+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как сделать водородный котел отопления своими руками?

Уже давно прошло время, когда обогрев частного загородного дома осуществлялся только лишь сжиганием в печи дров ли угля. Нынешние отопительные агрегаты используют различные виды топлива. Но постоянный рост цен на топливо, вынуждает идти на поиски более дешевых вариантов отопления. Но буквально у нас под носом лежит неиссякаемый источник энергии – водород. И в данной статье мы расскажем, как в качестве топлива можно использовать обычную воду, собрав водородный котел отопления своими руками.

Конструкция и принцип работы водородного генератора

Применение водорода в виде топлива для обогрева жилища – довольно заманчивая идея, ведь его теплотворность составляет 33,2 кВт/м3, в то время как у природного газа она всего 9,3кВт/м3, а это более чем в 3 раза. Теоретически добыть водород можно из воды, для того чтобы его потом сжечь в котле, можно воспользоваться водородным генератором для отопления дома.

Как энергоноситель с водородом ничто не может сравниться, а его запасы практически бесконечны. Как уже говорилось выше, при сгорании водород выделяет очень много тепловой энергии, намного больше, чем любое углеродосодержащее топливо. Вместо вредных выбросов в атмосферу, которые выделяются при использовании природного газа, водород, сгорая, образует обычную воду в виде пара. Только есть одна проблема, данный элемент не встречается в природе в чистом виде, а только в соединении с другими веществами.

Одним из таких соединений является обычная вода, которая представляет собой окисленный водород. Для того чтобы расщепить на составляющие ее элементы многие ученые потратили не один год. И не безрезультатно, техническое решение по выделению из воды ее составляющих все же было найдено. Это так называемая химическая реакция электролиза, в результате которой вода распадается на кислород и водород, получаемую смесь прозвали гремучим газом или газом Брауна.

Ниже можно увидеть схему водородного генератора (электролизера), который работает от электричества:

Электролизеры поставлены на серийное производство и служат для газопламенных (сварочных) работ. Ток определенной частоты и силы подается на группы металлических пластин, которые погружены в воду. Из-за протекающей реакции электролиза выделяются кислород и водород вперемешку с водяным паром.

Для того чтобы отделить газы от пара все пропускается через сепаратор, после которого подается на горелку. Чтобы предотвратить обратный удар и взрыв, на подаче монтируется клапан, который пропускает горючее только в одну сторону.

Водородная установка для обогрева жилища включает в себя следующие составляющие: котел и трубы диаметром 25-32 мм (1-1,25 дюймов). Трубы можно установить дома своими руками, но необходимо выполнить одно условие – после каждого разветвления диаметр должен уменьшаться.

Диаметр уменьшается по следующему принципу – труба D32, труба D25. После разветвления – D20, и последней монтируется труба D16. При соблюдении этого условия водородная горелка будет работать качественно и эффективно.

Для того чтобы следить за уровнем воды и своевременно подпитывать ею устройство, в конструкции есть специальный датчик, который отдает команду в нужный момент и вода впрыскивается в рабочее пространство электролизера. Для того чтобы давление не подпрыгивало до критической точки внутри сосуда, агрегат оборудуется аварийным выключателем и сбросным клапаном. Для обслуживания генератора водорода, необходимо только время от времени добавлять воду и все.

Преимущества водородного отопления

У водородного отопления есть несколько серьезных достоинств, которые влияют на распространенность системы:

  1. Экологически чистые системы. Единственный побочный продукт, который выбрасывается в атмосферу во время работы – вода в парообразном состоянии. Что никоим образом не вредит окружающей среде.
  2. Водород в системе отопления работает без применения огня. Тепло образуется из-за каталитической реакции. При соединении водорода с кислородом, образуется вода. Из-за этого идет большое выделение тепла. Сам поток тепла, температура которого равняется около 40оС, идет в теплообменник. Для системы теплый пол – это идеальный температурный режим.
  3. Довольно скоро отопление на водороде своими руками сможет вытеснить традиционные системы, тем самым освободив человечество от добычи других видов топлива – нефти, газа, угля и дров.
  4. Минимальный срок службы – 15 лет.
  5. КПД отопления частного дома водородом может достигать 96%.

Добыча водорода – это вполне доступный процесс. Все, на что необходимо будет тратиться это электричество. А при использовании генератора отопления включить в работу системы еще и солнечные батарею, то траты на электроэнергию можно свести к минимуму. Исходя из этого, можно заключить что, эта система наиболее экологически чистая и эффективная для отопления жилища.

Как собрать генератор водорода собственноручно?

Зачастую котел, работающий на водороде, используется для обогрева полов. Эти системы в наше время встречаются самой разной мощности. Мощность котлов бывает самая разная, начиная от 27Вт и до бесконечности. Можно взять один очень мощный котел для обогрева сразу всего дома, а можно несколько небольших. Устанавливаются они своими силами, но, как сделать водородный генератор своими руками?

Прежде чем начать сооружать топливную ячейку необходимо иметь под руками следующие инструменты:

  • ножовку по металлу;
  • дрель с набором свёрл;
  • набор гаечных ключей;
  • плоская и шлицевая отвёртки;
  • угловая шлифмашина («болгарка») с установленным кругом для резки металла;
  • мультиметр и расходомер;
  • линейка;
  • маркер.

Более того, если вы решите самостоятельно заниматься сооружением ШИМ-генератора, то для его настройки понадобятся осциллограф и частотомер.

Для того чтобы изготовить водородный генератор для отопления частного дома рассмотрим абсолютно «сухую» схему электролизера с применением электродов из пластин нержавеющей стали.

Представленная ниже инструкция показывает процесс конструирования водородного генератора:

  1. Сооружение корпуса топливной ячейки. Роль боковых стенок каркаса играют пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Стоит заметить, что он размеров агрегата напрямую зависит его производительность, но и затраты на получение ННО будут намного выше. Для сооружения топливной ячейки оптимальными являются габариты от 150×150 мм до 250×250 мм.
  2. В каждой из платин сверлятся отверстия под входной и выходной штуцера для воды. Кроме этого, необходимо сверление в боковой стенке для выхода газа и четыре отверстия по углам для того чтобы соединить элементы реактора между собой.
  3. С помощью болгарки из листа нержавейки марки 316L, вырезают пластины электродов. Они по размеру должны быть меньше стенок на 10-20 мм. Более того, при изготовлении каждой детали, в одном из углов необходимо оставлять небольшую контактную площадку. Это необходимо для того чтобы соединить отрицательные и положительные электроды в группы перед их подключением к питанию.
  4. Для получения необходимого количества ННО, нержавейку необходимо обработать мелкой наждачной бумагой с двух сторон.
  5. В каждой пластине сверлятся два отверстия: сверлом чей диаметр должен быть 6-7 мм – для подачи в пространство между электродами воды и диаметром 8-10 мм – для отвода газа Брауна. Точки сверления рассчитывают с учетом мест монтажа соответствующих подводящих и выходного патрубков.
  6. Приступают к сборке генератора. Для этого в оргалитовые стенки монтируют штуцеры служащие для подачи воды и отбора газа. Места их присоединений тщательнейшим образом герметизируют автомобильным или сантехническим герметиком.
  7. После этого одну из прозрачных корпусных деталей устанавливают на шпильки, после этого укладывают электроды. Укладка электродов должна начинаться с уплотнительного кольца. Обратите внимание: плоскость электродов должна быть абсолютно ровной, в противном случае элементы с разноименными зарядами будут касаться, что вызовет короткое замыкание!
  8. Пластины нержавейки отделяют от боковых поверхностей реактора с помощью уплотнительных колец, изготовленных из силикона, паронита или других материалов. Важно чтобы он был не толще 1 мм. Подобные детали используют как дистанционные прокладки между пластинами. В процессе укладки следят, чтобы контактные площадки разноименных электродов были сгруппированы по разные стороны генератора.
  9. После того как уложена последняя пластина устанавливают уплотнительное кольцо, после чего генератор закрывается второй оргалитовой стенкой, а саму конструкцию соединяют с помощью гаек и шайб. Делая эту работу, внимательно следите за равномерностью затяжки и отсутствием перекосов между пластинами.
  10. С помощью полиэтиленовых шлангов генератор подключается к емкости с водой и бабблеру.
  11. Контактные площадки электродов соединяются между собой любым методом, после чего к ним подводят провода питания.
  12. На топливную ячейку подается напряжение от ШИМ-генератора, после чего приступают к настройке и регулировке аппарата по максимальному выходу газа ННО.

Для того чтобы получить газ Брауна в необходимом количестве которое будет достаточным для приготовления пищи и отопления, устанавливают несколько генераторов водорода которые работают параллельно.

Рекомендации по эксплуатации котла на водороде

  1. Самостоятельно модернизировать подобное оборудование, даже при наличии подробного и профессионального инженерного чертежа – категорически запрещается. Это может поспособствовать вероятности утечки водородной смеси из генератора в открытое пространство, что довольно опасно.
  2. Рекомендуется смонтировать специальные датчики температурного режима внутри теплообменника, это даст возможность следить за вероятным превышением уровня температуры нагрева воды.
  3. В саму конструкцию горелки можно включить запорную арматуру, которая будет подключена непосредственно к самому датчику температуры. Необходимо также обеспечить нормированное охлаждение котла.
  4. И наконец, на чем необходимо сделать особое ударение это безопасность. Необходимо помнить о том, что смесь водорода и кислорода не зря назвали гремучей. ННО это опасное химическое соединение, которое при небрежном обращении может повлечь взрыв. Следуйте правилам безопасности и будьте предельно аккуратны в экспериментах с водородом.

При правильном обращении водородный котел может прослужить не 15 лет, как это обычно положено, а 20 или даже 30. Однако помните, что чем больше мощность котла, тем больше расход электроэнергии!

применение водорода в системе отопления, особенности водородного генератора

На современном рынке представлено множество вариантов отопления дома. Но нелегко найти качественный вариант с минимальными затратами. Одним из хороших вариантов является отопление на водороде. Ведь водород можно получить с легкостью, где есть электричество и вода. Такой вариант отопления считается довольно-таки экономичным.

Содержание:

  1. Применение водорода в системе отопления
  2. Преимущества и недостатки отопления на водороде
  3. Особенности водородного генератора
  4. Особенности электролитического генератора
  5. Применение газа Брауна

Применение водорода в системе отопления

Для тех, кто любит все делать своими руками, есть возможность создать систему отопления для своего дома самостоятельно. Одним из таких систем является отопление на водороде. С помощью такой отопительной системы можно эффективно отапливать большие помещения. Так как отопление на водороде обладает высокой мощностью. 

Впервые такое отопление изготовила Итальянская компания. Отопление на водороде не производит вредных веществ и выбросов. Она влияет положительно на здоровье людей, а отапливает дом быстро, качественно и без шума.

Так как данное отопление может сжигать водород при температуре 300°, то существует возможность применения обычных котлов изготовленных из стандартных материалов.

В связи с тем, что отопление на водороде не выбрасывает вредные вещества в атмосферу, отсутствует необходимость в применении специальных котлов с системой вывода продуктов сгорания. В такой отопительной системе выделяется только пар, который не несет никакого вреда. Для того чтобы получать водород вам придется только тратиться на расходы электричества. Если же вы проживаете в теплых регионах, то можно применить солнечные батареи. В таком случае вы сможете хоть немного сократить расхода на электроэнергию. 

Компоненты, которые входят в отопительную систему на водороде: трубы диаметром от 25 до 32 мм и котел. Установить трубы можно самостоятельно с учетом некоторых требований: диаметр трубы должен быть меньше после каждого разветвления. При соблюдении такого правила горелка будет работать качественно. 

Также котел, работающий на водороде можно применять для обогрева полов. Такую систему используют довольно-таки часто. Установить такую систему самостоятельно не составит труда. А приобрести данную отопительную систему можно с разной мощностью.

Преимущества и недостатки отопления на водороде

Отопление на водороде имеет много преимуществ:

  1. Водородное отопление вполне может заменить другие традиционные варианты. Пи этом не придется добывать нефть, газ, дрова и уголь. Такая система значительно упростит расходы на отопление. 
  2. Отопления на водороде является экологически чистым. Именно поэтому многие отдают предпочтение такой системе. Она не производит вредных выбросов в атмосферу. Единственным продуктом, который она выделяет, является пар. Он не наносит никакого вреда для окружающих.
  3. Высокий КПД. Он может достигать до 96%.
  4. Тепло получается в результате каталитической реакции. Такая система работает без использования огня. Вода получается в результате соединения кислорода и водорода. Таким образом, выделяется тепловая энергия. Для системы «теплый пол» такое отопление отлично подходит. Ведь в теплообменник идет тепло с температурой 40°. 

Но есть и некоторые недостатки у такой системы отопления:

  1. Небольшое количество специализированных мастеров, которые могут произвести ремонт такого отопительного прибора.
  2. Если оборудование устроено неправильно, то может произойти взрыв.
  3. На рынке представлено мало моделей такого отопления. Поэтому существуют проблемы покупкой и установкой оборудования. 

Особенности водородного генератора

Водородную горелку необходимо выбирать подходящую для вашего помещения. А также в зависимости от площади отапливаемого здания нужно определить с требуемой мощностью. Для того чтобы не производить лишние затраты на отопление. Максимальным значением мощности является 6.
Получать водород можно в любом количестве. Для этого должна присутствовать вода и электричество. Отопление на водороде считается самым экономным. 
Если у вас уже установлена отопительная система, но вы бы хотели приобрести дополнительный источник тепла, то отопление на водороде отлично подходит. Но такое отопление может работать не только как дополнительное, но и как основное. При использовании данной системы в качестве дополнительного источника энергии, следует следить за температурой элементов, которая должна быть невысокой.

Особенности электролитического генератора

Электролитический генератор водорода изготавливают в контейнере. Перед покупкой такого оборудования необходимо получить некоторые документы: сертификаты и разрешение от Ростехнадзора. 

В состав электролитического генератора входят следующий элементы:

  • Система, которая охлаждает жидкость;
  • Электролизер. Это устройство, которое разделяет получение кислорода и водорода;
  • Система по анализу газа;
  • Панели автоматической системы контроля и управления оборудования;
  • Система, которая контролирует возможную утечку водорода;
  • Блок для пополнения воды;
  • Блок, который состоит из выпрямителя, трансформатора и распределительной коробки. 

Часто применяют несколько капель щелока для того чтобы достичь максимальной эффективности электропроводности. Пополняют устройство не чаще, чем 1 раз в год. Как и все генераторы электролитические изготавливают с соблюдением всех норм безопасности и экологии. 

Купить водородный электролитический генератор обойдется намного выгоднее, чем регулярно покупать газ. Для того чтобы получить 1 м3 газа из кислорода и водорода потребуется всего 3, 5 кВт электроэнергии и 0,5 л деминерализованной воды. 

Применение газа Брауна

Спорным вопросом до сих пор считается применение газа Брауна в системе отопления. При сгорании газа получается больше энергии примерно в 4 раза. Газ Брауна — это хим. соединение, которое состоит из 1 атома кислорода и 2 атомов водорода.

Так как для получения такого газа необходим электролиз воды, то применяют специальный электролиз для отопления. Для использования данной технологии в отопительной системе необходимо переделать стандартный котел. В основе такого оборудования будет электролизер, в который заливается электролит. На трубки или металлические пластины подается переменный ток. Вследствие этого происходит разъединение молекул водорода и кислорода. В результате чего получается газ Брауна.

Читайте также:

Водородный котел отопления — принцип работы и сущность системы

Сегодня, благодаря достижениям научно-технического прогресса, который не стоит на одном месте, появляются всевозможные новшества и полезные изобретения. Они затрагивают все сферы, в том числе и комфортное проживание, и отопление домов. Для достижения этой цели совсем недавно на российском рынке появилась уникальная продукция — водородный котел отопления, предназначенный для отопления помещений. В настоящей статье будут рассмотрены особенности водородных котлов, принцип их работы, комплектация агрегата, а также плюсы и минусы данного оборудования.

Особенности водородного котла

В настоящее время водородные котлы отопления мало востребованы на рынке отопительного оборудования России, что объясняется недостаточной информированностью о таком агрегате основной массы потребителей. К примеру, в западных государствах такой альтернативный вид отопления довольно распространен благодаря своей экологической, доказанной чистоте, а также значительной экономии при оплате коммунальных услуг.

В переводе с латинского водород означает «порождающий воду». Данный элемент является наиболее распространенным в мире веществом, солнце на 50% состоит из него, он широко используется в промышленности, а также характеризуется большим количеством уникальных свойств, которые использовались при производстве отопительного водородного котла.

Сама процедура получения водорода проста и понятна. Для этого в обязательном порядке нужна электроэнергия и вода. Электрический ток обеспечивает расщепление молекул воды на водород и кислород, который затем используется для обогрева помещения.

В качестве энергоносителя водород считается наиболее чистым и безопасным элементом, а отопление, в основе которого лежит данное вещество, получается результативным и полноценным.

Принцип работы водородного котла

Принцип функционирования такого агрегата, как водородный котёл отопления купить который сегодня в России довольно проблематично, заключается в реакции, которая возникает при контакте молекулы кислорода и водорода. В итоге взаимодействия этих частиц появляется газ Брауна, а также происходит выделение большого объема тепла.

Для практической деятельности изначально выпускался водородный котел для отопления промышленного назначения. Это оборудование характеризуется большими размерами, занимает значительную площадь, и отличается небольшим КПД, которое не превышает 80%. Однако с течением времени технология эволюционировала, и освоив изготовление промышленных водородных котлов, производители плавно пришли к возможности конструирования агрегатов для отопления жилых помещений.

Для того чтобы водородная установка для отопления дома нормально функционировала, необходимым условием является соблюдение ряда параметров:

  1. Возможность для поступления воды. В основном это водопроводная вода, но можно использовать и дистиллированную. Характеристики потребления жидкости зависят, прежде всего, от мощности агрегата.
  2. Обязательный доступ к электрической энергии. Электролизная реакция предполагает наличие электроэнергии.
  3. Периодическая смена катализатора. Регулярность зависит от мощности и модификации водородного котла.

Следует заметить, что водородный котёл отопления цена которого составляет примерно 800 долларов, произведенный промышленным способом, характеризуется значительными стандартами безопасности. Такое оборудование менее опасно при работе, чем котлы отопления на газе или твердом топливе. Все процессы, происходящие в водородном котле, осуществляются внутри агрегата, а потребителю нужно лишь заниматься контролированием рабочих параметров системы.

Важно!!! В отличие от заводской модели, в агрегатах, изготовленных собственными руками, имеется риск утечки взрывоопасного газа Брауна.

По этой причине самодельный котел требует специфического подхода к обеспечению техники пожарной безопасности.

Сущность системы водородного отопления

Нужно сказать, что водородный котёл для отопления частного дома купить который решаются пока не многие россияне, является прекрасной заменой твердым типам топлива, а также природному газу. Стандартная температура сгорания топлива подчас достигает 3000 градусов. Для обеспечения технологического процесса потребуется специальная горелка, приспособленная для такого температурного режима.

Комплект водородного оборудования состоит из следующих компонентов:

  • Специальный генератор водорода для отопления дома (электролизер), который обеспечивает реакцию между кислородом и водородом. Для повышения эффективности работы применяются катализаторы.
  • Особая водородная горелка для отопления, которая обеспечивает создание пламени. Горелка располагается в топочной камере и способствует разогреву теплоносителя в системе отопления.
  • Непосредственно котел, выполняющий функцию теплообменника.

Подчас водородный котёл для обогрева дома купить который можно лишь заказав его в специализированном магазине отопительного оборудования, производится на базе газового или твердотопливного устройства в целях экономии, это дешевле приобретения заводского оборудования. Но при этом нет гарантии, что водородный котел самодельного производства будет отвечать требованиям пожарной безопасности.

Преимущества и недостатки водородного котла отопления

Помимо своей небольшой стоимости водородное отопления характеризуется еще одним немаловажным качеством – оно абсолютно экологически чистое, поскольку водород является составной частью окружающей среды. Процесс горения данного вида топлива совсем не выделяет вредных веществ. Кроме этого, водород из всех других химических элементов является наиболее встречаемым на планете. Он находится в избытке.

Если возникает вопрос – купить или нет водородный котёл цена которого довольно-таки внушительна, следует описать основные плюсы такого оборудования.

Плюсы водородного котла:

  1. Такой водородный генератор для отопления характеризуется высоким КПД – свыше 90%.
  2. Водородная горелка обладает экологической безопасностью. При функционировании агрегата образуется только пар, который абсолютно безвреден, как для организма проживающих в жилом помещении людей, так и для окружающей среды.
  3. Водородное отопление не предполагает наличие огня. Тепло образуется посредством химической реакции с задействованием катализатора. Водород объединяется с кислородом, что приводит к генерации тепловой энергии, которая попадает в теплообменник.
  4. В перспективе, если тема применения водородных котлов продолжит развиваться, то экономику всего мира ждет подъем и небывалый расцвет.
  5. Водородные горелки функционируют бесшумно, что также является несомненным плюсом.
  6. Генераторы водорода для отопления при самостоятельном монтаже не требуют сооружения и использования дымоходов, что очень удобно.

Указав на достоинства водородного котла отопления, будет несправедливым не указать на его недостатки, которые также имеют место быть:

  • При стандартной комнатной температуре водород имеет газообразную консистенцию. Помимо этого, вещество считается довольно взрывоопасным, что создает определенные трудности при его транспортировке.
  • Хоть в западных государствах водородные котлы набирают все большую популярность, в России им уделяется недостаточное внимание, что может создать некоторые сложности с его приобретением и установкой.
  • Для подготовки специалистов, способных проверять и сертифицировать водородные баллоны, необходимо время.

Советы по созданию водородной системы отопления

Специалисты советуют немного усовершенствовать систему отопления на водороде. Важно!!! Строго запрещено усовершенствовать водородную систему отопления своими силами, поскольку велика вероятность, что это может способствовать разгерметизации агрегата и поступлению газа в жилое помещение.

Несколько рекомендаций по водородной отопительной системе:

  1. Если на горелку установить датчик пламени, это значительно повысит безопасность всей системы отопления. При внеплановом затухании огня, датчик в автоматическом режиме передаст электролизу указание о прекращении поступления газа Брауна в горелку.
  2. Нужно установить датчики температуры в теплообменнике, которые будут реагировать на перегрев воды.
  3. К горелке рекомендуется добавить запорную арматуру, которая функционирует в автоматическом режиме и соединяется с датчиком температуры котла.

Подводя итоги статьи можно с полной уверенностью сказать, что если усовершенствования водородных технологий в области отопления будут развиваться и дальше, то в скором будущем такие отопительные системы могут совсем вытеснить традиционные типы оборудования. Это объясняется тем, что котёл водородный купить который в таком случае можно будет в любом специализированном магазине отопительного оборудования, по всем компонентам превосходит иные агрегаты.

Первое — водород является экологически чистым веществом. Второе – в окружающей среде объем водорода неограничен. Третье – он прост в добыче и характеризуется мизерными финансовыми расходами.

Электролизер для отопления дома — Система отопления

Система отопления имеет терморегуляторы, механизм управления тепла, крепежную систему, фиттинги, автоматические развоздушиватели, радиаторы, расширительный бачок, циркуляционные насосы котел отопления, провода или трубы. Любой элемент большою роль. Посему выбор частей монтажа нужно осуществлять технически правильно. Монтаж обогрева квартиры имеет различные элементы. На этой странице ресурса мы сможем определить для нужной дачи нужные части отопления.

Электролизер для отопления дома

Водород – один из источников отопления дома

В средневековье известным ученым Парацельсом в ходе опытов был замечен такой процесс, как выделение пузырьков воздуха при взаимодействии железа и серной кислоты. Однако это был не воздух, а водород. Это легкий газ, который не имеет ни цвета, ни запаха. А если он смешивается с кислородом, то газ является взрывоопасным. Сегодня отопление на водороде своими руками – это распространенное явление. Ведь водород можно получить в любом количестве, где есть вода и электричество.

Под действием электролиза молекулы воды делятся на кислород и водород. Последний обладает массой уникальных свойств. В жидком состоянии при температуре -250 градусов Цельсия это наиболее легкая жидкость, а в твердом состоянии – самое легкое вещество. Атомы водорода являются самыми маленькими. А при смешивании с атмосферным воздухом водород превращается в смесь, которая способна взорваться от даже самой маленькой искры.

В век технологий существует множество вариантов отопить свой дом. Однако любители самостоятельно создавать разные технические приспособления могут сделать отопление дома водородом своими руками. Это экологически чистый, в то же время, очень мощный источник тепла, благодаря которому можно отопить большое помещение.

Котел отопления на водороде итальянского производства

Водородное отопление дома было разработано одной из компаний в Италии. Когда такая установка работает, она не производит никаких вредных выбросов. Таким образом, это экологически чистое, эффективное, бесшумное отопление дома.

