+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как работают стартеры люминесцентных ламп

Рейтинг

Общий рейтинг : 5/ 5оставило 8человек

Цена от 15.00 грн. до 33.00 грн.

Стартеры для люминесцентных ламп- типа S2 (4 – 22Вт) и S10 (4 – 65Вт) постоянно поддерживаются в наличии.

Цена на стартер указана Прайс гривна за штуку с учетом НДС. Купить можно со склада в Киеве. Отправка в города Украины производится службой Новая почта.Стартеры Philips для люминесцентных ламп – единственный стартер, который быстро и просто устанавливается без использования дополнительных инструментов.

Даже плотно закрепленные – легко изымаются. В каталоге представлен весь ассортимент высококачественных стартеров тлеющего разряда для запуска люминесцентных ламп с электромагнитными балластами.  Изготовлены с соблюдением экологических норм (не содержат свинца и радиоактивных веществ).

Увеличивают срок службы лампы более чем на 25%; более низкая стоимость владения по сравнению с низкокачественными стартерами, не соответствующими Международным стандартам по электротехнике. Оптимальное удобство установки обеспечивается медными компонентами и устойчивыми к окислению медными штырьками. Огнеупорные компоненты и УФ-устойчивый корпус для дополнительной безопасности запуска (одобрено лабораторией UL по технике безопасности в США).На фото: стартер для люминесцентных ламп S2 4-22Вт PHILIPS

Стартер представляет собой небольшую газоразряд­ную лампу тлеющего разряда. Стеклянная кол­ба наполняется инертным газом (неон или смесь гелий-водород) и помещается в металлический или пластмас­совый корпус, на верхней крышке которого имеется смо­тровое окно.Схемы включения люминесцентных ламп: а-стартерная с дросселем; б—с лампой накаливания в качестве балласта; EL1 — лампа люминесцентная; КК — стартер; С — конденсатор; LL — дроссель; EL2 — лампа накаливания.В некоторых конструкциях стартеров смотровое окно отсутствует.

Стартер имеет два электро­да. Различают несимметричную и симметричную кон­струкции стартеров. В несимметричных стартерах один электрод неподвижный, а второй подвижный, изготовлениз биметалла.В настоящее время наибольшее распро­странение получила симметричная конструкция старте­ров, у которых оба электрода изготовляются из биметалла.

Эта конструкция имеет ряд преимуществ по сравнению с несимметричной.Напряжение зажигания в стартере тлеющего разряда выбирается таким образом, чтобы оно было меньше номинального напряжения сети, но больше рабочего на­пряжения, устанавливающегося на люми­несцентной лампе при ее горении.Схема подключения двух люминесцентных ламп через стартер.При включении схемы на на­пряжение сети оно полностью окажется приложенным к стартеру. Электроды стар­тера разомкнуты, и в нем возникает тлеющий разряд. В цепи будет проходить небольшой ток (20-50 мА).

Этот ток на­гревает биметаллические электроды, и они, изгибаясь, замкнут цепь, и тлеющий разряд в стартере прекратится.Через дроссель и последовательно соединенные катоды начнет проходить ток, который будет подогревать катоды лампы. Величина этого тока определяется индуктивным сопротивлением дросселя, выбираемым таким образом, что­бы ток предварительного подогрева като­дов в 1,5 2,1 раза превышал номинальный ток лампы. Длительность предваритель­ного подогрева катодов определяется вре­менем, в течение которого электроды стар­тера остаются замкнутыми.Когда элек­троды стартера замкнуты, они остывают, и по прошествии определенного промежутка времени, называемого временем контактирования, электроды раз­мыкаются.

Так как дроссель обладает большой индуктивностью, то в момент размыкания электродов стар­тера в дросселе возникает большой импульс напряже­ния, зажигающий лампу.После зажигания лампы в цепи установится ток, рав­ный номинальному рабочему току лампы. Этот ток обу­словит такое падение напряжения на дросселе, что на­пряжение на лампе станет примерно равным половине номинального напряжения сети.

Так как стартер вклю­чен параллельно лампе, то напряжение на нем будет равно напряжению на лампе и в связи с тем, что оно недостаточно для зажигания тлеющего разряда в стар­тере, его электроды останутся разомкнутыми при горе­нии лампы.Стартеры тлеющего заряда.Возможность зажигания лампы зависит от длитель­ности предварительного подогрева катодов и величины тока, проходящего через лампу в момент размыкания электродов стартера.

Если разрыв цепи произойдет при малом значении тока, то величина индуктированной в дросселе э. д. с.

и, следовательно, приложенного к лампе напряжения может оказаться недостаточной для ее зажигания, и лампа не зажжется. Поэтому, если при первой попытке стартер не зажжет лампу, он сразу же автоматически будет повторять описанный процесс до тех пор, пока не произойдет зажигание лампы. Со­гласно ГОСТ на стартеры зажигание лампы должно быть обеспечено за время до 10 сек.Параллельно электродам стартера включен конден­сатор емкостью 0,003-0,1 мкф.

Этот конденсатор обыч­но размещается в корпусе стартера. Конденсатор выпол­няет две функции: снижает уровень радиопомех, возни­кающих при контактировании электродов стартера и создаваемых лампой; с другой стороны, этот конденса­тор оказывает влияние на процессы зажигания лампы. Конденсатор уменьшает величину импульса напряже­ния, образуемого в момент размыкания электродов стар­тера, и увеличивает его длительность.При отсутствии конденсатора напряжение на лампе очень быстро воз­растает, достигая нескольких тысяч вольт, но продолжи­тельность его действия очень небольшая.

В этих усло­виях резко снижается надежность зажигания ламп. Кро­ме того, включение конденсатора параллельно электро­дам стартера уменьшает вероятность сваривания или, как говорят, залипания электродов, получающегося в ре­зультате образования электрической дуги в момент размыкания электродов. Конденсатор способствует быстрому гашению дуги.Принципиальная схема включения люминесцентной лампы.Применение конденсаторов в стартёре не обеспечи­вает полного подавления радиопомех, создаваемых лю­минесцентной лампой.

Поэтому необходимо дополни­тельно на входе схемы установить два конденсатора емкостью не менее 0,008 мкф каждый, соединен­ных последовательно, и среднюю точку заземлить.Одним из рекомендуемых способов снижения уровня радиопомех является применение дросселей с симметри­рованной обмоткой где обмотка дросселя разделе­на на две совершенно одинаковые части, имеющие рав­ное число витков, намотанных на один общий сердеч­ник.Каждая часть дросселя соединена последовательно с одним из катодов лампы. При включении такого дрос­селя с лампой оба ее катода работают в одинаковых условиях, что снижает уровень радиопомех. В настоящее время, как правило, выпускаемые промышленностью дроссели изготовляются с симметрированными обмот­ками.В схеме из-за наличия дросселя ток через лампу и напряжение сети не будут совпадать по фазе, т.

е. они не будут одновременно достигать своих нулевых и максимальных значений. Как известно из теории переменного тока, в этом случае ток будет отставать по фазе от напряжения сети на некоторый угол, величина которого определяется соотношением индуктивного со­противления дросселя и активного сопротивлениявсей сети.

Такие схемы называются отстающими.В ряде случаев использования люминесцетных ламп требуется создавать такие условия, когда ток через лам­пу опережал бы по фазе напряжение сети. Такие схемы называются опережающими. Для выполнения этого условия последовательно с дросселем включается кон­денсатор, емкость которого рассчитывается таким обра­зом, чтобы его емкостное сопротивление было больше индуктивного сопротивления дросселя.Устройство люминесцентной лампы.В опережающем балласте в период зажигания лампы ток предварительного подогрева катодов имеет недостаточную величину.

