+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Обозначение постоянного и переменного тока на схемах

Содержание:

  1. Как обозначаются различные токи
  2. Обозначения токов в измерительных приборах
  3. Видео

Каждый домашний мастер и начинающий электрик при выполнении электромонтажных работ пользуется специальными схемами. Для того чтобы правильно прочитать любую из них, необходимо знать все значки и символы, в том числе обозначение постоянного и переменного тока. Эта символика присутствует на корпусах большинства современных измерительных аппаратов, позволяющих определять значение всех основных электрических параметров.


Как обозначаются различные токи

По своим специфическим качествам электрический ток разделяется на два основных типа:

  • Постоянный ток. Обозначается прямой линией (—). Кроме того, используются символы DC – Direct Current, которые переводятся как постоянный ток.
  • Переменный ток. Известен под собственным обозначением в виде змейки (~) и символов АС, означающих Alternating Current.

Отличительной особенностью постоянного тока является его направленность. Он протекает лишь в одном определенном направлении, условно принимаемое от положительного контакта «+» к отрицательному контакту «-». От этого свойства и происходит наименование этого тока DC, который присутствует в солнечных панелях, всех типах сухих батареек и аккумуляторах, предназначенных для питания маломощных потребителей.

В некоторых технологических процессах, таких как дуговая электросварка, электролиз алюминия или электрифицированный железнодорожный транспорт, необходим постоянный ток DC с высоким значением силы. Чтобы его создать, необходимо выпрямить переменный или воспользоваться любым из генераторов постоянного тока.

Переменный ток AC, в отличие от постоянного, способен к изменению своего направления и величины. Существует параметр, известный как мгновенное значение переменного тока, определяемое в конкретный момент времени. Частота, с которой изменяется направление тока, составляет 50 Гц, то есть данная перемена происходит 50 раз в течение одной секунды.

Переменный ток AC может быть однофазным или трехфазным. В первом случае необходимо только два провода: основной и дополнительный, он же обратный. Именно по основному проводнику протекает электрический ток, а обратный считается нулевым проводом.

Трехфазное переменное напряжение вырабатывается соответствующим генератором тока AC. В этом процессе участвуют три обмотки, каждая из которых является своеобразной однофазной электрической цепью. Между собой они сдвинуты по фазе под углом 120 градусов. Благодаря данной системе электроэнергией могут быть обеспечены сразу три сети, независимые друг от друга. Для этого понадобится уже порядка шести проводов – трех прямых и трех обратных.

При необходимости дополнительные провода возможно соединить между собой и получить в итоге общий проводник, называемый нулевым или нейтральным. В этом случае проводники переменного тока на схемах обозначаются символами L1, L2, L3, а нулевой провод – буквой N.


Обозначения токов в измерительных приборах

Общепринятое обозначение постоянного и переменного тока нашло свое отражение в различных измерительных приборах, в том числе и на мультиметре. Вся необходимая символика наносится на лицевую панель того или иного устройства. Это позволяет измерить именно тот параметр, который необходим в данный момент.

Например, если на шкале выставлено положение АС, в этом случае можно проводить измерение значения переменного тока. Как правило, такие приборы предназначены для работы в электросетях с обычными напряжениями 220 или 380 вольт. Существуют модели с рабочими режимами в пределах 600 В и выше.

Если же мультиметр выставлен напротив отметки DC, то рабочий режим аппарата станет соответствовать постоянному току. В этом положении замеряется ток на аккумуляторах, батарейках и других источниках питания, вырабатывающих постоянный ток. В данном режиме требуется непременно соблюдать полярность полюсов. Диапазон измерений обычно составляет от нуля до нескольких тысяч вольт, в зависимости от характеристик конкретной модификации устройства.


electric-220.ru

Обозначение постоянного и переменного электрического тока

Рано или поздно каждый человек вынужден столкнуться с ситуацией, когда необходимо познакомиться с электричеством ближе, чем на уроках физики в школе. Отправным моментом для этого может стать как поломка электроприборов или розеток, так и просто искренний интерес к электронике со стороны человека. Один из основных вопросов, который необходимо рассмотреть: каким образом обозначены постоянный и переменный ток. Если вы знакомы с понятиями:электрический ток, напряжение и сила тока, вам будет проще понять, о чём идёт речь в этой статье.

Электрическое напряжение делят на два вида:

  1. постоянное (dc)
  2. переменное (ас)

Обозначение постоянного тока (—), у переменного тока обозначение (~). Аббревиатуры ac и dc устоявшиеся, и употребляются наравне с названиями «постоянный» и «переменный». Теперь рассмотрим в чём их отличие. Дело в том, что постоянное напряжение течёт только в одном направлении, из чего и вытекает его название. А переменное, как вы уже поняли, может менять своё направление. В частных случаях направление переменного может оставаться одним и тем же. Но, кроме направления, у него также может меняться и величина. В постоянном ни величина, ни направление, не изменяется.

Мгновенным значением переменного тока называют его величину, которая берётся в данный момент времени.

В Европе и России принята частота в 50 Гц, то есть изменяет своё направление 50 раз в секунду, в то время, как в США, частота равна 60 Гц. Поэтому техника, приобретённая в Соединённых штатах и в других государствах, с отличающейся частотой может сгореть. Поэтому при выборе техники и электроприборов следует внимательно смотреть на то, чтобы частота была 50 Гц. Чем больше частота у тока, тем больше его сопротивление. Также можно заметить, что в розетках у нас дома течёт именно переменный.

Помимо этого, у переменного электрического тока существует деление ещё на два вида:

  • однофазный
  • трёхфазный

Для однофазного необходим проводник, который будет проводить напряжение, и обратный проводник. А если рассматривать генератор трёхфазного тока, у него, на всех трёх намотках вырабатывается переменное напряжение частотой в 50 Гц. Трёхфазная система — это не что иное, как три однофазных электрических цепи, сдвинутых по фазе относительно друг друга под углом в 120 градусов. Посредством его использования, можно одновременно обеспечивать энергией три независимые сети, пользуясь при этом только шестью проводами, которые нужны для всех проводников: прямых и обратных, чтобы проводить напряжение.

А если у вас, например, имеется только 4 провода, то и тут проблем не возникнет. Вам нужно будет только соединить обратные проводники. Объединив их, вы получите проводник, который называют нейтральным. Обычно его заземляют. А оставшиеся внешние проводники кратко обозначают как L1, L2 и L3.

Но существует и двухфазный, он представляет из себя комплекс двух однофазных токов, в которых также присутствуют прямой проводник для проведения напряжения и обратный, они сдвинуты по фазе относительно друг друга на 90 градусов.

Применение



Из-за того что постоянный течёт лишь в одну сторону, его использование обычно ограничивается носителями с небольшой энергоёмкостью, например, его можно встретить в обычных батарейках, аккумуляторах для электроприборов с маленьким энергопотреблением, такие как фонарики или телефоны и батареях, использующих солнечную энергию. Но постоянный источник необходим не только для зарядки небольших аккумуляторов, так постоянный ток большой мощности используется для работы электрифицированных железнодорожных путей, при электролизе алюминия или при дуговой электросварке, а также других

промышленных процессов.