Ученые разработали способ сжигать водород для отопления дома при такой температуре, как 300 градусов по Цельсию. Благодаря этому появилась возможность производить котлы для отопления из традиционных материалов. Такого типа котлы для функционирования не требуют специальной системы отвода продуктов сгорания в атмосферу, так как здесь таковых продуктов нет. В данном случае выделяется только пар, не вредный для окружающей среды. А получить водород – это доступный процесс. Все, на что будут идти расходы, – это только электроэнергия. А если вы будете, используя водородный генератор для отопления, задействовать еще и солнечные панели, то и затраты на электричество можно минимизировать.

Чаще всего котел на водороде применяется для того чтобы обогревать полы. И такие системы на сегодняшний день можно найти с самой разной мощностью. Монтируются они собственноручно.

Водородная установка для отопления дома состоит из следующих компонентов: котел и трубы, имеющие диаметр 25-32 мм (1-1,25 дюймов). Трубы других размеров используются редко. Трубы можно смонтировать самостоятельно, но здесь следует выполнять одно условие – после каждого разветвления диаметр должен быть меньшим. И порядок уменьшения диаметра следующий – труба D32, труба D25. После разветвления – труба D20, последняя – труба D16. Когда такое правило соблюдается, то водородная горелка для отопления будет работать эффективно и качественно.

Водородное отопление имеет несколько важных достоинств, которые обусловливают распространенность системы:

  • Это экологически чистые системы. И здесь единственным побочным продуктом, выбрасывающимся в атмосферу при работе, является вода в состоянии пара. Этот пар никоим образом не наносит вред окружающей среде.
  • Водород в системе отопления функционирует без применения пламени. Тепло создается в результате каталитической реакции. Когда водород соединяется с кислородом, получается вода. При этом выделяется много тепловой энергии. Поток тепла температуры примерно 40 градусов идет в теплообменник. Для теплых полов – это идеальный температурный режим.
  • Очень скоро водородное отопление своими руками сможет заменить традиционные системы, таким образом, освободив общество от добывания разного топлива – нефти, газа, угля и дров.

КПД, который вырабатывает отопление частного дома водородом, может достигнуть 96%.

Еще одним способом, в настоящее время довольно спорным, является применение газа Брауна для отопления. Газ брауна для отопления дома является химическим соединением, состоящим из двух атомов водорода и одного атома кислорода. При сгорании такого газа создается практически в 4 раза больше энергии.

Установка для получения газа Брауна

Источник: http://otoplenie-doma.org/otoplenie-na-vodorode.html

Электролизер для отопления дома

Прошли те времена, когда частный дом можно было обогреть одним-единственным способом — русской печью. Благо, в нашем современном мире, цивилизация добралась и до загородных домов. Теперь любой человек желает иметь свой дом, со всеми удобствами и комфортом. Усовершенствованные технологии и материалы дают возможность оборудовать отопление частного дома различными способами, а в качестве теплоносителя можно использовать — воду, пар, антифриз, а также газообразное вещество. Как видите, выбор очень большой. И изучив все плюсы и минусы данных систем, можно выбрать для себя наиболее подходящий вариант. Сейчас мы здесь обсудим, как можно использовать газ Брауна в системе отопления. В народе его еще обзывают: коричневым или зеленым газом, оксигидрогеном.

Немного углубимся в теорию, чтобы вам было понятно, что собой представляет — это газообразное вещество. Газ Брауна — это «гремучий» газ без цвета и запаха, состоящий из двух частей газообразного водорода и одной части кислорода. Химическая формула газа Брауна (ННО).

На сегодняшний день — отапливание дома водородом, это ноу-хау, которое хоть и не имеет масштабного использования, но уже успело завоевать и привлечь к себе пристальное внимание потребителей. В интернет сообществе активно дискутируют на тему, целесообразно ли использовать газ Брауна для систем отопления.

Дискуссии идут в нескольких направлениях:

  1. С точки зрения безопасности — можно ли газ «гремучку» использовать и при этом не произойдет никакого взрыва, так как водород славится своей взрывоопасностью.
  2. Экономичность получения этого продукта — стоит ли он тех затрат, которые будут затрачены на получения этого газа.

Давайте разберемся, откуда этот газ появляется. Есть устройство обзываемое генератором газа Брауна — предназначен он для получения того самого газа, о котором так активно рассуждает интернет сообщество. Данное изобретение позволило снизить затраты на производство водорода и значительно уменьшить количество вредных выбросов. Под действием переменного тока, вода расщепляется на самостоятельные составляющие, на два атома водорода НН и атом О (кислорода). Если выражаться научным языком, то этот метод называется — электролизом воды, в результате чего получается газ с химической формулой ННО.

Для того чтобы расщепить воду методом электролиза необходимо затратить 442,4 килокалории на Моль. В итоге из одного литра воды получится — 1866,6 литров гремучего газа. При сгорании водорода, вступившим в реакцию с кислородом, энергии возвращается в 3,8 раза больше, чем было затрачено на его получение. Добывая водород таким способом, можно использовать его для энергообеспечения зданий и сооружений.

У многих сограждан наслышавшись о такой системе, возникают вопросы:

  1. Возможно ли «гремучку» применить для отапливание дома?
  2. Сколько выделяется при электролизе — газа Брауна?
  3. Как будет происходить процесс горения?
  4. Есть ли на Российском и Зарубежном рынке — готовое запатентованное устройство, которое будет преобразовывать воду в «гремучку»?
  5. Конечно же, еще многих волнует вопрос — экономичность и безопасность такой системы.

Отопление домов газом Брауна на сегодняшний момент, в силу своей новизны, еще не приобрело широкого применения. Производители водородных котлов, только начинают набирать свои обороты в изготовлении и поставках их на Российский и Западный рынки.

На сегодняшний момент, генераторы газа Брауна, активно используются на рынке автолюбителей. Все мы знаем, что топливо в двигателе внутреннего сгорания сгорает не эффективно. В двигателе авто сгорает лишь 40% топлива, а остальные 60%, можно сказать, улетают в воздух. Эта система дает сильный прирост мощности двигателя, что позволяет экономить бензин, а также снижает количество вредных выбросов в атмосферу, что благоприятно сказывается на нашей экологии. К сожалению, на сегодняшний день водородные генераторы, практически, можно использовать только для автомобилей. Для системы отопления, промышленные выпускаемые генераторы, использовать нельзя. Они для этого еще плохо приспособлены и не до конца разработаны. Да еще выбор в магазинах очень скуден и невелик.

Но откуда тогда пошел слух, что газ Брауна можно использовать для отопления. А это непросто слух, а уже доказанный факт, как многие наши сограждане устанавливают самодельные генераторы газа Брауна, у себя в частных домах, в гаражных кооперативах.

Всеобщий интерес к генераторам газа Брауна, продолжает набирать обороты. Существует большое количество людей, которые планируют или уже собирают своими руками водородные генераторы для котла. Цена на них, мягко говоря, слегка завышена, коэффициент полезного действия (КПД) редко превышает 50% и никогда не превышает даже 90%. На сегодняшний день есть только одно верное решение. Этот генератор необходимо будет сделать самому, для того, чтобы он работал эффективно. с КПД более единицы.

Потребители, которые уже опробовали такую систему для отапливания своих домов. отмечают положительную динамику при использовании данной системы.

Генератор газа Брауна можно собрать несколькими способами. Для того чтобы собрать такую установку в домашних условиях, необходимо приобрести некоторые комплектующие.

Емкость для дистиллированной воды. Вода будет подаваться в герметичную конструкцию с диэлектриком, где располагается комплект собранных нержавеющих пластин, примыкающих друг к другу через изолятор. На нержавеющие пластины должно поступать напряжение 12 Вольт, при таком напряжении происходит распад воды на газы. Но наиболее результативный способ — это подача переменного тока с определенной частотой от ШИМ генератора, где вместо постоянного тока используется переменный или импульсный ток, при этом эффективность установки резко возрастет.

Комплектующие приобретены, теперь начинаем все это собирать.

Для этого нам понадобятся: ​​

  • нержавеющие трубки разных диаметров или листовой нержавеющий металл;
  • шим регулятор с мощностью не меньше 30 А;
  • емкость для размещения этой конструкции;
  • для питания, необходим источник — 12 Вольт.

На Шим подается напряжение, регулятор образует напряжение с необходимой частотой. От того какая будет частота, зависит плодотворность выработки газа. Затем напряжение подается на нержавеющие трубки или пластины, в которых находится вода. В них, под действием тока, выделяется «гремучка». Далее она поступает по гибким трубкам в емкость осушителя. А уже из осушителя, газ подается в контур подачи воздуха.

Такую установку можно применять для отапливания: гаражных кооперативов, загородных домов, все зависит от полета вашей фантазии. Чтобы применить данную установку для отапливания дома, нужно переделать твердотопливный котел или газовый, под газ Брауна. Если вы все-таки надумаете собирать и активно использовать данную самодельную установку, то вы получите дешевое топливо. И экологически чистый продукт, который не загрязняет воздух. При сборке генератора газа Брауна, у вас будут возникать вопросы. Здесь мы ответим на наиболее часто задаваемые вопросы.

Какую воду использовать, обычную водопроводную или дистиллированную?

Можно использовать водопроводную воду, если в ней нет тяжелых металлов или дистиллированную. Но лучший эффект достигается при использовании раствора гидроксида натрия, добавленного в дистиллированную воду. Необходимо соблюсти пропорцию, на десять литров воды нужно добавить одну столовую ложку гидроксида натрия и тщательно размешать.

Какой металл использовать?

В разных пособиях и руководствах, пишут о том, что необходимо использовать только редкие металлы.

Вас вводят в заблуждение. Можно использовать любую нержавеющую сталь. Самые хорошие результаты при работе со сталью, показала ферромагнитная сталь, которая не притягивает частицы ненужного мусора. Еще один важный момент, главное, при выборе металла, отдать предпочтение нержавеющей стали, и чтобы она не была подвержена окислению.

Насколько долговечны пластины электродов?

Менять пластины на новые нет надобности, так как при работе они совсем не разрушаются.

Что нужно сделать, чтобы подготовить пластины для электродов? И как правильно это сделать?

В первую очередь, перед сборкой пластин их необходимо очень тщательно промыть в мыльном растворе, а потом обработать их поверхность спиртосодержащим веществом (водкой или спиртом). Электролизер некоторое время необходимо «погонять», периодически заменяя грязную воду, на чистую. Продолжаем до тех пор, пока вода не вымоет всю грязь. Если вода будет достаточно чистая, то установка нагреваться не будет.

Если вы собрали электролизер правильно, то при его использовании вода и пластины нагреваться не будут. Важно не перегревать электролизер выше 65 градусов. Если температура поднимется выше указанной температуры, то к пластинам пристанет грязь, металлы с минералами. И их придется удалять при помощи наждачной бумаги или заменять их на новые.

Источник: http://teplo.guru/sistemy/otoplenie-gazom-brauna.html

Так же интересуются
04 ноября 2021 года

Электролизер для получения водорода своими руками. Установка водородного генератора для отопления частного дома. Описание и принцип работы водородного генератора

Для получения тепла в доме можно использовать различные источники энергии. Есть среди них и достаточно необычные варианты – например, водородное топливо. В настоящее время отопление водородом используется отечественными потребителями редко из-за некоторых сложностей в получении сырья.

Однако метод этот все равно считается самым экологически чистым и обеспечивает нагрев больших помещений. А расходы на такое отопление будут хотя и большими по сравнению с использованием в качестве энергоносителя газа, однако заметно меньшими по сравнению с эксплуатацией твердотопливных и электрических котлов.

Особенности водородного отопления

Впервые отопление дома на водороде было разработано итальянскими изобретателями. Созданный ими прибор практически не создавал шума и не выбрасывал в атмосферу вредные вещества. При этом температура внутри котлов была невысокой, и оборудование можно было делать не из чугуна или жаропрочной стали, а из обычного металла и даже пластика.

«Классическим», низкотемпературным вариантом отопления на водороде является выделение тепла в процессе образования воды из водорода и кислорода. Хотя существует и методика, предусматривающая обратный процесс – расщепление водных молекул для создания водородного топлива, сгорающего в котлах.

Котлам, работающим на водороде, не нужна специальная система отвода в атмосферу продуктов сгорания. Ведь в процессе выделяется только пар, безвредный для окружающей среды. А получение сырья практически не представляет особой проблемы, в отличие от таких энергоносителей, как газ, дизтопливо и пеллеты.


Расходы при использовании отопления на водороде будут идти только на электроэнергию для генератора.

Преимущества и недостатки

Распространению системы водородного отопления способствует целый ряд достоинств такого метода:

  1. Экологическая чистота выбросов.
  2. Работа без применения огня (только для обычных низкотемпературных систем). Так как тепло получается не при сгорании, а в результате химической реакции. Соединение водорода и кислорода приводит к получению воды, а выделившаяся при этом энергия идет в теплообменник. Температура теплоносителя при этом не превышает 40 градусов, что является практически идеальным режимом для системы «теплых полов».
  3. Использование водородного топлива экономит средства владельца частного дома.


Единственный более выгодный способ в плане эксплуатации – газовое отопление, далеко не всегда доступное для загородного жилья.

Также использование водорода снижает затраты углеводородов типа нефти и газа, представляющих собой невозобновляемые ресурсы.

Правда, имеются у методики и недостатки. Во-первых, водород является достаточно взрывоопасным и, за счет этого, трудно транспортируемым веществом, хотя эта проблема существует только для низкотемпературного варианта.


Во-вторых, специалистов, способных на правильную установку таких котлов и сертификацию водородных баллонов, в нашей стране немного.

Принцип и устройство

Работа отопления на водороде основана на выделении значительного объема тепловой энергии, получаемой в результате взаимодействия кислородных и водородных молекул. Процесс характеризуется большими размерами необходимой для его протекания емкости и высоким КПД (>80%). Для правильного функционирования оборудования необходимо:


  • подключение к источнику жидкости, роль которого чаще всего выполняет водородная система;
  • наличие электропитания, без которого невозможно поддерживать электролиз;
  • периодическая замена катализатора, частота зависит от производительности и конструкции котла;
  • соблюдение требований безопасности)хотя по сравнению с газовым отоплением их намного меньше за счет протекания всех реакций внутри котла, и от пользователя необходим только визуальный контроль процесса).


Впрочем, учитывая, что создать своими руками такое оборудование, как низкотемпературная водородная установка для отопления дома, вряд ли получится, чаще всего используют альтернативный метод – получение водорода и использование его в качестве энергоносителя. Такой вариант будет доступнее по цене и обеспечит большую температуру теплоносителя в отопительной системе (такую же, как и газ).

Сборка системы

В состав систем водородного отопления входят водородные генераторы, горелки и котлы. Первый необходим для разложения жидкости на составляющие (с использованием катализаторов для ускорения процесса или без них). Горелка создает открытое пламя, а котел служит теплообменным устройством. Все это можно приобрести в соответствующих магазинах, однако та же система, созданная своими руками, как правило, работает эффективнее.


Сборку генератора водорода можно осуществить несколькими способами. Для его изготовления понадобится несколько стальных трубок, бак для расположения конструкции, широтно-импульсный генератор мощностью от 30А и выше или другой источник питания. Кроме того, при сборке не обойтись без посуды для дистиллированной воды.

Подача жидкости, из которой будет выделяться водород, осуществляется внутрь герметичной конструкции, где находятся пластины из нержавеющей стали (чем их больше, тем больше получается водорода, хотя тратится и дополнительная электроэнергия), примыкающие друг к другу.


В емкости под действием тока происходит процесс расщепления молекул воды на кислород и водород, после чего последний подается в котел, где установлена горелка. Если же ток подается не от сети, а от ШИМ-генератора, эффективность системы увеличивается.

Применяемые материалы

В системе отопления применяется, как правило, дистиллированная вода, в которую добавляют гидроксид натрия в пропорции 10 л жидкости на 1 ст. л вещества. При отсутствии или проблематичности получения нужного количества дистиллята разрешается использование и обычной воды из крана, но только в том случае, если в ее составе отсутствуют тяжелые металлы.


В качестве металлов, из которых изготавливают водородные котлы, допустимо использовать любые виды нержавеющих сталей – отличным вариантом станет ферримагнитная сталь, к которой не притягиваются лишние частицы. Хотя основным критерием выбора материала все-таки должна быть устойчивость к коррозии и ржавчине.

Для сборки аппарата обычно используются трубки диаметром 1 или 1,25 дюйма. А горелка приобретается в соответствующем магазине или интернет-сервисе.

Если правильно подобрать материалы и тщательно изучить схему отопления, изготовление установки и ее присоединение к котлу не представляет собой ничего сложного.

Целесообразность методики

Причиной установки системы отопления на водороде в частном доме может быть отсутствие в нем природного газа и наличие электроэнергии. При этом расходы на обеспечение здания теплом оказываются меньшими по сравнению с использованием электронагревательных приборов.

Кроме того, отсутствует необходимость в трубах для отвода продуктов сгорания. Получается, что водородная установка вполне может использоваться в загородных домах в качестве самостоятельного или дополнительного отопительного оборудования.

Использование водорода в качестве энергоносителя для обогрева дома – идея весьма заманчивая, ведь его теплотворная способность (33.2 кВт / м3) превышает более чем в 3 раза показатель природного газа (9.3 кВт / м3). Теоретически, чтобы извлечь горючий газ из воды с последующим сжиганием его в котле, можно использовать водородный генератор для отопления. О том, что из этого может получиться и как сделать такое устройство своими руками, будет рассказано в данной статье.

Принцип работы генератора

Как энергоноситель водород действительно не имеет себе равных, а запасы его практически неисчерпаемы. Как мы уже сказали, при сжигании он выделяет огромное количество тепловой энергии, несравнимо большее, нежели любое углеводородное топливо. Вместо вредных соединений, выбрасываемых в атмосферу при использовании природного газа, при горении водорода образуется обычная вода в виде пара. Одна беда: данный химический элемент не встречается в природе в свободном виде, только в соединении с другими веществами.

Одно из таких соединений – обычная вода, представляющая собой полностью окисленный водород. Над ее расщеплением на составные элементы работали многие ученые в течение долгих лет. Нельзя сказать, что безрезультатно, ведь техническое решение по разделению воды все же было найдено. Его суть – в химической реакции электролиза, в результате которой происходит расщепление воды на кислород и водород, полученную смесь назвали гремучим газом или газом Брауна. Ниже показана схема водородного генератора (электролизера), работающего на электричестве:

Электролизеры производятся серийно и предназначены для газопламенных (сварочных) работ. Ток определенной силы и частоты подается на группы металлических пластин, погруженных в воду. В результате протекающей реакции электролиза выделяются кислород и водород вперемешку с водяным паром. Для его отделения газы пропускаются через сепаратор, после чего подаются на горелку. Дабы избежать обратного удара и взрыва, на подаче устанавливается клапан, пропускающий горючее только в одну сторону.

Для контроля за уровнем воды и своевременной подпитки конструкцией предусмотрен специальный датчик, по сигналу которого производится ее впрыск в рабочее пространство электролизера. За превышением давления внутри сосуда следит аварийный выключатель и сбросной клапан. Обслуживание водородного генератора заключается в периодическом добавлении воды, и на этом все.

Водородное отопление: миф или реальность?

Генератор для сварочных работ – это на данный момент единственное практическое применение электролитическому расщеплению воды. Использовать его для отопления дома нецелесообразно и вот почему. Затраты энергоносителей при газопламенных работах не так важны, главное, что сварщику не нужно таскать тяжеленные баллоны и возиться со шлангами. Другое дело – отопление жилища, где каждая копейка на счету. И тут водород проигрывает всем существующим ныне видам топлива.

Важно. Затраты электроэнергии на выделение горючего из воды методом электролиза будут гораздо выше, нежели гремучий газ сможет выделить при сжигании.

Серийные сварочные генераторы стоят немалых денег, поскольку в них используются катализаторы процесса электролиза, в состав которых входит платина. Можно сделать водородный генератор своими руками, но его эффективность будет еще ниже, чем у заводского. Получить горючий газ вам точно удастся, но вряд ли его хватит на обогрев хотя бы одной большой комнаты, не то что целого дома. А если и хватит, то придется оплачивать баснословные счета за электричество.

Чем тратить время и усилия на получение бесплатного топлива, которого не существует априори, проще смастерить своими руками простой электродный котел. Можете быть уверены, что так вы израсходуете гораздо меньше энергии с большей пользой. Впрочем, домашние мастера – энтузиасты всегда могут попробовать свои силы и собрать дома электролизер, с целью провести эксперименты и убедиться во всем самолично. Один из подобных экспериментов показан на видео:

Как изготовить генератор

Масса интернет-ресурсов публикуют самые разные схемы и чертежи генератора для получения водорода, но все они действуют по одному принципу. Мы предложим вашему вниманию чертеж простого устройства, взятый из научно-популярной литературы:

Здесь электролизер представляет собой группу металлических пластин, стянутых между собой болтами. Между ними установлены изоляционные прокладки, крайние толстые обкладки тоже изготовлены из диэлектрика. От штуцера, вмонтированного в одну из обкладок, идет трубка для подачи газа в сосуд с водой, а из него – во второй. Задача емкостей – отделять паровую составляющую и накапливать смесь водорода с кислородом, чтобы подавать его под давлением.

Совет. Электролитические пластины для генератора надо делать из нержавеющей стали, легированной титаном. Он послужит дополнительным катализатором реакции расщепления.

Пластины, что служат электродами, могут быть произвольного размера. Но надо понимать, что производительность аппарата зависит от их площади поверхности. Чем большее число электродов удастся задействовать в процессе, тем лучше. Но при этом и потребляемый ток будет выше, это следует учитывать. К концам пластин припаиваются провода, ведущие к источнику электричества. Здесь тоже есть поле для экспериментов: можно подавать на электролизер разное напряжение с помощью регулируемого блока питания.

В качестве электролизера можно применить пластиковый контейнер от водяного фильтра, поместив в него электроды из нержавеющих трубок. Изделие удобно тем, что его легко герметизировать от окружающей среды, выводя трубку и провода через отверстия в крышке. Другое дело, что этот самодельный водородный генератор обладает невысокой производительностью из-за малой площади электродов.

Заключение

На данный момент не существует надежной и эффективной технологии, позволяющей реализовать водородное отопление частного дома. Те генераторы, что имеются в продаже, могут успешно применяться для обработки металлов, но не для производства горючего для котла. Попытки организовать подобный обогрев приведут к перерасходу электроэнергии, не считая затрат на оборудование.

В средневековье известным ученым Парацельсом в ходе опытов был замечен такой процесс, как выделение пузырьков воздуха при взаимодействии железа и серной кислоты. Однако это был не воздух, а водород. Это легкий газ, который не имеет ни цвета, ни запаха. А если он смешивается с кислородом, то газ является взрывоопасным. Сегодня отопление на водороде своими руками – это распространенное явление. Ведь водород можно получить в любом количестве, где есть вода и электричество.

Под действием электролиза молекулы воды делятся на кислород и водород. Последний обладает массой уникальных свойств. В жидком состоянии при температуре -250 градусов Цельсия это наиболее легкая жидкость, а в твердом состоянии – самое легкое вещество. Атомы водорода являются самыми маленькими. А при смешивании с атмосферным воздухом водород превращается в смесь, которая способна взорваться от даже самой маленькой искры.

Использование водорода в отоплении

В век технологий существует множество вариантов отопить свой дом. Однако любители самостоятельно создавать разные технические приспособления могут сделать отопление дома водородом своими руками. Это экологически чистый, в то же время, очень мощный источник тепла, благодаря которому можно отопить большое помещение.

Водородное отопление дома было разработано одной из компаний в Италии. Когда такая установка работает, она не производит никаких вредных выбросов. Таким образом, это экологически чистое, эффективное, бесшумное отопление дома.

Ученые разработали способ сжигать водород для отопления дома при такой температуре, как 300 градусов по Цельсию. Благодаря этому появилась возможность производить котлы для отопления из традиционных материалов. Такого типа котлы для функционирования не требуют специальной системы отвода продуктов сгорания в атмосферу, так как здесь таковых продуктов нет. В данном случае выделяется только пар, не вредный для окружающей среды. А получить водород – это доступный процесс. Все, на что будут идти расходы, — это только электроэнергия. А если вы будете, используя водородный генератор для отопления, задействовать еще и солнечные панели, то и затраты на электричество можно минимизировать.

Чаще всего котел на водороде применяется для того чтобы обогревать полы. И такие системы на сегодняшний день можно найти с самой разной мощностью. Монтируются они собственноручно.

Водородная установка для отопления дома состоит из следующих компонентов: котел и трубы, имеющие диаметр 25-32 мм (1-1,25 дюймов). Трубы других размеров используются редко. Трубы можно смонтировать самостоятельно, но здесь следует выполнять одно условие – после каждого разветвления диаметр должен быть меньшим. И порядок уменьшения диаметра следующий – труба D32, труба D25. После разветвления – труба D20, последняя – труба D16. Когда такое правило соблюдается, то водородная горелка для отопления будет работать эффективно и качественно.