Для устранения этого явления необходимо на время зажигания лампы увеличить ток предварительного подогрева, что можно сделать, если частично компенсировать емкость индуктивностью. В цепь стартера включается дополнительная индуктивность в виде компенсирующей катушки.

При замыкании электродов стартера эта компенсирующая катушка включается последовательно с дросселем и конденсатором, общая индуктивность схемы возраста­ет, а вместе с ней увеличивается ток предварительного подогрева. После размыкания электродов стартера ком­пенсирующая катушка отключается, и в рабочем режиме лампы она не участвует.

Индуктивность дополнительной катушки компенсирует емкость конденсатора, установ­ленного в стартере. Поэтому в схему вводится дополни­тельный конденсатор емкостью не менее 0,008 мкф, включаемый параллельно лампе и выполняющий в этом случае роль помехоподавляющего конденсатора.Один из недостатков рассмотренных схем – низкий коэффициент мощности. Он составляет величину 0,5-0,6.

Пускорегулирующие аппараты (ПРА), выполненные на основе этих схем, относятся к группе так называемых некомпенсированных аппаратов. При использовании та­ких аппаратов согласно правилам устройства электро­установок (ПУЭ) для повышения низкого коэффициента мощности необходимо предусматривать групповую ком­пенсацию коэффициента мощности, обеспечивающую до­ведение его для всей осветительной установки до вели­чины 0,9-0,95.При невозможности или экономической неэффектив­ности применения групповой компенсации коэффициента мощности используют схемы, в которых дополнительно параллельно лампе включается конденсатор достаточной емкости, выбранный таким образом, чтобы коэффициент мощности схемы повысился до величины 0,85 -0,9 . ПРА, изготовленный по этой схеме, называют компенсированным.

Расчеты показывают, что для ламп мощ­ностью 20 и 40 вт при напряжении 220 в емкость кон­денсатора составляет 3-5 мкф.Основной недостаток стартерных схем зажигания – их низкая надежность, которая обусловлена ненадежно­стью работы стартера. Надежная работа стартера также зависит от уровня напряжения в питающей сети. Со сни­жением напряжения в питающей сети увеличивается время, необходимое для разогрева биметаллических элек­тродов, а при уменьшении напряжения более чем на 20% номинального стартер вообще не обеспечивает кон­тактирования электродов, и лампа не будет зажигаться.

Значит, с уменьшением напряжения в питающей сети время зажигания лампы увеличивается.Схема запуска сгоревшей люминисцентной лампы.У люминесцентной лампы по мере старения наблю­дается увеличение ее рабочего напряжения, а у старте­ра, наоборот, с ростом срока службы напряжение зажи­гания тлеющего разряда уменьшается. В результате этого возможно, что при горящей лампе стартер начнет срабатывать и лампа гаснет.При размыкании электродов стартера лампа вновь загорается и наблюдается мига­ние лампы. Такое мигание лампы, помимо вызываемого им неприятного зрительного ощущения, может привести к перегреву дросселя, выходу его из строя и порче лам­пы.

Подобные же явления могут иметь место при ис­пользовании старых стартеров в сети с пониженным уровнем напряжения. При появлении миганий лампы необходимо заменить стартер на новый.Стартеры имеют значительные разбросы времени кон­тактирования электродов, и оно очень часто недостаточ­но для надежного предварительного подогрева катодов ламп. В результате стартер зажигает лампу после не­скольких промежуточных попыток, что увеличивает дли­тельность переходных процессов, снижающих срок служ­бы ламп.Общий недостаток всех одноламповых схем – невоз­можность уменьшить создаваемую одной люминесцент­ной лампой пульсацию светового потока.Поэтому такие схемы можно применять в помещениях, где устанавли­вается несколько ламп, а в случае их использования для группы ламп рекомендуется с целью уменьшения пульса­ции светового потока лампы включать в различные фазы трехфазной цепи.

Необходимо стремиться к тому, чтобы освещенность в каждой точке создавалась не менее чем от двух-трех ламп, включенных в разные фазы сети.Двухламповые схемы включения. Применение двух­ламповых схем включения дает возможность уменьшить пульсацию суммарного светового потока, так как пуль­сации светового потока каждой лампы происходят не одновременно, а с некоторым сдвигом по времени. По­этому суммарный световой поток двух ламп никогда не будет равен нулю, а колеблется около некоторого сред­него значения с частотой, меньшей, чем при одной лам­пе.

Кроме того, эти схемы обеспечивают высокий коэф­фициент мощности комплекта лампа – ПРА.Наибольшее распространение получила двухлампо­вая схема, называемая часто схемой с расщепленной фазой. Схема состоит из двух элементов-ветвей: отстающей и опережающей. В первой ветви ток отстает по фазе от напряжения на угол 60°, а во второй – опе­режает на угол 60°.

Благодаря этому ток во внешней цепи будет почти совпадать по фазе с напряжением, и коэффициент мощности всей схемы составит величину 0.9-0.95.Эту схему можно отнести к группе компенси­рованных, и по сравнению с одноламповой некомпенси­рованной схемой она обладает тем преимуществом, что не требуется принимать дополнительных мер для повы­шения коэффициента мощности. При изготовлении ПРА по этой схеме общий расход конструкционных материалов меньше, чем для двух и одноламповых аппаратов. В настоящее время выпускается большое количество различных типов аппаратов, выполненных по этой схеме.Поделитесь полезной статьей:

С каждым днем популярность ламп дневного света в качестве источника освещения только растет. Это обусловлено их высокой продолжительностью работы и качественным свечением.

Люминесцентные лампы работают не напрямую от сети с напряжением 220 Вольт.

Для их функционирования требуется специальный блок, называющийся пускорегулирующей аппаратурой (ПРА). Конструкция блока включает в себя три основных элемента, в которые входят: дроссель (катушка индуктивности с сердечником), сглаживающего конденсатора и стартера. Вот как рас о последнем устройстве мы сегодня и поговорим.