Для выработки постоянного тока такой силы используют специальные генераторы. Также его можно получить посредству преобразования переменного, для этого используется прибор, в котором применяют электронную лампу, его называют кенотронный выпрямитель, а сам процесс обозначается как выпрямление. Ещё для этого используется двухполупериодный выпрямитель. В нём, в отличие от простого лампового выпрямителя, находятся электронные лампы, которые имеют два анода — двуханодные кенотроны.

Если вы не знаете как определять то, с какого полюса течёт постоянный ток, запоминайте: он всегда течёт от знака «+» к знаку «-«. Первыми источниками постоянного тока были особые химические элементы, их называют гальванические. Уже позже люди изобрели аккумуляторы.

Переменный применяют почти везде, в быту, для работы домашних электроприборов подпитывающихся из домашней розетки, на заводах и фабриках, на стройплощадках и многих других местах. Электрификация железнодорожных путей также может быть и на dc напряжении. Так, напряжение идёт по контактному проводу, а рельсы являются обратным электрическим проводником. По такому принципу работает около половины всех железных дорог в нашей стране и странах СНГ. Но, помимо электровозов, работающих лишь на постоянном и только на переменном, существуют также электровозы, совмещающие в себе способность работы как на одном виде электричества, так и на другом.

Переменный ток используется и в медицине

Так, например,дарсонвализация — это метод воздействия электричеством при большом напряжении, на наружные покровы и слизистые оболочки организма. Посредством этого метода у пациентов улучшается кровоснабжение, улучшается тонус венозных сосудов и обменных процессов организма. Дарсонвализация может быть как местная, на определённом участке, так и общая. Но чаще используют местную терапию.

Таким образом, мы узнали, что есть два вида электрического тока: постоянный и переменный, по-другому их называют ac и dc, поэтому, если вы скажете одну из этих аббревиатур, вас точно поймут. Кроме того, обозначение постоянного и переменного тока в схемах выглядит как (—) и (~), что упрощает их узнавание. Теперь, при починке электроприборов, вы, без сомнений, скажете, что в них используется переменное напряжение, а если вас спросят какой ток находится в батарейках, вы ответите, что постоянный.

remontoni.guru

Вопрос 2. Электрический ток (определение, сила тока, единицы измерения, направление тока, плотность тока), работа и мощность тока.

Электрический ток— направленное движение электрических зарядов под действием электрического поля. Для того чтобы шёл ток, нужна замкнутая цепь, которая состоит из источников электрической энергии, приёмников электроэнергии и соединительных проводов.

За направление тока принимают направление движения положительного заряда. Поэтому во внешней цепи ток направлен от зажима “+” к зажиму “–”, внутри источника — наоборот.

Сила тока— количество электричества, прошедшее через поперечное сечение проводника за 1 секунду.

— для постоянного тока

— для переменного тока (ток равен скорости изменения заряда)

Плотность тока:

Работа и мощность тока

При прохождении тока проводник нагревается и совершается работа:

работатока

мощностьтока

  1. Вопрос 3. Источники напряжения и тока (определение, условно графическое обозначение, взаимное преобразование). Примеры источников напряжения и тока.

Электрическую энергию получают путём преобразования химической, механической и других видов энергии.

Устройство, которое даёт в цепь энергию, называется источником.

Источник тока— источник, ток которого не зависит от сопротивления нагрузки.

Источниками тока являются электронные лампы, транзисторы.

Схемное изображение источника тока:

На практике источник тока можно получить, если к источнику напряжения подключить очень большое внутренне сопротивление.

Можно при расчётах преобразовать источник напряжения в эквивалентный источник тока, если ток источника тока рассчитать по формуле

и внутренне сопротивление источника напряжения, включенное последовательно, включить к источнику тока параллельно.

Схема с источником напряжения:

Схема с эквивалентным источником тока:

  1. Вопрос 4. Классификация электрических сигналов (простые и сложные, периодические и непериодические, детерминированные и случайные). Способы представления сигналов (математическая модель, временная, спектральная и векторная диаграммы).

Классификация электрических сигналов:

  1. Периодические и непериодические

Периодические сигналыповторяются через определённый промежуток времени.

Непериодические сигналыпоявляются один раз и больше не повторяются.

  1. Детерминированные и случайные

Детерминированные сигналы— сигналы, которые можно описать с помощью функции времени.

Случайные сигналы— сигналы, мгновенные значения которых заранее не может быть предсказано.

  1. Простые и сложные

Простые сигналы— сигналы, токи и напряжения которых имеют одну частоту (синусоида).

Сложные сигналы— сигналы, которые состоят из суммы токов и напряжений нескольких частот.

  1. Вопрос 5. Основные параметры детерминированных периодических сигналов (период, угловая и циклическая частота, амплитуда, размах, мгновенное и действующее значения, скважность). Примеры периодических сигналов различной формы.

Основные параметры детерминированных периодических сигналов:

  1. Мгновенное значение— значение переменной в любой момент времени:

  1. Максимальное (амплитудное) значение— наибольшее из мгновенных значений:

  1. Размах сигнала— разность между максимальным и минимальным значениями сигнала:

  1. Действующее значение переменного тока— такой постоянный ток, который за время равное периоду, выделяет сопротивлението же количество тепла, что и переменный ток:

Все приборы показывают действующие значения. Для гармонического сигнала максимальные и действующие значения связаны формулой:

  1. Период— наименьший промежуток времени, через который значения переменной повторяются:

  1. Циклическая частота— количество колебаний переменной за 1 с:

  1. Угловая частота

Примеры периодических сигналов разной формы:

  1. Сигнал, не изменяющийся во времени (постоянное напряжение или ток)

  1. Гармонический сигнал

Изменяется по закону косинуса или синуса

  1. Сигнал треугольной формы

  1. Сигнал пилообразной формы

  1. Сигнал прямоугольной формы

    1. Биполярный импульс

    1. Однополярный импульс

— длительность импульса

Скважность:

(безразмерная величина)

Скважность— отношение периода к длительности импульса.

  1. Ток на выходе однополупериодного выпрямителя

  1. Ток на выходе двухполупериодного выпрямителя

  1. Вопрос 6. Двухполюсники и четырехполюсники, коэффициент передачи четырехполюсника по напряжению, току, мощности. Логарифмические единицы измерения коэффициента передачи. Понятие о воздействие и отклике.

Двухполюсник— участок цепи, который имеет 2 зажима:

Четырёхполюсник— участок цепи, который имеет 2 входных и 2 выходных зажима:

Коэффициент передачи по напряжению— отношение напряжения на выходе к напряжению на входе четырёхполюсника:

Коэффициент передачи по току — отношение тока на выходе к току на входе четырёхполюсника:

Коэффициент передачи по мощности— отношение мощности на выходе к мощности на входе четырёхполюсника:

studfiles.net

Как обозначается переменный и постоянный ток, обозначение acc

Среди видов электрического тока различают:

•          Постоянный ток:

Обозначение (—) или DC (Direct Current = постоянный ток).

•          Переменный ток:

Обозначение (~) или AC (Alternating Current = переменный ток).

В случае постоянного тока (—) ток течет в одном направлении. Постоянный ток поставляют, например, сухие батарейки, солнечные батареи и аккумуляторы для приборов с небольшим потреблением электротока. Для электролиза алюминия, при дуговой электросварке и при работе электрифицированных железных дорог требуется постоянный ток большой силы. Он создается с помощью выпрямления переменного тока или с помощью генераторов постоянного тока.