Преимущества отопления на водороде

Водородное отопление имеет несколько важных достоинств, которые обусловливают распространенность системы:

  • Это экологически чистые системы. И здесь единственным побочным продуктом, выбрасывающимся в атмосферу при работе, является вода в состоянии пара. Этот пар никоим образом не наносит вред окружающей среде.
  • Водород в системе отопления функционирует без применения пламени. Тепло создается в результате каталитической реакции. Когда водород соединяется с кислородом, получается вода. При этом выделяется много тепловой энергии. Поток тепла температуры примерно 40 градусов идет в теплообменник. Для теплых полов – это идеальный температурный режим.
  • Очень скоро водородное отопление своими руками сможет заменить традиционные системы, таким образом, освободив общество от добывания разного топлива – нефти, газа, угля и дров.
  • КПД, который вырабатывает отопление частного дома водородом, может достигнуть 96%.

Еще один вариант – использование газа Брауна

Еще одним способом, в настоящее время довольно спорным, является применение газа Брауна для отопления. Газ брауна для отопления дома является химическим соединением, состоящим из двух атомов водорода и одного атома кислорода. При сгорании такого газа создается практически в 4 раза больше энергии.

Используется специальный электролизер для отопления дома. Ведь в основе получения такого газа лежит принцип электролиза воды. Чтобы такая технология была применена в отоплении, переделывается обычный котел. В его основании будет электролизер – сюда заливается электролит, состоящий из дистиллированной воды и ускорителя реакции. На пластины из металла или трубки дается переменный ток с заданной частотой. Под его влиянием молекулы кислорода и водорода разъединяются, после чего получается газ брауна отопление.

Водородный генератор (электролизер) это прибор, работающий за свет двух процессов: физического и химического.

В процессе работы под воздействием электротока вода разлагается на кислород и водород. Данный процесс носит название электролиз. Электролизер довольно популярен среди самых известных видов водородных генераторов.

Как устроен прибор

Электролизер состоит из нескольких пластин из металла, погруженных в герметическую емкость с дистиллированной водой.

Сам корпус имеет клеммы, чтобы подключать источник питания и есть втулка, через которую выводится газ.

Работу прибора можно описать так: электроток пропускается через дистиллированную воду между пластинами с разными полями (у одной — анод, у другой — катод), расщепляет её на кислород и водород.

В зависимости от площади пластин электроток имеет свою силу, если площадь большая, то и тока по воде проходит много и больше выделяется газа. Схема подключения пластин поочередная, сначала плюс, потом минус и так далее.

Электроды рекомендуется делать из нержавеющей стали, которая в процессе электролиза не вступает в реакцию с водой. Главное найти нержавейку высокого качества. Между электродами лучше сделать расстояние маленькими, но так, чтобы пузыри газа легко между ними передвигались. Крепеж лучше изготовить из соответствующего металла, что и электроды.

Примите во внимание: в связи с тем, что технология изготовления связана с газом, то во избежание образования искры, необходимо произвести плотное прилегание всех деталей.

В рассматриваемом варианте устройство включает в себя 16 пластин, расположены они друг от друга в пределах 1 мм.

За счет того, что пластины имеют достаточно немалую площадь поверхности и толщину, можно будет пропустить через такое устройство высокие токи, однако нагрева металла не произойдет. Если измерить на воздухе емкость электродов, то она составит 1nF, данный набор использует до 25А в простой воде из водопровода.

Для сбора водородного генератора своими руками можно применить контейнер пищевой, так как его пластик термоустойчив. Затем нужно в контейнер опустить электроды для сбора газа с разъемами изолированными герметично, крышкой и другими соединениями.

Если использовать контейнер из металла, то во избежание короткого замыкания, электроды крепятся на пластике. С двух сторон медных и латунных фитингов устанавливаются два разъема (фитинг – монтировать, собирать) для извлечения газа. Разъемы контактные и фитинги нужно прочно закрепить, применяя герметик из силикона.

Соблюдение мер безопасности

Электролизер представляет собой устройство повышенной опасности.

Поэтому во время его изготовления, монтирования и работы обязательно нужно соблюдение как общих, так и специальных мер безопасности.

Специальные меры включают следующие пункты:

  • следует контролировать концентрацию смеси водорода с кислородом, в целях недопущения взрыва;
  • если уровень жидкости не просматривается в смотровом окне водородного генератора, то его использовать нельзя;
  • во время выполнения ремонта нужно удостовериться, что в конечной точке системы полностью отсутствует водород;
  • противопоказано использование открытого огня, электрических нагревательных приборов и переносных ламп напряжением более 12 вольт рядом с электролизером;
  • во время работы с электролитом следует себя обезопасить, используя средства защиты (спецодежда, перчатки и очки).

Квалифицированные мастера считают, что изготавливать самодельные водородные генераторы для автомобилей в домашних условиях рискованное занятие.

Они объясняют это тем, что электролизер для авто имеет сложную и небезопасную систему устройств.

Заниматься изготовлением таких агрегатов нужно, применяя специальные материалы и реагенты.

Примите к сведению: в случае самостоятельного установления электролизера, который был изготовлен своими руками, рекомендуется строгое исключение возможности, когда газ попадает в камеру сгорания при заглушенном двигателе. Во время отключения двигателя, обязательно должен автоматически отключиться водородный генератор от сети электрического питания автомобиля.

Если все-таки решили самостоятельно изготовить автомобильный гидролизер, то обязательно следует оснастить его барботером – это специальный водяной клапан. При его использовании значительно повысится безопасность при вождении автомобиля.

Отопление дома газом Брауна

Водород является самым распространенным химическим элементом, поэтому экономически выгодно его использовать.

Для многих владельцев домов и дач часто встает вопрос, как получить «чистую» и дешевую энергию для нужд в быту. Ответ можно найти в таких инновациях, как водогенератор для отопления жилища.

Ученые, благодаря своим разработкам, позволили многим использовать такое устройство для получения газа. Установка способна генерировать водород (газ Брауна) и этот газ будет использован для получения энергии.

Можно это соединение представить химической формулой, как hho. Данный газ можно получить из воды с помощью метода электролиза. Есть много примеров в жизни, когда люди хотят свой дом отапливать оксиводородом. Но чтобы этот вид топлива получил популярность, надо сначала научиться получать его (газ Брауна) в бытовых условиях.

Пока еще нет технологии водородного отопления частного дома, которая была бы достаточно надежной.

Смотрите видео, в котором опытный пользователь разъясняет, как сделать водородный генератор своими руками:

Для отопления частного дома используют разные способы. Они различаются между собой как по способу передачи тепла, так и по типу используемого энергоносителя. При использовании водяного отопления выделяют несколько типов котлов в зависимости от вида топлива:

Водородный генератор для отопления частного дома

  1. Твердотопливные – используют для работы твердое топливо, которое при сгорании выделяет тепло.
  2. Электрические – в таких котлах тепло получают путем преобразования электроэнергии.
  3. Газовые – тепло выделяется при сгорании газа.

Если рассматривать газовые котлы, то они в основном работают на природном газе, хотя есть модели и под сжиженный газ, а в последнее время начинают применять в качестве топлива водород, вырабатываемый из воды в специальных устройствах – водородных генераторах.

Принцип работы

Из школьного курса физики известно, что вода при воздействии на нее электрического тока разлагается на две составляющие: водород и кислород. На основании этого явления построен так называемый генератор водорода. Это устройство представляет собой агрегат, в котором происходит электрохимическая реакция для получения из воды водорода и кислорода. Процесс электролиза воды показан на рисунке ниже.

Процесс электролиза воды

На выходе генератора образуется не водород и кислород в чистом виде, а так называемый газ Брауна, по имени ученого, который впервые получил его. Его еще называют «гремучим газом», так как он при определенных условиях взрывоопасен. Причем при сгорании этого газа можно получить почти в четыре раза больше энергии, чем было затрачено на его производство.

Такая установка для производства водорода изображена на рисунке ниже.

Промышленная установка для производства водорода

Плюсы и минусы

Из достоинств такого вида отопления можно выделить следующие:

  1. Это экологически чистый вид отопления, так как при сгорании водорода в кислородной среде образуется вода в виде пара, и больше нет выброса никаких вредных веществ в атмосферу.
  2. Можно без особых переделок подключить генератор к существующей системе водяного отопления частного дома.
  3. Установка работает бесшумно, поэтому не требует какого-то особого помещения.

Недостатки:

  1. У водорода большая температура горения, которая в среде кислорода может достигать 3200°С, поэтому обычный котел может выйти из строя очень быстро. В современных устройствах ученые добились результата сгорания газа при температуре 300°С, поэтому проблему можно считать практически решенной.
  2. При работе с газом Брауна нужно быть очень осторожным, поскольку он взрывоопасен. Это решается использованием в устройстве различных предохранительных клапанов и автоматики.
  3. Требует использования для работы дистиллированной воды или воды со щелочью.
  4. Большая стоимость оборудования. Для решения этой проблемы многие пытаются собрать установку для получения водорода своими руками.

Генератор водорода своими руками

Самодельное устройство схематически представляет собой емкость с водой, куда помещены электроды для преобразования воды в водород и кислород.

Для того чтобы своими руками сделать подобное устройство, понадобятся:

  1. Лист нержавеющего металла толщиной 0,5-0,7мм. Подойдет нержавейка марки 12Х18Н10Т.
  2. Пластины из оргстекла.
  3. Резиновые трубки для подвода воды и отвода газов.
  4. Листовая бензомаслостойкая резина толщиной 3 мм.
  5. Источник напряжения – ЛАТР с диодным мостом для получения постоянного тока. Он должен обеспечивать ток 5-8 ампер.

Сначала нарезают нержавеющие пластины на прямоугольники 200×200мм. Уголки на пластинах нужно срезать для того, чтобы потом стянуть всю конструкцию болтами. В каждой пластине просверливаем отверстие диаметром 5мм, на расстоянии 3см от низа пластин, для циркуляции воды. Также к каждой пластине припаивают провод для присоединения к источнику питания.

Перед сборкой из резины делают кольца с внешним диаметром 200мм и внутренним – 190мм. Еще нужно приготовить две пластины из оргстекла толщиной 2см и размерами 200×200мм, при этом нужно предварительно сделать в них отверстия по четырем сторонам под стягивающие болты М8.

Сборку начинают так: сначала кладут первую пластину, затем резиновое кольцо, промазанное с обеих сторон герметиком, далее следующую пластину и так до последней пластины. После этого необходимо всю конструкцию стянуть с двух сторон с помощью шпилек М8 и пластин из оргстекла. В пластинах просверливаются отверстия: в одной – внизу для подвода жидкости, в другой – вверху для отвода газа. Туда вставляется штуцер. На эти штуцера одеваются медицинские полихлорвиниловые трубки. В итоге должна получиться конструкция, как на рисунке ниже.

Водородный генератор своими руками

Для того чтобы исключить попадание газа обратно в газогенератор, на пути от генератора к горелке необходимо сделать водяной затвор, а еще лучше два затвора.

Конструкция затвора – это емкость с водой, в которую со стороны генератора трубка опущена в воду, а та трубка, что идет к горелке, выше уровня воды. Схема генератора водорода с затворами изображена на рисунке ниже.

Схема генератора водорода с водяными затворами

В электролизере – герметичной емкости с водой с опущенными электродами при подаче напряжения начинает выделяться газ. По трубке 1 он подается к 1 затвору. Конструкция водяного затвора устроена таким образом, как видно из рисунка, что газ может двигаться только в направлении от электролизера к горелке, а не наоборот. Этому мешает разная плотность воды, которую нужно преодолеть на обратном пути. Далее по трубке 2 газ движется к 2 затвору, который предназначен для большей надежности системы: если вдруг по какой-то причине не сработает первый затвор. После этого газ подается к горелке с помощью трубки 3. Водяные затворы являются очень важной частью устройства, поскольку препятствуют движению газа в обратную сторону.

При попадании газа обратно в электролизер может произойти взрыв устройства. Поэтому ни в коем случае нельзя эксплуатировать прибор без водяных затворов!

Эксплуатация

После сборки можно начинать испытания прибора. Для этого на конце трубки устанавливают горелку из медицинской иглы и начинают заливать воду. В воду нужно добавить KOH или NaOH. Вода должна быть дистиллированная или талая на крайний случай. Для работы устройства достаточно 10% концентрации щелочного раствора. При заливке воды не должно быть никаких подтеков. Лучше всего перед заливкой продуть конструкцию воздухом, давлением до 1атм. Если водородный генератор выдерживает это давление, то можно заливать воду, если нет, нужно устранить протечки.

После этого к электродам по схеме подсоединяют ЛАТР с диодным мостом. В цепь устанавливают амперметр и вольтметр для контроля работы. Начинают с минимального напряжения и потом постоянно увеличивают, наблюдая за газовыделением.

Предварительно работы лучше проводить на открытом воздухе вне дома. Поскольку установка взрывоопасна, все работы следует проводить с особой осторожностью.

При испытаниях наблюдают за работой прибора. Если имеет место маленькое пламя горелки, то может быть или низкое газовыделение в генераторе, или где-то происходит утечка газа. Если раствор помутнел, грязный, его нужно заменить. Также необходимо следить, чтобы прибор не перегревался, а вода не закипела. Для этого регулируют напряжение на источнике тока. И еще одно – пластины при нагревании немного деформируются и могут прилипать одна к одной. Чтобы это исключить, нужно сделать прокладки из резины. Могут также наблюдаться плевки водой – для устранения этого нужно уменьшить уровень воды.

Генератор в системе отопления

После того как проведены испытания можно подсоединять установку к газовому котлу дома. Для этого котел нужно немного переделать, а именно своими руками сделать жиклер с отверстием меньшего диаметра, чем у заводского, рассчитанного на природный газ. Генератор в собранном виде изображен на рисунке ниже.

Генератор водорода в собранном виде

В систему отопления частного дома обязательно должна быть залита вода. Пламя горелки может расплавить котел, если там не будет воды.

После этого регулируют подачу воды в устройство и начинают устранять пробки в системе отопления дома. Затем с помощью регулировки подачи воды и напряжения питания настраивают работу котла.

При эксплуатации установки в течение отопительного сезона проводят окончательное испытание, в ходе которого решаются несколько вопросов:

  1. Хватает ли газа для отопления дома. Если его недостаточно, то можно своими руками сделать установку большей производительности.
  2. Насколько хорошо работает котел на водороде, то есть насколько котел долго прослужит.
  3. Стоимость такого отопления – для этого можно завести журнал, в котором вести подсчеты расходов на отопление и температуры в доме и на улице во время работы котла. На основании этих данных потом можно сделать вывод, насколько выгодно отапливать дом водородом.

На основании этих данных можно к следующему отопительному сезону подготовиться более основательно. Во время эксплуатации можно увидеть, что нуждается в усовершенствовании, может какую-то часть устройства нужно переделать. Возможно, в переделке и модернизации нуждается сам котел, для того чтобы он не вышел быстро из строя. Также если в дальнейшем планируется пользоваться устройством, может, есть смысл приобрести дистиллятор для воды?

Видео про генератор

Как сделать водородный генератор своими руками без электричества, можно узнать из этого видео.

Главный вопрос, который интересует многих, – настолько дорого или дешево обходится такое отопление? Это можно узнать, если вести статистику во время отопительного сезона. Причем необходимо подбивать все затраты, такие как стоимость дистиллированной воды, стоимость щелочи, расходы на электричество, на ремонт котла и на изготовление установки. На основании этого можно принимать решение, подходит такой вид отопления для дома или нет.

Вконтакте

Рекомендуем также

Водородный электролизер. Отопление дома водородом с помощью нно генератора

Удорожание энергоносителей стимулирует поиск более эффективных и дешевых видов топлива, в том числе на бытовом уровне. Более всего умельцев – энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:

  • разобрать вопрос, как сделать водородный генератор с минимальными затратами;
  • рассмотреть возможность применения установки для отопления частного дома, заправки авто и в качестве сварочного аппарата.

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.


Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

2h4 + O2 → 2h4O + Q (энергия)

Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

2h4O → 2h4 + O2 — Q

Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

Создание опытного образца

Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.

Из чего состоит примитивный электролизер:

  • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
  • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
  • второй резервуар играет роль водяного затвора;
  • трубки для отвода газа HHO.

Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

Принцип работы электролизера следующий:

Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.

Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:


Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

О водородной ячейке Мейера

Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.

Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:

Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

Для изготовления ячейки Мейера потребуется:

  • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
  • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
  • провода, изоляторы.

Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.

Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.


Принципиальная схема включения электролизера

Реактор из пластин

Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

Кроме листовой нержавейки марки 316 понадобится купить:

  • резина толщиной 4 мм, стойкая к воздействию щелочи;
  • концевые пластины из оргстекла либо текстолита;
  • шпильки стяжные М10-14;
  • обратный клапан для газосварочного аппарата;
  • фильтр водяной под гидрозатвор;
  • трубы соединительные из гофрированной нержавейки;
  • гидроокись калия в виде порошка.

Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.


Схема генератора мокрого типа

Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:

  1. На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7-15% раствор гидроокиси калия в воде.
  2. В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
  3. Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».

Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:

Выгодно ли получать водород в домашних условиях

Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все чертежи и схемы, публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:

  • использовать hydrogen в качестве топлива для автомобилей;
  • бездымно сжигать водород в отопительных котлах и печах;
  • применять для газосварочных работ.

Главная проблема, перечеркивающая все преимущества водородного топлива: затраты электричества на выделение чистого вещества превышают количество энергии, получаемое от его сжигания. Что бы ни утверждали приверженцы утопичных теорий, максимальный КПД электролизера достигает 50%. Это значит, что на 1 кВт полученной теплоты затрачивается 2 кВт электроэнергии. Выгода – нулевая, даже отрицательная.

Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.

Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.

Теперь рассмотрим гремучий газ, полученный электролизом в самодельном водородном генераторе, как топливо для вышеперечисленных нужд:


Для справки. Чтобы сжигать гидроген в отопительном котле, придется основательно переработать конструкцию, поскольку водородная горелка способна расплавить любую сталь.

Заключение

Водород в составе газа ННО, полученный из самодельного генератора, пригодится для двух целей: экспериментов и газосварки. Даже если отбросить низкий КПД электролизера и затраты на его сборку вместе с потребляемым электричеством, на обогрев здания попросту не хватит производительности. Это касается и бензинового двигателя легковой машины.

otivent.com

электролизер своими руками, чертежи, получение в домашних условиях, для автомобиля

Водородный генератор может отличаться по размерам и качеству материалов, которые применялись при его изготовлении Раньше загородные дома можно было отапливать только одним способом – растапливали печь дровами или углем. Сегодня же для отопления частного дома используют разнообразное топливо: дизель, мазут, природный газ, электричество. Однако с ростом цен на топливо многие владельцы домов стараются найти более дешевый способ отопления. Одним из них является обычная вода, которую использует водородный генератор для образования такого топлива, как водород. Водород является неиссякаемым источником энергии. Его можно применять не только для обогрева помещений, но и для автомобиля.

Генератор водорода: устройство и его принцип работы

Использовать водород для обогрева жилых домов очень выгодно, так как он обладает высокой теплотворной способностью и при этом не происходит выделения вредных веществ. Однако в чистом виде добыча водорода невозможна, большое содержание его находится в реках, морях и океанах. Организм человека даже состоит из 63% водорода.

Чистый водород можно получать из многих различных химических соединений, например, водорода и кислорода. Самый известный способ получения водорода – это электролиз воды.

Чтобы получить чистый водород необходимо воду расщепить на два атома (НН) водорода и атом кислорода (О). Это и есть принцип работы водяного генератора: получение водорода с помощью электролиза. Газ, который выделяется при этом, назвали в честь великого физика Брауна и он имеет формулу ННО. Такой газ при сгорании не образует вредных веществ и является экологически чистым продуктом. Однако смесь водорода с кислородом образует в итоге горючий газ, который является взрывоопасным. Поэтому используя в домашних условиях электролизер, нужно соблюдать дополнительные меры безопасности.

Водяной двигатель имеет такое устройство:

  • Генератор водородного типа, где и происходит электролиз;
  • Горелка, она устанавливается в самой топке;
  • Котел, он выполняет функцию теплообменника.

На производство такого газа, как браун, используется в четыре раза меньше энергии, чем выделяется при его сгорании. Электричество при этом расходуется очень экономно, а топливо, которое ему необходимо – это обычная вода.

Водородный генератор: его достоинства и недостатки

Сегодня электролизёр является таким же привычным устройством, как например, плазменный резак или ацетиленовый электрогенератор. Такая электролизная установка, работающая на воде (печка), стала достаточно популярной, ее применяют для обогрева частных домов, а так же устанавливают на мотоцикл или авто для экономии топлива.

Водородный генератор является экологически чистым топливом, единственным отходом, который он вырабатывает, есть вода. Она выделяется в газообразном состоянии и известна нам, как водяной пар. А он, в свою очередь, никакого негативного влияния на окружающую среду не оказывает.

Такое устройство обладает и другими положительными достоинствами, но так же и недостатками. Самый важный недостаток – это его взрывоопасность. Однако соблюдая все предосторожности и правила безопасности, можно избежать негативных последствий.

Водородный реактор имеет свои преимущества:

  • Работает на воде;
  • Экономит электричество;
  • Является экологически чистым;
  • Высокий КПД;
  • Простота обслуживания.

Такой прибор HHO можно приобрести в готовом виде в специализированном магазине, стоит он будет, конечно совсем не дешево. Однако можно сделать его и своими руками из доступных деталей, сэкономив при этом приличную сумму. Однако ему нужна защита от воды и отдельный домик для хранения.

Самодельный водородный генератор: пошаговая инструкция

Изготовление водородного генератора можно осуществит в домашних условиях, но для этого будут нужны чертежи и пошаговая инструкция всего процесса. Схема электролизера очень проста (ее можно смотреть в интернете), поэтому каких-либо специфических материалов практически не понадобится.

Для создания самодельного генератора водорода нам понадобятся некоторые инструменты и материалы: пластиковый контейнер или полиэтиленовая канистра с крышкой, прозрачная трубка длиной 1м, с диаметром 8 мм, болты, гайки, силиконовый герметик, лист нержавейки, 3 штуцера, обратный клапан, фильтр, ножовка по металлу, гаечные ключи и нож.

Собрав все это, можно приступать к его изготовлению. Сборка осуществляется по чертежам, которые можно найти в интернете или же заказать у специалиста.

Инструкция изготовления:

  • Из листа нержавейки вырезаем 16 одинаковых пластин.
  • Сверлим отверстие в одном из углов. Угол должен быть одинаковым у всех 16.
  • Противоположный угол обязательно спиливаем.
  • Устанавливаем пластины поочередно на приготовленные болты, изолируя их шайбами и полиэтиленовыми трубками. Они не должны контактировать между собой.
  • Стягиваем всю конструкцию гайками, получается батарея.
  • Крепим данную конструкцию в пластиковую емкость, отверстия смазать герметиком.
  • Просверливаем отверстия в крышке, обрабатываем их так же силиконом, затем вставляем штуцера.

Самодельный кислородный гидролизер готов. Теперь его только нужно проверить на работоспособность. Для этого нужно заполнить емкость водой до болтов крепления и закрыть ее крышкой. Одеваем на один из трех штуцеров шланг из полиэтилена, а второй его коней опускаем в отдельную емкость, заполненную так же водой. К болтам нужно подключить электричество, если на поверхности появились пузырьки, значит, генератор работает и выделяет водород. После такого подключения и проверки, воду сливаем, а затем заливаем в емкость готовый щелочной электролит, чтобы получить больше выделяемого газа.

Электролизер для автомобиля: виды катализаторов

Водородный генератор, при установке, способен снизить расход топлива у легковых или грузовых машин, мотоциклов, а так же сократит выброс в атмосферу вредных веществ. На сегодняшний день, такой генератор для автомобиля приобретает популярность. Процесс электролиза в авто происходит благодаря применению специального катализатора. В конечном итоге получается оксиводород (ННО), который смешиваясь с топливом, что и способствует его полному сгоранию.

Благодаря такой установке можно сэкономить горючее на 50%. А так же, установив данную конструкцию в свой автомобиль, вы не только уменьшите токсичные выхлопы, но и: увеличите эксплуатационный срок двигателя, снизите температуру самого мотора и при этом повысите мощность всего силового агрегата.

Все процессы, которые происходят в водородном генераторе, происходят автоматически по специальной программе. Эта программа вшита в компьютер, который и управляет всем автомобилем. Машина без него попросту не будет работать.

Существует несколько видов катализаторов:

  • Цилиндрические;
  • С открытыми пластинами или их еще называют сухими;
  • С раздельными ячейками.

Самостоятельно водородный генератор можно изготовить, однако специалисты делать этого не рекомендуют, так как это устройство очень сложное по конструкции и при этом еще не безопасно. Если вы все же решили сделать его сами, тогда лучше всего подойдет для этих целей аккумулятор, вышедший из строя.