Содержание

  • 1 Приветствую всех друзья на сайте «Электрик в доме», недавно мне пришлось искать причину неисправности светильников с люминесцентными лампами, которая заключалась в неисправности элемента ПРА, поэтому очередной выпуск будет посвящен именно о стартере люминесцентной лампы. Мы разберем его назначение, устройство и выполняемые функции.
  • 2 Устройство стартера люминесцентных ламп
  • 3 Баллон расположен внутри пластмассового или металлического корпуса, имеющего сверху отверстие. Самым популярным материалом для изготовления корпуса является пластик. Справляться с высокой температурой такому корпусу позволяет специальная пропитка. Любой стартер для люминесцентных лампимеет только две ножки (контакта).
  • 4 Если вынуть конструкцию из корпуса видно саму колбу. Также видно, что параллельно электродам колбы подключен какой-то элемент – это конденсатор. Его емкостью составляет порядка 0,003-0,1 мкф. Конденсатор призван выполнять сразу две функции: – борется с радиопомехами, которые возникают из-за контакта электродов, посредством снижения их уровня.- участвует в процессе зажигания лампы. Конденсатор снижает импульс напряжения, который формируется при размыкании электродов, и повышает его продолжительность.
  • 5 За счет параллельного включения с электродами конденсатор снижает вероятность их сваривания (залипания). Подобное явление может произойти в процессе размыкания электродов вследствие формирования электрической дуги. Конденсатор в кратчайшие сроки гасит дугу.
  • 6 Для чего нужен стартер в люминесцентных лампах
  • 7 Как работает люминесцентный светильник
  • 8 При замыкании цепи (через электроды стартера) по ней начинает проходить ток, величина которого в 1,5 раза больше от номинального тока лампы. Величина тока ограничивается сопротивлением дросселя. Электроды лампы и стартера не могут выполнять эту функцию, так как первые имеют недостаточное сопротивление, а вторые находятся в замкнутом положении.
  • 9 Нагрев электродов до 800С происходит в течение 1-2 секунд. В результате повышения температуры происходит увеличение электронной эмиссии, что способствует упрощению процесса пробоя газового промежутка. Разряд в электродах стартера отсутствует и они постепенно остывают.
  • 10 После остывания стартера электроды размыкаются, принимая исходное положение, и разрывают цепь. Разрыв цепи сопровождается появлением в дросселе ЭДС самоиндукции. Ее величина прямо пропорциональна индуктивности дросселя и скорости изменения величины тока при разрыве цепи.
  • 11 Возникновение ЭДС самоиндукции является причиной создания повышенного напряжениевеличиной 800-1000 В, которое в виде импульса подается на лампу. Ее электроды предварительно разогреты и она готова к зажиганию. В этот момент происходит пробой и начинается свечение.
  • 12 На стартер который подключен параллельно лампе теперь прикладывается напряжение, величина которого в два раза ниже напряжения сети. Оно не способно пробить неоновую лампочку, следовательно, ее зажигание больше не осуществляется. Весь цикл зажигания длится не более 10 секунд.
  • 13 Как проверить стартер люминесцентной лампы
  • 14 Почему мигает люминесцентная лампа
  • 15 Поэтому если вы замечаете постоянное мигание лампынеобходимо заменить стартер на новый. В 90 % случаев именно он является причиной такого феномена. При возникновении мигания необходимо как можно раньше произвести замену стартера, так как в таком режиме работы ресурс составляющих светильника уменьшатся и из строя могут выйти уже колба или дроссель. Похожие материалы на сайте:

Приветствую всех друзья на сайте «Электрик в доме», недавно мне пришлось искать причину неисправности светильников с люминесцентными лампами, которая заключалась в неисправности элемента ПРА, поэтому очередной выпуск будет посвящен именно о стартере люминесцентной лампы. Мы разберем его назначение, устройство и выполняемые функции.

Устройство стартера люминесцентных ламп

Конструкция этого элемента достаточно проста.

Каждая модель, выпущенная определенным производителем, имеет свои технические характеристики. Это следует учитывать при выборе ламп. Стартер – это стеклянный баллон, внутри которого находится инертный газ.

Это может быть смесь гелия с водородом или неон. В баллон впаяны неподвижные металлические электроды. Их выводы проходят через цоколи.

Баллон расположен внутри пластмассового или металлического корпуса, имеющего сверху отверстие.

Самым популярным материалом для изготовления корпуса является пластик. Справляться с высокой температурой такому корпусу позволяет специальная пропитка. Любой стартер для люминесцентных лампимеет только две ножки (контакта).

Если вынуть конструкцию из корпуса видно саму колбу.

Также видно, что параллельно электродам колбы подключен какой-то элемент – это конденсатор. Его емкостью составляет порядка 0,003-0,1 мкф. Конденсатор призван выполнять сразу две функции:

    – борется с радиопомехами, которые возникают из-за контакта электродов, посредством снижения их уровня.- участвует в процессе зажигания лампы.

Конденсатор снижает импульс напряжения, который формируется при размыкании электродов, и повышает его продолжительность.

За счет параллельного включения с электродами конденсатор снижает вероятность их сваривания (залипания). Подобное явление может произойти в процессе размыкания электродов вследствие формирования электрической дуги. Конденсатор в кратчайшие сроки гасит дугу.

Для чего нужен стартер в люминесцентных лампах

Этот элемент является основным в конструкции люминесцентных ламп.

Без него электромагнитная пускорегулирующая аппаратура не сможет функционировать. Главное назначение стартера – запускать механизма и разжигание инертного газа, находящегося в газоразрядной колбе. Стартерработает как выключатель – размыкает и замыкает электрическую цепь.

Установка стартера продиктована необходимость выполнения двух важных функций:

– замыкания цепи.

Позволяет нагреть электроды лампы, облегчая тем самым процесс зажигания;- разрыв цепи. Происходит сразу же после нагрева электродов. В результате размыкания образуется импульс повышенного напряжения, являющийся причиной пробоя газового промежутка колбы.

Дроссель играет роль стабилизатора и трансформатора. Он поддерживает необходимый ток нитей лампы, создает импульс напряжения, необходимый для пробоя лампы и стабилизирует процесс горения дуги.

Как работает люминесцентный светильник

В момент подключения схемы к электрической цепи все напряжение подается на стартер для люминесцентных ламп.

В нормальном положении электроды находятся в разомкнутом положении. На электродах стартера начинает возникать тлеющий разряд. По цепи проходит ток небольшой величины (30-50 мА).

Этого тока достаточно для нагрева электродов. При достижении определенной температуры они начинают изгибаться и замыкают цепь. После того как контакты замкнуться тлеющий разряд прекращается.

Давайте по ходу рассмотрим из каких основных деталей состоит сам светильник.

При замыкании цепи (через электроды стартера) по ней начинает проходить ток, величина которого в 1,5 раза больше от номинального тока лампы. Величина тока ограничивается сопротивлением дросселя. Электроды лампы и стартера не могут выполнять эту функцию, так как первые имеют недостаточное сопротивление, а вторые находятся в замкнутом положении.

Нагрев электродов до 800С происходит в течение 1-2 секунд. В результате повышения температуры происходит увеличение электронной эмиссии, что способствует упрощению процесса пробоя газового промежутка. Разряд в электродах стартера отсутствует и они постепенно остывают.

После остывания стартера электроды размыкаются, принимая исходное положение, и разрывают цепь. Разрыв цепи сопровождается появлением в дросселе ЭДС самоиндукции. Ее величина прямо пропорциональна индуктивности дросселя и скорости изменения величины тока при разрыве цепи.

Возникновение ЭДС самоиндукции является причиной создания повышенного напряжениевеличиной 800-1000 В, которое в виде импульса подается на лампу. Ее электроды предварительно разогреты и она готова к зажиганию. В этот момент происходит пробой и начинается свечение.

На стартер который подключен параллельно лампе теперь прикладывается напряжение, величина которого в два раза ниже напряжения сети. Оно не способно пробить неоновую лампочку, следовательно, ее зажигание больше не осуществляется. Весь цикл зажигания длится не более 10 секунд.

Как проверить стартер люминесцентной лампы

Данный вопрос очень часто возникает перед специалистами в процессе ремонта люминесцентных светильников. Хоть деталь и мелкая, но способна вызвать серьезные проблемы.

Выявить поломку стартера можно заменой его на исправный, если таковой имеется под рукой.

А вот что делать в случаях, когда по близости больше нет светильников, а до ближайшего специализированного магазина не один километр пути? Как проверить стартер люминесцентной лампыв домашних условиях? Проверить работоспособность данного устройства можно по стандартной схеме.

Последовательно со стартером в сеть подключается обыкновенная лампа с нитью накаливания. Желательно, чтобы ее мощность не превышала 40 Вт.

Собрать такую схему не составит труда.Если стартер находится в исправном состоянии, то лампа будет гореть и периодически на мгновение гаснуть. Этот процесс будет сопровождаться характерными щелчками, которые свидетельствуют о работе контактов.