В качестве технического направления тока принято, что он течет от контакта со знаком «+» к контакту со знаком «—».

В случае переменного тока (~) различают однофазный переменный ток, трехфазный переменный ток и высокочастотный ток.

При переменном токе ток постоянно изменяет свою величину и свое направление. В западноевропейской энергосети ток за секунду меняет свое направление 50 раз. Частота изменения колебаний в секунду называется частотой тока. Единица частоты — герц (Гц). Однофазный переменный ток требует наличия проводника, проводящего напряжение, и обратного проводника.

Переменный ток применяется на стройплощадке и в промышленности для работы электрических машин, например ручных шлифовальных устройств, электродрелей и круговых пил, а также для освещения стройплощадок и оборудования стройплощадок.

Генераторы трехфазного переменного тока вырабатывают на каждой из своих трех намоток переменное напряжение частотой 50 Гц. Этим напряжением можно снабжать три раздельные сети и при этом использовать для прямых и обратных проводников всего шесть проводов. Если объединить обратные проводники, то можно ограничиться только четырьмя проводами

Общим обратным проводом будет нейтральный проводник (N). Как правило, он заземляется. Три другие проводника (внешние проводники) имеют краткое обозначение LI, L2, L3. В единой энергосистеме Германии напряжение между внешним проводником и нейтральным проводником, или землей, составляет 230 В. Напряжение между двумя внешними проводниками, например между L1 и L2, составляет 400 В.

О высокочастотном токе говорят, когда частота колебаний значительно превышает 50 Гц (от 15 кГц до 250 МГц). С помощью высокочастотного тока можно нагревать токопроводящие материалы и даже плавить их, например металлы и некоторые синтетические материалы.

Преобразователи переменного постоянного тока. Устройство …

Источники питания постоянным током. … вырабатывающую переменный ток частотой 300 Гц. Машина оснащена выпрямительным устройством из кремниевых вентилей и …
bibliotekar.ru/spravochnik-17/22.htm

Электрический ток

Такой ток называется постоянным током. Однако в технике чаще используется переменный ток, направление и сила которого периодически изменяются.

Как обозначают постоянный ток. Переменный электрический ток


bibliotekar.ru/enc-Tehnika-3/83.htm

Трансформатор. Аппараты преобразующие переменный ток одного …

Переменный ток выгодно отличается от постоянного тем, что относительно легко можно изменять его силу. Аппараты, преобразующие переменный ток одного …
bibliotekar.ru/enc-Tehnika-3/55.htm

Источники питания постоянным током. Сварочные преобразователи …

Они обладают следующими преимуществами по сравнению с источниками переменного тока: … при сварке постоянным током возможно применение всех выпускаемых … источники постоянного тока—сварочные генераторы, вырабатывающие постоянный ток, …
bibliotekar.ru/spravochnik-17/19.htm

Самостоятельное подключение автомагнитолы или приемника в авто

Установка или замена автомагнитолы в авто возможна самостоятельно любым автомобилистом, который не тратит деньги на все подряд. Если у Вас большие проблемы с руками, то тогда лучше обратиться в автосервис — так точно получится дешевле и в разы быстрей. Далее статья для тех, у кого «прямые руки» и фамилия не Рокфеллер. 🙂 Схема подключения различных магнитол в разнообразные авто остается одинаковой, однако имеются различные нюансы и особенности. До всеобщей стандартизации и взаимозаменяемости еще, к сожалению, далеко. 
По способу установки автомобильные магнитолы или приемники бывают встраиваемые  и стационарные.

Для защиты от воровства встраиваемые магнитолы довольно часто комплектуются съемной лицевой панелью, раньше применялись направляющие салазки с замком, для быстрого снятия всего устройства.
Стационарные автомагнитолы от кражи защищают их оригинальная форма и нестандартные размеры. Подходят они в определенную марку автомобиля, что лишает их универсальности. Как правило, устанавливаются такие магнитолы производителями автомобилей еще на сборочном конвейере. Контейнеры под магнитолу в некоторых моделей авто снабжаются специальной шторкой – устройство довольно простое, но весьма эффективное от авто воров.

Современные магнитолы бывают  двух размеров по высоте —  одно блочные и двух блочные (или однодиновые и двухдиновые). Европейские производители в большинстве производят автомагнитолы стандарта 1DIN (одноблочные). И в автомобиле должна быть подходящего размера ниша. Японские, американские, а так же и корейские фирмы представляют аппаратуру вдвое большую по высоте, под соответствующую нишу для установки в автомобиле, которая носит название 2DIN. Это основное, на что надо обратить внимание при покупке автомагнитолы для Вашего автомобиля. 

Далее разъемы. Различные магнитолы и автомобили могут иметь различные виды разъемов. Поэтому нужно посмотреть, какой разъем в автомобиле перед покупкой магнитолы. Если в приобретенной магнитоле разъем не совпадает с автомобильным, то тоже ничего страшного.
Вариант 1 (предпочтительный) —  существует большое количество различных переходников, главное правильно подобрать. Также выпускаются специальные переходники, позволяющие перейти с оригинальных колодок на стандарт ISO.
Вариант 2 — Расковырять разъем и подключиться напрямую. Крайний метод, но зная схему — без музыки не останетесь.

Самый распространенный разъем для подключения автомагнитолы — ISO 10487. Первым делом проверьте его наличие в Вашем автомобиле.

Если таков иметься, то необходимо просто удостовериться в правильной распиновке Вашего разъема. 

По входам в магнитолу почти все производителепридерживаются стандартной цветовой маркировки проводов.

— Желтый провод (BAT) — к постоянному +, независимо от положения замка зажигания, напрямую к аккумулятору через предохранитель на 10-20А;

 Красный провод (ACC) — к клемме замка зажигания, на которой появляется + при повороте ключа зажигания. На многих иномарках существует уже отдельно проведенный провод в колодке. Надо его лишь найти (довольно просто при помощи тестера или контрольной лампочки). Либо, если возникнут затруднения, к любой клемме, где появляется +12 при включении зажигания.

— Черный провод —  это минус или масса, что то же самое. Подключается на кузов хорошим контактом. (там постоянный минус).

— Голубой/бело — голубой провод (REM) — это управляющий провод, который при включении магнитолы, автоматически включает автомобильный усилитель или активную антенну.

— Оранжевый провод авто магнитолы (либо вариации) (ILL) — подлючается к клемме переключателя освещения либо к любой другой клемме, где появляется +12 при включении габаритных огней или фар.

— Желто — черный провод (вариации) (MUTE) — это дистанционное это выключение звука или его приглушение. Подключается к соответствующему проводу Вашего автомобильного Hands.  Если комплект отсутствует — не подключайте никуда. Это опция и на работоспособность магнитолы и качество работы не влияет.

Выходы магнитолы — это акустические провода на динамики. Они имеют по парные цвета. К каждой цветовой паре подключается определенный динамик:

Белая пара проводов — передний левый динамик;

Серая пара               — передний правый динамик;

Зеленая пара              — задний левый динамик;

Фиолетовая пара       — задний правый динамик.

 Каждая пара проводов на динамики состоит из монотонный провода и провода с черной полосой. Черной полосой обозначается минусовой провод.
 Очень важно соблюсти правильность подключения акустических проводов, в противном случае, при несоблюдении цветовой схемы – будет не корректна регулировка баланса, при несоблюдении полярности – задние колонки будут играть в противофазе, это проявиться отсутствием баса.