В настоящее время, водородный генератор – это не просто плод воображения, а действительно реальное устройство, которое поможет эффективно обогреть ваш дом, а так же снизит расходы бензина для автомобиля. Так же водород является безопасным для атмосферы.

Добавить комментарий

teploclass.ru

Изготовляем водородный генератор своими руками: 4 этапа

Детали для водородного генератора можно приобрести в специализированном магазине или в интернете Что собой представляет водородный генератор? Это определенный прибор, который работает с помощью нескольких процессов. Во время своего действия он начинает перерабатывать воду и разлагает ее на водород и кислород. Водородный генератор многие изготавливают самостоятельно. Лучше всего для этого иметь опыт в работе с отопительными системами и изготовлении схожих приборов. В этом случае вы сделаете всё правильно, и не будете волноваться за работу своего генератора.

Как происходит отопление водородом

Отопление водородом – это достаточно практичная вещь. Такое отопление можно встретить внутри автомобиля, в месте, где стоит двигатель. Водород можно получать в больших объёмах. Это делает такой вид отопления всё более и более популярным в условиях, когда надо сберечь деньги и получить отопление в дом максимально эффективно.

Водородный способ отопления был изобретён в компании, которая находится в Италии. Выглядел аппарат как горелка. Получение выглядело иначе, чем сейчас. Способ является экологичным способом получения энергии. К тому же, практически бесшумным. Большое количество водорода сжигается при низкой температуре около 3000 градусов Цельсия. Такая температура поспособствовала изготавливать котлы для отопления водородом из обычных материалов.

Во время отопления водородом, водяной котёл или печь выпускает пар. Пар не приносит вреда человеческой жизни. Он безвредный. Для работы отопления водородом необходима только одна составляющая затрат – электричество. Однако, если поставить солнечные панели, которые будут получать солнечную энергию, то затраты можно снизить до минимальных значений, либо вовсе свести к нулю.

Отопление водородом чаще всего применяются для системы тёплых полов.

Процесс отопления можно представить в виде следующих этапов:

  • Вступление кислорода в реакцию с водородом;
  • Образование водяных молекул;
  • Выделение тепловой энергии;
  • Нагрев пола.

Тепловая энергия, которая выделяется во время реакции, нагревает воду до 40 градусов тепла. Это идеальная температура для технологии теплого пола.

Отопление водородом часто применяется в случаях, когда надо существенно сэкономить на использовании технологий теплого пола. Такой способ позволяет быстро согреть пол без существенных затрат. К тому же, если котёл будет питаться от солнечной энергии, то ваши затраты на обеспечение работы котла приблизятся к нулю.

Можно ли сделать водородный генератор своими руками

Сегодня можно найти в открытых источниках большой пласт информации о создании различных агрегатов. В том числе, и водородного генератора и его принцип работы. Если вы обладаете достаточными знаниями, навыками в конструировании такого рода устройств, то вы можете сделать его своими руками.

Чтобы собрать газогенератор, нужно знать его устройство. Топливные ячейки – это своего рода блок. Для их изготовления следует брать пластины из оргалита или оргстекла.

Представим этапы изготовления генератора:

  • Создание топливных ячеек;
  • Создание отверстий, чтобы дать проход воде;
  • Вырезаем электродные пластины;
  • Обрабатываем нержавеющую сталь наждачкой;
  • Сверлим отверстия для воды между электродами, чтобы отвести газ Брауна;
  • Собираем генератор;
  • Вставляем шпильки и укладываем электроды;
  • Отделяем от реактора пластины нержавейки уплотнительными кольцами;
  • Закрываем генератор оргалитовой стенкой;
  • Скрепляем конструкцию шайбами и гайками;
  • Подключаем генератор шлангами к ёмкости с водой;
  • Соединяем контактные площадки между собой;
  • Подключаем провод питания;
  • Даём напряжение на топливную ячейку.

При конструировании водородного генератора стоит учитывать, что плоскость электродов должна быть ровной, во избежание короткого замыкания.

Следуя вышеприведённому алгоритму, вы сможете изготовить генератор самостоятельно. И тогда водный генератор будет способен расщепить автоподстройкой частоты необходимые частицы для получения энергии.

Водородный генератор можно сделать самостоятельно. Если у вас есть технические знания и опыт в области конструирования подобных устройств, то сделать генератор для вас будет расплюнуть. Делайте всё согласно схемам, чертежам, смотрите руководство по самостоятельному изготовлению, читайте подробное описание и тогда вы сможете сконструировать самодельный электрогенератор для тепла своими руками из доступных деталей, как для легковых авто, так и для домашнего использования. Электрохимический прибор отлично осуществит обогрев как настоящая печка.

Из чего изготавливается электролизер своими руками: чертежи

Чтобы изготовить электролизер своими руками быстро и без лишних проблем, то стоит воспользоваться чертежами. Они помогут вам точнее понять схему и устройство изделия, чтобы сделать его самостоятельно.

Электролизная часть должна быть изготовлена из нержавеющей стали. Можете даже использовать старый лист стали. Покупать новый лист не стоит. Определим список материалов, которые понадобятся при изготовлении.

Пластины в электролизере должны быть двух видов: положительная и отрицательная.

Для изготовления электролизера вам понадобится несколько деталей:

  • Лист нержавейки;
  • Болты, гайки и шайбы;
  • Труба;
  • Штуцеры;
  • Ёмкость на 1,5 литра;
  • Фильтр для проточной воды;
  • Обратный клапан для воды.

Данные материалы понадобятся вам при изготовлении электролиза. В процессе конструирования изделия, следует чётко придерживаться чертежей. Следует заранее в них разобраться, чтобы знать, где все составляющие элементы конструкции.

Сделать гидролизер самостоятельно можно с помощью разных компонентов, вам может и не потребоваться сварка, конечно если вы не будете делать сварочный или ацетиленовый резак, а вот электронный компонент buz350, аккумулятор и батарея которые вырабатывают достаточное количество Джо. Они, для подключения вам могут понадобиться. Если вам нужно много мощности, то можно использовать аккумулятор, который имеет мотоцикл Питер или Вуд, кстати, очень часто такое приспособление работает на спирту, что упрощает задачу. Так что такая добыча водорода будет упрощенной. Для мощных установок, может быть использована машина употребляющая дизель, а точнее ее ДВС.

Для грамотного изготовления электролиза, используйте чертежи. Они помогут вам сделать установку правильной. Заранее посмотрите список материалов и средств, которые могут вам понадобиться во время создания электролиза. Удачи при изготовлении!

Что такое газ Брауна

Во время работы водородный генератор создаёт водород. Но на выходе мы получаем не чистый водород, а его модификацию. Это и есть газ Брауна. Он необходим для воспроизведения энергии и обозначается как HHO. Часто люди хотят отапливать свой дом, применяя оксиводород.

Газ Брауна или Стенли получают из воды. Это осуществляется с помощью метода электролиза или резонанса. Данное топливо всё чаще пробуют использовать для отопления частного дома и жилых помещений. Формула гремучего газа в чём-то схожа с формулой газа Брауна.

Генераторы, которые выделяют такой газ, можно купить, либо изготовить самостоятельно.

Для самостоятельного получения газа вам необходимо:

  • Трубки из ферросплавной нержавейки;
  • Регулятор для настройки мощности элемента нагрева;
  • Осушитель;
  • Источник питания на 12 В.

Стоит отметить, что трубки из нержавейки должны быть разных диаметров.

Газ Брауна – это модификация водородного газа. Именно его мы получаем на выходе, когда используем водородный генератор в быту. Газ можно применять для технологии теплого пола. Так ваши ноги всегда будут в тепле. При этом, затраты на содержания генератора, крайне малы.

Как выбрать водородный котел

Водородный котёл – это самый необходимый элемент для водородного генератора. Без него ваш агрегат не будет работать. Водородный котел можно сделать самостоятельно. Однако многие владельцы дачных участков и домов, где используются теплые полы, рекомендуют котел покупать.

Чтобы выбрать водородный котел, надо обращать внимание на базовые характеристики:

  • Мощность;
  • Количество контуров;
  • Объём потребляемой энергии.

Также стоит обращать внимание на производство. Чем популярнее марка – тем лучше.

Это три основные параметры, по которым можно определить, насколько перед вами эффективный котёл с высоким КПД.

Если вы собираетесь отапливать весь дом – покупайте самые большие котлы. Если нет, то стоит остановиться на маленьком котле. Подходите к выбору котла внимательно. Это самый важный элемент в водородном генераторе. Выбирайте качественные котлы только популярных марок, и тогда ваш генератор прослужит вам много лет.

Насколько эффективна ячейка Мейера

Ячейка Мейера – это топливная ячейка. Элемент, который тратит малый объём электроэнергии, создавая большое количество водородно-кислородной смеси из обычной воды. Преимущества ячейки очевидны. Именно поэтому её применяют в водородных генераторах.

3 главные преимущества ячейки Майера:

  • Малое потребление;
  • Высокая эффективность от чистой воды;
  • Ячейка остаётся холодной даже после часовом создании газа.

Ячейка Мейера применяется вместо обычного электролиза.

За счёт малого потребления и высокой эффективности, ячейка получила широкое применение в создании водородного генератора в домашних условиях. Установка затрачивается малое количество энергии. При этом, даже от чистой воды, она способна производить огромное количество газа, оставаясь холодной.

Ячейка Мейера гораздо эффективнее электролиза. Она изготавливается из нержавейки, требует мало затрат, но при этом на выходе мы получаем большой объём газа. Для работы её необходимо погружать в воду. Если вы хотите получить большое количество газа, то следует использоваться именно ячейку Мейера.

Авто на воде своими руками: чертежи (видео)

Водородный генератор – это очень полезное устройство для тех, кто хочет сэкономить на электроэнергии и получить максимально эффективный агрегат, с помощью которого можно производить газ для системы теплых полов. При использовании генератора, вы будете обеспечены теплым полом на долгое время.

Добавить комментарий

teploclass.ru

Водородный генератор своими руками для отопления дома, схема

Использование водорода в качестве энергоносителя для обогрева дома – идея весьма заманчивая, ведь его теплотворная способность (33.2 кВт / м3) превышает более чем в 3 раза показатель природного газа (9.3 кВт / м3). Теоретически, чтобы извлечь горючий газ из воды с последующим сжиганием его в котле, можно использовать водородный генератор для отопления. О том, что из этого может получиться и как сделать такое устройство своими руками, будет рассказано в данной статье.

Принцип работы генератора

Как энергоноситель водород действительно не имеет себе равных, а запасы его практически неисчерпаемы. Как мы уже сказали, при сжигании он выделяет огромное количество тепловой энергии, несравнимо большее, нежели любое углеводородное топливо. Вместо вредных соединений, выбрасываемых в атмосферу при использовании природного газа, при горении водорода образуется обычная вода в виде пара. Одна беда: данный химический элемент не встречается в природе в свободном виде, только в соединении с другими веществами.

Одно из таких соединений – обычная вода, представляющая собой полностью окисленный водород. Над ее расщеплением на составные элементы работали многие ученые в течение долгих лет. Нельзя сказать, что безрезультатно, ведь техническое решение по разделению воды все же было найдено. Его суть – в химической реакции электролиза, в результате которой происходит расщепление воды на кислород и водород, полученную смесь назвали гремучим газом или газом Брауна. Ниже показана схема водородного генератора (электролизера), работающего на электричестве:

Электролизеры производятся серийно и предназначены для газопламенных (сварочных) работ. Ток определенной силы и частоты подается на группы металлических пластин, погруженных в воду. В результате протекающей реакции электролиза выделяются кислород и водород вперемешку с водяным паром. Для его отделения газы пропускаются через сепаратор, после чего подаются на горелку. Дабы избежать обратного удара и взрыва, на подаче устанавливается клапан, пропускающий горючее только в одну сторону.

Для контроля за уровнем воды и своевременной подпитки конструкцией предусмотрен специальный датчик, по сигналу которого производится ее впрыск в рабочее пространство электролизера. За превышением давления внутри сосуда следит аварийный выключатель и сбросной клапан. Обслуживание водородного генератора заключается в периодическом добавлении воды, и на этом все.

Водородное отопление: миф или реальность?

Генератор для сварочных работ – это на данный момент единственное практическое применение электролитическому расщеплению воды. Использовать его для отопления дома нецелесообразно и вот почему. Затраты энергоносителей при газопламенных работах не так важны, главное, что сварщику не нужно таскать тяжеленные баллоны и возиться со шлангами. Другое дело – отопление жилища, где каждая копейка на счету. И тут водород проигрывает всем существующим ныне видам топлива.

Важно. Затраты электроэнергии на выделение горючего из воды методом электролиза будут гораздо выше, нежели гремучий газ сможет выделить при сжигании.

Серийные сварочные генераторы стоят немалых денег, поскольку в них используются катализаторы процесса электролиза, в состав которых входит платина. Можно сделать водородный генератор своими руками, но его эффективность будет еще ниже, чем у заводского. Получить горючий газ вам точно удастся, но вряд ли его хватит на обогрев хотя бы одной большой комнаты, не то что целого дома. А если и хватит, то придется оплачивать баснословные счета за электричество.

Чем тратить время и усилия на получение бесплатного топлива, которого не существует априори, проще смастерить своими руками простой электродный котел. Можете быть уверены, что так вы израсходуете гораздо меньше энергии с большей пользой. Впрочем, домашние мастера – энтузиасты всегда могут попробовать свои силы и собрать дома электролизер, с целью провести эксперименты и убедиться во всем самолично. Один из подобных экспериментов показан на видео:

Как изготовить генератор

Масса интернет-ресурсов публикуют самые разные схемы и чертежи генератора для получения водорода, но все они действуют по одному принципу. Мы предложим вашему вниманию чертеж простого устройства, взятый из научно-популярной литературы:

Здесь электролизер представляет собой группу металлических пластин, стянутых между собой болтами. Между ними установлены изоляционные прокладки, крайние толстые обкладки тоже изготовлены из диэлектрика. От штуцера, вмонтированного в одну из обкладок, идет трубка для подачи газа в сосуд с водой, а из него – во второй. Задача емкостей – отделять паровую составляющую и накапливать смесь водорода с кислородом, чтобы подавать его под давлением.

Совет. Электролитические пластины для генератора надо делать из нержавеющей стали, легированной титаном. Он послужит дополнительным катализатором реакции расщепления.

Пластины, что служат электродами, могут быть произвольного размера. Но надо понимать, что производительность аппарата зависит от их площади поверхности. Чем большее число электродов удастся задействовать в процессе, тем лучше. Но при этом и потребляемый ток будет выше, это следует учитывать. К концам пластин припаиваются провода, ведущие к источнику электричества. Здесь тоже есть поле для экспериментов: можно подавать на электролизер разное напряжение с помощью регулируемого блока питания.

В качестве электролизера можно применить пластиковый контейнер от водяного фильтра, поместив в него электроды из нержавеющих трубок. Изделие удобно тем, что его легко герметизировать от окружающей среды, выводя трубку и провода через отверстия в крышке. Другое дело, что этот самодельный водородный генератор обладает невысокой производительностью из-за малой площади электродов.

Заключение

На данный момент не существует надежной и эффективной технологии, позволяющей реализовать водородное отопление частного дома. Те генераторы, что имеются в продаже, могут успешно применяться для обработки металлов, но не для производства горючего для котла. Попытки организовать подобный обогрев приведут к перерасходу электроэнергии, не считая затрат на оборудование.

cotlix.com

Изготовление самодельного генератора сухого водорода по схеме

Генераторы водорода, которые в настоящее время используются в автомобилях для экономии энергии, бывают двух видов: «мокрый» электролизер и «сухой». У каждого из них есть свои преимущества и недостатки, но сухой электролизер является разработкой второго поколения устройств, вырабатывающих водород для авто, так как в нем устранены значительные недостатки мокрого предшественника.

При экспериментах своими руками с генерированием водорода следует предельно осторожно соблюдать технику безопасности! Необходимо сначала изучить опыт других исследователей и практиков. Ссылки на ресурсы по данной теме с практическими примерами в конце статьи.

Всякие генераторы и устройства в этом китайском магазине.

На видео показана схема сухого генератора. Подробнее, как его сделать — на втором ролике.

Подробное описание

Для изготовления «сухих батарей» вам понадобится перфорированная нержавеющая сталь марки 316L или 316T. Толщина листа 0,4 мм, или 0,5 мм, не толще,с диаметром отверстий 2 мм, или 3 мм. Шаг отверстий в шахматном порядке, как это показано на картинке. Каждый лист слегка зашкурьте грубой наждачкой так, чтоб поверхность была покрыта царапинами. Это увеличит площадь соприкосновения стали с водой.

В изготовлении «сухих батарей» для автомобиля вам понадобится 20 листов перфорированной стали 10X10 см, с выступом 3X3 см, для электрического контакта; 19 прокладок, толщиной 2 мм, и 2 прокладки, толщиной 10 мм. Их можно вырезать из камер для автомобилей, или листов резины. Нужны также два листа из пластика 16X16 см. Лучше всего изготовить их из стенок ёмкости аккумулятора, отработавшего свой ресурс. Остальные детали вы увидите в видео-показе модели многополярной «сухой батареи». Первая и последняя прокладки 10 мм толщиной, нужны для того, чтобы пластиковые детали для поступления и выхода воды в системе батарей не упирались плотно в первый и последний стальные листы. В стальных пластинах, в выступах для электрических контактов, просверлите отверстие такого диаметра, чтобы болт в них входил как по резьбе, то есть плотно! Пластины должны чередоваться контактами. Одна пластина контактами на правый болт; другая — контактом на левый болт. И так далее.

Система электролиза

Система электролиза состоит из следующих частей: Аккумулятор. «Сухая батарея». Первая ёмкость для дистиллированной воды с примесью гидроксида калия. Гидроксид калия должен иметь 95% насыщенности!. Вторая ёмкость с обычной, чистой водой для очистки газа. Прибор давления. Клапан, предотвращающий возврат газа обратно к системе.

Подсоединение от аккумулятора плюсового и минусового кабеля к «сухой батарее». Поступление воды, с примесью гидроксида калия в батарею. Образующийся газ с остатками воды выходит из батареи и поступает в ёмкость. Затем, через фильтр, предотвращающий выход воды, газ из первой ёмкости поступает во вторую емкость, для очистки через воду. Для этого используется длинная трубка, идущая почти к самому дну второй ёмкости. В первую и вторую емкости можно поверх воды уложить устойчивый к кислотам, не тонущий и пористый материал для предотвращения всплесков воды при качке, тряске и наклонах автомобиля во время езды. Затем через фильтр, предотвращающий выход воды очищенный газ из второй емкости проходит через прибор, показывающий давление газа.

Из прибора давления газ проходит через клапан, который предотвращает возврат газа обратно по системе. Клапан состоит из медной трубки с герметично закручивающимися крышками по оба конца. В крышках устанавливаются ниппеля, пропускающие воздух в одном направлении, то-есть из системы электролиза наружу. А в медную трубку плотно набивается «стальная шерсть» марки 0000. Без этого клапана система электролиза будет взрывоопасна!

Сухие батареи» собираются и разбираются легко. Предложенные параметры стальных пластин избавят вас от головной боли вычислений. Если «сухая батарея», при мощности аккумулятора вашего авто, мало эффективна, тогда снизьте число пластин поровну на плюс и минус. Если же батарея сильно греется, тогда добавьте число пластин также поровну, одна на плюс, другая на минус и так далее. Первую и вторую ёмкости, в системе электролиза, делайте той площадью и формы, чтобы удобней их можно было разместить под капотом. Для надёжности, сделайте к ним и к «сухой батарее» стальные кожухи. Газ подаётся в двигатель через воздухозаборную систему. При этом надо снизить впрыск топлива. Марок автомобилей много, поэтому здесь подход нужен индивидуальный. В общем, думайте, экспериментируйте.

На этом сайте вы найдёте видео и чертежи водного инжектора и высоковольтного реле зажигания. А на этом русскоязычном сайте vodorod-na-avto.com много полезной информации с подробностями и испытаниями генераторов водорода для машин.

izobreteniya.net

Самодельная водородная горелка |

Одним из самых удобных и практичных способов получения водорода, и его дальнейшего, разумного применения является водородный генератор, так называемая водородная горелка. Но получение водорода в домашних условиях довольно опасное занятие потому прислушайтесь к описанному совету.

Самодельный водородный генератор:

Основу водородной горелки составляет водородный генератор, который представляет собою своеобразную ёмкость с водой и пластинами из нержавеющей стали. Конструкция и подробное описание водородного генератора можно без особых усилий найти на других сайтах, потому я не стану тратить печатные символы на это. Я хочу передать весьма важные тонкости, которые будут вам очень полезны, если вы соберётесь делать водородную горелку своими руками.

Рисунок №1 – Структурная схема водородной горелки

Суть водородной горелки заключается в получении водорода путём электролиза воды. Вы должны понимать, что в электролизёр (емкость с водой и электродами) и потому, нельзя наливать туда что попало, я рекомендую использовать дистиллированную воду, однако читал, что для более эффективного электролиза добавляют ещё каустическую соду (пропорций не знаю).

Мой электролизёр собран из нержавеющих пластин, резиновых прокладок, и двух толстых пластин оргстекла, и внешне всё это выглядит так:

Рисунок №2 – Электролизёр

Электролизёр необходимо заполнять водою ровно наполовину для соблюдения техники безопасности, следите за уровнем жидкости, так как с его снижением меняются электрические параметры и интенсивность выделения водорода!

Но прежде чем потратить кучу времени и материалов на сборку электролизёра, позаботитесь о блоке питания к нему. Мой электролизёр, к примеру, потребляет ток около 6А, при напряжении 8В.

Металлические пластины (электроды) соединены при помощи припаянной к ним толстой медной проволоки, и толстых медных проводов (около 4мм сечение).

Рисунок №3 – Как подсоединить провода

Так же вы должны понимать, что всё должно быть герметично соединено и хорошо заизолировано, короткое замыкание пластин и искра недопустимо!!!

Рисунок №4 – Изоляция пластин

На самом деле есть масса разного рода конструкций электролизёра потому я не хочу на нем фокусировать ваше внимание, хотя он и является самой основной и трудоёмкой деталью для водородной горелки, само по себе он не очень важен (вам подойдёт любая его конструкция).

При работе с водородной горелкой следует:

Если вы собрались делать водородную горелку, то будьте осторожны! Водород очень взрывоопасен!!! При сборке и работе с водородной горелкой, есть много жизненно важных тонкостей. Обратите внимание на мои советы – я это реально проделывал и знаю что говорю.

В самодельной водородной горелке обязательно должно быть согласованно давление водорода, и защита от обратного взрыва, хорошая герметичность и изоляция!

Дело в том, что при работе водородной горелкой, для электролиза вы используете блок питания. И пока он включён, водород выделяется примерно с одинаковой интенсивностью (по мере работы она может падать, так как вода испаряется и меняется плотность тока между пластинами электродов), потому не приступайте к работе, не ознакомившись предварительно с устройством горелки.

Как правильно пользоваться водородной горелкой:

Во-первых прежде всего, всегда работайте в средствах индивидуальной защиты (обязательно наденьте на лицо защитный щиток или очки), во-вторых соблюдайте правила пожарной безопасности. В-третьих, следите за уровнем воды в электролизёре, и интенсивностью горения пламени.

Поджигать пламя нужно не сразу, дайте водороду вытеснить остатки кислорода (у меня это занимает около десяти минут, в зависимости от интенсивности выделения и объёма сосудов с водяным затвором и предохранителем А, Б рис.1)

Обязательно держите около себя ёмкость с водою – она вам понадобится, что бы потушить пламя горелки, когда закончите работу. Для этого, вам просто необходимо направить кончик иглы с пламенем под воду и тем самым перекрыть огню кислород. ВСЕГДА СНАЧАЛА ТУШИТЕ ПЛАМЯ А ПОТОМ ВЫКЛЮЧАЙТЕ ПИТАНИЕ ГЕНЕРАТОРА – ИНАЧЕ ВЗРЫВ НЕМЕНУЕМ.

Водяной затвор и предохранитель:

Обратите ваше внимание на рисунок №1 – там есть две ёмкости (Я обозначил их А и Б), ну и иголка от одноразового шприца (В), всё это соединено трубками от капельниц.

В первую емкость (А) необходимо наливать воду, это водяной затвор. Он необходим для того что бы взрыв не добрался до электролизёра (если он рванёт то это будет как осколочная граната).

Рисунок №5 – Водяной затвор

Обратите внимание, в крышке водяного затвора есть два соединителя (я всё это приспособил от медицинской капельницы), оба они герметично вклеены в крышку при помощи эпоксидного клея. Одна трубка длинная, по ней водород с генератора должен поступать под воду, булькать, и через второе отверстие идти по трубке к предохранителю (Б).