Если лампочка не горит или светится постоянно (без моргания), то можно констатировать поломку стартера.Таким вот нехитрым способом можно проверить стартер для люминесцентных ламп.Хотя, по правде сказать, я еще не видел, чтобы на производстве их где либо проверяли. Это наверное связано с их незначительной стоимостью. Обычно бывает как, если лампа не работает или начинает мигать просто меняют стартер на новый, получилось устранить причину хорошо, нет значить проблема в другом.

Почему мигает люминесцентная лампа

Дорогие друзья Вы наверное замечали что светильники с люминесцентными лампами со временем начинают мигать. И связано это не с использованием выключателей с подсветкой которые являются причиной мигания энергосберегающих лампах.

В процессе эксплуатации светильников рабочее напряжение зажигания тлеющего разряда в стартере падает. Это является причиной того, что стартер будет срабатывать даже при горящей лампе.

После размыкания электродов свечение восстанавливается. Человеческий глаз воспринимает это как процесс мигания. Подобное явление является причиной порчи лампы и выхода из строя дросселя в результате его перегрева.

Поэтому если вы замечаете постоянное мигание лампынеобходимо заменить стартер на новый. В 90 % случаев именно он является причиной такого феномена.

При возникновении мигания необходимо как можно раньше произвести замену стартера, так как в таком режиме работы ресурс составляющих светильника уменьшатся и из строя могут выйти уже колба или дроссель.

Похожие материалы на сайте:

Источники:

  • elmar.com.ua
  • fazaa.ru
  • electricvdome.ru

Стартер Philips S10 для люминесцентных ламп

Стартер Philips s10 — это стартер, который используется для включения люминесцентных лампа, оснащенных электромагнитным балластом. Данный прибор широко используется в различных сферах деятельности человека, в том числе и в медицинской области.

Основные преимущества стартера Рhilips s10 4 65w 220 240v:
  • безопасность: такой материал, как свинец, не входит в состав данного прибора, также в нем отсутствуют другие вредные для здоровья людей вещества; 
  • специальное устройство для зажигания встроено в корпус прибора, сам корпус стартера изготовлен из поликарбоната, обладающего высокой степенью огнеупорности;
  • в Рhilips s10 4 65w встроен помехоподавляющий конденсатор высокого качества;
  • функциональность и надежность в использовании;
  • длительный срок службы;
  • длительный период бесперебойной работы;
  • высокое качество.

Преимущества стартера для люминесцентных ламп Philips  S10:
  • для установки стартера для ламп s10 4 80вт 220 240в не требуется использование каких-либо дополнительных приспособлений, стартер просто и быстро устанавливается без необходимости привлечения специалистов;
  • прибор для philips s10 220 240v наделен плотным и надежным креплением, но в тоже время оно обеспечивает его легкое изъятие;
  • при использовании этого устройства продолжительность срока службы лампы возрастает в среднем на 25%;- быстрая окупаемость стартера для ламп s10 4 65w 220v;
  • также прибор оснащен медными штырями, которые обладают высокой степенью устойчивости к окислению;
  • для обеспечения дополнительной безопасности  Филипс s10 имеет огнеупорный корпус;
  • стартер можно использовать для подключения ламп, мощность которых составляет от 4 до 65Вт;
  • данный прибор применяется при номинальном напряжении электрического тока, находящегося в пределах 220-240В.
Технические характеристики медтехники Стартер Philips S10 Ecoclick 4-65W SIN 220-240V WH UNP/12X25BOX

Наименование

Значение

Рабочее напряжение (В)

220–240

Мощность (Вт)

4–65

Код EAN

8711500697752

Код Philips для заказа

697691 33

Кол-во в упаковке (шт)

25

Кол-во упаковок в коробке (шт)

12

Страна-производитель Нидерланды
 

Стартер Osram ST111 4-80W Basic для люминесцентных ламп, аналог от фирмы Osram с увеличенной до 80 Вт мощностью, можно купить только под заказ.

Интернет-магазин «Медремкомплект» занимается реализацией только высококачественногомедицинского оборудования и сопутствующих материалов. У нас в огромном ассортименте оборудование для медицинских организаций и учреждений. У нас можно купить на самых выгодных условиях стартер Рhilips s10. S10, цена которого отличается демократичностью и выгодой. Также мы предлагаем широкий спектр ламп для медицины, в том числе и высококачественные стартеры серии s10 4 65w philips s10, которые отличаются долговечностью и надежностью.

Стартеры Ecoclick Стартеры для люминесцентных ламп

Стартеры Ecoclick Стартеры для люминесцентных ламп — Philips

You are now visiting the Philips lighting website. A localized version is available for you.

Continue

Закрыть фильтры Показать фильтры

Другие фильтры

Показывать меньше фильтров

Sort by:

Мощность Низкий — ВысокийМощность Высокий — НизкийСветовой поток лампы Низкий — ВысокийСветовой поток лампы Высокий — НизкийЦветовая температура (K) Низкий — ВысокийЦветовая температура (K) Высокий — Низкий

  • {{#if imageUrl}} {{#if productUrl}} {{else}} {{/if}} {{/if}} {{#if productUrl}} {{dtn}} {{else}} {{dtn}} {{/if}}

    {{#if countrySpecificOrderCode}} {{countrySpecificOrderCode}} {{else}} N/A {{/if}}

    {{orderCode}}

    {{#if productTitle}} {{/if}} {{#each columnValues}} {{#if this. filterKeyCode}}

    {{this.filterKeyCode}}: {{#if this.multiValue}} {{#each filterKeyValue}} {{this}} {{/each}} {{else}} {{this.filterKeyValue}} {{/if}}

    {{/if}} {{/each}} {{#if iesUrl}} {{else}}

    N/A

    {{/if}} {{#if pssUrl}} {{else}}

    N/A

    {{/if}} {{#if phrUrl}} {{/if}}
  • {{#each filterKeys}} {{/each}} {{/if_checkFilterType}} {{#if_checkFilterType displayType «stepslider»}} {{#each filterKeys}} {{/each}} {{/if_checkFilterType}}
  • {{#if imageUrl}} {{#if productUrl}} {{else}} {{/if}} {{/if}} {{#if productUrl}} {{dtn}} {{else}} {{dtn}} {{/if}}

    {{#if countrySpecificOrderCode}} {{countrySpecificOrderCode}} {{else}} N/A {{/if}}

    {{orderCode}}

    {{#each columnValues}} {{#if this. filterKeyCode}}

    {{this.filterKeyCode}}: {{#if this.multiValue}} {{#each filterKeyValue}} {{this}} {{/each}} {{else}} {{this.filterKeyValue}} {{/if}}

    {{/if}} {{/each}} {{#if pssUrl}} {{else}}

    N/A

    {{/if}}
  • Электронные стартеры превосходного качества для люминесцентных ламп, работающих с электромагнитными балластами.