Общая схема подключения автомагнитолы

Схемные, буквенные обозначения, встречающие в инструкциях по подключению магнитол различных марок

Акустическая группа:
— R = Динамик правый.
— L = Динамик левый.
— FR+, FR- или RF+, RF- = Динамик передний — правый (Соответственно плюс или минус).
— FL+, FL- или LF+, LF- = Динамик передний — левый (Соответственно плюс или минус).
— RR+, RR- = Динамик задний — правый (Соответственно плюс или минус).
— LR+, LR- или RL+, RL- = Динамик задний — левый (Соответственно плюс или минус).
— GND SP = Общий провод динамиков.

Разъём питания:
— B+ или BAT или K30 или Bup+ или B/Up или B-UP или MEM +12 = Питание от аккумулятора (плюс)

— GND или GROUND или K31 или просто указан минус  = Общий провод (Масса), минус аккумулятора.

— A+ или ACC или KL 15 или S-K или S-kont или SAFE или SWA = +12 с замка зажигания.

— N/C или n/c или N/A = Нет контакта. (Физически вывод имеется но никуда не подключен).

— ILL или LAMP или обозначение солнышка или 15b или Lume или iLLUM или K1.58b = Подсветка панели. На контакт подаётся +12 вольт при включении габаритных огней. На некоторых магнитолах есть два провода, -iLL+ и iLL- Минусовой провод гальванически отвязан от массы.

— Ant или ANT+ или AutoAnt или P.ANT = После включения магнитолы с этого контакта подаётся питание +12 вольт на управление выдвижной антенной, если такова, естественно, присутствует.

— MUTE или Mut или mu или изображение перечеркнутого динамика или TEL или TEL MUTE = Вход выключения или приглушения звука при приеме звонка телефона или других действиях (например движения задним ходом). 

Другие возможные контакты:

-Amp = Контакт управления включением питания внешнего усилителя
-DATA IN = Вход данных
-DATA OUT = Выход данных
-Line Out = Линейный выход
-REM или REMOTE CONTROL = Управляющее напряжение (Усилитель)
-ACP+, ACP- = Линии шины (Ford)
-CAN-L = Линия шины CAN
-CAN-H = Линия шины CAN
-K-BUS = Двунаправленная последовательная шина (К-line)
-SHIELD = Подключение оплётки экранированного провода.
-AUDIO COM или R COM, L COM = Общий провод (земля) входа или выхода предварительных усилителей
-CD-IN L+, CD-IN L-, CD-IN R+, CD-IN R- = Симметричные линейные входы аудио сигнала с ченжера
-SW+B = Переключение питания +B батареи.
-SEC IN = Второй вход
-DIMMER = Изменение яркости дисплея
-ALARM = Подключение контактов сигнализации для выполнения магнитолой функций охраны автомобиля (магнитолы PIONEER)
-SDA, SCL, MRQ = Шины обмена с дисплеем автомобиля.
-LINE OUT, LINE IN = Линейный выход и вход, соответственно.
-D2B+, D2B- = Оптическая линия связи аудиосистемы

Если при подключении видеорегистратора или навигатора появляются помехи радиоприему, причина не в магнитоле. Способы устранения по ссылке. 

Рекомендации при подключении магнитолы на машине:

  • Питание желательно осуществлять при помощи отдельной проводки, непосредственно идущей от аккумулятора к магнитоле.

  • Диаметр проводки должен быть не меньше чем на разъеме магнитолы, в идеале в полтора-два раза толще.

    Обозначение постоянного и переменного тока

    Это касается как питающей проводки, так и акустической.  Рекомендуется  применить специализированные акустические провода  сечением порядка 1.5-4 мм2 с бескислородной меди и силиконовой изоляцией. Кабель должен быть как можно менее короткий и без скруток.


    Сопротивление акустики, как правило, 4 Ом, а проводка из комплекта акустики будет соизмерима по сопротивлению с динамиками. Это свою очередь повлечет значительное рассеивание мощности усилителя магнитолы, именно на вспомогательном оборудовании – акустической проводке, а не на динамиках (акустике). В итоге, громкость воспроизведения уменьшится и, что еще хуже, уменьшится и диапазон воспроизводимых частот. Особенности распространения ВЧ заключаются в том, что сигнал идет лишь только по поверхности провода, соответственно при меньшем диаметре провода уменьшится его пропускная способность к ВЧ, и как следствие, ухудшение общего качества звучания.

  • При питании магнитолы используются красный и желтый провода. Желтый предназначен для питания памяти, а красный служит для отключения магнитолы и предполагает наличие выхода на замок зажигания. Это означает, что после выключения зажигания автоматически будет выключаться и автомагнитола. Наиболее удобным вариантом считается параллельное присоединение желтого и красного проводов, тогда выключение магнитолы будет происходить только при нажатии кнопки на панели магнитолы. 

Однако в данном случае могут возникнуть проблемы, связанные с тем, что усилители магнитолы питаются от красного провода, в том числе и в режиме ожидания. Поэтому увеличивается потребление тока, а значит, аккумулятор может быстрее разрядиться. Для того чтобы избежать данной ситуации, на красный провод магнитолы можно поставить отдельный выключатель, тогда питание будет самостоятельно отключаться при длительной стоянке автомобиля.
Если у Вас магнитола с внутренним аккумулятором для сохранения настроек, то используйте схему с полным отключением питания при выключении магнитолы. Тогда Ваша основная батарея на машине гарантировано не будет разряжаться во время длительной стоянки через приемник.

В конце тестируем звучание и правильность работы всех функций (баланс передние/задние, левые/правые динамики, частоты, радиоволны). Если фазировка и установка динамиков была проведена правильно, то не должно быть ни хрипов, ни помех при воспроизведении. 

Постоянный электрический ток

Постоянный ток (DC — Direct Current) — электрический ток, не меняющий своей величины и направления с течением времени.

В реальности постоянный ток не может сохранять величину постоянной. Например, на выходе выпрямителей всегда присутствует переменная составляющая пульсаций. При использовании гальванических элементов, батареек или аккумуляторов, величина тока будет уменьшаться по мере расхода энергии, что актуально при больших нагрузках.

Постоянный ток существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины.

Постоянная составляющая тока и напряжения. DC

Если рассмотреть форму тока в нагрузке на выходе выпрямителей или преобразователей, можно увидеть пульсации — изменения величины тока, существующие, как результат ограниченных возможностей фильтрующих элементов выпрямителя.
В некоторых случаях величина пульсаций может достигать достаточно больших значений, которые нельзя не учитывать в расчётах, например, в выпрямителях без применения конденсаторов.
Такой ток обычно называют пульсирующим или импульсным. В этих случаях следует рассматривать постоянную DC и переменную AC составляющие.

Постоянная составляющая DC — величина, равная среднему значению тока за период.

AVG — аббревиатура Avguste — Среднее.

Переменная составляющая AC — периодическое изменение величины тока, уменьшение и увеличение относительно среднего значения .

Следует учитывать при расчётах, что величина пульсирующего тока будет равна не среднему значению, а квадратному корню из суммы квадратов двух величин — постоянной составляющей (DC) и среднеквадратичного значения переменной составляющей (AC), которая присутствует в этом токе, обладает определённой мощностью и суммируется с мощностью постоянной составляющей.