Рисунок №6 – Предохранитель

В ёмкость с предохранителем вы можете наливать как воду (для большей надёжности) так и спирт (пары спирта повышают температуру горения пламени).

Сам предохранитель делается так: Вам необходимо проделать в крышке отверстие диаметром 15 мм, и отверстия для винтиков.

Рисунок №7 – Как выглядят отверстия в крышке

Также вам понадобится две толстых шайбы (если потребуется, то надо расширить внутренний диаметр шайбы при помощи круглого напильника) две водопроводных прокладки и фольгу от шоколадки или обыкновенный воздушный шарик.

Рисунок №8 – Эскиз защитного клапана

Собирается он достаточно просто, вам необходимо просверлить четыре соосных отверстия в железных шайбах крышке и прокладках. Сначала необходимо припаять болты к верхней шайбе, это легко можно сделать при помощи мощного паяльника и активного флюса.

Рисунок №9 – Шайба с винтикамиРисунок №10 – Припаянные к шайбе винтики

После того как вы припаяли винтики вам необходимо надеть на шайбу одну резиновую прокладку и непосредственно ваш клапан. Я использовал тонкую резинку от лопнувшего воздушного шарика (это гораздо удобнее чем надевать тонкую фольгу), хотя фольга, тоже подходит довольно удачно, по крайней мере, когда я испытывал свою водородную горелку на предмет взрывоопасности, то в клапане была именно фольга.

Рисунок №11 – Надеваем прокладку и защитную резинку

Потом надеваем вторую прокладку и можно вставлять защиту в отверстия, проделанные в крышке.

Рисунок № 12 – Готовый клапанРисунок №13 – Элементы защиты

Вторая шайба и гайки нужны, что бы герметично и крепко зафиксировать защиту, закручивая гайки (посмотрите на рисунок №6).

Поймите правильно и примите к сведенью, нельзя пренебрегать правилами техники безопасности, особенно когда работаете со взрывоопасными газами. А такое нехитрое приспособление может спасти вас от неприятных неожиданностей. Работает защита по принципу «где тонко – там и рвётся», взрывом выбивает защитную плёнку (фольгу или резинку), и взрывная сила не идёт в электролизёр, к тому же этому препятствует ещё и водяной затвор. Поверьте на слово, если взорвётся электролизер, то мало вам не покажется:)!!!

Рисунок №14 – Взрыв

Следует понимать что аварийная ситуация обязательно неминуема. Дело в том, что пламя горит на выходе форсунки, (в качестве которой достаточно неплохо подходит иголка от одноразового шприца) только потому, что создается давление газа (давление согласовано).

Рисунок № 15 – Форсунка из шприца, на пьедестале

К примеру, вы работаете вашей горелкой и вот вырубило свет, поверьте! Вы не успеете отскочить от горелки, пламя моментально пойдёт обратно по трубке и прогремит взрыв защитного клапана (он и нужен что бы рванул он а не электролизёр) – это вполне нормально, когда горелка самодельная – будьте бдительны и осторожны, держитесь подальше от водородной горелки и надевайте средства индивидуальной защиты!

Лично я не в большом восторге от водородной горелки, я и попробовал её сделать только по тому, что у меня уже был готовый электролизёр. Во-первых, это очень опасно, во-вторых не очень эффективно (я говорю о своей водородной горелке а не о горелках в целом) расплавить ею то что я хотел не удалось. И потому если вам пришла в голову идея сделать такого типа горелку задайте себе вполне рациональный вопрос «а оно того стоит», так как собрать электролизёр с нуля это достаточно хлопотное дело, а ещё нужен мощный блок питания такой что бы хватало для согласования давления водорода и диаметра выходной форсунки. Потому, «лишь бы было» я вам её делать не рекомендую, а только если она вам действительно нужна.

Спасибо что посещаете bip-mip.com

bip-mip.com

Как собрать водородный генератор своими руками

Для отопления частного дома используют разные способы. Они различаются между собой как по способу передачи тепла, так и по типу используемого энергоносителя. При использовании водяного отопления выделяют несколько типов котлов в зависимости от вида топлива:


Водородный генератор для отопления частного дома
  1. Твердотопливные – используют для работы твердое топливо, которое при сгорании выделяет тепло.
  2. Электрические – в таких котлах тепло получают путем преобразования электроэнергии.
  3. Газовые – тепло выделяется при сгорании газа.

Если рассматривать газовые котлы, то они в основном работают на природном газе, хотя есть модели и под сжиженный газ, а в последнее время начинают применять в качестве топлива водород, вырабатываемый из воды в специальных устройствах – водородных генераторах.

Принцип работы

Из школьного курса физики известно, что вода при воздействии на нее электрического тока разлагается на две составляющие: водород и кислород. На основании этого явления построен так называемый генератор водорода. Это устройство представляет собой агрегат, в котором происходит электрохимическая реакция для получения из воды водорода и кислорода. Процесс электролиза воды показан на рисунке ниже.


Процесс электролиза воды

На выходе генератора образуется не водород и кислород в чистом виде, а так называемый газ Брауна, по имени ученого, который впервые получил его. Его еще называют «гремучим газом», так как он при определенных условиях взрывоопасен. Причем при сгорании этого газа можно получить почти в четыре раза больше энергии, чем было затрачено на его производство.

Такая установка для производства водорода изображена на рисунке ниже.


Промышленная установка для производства водорода

Плюсы и минусы

Из достоинств такого вида отопления можно выделить следующие:

  1. Это экологически чистый вид отопления, так как при сгорании водорода в кислородной среде образуется вода в виде пара, и больше нет выброса никаких вредных веществ в атмосферу.
  2. Можно без особых переделок подключить генератор к существующей системе водяного отопления частного дома.
  3. Установка работает бесшумно, поэтому не требует какого-то особого помещения.

Недостатки:

  1. У водорода большая температура горения, которая в среде кислорода может достигать 3200°С, поэтому обычный котел может выйти из строя очень быстро. В современных устройствах ученые добились результата сгорания газа при температуре 300°С, поэтому проблему можно считать практически решенной.
  2. При работе с газом Брауна нужно быть очень осторожным, поскольку он взрывоопасен. Это решается использованием в устройстве различных предохранительных клапанов и автоматики.
  3. Требует использования для работы дистиллированной воды или воды со щелочью.
  4. Большая стоимость оборудования. Для решения этой проблемы многие пытаются собрать установку для получения водорода своими руками.

Генератор водорода своими руками

Самодельное устройство схематически представляет собой емкость с водой, куда помещены электроды для преобразования воды в водород и кислород.

Для того чтобы своими руками сделать подобное устройство, понадобятся:

  1. Лист нержавеющего металла толщиной 0,5-0,7мм. Подойдет нержавейка марки 12Х18Н10Т.
  2. Пластины из оргстекла.
  3. Резиновые трубки для подвода воды и отвода газов.
  4. Листовая бензомаслостойкая резина толщиной 3 мм.
  5. Источник напряжения – ЛАТР с диодным мостом для получения постоянного тока. Он должен обеспечивать ток 5-8 ампер.

Сначала нарезают нержавеющие пластины на прямоугольники 200×200мм. Уголки на пластинах нужно срезать для того, чтобы потом стянуть всю конструкцию болтами. В каждой пластине просверливаем отверстие диаметром 5мм, на расстоянии 3см от низа пластин, для циркуляции воды. Также к каждой пластине припаивают провод для присоединения к источнику питания.

Перед сборкой из резины делают кольца с внешним диаметром 200мм и внутренним – 190мм. Еще нужно приготовить две пластины из оргстекла толщиной 2см и размерами 200×200мм, при этом нужно предварительно сделать в них отверстия по четырем сторонам под стягивающие болты М8.

Сборку начинают так: сначала кладут первую пластину, затем резиновое кольцо, промазанное с обеих сторон герметиком, далее следующую пластину и так до последней пластины. После этого необходимо всю конструкцию стянуть с двух сторон с помощью шпилек М8 и пластин из оргстекла. В пластинах просверливаются отверстия: в одной – внизу для подвода жидкости, в другой – вверху для отвода газа. Туда вставляется штуцер. На эти штуцера одеваются медицинские полихлорвиниловые трубки. В итоге должна получиться конструкция, как на рисунке ниже.


Водородный генератор своими руками

Для того чтобы исключить попадание газа обратно в газогенератор, на пути от генератора к горелке необходимо сделать водяной затвор, а еще лучше два затвора.

Конструкция затвора – это емкость с водой, в которую со стороны генератора трубка опущена в воду, а та трубка, что идет к горелке, выше уровня воды. Схема генератора водорода с затворами изображена на рисунке ниже.


Схема генератора водорода с водяными затворами

В электролизере – герметичной емкости с водой с опущенными электродами при подаче напряжения начинает выделяться газ. По трубке 1 он подается к 1 затвору. Конструкция водяного затвора устроена таким образом, как видно из рисунка, что газ может двигаться только в направлении от электролизера к горелке, а не наоборот. Этому мешает разная плотность воды, которую нужно преодолеть на обратном пути. Далее по трубке 2 газ движется к 2 затвору, который предназначен для большей надежности системы: если вдруг по какой-то причине не сработает первый затвор. После этого газ подается к горелке с помощью трубки 3. Водяные затворы являются очень важной частью устройства, поскольку препятствуют движению газа в обратную сторону.

При попадании газа обратно в электролизер может произойти взрыв устройства. Поэтому ни в коем случае нельзя эксплуатировать прибор без водяных затворов!

Эксплуатация

После сборки можно начинать испытания прибора. Для этого на конце трубки устанавливают горелку из медицинской иглы и начинают заливать воду. В воду нужно добавить KOH или NaOH. Вода должна быть дистиллированная или талая на крайний случай. Для работы устройства достаточно 10% концентрации щелочного раствора. При заливке воды не должно быть никаких подтеков. Лучше всего перед заливкой продуть конструкцию воздухом, давлением до 1атм. Если водородный генератор выдерживает это давление, то можно заливать воду, если нет, нужно устранить протечки.

После этого к электродам по схеме подсоединяют ЛАТР с диодным мостом. В цепь устанавливают амперметр и вольтметр для контроля работы. Начинают с минимального напряжения и потом постоянно увеличивают, наблюдая за газовыделением.

Предварительно работы лучше проводить на открытом воздухе вне дома. Поскольку установка взрывоопасна, все работы следует проводить с особой осторожностью.

При испытаниях наблюдают за работой прибора. Если имеет место маленькое пламя горелки, то может быть или низкое газовыделение в генераторе, или где-то происходит утечка газа. Если раствор помутнел, грязный, его нужно заменить. Также необходимо следить, чтобы прибор не перегревался, а вода не закипела. Для этого регулируют напряжение на источнике тока. И еще одно – пластины при нагревании немного деформируются и могут прилипать одна к одной. Чтобы это исключить, нужно сделать прокладки из резины. Могут также наблюдаться плевки водой – для устранения этого нужно уменьшить уровень воды.

Генератор в системе отопления

После того как проведены испытания можно подсоединять установку к газовому котлу дома. Для этого котел нужно немного переделать, а именно своими руками сделать жиклер с отверстием меньшего диаметра, чем у заводского, рассчитанного на природный газ. Генератор в собранном виде изображен на рисунке ниже.


Генератор водорода в собранном виде

В систему отопления частного дома обязательно должна быть залита вода. Пламя горелки может расплавить котел, если там не будет воды.

После этого регулируют подачу воды в устройство и начинают устранять пробки в системе отопления дома. Затем с помощью регулировки подачи воды и напряжения питания настраивают работу котла.

При эксплуатации установки в течение отопительного сезона проводят окончательное испытание, в ходе которого решаются несколько вопросов:

  1. Хватает ли газа для отопления дома. Если его недостаточно, то можно своими руками сделать установку большей производительности.
  2. Насколько хорошо работает котел на водороде, то есть насколько котел долго прослужит.
  3. Стоимость такого отопления – для этого можно завести журнал, в котором вести подсчеты расходов на отопление и температуры в доме и на улице во время работы котла. На основании этих данных потом можно сделать вывод, насколько выгодно отапливать дом водородом.

На основании этих данных можно к следующему отопительному сезону подготовиться более основательно. Во время эксплуатации можно увидеть, что нуждается в усовершенствовании, может какую-то часть устройства нужно переделать. Возможно, в переделке и модернизации нуждается сам котел, для того чтобы он не вышел быстро из строя. Также если в дальнейшем планируется пользоваться устройством, может, есть смысл приобрести дистиллятор для воды?

Видео про генератор

Как сделать водородный генератор своими руками без электричества, можно узнать из этого видео.

Главный вопрос, который интересует многих, – настолько дорого или дешево обходится такое отопление? Это можно узнать, если вести статистику во время отопительного сезона. Причем необходимо подбивать все затраты, такие как стоимость дистиллированной воды, стоимость щелочи, расходы на электричество, на ремонт котла и на изготовление установки. На основании этого можно принимать решение, подходит такой вид отопления для дома или нет.

Установка насосной станции в частном доме схема

Монтаж системы отопления в частном доме подробная схема

Удорожание энергоносителей стимулирует поиск более эффективных и , в том числе на бытовом уровне. Более всего умельцев–энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:

  • разобрать вопрос, как сделать водородный генератор с минимальными затратами;
  • рассмотреть возможность применения генератора водорода для отопления частного дома, заправки авто и в качестве сварочного аппарата.

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.


Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

2H 2 + O 2 → 2H 2 O + Q (энергия)

Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

2H 2 O → 2H 2 + O 2 — Q

Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

Создание опытного образца

Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.

Из чего состоит примитивный электролизер:

  • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
  • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
  • второй резервуар играет роль водяного затвора;
  • трубки для отвода газа HHO.

Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

Принцип работы электролизера следующий:

Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.

Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:


Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

О водородной ячейке Мейера

Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.

Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:

Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

Для изготовления ячейки Мейера потребуется:

  • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
  • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
  • провода, изоляторы.

Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.


Под ячейку Мейера можно приспособить готовый пластиковый корпус от обычного водопроводного фильтра

Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.


Принципиальная схема включения электролизера

Реактор из пластин

Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

Кроме листовой нержавейки марки 316 понадобится купить:

  • резина толщиной 4 мм, стойкая к воздействию щелочи;
  • концевые пластины из оргстекла либо текстолита;
  • шпильки стяжные М10-14;
  • обратный клапан для газосварочного аппарата;
  • фильтр водяной под гидрозатвор;
  • трубы соединительные из гофрированной нержавейки;
  • гидроокись калия в виде порошка.

Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.


Схема водородной установки мокрого типа

Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:

  1. На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7-15% раствор гидроокиси калия в воде.
  2. В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
  3. Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».

Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:

Выгодно ли получать водород в домашних условиях

Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все чертежи и схемы, публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:

  • использовать hydrogen в качестве топлива для автомобилей;
  • бездымно сжигать водород в отопительных котлах и печах;
  • применять для газосварочных работ.

Главная проблема, перечеркивающая все преимущества водородного топлива: затраты электричества на выделение чистого вещества превышают количество энергии, получаемое от его сжигания. Что бы ни утверждали приверженцы утопичных теорий, максимальный КПД электролизера достигает 50%. Это значит, что на 1 кВт полученной теплоты затрачивается 2 кВт электроэнергии. Выгода – нулевая, даже отрицательная.

Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.

Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.

Теперь рассмотрим гремучий газ, полученный электролизом в самодельном водородном генераторе, как топливо для вышеперечисленных нужд:


Для справки. Чтобы сжигать гидроген в отопительном котле, придется основательно переработать конструкцию, поскольку водородная горелка способна расплавить любую сталь.

Заключение

Гидроген в составе газа ННО, полученный из самодельного водородного генератора, пригодится для двух целей: экспериментов и газосварки. Даже если отбросить низкий КПД электролизера и затраты на его сборку вместе с потребляемым электричеством, на обогрев здания попросту не хватит производительности. Это касается и бензинового двигателя легковой машины.

В современном обществе бытует мнение, что наиболее доступным по цене топливом является природный газ. На самом деле, ему существует альтернатива — водород. Его можно получить при расщеплении воды. Причем этот вид топлива будет бесплатным, если не учитывать тот факт, что придется собрать водородный генератор, компоненты которого нужно покупать.

Теоретическая основа

Водород является очень легким газообразным веществом. У него высокая химическая активность. Окисляясь, он дает большое количество тепловой энергии и при этом образует воду.

Водород обладает следующими свойствами:

Стоит отметить, что hydrogen и oxygen соединяются очень легко, а вот разделить их непросто. Для этого придется использовать электричество для запуска непростой химической реакции.

Простейший газогенератор для добычи водорода представляет собой емкость с жидкостью, внутри которой располагаются две пластины с подключением к электрической сети. Поскольку вода хорошо проводит ток, электроды вступают в контакт с малым сопротивлением. При прохождении электричества через пластины возникает химическая реакция, сопровождающаяся появлением водорода.

Водород. Учебный фильм для школьников по химии

Лучше всего собирать устройство для получения газа Брауна своими руками по схеме, которую называют классической. Здесь электролизер состоит из нескольких ячеек. В каждой из них находятся контактные пластины. Производительность установки определяется площадью поверхности электродов.

Ячейки следует поместить в хорошо изолированный корпус с заранее подключенными патрубками для водоснабжения и отведения водорода. Кроме того, на емкость должен иметься разъем для подключения электрической энергии.


Также нужно будет установить водяной затвор и обратный клапан. Они предотвратят поступление газа Брауна назад в резервуар. По такой съеме можно собрать гидролизер как для отопления дома, так и для автомобиля.

Собрать водородный электрогенератор для дома можно, но рентабельной затею назвать сложно. Дело в том, что для получения достаточных объемов газа придется использовать мощную электрическую установку. Она будет потреблять много дорогой энергии. Однако это не останавливает энтузиастов.

Чтобы собрать электролизер для получения водорода своими руками в домашних условиях, понадобится специализированный инструмент. Например, не обойтись без осциллографа и частотомера.

Вооружившись чертежами, первым делом нужно собрать ячейку гидролизера. Ее ширина и длина должны быть чуть меньше габаритов корпуса. Высота — не более 2/3 основной емкости.

🔴Водород в отоплении дома🔴🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥

Ячейку обычно делают из толстого текстолита с помощью эпоксидного клея. При сборке нижняя часть корпуса остается открытой.

На верхней стороне емкости насверливаются отверстия. Через них наружу выводятся хвостовики электродов. Также понадобится 2 дополнительных отверстия. Первое совсем маленькое для датчика уровня жидкости. Второе диаметром в 15 мм для штуцера. Последний следует закрепить механически. Все отверстия для пластин после установки последних заливаются эпоксидной смолой. Модуль размещается внутри корпуса и основательно герметизируется все той же эпоксидной смолой.

Перед установкой ячеек корпус водогенератора следует подготовить:

После загрузки топливных ячеек, подключения питания, соединения штуцера с приемником и установки крышки на корпус, сборку генератора можно считать завершенной. Остается заполнить емкость жидкостью и подключить дополнительные модули.

Собрать генератор кислорода своими руками — половина дела. Нужно подключить к нему дополнительные устройства, без которых он работать не будет. Например, датчик уровня жидкости нужно соединить с помпой для подачи воды через контроллер. Последний отслеживает сигналы датчика и при необходимости запускает подачу жидкости внутрь топливных ячеек.

Не обойтись и без устройства, позволяющего регулировать частоту тока на клеммах ННО генератора. Кроме того, вся электрическая часть должна иметь защиту от перегрузки. Для этого обычно используется стабилизатор напряжения.

Как сделать генератор водорода своими руками/How to make a DIY hydrogen generator

Что касается коллектора оксиводорода, то его простейший вариант представляет собой трубку, на которой закреплены: запорная арматура, обратный клапан и манометр.

По идее газ из коллектора можно сразу закачивать в печь системы отопления. На практике это невозможно, так как водород выделяет слишком много тепла. Поэтому перед использованием его смешивают с другим топливом.

Своими руками собрать такое устройство не так уж и сложно. Помогут в этом чертежи с пошаговыми инструкциями. Также нужно будет приготовить необходимые материалы: контейнер из пластика или корпус от старого аккумулятора, трубку длиной не менее метра, крепежные болты и гайки, герметик, лист нержавеющей стали, несколько штуцеров, фильтры и обратный клапан.

Процесс изготовления водородного генератора для автомобиля выглядит следующим образом:

Простейший гидролизатор для авто готов. Но перед установкой в транспортное средство нужно его проверить. Для этого устройство заполняется водой до уровня крепежных болтов на пластинах. К штуцеру подключается полиэтиленовый шланг. Его свободный конец опускается в заранее подготовленную емкость с жидкостью.

После подачи энергии на электроды поверхность воды во втором контейнере должна покрыться пузырьками газа. Если это произошло, то генератор готов к эксплуатации. Остается жидкость в нем заменить на щелочной электролит для повышения объемов производимого газа.

Следует понимать,что самодельный генератор водорода не является заменой традиционному топливу. Его устанавливают на автомобили в основном для экономии бензина. Она может достигать 50%. Кроме того, при использовании HHO снижаются вредные выхлопы, повышаются эксплуатационные сроки, уменьшается температура силового агрегата. И все это при ощутимом повышении мощности мотора. Всеми любимая нержавейка — доступное, но недолговечное решение. Топливные ячейки на них довольно быстро выйдут из строя.

Также при сборке гидролизатора нужно соблюдать монтажные размеры. Чтобы их получить, нужно произвести сложные расчеты с учетом качества воды, необходимой мощности на выходе и т. д.

При изготовлении устройства значение имеет даже сечение проводов, по которым на электроды подается ток. Речь идет не о производительности генератора, а о безопасности его эксплуатации, но и этот важный нюанс нужно учитывать.

Главная проблема таких приборов — большие затраты электричества для получения оксиводорода. Они превышают энергию, которую можно получить от сжигания такого топлива.

Из-за низкого КПД цена водородной установки для дома делает производство этого газа и его последующее использование для отопления невыгодным. Чем впустую расходовать электричество, проще установить любой электрокотел. Он будет эффективнее.


Что касается автомобильного транспорта, то здесь картина не сильно отличается. Да, можно сделать гидролизер для экономии топлива, но при этом снижается безопасность и надежность.

Единственное, где водород можно эффективно применять как топливо, — газосварка. Аппараты на hydrogen весят меньше, они компактнее, чем кислородные баллоны, но намного эффективнее. К тому же стоимость получения смеси здесь не играет никакой роли.

Интерес к генераторам водорода, HHO и газа Брауна, продолжает расти как на дрожжах, но самым радостным фактом является огромное количество людей, которые начинают или планируют собирать генераторы водорода своими руками. Причем совершенно не важно, какой генератор человеку нужен, генератор водорода для авто или генератор водорода для котла или сварки, принцип его действия все равно будет одним и тем же. Чтобы помочь практикам, осваивающим эту нелегкую отрасль, мы начинаем готовить ответы на часто задаваемые вопросы по сборке генераторов водорода своими руками.

Предлагаем Вам первую часть ответов на часто задаваемые вопросы по сборке генератора водорода своими руками. Все ответы, приведены «как есть», то есть без какой-либо вуали, подтекста и скрытых целей, нами преследуемых.

Часть 1. Общие вопросы

В данном выпуске:

1.

А зачем это нужно? Можно ведь пойти и купить в магазине генератор водорода, такой, какой нужен ?

2.

А разве существуют способы постройки генератора водорода, который будет работать с КПД выше единицы?

5.

Вы публикуете сверхединичные генераторы водорода от Александра ( ). Он тоже никогда не поделится своими схемами и наработками? .

7. Какую нужно использовать воду?

8. Какой необходим металл? В различных руководствах говорится о необходимости использовать только очень редкие марки… .

9

. Насколько хватает пластин электродов?

10.

Как правильно подготовить пластины для электродов?

11

. Каковы температурные режимы электролизера и воды?

12

. Возможен ли полный перевод автомобиля на газ Брауна?

13

. Какие пропорции газа Брауна в топливе безвредны для ДВС?

14

. Сколько литров газа Брауна в минуту нужно для работы ДВС?

1. А зачем это нужно? Можно ведь пойти и купить в магазине генератор водорода, такой, какой нужен.

Пока выбор генераторов водорода в магазинах очень скуден. Цена на них неоправданно высока, КПД их работы редко превышает 50% и никогда не превышает даже 90%. Для того, чтобы получить эффективный генератор водорода, работающий с КПД более единицы, на данный момент существует только один путь: сделать его самому.

2. А разве существуют способы постройки генератора водорода, который будет работать с КПД выше единицы?

Конечно существуют! Причем построенные на совершенно разных принципах работы и КПД которых превышает единицу не на доли процентов, что можно списать на погрешности измерений, а превышает единицу в разы!

3. Я хорошо учился в школе и университете, а потому не верю, что бывают генераторы водорода, работающие с КПД больше единицы, как мне в этом убедиться?