    Единственный стартер, который быстро и просто устанавливается без использования дополнительных инструментов

    Даже плотно закрепленные стартеры легко изымаются

    Стартеры изготовлены с соблюдением экологических норм (не содержат свинца и радиоактивных веществ)

    Увеличивают срок службы лампы более чем на 25%; более низкая стоимость владения по сравнению с низкокачественными стартерами, не соответствующими Международным стандартам по электротехнике

    Оптимальное удобство установки обеспечивается медными компонентами и устойчивыми к окислению медными штырьками

    Огнеупорные компоненты и УФ-устойчивый корпус для дополнительной безопасности запуска (одобрено лабораторией UL по технике безопасности в США)

    Новый дизайн корпуса (запатентовано) с двумя выемками в верхней части дает возможность использовать другой стартер для установки/съема (не нужны дополнительные инструменты) Не содержит свинец и радиоактивные вещества. Соответствует требованиям европейских природоохранных законов RoHS (об ограничении распространения опасных веществ) Высокая степень надежности, более 10 000 безопасных включений Двухштырьковое зажигательное устройство в пластиковом корпусе (огнеупорный поликарбонат) с высококачественным помехоподавляющим конденсатором Точное время предварительного подогрева и достижения пикового напряжения для обеспечения запуска Замену стартеров рекомендуется производить одновременно с заменой ламп Применяются с люминесцентными лампами любых производителей со стандартным электромагнитным балластом и лампами TL‑D (T8), TL mini и PL‑L Стартеры S2 Ecoclick применяются для: 110/130 В, 4-22 Вт одиночное подключение 220/240 В, 4-6-8-15-18-22 Вт одиночное подключение 220/240 В, 4-22 Вт последовательное подключение Стартеры S10 Ecoclick подходят для 220/240 В, 4-65 Вт, одиночное подключение Стартеры S10 Ecoclick необходимы для 220/240 В, 13 Вт, одиночное подключение Стартеры S2 Ecoclick рекомендованы для 220/240 В, 18 Вт , одиночное подключение для оптимальной работы

    We are sorry you have to wait a little longer, we are working on it.

    Загрузки

    Визуальные материалы
    • Установите флажок для продукта, который нужно добавить

       

    • Установите флажок для продукта, который нужно добавить

       

    • Установите флажок для продукта, который нужно добавить

       

    Установите флажок для продукта, который нужно добавить

    ©2018-2021 Signify Holding. Все права защищены.

    Стартер для люминесцентных ламп FS-2

    Наименование: Стартер для люминесцентных ламп FS-2

    Описание: Стартер для люминесцентных ламп FS-2

    Заказать

    Цена: Уточните у менеджера +7 (8352) 22-06-15

    Основное предназначение стартера – зажигание или запуск люминесцентных ламп. Напряжение для работы стартера может быть 220 В и 127 В от сети переменного тока с частотой 50 Герц.

    Подключение стартера может быть двух видов:

    • Одиночное подключение к дросселю. В данном варианте стартер использует напряжение 220 В;
    • Последовательное подключение, когда на один дроссель используется два стартера, при этом напряжение сети равно 127 В.

    Стартер представляет собой газоразрядную лампу, которая состоит из стеклянной колбы, заполненная газом. Внутри колбы располагаются два электрода. В основном применяются стартеры симметричной конструкции с подвижными электродами. Электроды являются биметаллическими.

    тип рабочее напряжение используются лампами импульс напряжения время старта срок службы количество штук в коробке код продукта
    FS-2 110-130V 4-22W 800 4сек 6000 25 5001
    FS-2 Promo 2400 200-240V 4-22W 800 4сек 6000 2400 5003

     

    Стартёр для запуска люминесцентных ламп

    Люминесцентные лампы и их запуск

    Люминесцентные лампы, или же как их ещё называют лампы дневного света, ещё в прошлом веке начали применяться во многих сферах деятельности человека, для организации освещения схожего с естественным по своей структуре. Этот вид источника света является газоразрядным оборудованием, на стенки которого нанесён специальный материал люминофор. Вследствие подачи электрического напряжения к электродам в лампе, возникает ультрафиолетовое излучение, которое и воздействует на люминофор, после чего возникает свечение. Существует несколько видов самых распространённых ламп:

    • Трубчатые, которые применяются в линейных и растровых светильниках;

    • Компактные «экономки» или же энергосберегающие лампы.

    Как запустить люминесцентную лампу? Для запуска любой лампы дневного света необходимо специальное оборудование, называющееся пусковым или пускорегулирующим. Пускатель для ламп люминесцентных может устанавливаться внутри самого корпуса как лампочки в варианте с энергосберегающими лампами, и снаружи, но обязательно внутри конструкции светильника. Пускорегулирующая аппаратура люминесцентных ламп нужна для создания импульса высоко напряжения, который способствует началу свечения этого газонаполненного источника света.

    Пускатель для люминесцентных ламп может быть двух видов:

    1. Электромагнитный, который представляет собой, собранных в электрическую схему, нескольких элементов таких как стартер, дроссель и конденсатор.
    2. Электронный (эпра), созданный на основе различных электронных элементов, в том числе и полупроводниковых.

    Электронный пускатель представляет собой довольно сложную электрическую схему, собирать которую обычному человеку не знакомому с электроникой достаточно сложно. Что же касается электромагнитной реализации запуска люминесцентного источника света, то собрать, подключить и обслуживать её сможет даже человек без электрического образования. Основным элементом этой схемы является стартер, который непосредственно и выполняет функцию зажигания лампочки.

    Принцип работы стартера, и способы их подключения

    Конструктивно стартер представляет собой маленьких размеров колбочку, имеющую смотровое окошко, которая помещается в ёмкость сделанную из металла или же из пластика. Внутри колбы стартера находятся два электрода и газ, обычно это неон или гелий. Электроды могут быть выполнены двумя типами:

    • Симметричным, когда два электрода стартера находятся в подвижном состоянии.
    • Несимметричным, подвижным выполняется только один.

    Электроды выполнены из специального биметаллического сплава, на которые подаётся напряжение и они замыкаются. Ток в цепи стартера начинает возрастать, вследствие этого между электродами стартера появляется тлеющий разряд, который и приводит к их усиленному нагреву контактов.

    Достигнув критической температурной точки срабатывания, биметаллическая пластина разрывает контакт, тем самым создавая в цепи дросселя и люминесцентного источника света разряд высокого импульсного напряжения, который и зажигает его. Дроссель представляет собой индуктивность, нужную для вырабатывания импульса. Конденсатор, включаемый параллельно или последовательно с дросселем, служит фильтром радиопомех, которые возникают при разрыве контакта пускового устройства и он также стабилизирует импульсы тлеющего разряда. Включенный в цепь параллельно конденсатор уменьшает в разы электрическую дугу во время размыкания электродов, тем самым продлевает жизнь не только всего устройства, но и стартера в частности.

    Выбор стартера

    Если без конденсатора запуск и свечение лампы дневного света всё-таки возможно, то без дросселя и стартера этого не произойдёт. Тут возникает логичный вопрос — как выбрать стартер для люминесцентных ламп? Люминесцентные светильники без стартера — это только те, которые запускаются при помощи электронного пускорегулирующего устройства. Основными параметрами при правильном подборе стартера являются:

    1. Мощность самого люминесцентного источника дневного света;
    2. Номинальное напряжение. Чаще всего это 220 и 127 вольт в зависимости от схемы подключения ламп в светильнике. Напряжение 127 вольт, будет актуально при последовательном подключении двух ламп дневного светового потока.
    3. Производитель. Надёжность этого элемента для запуска сильно зависит от качества исполнения и сборки. При этом изделия и продукция китайского производства находится в низшей ценовой категории. Хорошими показателями и длительным сроком службы отличаются только оригинальные стартеры от мировых проверенных временем брендов, таких как Philips, Осрам и другие.
    4. Корпус. Так как внутри этого устройства возникают токи высокой величины и электрическая дуга, которые могут вызвать возгорание, поэтому материал должен быть соответствующим.

    Рынок данной продукции очень широк, поэтому стартер нельзя назвать дефицитным товаром. Однако, маркировка их может различаться, так как производитель может быть как отечественный, так и импортный.

    Отечественная маркировка чаще всего начинается с большой буквы «С», что обозначает стартер. Цифра указанные перед ней определяют мощность лампы (40, 90, 100) иногда это может быть и разброс мощностей, допустим, 40…100 Вт. Дальше написаны должны быть параметры, говорящие о напряжении (127 или же 220 вольт).

    Западная маркировка содержит чаще всего такие знаки S10, FS-U, ST 111, что означает что напряжение питания, должно быть 220 вольт, а мощность от 4 до 80 Вт. При напряжении 127 вольт и мощности до 22 Вт маркировка иностранного производства будет S2, FS-2, ST 151.

    Основные неисправности люминесцентных ламп и стартеров

    Так как любое электронное или же механическое устройство, может в течение всего срока службы, проявлять проблемы в работе, то и при эксплуатации люминесцентных светильников даже самого лучшего качества могут возникнуть неисправности. Если не запускается лампа дневного света, собранная на основе электромагнитного пускового устройства, то это значит:

    • Нет питающего напряжения на самом светильнике или же оно меньше чем 200 вольт. В этом случае нужно с помощью мультиметра проверить наличие напряжения на конкретном светильнике чаще всего от выключателя. И удостоверится что в сети напряжение соответствует стандартному 220 вольт 50 Гц;
    • Недостаточный тлеющий разряд в стартере. Это может быть вызвано подгоранием контакта в нём, из-за отсутствия конденсатора в цепи, или же просто от длительного его использования, каждое устройство запуска имеет свой ресурс включений;
    • Несоответствие параметров лампы, дросселя или же стартера. Проверит правильность подбора и маркировку элементов светильника;
    • Плохой контакт в цоколях лампы или стартера, также неуверенное соединение монтажных проводов или их обрыв. Поэтому весь монтаж рекомендуется выполнять медными многожильными проводниками. Проверить цепь мультиметром или же пробником цепи.

    Проблемы, связанные с работой или неисправностью стартера, будут выражаться в отсутствии запуска свечения люминесцентного светильника или же лампы. Так как при горящей лампе сам стартер можно даже извлечь из патрона, но это не повлияет на её работу, лампа будет продолжать излучать качественный световой поток дневного света.

    Видео о запуске люминесцентной лампы

    Стартеры для люминесцентных ламп S [Philips]

    Стартер S2 для схемы с двумя лампами 4..22Вт, 110-130В, упк.1000шт. PHILIPS Lighting / 871150069750928
    штупак 19,42  RUB
    Стартер S2 для схемы с двумя лампами 4. .22Вт, 110-130В, упк.25шт. PHILIPS Lighting / 871150069750933
    штупак 19,42  RUB
    Стартер S10 для схемы с одной лампой 4..65Вт, 220-240В, упк.1000шт. PHILIPS Lighting / 871150069769128
    штупак 19,42  RUB
    Стартер S10 для схемы с одной лампой 4..65Вт, 220-240В, упк.25шт. PHILIPS Lighting / 871150069769133
    штупак 19,42  RUB
    Стартер S10 для схемы с одной лампой 4..65Вт, 220-240В, упк.10шт.

    Отсутствует в последнем прайсе производителя, смотрите аналоги

    PHILIPS Lighting / 871150069832225
    штупак 0,00  RUB
    Стартер электронный S2E для схемы с двумя лампами 4. .22Вт, 110-130В, упк.25шт.

    Отсутствует в последнем прайсе производителя, смотрите аналоги

    PHILIPS Lighting / 871150076498026
    штупак 0,00  RUB
    Стартер электронный S10E для схемы с одной лампой 4..65Вт, 220-240В, упк.25шт.

    Отсутствует в последнем прайсе производителя, смотрите аналоги

    PHILIPS Lighting / 871150076497326
    штупак 828,20  RUB
    Стартер P10 «Polar starter» для схемы с одной лампой 18..65Вт, 220-240В, [–40…+75°C] упк.25шт.

    Отсутствует в последнем прайсе производителя, смотрите аналоги

    PHILIPS Lighting / 871150090234453
    штупак 0,00  RUB
    Стартер S16 для схемы с одной лампой 70. .125Вт, для соляриев, упк.10шт.

    Отсутствует в последнем прайсе производителя, смотрите аналоги

    PHILIPS Lighting / 871150090356331
    штупак 0,00  RUB
    Стартер S16 для схемы с одной лампой 70..125Вт, для соляриев, упк.1000шт.

    Отсутствует в последнем прайсе производителя, смотрите аналоги

    PHILIPS Lighting / 871150090356328
    штупак 0,00  RUB
    Стартер S12 «BodyTone» для схемы с одной лампой 115..140Вт, для соляриев, упк.25шт.

    Отсутствует в последнем прайсе производителя, смотрите аналоги

    PHILIPS Lighting / 871150090379226
    штупак 0,00  RUB
    Стартер S12 «BodyTone» для схемы с одной лампой 115. .140Вт, для соляриев, упк.1000шт.

    Отсутствует в последнем прайсе производителя, смотрите аналоги

    PHILIPS Lighting / 871150090379228
    штупак 0,00  RUB
    Стартер S12 «BodyTone» для схемы с одной лампой 25..100Вт, для соляриев, упк.25шт.

    Отсутствует в последнем прайсе производителя, смотрите аналоги

    PHILIPS Lighting / 871150090370926
    штупак 0,00  RUB

    устройство, принцип работы и схемы подключения ламп дневного света

    Автор Aluarius На чтение 5 мин. Просмотров 409 Опубликовано

    Люминесцентные лампы от сети напряжением 220 вольт напрямую не включаются. Для них нужен специальный блок, который называется пускорегулирующая аппаратура, укорочено ПРА. Этот блок состоит из трех элементов: дроссель, конденсатор и стартёр. Нас в этой статье будет интересовать стартер для ламп дневного света (ЛДС), что он собой представляет, какие функции на него возложены.

    По сути, стартёр – это стеклянная колба, заполненная газом (обычно используется или неон, или смесь гелий с водородом). То есть, это газоразрядная лампа миниатюрного типа, внутри которой тлеет разряд. Здесь же расположены электроды, поддерживающие данный разряд. Существует стартеры двух типов: симметричные и несимметричные. В первом все электроды являются подвижными, во втором – один стационарный. Электроды изготавливаются из биметалла. Чаще всего в люминесцентных светильниках используются конструкции симметричные.

    Газоразрядная лампа помещается в металлический или пластмассовый корпус. Крепится она на специальной панели диэлектрического типа, где установлены два контакта. Здесь же устанавливается и конденсатор, который подсоединен к газоразрядной лампе параллельно.

    Как работает

    Когда в схему, где установлен стартер, подается напряжение, оно попадает на его электроды, между которыми появляется тлеющий разряд. Сила тока разряда незначительная, в пределах от 20 до 50 мА. Именно этот разряд начинает нагревать электроды, которые под действием тепла изгибаются и через какое-то время соприкасаются друг с другом. То есть, электрическая цепочка замыкается, и ток подается далее на дроссель, конденсатор и на лампы дневного света. При этом тлеющий разряд прекращается.

    Обратите внимание, что напряжение включение стартера должно быть чуть меньше номинального сети, то есть, 220 вольт, но при этом оно должно быть больше, чем напряжения включения самих ламп дневного света.

    Итак, электроды соприкоснулись между собой, что дальше? Так как между ними нет тлеющего разряда, соответственно нет температуры, которая их нагревает. Происходит их остывание, что в конечном итоге приведет к размыканию электродов и цепочки. Именно в этот момент появляется так называемое импульсное напряжение высокой величины внутри дросселя. От него и происходит зажигание люминесцентного осветительного устройства. В процессе работы самой лампы дневного света в цепочке ток имеет значение, равное силе тока источника света. Падение же напряжения, а соответственно и силы тока, делится между самой осветительным прибором и дросселем на равные части.

    Зажигание

    Как происходит зажигание стартера для лампы? Необходимо отметить, что на эффективность зажигания влияют две позиции:

    • величина силы тока на катодах лампы в момент размыкания электродов;
    • продолжительность нагрева катодов.

    Электромагнитная сила внутри дросселя зависит от силы тока в нем. Понятно, что недостаточность силы тока не приведет к зажиганию люминесцентного устройства. А сила тока напрямую зависит от напряжения в цепи. И если последний показатель ниже номинального, то есть большая вероятность, что лампа сразу не зажжется. Поэтому стартер будет в автоматическом режиме пытаться снова и снова проделать ту же операцию, пока она не загорится. Периодичность попыток стандартная – 10 секунд.

    Если в питающей сети напряжение падает ниже 80% от номинального, то этого недостаточно, чтобы электроды нагрелись до необходимой температуры. То есть, при таком падении осветительное устройство просто не зажигается.

    Конденсатор

    Конденсатор в системе ПРА устанавливается параллельно стартеру. Эти два прибора взаимосвязаны. Основное назначение конденсатора:

    • снижение помех в процессе замыкания и размыкание электродов стартера;
    • увеличения длительности действия импульса при размыкании электродов;
    • предотвращение спаивания электродов за счет высокого импульсного напряжения.

    Чаще всего в ПРА используются конденсаторы емкостью 0,003-0,1 мкФ.

    Как долго работает

    Со временем эксплуатации стартера напряжение, создающее тлеющий разряд, снижается. Это может привести к обратному эффекту, когда при работающем люминесцентном светильнике электроды стартера вдруг начнут самопроизвольно замыкаться, что приведет к гашению самой лампы. Тут же будет происходить размыкание электродов, а соответственно и зажигание светильника. Оба процесса моментальные, что приводит к миганию светильника. Это не только влияет на эффективность его работы, но и снижает срок эксплуатации дросселя, потому что при такой работе он будет просто перегреваться.

    Поэтому совет – периодически проверять стартер, и при необходимости менять его на новый. Как только увидели, что светильник замигал, не откладывайте замену в долгий ящик.

    Схема подключения люминесцентного светильника

    Схема подключения лампы дневного света – это несколько вариантов, зависящих от количества ламп дневного света в светильнике. Вот самая простейшая из них на рисунке ниже:

    Здесь четко видно, что две спирали лампы дневного света подключаются: одна через дроссель, вторая через стартер. Такое соединение чаще всего применяется, когда необходимо подключить один источник света. Если, к примеру, есть необходимость подключить светильник с двумя лампами дневного света, то приходится устанавливать два стартера на каждую, как это хорошо видно на рисунке схемы ниже (вариант номер два):

    При этом необходимо учитывать, что мощность дросселя не должна быть меньше мощности двух источников света. К примеру, если у него мощность 40 Вт (этот показатель наносится на корпус элемента), то две лампы в сумме должны иметь мощность не больше 40 Вт (к примеру, по 20 Вт).

    Одной из ярких представителей этой категории осветительных приборов является марка ЛВО 4х18. То есть, это металлический прибор с четырьмя лампами, мощностью каждой по 18 Вт. ЛВО 4х18 чаще всего используются в качестве встраиваемых осветительных устройств. Их обычно монтируют в потолках Армстронг, в гипсокартонных потолочных конструкциях и в других видах потолков. Причины популярности марки ЛВО 4х18 – это невысокая цена от отечественного производителя, простота установки, эффективное свечение и простая схема подключения.

    Электронный пускатель | Tubesaver | Rapidstarter | Люминесцентные лампы

    Функция
    ..
    Срок службы люминесцентных ламп определяется сроком службы их катодных узлов накаливания. При использовании ÖKOSTART® катоды непрерывно предварительно нагреваются до достижения полной температуры эмиссии.
    В конце этого периода предварительного нагрева катоды будут свободно излучать по всей площади, и импульс низкой энергии будет доставлен по трубке на
    добиться возгорания. Эта интеллектуальная функция предохраняет катоды от преждевременной эрозии, увеличивает срок их службы и ускоряет запуск.
    Удар пасты катодов будет предотвращен, и у вас больше не будет черных пятен на концах ваших люминесцентных ламп, как это всегда бывает со стандартным стартером с тлеющей бутылкой.Как только лампа загорится, вступает в силу монитор безопасности
    постоянно измеряет мощность, потребляемую люминесцентными лампами. В случае отклонения от нормы, которое может произойти, когда балласт начинает выходить из строя, или при серьезном сбое питания, или в конце срока службы лампы, устройство контроля безопасности ÖKOSTART® отключит цепь и предотвратит перегрев или повреждение другой цепи. Компоненты вроде тубуса.
    Мягкий мгновенный запуск лампы
    При включении лампы с электронным стартером ÖKOSTART® катоды непрерывно нагреваются при низком напряжении, пока не достигнут своей полной температуры эмиссии.Время автоматически регулируется электронным стартером в зависимости от условий окружающей среды. В конце периода предварительного нагрева катоды будут свободно излучать излучение по всей своей площади, и затем через трубку будет подаваться импульс низкой энергии для достижения воспламенения. ÖKOSTART® избегает мерцания во время старта, как вы знаете из стандартного стартера светящейся бутылки, что делает его тубамивером. TURBiO® обеспечивает быстрый запуск, FRIGOSTART® обеспечивает надежный запуск при низких температурах до -40 ° C, а SOLARSTART разработан для УФ-ламп в соляриях.
    Расходы на содержание
    Затраты на техническое обслуживание сводятся к минимуму, потому что ÖKOSTART® (тубзайвер) позволяет регулярно менять лампы, когда световая отдача падает ниже допустимых пределов.

    Обычно это происходит прибл. 6 лет!

    Внеплановое обслуживание не требуется!

    Вам не нужно менять или сбрасывать электронный стартер, если вы заменяете лампу, как вы должны делать это со стандартными пускателями с светящейся бутылкой или «красными пуговицами» CIS.

    Срок службы трубок
    Благодаря полному предварительному нагреву и импульсу низкой энергии катоды не подвергаются нагрузкам и не претерпевают заметного износа во время цикла запуска люминесцентных ламп.

    Лампа работает столько часов, как если бы она работала непрерывно без повторного запуска, и уровень эффективности будет сохраняться в течение всего срока службы ламп.

    Экологические преимущества
    Люминесцентные лампы содержат ртуть и поэтому являются опасными и токсичными отходами.
    Удвоение срока службы трубок снижает вдвое количество опасных отходов и загрязнений и, следовательно, защищает окружающую среду.

    Благодаря нашему многолетнему опыту в разработке и производстве ÖKOSTART®, мы даем вам 10-летнюю гарантию на каждый стартер!

    Охрана и безопасность
    Одна из главных особенностей ÖKOSTART® заключается в том, что она никогда не будет превышать спецификации ваших люминесцентных ламп.Балласт и конденсаторы будут обрабатываться очень плавно и всегда будут работать в указанных пределах. Если трубка выходит из строя, ÖKOSTART® отключает весь контур и предотвращает перегрев и повреждение балласта или любых других компонентов во всем контуре. В случае неисправности лампы или другой детали система безопасности гарантирует отключение. Также будет предотвращено мерцание дефектных люминесцентных ламп.