Что означает AC и DC на панели мультиметра?

Вышеописанные определения, а так же термины AC и DC могут быть использованы в равной степени как для тока, так и для напряжения .

Отличие постоянного тока от переменного

По ассоциативным предпочтениям в технической литературе импульсный ток часто называют постоянным, так как он имеет одно постоянное направление. В таком случае необходимо уточнять, что имеется в виду постоянный ток с переменной составляющей.
А иногда его называют переменным, по той причине, что периодически меняет величину. Переменный ток с постоянной составляющей.
Обычно берут за основу составляющую, которая больше по величине или которая наиболее значима в контексте.

Следует помнить, что постоянный ток или напряжение характеризует, кроме направления, главный критерий — постоянная его величина, которая служит основой физических законов и является определяющей в расчётных формулах электрических цепей.
Постоянная составляющая DC, как среднее значение, является лишь одним из параметров переменного тока.

Для переменного тока (напряжения) в большинстве случаев бывает важен критерий — отсутствие постоянной составляющей, когда среднее значение равно нулю.
Это ток, который протекает в конденсаторах, силовых трансформаторах, линиях электропередач. Это напряжение на обмотках трансформаторов и в бытовой электрической сети.
В таких случаях постоянная составляющая может существовать только в виде потерь, вызванных нелинейным характером нагрузок.

Параметры постоянного тока и напряжения

Сразу следует отметить, что устаревший термин «сила тока» в современной отечественной технической литературе используется уже нечасто и признан некорректным. Электрический ток характеризует не сила, а скорость и интенсивность перемещения заряженных частиц. А именно, количество заряда, прошедшее за единицу времени через поперечное сечение проводника.
Основным параметром для постоянного тока является величина тока.

Единица измерения тока — Ампер.
Величина тока 1 Ампер — перемещение заряда 1 Кулон за 1 секунду.

Единица измерения напряжения — Вольт.
Величина напряжения 1 Вольт — разность потенциалов между двумя точками электрического поля, необходимая для совершения работы 1 Джоуль при прохождения заряда 1 Кулон.

Для выпрямителей и преобразователей часто бывает важными следующие параметры для постоянного напряжения или тока:

Размах пульсаций напряжения (тока) — величина, равная разности между максимальным и минимальным значениями.
Коэффициент пульсаций — величина, равная отношению действующего значения переменной составляющей AC напряжения или тока к его постоянной составляющей DC.

Похожие статьи: Параметры переменного тока.

Замечания и предложения принимаются и приветствуются!

Существует два типа ксеноновых ламп и блоков — это тип DC и тип АС. Главное их отличие друг от друга в том, что в первом случае питание ламп производится  постоянным током DC (с низкой амплитудой колебаний импульсов 40-60 Гц), в то время как в типе АС используется переменный ток.

     Как правило, блоки розжига типа DC имеют более низкую стоимость, т.к.

Обозначение переменного тока

имеют более упрощенную схему электроники — в схеме отсутствует инвертор (в некоторых случаях присутствует только его «фейк»). Чаще всего, срок «жизни» таких блоков весьма невелик, поэтому гарантийный срок достаточно мал. При использовании блоков с несоответствующим им типом ламп, приводит к значительному сокращению срока «жизни» блоков. Несоответствие блоков и ламп можно выявить визуально — при использовании блоков DC с лампами AC проявляется эффект «подрагивания света», которое происходит за счёт нестабильности электрической дуги в колбе. Если же использовать АС блоки с DC лампами, то такая связка вовсе не станет работать, т.к. лампа DC имеет полярность, а блок АС выдаёт переменный ток (без полярности). Ещё одно отличие — это звуковое сопровождение… AC балласт издаёт достаточно громкий характерный «писк» в начале розжига, который затихает по мере розжига лампы, в то время как DC балласт не издаёт ни единого звука, либо издаёт очень тихий однотонный писк на всём протяжении работы.

     Ксенон переменного тока AC имеет иной принцип работы нежели DC. За счет более сложной схемы блоков AC, достигается более высокая светоотдача ламп, но и цена, при этом, несколько выше. Сам АС блок имеет либо двухкомпонентное строение (slim — тонкие): основная часть в металлическом корпусе, а высоковольтная часть вынесена в отдельный пластиковый корпус; либо один корпус в котором располагается обе части схемы. Обычно, блоки типа AC имеют процент брака от 0.5 до 2, в то время как у блоков DC брак достигает 5 и более процентов.

     Соблюдайте правильную комплектацию ксенона: DC блоки + DC лампы, либоAC блоки + АС лампы.

П.С. Все блоки розжига и ксеноновые лампы марки LX (Legal Xenon) имеют тип AC !

Постоянный ток

Категория применения аппарата характеризуется одним или несколькими из следующих условий эксплуатации.

  • током(ми), выраженным(ми) в кратности к номинальному рабочему току;
  • напряжением(ями), выраженным(ми) в кратности к номинальному рабочему напряжению;
  • коэффициентом мощности или постоянной времени;
  • работоспособностью в условиях короткого замыкания;
  • селективностью;
  • прочими условиями эксплуатации в меру их необходимости.

Категории применения для пускателей и контакторов

ГОСТ 30011.4.1-96

Род тока Категория применения Типичные области применения
Переменный АС-1 Неиндуктивные или слабоиндуктивные нагрузки, печи сопротивления
АС-2 Двигатели с контактными кольцами: пуск, отключение
АС-3 Двигатели с короткозамкнутым ротором: пуск, отключение без предварительной остановки1)
АС-4 Двигатели с короткозамкнутым ротором: пуск, торможение противотоком, повторно-кратковременные включения
АС-5а Коммутирование разрядных электроламп
АС-5b Коммутирование ламп накаливания
АС-6а Коммутирование трансформаторов
АС-6b Коммутирование батарей конденсаторов
AС-7а3) Слабоиндуктивные нагрузки бытового и аналогичных назначений
АС-7b3) Двигательные нагрузки бытового назначения
АС-8а Управление герметичными двигателями компрессоров холодильников с ручным взводом расцепителей перегрузки2)
АС-8b Управление герметичными двигателями компрессоров холодильников с автоматическим взводом расцепителей перегрузки2)
Постоянный DC-1 Неиндуктивные или слабоиндуктивные нагрузки, печи сопротивления
DC-3 Шунтовые двигатели: пуск, торможение противотоком, повторно-кратковременные включения. Динамическое отключение двигателей постоянного тока
DC-5 Сериесные двигатели: пуск, торможение противотоком, повторно-кратковременные включения. Динамическое отключение двигателей постоянного тока
DC-6 Коммутирование ламп накаливания

1) Категория АС-3 может предусматривать случайные повторно-кратковременные включения или торможение противотоком ограниченной длительности, например при наладке механизма; в эти ограниченные периоды число срабатываний не должно превышать пяти в 1 мин или более 10 за 10 мин.
2) Герметичный двигатель компрессора холодильника представляет собой комбинацию компрессора и двигателя, заключенную в одну оболочку, без наружного вала или его уплотнения, причем двигатель работает в холодильнике.
3) Для АС-7а и АС-7b смотрите ГОСТ Р 51731.

Категории применения коммутационных элементов

ГОСТР 50030.5.1-2005

Род тока Категория применения Типичные области применения
Переменный АС-12 Управление омическими и статическими нагрузками, отключаемыми с помощью фотоэлементов
АС-13 Управление статическими нагрузками, отключаемыми с помощью трансформатора
АС-14 Управление электромагнитами малой мощности (до 72Вт включительно)
АС-15 Управление электромагнитами большой мощности (свыше 72 Вт)
Постоянный DC-12 Управление омическими и статическими нагрузками, отключаемыми с помощью фотоэлементов
DC-13 Управление электромагнитами
DC-14 Управление электромагнитами, снабженными ограничительными резисторами

Категории применения для низковольтных коммутационных аппаратов

ГОСТ Р 50030.3-99

Род тока Категория применения Типичные области применения
Переменный AC-1 Электроцепи сопротивления; неиндуктивная или малоиндуктивная нагрузка
AC-2 Пуск и торможение противовключением электродвигателей с фазным ротором
AC-3 Прямой пуск электродвигателей с короткозамкнутым ротором, отключение вращающихся двигателей
AC-4 Пуск и торможение противовключением электродвигателей с короткозамкнутым ротором
AC-11 Управление электромагнитами переменного тока
AC-20 Коммутация электрических цепей без тока или с незначительным током
AC-21 Коммутация активных нагрузок, включая умеренные перегрузки
AC-22 Коммутация смешанных активных и индуктивных нагрузок, включая умеренные перегрузки
AC-23 Коммутация нагрузок двигателей или других высокоиндуктивных нагрузок
Переменный и постоянный A Отключение электрических цепей в условиях короткого замыкания при отсутствии специальной избирательности (селективности) по времени относительно последовательно соединенных нижестоящих на стороне нагрузки аппаратов
B Отключение электрических цепей в условиях короткого замыкания при наличии специальной избирательности (селективности) по времени относительно последовательно соединенных нижестоящих на стороне нагрузки аппаратов
Постоянный DC-1 Электропечи сопротивления; неиндуктивная или малоиндуктивная нагрузка
DC-2 Пуск электродвигателей с параллельным возбуждением и отключение вращающихся двигателей с параллельным возбуждением
DC-3 Пуск электродвигателей с параллельным возбуждением, отключение неподвижных или медленно вращающихся электродвигателей, торможение противовключением
DC-4 Пуск электродвигателей с последовательным возбуждением и отключение вращающихся электродвигателей с последовательным возбуждением
DC-5 Пуск электродвигателей с последовательным возбуждением, отключение неподвижных или медленно вращающихся двигателей, торможение противовключением
DC-11 Управление электромагнитами постоянного тока
DC-20 Включение и отключение цепи без нагрузки или с незначительным током
DC-21 Коммутация активных нагрузок, включая умеренные перегрузки
DC-22 Коммутация смешанных активных и индуктивных нагрузок, включая умеренные перегрузки, например, двигателей с параллельным возбуждением
DC-23 Коммутация высокоиндуктивных нагрузок, например, двигателей с последовательным возбуждением

Похожие статьи

shtyknozh.ru

каким символом обозначается на электроустановках

Для успешной работы с электроустройствами требуется не только умение справляться с различными задачами по монтажу и ремонту, но и умение читать и понимать электрические схемы. Для унификации и облегчения понимания все элементы схем стандартизированы. Разные государства, а, порой, и разные предприятия могут иметь частично или полностью свою систему обозначений. Справедливости ради стоит отметить, что различия в обозначениях тока несущественны и большой путаницы практически никогда не возникает. Напряжение питания (или ток) имеет две основополагающие характеристики: величину и частоту. Если с первым параметром вопросов почти не возникает, то на втором следует остановиться подробнее.

Переменный ток в широком понимании

Что такое переменный ток

Напряжение может быть как постоянным, так и изменять свое мгновенное значение в каждый отрезок времени. При этом может изменяться не только величина параметра, но и его направление. В большинстве случаев переменный ток подразумевает изменение по синусоидальному закону и имеет знакопеременную величину. Это всем известное напряжение в бытовой и промышленных сетях электропитания. В более широком смысле напряжение может изменять свое значение без смены полярности.

Те, кто более глубоко знаком с электротехникой, могут сказать, что в данном случае речь идет о переменном напряжении с некоторой постоянной составляющей. Достаточно установить последовательно в цепь конденсатор, который не пропускает постоянную составляющую, и на выходе получится знакопеременный электрический ток.

Обозначения на электрических схемах

Для однозначного толкования электрических схем разработана система графических обозначений. Она несколько меняется в разных странах, но общие принципы обозначений сохраняются. Переменный или постоянный ток обозначается строго определенными символами, чтобы избежать путаницы, неопределенности и неверного понимания.

В странах постсоветского пространства принято обозначение переменного тока графическим символом, который представляет собой отрезок синусоиды, поскольку под переменным в большинстве случаев подразумевается именно тот, который изменяется по синусоидальному закону.

Условное графическое обозначение

Иногда можно встретить равнозначное изображение в виде двух отрезков синусоиды. Такие обозначения полностью взаимозаменяемы. В отличие от них, обозначение постоянного тока имеет вид двух параллельных линий.

Условные графические символы используются для обозначения клемм питания, а также совместно с некоторыми другими обозначениями, например, для характеристики генератора или потребителя.

Генератор переменного напряжения и потребители

Зарубежная литература использует иной принцип обозначения. В основном используется аббревиатура от английских слов «Alternating current» – переменный ток и «Direct current» – постоянный ток. Соответственно, сокращения имеют вид AC и DC.

В некоторых случаях, кроме типа тока или напряжения, требуется добавлять информацию о их частоте, величине и количестве фаз. На схемах такие обозначения интуитивно понятны. К примеру, надпись 3 ~ 50Гц 220В может говорить только об одном, что используется трехфазное переменное напряжение 220 В с частотой 50 Гц.

В современных обозначениях зачастую встречается комбинация отечественной и зарубежной символики.

Измерительные приборы и электрооборудование

На электроизмерительных приборах можно видеть те же условные знаки, что и на электросхемах. В данном случае они говорят, с каким родом напряжения или тока может работать измерительный прибор. Для тех приборов, которые предназначены для работы в узкой области, символы рода тока или напряжения могут располагаться непосредственно на указателе (стрелочном индикаторе). Универсальные измерительные устройства снабжены переключателем рода и пределов измерений, поэтому все обозначения находятся возле соответствующих позиций.

Комбинированный измерительный прибор

Распространенные цифровые тестеры имеют следующие обозначения: 

  • ACA или ≈A – режим измерения переменного тока;
  • DCA или =А – режим измерения постоянного тока;
  • ACV или ≈V – режим измерения переменного напряжения;
  • DCV или =V – режим измерения постоянного напряжения.

Для электрического оборудования род питания указывается на шильдике или бирке. Устройства, где комбинированное питание, имеют на бирке знак переменного тока в виде отрезка синусоиды и одну горизонтальную черту.

Обозначение смешанного тока

Англоязычные производители для обозначения смешанного или комбинированного питания используют аббревиатуру AC/DC.

Практически всегда возле символа напряжения или тока указывается его величина: отдельно для переменного и отдельно для постоянного тока.

Особую символику можно увидеть на шильдике двигателей переменного напряжения. Там, кроме его рода, указывается еще и схема включения (звезда или треугольник) и величина питающего напряжения для каждого из вариантов.

Кроме этого двигатели характеризуются мощностью (током потребления) и величиной COSϕ, которая характеризует реактивную мощность потребителя. Эти данные также присутствуют на бирке изделия.

Информация по значению и роду питания важна для безопасности и правильного функционирования устройств. Для устранения ошибочного и непреднамеренного включения устройств к несоответствующим источникам питания, кроме условных обозначений, добавляется механическая защита. Так, вилки шнуров питания аппаратуры, использующей переменный ток, имеют иную форму штырей, чем для постоянного, что не допускает возможность неправильного подключения.

Видео

Оцените статью:

elquanta.ru

каким символом обозначается на электроустановках

Заряженные частицы, перемещаясь, создают такое явление, как электрический ток. Применимо к электричеству этими частицами являются электроны. Они движутся по проводнику в электрической цепи от источника, выдающего заряд, к объекту, который этот заряд потребляет. Если это движение неизменно во времени и не меняет своего направления, его называют постоянным. Если такие изменения имеют место, говорят о переменном токе.

Движение заряженных частиц

Что такое переменный ток

В цепях постоянного электричества отрицательно заряженные частицы движутся от плюса к минусу. Если рассматривать источник тока как некоторый двухполюсник, имеющий два электрода, к которым подключается питаемая цепь, то на одном всегда будет плюс, а на другом – минус.

Переменный ток не позволяет зафиксировать такую маркировку полюсов. У двухполюсника переменного тока нельзя чётко обозначить, какой заряд присутствует на том или ином выводе. Можно рассматривать только мгновенные значения зарядов в определённый промежуток времени. Изменение полярности имеет временную зависимость. Это значит, что переменный ток меняет своё направление с течением времени.

Важно! Переменное электричество изменяется по гармоническому синусоидальному закону. Его графиком на оси координат является синусоида, в то время как график постоянного движения электронов представляет собой прямую линию, параллельную оси ОХ.

Графическое изображение двух типов электричества

Источники электрической энергии

Мировое производство электроэнергии базируется на работе электростанций. Основной принцип работы станций заключается в том, что турбины установленных в них электрогенераторов вращаются с помощью других видов энергии. Они получили своё название соответственно типу используемой энергии:

  • тепловые (ТЭС) – в качестве сырья используются органические виды топлива: уголь, газ, мазут и другие;
  • гидроэлектростанции (ГЭС) – лопасти турбины вращает падающая вода, она же используется для охлаждения рабочих поверхностей генераторов;
  • атомные станции (АЭС) – один из видов ТЭС, где для получения пара, вращающего турбину, используют тепло, выделяемое в результате ядерной реакции.

Размещение тех или иных видов электростанций зависит от распределения по регионам сырьевых ресурсов, географического расположения рек и выбора подходящих мест для возведения АЭС.

Внимание! Основную долю производства мировой электроэнергии до сих пор берут на себя ТЭС. Опасность при эксплуатации АЭС пока является сдерживающим фактором для полного перехода на этот мощный вид производства электричества.

Неравномерная плотность проживания населения на планете не позволяет максимально приблизить такие источники энергии к местам потребления. Поэтому приходится передавать производимое электричество на дальние расстояния. Так как и потребление, и получение энергии происходит в реальном режиме, созданы энергосистемы, объединяющие электростанции между собой. Кроме того, сами системы организованы в более мощные энергосистемы. Это сделано для создания резерва рабочей мощности и возможности регулировать подачу электроэнергии к потребителям в бесперебойном режиме.

Разница в часовых поясах, сезонные колебания потребления – всё это нагружает одни станции и недогружает другие. Энергосистемы позволяют станциям подпитывать друг друга в случае перегрузок.

Кроме традиционных электростанций, хорошо зарекомендовали себя альтернативные источники: ветряные генераторы и солнечные батареи. С их помощью решают задачи по обеспечению электропитанием потребителей в отдельных случаях.

Что касается источников постоянного тока, то их можно разделить на два типа:

  • химические – гальванические элементы, использующие реакции окисления, и электролитические, генерирующие энергию посредством электролиза;
  • электромеханические – генераторы постоянного тока, превращающие энергию вращения в её электрический вид.

Гальванические элементы (батарейки) имеют конечный срок службы. Они конструктивно изготовлены так, что после окончания реакции окисления вырабатывание электричества прекращается. Электролитические элементы (аккумуляторы) имеют периодический режим работы. После разряда их можно заряжать, подавая на их полюса ток заряда, и использовать снова.

Источники электроэнергии

Обозначения на схемах и в приборах

Графическое обозначение тока постоянной полярности на схемы наносится в виде знаков плюс (+) и минус (-). Источник электричества постоянной полярности имеет вид двух вертикальных чёрточек, одна из которых вдвое длиннее. Та, что короче, – это минус, длинная – плюс. Запомнить различие можно легко. Если длинную черту разделить пополам, то из неё можно сложить знак «+». На корпусах приборов, блоков питания, на гнёздах подключения разъёмов питания можно увидеть буквенное обозначение DC (direct current). Это по-английски означает «однонаправленный ток». Рядом часто наносят графическое обозначение – длинная горизонтальная линия, под ней располагается пунктирная линия, у которой длина штрихов равна длине промежутков.

Обозначение переменного тока на схемах и на приборах осуществляется в буквенном изображении AC (Alternating Current) и графическим символом – отрезком синусоиды длиной в период. Число фаз может указываться цифрой или количеством волнистых линий, если это необходимо.

Обозначения постоянного и переменного электричества

Измерительные приборы и электрооборудование

Как обозначается ток на приборах, позволяющих измерять электрические характеристики? Обозначения те же самые, как и на приборах, его потребляющих. При измерении тока или напряжения прежде, чем прикасаться щупами к токоведущим частям электроустановок или открытых участков тоководов, необходимо выставить пределы измерения на приборе и род тока, которые соответствуют параметрам измеряемого участка.

Осторожно. Неправильная подготовка прибора к измерениям может вывести его из строя, привести к короткому замыканию измеряемого участка линии и поражению оператора электрическим током.

На корпуса электрооборудования, на защитные щиты и кожухи электродвигателей и генераторов наносятся опознавательные символы, информирующие о полярности, частоте, величине напряжения и других характеристиках.

Области применения DC напряжения

Постоянный ток, обозначение которого наносится на устройства, получают не только с помощью гальванических элементов. Преобразователи переменного электричества в постоянное имеют в своём составе выпрямительные устройства. Использование выпрямителей расширило область применения DC напряжения. Оно применяется в следующих сферах:

  • на линиях постоянного напряжения (ЛЭП) в электросетях;
  • при организации мини,- и микросетей для электропитания локальных потребителей постоянным током;
  • на транспорте;
  • в устройствах управления электроприводами;
  • в бытовой технике и электронике.

Цепи и устройства, работающие на постоянном напряжении, не только востребованы, но и подвергаются усовершенствованию и широкому повсеместному внедрению.

Расшифровка обозначения мощности AC  на схеме и корпусах

Из таблички на картинке ниже видно, как обозначается Р переменного тока. Она указывается в киловаттах (кВт). Такие же обозначения присутствуют и на электрических схемах. Это номинальная мощность оборудования, при которой оно работает в штатном режиме, и её КПД соответствует заявленному.

Характеристики электродвигателя на шильдике машины

Что означает AC и DC на панели мультиметра

На рабочей панели любого прибора DC – это обозначение постоянного напряжения. При установке переключателя на такие значки постоянного тока можно тестировать постоянные электрические величины.

Знак AC призван обозначать пределы, в которых тестер может работать с переменными значениями электричества.

Важно! Если численный порядок измеряемой величины не известен, то необходимо устанавливать максимально высокий предел измерения, постепенно снижая его до достижения необходимой точности тестирования. Если тип тока тоже не ясен, лучше предположить, что он изменяется во времени.

Обозначение переменного тока на схемах и приборах обязательно указывает его напряжение, частоту и количество фаз. Стандарты обозначений предусматривают однозначное и понятное для специалистов символьное отображение информации.

Видео

amperof.ru

Основные величины и меры электрического тока

На этой страничке кратко излагаются основные величины электрического тока. По мере необходимости, страничка будет пополняться новыми величинами и формулами.


Сила тока – количественная мера электрического тока, протекающего через поперечное сечение проводника. Чем толще проводник, тем больший ток может по нему течь. Измеряется сила тока прибором, который называется Амперметр. Единица измерения — Ампер (А). Сила тока обозначается буквой – I.

Следует добавить, что постоянный и переменный ток низкой частоты, течёт через всё сечение проводника. Высокочастотный переменный ток течёт только по поверхности проводника – скин-слою. Чем выше частота тока, тем тоньше скин-слой проводника, по которому течёт высокочастотный ток. Это касается любых высокочастотных элементов — проводников, катушек индуктивности, волноводов. Поэтому, для уменьшения активного сопротивления проводника высокочастотному току, выбирают проводник с большим диаметром, кроме того, его серебрят (как известно, серебро имеет очень малое удельное сопротивление).


Напряжение (падение напряжения) – количественная мера разности потенциалов (электрической энергии) между двумя точками электрической цепи. Напряжение источника тока – разность потенциалов на выводах источника тока. Измеряется напряжение вольтметром. Единица измерения — Вольт (В). Напряжение обозначается буквой – U, напряжение источника питания (синоним — электродвижущая сила) может обозначаться буквой – Е.

Узнайте больше о напряжение в нашей статье.


Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт). Мощность электрического тока обозначается буквой – Р. Мощность определяется зависимостью:

Коснусь практического применения этой формулы на примере: Представьте, что у Вас есть электронагревательный прибор, мощность которого Вам не известна. Чтобы узнать потребляемую прибором мощность, измерьте ток и умножьте его значение на напряжение. Либо наоборот, имеется прибор мощностью 2 кВт (киловатт), на напряжение сети 220 вольт. Как узнать силу тока в кабеле питающего этот прибор? Мощность делим на напряжение, получаем ток: I = P / U = 2000 Вт/220 В = 9,1 А.


Потребляемая электроэнергия – суммарное значение потребляемой мощности от источника электрической сети за единицу времени. Измеряется потребляемая электроэнергия счётчиком (обыкновенным квартирным). Единица измерения – киловатт*час (кВт*ч).


Сопротивление элемента цепи – количественная мера, характеризующая способность элемента электрической цепи сопротивляться электрическому току. В простом виде, сопротивление это обыкновенный резистор. Резистор может использоваться: как ограничитель тока – добавочный резистор, как потребитель тока – нагрузочный резистор. Источник электрического тока так же обладает внутренним сопротивлением. Измеряется сопротивление прибором называемым Омметром. Единица измерения — Ом (Ом). Сопротивление обозначается буквой – R. Связано с током и напряжением законом Ома (формулой):

где U – падение напряжения на элементе электрической цепи, I – ток, протекающий через элемент цепи.


Рассеиваемая (поглощаемая) мощность элемента электрической цепи – значение мощности рассеиваемой на элементе цепи, которую элемент может поглотить (выдержать) без изменения его номинальных параметров (выхода из строя). Рассеиваемая мощность резисторов обозначается в его названии (например: двух ваттный резистор — ОМЛТ-2, десяти ваттный проволочный резистор – ПЭВ-10). При расчёте принципиальных схем, значение необходимой рассеиваемой мощности элемента цепи рассчитывается по формулам:

Для надёжной работы, определённое по формулам значение рассеиваемой мощности элемента умножается на коэффициент 1,5 , учитывающий то, что должен быть обеспечен запас по мощности.


Проводимость элемента цепи – способность элемента цепи проводить электрический ток. Единица измерения проводимости – сименс (См). Обозначается проводимость буквой — σ. Проводимость — величина обратная сопротивлению, и связана с ним формулой:

Если сопротивление проводника равно 0,25 Ом (или 1/4 Ом), то проводимость будет 4 сименс.


Частота электрического тока – количественная мера, характеризующая скорость изменения направления электрического тока. Имеют место понятия — круговая (или циклическая) частота — ω, определяющая скорость изменения вектора фазы электрического (магнитного) поля и частота электрического тока — f, характеризующая скорость изменения направления электрического тока (раз, или колебаний) в одну секунду. Измеряется частота прибором, называемым Частотомером. Единица измерения — Герц (Гц). Обе частоты связаны друг с другом через выражение:


Период электрического тока – величина обратная частоте, показывающая, в течение, какого времени электрический ток совершает одно циклическое колебание. Измеряется период, как правило, с помощью осциллографа. Единица измерения периода — секунда (с). Период колебания электрического тока обозначается буквой – Т. Период связан с частотой электрического тока выражением:


Длина волны высокочастотного электромагнитного поля – размерная величина, характеризующая один период колебания электромагнитного поля в пространстве. Измеряется длина волны в метрах (м). Длина волны обозначается буквой – λ. Длина волны связана с частотой и определяется через скорость распространения света:


Электрическая ёмкость – количественная мера, характеризующая способность накапливать энергию электрического тока в виде электрического заряда на обкладках конденсатора. Обозначается электрическая ёмкость буквой – С. Единица измерения электрической ёмкости — Фарада (Ф).


Магнитная индуктивность – количественная мера, характеризующая способность накапливать энергию электрического тока в магнитном поле катушки индуктивности (дросселя). Обозначается магнитная индуктивность буквой – L. Единица измерения индуктивности — Генри (Гн).


Реактивное сопротивление конденсатора (ёмкости) – значение внутреннего сопротивления конденсатора переменному гармоническому току на определённой его частоте. Реактивное сопротивление конденсатора обозначается — ХС и определяется по формуле:


Реактивное сопротивление катушки индуктивности (дросселя) – значение внутреннего сопротивления катушки индуктивности переменному гармоническому току на определённой его частоте. Реактивное сопротивление катушки индуктивности обозначается ХL и определяется по формуле:


Резонансная частота колебательного контура – частота гармонического переменного тока, на которой колебательный контур имеет выраженную амплитудно-частотную характеристику (АЧХ). Резонансная частота колебательного контура определяется по формуле:

, или


Добротность колебательного контура — характеристика, определяющая ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки. Добротность обозначается буквой – Q.

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:


Скважность импульсов – это отношение периода следования импульсов к их длительности. Скважность импульсов определяется по формуле:

meanders.ru

Электролюбителям

Отправить ответ

avatar
  Подписаться  
Уведомление о