Для начала предлагаем посмотреть на уже для всеобщего обозрения генераторы водорода с проведенными . Также Вы можете воспользоваться нашими , для расчетов КПД водородных генераторов и выделяемой тепловой мощности.

4. Существуют ли на данный момент хорошо описанные и повторяемые схемы для сборки сверхединичных генераторов водорода?

Нет не существует! Абсолютное большинство выложенных в интернете схем для сборки сверхэффективных генераторов водорода нерабочие. Поэтому не получится найти схему, собрать по ней генератор и радоваться. Прежде придется много поэкспериментировать самому.

5. Вы публикуете сверхединичные генераторы водорода от Александра (). Он тоже никогда не поделится своими схемами и наработками?

Александр очень активно помогает на форуме практикам, отвечая на их вопросы. Просто у него есть конкретные и четкие цели по доведению своих разработок до логического завершения, а на это нужны средства. Потому Александр до окончания работ по этой теме не планирует отвечать на определенный круг вопросов, в основном это касается электронной схемы управления электролизером.

6. Где и что можно почитать или посмотреть, а также где задавать вопросы?

7. Какую нужно использовать воду?

Практически любую, от водопроводной до дистиллированной. Наилучшая эффективность достигается при использование раствора гидроксида натрия в дистиллированной воде в пропорциях одна столовая ложка на десять литров воды.

8. Какой необходим металл? В различных руководствах говорится о необходимости использовать только очень редкие марки…

Это одно из заблуждений! Подойдет любая нержавеющая сталь! Наилучшие результаты достигаются со сталью, которая не притягивается постоянным магнитом (не является ферромагнетиком), так как на нее ничего не налипает в процессе работы, но и этот момент непринципиален. Главное, чтобы сталь была нержавеющей и, соответственно, чтобы она не окислялась в воде.

9. Насколько хватает пластин электродов?

В процессе работы пластины не разрушаются, поэтому менять их на новые не нужно.

10. Как правильно подготовить пластины для электродов?

Все пластины необходимо тщательно промыть перед сборкой, сначала в мыльном растворе, потом спиртом или водкой. Потом необходимо «погонять» электролизер определенное время, периодически заменяя воду на чистую, и так в течение нескольких дней, пока не выест всю грязь и железо.
Впоследствии вода будет оставаться чистой. Чем чище вода, тем меньше нагрев установки.

11. Каковы температурные режимы электролизера и воды?

При правильно собранном электролизере, пластины и вода не должны нагреваться.
Также крайне желательно электролизер и пластины не перегревать выше 80 градусов.
Если температура на нечистой воде поднимется выше, чем 65 градусов, то грязь и металы с минералами пристанут к пластинам и Вы уже их не удалите и не сможете очистить от них пластины! Их придется удалять только при помощью абразивной обработки, с помощью наждачной бумаги и т.д.

12. Возможен ли полный перевод автомобиля на газ Брауна?

Да, теоретически возможен. Практически любой ДВС работает на газе Брауна совершенно спокойно и устойчиво без каких-либо переделок. Однако необходимо помнить, что продуктом сгорания газа Брауна, является вода, которая без принятия соответствующих мер будет накапливаться в картере двигателя, превращая масло в эмульсию, что приведет к быстрому износу деталей, которые будут с ней соприкасаться в процессе эксплуатации. Поэтому для долгосрочной работы ДВС на газе Брауна необходимо подобрать специальные присадки и решить проблему с удалением воды из масла.

13. Какие пропорции газа Брауна в топливе безвредны для ДВС?

В случае с бензиновыми двигателями возможно до 90% топлива заменить на газ Брауна, оставив только лишь 10 процентов бензина. В случае с дизельным топливом, количество газа Брауна в топливе не должно превышать 75-80%. При соблюдении приведенных выше пропорций применение газа Брауна не будет наносить ДВС никакого видимого урона, а его мощность видимо возрастет.
.

14. Сколько литров газа Брауна в минуту нужно для работы ДВС?

В первую очередь все зависит от объема двигателя, инжекторный двигатель или карбюраторный, какой год службы автомобиля… Если просто взять за основу к примеру жигули «копейку», то ей достаточно 17-18 литров в минуту на холостых оборотах и 20-24 литра на рабочем ходу. Это с расчетом того, что 90% топлива заменены на газ Брауна. Вес такой установки будет порядка 55-60 килограмм с учетом залитой воды.

Как мы уже писали Выше, это только первая часть вопросов. По мере их поступления, мы будем публиковать новые статьи с ответами на поступившие вопросы.

А теперь подарок для студентов вузов, которые слишком сильно увлеклись поиском свободной энергии и совсем забыли про учебу. Есть место, где Вам помогут, а при желание даже сделают

18.03.2018

Подробнее Как сделать ГЕНЕРАТОР ВОДОРОДА в домашних условиях (Инструкция + Схемы)

Постоянное удорожание энергоносителей стимулирует поиск более эффективных и дешевых видов топлива, в том числе на бытовом уровне. Более всего умельцев – энтузиастов создания Генераторов Свободной Энергии в домашних условиях привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. Но есть и другие пути более дешевого и простого – высокочастотного электролиза…

А для начала предлагаю ознакомиться с коротким видеороликом, который дает понимание того, ПОЧЕМУ подобные разработки (коих уже превеликое множество!) так и не нашли своего применения в нашей повседневной жизни:

Статья преследует 2 цели:

  • разобрать вопрос, как сделать водородный генератор с минимальными затратами;
  • рассмотреть возможность применения установки для отопления частного дома, заправки авто и в качестве сварочного аппарата.
  • Краткая теоретическая часть
  • Создание опытного образца
  • О водородной ячейке Мейера
  • Реактор из пластин
  • Заключение

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:


Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.


Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

2H 2 + O 2 → 2H 2 O + Q (энергия)

Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

2H 2 O → 2H 2 + O 2 — Q

Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

Создание опытного образца

Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.


Из чего состоит примитивный электролизер:

  • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
  • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
  • второй резервуар играет роль водяного затвора;
  • трубки для отвода газа HHO.

Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

Принцип работы электролизера следующий:

Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.


Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:


Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

О водородной ячейке Мейера

Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое в честь изобретателя.

Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:


Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

Для изготовления ячейки Мейера потребуется:

  • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
  • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
  • провода, изоляторы.


Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.


Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.


Принципиальная схема включения электролизера

Реактор из пластин

Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.


Кроме листовой нержавейки марки 316 понадобится купить:

  • резина толщиной 4 мм, стойкая к воздействию щелочи;
  • концевые пластины из оргстекла либо текстолита;
  • шпильки стяжные М10-14;
  • обратный клапан для газосварочного аппарата;
  • фильтр водяной под гидрозатвор;
  • трубы соединительные из гофрированной нержавейки;
  • гидроокись калия в виде порошка.


Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.


Схема генератора мокрого типа

Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:

  1. На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7-15% раствор гидроокиси калия в воде.
  2. В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
  3. Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».

Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:

Выгодно ли получать водород в домашних условиях

Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все , публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:

  • использовать hydrogen в качестве топлива для автомобилей;
  • бездымно сжигать водород в отопительных котлах и печах;
  • применять для газосварочных работ.

Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.

Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.

Водород вместо нефти, газа и угля — новый тренд в Европе | Экономика в Германии и мире: новости и аналитика | DW

В Европе явно назревает водородный бум. Во всяком случае, в разных странах к нему начинают активно готовиться. В последнее время в СМИ появляется все больше сообщений о пилотных проектах с водородом — и все чаще мелькает химическое обозначение этого газа: h3.

Кто претендует на титул «водородная держава №1»

Так, в Германии сооружается крупнейшая в мире установка по его производству методом электролиза и стартует эксперимент по частичному замещению водородом природного газа в отоплении жилья. Над этим же, над заменой метана на h3 в газопроводной сети, работают и в Великобритании. В Нидерландах и Бельгии собираются протестировать речное судно на водородном топливе и создать для него систему заправки. 

Себастьян Курц обещает превратить Австрию в мирового лидера в области водородных технологий

В Австрии три ведущих концерна готовят сразу несколько совместных пилотных проектов, в том числе по использованию водорода вместо угля при производстве стали, а бывший и, вероятно, будущий канцлер, консерватор Себастьян Курц в ходе избирательной кампании выдвигает лозунг превращения своей страны в «водородную державу №1». На эту же роль претендует и Франция. Да и Германия вполне сможет побороться за такой титул.  

Пригородные электрички на водороде: лидирует ФРГ 

Ведь два пока единственных в мире водородных поезда Coradia iLint эксплуатируются именно в Германии. Более того, они уже успешно отработали свои первые 100 тысяч километров. Это произошло в июле, спустя десять месяцев после начала регулярной перевозки пассажиров по стокилометровому маршруту между городами Бремерхафен, Куксхафен, Букстехуде и Бремерфёрде. 

До конца 2021 года на этой не электрифицированной железнодорожной линии на северо-западе страны в федеральной земле Нижняя Саксония собираются полностью отказаться от дизельных локомотивов, заменив их на 14 поездов, вырабатывающих электроэнергию в топливных элементах в ходе химической реакции между водородом и кислородом. Вместо выхлопов получается вода.

Пригородная водородная электричка Coradia iLint эксплуатируется в Германии с сентября 2018 года

Такие же водородные электрички решили использовать и в федеральной земле Гессен. В мае выпускающий их французский концерн Alstom получил заказ объемом в 500 млн евро на 27 поездов, которые с 2022 года планируется использовать для пригородного сообщения с горным массивом Таунус к северо-западу от Франкфурта-на-Майне.

В результате ФРГ станет бесспорным мировым лидером в области водородного железнодорожного транспорта. Тем более, что интерес к инновационным поездам Alstom проявляют и другие федеральные земли. С некоторыми из них, сообщил глава германского филиала концерна Йорг Никутта (Jörg Nikutta) агентству dpa, он ведет сейчас «активные переговоры».  

Эксперименты с водородом в газовой сети

Немцев и в целом европейцев водород привлекает, прежде всего, из экологических соображений. При использовании h3 в атмосферу не выделяется углекислый газ CO2, самый большой виновник в парниковом эффекте и глобальном потеплении, так что более широкое внедрение водородных технологий поможет странам ЕС выполнить обязательства, взятые на себя в рамках Парижского соглашения по климату (Германия, к примеру, их пока не выполняет).

Но есть и экономический интерес. Он связан с тем, что использование такого возобновляемого источника энергии, как водород, снижает потребность в ископаемых энергоносителях, чаще всего импортируемых (в том числе из России). Например, в нефти и нефтепродуктах, на которых работают, скажем, дизельные локомотивы в том же Таунусе на не электрифицированных маршрутах.   

Впрочем, немецкая компания Avacon, начинающая пилотный проект по примешиванию к природному газу до 20 процентов водорода, в своих заявлениях говорит исключительно о защите климата. Эксперимент призван доказать, что к используемому для отопления газу можно добавлять не до 10 процентов h3, как предписывают действующие нормы, а в два раза больше. В результате сократится выброс CO2, поскольку будет сжигаться меньше углеводородного топлива.

Масштабы эксперимента скромные: он проводится в одном из районов городка Гентхин в восточногерманской земле Саксония-Анхальт. Выбрали это место потому, что имеющаяся здесь газовая инфраструктура по своим техническим характеристикам наиболее типична для всей сети компании Avacon. «Поскольку зеленый газ будет играть все более важную роль, мы хотим переоснастить свою газораспределительную сеть так, чтобы она была приспособлена к приему как можно более высокой доли водорода», — поясняет стратегическую цель эксперимента член правления Avacon Штефан Тенге (Stephan Tenge).   

Power to Gas: возобновляемая энергия, электролиз, «зеленый водород«

Под «зеленым газом» он подразумевает «зеленый водород»: так принято называть тот h3, который образуется наряду с кислородом O2 при электролизе обычной воды. Процесс этот технически весьма простой, но очень энергоемкий. Однако если использовать для него излишки электроэнергии, вырабатываемой из возобновляемых источников — ветер и солнце, то получается безвредное для климата топливо, произведенное без выбросов в атмосферу CO2.

НПЗ Shell в Весселинге: здесь будет крупнейшая в мире установка P2G по производству водорода

Собственно, начавшееся уже несколько лет назад распространение в Европе этой технологии, получившей название Power to Gas (P2G), и лежит в основе растущего европейского интереса к водороду. Так, в конце июня британо-нидерландский концерн Shell при финансовой поддержке Евросоюза (ЕС предоставил 10 из 16 млн евро) начал в Германии на территории своего нефтеперерабатывающего завода в Весселинге под Кёльном строительство крупнейшей в мире установки по производству водорода методом электролиза. До сих пор его получают здесь из природного газа.

После ввода в эксплуатацию во второй половине 2020 года мощность установки, сообщает Shell, составит ежегодно 1300 тонн водорода, который будет использоваться главным образом в производственных процессах на самом НПЗ. Но часть пойдет на то, чтобы превратить территорию между Кёльном и Бонном в модельный регион по внедрению h3, в том числе как топлива для автобусов, грузовых и легковых автомобилей, возможно — для судов, ведь Рейн в непосредственной близости.      

Будет ли Великобритания отапливаться водородом?

Тем временем в третьем по размерам британском городе Лидсе энергетическая компания Northern Gas Networks готовит пилотный проект под многозначительным названием h31, который схож с тем, что проводится в немецком Гентхине, но значительно превосходит его по масштабам. Конечная цель: во всем городе полностью перевести отопление с природного газа, метана, на водород. Морские ветропарки для его производства методом электролиза имеются.

А соответствующие нагревающие воду бойлеры вот уже три года разрабатывает в английском городе Вустере филиал немецкой фирмы Bosch Termotechnik. Его глава Карл Арнцен (Carl Arntzen) рассказал газете Die Welt, что правительство Великобритании до самого последнего времени собиралось снижать значительные выбросы CO2 путем перевода отопительных систем по всей стране с газа на электричество, однако в этом году министерство экономики очень заинтересовалось водородной идеей.

Перед Northern Gas Networks и другими британскими газовыми компаниями это открывает перспективу перепрофилировать и тем самым сохранить имеющуюся газораспределительную систему, которая в случае электрификации отопления оказалась бы ненужной.

Водородные автомобили: высоки ли их шансы? 

Пока британское правительство только присматривается к водороду, лидер австрийских консерваторов Себастьян Курц идеей его широкого внедрения уже настолько увлекся, что сделал ее одним из своих предвыборных лозунгов. Его шансы выиграть в сентябре парламентские выборы и вновь возглавить правительство весьма высоки. И тогда, надо полагать, различные водородные проекты могут рассчитывать на активную поддержку Вены.

А конкретные проекты уже есть, поскольку три ведущие промышленные компании страны — энергетическая Verbund AG, нефтегазовая OMV и металлургическая Voestalpine — решили совместно форсировать внедрение в Австрии водородных технологий. Первый совместный проект стоимостью 18 млн евро (12 млн из них предоставил ЕС) будет реализован в Линце уже к концу 2019 года: там речь идет о замене угля на водород при производстве стали. А НПЗ Schwechat близ Вены планирует для собственных нужд наладить производство h3 методом электролиза — как Shell близ Кёльна.

Увлечение водородом обрело в Европе уже такие масштабы, что консалтинговая компания Boston Consulting Group (BCG) сочла нужным предупредить об опасности завышенных ожиданий и ошибочных инвестиций. Наилучшие перспективы «зеленый водород» имеет в промышленности, а также на грузовом, воздушном и водном транспорте, рассказал газете Handelsblatt Франк Клозе (Frank Klose), соавтор только что опубликованного исследования BCG.

А вот у легковых машин на водороде шансы на успех (пока, во всяком случае) представляются минимальными, хотя японская компания Toyota и собирается расширять их выпуск. На 1 января 2019 года в Германии, к примеру, было зарегистрировано всего-то 392 автомобиля, работающего на h3. У электромобилей, не говоря уже о гибридах, перспективы явно лучше. 

______________

Подписывайтесь на наши каналы о России, Германии и Европе в | Twitter | Facebook | YouTube | Telegram 

Смотрите также:

  • Технологии хранения энергии из возобновляемых источников

    Электростанция из аккумуляторов

    Как хранить в промышленных масштабах излишки электроэнергии, выработанной ветрогенераторами и солнечными панелями? Соединить как можно больше аккумуляторов! В Германии эту технологию с 2014 года отрабатывают в институте общества Фраунгофера в Магдебурге (фото). По соседству, в Шверине, тогда же заработала крупнейшая в Европе коммерческая аккумуляторная электростанция фирмы WEMAG мощностью 10 МВт.

  • Технологии хранения энергии из возобновляемых источников

    Большие батареи на маленьком острове

    Крупнейшие аккумуляторные электростанции действуют в США и странах Азии. А на карибском острове Синт-Эстатиус (Нидерландские Антилы) с помощью этой технологии резко снизили завоз топлива для дизельных электрогенераторов. Днем местных жителей, их около 4 тысяч, электричеством с 2016 года снабжает солнечная электростанция, а вечером и ночью — ее аккумуляторы, установленные фирмой из ФРГ.

  • Технологии хранения энергии из возобновляемых источников

    Главное — хорошие насосы

    Гидроаккумулирующие электростанции (ГАЭС) — старейшая и хорошо отработанная технология хранения электроэнергии. Когда она в избытке, электронасосы перекачивают воду из нижнего водоема в верхний. Когда она нужна, вода сбрасывается вниз и приводит в действие гидрогенератор. Однако далеко не везде можно найти подходящий водоем и нужный перепад высот. В Хердеке в Рурской области условия подходящие.

  • Технологии хранения энергии из возобновляемых источников

    Место хранения — норвежские фьорды

    Оптимальные природные условия для ГАЭС — в норвежских фьордах. Поэтому по такому кабелю с 2020 года подводная высоковольтная линия электропередачи NordLink длиной в 623 километра и мощностью в 1400 МВт будет перебрасывать излишки электроэнергии из ветропарков Северной Германии, где совершенно плоский рельеф, на скалистое побережье Норвегии. И там они будут храниться до востребования.

  • Технологии хранения энергии из возобновляемых источников

    Электроэнергия превращается в газ

    Избытки электроэнергии можно хранить в виде газа. Методом электролиза из обычной воды выделяется водород, который с помощью СО2 превращается в метан. Его закачивают в газохранилища или на месте используют для заправки автомобилей. Идея технологии Power-to-Gas родилась в 2008 году в ФРГ, сейчас здесь около 30 опытно-промышленных установок. На снимке — пилотный проект в Рапперсвиле (Швейцария).

  • Технологии хранения энергии из возобновляемых источников

    Водород в сжиженном виде

    Идея Power-to-Gas дала толчок разработкам в разных направлениях. Зачем, к примеру, превращать в метан полученный благодаря электролизу водород? Он и сам по себе отличное топливо! Но как транспортировать этот быстро воспламеняющийся газ? Ученые университета Эрлангена-Нюрнберга и фирма Hydrogenious Technologies разработали технологию его безопасной перевозки в цистернах с органической жидкостью.

  • Технологии хранения энергии из возобновляемых источников

    В чем тут соль?

    Соль тут в тех круглых резервуарах, которые установлены посреди солнечной электростанции на краю Сахары близ города Уарзазат в Марокко. Хранящаяся в них расплавленная соль выступает в роли аккумуляторной системы. Днем ее нагревают, а ночью используют накопленное тепло для производства водяного пара, подаваемого в турбину для производства электричества.

  • Технологии хранения энергии из возобновляемых источников

    Каверна в роли подземной батарейки

    На северо-западе Германии много каверн — пещер в соляных пластах. Одну из них энергетическая компания EWE и ученые университета Йены превратили в полигон для испытания технологии хранения электроэнергии в соляном растворе, обогащенном особыми полимерами, которые значительно повышают эффективность химических процессов. По сути дела, речь идет о попытке создать гигантскую подземную батарейку.

  • Технологии хранения энергии из возобновляемых источников

    Крупнейший «кипятильник» Европы

    Человечество давно уже использует тепло для производства электроэнергии. Возобновляемая энергетика поставила задачу, наоборот, превращать электричество, в том числе и избыточное, в тепло (Power-to-Heat). Строительство в Берлине крупнейшего «кипятильника» Европы мощностью 120 МВт для отопления 30 тысяч домашних хозяйств компания Vattenfall намерена завершить к концу 2019 года.

  • Технологии хранения энергии из возобновляемых источников

    Накопители энергии на четырех колесах

    Когда по дорогам мира будут бегать миллионы электромобилей с мощными аккумуляторными батареями, они превратятся в еще один крупный накопитель энергии из возобновляемых источников. Этому поспособствуют умные сети энергоснабжения (Smart grid): они будут стимулировать подзарядку по низким ценам в моменты избытка электричества. (На фото — заправка для электромобилей в Китае).

    Автор: Андрей Гурков


Является ли водород решением проблемы отопления дома с нулевым расходом? | Энергетические исследования

27 июня 2019 года министр энергетики и чистого роста Крис Скидмор подписал документы, обязывающие Великобританию сократить выбросы углерода до нуля к 2050 году. ”, Нам предстоит решить одну огромную проблему: отопление дома.

На обогрев наших домов приходится от четверти до трети выбросов парниковых газов в Великобритании.Это более чем в 10 раз превышает количество CO 2 , созданное авиационной промышленностью. Около 85% домов сейчас используют центральное отопление, работающее на газе, и большая часть приготовления пищи на газе все еще используется. По любым меркам экологизация этой системы — огромная проблема. Но если верить недавним отчетам, может быть простой и эффективный способ сделать это: перейти от использования природного газа к водородному газу.

Водород находится в изобилии в мире природы и, по мнению его сторонников, может обеспечить чистое и эффективное питание следующего поколения газовых приборов.

«Водород привлекает тем, что многие потребители не заметят никакой разницы. Клиенты будут продолжать использовать котлы для обогрева своих домов аналогично природному газу », — говорит Роберт Сансом из группы по энергетической политике Института инженерии и технологий. Он является ведущим автором исследования, проведенного институтом под названием «Переход на водород».

Вместе с коллегами Sansom оценил инженерные риски и неопределенности, связанные с переводом нашей газовой сети на водород.Их вывод состоит в том, что нет никаких причин, по которым невозможно было бы перепрофилировать газовую сеть на водород.

Но это не значит, что это будет легко. Существуют технологические и практические препятствия, потому что не существует плана для такого преобразования: нигде в мире нет места, где можно было бы поставлять чистый водород в дома и на предприятия. Великобритании придется стать пионером во всем.

Интерес к водороду как к способу обогрева домов начался в 2016 году с доклада под названием h31. Он проводился компанией Northern Gas Networks, газораспределителем на севере Англии, и рассматривал вопрос о том, было ли технически возможно и экономически целесообразно преобразовать Лидс на 100% водород вместо природного газа.

«Они рассмотрели множество деталей, от заводов по производству водорода до домов людей», — говорит Сансом.

В отчете проводится параллель с тем, как газовая промышленность перешла с городского газа на природный в 1960-х и 1970-х годах. Городской газ представлял собой комбинацию водорода, окиси углерода и метана. В основном он производился путем перегонки угля и нефти и использовался в течение первых 150 лет газовой промышленности Великобритании. С открытием в Северном море природного газа, состоящего преимущественно из метана, Великобритания в течение десятилетия предприняла общенациональную программу по конверсии 40-метровой техники.

Одновременно будут преобразованы целые улицы. Инженеры осматривали бы газовые приборы, а затем перестраивали их. Одновременно отключили городской газ и продули трубопроводы инертным газом. Наконец, в систему был закачан природный газ, и инженеры должны были убедиться, что каждое устройство работает правильно, прежде чем перейти на следующую улицу.

Некоторые производители теперь настолько убеждены, что подобное может случиться с водородом, что они уже начали разрабатывать новые бытовые приборы.В феврале компания Worcester Bosch представила прототип своего водородного котла. Сначала он будет работать на природном газе, а затем, после технического обслуживания, на водороде.

Также в пользу водорода работает то, что в течение последних 20 лет газовая промышленность систематически заменяла металлические трубы в своей «железной магистрали» на желтые полиэтиленовые. Около 90% труб будет заменено к 2030 году. Это хорошая новость для водорода, потому что газ вступает в реакцию со старыми металлическими трубами, делая их хрупкими.Но полиэтилен безопасен.

«По сути, мы начали программу водородозащиты нашей газовой сети, даже не зная, что мы делаем это», — говорит Сансом, которого эта концепция все больше и больше впечатляет. «С личной точки зрения, я был в напряжении, когда приступил к этой работе. Но я обнаружил, что соскользнул на сторону водорода с точки зрения его жизнеспособности как низкоуглеродной альтернативы природному газу », — говорит он.

Водородный котел Worcester Bosch.Фотография: Worcester Bosch

Но не всех убедил этот внезапный интерес к водороду. Ричард Лоус из Группы по энергетической политике Университета Эксетера говорит, что до недавнего времени считалось, что отопление необходимо каким-то образом электрифицировать, чтобы выполнить наши обязательства в отношении климатического кризиса. «Это в основном явилось результатом многих лет технического и экономического моделирования, чтобы посмотреть, как добиться полного обезуглероживания отопления в Великобритании», — говорит Лоуз.