    (PDF) Конструкция адаптивного электронного пускателя для люминесцентных ламп

    кратко описывается следующим образом.Сначала выпрямленное напряжение

    ,

    измеряется и детектируется детектором напряжения. Если

    обнаружено высокое напряжение, сработает таймер предварительного нагрева

    и начнет отсчет времени предварительного нагрева T

    ph

    . В процессе

    времени предварительного нагрева T

    ph

    , пожарная цепь работает как короткое замыкание

    , чтобы пропустить ток через нити лампы

    для достижения процесса предварительного нагрева. По истечении времени предварительного нагрева

    T

    ph

    таймер предварительного нагрева отправляет сигнал запуска

    в цепь зажигания, чтобы она работала как разомкнутая цепь. В момент размыкания цепи зажигания

    энергия, накопленная в магнитном балласте

    , преобразуется в высокое импульсное напряжение, которое вызывает пробой газа

    лампы. Наконец, люминесцентная лампа

    горит, а пожарная цепь остается в состоянии разомкнутой цепи. Как показано на рисунке

    на рис. 3 (а), таймер предварительного нагрева, созданный схемой RC

    , предназначен для снижения стоимости [6,7,8,10,11]. Время предварительного нагрева

    T

    ph

    определяется значением произведения резистора

    R

    T1

    и конденсатора C

    T

    .Этот таймер RC-цепи имеет ограничение

    , которое не может перезапускаться быстро, так как скорость разряженного

    конденсатора C

    T

    ограничена значением произведения

    резистора R

    T2

    и конденсатора C

    Т

    . Чтобы решить эту проблему, на

    рис. 3 (b) был показан RC-таймер

    с новой схемой управления.

    ˥

    ˧˄

    ˥

    ˧˅

    ˖

    ˧

    (а)

    ˖̂́̇̅̂˿ʳ

    ˖˼̅˶̈˼̇

    ˖

    ˧

    ˧˄

    ˥

    ˧˅

    ˦

    ˥˸̆˸̇ʳ˖̂́̇̅̂˿ʳ˖˼̅˶̈˼̇

    (б)

    Рисунок 3.(а) типичный таймер RC; (b) типичный RC-таймер со схемой управления сбросом

    Функция быстрого перезапуска выполняется переключателем S

    , который может быть замкнут для мгновенного разряда конденсатора C

    T

    .

    Однако схема управления в этой схеме управления сбросом

    слишком сложна, чтобы снизить стоимость [9]. Время предварительного нагрева типичного электронного стартера

    является фиксированным, что приводит к серьезной проблеме

    , когда нити накала лампы заедают за пределы сердечника в ситуации высокого напряжения переменного тока

    и занижают сердечник в ситуации низкого напряжения переменного тока

    .В состоянии чрезмерной нагрузки срок службы люминесцентной лампы

    будет значительно сокращен. В состоянии сердечного ритма ниже

    люминесцентную лампу трудно зажигать.

    означает, что в усовершенствованном электронном пускателе

    необходимо адаптивное время предварительного нагрева. Кроме того, простая схема с более низкой стоимостью

    должна быть сохранена в усовершенствованном электронном пускателе

    для массового производства. Для достижения вышеупомянутого высокого качества

    при низкой стоимости в этой статье предлагается управление сбросом с повышающим напряжением

    (RCVPC), состоящее только из резистора

    и диода.Кроме того, этот предлагаемый RCVPC

    может адаптировать время предварительного нагрева согласно

    к входной мощности переменного тока и хорошо работать в ситуации с более низкой мощностью переменного тока

    .

    II. S

    YSTEM ОПИСАНИЕ

    На рис. 4 показана блок-схема предлагаемого адаптивного электронного пускателя

    , который состоит из выпрямителя

    , детектора напряжения, RCVPC и пожарной цепи.

    ˙˼̅˸ʳ˖˼̅˶̈˼̇

    ́˺ʳ

    ˧˼̀˸̅

    ˩̂˿̇˴˺˸ʳ

    ˗˸̇˸˶ ̇̂̅

    ˥˸˶̇˼˹˼˸̅

    ́̇̅̂˿ʳ̊˼̇˻ʳ

    ˩̂˿̇˴˺˸ʳˣ̈˿˿ˀ˨̃ʳ˖˼̅˶̈˼̇

    ˖ˡ˄

    ˖ˡ˅

    Рисунок 4.Блок-схема предлагаемого AES

    Выпрямитель обеспечивает постоянное напряжение от сети переменного тока.

    Детектор напряжения предназначен для определения напряжения на люминесцентной лампе

    для оценки уровня мощности и

    для контроля состояния включения света. Когда детектор напряжения

    ,

    обнаруживает достаточную мощность, схема обрабатывает состояние предварительного нагрева

    ,

    для адаптивного времени предварительного нагрева, чтобы соответствующим образом предварительно нагреть нити лампы

    ,

    .Адаптивное время предварительного нагрева

    точно регулируется таймером предварительного нагрева и регулируется входной мощностью переменного тока

    . Подробные функции схемы будут

    ,

    , проиллюстрированы в следующем разделе. По истечении времени предварительного нагрева схема зажигания

    ,

    может генерировать импульсный сигнал с высоким скачком напряжения

    для зажигания люминесцентной лампы. Люминесцентная лампа

    есть; поэтому загорелся. Когда входное питание переменного тока отключено, детектор напряжения

    обнаруживает эту ситуацию и запускает

    RCVPC.Затем таймер предварительного нагрева возвращается в исходное состояние

    для функции быстрого сброса. Наконец, люминесцентную лампу

    можно быстро снова включить при необходимости.

    III. C

    IRCUIT ANALYSIS

    Учитывая схему, стоимость и размер которой ограничены

    для большей коммерческой выгоды, предлагаемая схема электронного пускателя

    , показанная на рис. 5, спроектирована так, чтобы быть максимально простой

    . Этот электронный пускатель

    не только поддерживает все функции типичной функции, но также обеспечивает адаптивное время предварительного нагрева

    и более низкую мощность переменного тока при работе

    .

    424

    Разрешенное лицензионное использование ограничено: UNIVERSIDAD NORDESTE. Загружено 1 июня 2010 г. в 14:39:15 UTC с IEEE Xplore. Ограничения применяются.

    Конденсатор в пускателе люминесцентных ламп

    Конденсатор в пускателе люминесцентных ламп
    Сеть обмена стеков

    Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

    Посетить Stack Exchange
    1. 0
    2. +0
    3. Авторизоваться Зарегистрироваться

    Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов. Регистрация займет всего минуту.

    Зарегистрируйтесь, чтобы присоединиться к этому сообществу

    Кто угодно может задать вопрос

    Кто угодно может ответить

    Лучшие ответы голосуются и поднимаются наверх

    Спросил

    Просмотрено 30к раз

    \ $ \ begingroup \ $

    В люминесцентных лампах с магнитным балластом (старых) зачем нужен конденсатор в цепи стартера и от чего зависит его номинал? Если я правильно понимаю, это биметаллическая полоса, открывающаяся и закрывающаяся, вызывая индуктивный удар, поэтому она должна нормально работать и без конденсатора.

    задан 28 мая ’15 в 18: 072015-05-28 18:07

    Рахул Манодж

    10111 золотой знак22 серебряных знака33 бронзовых знака

    \ $ \ endgroup \ $ 1 \ $ \ begingroup \ $

    Конденсатор в старых люминесцентных пускателях предназначен для подавления электромагнитных помех. Обычно это довольно небольшое значение — от 1 до 100, в зависимости от того, кто сделал ваш конкретный стартер.

    Конденсатор может также уменьшить эрозию контактов на контактах стартера — честно говоря, не знаю. Но я знаю, что в былые времена, когда у всех было AM-радио на кухонном столе, можно было сразу определить, если кто-то включил люминесцентную лампу, в стартере которой не было этого конденсатора.

    Ламп

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *