осуществляется автоматически термостатом, питание подается на катушку магнитного пускателя, после чего подключаются обогревательные элементы.
Спрос потребителей на реле различных производителей
Производителей реле большое количество, среди отечественных часто используется продукция ФГУП «НПП «СТАРТ» в Великом Новгороде, реле РЭП-26 004. РЭП-26 002, РЭП-26 003.
РП-21М, РП-21МН производятся на московском заводе МПО «Электротехника» и в Чебоксарах ООО «ПКФ Опытный завод энергооборудования» г.Чебоксары. Это продукция пользуется хорошим спросом и даже подделывается китайскими конкурентами.
С правой стороны вариант китайской подделкиСовет №2 При установке китайских моделей обязательно прозвоните контакты мультиметром или другими приборами, в исходном состоянии и после сработки реле. Бывает так, что контакты залипают, не замыкаются или не размыкаются.
Профессионалы рекомендуют использовать импортные модели от производителей
ABB, Schneider Finder, Siemens, Electric , Relрol.
Износостойкость контактов этих изделий намного выше, сбои в системе управления сложного оборудования могут привести к остановке производства и дорогостоящему ремонту. Поэтому рациональнее использовать более дорогие реле, но надежные.
Ошибки при монтаже и эксплуатации
- Одной из распространенных ошибок считается не правильный выбор технических параметров промежуточных реле. Внимательно смотрите в каких сетях используется реле, постоянного или переменного тока, какое напряжение или ток необходимо подать на управляющую катушку.
- Обязательно учитывайте допустимые токовые нагрузки на коммутационные контакты, особенно когда реле включается напрямую для питания приборов большой мощности.
- Старайтесь использовать реле с необходимым количеством контактов, модели с большим количеством потребляют больше электроэнергии на электромагнитной катушке.
Часто задаваемые вопросы
- Можно поставить реле для управления уличным освещением, чтобы от датчик на движение одна группа осветительных приборов включалась, а другая отключалась?
Конечно можно, подробное описание такой схемы требует детального рассмотрения, но одно можно сказать точно, потребуется использовать реле с группой контактов для переключения.
- Можно использовать реле с большим количеством контактов для включения нескольких нагрузок без магнитного пускателя?
Магнитный пускатель в электромагнитном реле однозначно присутствует, если не использовать дополнительный пускатель с контактами большой мощности, которым управляет промежуточное реле. То это можно при условии, что контакты реле длительное время смогут выдерживать ток нагрузки.
Оцените качество статьи:
electric-tolk.ru
Схема подключения теплового реле для электродвигателя
Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.
Принцип работы теплового реле
В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.
В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:
- нормально замкнутом;
- нормально разомкнутом.
Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.
Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.
Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test. Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop. Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.
Обратите внимание! Описание приводится для теплового реле LR2 D1314. Другие варианты имеют схожее строение и схему подключения.
Функционировать тепловое реле может в ручном и автоматическом режиме. С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset. Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset. Она практически моментально возвращает контактные площадки в нормальное положение.
Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.
Обратите внимание! Тепловое реле не предназначено для защиты двигателя от короткого замыкания. Это связано с высокой скоростью пробоя. Пластины просто не успевают отреагировать. Для этих целей необходимо предусматривать специальные автоматические выключатели, которые также включаются в цепь питания.
Характеристики реле
При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:
- номинальный ток;
- разброс регулировки тока срабатывания;
- напряжение сети;
- вид и количество контактов;
- расчетная мощность подключаемого прибора;
- минимальный порог срабатывания;
- класс прибора;
- реакция на перекос фаз.
Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.
Процесс подключения
Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.
Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.
Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.
Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.
Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.
Резюме
Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.
Отправить комментарий
2proraba.com
СХЕМА УПРАВЛЕНИЯ РЕЛЕ
Многие современные радиоэлектронные устройства оснащаются небольшими реле, которые, в свою очередь, коммутируют другие, в том числе и сетевые узлы и приборы. А вот как управлять самими реле — мы и разберёмся на примере трёх схем. Все они довольно просты — меньше десяти деталей.
Схема драйвера управления для реле
Технические характеристики:
- Питание драйвера — 12 В на 40 мА
- Выход реле — 5 A на 230 В
- Управление входа — 2-15 В постоянного тока
- Светодиодный индикатор показывает состояние реле
- Габариты платы 27 x 70 мм
Это одноканальный релейный драйвер, подходящий для разнообразных проектов. Очень простой и удобный способ взаимодействия реле для переключения мощных потребителей, которое само управляется слабым током и напряжением.
Схема управления реле одной кнопкой
Данная электрическая схема управления реле выполняется всего одной кнопкой с одной контактной группой на замыкание и без фиксации. Работает схема следующим образом: при подаче питания конденсатор С1 через резистор R1 и замкнутые контакты К1.1 заряжается практически до напряжения питания. При нажатии на кнопку S1 через её замкнувшиеся контакты, через замкнутые контакты K1.1 и резистор R1 напряжение питания подается на катушку реле К1, что приводит к включению реле. Контактная группа К1.1 переключается и теперь питание на реле поступает через резистор R1 и замкнувшиеся контакты К1.1. На время пролёта контактов реле при переключении питание катушки осуществляется за счёт накопленного заряда конденсатора С1.
После замыкания контактов реле конденсатор С1 разряжается через резистор R2. При следующем нажатии на кнопку S1, происходит заряд конденсатора С1 из-за чего напряжение на катушке реле падает и происходит размыкание её контактов. Схема возвращается в исходное состояние. Элементы R1 и C1 образуют цепь с постоянной времени в 150 миллисекунд, что достаточно для срабатывания большинства типов электромагнитных реле.
Обратите внимание, что резистор R1 является подстроечным, и следует подбирать под каждое реле индивидуально.
Схема реле с управлением одной кнопкой
Эта схема представляет собой аналог кнопки с фиксацией. Вся конструкция очень проста и реализована на самом реле и одном транзисторе. При первом нажатии на кнопку транзистор открывается током разряда конденсатора, реле замыкается и блокируется по базовой цепи транзистора своими же контактами. Конденсатор при этом отключается от питания и, если отпустить кнопку, быстро разряжается через диод и резистор. Если теперь нажать на кнопку вторично, то транзистор запрется и отключит реле. Естественно, реле должно иметь вторую пару контактов.
Правда если надо таким образом управлять включением сетевого питания, то возникает проблема, заключающаяся в том, что в начале схема обесточена. В телевизорах при включении их от пульта или в компьютерах с корпусами АТХ это решается тем, что при подключении шнура питания подобная схема сразу получает питание, а уж включать основное питание будем позже. Что касается твердотельных реле — информация по ним находится в этой статье.
Форум по автоматике
Схемы автоматикиelwo.ru
Подключение промежуточного реле: видео, схема, инструкция
Промежуточное реле необходимо для выполнения вспомогательных функций. Оно широко применяется в системах управления и автоматики. Основное назначение элемента – это распределение и переключение нагрузок в электросетях. Реле необходимо для преобразования или передачи одного сигнала в другой. Используется как для постоянного, так и для переменного тока. Как правило, изделие применяют для управления более мощными устройствами: силовыми контакторами, исполнительными устройствами системы автоматики и сигнализации. В этой статье мы расскажем читателям сайта Сам Электрик о том, как выполняют подключение промежуточного реле, предоставив схему монтажа и видео инструкцию.Способы включения устройства
Как подключить механизм в систему? Подключение приспособления в электрическую цепь происходит по двум вариантам:
- Параллельно подключенные. При таком способе устройства бывают основные выходные и быстродействующие. У последних время срабатывания составляет 0,02 секунды. Как правило, у механизма стандартное время срабатывания колеблется между 0,02 и 0,1 секундой.
- Последовательно подключенные. Используется в случаях мгновенного кратковременного срабатывания.
Когда есть нормальное стабильное напряжение источника питания, то промежуточное реле должно надежно срабатывать. Помимо этого, предусмотрена надежная их работа при аварийном понижении напряжения до 40–60%. По особенности в конструкции такой элемент преобразования может быть с одной обмоткой, двумя или тремя (последние встречаются крайне редко).
Подключение промежуточного реле является важным для любого оборудования или прибора. Ведь это позволяет не только автоматически прерывать цепь, но и с его помощью можно расширять функциональные способности других реле, которые расположены в этой электрической цепи.
Долговечность устройства зависит от количества его срабатывания. То есть она характеризуется численностью циклов срабатывания и возвратом в свое первоначальное положение. Степень защищенности аппаратуры от различных нежелательных факторов, что окружают конструкцию, оценивается по такому критерию, как время перехода контактов из одного положения в другое.
Схемы подключения
После того как промежуточное реле было установлено в электрический шкаф, следует осуществить его подключение в электрическую схему. Для этого применяются контакты самой катушки и непосредственные контактные элементы. Реле имеет, как правило, несколько пар контактов NO нормально открытые и NC нормально закрытые. Нормальным положением считается отсутствие подачи сигнала на катушку. Так как катушка не обладает полярностью, то подключение контактов осуществляется произвольно.
Устанавливается такой аппарат в схемах управления и автоматики. Располагается между исполнительным устройством (например, контактор) и источником задания. На рисунке изображена электрическая схема приспособления:
На картинке изображено промежуточное реле без подачи напряжения. Если его подать, то контакты переключатся. Напряжение в катушке может быть различное: 220, 24 и 12 вольт.
Как подключить приспособление указано на рисунке ниже:
В некоторых случаях реле промежуточного типа используется как контактор, тогда схема установки будет выглядеть следующим образом:
Как видно, промежуточное реле обладает тремя группами контактов, которые управляют нагрузкой и одной группой для удержания тока в катушке. Можно установить дополнительно контактор, тогда устройство подключается сначала к контактору.
Также данный аппарат можно подключать к датчику движения. Благодаря ему, к системе датчика движения есть возможность подключать несколько мощных ламп. Монтаж происходит следующим образом: обмотка приспособления подключается к датчику, а силовой контакт переключает нагрузку в системе светильников. Как установить такой датчик, показано ниже:
Еще один вариант установки электронного пускателя — к терморегулятору. Схема изображена на картинке (нажмите, чтобы увеличить):
В этом случае подключение терморегулятора и пускателя производится в последовательном порядке к первой фазе и нулевому проводу (на схеме они обозначаются как Т1 и К1 соответственно). Монтаж остальных контактов пускателя осуществляется равномерно между другими фазами.
Напоследок рекомендуем просмотреть полезное видео по теме:
Вот и все, что хотелось рассказать вам о том, как правильно подключить данный аппарат. Надеемся, предоставленная видео инструкция и схемы подключения промежуточного реле были для вас полезными!
Материалы по теме:
samelectrik.ru