Переключение отопления с газа на электричество означало бы использование тепловых насосов.Они используют электричество для извлечения тепла из воздуха или земли. В случае теплового насоса с воздушным источником он работает как холодильник, но вместо того, чтобы высасывать тепло из отделения для пищевых продуктов, он вытягивает его из воздуха и направляет в дом, где он используется для нагрева воды, т.е. подключен к радиаторам центрального отопления и хранится в баке для горячей воды.

Но поскольку эта технология работает при более низких температурах, чем существующие котлы, она требует, чтобы многие дома были лучше изолированы или имели радиаторы большего размера, способные обеспечивать большую тепловую мощность.Для тех, кто перешел на комбинированные котлы с непрерывным обогревом, потребуется переустановка бака для горячей воды.

Это обширная работа, но она того стоит, по словам Лоуза, который снял свой собственный газовый котел и теперь использует тепловой насос с воздушным источником тепла для обогрева своего дома. «Это было много работы, но мой дом и система отопления теперь намного эффективнее. Здесь всегда тепло, всегда есть горячая вода, а расходы на эксплуатацию практически такие же, как и на газ », — говорит он.

Со стороны газовой промышленности несколько лицемерно говорить, что мы не можем рыть дороги, когда они делали это в течение 20 лет
Ричард Лоуз

Третий подход называется централизованным теплоснабжением.Он предусматривает нагрев воды на центральном предприятии с использованием отработанного тепла промышленных предприятий или экологически чистых источников, таких как солнечная энергия. Затем горячая вода подается во многие дома одновременно по сети надежно изолированных подземных труб. Оба метода могут значительно снизить углеродный след домашнего отопления, но обратная сторона заключается в том, что они требуют большой работы для их внедрения в национальном масштабе.

Централизованное теплоснабжение потребует прокладки водопроводных труб под домами, а широкое использование тепловых насосов потребует модернизации электрических цепей Национальной сети.Сторонники водорода утверждают, что именно такого рода сбоев можно избежать, потому что большая часть национальной инфраструктуры уже модернизирована. Этот аргумент не подходит для Лоуза. «Со стороны газовой отрасли кажется немного лицемерным утверждать, что мы не можем рыть дороги, хотя они делали это последние 20 лет», — говорит он.

Он указывает, что, хотя потребитель может не испытывать таких серьезных сбоев, серьезные проблемы для газовой отрасли остаются. Например, Национальная система передачи, представляющая собой сеть трубопроводов, по которым газ от прибрежных терминалов поступает к газораспределительным компаниям и другим крупным потребителям, сделана из металла.Это должно быть каким-то образом защищено от охрупчивания, прежде чем произойдет переход на водород.

«Водород, конечно, не серебряная пуля», — говорит Лоуз. А если мы отвлечемся на это, мы можем столкнуться с еще большими проблемами, полностью пропустив энергетический план на 2050 год.

Но если с водородом так много неуверенности, почему газовая промышленность, которая финансирует многие исследования, так сильно его продвигает? По словам Криса Гудолла, экономиста по энергетике и автора книги «Что нам нужно делать сейчас для будущего без углерода» , это вопрос выживания.

«Они не хотят, чтобы их промышленность была съедена переключением на электричество для отопления. Поэтому они действуют так быстро, как могут, чтобы убедить нас в использовании водорода », — говорит он. И все сводится к тому, как добывается газ.

Водород в чистом виде на Земле не встречается. Вместо этого его нужно извлекать из других веществ, и лучше всего его извлекать из метана, то есть из природного газа. Таким образом, газовые компании могут эффективно поддерживать свою текущую деятельность.

Но дополнительные этапы извлечения водорода поднимут цену. Кроме того, при экстракции в качестве побочного продукта образуется диоксид углерода, поэтому необходимо разработать крупномасштабную технологию улавливания углерода, чтобы предотвратить его утечку в атмосферу. Хотя это технология, которую Великобритании все равно придется разработать, чтобы достичь нулевого уровня к 2050 году, она увеличит стоимость.

Первый в Северной Ирландии автобус, работающий на водородных топливных элементах, Wrightbus, представлен в январе.Фотография: Лиам МакБерни / PA

Но природный газ — не единственное вещество, содержащее водород. Вода тоже, и водород можно освободить с помощью процесса, называемого электролизом, при котором не образуется диоксид углерода. Чтобы сделать его полностью экологически чистым, на что можно надеяться, электролиз можно использовать с помощью ветряных электростанций. Однако в настоящее время цена на такую ​​электроэнергию высока, и это приведет к еще большему росту цен на водород.

Гудолл надеется, что стоимость будет снижаться по мере совершенствования технологий, но предупреждает: «Вы можете обвиниться в бессмысленном оптимизме, просто сказав это.”

В энергетическом ландшафте Великобритании будущего, без сомнения, сложно ориентироваться. Возможно, лучший путь будет открыт, если не противопоставлять различные решения друг другу. «У всех трех есть сильные и слабые стороны, и я ожидаю, что каждая из них будет играть важную роль в качестве замены природного газа», — говорит Сансом. Даже противники водорода признают это. «Как нишевая технология она может иметь реальную ценность», — говорит Лоус. Далее он перефразирует рекламу пива Heineken 70-х и 80-х годов, заявив, что водород потенциально может достичь тех частей страны, которые не могут достичь другие решения в области энергетики.

Гудолл также видит роль водорода в «хранении» энергии, вырабатываемой из возобновляемых источников, таких как энергия ветра и солнца. Идея состоит в том, что в ветреные месяцы любая дополнительная электроэнергия, произведенная из возобновляемых источников энергии, будет использоваться для производства водорода, который затем будет храниться. Когда возникает повышенный спрос на национальную энергосистему или сезонное падение мощности, производимой из возобновляемых источников энергии, водород можно сжигать для производства электроэнергии.

Дело в том, что все варианты обезуглероживания наших систем отопления потребуют значительных сбоев и затрат.И пока правительство продолжает размышлять, время идет к 2050 году.

«Нет необходимости ждать. Теперь мы можем развернуть то, что работает нормально », — говорит Лоуз, имея в виду свой собственный опыт замены газового котла на тепловой насос. «Безотлагательность изменения климата означает, что на самом деле нет причин откладывать».

Другие считают, что водород играет определенную роль, и полагают, что на его рассмотрение стоит потратить немного больше времени. Но есть одна истина, с которой все согласны. «Все это нелегко.Если кто-то говорит вам, что это легко, они вводят вас в заблуждение », — говорит Лоуз.

Автомобили, работающие на водороде

Заправочная станция водородом в Сеуле, Южная Корея. Фотография: Kim Hong-Ji / Reuters

Водород также может приводить в действие транспортные средства, но не так, как он обогревает дома. Вместо того, чтобы сгореть, водород вступает в реакцию с кислородом внутри устройства, называемого топливным элементом. Электричество и вода производятся. Электричество запускает машину, из выхлопной трубы капает вода.

Попытке перейти на водородные автомобили в 1990-х годах помешали электрические автомобили, которые накапливают свою энергию в бортовой батарее.Но новый толчок для водородных транспортных средств исходит из Азии. Китай, Япония и Южная Корея поставили перед собой амбициозные цели — к 2030 году использовать на своих дорогах миллионы автомобилей с водородным двигателем.

Toyota и Hyundai предлагают автомобили на водороде в Великобритании, но в настоящее время существует менее 20 заправочных станций, работающих на водороде. Великобритания, в основном сосредоточенная вокруг M25.

«Будет действительно интересно посмотреть, что произойдет», — говорит Лоуз. Но сам он не убежден: «Водород намного дороже электричества, а автомобиль дороже электромобиля.«

Почему водородные электростанции« сыграют важную роль в энергетическом переходе »

На первый взгляд концепция электростанции, работающей на чистом водороде, кажется совершенно абсурдной.

Зачем кому-то использовать возобновляемые источники энергии для производства зеленого водорода, а затем сжигать его для производства электроэнергии? Эффективность в оба конца будет меньше 40%, поэтому каждые 10 кВт · ч энергии ветра или солнца будут обеспечивать менее 4 кВт · ч электроэнергии.

И зачем кому-то создавать голубой водород из природного газа с улавливанием и хранением углерода (CCS) — со всеми дополнительными расходами на риформинг метана и его сжатие / сжижение, транспортировку и хранение трудноуправляемого H 2 — когда вы может просто добавить CCS к существующим газовым электростанциям?

И все же крупные энергетические компании, такие как Siemens Energy, Equinor и SSE, считают, что у водородных электростанций есть светлое будущее.Почему?

Зеленоводородные электростанции

Немецкая компания Siemens Energy, которая была выделена из материнской компании Siemens в прошлом году, теперь предлагает клиентам решения для водородных электростанций.

«Если у меня есть возобновляемая энергия, преобразовать ее в водород и повторно электрифицировать, с общим КПД цикла менее 40%, это, очевидно, имеет смысл только в том случае, если вы используете водород в качестве долгосрочного хранилища и компенсации переменных возобновляемые источники энергии », — говорит Эрик Зиндель, вице-президент Siemens Energy по продажам производства водорода.

Продолжение статьи ниже объявления

«Если вы действительно хотите [хранить электроэнергию] в течение нескольких дней, недель, месяцев или для сезонного хранения — в этом случае используется солнечная энергия летом зимой или энергия ветра с осени до лето — нужно хранить электричество химическим способом.

«Вам все еще нужна [чистая] энергия для темных периодов депрессии зимой, когда нет солнца и ветра в течение двух или трех недель — вам нужен водород».

Он сообщает Recharge , что крупномасштабное хранилище водорода также будет полезно для уменьшения ограничения использования энергии ветра и солнца в ветреные / солнечные периоды.

«Как только вы выйдете на арену зеленого водорода, вы можете увеличить количество возобновляемых источников энергии, которые вы хотите построить в сети, потому что вы можете использовать избыточную возобновляемую энергию [которая в противном случае была бы сокращена, потому что ее нельзя было продать], — объясняет Зиндель.

Эрик Зиндель, вице-президент по продажам водорода в Siemens Energy. Фото: Siemens Energy

«Итак, проводя электролиз [который использует электричество для разделения молекул воды на H 2 и кислород] и имея возможность хранить эту избыточную энергию в виде водорода, вы действительно можете позволить электрической системе расширить возобновляемые источники энергии за счет значительное количество.Потому что, если вы этого не сделаете, это будет быстро ограничено, потому что будет слишком много избыточной энергии, которую вам придется сбросить.

«Но как только вы сможете использовать эту избыточную мощность, вы действительно сможете удвоить, утроить, учетверить количество возобновляемой энергии, которое вы хотите производить».

Синеводородные электростанции

Норвежский нефтяной гигант Equinor и шотландская коммунальная компания SSE недавно объявили о плане строительства новой водородной электростанции мощностью 1,8 ГВт в Кидби на северо-востоке Англии уже в конце этого десятилетия.Компании говорят, что он почти наверняка будет работать на низкоуглеродистом голубом водороде и использоваться для поддержки переменной возобновляемой энергии, возможно, морского ветра.

Так почему же электростанция на голубом водороде предпочтительнее генератора природного газа с CCS?

Хенрик Солгаард Андерсен, вице-президент Equinor по низкоуглеродным технологиям, говорит Recharge , что улавливание углерода на стадии предварительного сжигания намного более рентабельно, чем улавливание его после сжигания на газовой электростанции.

«В дымовых газах [на газовой электростанции] очень низкое давление и очень низкая концентрация CO 2 … так что это очень сложно», — объясняет он. «Это как найти иголку в стоге сена. И чем больше [CO 2 ] вы извлечете, тем меньше будет игла, чтобы найти остаток [CO 2 ]. И, наконец, вы не можете этого понять.

«На заводе по производству голубого водорода это CO высокого давления 2 . Итак, изначально у нас гораздо больше игл, и поэтому вы можете улавливать гораздо больше CO 2 на установке голубого водорода по сравнению с установкой дожигания, потому что давление настолько велико, что вы можете снизить до [97-98 %].

Хенрик Солгаард Андерсен, вице-президент по низкоуглеродным технологиям Equinor. Фото: Equinor

Улавливание CO 2 на газовой электростанции, которая будет работать менее 50% времени, было бы еще менее экономически выгодным, как это было бы с резервной установкой Keadby.

«Установка дожигания [т. Е. Природного газа с CCS] должна быть готова улавливать 90% плюс [CO 2 ] каждый раз, когда она работает, будь то короткий или длительный период», — говорит Андерсен.

«Мы думаем, что все эти пуски и остановки означают, что улавливающая установка слишком сильно нагревается и остывает, поэтому она не сможет улавливать такое количество CO 2 ».

Он добавляет: «Никто раньше не управлял управляемой электростанцией с CCS. На самом деле никто не знает, какой будет энергоэффективность и степень захвата. Так что здесь есть некоторая неопределенность ».

Высокие затраты

В то время как Equinor и SSE планируют построить совершенно новую водородную электростанцию, Siemens Energy основывает свою бизнес-модель на конверсии существующих электростанций, работающих на ископаемом газе, а также на строительстве новых «водородных» »Парогазовые установки.

Тем не менее, несмотря на то, что преобразование газовой электростанции для работы на H 2 было бы «довольно недорогим», использование чистого водорода для производства электроэнергии сегодня «не имеет смысла с экономической точки зрения», — говорит Зиндель.

Природный газ просто намного дешевле зеленого, синего и даже неослабевающего серого водорода, объясняет он.

Стоимость зеленого H 2 сегодня оценивается в диапазоне 2,50-6 долл. США / кг, а стоимость голубого водорода — где-то между 1,50-4 долл. США / кг.

Если чистый H 2 был доступен по цене 2 евро (2 доллара.35) за кг, чтобы сделать его конкурентоспособным по стоимости с ископаемым газом, «потребуется цена CO 2 в диапазоне 200–250 евро за тонну, так что это еще далеко», — говорит Зиндель. Цена на углерод в ЕС на момент публикации составляла около 53 евро за тонну.

Зиндель считает, что чистый водород не будет использоваться для крупномасштабного производства электроэнергии до 2035 года — отчасти потому, что было бы более рентабельно использовать H 2 в других секторах, таких как транспорт и тяжелая промышленность.

«Мы ожидаем, что водородная электрификация произойдет в 2035 или 2040-х годах в больших масштабах — когда нам действительно придется пойти на глубокую декарбонизацию энергетического сектора», — говорит он.

Equinor заявила, что ее завод Keadby Hydrogen будет работать только «при наличии соответствующих политических механизмов». Другими словами, если он сильно субсидируется.

«У нас провал рынка», — говорит Андерсен Recharge . «Итак, мы работаем над бизнес-моделью, которая, вероятно, больше ориентирована на некий продюсерский контракт на разницу. Таким образом, покупатели будут платить за природный газ, а производители голубого водорода получат некую субсидию для покрытия [дополнительных затрат].

Почему именно сейчас?

Если «Сименс Энерджи» не верит, что электроэнергетический сектор будет вырабатывать электроэнергию из H 2 в течение следующих 15-20 лет, почему сегодня она продает водородные энергетические решения?

«По разным причинам», — говорит Зиндель. «Во-первых, мы знаем, что это будущее, поэтому мы должны начать работу прямо сейчас, и наш план состоит в том, чтобы к концу десятилетия выйти на 100% производительность H 2 — так что это будет уже доступно, когда мы получим первые реальные коммерческие проекты.

«Мы ожидаем, что электростанции с комбинированным циклом станут основной технологией выбора для обеспечения остаточной нагрузки в полностью декарбонизированном энергетическом сценарии, при этом комбинированные циклы работают только 20-30% времени — не больше, потому что вы будете иметь достаточное количество ветра и солнца в системе ».

Он продолжает: «Второй — и гораздо более важный момент — это то, что нашим клиентам сегодня необходимо строить электростанции, работающие на природном газе. Итак, если у вас есть электростанция, работающая на природном газе, которая строится сегодня, и будет коммерческая эксплуатация, скажем, в 2023-24 годах, типичный ожидаемый срок службы [означает] … эти электростанции будут продолжать работать в 2050-х годах, когда мы предполагаем быть полностью обезуглероженным.

«Это означает, что каждую новую [газовую] электростанцию, которая будет строиться с этого момента, весьма вероятно, придется модернизировать для сжигания водорода в будущем. Поэтому очень важно подготовить растения к этому сегодня. Это то, что мы называем «водородной концепцией». [Итак] мы гарантируем, что у нас есть правильные материалы, выбрано правильное электрическое оборудование, [и] у нас есть достаточно места для дополнительных систем [которые потребуются, когда завод будет переведен на работу на H 2 ].

«Мы видим, по крайней мере, в Европе, почти каждый покупатель говорит о готовности к водороду для своих новых электростанций.Но другие регионы мира теперь тоже становятся очень агрессивными [в отношении сокращения выбросов углерода]. Так что это очень важная тема в нашей отрасли.

«Они видели, как атомные электростанции выводятся из эксплуатации задолго до того, как закончится их коммерческий и технический срок службы — теперь они видят, что угольные станции также отключаются от сети… им это немного надоело. [имея] неэффективные активы, поэтому они хотят быть уверены, что построенные сегодня комбинированные циклы соответствуют требованиям будущего.”

Как перевести газовую электростанцию ​​на водородную?

Водород имеет свойства, отличные от природного газа — например, он представляет собой меньшую молекулу, имеет более низкую плотность энергии и приводит к охрупчиванию стали — поэтому необходимо внести различные изменения, чтобы газовая электростанция могла работать на H 2 .

«Более низкая объемная плотность в основном влияет на все оборудование, расположенное выше по технологической цепочке — газовую турбину, систему топливного газа, вам потребуются топливные трубы с увеличенным диаметром», — поясняет Зиндель.

«Итак, если вы знаете, что в будущем электростанция должна будет работать на водороде, вы можете строить трубы большего диаметра [в первую очередь], используя подходящие материалы. Если вы захотите провести модернизацию, у вас может не хватить места [для более широких труб] ».

Он объясняет, что если необходимо поднять центральную ось турбины для установки более широких труб, «это сразу ставит под сомнение экономическую целесообразность модернизации».

Другие изменения, которые могут потребоваться, включают новые электрические системы и системы обнаружения газов и — в зависимости от нормативных требований — добавление системы избирательного каталитического восстановления (SCR) для снижения выбросов закиси азота (NOx) (парниковые газы, которые образуются, когда водород сжигается в воздухе, богатом азотом).

Но наиболее заметным изменением будет адаптация газовой турбины для сжигания H 2 , что потребует изменения камеры сгорания и новых горелок.

«Водород как топливо имеет гораздо более высокую реакционную способность и гораздо более высокую скорость пламени по сравнению с природным газом», — говорит Зиндель. «А это означает, что пламя приближается к самой горелке, и есть риск, что пламя« проглотит »горелку, а затем повредит ее. Итак, вам нужен новый дизайн горелки, устойчивый к воспламенению.И в то же время у вас должна быть немного более высокая температура пламени, а это означает, что выбросы NOx увеличатся.

Газовая турбина Siemens Energy, способная работать на 30% водороде. Фото: Siemens Energy

«И тогда все сводится к … как запустить или выключить агрегат, не повредив горелку, если поток воздуха через камеру сгорания уже невелик?

«И это более или менее задача НИОКР, которая стоит перед нами — спроектировать горелку, которая будет стабильной и безопасной для сжигания водорода, в то же время сохраняя под контролем выбросы NOx.

«Их нельзя полностью устранить, но можно значительно уменьшить».

Зиндель говорит, что требуется целостный взгляд на все парниковые газы. Таким образом, речь идет не только о сокращении CO 2 и NOx, но и о метане — мощном парниковом газе, который может выделяться выше по потоку при использовании природного газа для синего H 2 .

Почему бы не использовать топливные элементы?

Если при сжигании водорода всегда будут образовываться парниковые газы NOx, почему бы не преобразовать водород в электричество с помощью топливных элементов, не загрязняющих выбросы?

«Топливный элемент является конкурентоспособной технологией по сравнению с комбинированным циклом с газовой турбиной, но в конце концов… это действительно об экономике », — говорит Зиндель.

«Если вы посмотрите на эффективность, сегодняшние технологии комбинированного цикла … [имеют] уровни эффективности 63-64%. Так что это уже больше, чем у обычного топливного элемента, который обычно ограничен 60%.

«Тогда инвестиционные затраты на электростанцию ​​с комбинированным циклом также намного дешевле, чем на топливные элементы [аналогичного размера]. Пройдет много-много лет, пока [топливные элементы] приблизятся к LCOE [нормированная стоимость энергии] комбинированного цикла, если вообще приблизятся »

Он продолжает:« И тогда вам нужно обратить внимание на гораздо более высокую топливную гибкость. газовых турбин и возможность модернизации существующих комбинированных циклов природного газа для сжигания водорода, что еще больше снизит требуемые инвестиции.

«Все это говорит о том, что комбинированные циклы являются основной технологией будущей переэлектрификации водорода. Топливные элементы, несмотря на то, что они являются очень привлекательной технологией со значительным потенциалом усовершенствования, найдут свои основные области применения в мобильности и в малых островных энергосистемах, где комбинированный цикл невозможен ».

Пилотные установки

Зиндель объясняет, что Siemens Energy в настоящее время строит и вводит в эксплуатацию три пилотные электростанции, которые будут сжигать 100% водород или смесь газов, богатую водородом.

Две новые коммерческие когенерационные установки — объект мощностью 500 МВт на западе России и проект мощностью 80 МВт в штате Сан-Паулу, Бразилия — будут использовать побочный продукт водорода с нефтеперерабатывающих заводов для обеспечения электроэнергией и теплом обратно на эти нефтеперерабатывающие заводы с концентрацией 27% и 60% соответственно. Оба завода в настоящее время вводятся в эксплуатацию.

Но, возможно, наиболее важным из пилотных проектов Siemens Energy будет проект Hyflexpower мощностью 12 МВт во Франции, который будет использовать 100% зеленый водород на существующей газовой когенерационной установке, которая обеспечивает электроэнергией и теплом бумажную фабрику в западно-центральной части Франции. .

«Это хороший демонстрационный проект для наших новых технологий сжигания, которые способны [сжигать] любую комбинацию топлива между природным газом и водородом, и мы ожидаем получить 100% водород с низкими выбросами NOx к 2023 году», — говорит Зиндель. . «И это будет наш первый настоящий демонстрационный проект в этой области».

Бумажная фабрика Smurfit Kappa в Сайя-сюр-Вьенн, западно-центральная Франция, где будет построен пилотный образец Hyflexpower. Фото: Hyflexpower / Twitter

Существующее предприятие будет преобразовано в водород консорциумом, в который входят Engie Solutions, Немецкий аэрокосмический центр и четыре европейских университета, и финансируется программой Европейской комиссии Horizon 2020.

«Очень, очень большое, но»

Зиндель говорит, что, хотя компания Siemens Energy не ожидает крупномасштабного строительства водородных электростанций до 2035 года, есть «очень, очень большое но».

«Законодательство должно предусматривать декарбонизацию — и довольно быстро», — объясняет он. «Странам необходимо будет обеспечить декарбонизацию. И легче обеспечить соблюдение целей декарбонизации в отношении 50 крупных компаний, чем 30 миллионов избирателей, которые на следующих выборах выскажут свое мнение о вашей деятельности за предыдущие четыре или пять лет.

«Таким образом, для операторов электростанций существует риск того, что они могут достичь более быстрых целей по декарбонизации [чем они ожидают]».

Немец добавляет: «Важно понимать, что регулирование приведет к изменениям, потому что ни одна из этих технологий в настоящее время не дешевле существующих. Ни одна компания не перейдет на водород, потому что это более привлекательное и модное занятие.

«На самом деле это регулирование, которое будет обеспечивать соблюдение перехода, будь то посредством субсидий или налогов на CO 2 , или более высоких цен на сертификаты CO 2 , или путем ограничения выбросов или чего-то еще.Рано или поздно это произойдет.

«А дальше дело за отраслью».

Можно ли перевести угольные электростанции на водород?

Хотя теоретически возможно преобразовать угольную электростанцию ​​для работы на водороде, Зиндель говорит, что это было бы слишком дорого, чтобы быть рентабельным.

Это связано с тем, что угольные электростанции вырабатывают электричество путем сжигания углеводорода для нагрева воды, которая генерирует пар, приводящий в действие паровую турбину. Угольные предприятия также редко имеют комбинированный цикл, в котором тепло, выделяемое при сжигании ископаемого топлива, используется повторно для выработки электроэнергии.

Угольные электростанции обычно имеют энергоэффективность около 45% по сравнению с более чем 60% у их газовых аналогов. По словам руководителя Siemens Energy, поскольку их преобразование в водород будет стоить дороже, это просто экономически невыгодный вариант.

«К тому времени, когда вам нужно будет преобразовать существующие комбинированные циклы на водород, старые угольные электростанции уже уйдут — полностью исчезнут, они станут зелеными полями.

«[Будущий] спрос [на водородные электростанции] может быть удовлетворен за счет уже существующих электростанций комбинированного цикла.”

Водородный топливный элемент в вашем доме! Цена Витовалора 300П и сколько он возвращается?

В Японии сейчас 300 000 приборов на топливных элементах в домах, вырабатывающих горячую воду и электричество, и спрос на них растет с каждым днем. Так почему? Что это? Какую пользу вы можете получить? И что это за Витовалор 300-П? Это то же самое, что водородный котел? Что ж, мы, безусловно, те люди, которые ответят на ваши вопросы, у нас даже есть один в нашем доме!

На западе водородные топливные элементы более известны своей способностью приводить в действие автомобиль и в некоторой степени считаются непрактичными.На самом деле технология водородных топливных элементов — это способ, которым водород преобразуется в электричество и тепло и даже больше подходит для дома, чем для автомобиля.

По сути, водородные топливные элементы используют естественное притяжение водорода к кислороду для создания электрического дифференциала. Когда водород вступает в контакт с кислородом, он также выделяет тепло и вода как побочный продукт.

Водородный котел на топливных элементах — это домашний блок, который использует это отработанное тепло для горячей воды и отопления, а также для выработки электроэнергии для дома.

Котлы, вырабатывающие тепло и электроэнергию, также известны как комбинированные теплоэлектроцентрали или ТЭЦ. Однако ТЭЦ чаще использует двигатели внутреннего сгорания, а не технологию топливных элементов, и в настоящее время доступен только на коммерческом рынке. В технологии топливных элементов используется химический процесс, а не сжигание топлива. Обычно это дает очень мало загрязнения по сравнению к его аналогу сгорания.

Да и нет.Обычно нынешняя шумиха вокруг «водородных котлов» больше относится к типичным котлам, с помощью которых мы отапливаем наши дома, но вместо этого они используют водород вместо газа. Это будет активно сжигать заправляемся так, как мы привыкли. Топливный элемент, как описано, использует «холодный синтез», который на самом деле является химическим процессом, и имеет дополнительный побочный продукт в виде электричества, а также просто тепла.

Подробнее о водородных котлах ниже.

В настоящее время только 2 производителя предлагают отечественное решение в Великобритании.Один из них — это Bluegen, однако он в настоящее время не соответствует требованиям зеленого тарифа, это больше дорого и не предлагает полного решения, то есть работает только как часть системы отопления.

Другой — Viessmann в партнерстве с Panasonic. Вместе они разработали Vitovalor 300-P, который был разработан для большинства рынок Великобритании. Этот продукт использует природный газ, имеющийся в большинстве домов, и превращает его в водород, который питает топливный элемент, а отработанное тепло хранится в буфере для обогрева и нагрева. использование воды.Это все в одном устройстве, что означает, что больше нет необходимости в водонагревателе с горячей водой, резервуарах для хранения холодной воды на чердаке или каких-либо других нагревательных приборах, таких как бойлеры. все это содержится в 1 коробке.

Есть много финансовых преимуществ, чтобы попытаться продвинуть технологию, а также ее врожденную способность снижать ваши счета за топливо.

Во-первых, ученым-ракетостроителям не нужно понимать, что использование газа, стоимость которого обычно составляет около 3 пенсов за кВт · ч, для производства электроэнергии, которая обычно стоит около 14 пенсов за кВт · ч, является непростой задачей. финансовое преимущество.

Однако, чтобы сделать технологию еще более привлекательной, правительство в настоящее время стимулирует производство электроэнергии, выплачивая домовладельцам 14,52 пенса за произведенный кВтч, даже если вы используете электричество в вашем доме. Более того, они предполагают, что вы экспортируете 50% продукции обратно в сеть, и дают владельцам дополнительные 5,2 пенса за киловатт-час за это. Похоже, срок его действия истекает в апреле 2019 года, однако после получения предоставляется гарантия на 10 лет.

ОБНОВЛЕНИЕ — зеленый тариф действительно истек, однако он был заменен интеллектуальной экспортной гарантией (SEG).Это означает, что владельцу будет выплачиваться получасовая ставка за любую экспортируемую электроэнергию. В Бонусом для владельцев водородных топливных элементов является то, что они производятся в периоды наибольшего спроса, то есть когда в сеть не подается солнечная или ветровая энергия, и поэтому они могут получить доступ к лучшим тарифам! -Связаться с нами для получения дополнительной информации об этом.

Устройства также получают выгоду от финансирования PACE, этот европейский стимул по существу дает 6500 фунтов стерлингов на покрытие стоимости устройства в обмен на то, что они позволяют контролировать ваше использование.Достойная цена. Кроме того, установка и ее установка облагаются НДС в размере 5%.

Как уже упоминалось, Viessmann Vitovalor 300 P — единственный водородный топливный элемент / бытовая ТЭЦ, доступная в настоящее время на рынке. Финансовые преимущества в большей степени обеспечиваются тем фактом, что это устройство имеет 10-летняя гарантия на детали и работу.

Чтобы узнать цену Vitovalor 300P, а также 10-летний прогноз окупаемости инвестиций, посетите Vitovalor Installer, внизу вы увидите Найдите контактную форму, в которой вы можете ввести свои требования к установке, и вам будет отправлена ​​цена с прогнозом возврата инвестиций.

Цена Vitovalor 300P варьируется в зависимости от установки, однако после прекращения финансирования PACE в размере 6500 фунтов стерлингов и включения 5% НДС цена обычно начинается от 12000 фунтов стерлингов вплоть до 17000 фунтов стерлингов. Однако окупаемость инвестиций может составить всего 2 года, если вам все равно понадобится новая система отопления. Это можно относительно точно спрогнозировать благодаря тому, что стимулы Гарантия 10 лет, а также отсутствие непредвиденных расходов на техническое обслуживание благодаря 10-летней гарантии на детали и работу.

Недавно было выпущено несколько водородных котлов, вроде Worcester и Baxi. На наш взгляд, это просто немного маркетинга. Большинство котлов довольно просты чтобы заставить сжечь другое топливо, например водород. Здесь нет настоящей большой технической революции. И остается вопрос, откуда мы берем водород? и как безопасно транспортировать это в нашей старой грид-сети?

Пройдет не менее 20 лет, прежде чем мы перейдем на сеть, работающую на чистом водороде, если вообще когда-нибудь.К этому времени котлы, которые сейчас создаются, будут снова рассматриваться как смехотворная технология, я уверен, особенно если посмотреть на текущий рост технологических инноваций.

С 2025 года выводится из эксплуатации газовые котлы в новостройках. Это не означает, что их использование в других домах постепенно прекращается, даже если возникла проблема с отоплением. Вы могли тогда установить газовый котел. Для того, чтобы полностью отказаться от газовых котлов, каждый из домов, существующих в Великобритании, необходимо заменить на новое здание.

Задача, которая займет буквально тысячи лет.

Вы говорите старая угольная электростанция, я говорю новая установка по производству зеленого водорода

Реликвии. Экологические горячие точки. Или, может быть, напоминания о более простых временах. Хорошо это или плохо, но никто не смотрит равнодушно на старые угольные электростанции Америки.

В свое время они были надежными и рентабельными опорами американской экономики, способствуя одним из самых впечатляющих темпов роста в мире. Обеспечивая промышленность, торговлю и общество, они генерировали не только электричество, но и экономические экосистемы, которые простирались далеко за пределы самих заводов и часто служили опорой для процветающих сообществ среднего класса.

Но затем экологические реалии стали более предметными: загрязнение воздуха, почвы и воды, а также парниковые газы в дымовой трубе. В то же время достижения в области добычи природного газа, такие как гидроразрыв (что само по себе вызывает споры), сделали энергию, работающую на природном газе, более экономичным выбором, чем энергия, произведенная на угле. Признание этих внешних факторов, особенно выбросов парниковых газов, еще больше снижает конкурентоспособность угля. В более широком смысле, расширение использования возобновляемых источников энергии еще больше делит пирог, в то время как повышение энергоэффективности удерживает пирог от роста или даже уменьшает его.

В результате закрываются угольные электростанции, а экономические и социальные экосистемы по всей стране рушатся. Рабочие места потеряны, сообщества находятся под угрозой, а заработанные тяжелым трудом навыки внезапно устаревают и приносятся в жертву алтарям экономики и устойчивости. «Печально, но неизбежно», — вздыхает коллектив, — «неправильное место, неправильное время».

Подобно природному газу, этот водород содержит тепло, которое может выделяться при сгорании для работы генератора. В отличие от природного газа, при его сжигании не используются парниковые газы.

Я не согласен. Мы можем и должны добиться большего. Намного лучше.

Это не просто пустая надежда: моя коммунальная компания Burbank Water and Power (BW&P) в Калифорнии находится на переднем крае этих преобразований. Каждый день наша компания реализует долгосрочное обязательство по строительству крупной угольной электростанции в сельской местности Дельты, штат Юта, стремясь к будущему с нулевым выбросом парниковых газов — и не просто отказываясь от старого ради нового. Вместе с нашими соседями, Лос-Анджелесом и Глендейлом, и нашими партнерами в Юте, BW&P переносит эту старую угольную электростанцию ​​(и ее местную и региональную экосистему) в устойчивое будущее — даже если мы выведем из эксплуатации саму угольную электростанцию ​​в 2025 г.

Но к чему? А когда и почему и как?

Вы видите старую угольную фабрику и устаревшую рабочую силу; Я вижу прекрасную возможность для зеленого водорода. Зеленый? Водород?

Начнем с водорода. Водород — самый распространенный элемент во Вселенной, но он только начинает применяться в качестве универсального топлива для мира, уходящего от углеводородов. Теоретически улавливать водород просто: достаточно приложить много энергии к воде, чтобы отделить два H (водород) от O (кислород) и создать чистый водород.Подобно природному газу, этот водород содержит тепло, которое может выделяться при сгорании для работы генератора. В отличие от природного газа, при его сжигании не используются парниковые газы.

Технология проверенная. Однако до сих пор стоимость этой энергии удерживала водород от широкого распространения. Это быстро меняется; это также «зеленый» в «зеленом водороде».

В эпоху возобновляемых источников энергии электроэнергия становится все более доступной и дешевой (или бесплатной или даже по отрицательной цене, как в случае, когда вам платят за ее использование), когда солнечная энергия преобладает в полуденной сети.В турбогенераторах — эволюции тех, которые в настоящее время работают на природном газе, — этот зеленый водород создает святой Грааль энергосистемы с нулевым выбросом парниковых газов: управляемую возобновляемую электроэнергию, готовую превратить периодически возобновляемые источники энергии, такие как солнечная и ветровая, в надежный источник энергии. Физика солнечной энергии меняет как экономическую, так и экологическую осуществимость зеленого водорода.

Вернувшись в Дельта, штат Юта, я вижу промышленную площадку и сообщество, готовые к перепланировке. Я вижу квалифицированную и опытную рабочую силу, готовую создавать, эксплуатировать и оптимизировать сложные системы.Я вижу линии электропередачи, которые позволят использовать возобновляемые источники энергии, необходимые для производства экологически чистого водорода. И я вижу права на воду в невероятных количествах, которые являются предпосылкой как для сегодняшней выработки электроэнергии на угле, так и для завтрашнего производства экологически чистого водорода.

Физика солнечной энергии меняет экономическую и экологическую целесообразность зеленого водорода.

Это преобразование уже происходит в Дельте. Мы заменяем угольную электростанцию ​​на современные газовые турбины, готовые к совместному сжиганию 30% зеленого водорода.Эти турбины и остальная часть завода проектируются производителем турбин Mitsubishi Power, чтобы быть готовыми к каждому технологическому прогрессу, шаг за шагом, к 100-процентному экологически чистому водороду к 2035 году (Mitsubishi не является исключением в этом отношении. : General Electric движется по аналогичному пути инноваций в отношении своих машин.)

Этот зеленый водород, в свою очередь, будет производиться на месте с использованием возобновляемых источников энергии (особенно полуденной солнечной энергии), импортируемой теми же линиями электропередач, которые экспортируют электроэнергию в Калифорнию, Юту и Неваду.Поглощение этой избыточной солнечной энергии, в свою очередь, помогает всей западной электросети снизить затраты и повысить надежность. И рабочая сила на высшем уровне: угольные заводы сложны и требовательны, и они лучшие в своем деле.

Но главное — вода. Угольная электростанция использует до 26 миллионов галлонов каждый день для выработки электроэнергии, но имеет право на гораздо большее количество. Это много недорогого зеленого водорода с нулевым выбросом парниковых газов. Это также много квалифицированных рабочих мест и налоговых поступлений: прочная основа для процветающих и трудолюбивых сообществ.

Теперь вернитесь от Дельты к другим 350 с лишним угольным электростанциям, усеивающим карту США. Каждая из этих точек представляет сообщества, экономические экосистемы, рабочую силу, воду и передачу энергии в окружении постоянно растущих возобновляемых источников энергии. Каждая из этих точек может быть возможностью перевернуть сценарий: вместо того, чтобы оставаться позади, они могут быть центрами для успешного и всеобъемлющего перехода к будущему с нулевым выбросом парниковых газов. А теперь вернемся к более чем 2400 угольным электростанциям в мире.

Вы видите то, что вижу я? Давайте вместе перейдем к устойчивому будущему.

В Огайо завершается строительство первой крупной водородной электростанции в США

Особенности

Станция «Лонг-Ридж» мощностью 485 МВт будет работать на газо-водородной смеси

Завод на территории бывшего алюминиевого завода на реке Огайо

Рекламируемый как первая в своем роде электростанция в США, проект Long Ridge Energy Generation Project мощностью 485 МВт, оборудованный для работы на смеси природного газа и безуглеродного водорода, близится к завершению. место бывшего алюминиевого завода на берегу реки Огайо.

Не зарегистрированы?

Получайте ежедневные уведомления по электронной почте, заметки для подписчиков и персонализируйте свой опыт.

Зарегистрируйтесь сейчас

«В настоящее время мы находимся на этапе запуска», — сообщил Бо Вули, президент Long Ridge Energy Terminal, дочерней компании Fortress Transportation and Infrastructure Investors, в электронном письме от 11 августа. Электростанция в Ганнибале, штат Огайо, будет «полностью готова к работе» в начале сентября, а водород будет введен в эксплуатацию в ноябре, добавил Хоули.

Установка сначала будет сжигать топливную смесь, содержащую 5% водорода, в газовой турбине H-класса General Electric Co. Предполагается, что в следующем десятилетии установка перейдет на 100% экологически чистый водород, все больше полагаясь на возобновляемые источники энергии для питания электролизных машин, которые расщепляют воду на водород и кислород.

По словам Лонг Риджа, у проекта есть доступ к промышленному побочному продукту водорода для первоначального тестирования, но компания сотрудничает с New Fortress Energy для перехода на зеленый водород.Он также исследует подземные соляные образования для крупномасштабного хранения водорода.

«Наличие нескольких путей к производству безуглеродной энергии является высоким приоритетом и, как мы полагаем, чрезвычайно ценным», — сказал инвестиционным аналитикам 29 июля генеральный директор Fortress Джозеф Адамс. По словам Адамса, проект стоимостью 600 миллионов долларов, подкрепленный семилетними и 10-летними контрактами на продажу электроэнергии с фиксированной ценой, опережает график на два месяца.

«Огромный потенциал», но «слишком дорого»

Проект производства водорода и природного газа является центральным элементом запланированной радикальной модернизации промышленной площадки, где Long Ridge также планирует построить кампус центра обработки данных площадью 125 акров и мощностью 300 МВт.Защитники надеются, что этот проект знаменует начало новой эры для водорода, помогая декарбонизировать энергетический сектор и другие области экономики.

Крупные мировые поставщики оборудования Mitsubishi Corp., Siemens и Wärtsilä Oyj, многочисленные крупные электроэнергетические и газовые компании США и множество разработчиков проектов также делают большие ставки на водород. Несколько дополнительных проектов гибридной энергетики природного газа и водорода в США находятся в стадии реализации, крупнейшим из которых является запланированное Межгорным энергетическим агентством преобразование существующей угольной электростанции в парогазовую установку мощностью 840 МВт к 2025 году, которая будет сжигать до 30% водорода и постепенно переходить только на зеленый водород.Большая часть продукции завода находится по контракту с Департаментом водоснабжения и энергетики Лос-Анджелеса.

Но Союз обеспокоенных ученых и другие группы экологически чистой энергии отказались от сжигания водорода. Они отметили опасения по поводу опасных выбросов оксида азота, которые происходят даже с зеленым водородом, хотя они поддерживают водородные топливные элементы, которые могут производить энергию без сгорания.

Сомнения в краткосрочной динамике

Moody’s Investors Service скептически относится к тому, что энергетический сектор будет играть важную роль в развитии водорода по экономическим причинам, по крайней мере, в течение следующего десятилетия, говорится в отчете агентства кредитных рейтингов в августе.11.

«Несмотря на то, что водород обладает огромным потенциалом в области энергетики и отопления, включая хранение энергии, электроэнергетика и газ вряд ли будут основным драйвером роста спроса на водородном рынке как в США, так и во всем мире», — заявляет Moody’s. «Высокие производственные затраты и потери эффективности делают водород слишком дорогим в качестве топлива для производства электроэнергии сегодня».

Требуются значительные инвестиции в инфраструктуру, чтобы сделать водород значительным игроком в энергетическом секторе по сравнению с его нынешним «практически несуществующим» уровнем, добавило Moody’s, указывая на транспорт и промышленное использование как более экономически жизнеспособное.На нефтеперерабатывающие заводы, наряду с производством аммиака и метанола, сегодня приходится подавляющее большинство потребления водорода в США.

Согласно отчету, национальная и государственная политика, такая как налоги на выбросы углерода, может помочь сделать энергоноситель более конкурентоспособным с точки зрения затрат. К 2035 году «водород, вероятно, будет играть важную роль в усилиях США по сокращению выбросов углерода в энергетическом секторе», — сообщает агентство Moody’s.

Готовность к будущему: Гамбургская водородная теплоэлектростанция

INNIO, австрийский поставщик энергетических решений, объединился с HansWerk AG, немецким поставщиком энергетических услуг, чтобы поставить водородную комбинированную теплоэлектроцентраль мощностью 1 МВт. (ТЭЦ) пилотная установка в центре Гамбурга, Германия.

Предоставлено INNIO

Пилотный проект продемонстрирует готовность к сети экологически чистого газа, запустив подключенную к сети газовую ТЭЦ с повышенным уровнем водорода до 100%, чтобы проверить ее гибкость. Проект также покажет, что существующие ТЭЦ могут быть модифицированы для использования экологически чистых топливных смесей, и будет способствовать достижению цели Гамбурга по обеспечению потребителей зеленым водородом — водородом, полученным путем электролиза с использованием возобновляемой электроэнергии — к 2035 году.

«Проект заменяет существующую котельную, где они обеспечивают теплом торговый центр, некоторые офисные здания и небольшой жилой комплекс», — сказал Microgrid Knowledge Карл Ричерс, вице-президент по управлению продуктами и маркетингу компании INNIO.

Переоборудование существующей ТЭЦ

Возможность преобразования существующих газовых ТЭЦ на водород будет продемонстрирована путем установки ТЭЦ, предназначенной для работы на природном газе.

«После того, как мы осуществим переоборудование, двигатель будет оснащен технологией, которая обеспечит работу на 100% водороде… Мы изменим элементы управления, мы изменим смесь топлива и воздуха», — пояснил Ричерс.

Водород будет поставляться из Северной Германии, где обилие ветра делает использование электричества для электролиза и производства водорода привлекательным вариантом хранения энергии.Но топливный баланс будущего остается неопределенным.

«Это может быть биометан, это может быть синтетический метан… Вот почему мы хотим продемонстрировать, что все эти различные варианты возможны для нас и что мы можем использовать установленную базу с разумными модификациями для работы на любой газовой смеси в будущем. , — пояснил Ричерс.

100% водородное топливо

Это будет первая ТЭЦ INNIO, работающая на 100% водороде, но у организации уже есть двигатели, работающие на других газах.

«У нас есть долгая история эксплуатации наших двигателей на специальных газах, таких как древесный газ, синтез-газ, коксовый газ, стальной газ и т. Д., Которые уже имеют высокое содержание водорода», — сказал Ричерс.

С 2008 года компания также реализует проект в Аргентине, добавляя до 40% водорода по объему в топливную смесь. Эти агрегаты наработали более 70 000 часов.

Глобальная актуальность

Экономический переход от ископаемых источников энергии к возобновляемым источникам энергии носит глобальный характер.Ричерс сказал, что этому поможет максимально возможное использование существующей инфраструктуры.

Водород, выступающий в качестве химического хранилища энергии, является вариантом решения проблемы прерывистости возобновляемых источников энергии.

Бесплатные ресурсы из библиотеки знаний
Microgrid
Объединение чистой энергии и чистой мобильности с помощью устойчивых микросетей
Отказоустойчивые микросети и бизнес-модели «Энергия как услуга» (EaaS) могут помочь поддерживать сетевые активы, связывая возобновляемые источники энергии, электромобили и передовые программные системы, чтобы обеспечить оптимизацию различных источников энергии в реальном времени.В новом техническом документе Schneider Electric исследуется связь между чистой энергией и чистой мобильностью, а также роль, которую могут играть устойчивые микросети. Мы всегда уважаем вашу конфиденциальность и никогда не продаем и не сдаем в аренду наш список третьим лицам. Загружая этот информационный документ, вы соглашаетесь с нашими условиями обслуживания. Вы можете отказаться от участия в любой момент.
Получите этот PDF-файл по электронной почте.

«Вопрос в том, как затем преобразовать эту химически накопленную энергию в электричество и тепло», — спросил Ричерс.

«Я считаю, что когенерацию имеет смысл, потому что это будет наиболее эффективное использование этого очень ценного ресурса, потому что оно будет дороже, чем нынешнее ископаемое топливо… Вот почему мы считаем, что ТЭЦ будет правильным подходом».

Чтобы глубоко погрузиться в инновации в области микросетей, присоединяйтесь к нам на Microgrid 2020 2–3 июня в Филадельфии, штат Пенсильвания. Зарегистрируйтесь до 31 января, чтобы получить скидки по ранней регистрации.

Водород — ключевой фактор энергетического перехода

h3morrow Steel, Германия:

Один из крупнейших в Европе водородных проектов для будущего отрасли

Equinor, Open Grid Europe (OGE) и Thyssenkrupp Steel Europe (tkSE) работают над подходящей концепцией для производства и транспортировки голубого водорода на крупнейший немецкий металлургический завод в Дуйсбурге с 2019 года.

Водород из природного газа и комбинированного улавливания и хранения углерода, так называемый «голубой водород», будет ключевым в декарбонизации труднодоступных секторов, таких как цементная, сталелитейная и других видов тяжелой промышленности и транспорта. С потенциалом производства 800 000 Нм3 / ч (~ 2,7 ГВт) водорода проект h3morrow является одним из крупнейших проектов декарбонизации в Европе.

Проект h3morrow был начат еще в 2018 году в результате совместного исследования Equinor и Open Grid Europe (OGE), крупнейших операторов сетей передачи данных в Германии.Он подчеркнул высокий потенциал производства и транспортировки голубого водорода в промышленные кластеры Германии, такие как Северный Рейн-Вестфалия. Через год после того, как вместе с производителем стали Thyssenkrupp Steel Europe (tkSE) было проведено технико-экономическое обоснование, для разработки подходящей концепции поставки голубого водорода на крупнейший немецкий сталелитейный завод в Дуйсбурге. Оператор по транспортировке газа Thyssengas также присоединился к консорциуму в качестве ассоциированного члена, чтобы дополнить свой опыт в области планирования инфраструктуры в Рурской области.

Проект может быть запущен к 2027 году и будет поставлять голубой водород на крупнейший сталелитейный завод Германии, что позволит сократить выбросы CO2 до 11 миллионов тонн в год при ежегодном производстве до 7 миллионов тонн стали, не влияющей на климат.

В настоящее время проект и все партнеры сосредоточены вместе на разработке соответствующей политики и нормативно-правовой базы, чтобы довести ее до надежного экономического обоснования.

Синий водород можно производить в больших количествах сравнительно быстро, а это означает, что потребность в водороде, ожидаемая промышленностью, может быть быстро удовлетворена.

«h3morrow Steel» в настоящее время планирует транспортировать природный газ из Норвегии по существующей транспортной сети на завод автотермического риформинга (ATR) на немецком или голландском побережье Северного моря. Мощность станции должна составлять около 2,7 ГВт, из которых около 0,6 ГВт могут быть переданы третьим сторонам. Остальные 2,1 ГВт используются для производства стали Thyssenkrupp Steel Europe и обеспечивают электроэнергией до 7 миллионов метрических тонн декарбонизированной стали в год.

.
Отоплен

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *