+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Люминесцентные лампы

Линейные люминесцентные лампы — экономичные и доступные источники света.

Люминесцентные лампы многие считают такой же классикой освещения, как и лампы накаливания. С этим тяжело спорить, учитывая, что первая люминесцентная лампа была выпущена аж в 1938 году, а в СССР такие лампы были разработаны в 1951 году. А первая газоразрядная лампа — предок современных люминесцентных ламп — была изобретена в 1956 году.

По сравнению с лампами накаливания линейные люминесцентные лампы дневного света являются более экономичными (примерно в 5 раз) и имеют больший срок службы (в 5-10 раз).

Немного истории

Изобретателем люминесцентной лампы (лампы дневного света) считается Эдмунд Гермер. Он и его команда в 1926 году получили бело-цветной свет от газоразрядной лампы, колба которой внутри была покрыта флуоресцентным порошком. Позже корпорация General Electric купила патент у Гермера и в 1938 году довела лампы дневного света до широкого коммерческого использования.

Свет первых ламп напоминал естественный уличный свет в пасмурный день (примерно 6400К): считается, что именно тогда и появилось название «лампа дневного света».

В Советском Союзе массовое производство люминесцентных ламп началось только в 1948 году, за что в 1951 году разработчики первой советской лампы дневного света стали лауреатами Сталинской премии второй степени. 

Советский ГОСТ 6825-64 определял только три типоразмера линейных люминесцентных ламп мощностью 20, 40 и 80 ватт (длиной 600, 1200 и 1500 мм соответственно). Колба имела большой диаметр 38 мм для более легкого зажигания при низких температурах.

Люминесцентные линейные лампы дневного света выпускаются многих видов: разной мощности, длины, с разными диаметрами колб, разными цоколями и разным светом в зависимости от назначения лампы. Более того, этот ассортимент будет еще больше, если учесть, что энергосберегающие лампы также представляют собой лампы дневного света со встроенными пусковыми устройствами.

Сегодня наиболее распространенными трубками линейных ламп дневного света являются Т8 (Ø 26 мм), Т5 (Ø 16 мм) и Т4 (Ø 12,5 мм). Лампы с трубкой Т8 имеют цоколь G13 (13 мм между штырьками), а Т4 и Т5 имеют цоколь G5 (5 мм между штырьками). Лампы дневного света Т8 в настоящее время выпускаются мощностью от 10 до 70 Вт, лампы Т5 — от 6 до 28 Вт, а лампы Т4 — от 6 до 24 Вт. Естественно, что мощность ламп напрямую влияет и на размеры (длину) люминесцентных ламп: соотношения размеров и мощностей стандартизировано. То есть лампа мощностью 18 Вт с трубкой T8 и цоколем G13 любого производителя имеет длину 590 мм. 

Выпускаются люминесцентные лампы с разными цветовыми температурами для разных целей, но наиболее распространены лампы цветности 4000К и 6500К. Подробнее о цветовых температурах и сферах их применения можно посмотреть в нашей статье Энергосберегающие лампы: слухи и мифы (слух №6).

Также люминесцентные лампы по индексу цветопередачи (обозначается Ra или CRI — colour rendering index), то есть возможности точно отображать цвета по сравнению с естественным светом. Так лампы со 100% цветопередачей (Ra=1) отображают все цвета также как и при солнечном дневном свете. Но наиболее распространенными (в силу достаточности и большей доступности) являются лампы с индексом цветопередачи 70 — 89%.

Ниже мы приводим описание и технические характеристики самых часто используемых ламп, как в промышленном и муниципальном (где они наиболее распространены), так и жилом секторе. Приведенные ниже значения светового потока и срока службы являются примерными и могут отличаться в зависимости от производителя.


Стандартные линейные люминесцентные лампы с трубкой Т8 и цоколем G13


Самый распространенный тип линейных люминесцентных ламп. Именно такие лампы мощностью 18 Вт («короткую») или 36 Вт («длинную») вспоминают в первую очередь, когда слышат словосочетание «люминесцентная лампа». И хотя ассортимент таких ламп состоит из моделей мощностью от 10 до 70 Вт, чаще всего используются именно лампы мощностью 18 и 36 Вт, которые взаимозаменяемы с советскими люминесцентными лампами ЛБ/ЛД-20 и ЛБ/ЛД-40 соответственно.

Линейные люминесцентные лампы с трубкой Т8 и цоколем G13 используются в основном в промышленности (склады и производственные цеха), а также в офисах и муниципальных государственных учреждениях (администрации, школы, детские сады). 

Средняя продолжительность работы составляет 10000 часов. Диаметр трубки Т8 составляет 26 мм. Работают, как с электромагнитными дросселями (ЭмПРА) в связке со стартерами, так и с электронными балластами (ЭПРА).

мощность световой поток цветовая температура Ra (CRI) длина с цоколем без штырьков
Osram L 18W/640
Philips TL-D 18W/33-640
(ЛБ-20)
18 Вт 1200 лм 4000 К (холодный белый) 60-69% 590 мм
Osram L 18W/765
Philips TL-D 18W/54-765
(ЛД-20)
18 Вт 1050 лм 6500 К (холодный дневной) 70-79% 590 мм
Osram L 36W/640
Philips TL-D 36W/33-640
(ЛБ-40)
36 Вт 2850 лм 4000 К (холодный белый) 60-69% 1200 мм
Osram L 36W/765
Philips TL-D 36W/54-765
(ЛД-40)
36 Вт 2850 лм 6500 К (холодный дневной) 70-79% 1200 мм
Osram L 15W/640 15 Вт 850 лм 4000 К (холодный белый) 60-69% 438 мм
Osram L 15W/765 15 Вт 740 лм 6500 К (холодный дневной) 70-79% 438 мм
Osram L 30W/640 30 Вт 2100 лм 4000 К (холодный белый) 60-69% 895 мм
Osram L 30W/765 30 Вт 1900 лм 6500 К (холодный дневной) 70-79% 895 мм

Osram L 58W/640
(вместо ЛБ-80)

58 Вт 4600 лм 4000 К (холодный белый) 60-69% 1500 мм
Osram L 58W/765
(вместо ЛД-80)
58 Вт 4000 лм 6500 К (холодный дневной) 70-79% 1500 мм
Osram L 70W/640 70 Вт 5250 лм 4000 К (холодный белый) 60-69% 1764 мм

Стандартные линейные люминесцентные лампы с трубкой Т5 и цоколем G5

Люминесцентные лампы T5 (в отличие от Т8) наиболее распространены именно в жилом секторе.

Они более узкие, и поэтому светильники с ними лучше подходят для подсветки ниш или кухонных столов под шкафами.

Ассортимент люминесцентных линейных ламп с трубкой Т5 состоит из моделей мощностью от 6 до 28 Вт (замена ламп накаливания от 30 до 140 Вт). В основном выпускаются лампы цветностью 4200К и 6400К.

Лампы Т5 имеют цоколь G5 (5 мм между штырьками). 

Средняя продолжительность работы составляет 6000 — 10000 часов (в зависимости от производителя и модели). Диаметр трубки Т5 составляет 16 мм. Используются с электронными балластами (ЭПРА).

мощность световой поток цветовая температура длина трубки без цоколя общая длина со штырьками
Uniel EFL-T5-06/4200/G5 6 Вт 380 лм 4000 К
(холодный белый)
211 мм 225 мм
Uniel EFL-T5-06/6400/G5 6 Вт 350 лм 6400 К
(дневной)
211 мм 225 мм
Uniel EFL-T5-08/4200/G5 8 Вт 600 лм 4000 К
(холодный белый)
288 мм 302 мм
Uniel EFL-T5-08/6400/G5 8 Вт 580 лм 6400 К
(дневной)
288 мм 302 мм
Uniel EFL-T5-13/4200/G5 13 Вт 960 лм 4000 К (холодный белый) 516 мм 530 мм
Uniel EFL-T5-13/6400/G5 13 Вт 940 лм 6400 К
(дневной)
516 мм 530 мм
Uniel EFL-T5-21/4200/G5 21 Вт 1850 лм 4000 К (холодный белый) 849 мм 864 мм
Uniel EFL-T5-21/6400/G5 21 Вт 1660 лм 6400 К
(дневной)
849 мм 864 мм
Uniel EFL-T5-28/4200/G5 28 Вт 2470 лм 4000 К (холодный белый) 1149 мм 1161 мм
Uniel EFL-T5-28/6400/G5 28 Вт 2350 лм 6400 К
(дневной)
1149 мм 1161 мм

Стандартные линейные люминесцентные лампы с трубкой Т4 и цоколем G5

Светильники для люминесцентных линейных ламп с трубкой Т4 получили меньшее распространение, чем светильники для ламп Т5. В основном такие люминесцентные лампы используются для местной подсветки — идеальный мебельный светильник!

Выпускаются линейные люминесцентные лампы с трубкой Т4 мощностью от 6 до 24 Вт (замена ламп накаливания от 30 до 120 Вт), с цветовой температурой света 4200К и 6400К.

Средняя продолжительность работы составляет 6000 — 8000 часов (в зависимости от мощности и производителя). Диаметр трубки составляет 12 мм. Работают с электронными балластами (ЭПРА).

мощность световой поток цветовая температура длина трубки без цоколя общая длина со штырьками
Uniel EFL-T4-06/4200/G5 6 Вт 380 лм 4000 К
(холодный белый)
206 мм 220 мм
Uniel EFL-T4-06/6400/G5 6 Вт 350 лм 6400 К
(холодный дневной)
206 мм 220 мм
Uniel EFL-T4-08/4200/G5 8 Вт 600 лм 4000 К
(холодный белый)
326 мм 340 мм
Uniel EFL-T4-08/6400/G5 8 Вт 580 лм 6500 К (холодный дневной) 326 мм 340 мм
Uniel EFL-T4-12/4200/G5 12 Вт 940 лм 4000 К (холодный белый) 354 мм 368 мм
Uniel EFL-T4-12/6400/G5 12 Вт 920 лм 6500 К (холодный дневной) 354 мм 368 мм
Uniel EFL-T4-16/4200/G5 16 Вт 1210 лм 4000 К (холодный белый) 454 мм 467 мм
Uniel EFL-T4-16/6400/G5 16 Вт 1195 лм 6500 К (холодный дневной) 454 мм 467 мм
Uniel EFL-T4-20/4200/G5 20 Вт 1700 лм 4000 К (холодный белый) 553 мм 567 мм
Uniel EFL-T4-20/6400/G5 20 Вт 1680 лм 6500 К (холодный дневной) 553 мм 567 мм
Uniel EFL-T4-24/4200/G5 24 Вт 2020 лм 4000 К (холодный белый) 641 мм 655 мм
Uniel EFL-T4-24/6400/G5 24 Вт 2010 лм 6500 К (холодный дневной) 641 мм 655 мм

Специальные люминесцентные лампы для растений и аквариумов Osram Fluora, Camelion Bio


Главной отличительной особенностью ламп для растений и аквариумов является акцент в красной и синей областях спектра. Применение Osram Fluora значительно улучшает протекание фотобиологических процессов в растениях: они при таком свете лучше растут и меньше болеют в условиях недостатка солнечного и тем более отсутствия дневного света!

Также компания Osram Fluora рекомендует использовать специальные лампы для растений и аквариумов в общественных зданиях, где мало естественного дневного света: в офисах, торговых центрах, магазинах и ресторанах.

Специальные линейные люминесцентные лампы Osram Fluora для аквариумов и растений выпускаются с трубкой Т8 (Ø 26 мм), цоколем G13 и мощностью от 15 до 58 Вт.

мощность световой поток длина с цоколем без штырьков

Osram Fluora L 18W/77

18 Вт 550 лм 590 мм

Osram Fluora L 36W/77

36 Вт 1400 лм 1200 мм

Osram Fluora L 15W/77

15 Вт 400 лм 438 мм
Osram Fluora L 30W/77 30 Вт 1000 лм 895 мм
Osram Fluora L 58W/77 58 Вт 2250 лм 1500 мм

Специальные люминесцентные лампы для освещения продуктов питания Osram Natura

Специальный люминофор ламп Osram Natura придает пищевым продуктам натуральный вид свежих и аппетитных продуктов! Рекомендуется использовать лампы в продуктовых магазинах, супермаркетах и рынках. Особенно актуален правильный свет для мясных магазинов и хлебобулочных отделов. 

Лампы Osram Natura благодаря специально подобранному световому спектру (цветность 76) придадут мясным, колбасным, булочным изделиям, овощам и фруктам более привлекательный и аппетитный вид.

Замену таких ламп рекомендуется проводить каждые 10000 часов. Диаметр трубки Т8 составляет 26 мм, цоколь G13.

мощность световой поток Ra (CRI) длина с цоколем без штырьков
Osram Natura L 18W/76 18 Вт 750 лм 70-79% 590 мм
Osram Natura L 36W/76 36 Вт 1800 лм 70-79% 1200 мм
Osram Natura L 15W/76 15 Вт 500 лм 70-79% 438 мм
Osram Natura L 30W/76 30 Вт 1300 лм 70-79% 895 мм
Osram Natura L 58W/76 58 Вт 2850 лм 70-79% 1500 мм

Лампы люминесцентные мощность и характеристики, делаем проверку

Люминесцентные лампы являются одними из самых популярных источников света. Они показывают очень высокие технические характеристики и способны удовлетворить любые потребности пользователей и внешней среды. Широкий ассортимент позволяет сделать выбор очень качественно и легко. Но случаются и неприятные ситуации, тогда лампы не хотят работать либо проявляются другие неисправности.

Поможем разобраться с вопросом проверки мощности лампы и как проверить люминесцентную лампу, и расскажем для чего это делается. Но мощность не единый показатель, который следует проверить, необходимо убедиться также в общей работоспособности устройства и выявить неисправности, в этом мы вам также поможем.

Классификация люминесцентных ламп

Люминесцентные лампы существуют в ограниченном варианте исполнения. По большему счёту существуют только два варианта, линейные и компактные. Есть ещё кольцевые и U-образные, но их зачастую относят к разновидностям линейных. Они обладают той же структурой, размером и формой стеклянной трубки.

Какие показатели изменяются и насколько это критично:

  • Мощность устройства может как падать, так и повышаться при значительных колебаниях входящего напряжения. Таким образом, приобретая сверхмощную лампу для освещения вашего дворика, вы можете получить некачественное слабое освещение из-за низкого показателя входящего напряжения. Многие начинают наговаривать сразу на устройство и связывать падение мощности с браком конструкции, не разобравшись с корнем проблемы. Стоит измерять напряжение в вашей домашней сети, после чего делать выводы о неисправности.
  • Качество светового потока. При слишком большой амплитуде изменения сетевого напряжения или при резких перепадах, качество света значительно снижается. Так, при смене частоты тока, коэффициент мерцания значительно увеличивается, лампа начинает излучать сильно мерцающий свет, который перенапрягает глаза и вредит зрению человека. Также свет может быть не насыщенным и тусклым, что тоже увеличивает напряжение глаз и может повредить зрение, если находится в таких условиях продолжительное время. Особенно это сказывается, если работать при таком освещении.
  • Срок эксплуатационной службы прибора. Скачки и нестабильное напряжение способствует быстрому изнашиванию и ухудшению работоспособности прибора. Производители утверждают, что допустимой границей колебания тока, является десять процентов от номинального показателя. Превышение этой отметки может сократит срок службы изделия до пятидесяти процентов.

Проверка мощности

Измерение мощности лампочки позволяет создать для неё более подходящие условия и использовать по назначению. Вам ведь не нужна сверхмощная лампа для чтения книги или маломощная для выполнения мелких работ.

Благодаря измерению мощности можно распределить лампочки на необходимые места в соответствии с требованиями. Как правило, проверка производится на тех лампах, где маркировка стёрлась.

Проще всего осуществить измерение мультиметром. С его помощью измерение будет произведено быстро и с высокой точностью. Но если такого прибора нет под рукой, можно воспользоваться другим способом, который также довольно эффективный.

Вам понадобится иметь вольтметр и амперметр. Подключаются они к схеме включения лампы, амперметр последовательно, а вольтметр параллельно. После чего следует включить подачу тока на устройство. Затем снимаете показатели с обоих измерителей и записываете. Разделив полученную силу тока на напряжение, которое показал вольтметр, вы получите значение в ватах. Этот показатель и будет номинальной мощность вашей лампочки.

Тестируем работоспособность

Проверка работоспособности является очень лёгким проверочным процессом. Первое что следует сделать, это, конечно же, попробовать подключить лампу к сети напрямую или установить в соответствующий светильник. После чего можно сделать выводы про исправность и функционирование устройства.

Причины поломоки их ремонт

Более детальная проверка будет заключаться в тестировании каждого элемента по отдельности, но этой займёт значительно больше сил и потребует от вас определённых познаний в данной области.

Причины поломок и их ремонт

Существует множество вариантом неисправности люминесцентных ламп, мы подготовили для вас наиболее распространённые виды и способы их решения.

Разобравшись с причиной неисправности можно легко решить её, давайте приступим к изучению нашего списка:

  • Устройство не включается – причина такое неисправности может заключаться в потере работоспособности лампы или обрыве проводов, схем и контактов. Необходимо заменить лампу, если это не помогло, следует искать причину в соединениях и проводах, возможно, где-то присутствует разрыв схемы.
  • Лампа начинает мигать, но никак не зажигается до стабильного свечения – Это происходит из-за замыкания в проводах или между контактами. Необходимо проверить изоляцию и при необходимости заменить провода. Если это не помогло, возможно, следует заменить саму лампу.
  • Тусклое свечение на обеих, или одном конце устройства – это случается из-за нарушения герметичности колбы. Такое устройство необходимо заменять, ремонту оно не подлежит.
  • Потемнение концов и полное выключение в процессе работы – причиной такого явления может стать неисправный балласт. Вам следует произвести его полную замену и снова протестировать устройство.
  • Циклическое затухание и зажигание лампы – чаще всего причиной такой неисправности становится стартер. Его следует заменить, как в случае с поломанным балластом.
  • Перегорание и почернение концов во время включения – такое случается, когда входящее напряжение не соответствует номинальному. Балластное сопротивление не выдерживает повышенной нагрузки, и лампа сразу перегорает. Также причиной может быть неисправность балласта. В этом случае балласт также заменяется на новый.

Мощности ламп различных видов — сравнение

В этой статье мы представим вам соотношение мощности ламп различных видов.

Для того, чтобы помочь потребителю сделать верный выбор, сравним мощности ламп различных видов. Рассмотрим, как соотносятся мощности лампы накаливания, компактной люминесцентной лампы и светодиодной лампы при приблизительно равных требованиях к излучаемому ими световому потоку.

Сравнивать будем следующие три лампы:

  • Лампа накаливания мощностью 75 Вт с заявленным световым потоком в 935 Лм;
  • Компактная люминесцентная лампа мощностью 15 Вт с заявленным световым потоком в 1000 Лм;
  • Светодиодная лампа мощностью 9 Вт с заявленным световым потоком в 800 Лм.

Напомним, что световым потоком называется один из главных параметров источника света, которым и определяется мощность непосредственно излучаемого света. Измеряется световой поток в люменах (Лм).

Измерения для оценки света ламп с целью соотнести их мощности, проводятся люксметром. Люксметр показывает освещенность, то есть отношение излучаемого лампой светового потока к единице освещаемой данной лампой площади. Так 1 люкс (Лк) равен 1 люмену на 1 квадратный метр. Количество люкс определяет интенсивность света, то есть непосредственно освещенность.

Для эксперимента по определению соотношения мощностей ламп была выбрана поверхность стола под светильником, на расстоянии 65 см от него. Питание ламп осуществлялось переменным напряжением 220 вольт.

Результаты измерений люксметром:

  • Лампа накаливания мощностью 75 Вт — 560 Лк;
  • Компактная люминесцентная лампа (КЛЛ) мощностью 15 Вт — 389 Лк;
  • Светодиодная лампа мощностью 9 Вт — 611 Лк.

По результатам измерений люксметром легко видеть, что освещенность наиболее высока у светодиодной лампы, затем идет лампа накаливания, и, наконец, компактная люминесцентная лампа. Тем не менее, соотношение мощностей очевидно в пользу светодиодной лампы, затем идет компактная люминесцентная лампа, а лампа накаливания оказывается наименее эффективной.

Так как измерения люксметром проводились в данном эксперименте с одинакового расстояния, то для наиболее объективной оценки вычислим отношения Люкс/Ватт для каждой из ламп, поскольку соотношение Люкс/Ватт в данном случае оказывается напрямую связано с соотношением Люмен/Ватт, то есть со световой отдачей:

  • Лампа накаливания мощностью 75 Вт — 7,46 Люкс/Ватт;
  • Компактная люминесцентная лампа (КЛЛ) мощностью 15 Вт — 25,93 Люкс/Ватт;
  • Светодиодная лампа мощностью 9 Вт — 67,88 Люкс/Ватт.

Из экспериментальных данных можно сделать вывод об относительной эффективности трех рассмотренных ламп:

  • Светодиодная лампа в 2,6 раза эффективней компактной люминесцентной лампы и в 9 раз эффективней лампы накаливания;
  • Компактная люминесцентная лампа в 3,5 раза эффективней ламы накаливания, но в 2,6 раза уступает светодиодной лампе.
  • Лампа накаливания в 3,5 раза менее эффективна, чем КЛЛ, и в 9 раз менее эффективна, чем светодиодная.

Очевидно, светодиодная лампа оказывается самой эффективной, при минимальной мощности она дает лучшую освещенность. Компактная люминесцентная лампа эффективней лампы накаливания, однако не стоит забывать, что такие лампы содержат ртуть и требуют особого подхода к утилизации. А лампы накаливания справедливо оказываются пережитком прошлого, их эффективность очень низка.

В итоге можно заключить, что лучшими с точки зрения потребляемой мощности и световой отдачи являются на данный момент светодиодные лампы.

Сравнение мощности лампочек, изготовленных по различным технологиям (лампы накаливания, компактные люминесцентные и светодиодные):

Ранее ЭлектроВести писали, что Верховная Рада Украины не поддержала постановление №2233-П, которым предлагалось отменить принятие законопроекта №2233, которым были внесены изменения в закон «О рынке электроэнергии» и запрещены поставки электроэнергии из России в Украину по двусторонним договорам, но оставлена возможность импорта на рынке на сутки вперед и направление Беларуси.

По материалам: electrik.info.

Характеристики люминесцентных ламп | ОСК Лампы.РФ

Давно прошли времена, когда дребезжащие колбы первых моделей компактныx люминесцентныx ламп заливали холодным голубоватым светом коридоры больниц, школьные классы и другие помещения общественных учреждений. Потребность в эффективном энергосбережении пришла в каждый дом, и производители источников освещения предложили отличную альтернативу — компактные люминесцентные лампы (КЛЛ).

Ничего общего с ранними образцами, кроме принципа работы: современные КЛЛ дают качественный, ровный свет нужного оттенка и яркости, потребляют в 5 раз меньше электричества, чем колбы с вольфрамовой спиралью, а служат в 10 раз дольше!

При выборе КЛЛ ориентируйтесь на следующие характеристики:

  • Мощность.
  • Поскольку КЛЛ на каждый люмен светового потока потребляет в пять раз меньше энергии, чем традиционная лампа, то рассчитать нужную мощность можно по формуле:

    мощность лампы накаливания / 5 + 20 % (в процессе эксплуатации мощность устройства снизится на это значение).

  • Цветовую температуру.
  • Глаз человека различает несколько оттенков света — от теплого желтого до холодного синевато-белого, в зависимости от цветовой температуры потока. Этот показатель измеряется в кельвинах (К):

    2 700 К — теплый желтоватый свет,

    4 000 К — холодный белый свет,

    6 500 К — голубоватый (дневной) свет.

    Для каждого помещения нужно подобрать лампы такой цветовой температуры, которая была бы оптимальна с точки зрения функционального назначения. Лампы белого света (4 000 К) хороши для кухни и рабочих зон (например, уголка швеи). Теплый свет подходит для гостиных и спален — там, где нужно создать мягкую, уютную, естественную атмосферу. Яркий дневной свет — решение для складских помещений и уличного освещения.

  • Цветопередачу.
  • Один и тот же предмет, освещенный источниками света с разными характеристиками цветопередачи, будет восприниматься человеческим глазом по-разному. Цветопередача определяется составом нанесенного на колбу люминофора.

  • Скорость запуска.
  • Ни одна лампа не разгорается на полную мощность сразу. Устройства с «теплым стартом», разгорающиеся с задержкой, имеют больший ресурс, чем их аналоги с быстрым пуском. Стоит учесть, что «теплый старт» хорош в помещениях, где свет горит длительное время и включается-выключается относительно редко. Если такие лампы поставить в ванной, туалете и других помещениях, где свет включают часто, но ненадолго, задержки в разгорании будут только раздражать.

  • Ресурс.
  • В идеальных условиях ресурс КЛЛ превышает ресурс лампы накаливания в 8–10 раз: 8 000–11 000 часов (8–11 лет) против 1 000 часов (около года). Примите во внимание, что речь идет именно о времени непрерывного горения лампы. Чем чаще происходит включение/выключение, тем меньше горит лампа: каждое включение/выключение отнимет 1–2 часа расчетного ресурса. А вот перепады напряжения в сети ККЛ не страшны.

Как правильно выбрать лампу для помещения: таблицы, расчеты, рекомендации

Многие люди традиционно при выборе лампы учитывают только ее мощность. Однако сегодня это неактуальный подход, поскольку кроме ватт нужно знать и люмены — этот показатель до конца понимают не все покупатели. Разберемся, о чем идет речь, как люмены отражаются на экономичности, качестве света и какие лампы с учетом этого показателя необходимо выбирать.

Люмен: что это такое

В словарях можно прочитать, что это единица измерения светового потока. Легко понять принцип этого показателя, если привести пример на потоке воды. Чтобы измерить его мощность, необходимо выяснить, сколько литров жидкости подается, например, за секунду. Чем больше литров — тем сильнее поток. Здесь то же самое, только вместо воды мы берем свет, а вместо литров — люмены.

Взаимосвязь люменов и ватт

Почему недостаточно пользоваться привычными ваттами? Здесь все просто. Сама по себе мощность, измеряемая в ваттах, — это более общая характеристика. Возьмем в качестве примера лампу накаливания мощностью 100 Вт. Из них 70 Вт будут уходить на нагревание пространства, то есть устройство на такое количество мощности работает в невидимом человеку диапазоне. А вот уже 30 Вт — это тот свет, который мы видим.

Далее возьмем энергосберегающие лампы, которые были усовершенствованы по этому показателю. Там уже соотношение работы в видимом и невидимом диапазонах другое — 95 к 5. Если устройство имеет мощность 32 ватта, то в видимом диапазоне будет работать на 30 Вт.

То есть лампа накаливания на 100 Вт дает нам свет на 30 Вт. А энергосберегающая лампа на 100 Вт — почти в три раза больше. То же самое касается светодиодных изделий. Приведем таблицу сравнения, которая покажет, какой мощности должна быть лампа, чтобы получить определенное количество люменов.

Световой поток в люменах (лм) Мощность лампы накаливания (Вт) Мощность люминесцентной лампы (Вт) Мощность светодиодной лампы (Вт)
400 20 5-7 2-3
700 60 15-16 8-10
900 75 18-20 10-12
1200 100 25-30 12-15
1800 150 40-50 18-20

Из этой таблицы видно, что для получения, например, 700 люменов нам понадобится приобрести лампу накаливания на 60 ватт, а вот светодиодной достаточно с показателями 8-10 ватт. И здесь становится понятно, почему те же LED-устройства намного экономичнее, ведь платим мы при расходе электроэнергии именно за ватты.

Или сравнение в другую сторону: лампа накаливания на 20 ватт и светодиодная лампа на 20 ватт дают колоссально разное количество люменов: 400 Лм и 1800 Лм соответственно. При этом учитываем: чем выше этот показатель, тем лучше освещение и тем больше свет приближен к естественному. А это хорошая цветопередача, меньшая нагрузка на глаза и т. д.

Отметим, что таблица предлагает приблизительные, средние показатели. Они могут отличаться в зависимости от устройства изделий, технологии их изготовления и т. д. Рекомендуем уточнять показатели для каждой отдельной лампы — если же люмены не указаны на упаковке, просто помните о соотношении эффективности ламп накаливания и светодиодных устройств.

Правила выбора лампы с учетом этого показателя

С выбором типа лампы мы разобрались, но теперь встает другой вопрос: каким должен быть световой поток с учетом размеров помещения. Санитарные нормы предполагают, что он должен быть и не слишком низким, и не слишком высоким. Оба варианта отклонения от нормы плохо отражаются на людях, вынужденных постоянно находиться в помещениях. В этом контексте мы будем говорить про освещенность.

Что такое освещенность и как посчитать ее показатели?

Освещенность — это уровень светового потока, который приходится на 1 квадратный метр. Для этого есть отдельная величина — люксы (лк). То есть если на один квадратный метр падает один люмен света — это равняется одному люксу: 1 лк=1лм/м2.

Далее, чтобы посчитать необходимое количество люменов на одно помещение, надо знать санитарные нормы, разработанные для разных комнат.

Тип помещения Норма освещенности
санузлы (в том числе ванные) в квартире, а также коридоры, подсобные помещения 50 лм/м2
кухня и жилые комнаты: спальня, гостиная 150 лм/м2
детская спальня или игровая для ребенка 200 лм/м2
рабочий кабинет, домашний офис 300 лм/м2

Но еще нужно учесть и высоту потолков в помещении. До 2,7 метров этого не делают, а вот дальше уже добавляют еще один коэффициент.

Высота комнаты ( м. ) Дополнительный коэффициент для вычисления
2,7-3 1,2
3,1-3,5 1,5
3,5-4,5 2

Теперь у нас есть все данные для того, чтобы посчитать минимальный световой поток. Формула выглядит следующим образом:

Световой поток (лм) = площадь помещения (м2) х норма освещенности (лм/м2) х коэффициент высоты потолков (если он есть).

Приведем пример расчетов

Допустим, у вас есть детская комната размером 10 квадратных метров и высотой в три метра. В этом случае мы берем норму для детских — 200 лм/м2 и коэффициент для потолков от 2,7 до 3 метров — 1,2.

Умножаем эти показатели: 10м2 х 200 лм/м2 х 1,2 = 2400 лм.

Получается, что для этой детской вам нужен световой поток 2400 лм. Исходя из этого показателя, вы можете выбрать количество и тип ламп, обратившись к нашей первой таблице. Это очень удобная формула, поскольку она позволяет легко и быстро получить показатели для каждой комнаты.

Есть ли погрешности в вычислениях?

Поскольку мы уже делали скидку на особенности каждой отдельной лампы, справедливо уточнить, что погрешности в вычислениях будут. Максимально точные показатели требуемой освещенности можно получить при помощи специального прибора — люксометра.

Но приведенные нами таблицы позволяют добиться минимального уровня погрешности — он точно не скажется ни на комфорте, ни на здоровье. Если нет возможности воспользоваться профессиональными вычислениями, вы можете сами все посчитать и выбрать оптимальное решение.

Дата публикации: 03.05.2018

Количество люмен в лампе и ее световой поток

Вокруг понятия «люмен» возникает множество мифов, поэтому, чтобы развеять некоторые из них, рассмотрим наиболее часто задаваемые вопросы, вроде таких, как: сколько люмен в лампе накаливания, в светодиодной лампе, сколько люмен содержит 1Вт светодиодной лампы, как определить ее световой поток, и какие светодиодные лампы аналогичны лампам накаливания.

Для начала разберемся, что подразумевает под собой понятие «люмен». Люмен является единицей измерения светового потока, исходящего от источника света, которым может быть лампа накаливания, светодиодная лампа, светодиод или другой осветительный прибор.

Чтобы проще было проводить сравнительный анализ, можно обратиться к таблице, где приведены соотношения СП (люмен) к мощности осветительного прибора (Вт) для ламп накаливания, люминесцентных и светодиодных ламп. Исходя из этих данных, видно, что светодиодные лампы в 10раз эффективнее, чем лампы накаливания, и в 2раза – чем люминесцентные. К тому же, в отличие от люминесцентных ламп и ламп накаливания, светодиодная лампа, следовательно, и светодиод, испускает направленный свет, из чего можно заключить, что и освещенность от светодиодной лампы будет значительно выше. Поэтому, используя светильник светодиодный уличный в качестве освещения, можно достичь гораздо лучшей освещенности, чем при использовании других ламп.

Лампа накаливания,
мощность в Вт

Люминесцентная лампа,
мощность в Вт

Светодиодная лампа,
мощность в Вт

Световой поток, Лм

20 Вт

5-7 Вт

2-3 Вт

Около 250 Лм

40 Вт

10-13 Вт

4-5 Вт

Около 400 Лм

60 Вт

15-16 Вт

8-10 Вт

Около 700 Лм

75 Вт

18-20 Вт

10-12 Вт

Около 900 Лм

100 Вт

25-30 Вт

12-15 Вт

Около 1200 Лм

150 Вт

40-50 Вт

18-20 Вт

Около 1800 Лм

200 Вт

60-80 Вт

25-30 Вт

Около 2500 Лм

Что касается количества люмен в 1Вт светодиодной лампы.

У светодиодов световой поток колеблется от 80 до 150Лм из 1Вт. Это обуславливается некоторыми отличиями вольтамперных характеристик светодиодов и систем охлаждения. Световой поток экспериментальных светодиодов доходит до 220Лм/Вт, но такие светодиоды не встречаются в массовом производстве.

Как можно определить количество люмен в светильнике или лампочке.

Обычно эта информация указана на упаковке или в инструкции к товару, но можно воспользоваться и табличными данными.
Для самостоятельного определения люменов нужен люксметр, определяющий уровень освещенности на каждом участке помещения. Люкс в данном случае – это количественное отношение люмен на площадь освещения (1люкс-1люмен на м2). При силе света, исходящего от изотропного источника, равного 1 кандела, полный световой поток равен 4

Светильник с лампой ДРЛ

Светильник с лампой Днат

Светодиодный светильник

Световой поток, Лм

125 Вт

70 Вт

30-40 Вт

Около 3 500 Лм

250 Вт

100 Вт

40-60 Вт

Около 8 000 Лм

400 Вт

150 Вт

80-120 Вт

Около 12 000 Лм

700 Вт

250 Вт

140-160 Вт

Около 20 000 Лм

1000 Вт

400 Вт

180-200 Вт

Около 30 000 Лм

Люминесцентные лампы мощность и длина.

Характеристики люминесцентных ламп и светильников

Все люминесцентные лампы можно разделить на две большие группы: линейные и компактные. Небольшой ассортимент кольцевых и U-образных ламп можно отнести к линейным, так как они делаются в колбах таких же диаметров и имеют близкие параметры.

Линейные лампы массового применения выпускаются в колбах диаметром 38, 26 и 16 мм (иностранное обозначение — Т12, Т8 и Т5, то есть 12/8, 8/8 и 5/8 дюйма). Немецкая фирма Osram делает еще лампы Т2 диаметром около 7 мм, но эти лампы применяются пока только в сканерах и другой репрографической аппаратуре, а не для общего освещения. В последние годы за рубежом выпуск ламп в колбах диаметром 38 мм практически прекращен. Стандартный ряд мощностей линейных ламп не велик: 4, 6, 8, 13, 15, 18, 20, 30, 36, 40, 58, 65 и 80 Вт. В абсолютном большинстве современных светильников используются лампы только трех номиналов мощности: 18, 36 и 58 Вт. В России еще продолжается выпуск ламп мощностью 20, 40, 65 и 80 Вт в колбах диаметром 38 мм.

Как уже было сказано, лампы разной мощности различаются длиной колб — от 136 до 1514 мм (с цоколями).

В отличие от ламп накаливания, на люминесцентных лампах никогда не указывается напряжение, на которое они должны включаться, так как в зависимости от применяемой схемы включения одна и та же лампа может работать при самых разных напряжениях — как по величине (от нескольких вольт до сотен вольт), так и по роду тока (переменный или постоянный).

Лампы каждой мощности выпускаются с различной цветностью излучения. В России по ГОСТ 6825 установлено пять цветностей белого света: тепло-белый, белый, естественный, холодно-белый и дневной, обозначаемые буквами ТБ, Б, Е, ХБ и Д. Кроме белых ламп разной цветности, производятся цветные люминесцентные лампы — красные, желтые, зеленые, голубые и синие (К, Ж,З,Ги С).

Цветность излучения ламп приблизительно может быть охарактеризована цветовой температурой Гцв. Тепло-белой цветности соответствует 7Цв = 2700 — 3000 К; белой — 7Цв = 3500 К; холодно-белой — 7Цв = 4200 К; естественной — 7Цв = 5000 К; дневной — 7Цв = 6000 — 6500 К.

В маркировке ламп зарубежного производства какого-либо единства нет, каждая фирма маркирует по-своему. Так, Philips все линейные лампы обозначает TL-D, Osram — Lumilux, General Electric — F. После этих букв указывается мощность ламп (18W, 36W, 58W).
По ГОСТ 6825 в маркировке ламп не предусмотрено указание индекса цветопередачи. В отличие от этого, в маркировке всех зарубежных ламп с хорошей и отличной цветопередачей после мощности (через дробь) ставится цифра, характеризующая общий индекс цветопередачи Ra. Если Ra = 90, то пишется цифра 9, при 80
Ведущие зарубежные фирмы часто используют в названиях ламп слова, носящие явно рекламный характер: De Lux, Super, Super de Lux и т.п. 
Учитывая большой разнобой в обозначении ламп , часто вводящий потребителей в заблуждение, Международная комиссия по освещению (МКО) разработала и рекомендовала всем странам для использования единую универсальную систему обозначений источников света ILCOS. В соответствии с этой системой все линейные люминесцентные лампы, в том числе и серии Т5, обозначаются буквами FD, кольцевые — FC, далее указывается мощность ламп, общий индекс цветопередачи и цветовая температура.

Серия ламп Т5 с диаметром колбы 16 мм выпускается в двух вариантах — «лампы с максимальной световой отдачей» (фирменное обозначение у Osram — FH , у Philips — HE) и «лампы с максимальным световым потоком» (соответственно FQ и HO). Оба варианта содержат по четыре номинала мощности: первый — 14, 21, 28 и 35 Вт, второй — 24, 39, 54 и 80 Вт. В лампах мощностью 28 и 35 Вт достигнута рекордная для люминесцентных ламп световая отдача — 104 лм/Вт. Все лампы серии Т5 могут работать только с электронными аппаратами. Лампы в колбах диаметром 26 и 38 мм (Т8 и Т12) снабжены цоколями G13, диаметром 16 мм — G5.
Компактные люминесцентные лампы (КЛЛ), в свою очередь, делятся также на две группы: с внешним аппаратом включения и со встроенным («интегрированным») аппаратом включения.
Лампы первой группы делаются мощностью от 5 до 55 Вт. Цилиндрическая колба ламп может быть изогнута один, два, три и даже четыре раза. В литературе такие лампы обычно называются «двух-, четырех-, шести- и восьмиканальными», что в принципе неверно, так как у всех таких ламп разрядный канал только один. Цоколи у всех ламп этой группы — специальные с двумя или четырьмя внешними штырьками. В двухштырьковые цоколи встроены стартеры, и для включения ламп с такими цоколями нужен только дроссель соответствующего типа. С электронными аппаратами такие лампы работать не могут, так как встроенные стартеры и помехоподавляющие конденсаторы мешают работе электронных схем. Лампы с четырехштырьковыми цоколями могут включаться как с обычными дросселями и внешними стартерами, так и с электронными аппаратами (некоторые типы ламп большой мощности могут работать только с электронными аппаратами). Насчитывается около 20 типов цоколей (рис. 1 а, б).

Рис. 1 а.

Рис. 1 б.

В России компактные лампы обозначаются буквами КЛ (компактная люминесцентная) или КЛУ (компактная люминесцентная универсальная, то есть способная работать как с обычными дросселями, так и с электронными аппаратами). Далее в обозначении указывается мощность лампы и цветность излучения.

Все компактные лампы делаются с использованием узкополосных редкоземельных люминофоров, обеспечивающих хорошую цветопередачу, поэтому в маркировке российских ламп присутствует буква Ц. Например, КЛ11/ТБЦ — компактная люминесцентная лампа со встроенным стартером, мощностью 11 Вт, тепло- белой цветности, с улучшенной цветопередачей, допускающая включение только с внешним дросселем; КЛУ9/БЦ — компактная лампа с четырехштырьковым цоколем мощностью 9 Вт, белой цветности, с улучшенной цветопередачей, допускающая включение как с дросселем и стартером, так и с электронным высокочастотным аппаратом.
В России выпускаются КЛЛ только с «единожды» изогнутой трубкой (два линейных светящихся участка) мощностью от 5 до 36 Вт с двухштырьковыми цоколями G23 со встроенным стартером или с четырехштырьковыми цоколями 2G7 (мощностью 5, 7, 9 и 11 Вт) или 2G11 (18, 24 и 36 Вт). В последние годы Опытный завод ВНИИИС в г. Саранске начал делать лампы со встроенным электронным аппаратом включения и цоколем Е27 с четырьмя и шестью линейными участками.

Ассортимент ламп зарубежного производства гораздо шире. Ведущие европейские (Osram, Philips), американские (General Electric, Sylvania) и китайские фирмы делают лампы с дважды-, трижды- и четырежды изогнутыми трубками (4, 6 и 8 светящихся участков), плоские типа 2D, спиральные и др. Фактически каждый типономинал ламп имеет свой особый цоколь, исключающий возможность включения ламп какой-либо одной мощности в арматуру, предназначенную для ламп другой мощности.

Как и для линейных, для компактных ламп каждая фирма имеет свою систему обозначений, затрудняющую ориентировку в ламповом мире и часто ставящую потребителей в тупик при решении вопроса о взаимозаменяемости ламп разных фирм. Например, лампы с цоколем G23 Philips называет PL-S, Osram — Dulux S, Sylvania — Lynx-S, General Electric — F…X. После буквенных обозначений, также как и у линейных ламп, указываются мощность, общий индекс цветопередачи и цветовая температура.

Компактные лампы второй группы (со встроенным аппаратом включения) появились на мировом рынке в 1981 году как прямая альтернатива стандартным лампам накаливания. Эти лампы, как сказано выше, были очень тяжелыми — около 400 граммов — и широкого применения не нашли. Положение коренным образом изменилось в 1986 году, когда Philips, Osram, General Electric одновременно начали промышленный выпуск КЛЛ со встроенными электронными аппаратами включения и цоколями Е14 и Е27. Лампы имеют массу не более 100 граммов; размерами, а часто и формой напоминают привычные лампы накаливания; цветность излучения, как правило, тепло-белая, что также близко к лампам накаливания. Началась широкая рекламная кампания, для чего в Германии фирма Osram какое-то время даже раздавала лампы бесплатно.

Рекламные акции сделали свое дело, и спрос на КЛЛ с цоколями Е27 и Е14 повсеместно начал расти, что привело к соответствующему росту их производства. Сейчас в мире делается уже более 200 миллионов таких ламп в год, из них около 100 миллионов — в Китае. К сожалению, в нашей стране производится не более 10 тысяч таких ламп в год.

Компактные люминесцентные лампы с цоколями Е27 или Е14 обладают целым рядом преимуществ перед лампами накаливания и «неинтегрированными» КЛЛ: их световая отдача примерно в 5 раз выше, срок службы в 8-10 раз больше, лампы просто вкручиваются в патроны, не гудят, не мигают при включении, горят непульсирующим светом. Недостаток у них фактически один — высокая цена. Иностранные экономисты подсчитали, что при существующих в Европе и США ценах на электроэнергию срок окупаемости КЛЛ составляет 2 — 3 года при работе ламп около 3-х часов в сутки.

Лампы с интегрированным аппаратом включения классифицируются по мощности и цветности излучения. Как и у ламп первой группы, какого-либо единства в обозначении интегрированных КЛЛ нет — каждая фирма обозначает по-своему. По международной системе ILCOS все КЛЛ со встроенным аппаратом включения должны называться FSQ.

В России такж минала КЛЛ со вст ратом включения трубкой (рис. 2). Такие лампы типа «Аладин» или СКЛЭН мощностью 11, 13 и 15 Вт в небольших количествах делает Московский электроламповый завод.

Рис. 2. Спиральные люминесцентные лампы типа «Алалин»

В таблицах 1, 2, 3 и 4 приводятся параметры некоторых типов люминесцентных ламп отечественного и импортного производства.

Таблица 1

Мощность, Вт

Длина, мм (полная)

Световой поток, лм

Световая отдача, лм/Вт

Таблица 2

Мощность,

Номинальный

Максимальный

Номинальная

Максимальная

световой

световой

световая

световая

(при 20 °С)

(при 35 °С)

«Срок службы ламп — 18000 часов при среднем спаде светового потока 10 %. «Лампы выпускаются с цветовой температурой 2700, 3000, 4000 и 6000 К. Индекс цветопередачи всех ламп 85.

Таблица 3

Параметры КЛЛ со встроенными аппаратами включения


Мощность,

Световой

Габариты, мм

поток, лм

С двумя линейными

Газоразрядный источник света, на стенках колбы которого нанесено специальное люминофорное покрытие называется люминесцентной лампой. Она выполняется в форме стеклянной трубки. На торцах установлены специальные электроды, которые зажигают эту лампу. Всё пространство внутри колбы заполняется парами ртути и инертным газом. Именно они после зажигания начинают излучать свет.

После включения устройства, внутри происходит газовый разряд. Именно этот разряд зажигает пары ртути и заставляет их излучать невидимое для человеческого глаза ультрафиолетовое освещение.

Принцип работы и виды изделия

После зажигания ртути, ультрафиолет начинает взаимодействовать с нанесённым на стенки люминофором, что провоцирует его излучать уже видимый спектр света. Таким образом, люминофор исполняет функцию преобразователи, или конвертора, и позволяет нам ощущать уже тот свет, который легко воспринимается человеческим глазом и способен освещать окружающую среду.

Благодаря уникальному свойству стекла не пропускать ультрафиолетовые лучи, оно защищает нас и полностью блокирует выход их в окружающую среду и предохраняет наши глаза от его прямого воздействия, которое губительно.

Но существуют лампы, которые не препятствуют такому излучению. Их изготавливают из увиолевого и кварцевого стекла, такие виды материалов способны пропускать ультрафиолетовые лучи. Как правило, такие лампы используют для очистки и дезинфекции разных приспособлений. В магазине их можно встретить, как бактерицидные они имеют специально обозначение, где это указано.


Принцип работы

Для увеличения тепловой отдачи света, используют лампы малого давления с добавлением амальгамы индия и кадмия либо других подобных элементов. Таким образом, температурный диапазон способен расширяться до шестидесяти градусов, в сравнении со стандартным наполнением лампы, когда температура не более двадцати пяти градусов.

Значительное снижение производительности замечается, когда температура внешней среды находится на низком уровне, ниже минимально допустимой. При таких условиях существенно увеличивается время прогрева и зажигания лампы, интенсивность и качество свечения уменьшаются в несколько раз.

Для таких условий необходимо использовать специальные утеплители и обогреватели. В связи с этим набирают актуальности лампы, не содержащие ртутных паров, которые работают исключительно на низком давлении инертного газа внутри колбы.

Технические характеристики и классификация

Чтобы классифицировать и выделить технические характеристики люминесцентных ламп следует обратить своё внимание на такие показатели их работоспособности и конструкции:

  • Тип излучаемого света. Энергосберегающие устройства могут излучать как обычный белый, так и дневной свет. Более новой их разновидностью являются универсальные приборы.
  • Поперечная ширина колбы. Пропорционально с ростом этого показателя, увеличиваются все остальные показатели, такие мощность, температура света, спектр и длительность эксплуатации прибора. Самыми распространёнными и наиболее эффективными, считаются диаметры восемнадцать, двадцать шесть и тридцать восемь миллиметров. Диаметр и длину всей колбы часто указывают вместе, например, размеры 38\406.
  • Показатель силы излучения или простыми словами мощность устройства. Благодаря данному критерию мы способны просчитать какую площадь возможно осветить с помощью выбранной нами лампы. Также от показателя мощности зависит и коэффициент полезного действия прибора.
  • Количество цоколей может быть в одном варианте, двух либо компактной формой со встроенными цоколями. Для увеличения компактности лампы скручивают спиралью, для экономии пространства.
  • Потребность в конструкции стартера или и безстартерный прибор. Существует мнение, что лампы, не имеющие стартера, обладают большей экономичностью, но это не так. На самом деле такие устройства просто затрачивают то же количество электроэнергии на более продолжительный запуск.
  • Номинальное напряжение, которое необходимо для функционирования лампы. Существуют разновидности способные работать от стандартного напряжения 220 вольт и более уникального, 127 вольт.
  • Форма колбы: кольцо, у-образная, прямая, спираль, шарообразный прибор, дуговая форма. Стандартные бытовые лампы обычно имеют самую приемлемую спиральную конструкцию и, как правило, не маркируются.
  • Срок службы. В зависимости от сферы использования, срок службы будет отличаться. Наибольшим периодом работы обладают домашние энергосберегающие лампы.

В сравнении с более старыми аналогами, появившись на рынке, каждая энергосберегающая лампочка маркировалась и имела своё обозначение. Систему обозначения придумали сразу и лишь дополняли с выходом более новых моделей и расширением функциональности.

Производители обозначают тип устройства, но редко указывают такие параметры, как диаметр и длину колбы, они пишутся только на коробке.


Маркировка отечественных производителей

Форма колбы наглядно демонстрирует вид и влияет на большинство характеристик, давайте разберём, как маркируют колбы:

  • U – ствольчатое устройство. Спереди дополнительно указывается цифра, которая показывает, сколько электрических дуг возникает внутри.
  • M – уточнение, которое показывает что изделие имеет маленькие габариты при относительно большой мощности.
  • S – Спиральный тип колбы. Так же существуют подвиды, такие как спиральная с установленным корпусом-рубашкой.
  • P – это обозначение показывает, что используется корпус-рубашка. Применяется практически со всеми разновидностями энергосберегающих устройств.
  • C – в форме свечи.
  • Ш – шарообразное устройство, такая форма является стандартно для рефлекторных ламп.
  • R – указывает на то, что в конструкции присутствует рефлектор для направления потока света.

Разбираем все плюсы и минусы

Показатель световой отдачи увеличивается в том случае, когда длина устройства уменьшается. Таким образом, потери анодных и катодных взаимодействий стают меньше и световой поток становится более качественным. Исходя из этого, можно понять что более эффективной будет лампа на 26 Вт, чем две обладающие аналогичной суммарной мощностью.

Период эксплуатации ограничивается износом электродов, так как они при выработке просто исчезают. Струсы и падения устройства негативно сказываются на его жизнеспособности. После падения срок службы и качество света может резко упасть.

Какими плюсами обладают такие устройства:

  1. Относительно высокий коэффициент полезного действия, находится примерно в районе двадцати пяти процентов, а показатель светоотдачи выше до десяти раз, чем у ламп накаливания.
  2. Срок эксплуатации примерно двадцать тысяч часов.
  3. Довольно высокая степень светоотдачи. Данный показатель превосходит лампы накаливания в пять-шесть раз. Например, двадцати ватное энергосберегающее устройство, выделяет количество света примерное равное сто ватной лампе накаливания.
  4. Очень широкий цветовой спектр. Есть возможность выбрать лампу с таким цветом свечения, который вам необходим. На сегодняшний день существуют сотни разных вариантов оттенков.
  5. Свет распределён по всему объёму устройства, а не только на рабочем органе, как в случае с накаливающейся лампой.

Конечно, у такого устройства есть недостатки:

  • Нуждаются в дополнительной установке балласта, для стабилизации и поддержания нормальной работы лампы. Балласт – это пускорегулирующее устройство, которое обеспечивает нормальный процесс зажигания и стабильную работу энергосберегающей лампы.
  • Сильно зависят от показателя внешней температуры воздуха. Оптимальной температурой для работы, является двадцать градусов.
  • Присутствует риск отравления парами ртути при значительном повреждении оболочки устройства.
  • Нестабильное напряжение будет вызывать сильное мерцание, которое ощутимо для человеческого глаза и сильно портит зрение.
  • Установка диммера возможна только с использованием дополнительных устройств.
  • Утилизация нуждается в специализированном сервисе, который стоит немалых денег.

Выбирает энергосберегающую лампу для своих потребностей

Подбирая для себя данное устройство, следует придерживаться определённых правил, которые впоследствии будут влиять на его показатели качества и долговечности.


Маркировка популярных производителдей

На какие технические характеристики следует обратить внимание:

  • Особенности помещения, где лампу будут устанавливать.
  • Температура, при которой устройству необходимо будет функционировать.
  • Качество вашей энергосети.
  • Габариты лампы. Если она слишком длинная или широкая, есть шанс что она не поместиться в ваш светильник.
  • Необходимая потребность в мощности, цвете и разновидности светового потока.

Подобрав устройство в соответствии с данными правилами, вы гарантировано получите хороший продукт, который сможет соответствовать всем вашим потребностям.

Когда занялся решением проблемы освещения своей банки столкнулся с проблемой расшифровки того что написано на лампах.Ведь очень легко потеряться в сложном разнообразии люминесцентных ламп,а если у вас под рукой нет каталога с подробными характеристиками что делать?

Вот справочная статья которая думаю поможет многим не потерятся в своем выборе

Параметры выбора энергосберегающих ламп

Размер. Как правило, энергосберегающие лампы больше по размеру, чем обычные. Поэтому обратите внимание, поместится ли выбранная вами люминесцентная лампа в ваш светильник. Есть две основных формы энергосберегающих ламп: U — подобная и в виде спирали. Форма лампы не влияет на ее работу, однако спиралевидные лампы обычно несколько дороже, чем U -подобные, поскольку процесс их производства более сложный.

Мощность. Энергосберегающие лампы бывают различной мощности: от 3 до 85 Вт. Учитывая то, что световая отдача энергосберегающих ламп выше, чем у обычных приблизительно в 5 раз, выбирать необходимую мощность люминесцентной лампы нужно, исходя из соответствующей пропорции — там, где вы использовали лампочку накаливания мощностью 100 Вт хватит энергосберегающей лампы мощностью 20 Вт.

Тип цоколя. Перед покупкой лампы не забудьте проверить тип цоколя вашего светильника, которому подойдет только соответствующий цоколь лампы. Подавляющее большинство люстр, которые подвешиваются к потолку, имеют цоколь Е 27 (обычный), в небольших светильниках и бра применяют немного меньший по размеру цоколь Е 14 (он же миньон).

Сначала разберемся с терминологией.

Цветность света — температура черного тела, при которой оно испускает излучение с той же самой хроматичностью, что и рассматриваемое излучение. Иначе говоря, это мера объективного впечатления от цвета данного источника света. Если температура «черного тела» повышается, то синяя составляющая в спектре возрастает, а красная составляющая убывает.

Единица: кельвин (К).
Существуют следующие главные цветности света:
2700 К — сверхтеплый белый
3000 К — теплый белый
4000 К — естественный белый или белый
5000 К — холодный белый (дневной)
Лампы с одинаковой цветностью света могут иметь различные характеристики цветопередачи, что объясняется спектральным составом излучаемого ими света.
Цветовое ощущение — общее, субъективное ощущение, которое человек испытывает, когда смотрит на источник света. Свет может восприниматься как теплый белый, нейтральный белый или холодный белый. Объективное впечатление от цвета источника света определяется цветовой температурой.
Цветопередача. Достоверность цветопередачи определенной лампы показывает нам, насколько естественным выглядит наше окружение в свете этой лампы. Способность к цветопередаче отражает коэффициент (индекс) цветопередачи- Ra.
Для установления величины Ra выбирают из окружающей среды восемь цветов, которые затем освещаются исследуемой лампой и стандартной лампой, дающей свет с той же самой цветовой температурой. Чем меньше различие в способности цветопередачи сравниваемых ламп, тем выше величина Ra исследуемой лампы.
Максимальное значение коэффициента Ra составляет 100 (это значение принимается для солнечного света, а также для большинства ламп накаливания).
Класс цветопередачи — достоверность цветопередачи лампы. Классы 1A, 1B — степень цветопередачи отличная. Классы 2A, 2B — степень цветопередачи хорошая. Класс 3 — степень цветопередачи удовлетворительная. Класс 4 — степень цветопередачи недостаточная.
Каждый производитель светотехнической продукции маркирует свои изделия по своему особому типу, но эти обозначения можно расшифровать и получить необходимую информацию о лампе.
Цветопередача вместе с цветностью света / цветовой температурой составляют международное обозначение цвета лампы (цветовое обозначение), которое и нужно расшифровать.
———————————————————
Маркировка люминесцентных ламп PHILIPS(рис. 1)
Первая цифра международного обозначения определяет цветопередачу:
9 — соответствует степени цветопередачи 1A (Ra 90-100)
8 — соответствует степени цветопередачи 1B (Ra 80-89)
7 — соответствует степени цветопередачи 2А (Ra 70-79)
6 — соответствует степени цветопередачи 2В (Ra 60-69)
5 — соответствует степени цветопередачи 3 (Ra 50-59)
4 — соответствует степени цветопередачи 3 (Ra 40-49)
Следующими двумя цифрами обозначается цветность света / цветовая температура:
27 — LUMILUX PLUS INTERNA (сверхтеплый свет) / около 2700 К
30 — LUMILUX PLUS тепло-белая (теплый свет) / около 3000 К
40 — LUMILUX PLUS холодно-белая (белая естественная) / около 4000 К
50 — LUMILUX PLUS дневного света (холодный свет) / около 5000 К
60 — LUMILUX PLUS дневного света / около 6000 К
65 — LUMILUX BIOLUX (дневной свет) / около 6500 К
Специальние аквариумные лампы
PHILIPS AQUARELLE:http://www.aquariumlights.ru/philips_a.html
Аквариумные люминесцентные лампы (TLD AQUARELLE) излучают свет с очень высокой энергетической плотностью в синей части спектра. Это не только подчеркивает красоту и неповторимость подводного мира, но обеспечивает также оптимальные условия для фотосинтеза, стимулирует образование кислорода, благотворно влияет на аквариумные растения и рыб. Эти лампы имеют форму трубки диаметром 16 или 28 мм и цоколь G5 или G13 соответственно. Их мощность может быть 8-58 Вт. Полезный срок службы — 8000 часов.
Вот еще некоторая информация по лампах филипс:
http://www.i-stroy.ru/docu/electrica…amp/13340.html
и самая интересная ссилка :Специальные лампы для освещения аквариумов
http://www.zoospravka.ru/foraqua/aquaeqlamp.htm

———————————————————-

Маркировка люминесцентных ламп OSRAM
Если с обозначением люминесцентных ламп Philips все более менее понятно, то лампы Osram требуют некоторых пояснений из-за выделения своих собственных цветностей света. Поэтому для большей ясности необходимо рассмотреть еще цветности ламп Osram.
Цветности света люминесцентных ламп OSRAM
LUMILUX®
Цветность света 11-860 LUMILUX® PLUS ECO дневного света
Цветность света 21-840 LUMILUX® PLUS ECO холодно-белая
Цветность света 31-830 LUMILUX® PLUS ECO тепло-белая
Цветность света 41-827 LUMILUX® PLUS ECO INTERNA
Все эти цветности света имеют экономичные люминесцентные лампы OSRAM LUMILUX® PLUS ECO .
Лампы с цветностью света LUMILUX® отличаются великолепной цветопередачей и высокой световой отдачей. Основными достоинствами этих ламп являются:
пониженная потребляемая мощность
световая отдача до 104 лм/Вт
превосходная цветопередача в соответствии со стандартом DIN 5035, степенью 1В (Ra 80 — Ra 89).
Для ламп с цветностями света LUMILUX® рекомендуется использовать электронные ПРА, обеспечивающие экономичную работу этих ламп, световой поток которых в течение их срока службы падает лишь незначительно. Данная рекомендация относится и к лампам с цветностью света LUMILUX® DE LUXE.
LUMILUX® DE LUXE
Лампа 12-950 LUMILUX® DE LUXE с цветностью дневного света отвечает самым высоким требованиям к передаче естественного цвета при дневном освещении (5400 К, Ra 98). Поэтому она незаменима в тех случаях, когда нужна атмосфера живого дневного света, например, в типографиях, зубоврачебных кабинетах и лабораториях, при просмотре диапозитивов и в специализированных магазинах текстильных товаров.
Лампы 22-940 LUMILUX® DE LUXE с холодно-белой и 32-930 LUMILUX® DE LUXE с тепло-белой цветностью света отвечают самым высоким требованиям к очень хорошей цветопередаче (Ra>90). Степень цветопередачи 1А по DIN 5035.
Лампа 72-965 BIOLUX® излучает свет, который по своей спектральной характеристике схож с солнечным светом. Эта лампа рекомендуется для помещений с недостатком дневного света, например, для офисов, банков и магазинов. Благодаря своей очень хорошей цветопередаче и высокой температуре цвета (6500 К) она идеально подходит для сравнения красок и медицинской светотерапии.
Универсально-белая (тип 25)
Лампа с универсальной цветностью света для внутреннего и наружного освещения.
Лампы со специальными цветностями света
76 NATURA DE LUXE. Красная составляющая излучаемого этой лампой света гармонично согласована с остальными цветовыми компонентами. Благодаря своей естественной цветопередаче она особенно хорошо подходит для подсветки мясных и колбасных изделий, деликатесов, овощей, цветов и т.д.
77 FLUORA®. Специальный облучатель для растений и аквариумов с усиленным излучением в спектральном диапазоне синего и красного света. Идеально воздействует на фотобиологические процессы. Кстати аналог ГроЛюкс и подобных — для подсветки растений.
60, 66 и 67. Цветные люминесцентные лампы красного, зеленого и синего цвета для декоративного освещения и создания специальных световых эффектов.Для акв особо не подходят.
62. Люминесцентная лампа желтого света, абсолютно не содержащего ультрафиолетовую составляющую. Поэтому эта лампа рекомендуется для стерильных производств, например, для цехов по изготовлению микросхем, а также для общего освещения без УФ-излучения.
Лампы Osram с обозначениями SPS и UVS излучают свет с минимальным содержанием ультрафиолетовой составляющей типа А (при абсолютном отсутствии ультрафиолетовых составляющих типа В и С).
————————————————————

Cпецификация энергосберегающей лампы производства DeLux: ESS-02A 15W E14 6400K означает, что перед нами лампа мощностью 15 Вт, с маленьким цоколем (Е14), излучающая холодный белый свет (6400К).

__________________________________________________

РАСШИФРОВКА УСЛОВНОГО ОБОЗНАЧЕНИЯ ЛАМП НАКАЛИВАНИЯ

Обозначения типов ламп накаливания

Б — спиральная;
БК – биспиральная с криптоновым наполнением;
В – вакуумная;
Г — газополная;
Д – декоративная;
ЗК – зеркальная с концентрированной КСС;
ЗШ – зеркальная с широкой КСС;
М – в колбе из молочного стекла;
О – в колбе из опалового стекла;
С – в свечевидной колбе;
Ш – шаровидной колбе.

Обозначения некоторых типов источников света

ДРЛ – дуговая ртутная лампа высокого давления с люминофором.
ДРИ – металлогалогенная лампа.
ДРИЗ — металлогалогенная лампа с внутренним зеркальным отражателем.
ДРИШ — металлогалогенная лампа короткодуговая,шаровая.
ДнаТ – натриевая лампа высокого давления.
ДнаЗ — натриевая лампа высокого давления с зеркальным отражателем.
КГ – галогенная лампа накаливания с кварцевой колбой.
————————————————————

Люминесцентная лампа является газоразрядным источником света, которая сегодня широко применяется для освещения не только в офисах и производстве, а так же в домах, квартирах и гаражах. Главные достоинства по сравнению с обычными лампами накаливания- это продолжительный срок службы (до 20 раз выше) и в несколько раз больше энергоэффективность (они в разы меньше потребляют электроэнергии при том же световом потоке).

Но есть недостатки:

  1. Чувствительны к качеству электропитания и количеству включений и выключений. При несоблюдении этих условий- быстро выходят из строя.
  2. Внутри стеклянной колбы содержится ртуть опасная для здоровья человека.
  3. Отсутствие возможности регулирования при помощи димеров яркости свечения, кроме КЛЛ (компактной люминесцентной лампы) особой конструкции и с специфическим подключением, требующим прокладки дополнительных проводов для этого.
  4. Не рекомендуется использовать вместе с выключателем, имеющим встроенную подсветку , что может приводить к неправильной ее работе с кратковременными зажиганиями лампы.
  5. Период между включениями люминесцентной лампы должен составлять более 2 минут. Поэтому не рекомендуется использовать совместно с датчиком, звука, движения и т. п. Если это проигнорировать, то она быстро выйдет из строя.
  6. Не рекомендуется компактный тип люминесцентных ламп использовать в герметичных светильниках с высокой степенью защиты IP для помещений с высокой влажностью, запыленностью, пожароопасностью и т. д.
  7. Рабочая температура не ниже -25 градусов по Цельсию, при достижении этого порога она проста не сможет засветится при включении.

Виды люминесцентных ламп.

Для дома и квартиры в основном применяются компактные люминесцентные лампы (далее ККЛ) под обычный цоколь, которые подключаются на прямую к электрической сети 220 Вольт. Довольно редко встречаются компактные 4- штырьковые люминесцентные лампы, для работы которых необходим светильник со специальным пуск-регулирующим блоком, с которым также работают так называемые лампы дневного света трубчатой (очень редко дугообразной формы). Последние в основном применяются для освещения административных и промышленных помещений.

Технические характеристики ламп дневного света.

  • Они работают все на напряжении 220 Вольт, реже при последовательном подключении двух на 127 Вольтах.
  • Маркировка из трех букв. Первая означает Л- люминесцентная, вторая оттенок свечения. Д — дневной, Б — белый, Е — естественно-белый, ТБ — тепло-белый, ХБ — холодно-белый; К, 3, Ж, Г, С — соответственно красный, зеленый, желтый, синий, голубой, синий, УФ означает — ультрафиолетовый. Третья буква Ц (или две ЦЦ) после первых двух свидетельствует о цветопередаче высокого качества. И в самом конце стоят буквы подчеркивающие конструктивные особенности: У — U-образная, К — кольцевая, Р — рефлекторная, Б — быстрого пуска. Цифры указывают мощность в Ваттах. Потребляемая мощность находится в пределах от 18 до 80 Вт.
  • В зависимости от конструкции лампы встречаются с разными типами и размерами держателей (цоколей)Диаметр трубки обозначается Т- размером, после которого идет значение в восьмых частях дюйма. Так маркировка T8 свидетельствует об диаметре в 26 милиметров, а T12 — в 38 мм. Будьте внимательны, а то приобретите лампу, не подходящую к вашему светильнику. Более подробно читайте в .
  • Кроме цоколя лампа должна походить и по длине, так Вы не вставите 18 Вт лампу в 32 Вт светильник, потому что их длина почти в 2 раза отличается.

Технические характеристики компактных люминесцентных ламп.

Все технические характеристики легко найдете на упаковке или на корпусе лампы. Обычно там указывается срок службы, потребляемая мощность в Ваттах (Watt) и сравнение по аналогичной эффективности с лампой накаливания. Всегда обращайте внимание на тип цоколя. Встречаются в продаже с цоколем Е14 уменьшенного размера и обычного- Е27, предназначенного для прямой замены ламп накаливания. Еще одним важным параметром является цветопередача, которая показывает какого оттенка будет искусственный свет, указываемый в Кельвинах от 2700К (теплый оттенок, как у лампы накаливания) до 6500К (холодный).
Более подробно об этом читайте в нашей статье «

Каковы требования к мощности люминесцентных ламп T8? | Люминесцентные лампы T8 | Ответы на освещение

Каковы требования к мощности люминесцентных ламп T8?

Можно ожидать, что электрическая мощность, необходимая для работы люминесцентной лампы T8 мощностью 32 Вт, составит 32 Вт; однако это обозначение просто номинальная мощность лампы. В соответствующем документе Американского национального института стандартов (ANSI) указано, что номинальная мощность лампы составляет 32.5 Вт при стандартных условиях тестирования (ANSI C78.81-2005). ANSI также указывает, что средняя мощность лампы не должна превышать 34,6 Вт, что на 6,5% выше номинального значения. Поскольку этот верхний предел применяется к среднему значению мощности, необходимой для работы 32-ваттных ламп, для отдельных ламп возможно превышение 34,6 Вт. Поскольку разработчики могут выбирать лампы на основе эффективности, изменение мощности лампы может затруднить расчеты эффективности лампы без знания фактической мощности и связанной с ней неопределенности для конкретной модели лампы.

ANSI считает 4-футовую 32-ваттную лампу T8 лампой с быстрым запуском, но она обычно работает с использованием схемы мгновенного пуска, в которой два контакта на каждом конце лампы электрически соединены или шунтированы вместе. . Лампы, работающие в цепях мгновенного пуска, имеют меньшую мощность, чем лампы, работающие в цепях с быстрым пуском, потому что в режиме мгновенного пуска нагрев электродов отсутствует. Однако разница в мощности лампы между режимом мгновенного пуска и быстрым пуском не равна мощности нагрева электрода, поскольку эффективность разряда лампы ниже для режима мгновенного пуска.

НЛПИП исследовал различия в мощности ламп между моделями ламп. NLPIP выбрал лампы, обозначенные как 32-ваттные лампы, использовал их на низкочастотном эталонном балласте в соответствии со стандартом ANSI C82.3-2002 и измерил электрическую мощность, необходимую для работы ламп. Лампы имели коррелированные цветовые температуры (CCT) 3500 K и 4100 K, которые являются наиболее распространенными продаваемыми CCT. Были измерены три образца каждой модели лампы.

На рисунке 3 показаны измеренные значения мощности.Горизонтальная ось показывает описание каждой модели лампы, протестированной от производителей A, B и C. Столбики ошибок показывают совокупную неопределенность измеренных значений для каждой модели лампы. Все измеренные значения мощности лампы были выше, чем номинальная мощность по стандарту ANSI, равная 32,5 Вт. Мощность пяти моделей ламп превышала 33,5 Вт, что на 3% выше номинального значения ANSI. Однако это находится в пределах допуска, описанного в стандарте ANSI (мощность лампы не должна превышать 5% плюс 0,5 Вт). Специалистам следует учитывать тот факт, что мощность лампы может превышать ожидаемое значение 32 Вт более чем на 5% при любой оценке эксплуатационных расходов.

.
Рис. 3. Потребляемая мощность ламп T8, измеренная NLPIP

В большинстве случаев измеренные значения электрической мощности для ламп RE80 HLO, LL были выше значений для ламп RE80 на целых 1,2 Вт. На вопрос: какова светоотдача люминесцентных ламп T8? НЛПИП показал, что светоотдача ламп RE80 HLO, LL в среднем на 8% выше, чем у ламп RE80. Следовательно, замена ламп RE80 на лампы RE80 HLO, LL без изменения компоновки светильника или балластного коэффициента приведет к увеличению светоотдачи и мощности.Клиенты, которые больше всего заинтересованы в экономии энергии, должны перейти на более низкий балластный коэффициент или изменить компоновку светильников, используя меньшее количество светильников.

Сегодня люминесцентные лампы T8 обычно используются с высокочастотными электронными балластами. Высокочастотная работа люминесцентных ламп снижает мощность лампы при том же световом выходе (Кэмпбелл и др., 1953). Как указано в стандарте ANSI (ANSI C78.81-2005), мощность лампы для высокочастотного режима примерно на 6% ниже, чем для низкочастотного режима, когда лампа работает как лампа с мгновенным запуском.Тем не менее, непреднамеренное использование лампы с мощностью выше номинальной на высокочастотном электронном балласте приведет к увеличению подключенной нагрузки системы освещения, что приведет к более высоким эксплуатационным расходам, чем ожидалось. Например, заявленная входная мощность для типичного двухлампового высокочастотного электронного балласта с нормальным балластным коэффициентом (0,88) составляет 58 Вт. Однако входная мощность балласта увеличится на 3-4% для ламп с мощностью, превышающей ожидаемую на 5% (измеренная на эталонном низкочастотном балласте).Спецификаторы должны включать изменение подключенной нагрузки при оценке эксплуатационных затрат.


Люминесцентные лампы — Руководство по устройству электроустановок

Подробнее см. Также «Схемы освещения».

Люминесцентные лампы и сопутствующее оборудование

Мощность Pn (ватт), указанная на лампе люминесцентной лампы, не включает мощность, рассеиваемую в балласте.

Ток определяется по формуле: Ia = Pballast + PnUCosφ {\ displaystyle {\ mbox {Ia}} = {\ frac {{\ mbox {P}} _ {\ mbox {ballast}} + {\ mbox {Pn} }} {{\ mbox {UCos}} \ varphi}}}

Где U = напряжение, приложенное к лампе вместе с соответствующим оборудованием.

Если для балласта не указано значение потерь мощности, можно использовать значение 25% от Pn.

Стандартные трубчатые люминесцентные лампы

С (если не указано иное):

  • cos φ = 0,6 без коррекции коэффициента мощности (PF) [1] конденсатор
  • cos φ = 0,86 с коррекцией коэффициента мощности [1] (одинарная или сдвоенная трубка)
  • cos φ = 0,96 для ЭПРА.

Если для балласта не указано значение потерь мощности, можно использовать значение 25% от Pn.

На рисунке A6 приведены эти значения для различных схем балласта.

Рис. A6 — Потребление тока и потребляемая мощность люминесцентных ламп обычных размеров (при 230 В, 50 Гц)

Расположение ламп, стартеров и балластов Мощность трубки (Вт) [a] Ток (А) при 230 В Длина трубки (см)
Магнитный балласт Электронный балласт
Без конденсатора коррекции коэффициента мощности С конденсатором коррекции коэффициента мощности
Одинарная трубка 18 0.20 0,14 0,10 60
36 0,33 0,23 0,18 120
58 0,50 0,36 0,28 150
Двойные трубы 2 х 18 0,28 0,18 60
2 х 36 0,46 0.Мощность в ваттах, указанная на трубке

Компактные люминесцентные лампы

Компактные люминесцентные лампы обладают такими же характеристиками экономичности и длительного срока службы, как и классические лампы. Они обычно используются в общественных местах, которые постоянно освещаются (например: коридоры, коридоры, бары и т. Д.), И могут устанавливаться в ситуациях, в противном случае освещенных лампами накаливания (см. Рис. A7).

Рис. A7 — Потребление тока и потребляемая мощность компактных люминесцентных ламп (при 230 В — 50 Гц)

Тип лампы Мощность лампы (Вт) Ток при 230 В (A)
Отдельный балластный светильник 10 0. 1 2 «Коррекция коэффициента мощности» часто упоминается как «компенсация» в терминологии газоразрядных ламп.
Cos φ составляет приблизительно 0,95 (нулевые значения V и I почти совпадают по фазе), но коэффициент мощности равен 0,5 из-за импульсной формы тока, пик которого возникает «поздно» в каждом полупериоде.

«Перегоревшие» люминесцентные лампы по-прежнему используют электричество?

Я рискну и скажу, что этот вопрос ценен с точки зрения электронного дизайна, поскольку он относится к некоторому фундаментальному пониманию того, как работают люминесцентные лампы.

Флуоресцентные лампы работают за счет ускорения электронов от катода к аноду в почти вакуумной среде. В этом вакууме находятся пары ртути, и когда электрон ударяется об атом ртути, этот атом Hg переходит в возбужденное состояние и при распаде испускает один или несколько фотонов ультрафиолетового света. Затем эти УФ-фотоны попадают на покрытие на основе люминофора на внутренней стороне стеклянной трубки, которое преобразует эти УФ-фотоны в видимый белый свет.

Итак, для того, чтобы эти огни функционировали, жизненно важно иметь много «свободных» электронов, которые могут стрелять по ртути.Один из способов сделать электроны более мобильными и, вероятно, вылететь из катода, — это нагреть его, и это то, что делает так называемая «пусковая схема»: по сути, это не более чем высоковольтный генератор и нагревательная катушка. Нагревательная катушка нагревает электрод, чтобы мобилизовать электроны, а генератор высокого напряжения (обычно просто резонансный LC-насос) создает достаточное напряжение для начальной «искры», чтобы зажечь лампочку. Когда электроны начинают течь и лампа включается, газ внутри лампы больше похож на плазму и обладает высокой проводимостью, поэтому для ее работы не требуется ни высокое напряжение, ни добавление тепла.Следовательно, это всего лишь стартер, как только лампочка загорится, она отключается.

Стартовые стартеры продолжали пытаться зажечь лампочку, даже когда электроды были полностью израсходованы. Это означает, что этот нагревательный змеевик будет работать до тех пор, пока его нить не перегорит. Во многих случаях это будет означать, что лампа потребляет на больше энергии после того, как она погасла.

Современные электронные стартеры «сдаются» после нескольких попыток, когда обнаруживают, что лампа не заводится. После этого они не расходуют или почти не расходуют энергию до тех пор, пока питание не будет отключено от стартера.

Замена люминесцентных ламп на светодиодные лампы T8 для увеличения мощности и экономии — Блог об энергосбережении и водосбережении

новости и информация автомобилестроение, бизнес, преступность, здоровье, жизнь, политика, наука, технологии, путешествияавтомобиль, бизнес, преступность, здоровье, жизнь, политика, наука, технологии, путешествия Светодиодные лампы T8

По данным Управления энергетической информации США, счета за освещение на 10% от общего потребления энергии в коммерческих зданиях. Сюда входят школы, больницы, склады, офисы и другие производственные помещения.Ограничить количество энергии, теряемой от освещения, так же просто, как заменить свет. Наиболее распространенным типом ламп, используемых в этих зданиях, являются люминесцентные лампы T8. Просто заменив их светодиодными лампами T8, вы можете легко снизить потребление энергии и затраты.

Что такого особенного?

При замене люминесцентных ламп на их светодиодные в первую очередь необходимо проверить мощность. Например, если вы заменяете 32-ваттную люминесцентную лампу, вам подойдет 17-ваттный светодиодный T8.Это сокращает потребление энергии только от одного прибора более чем наполовину! Представьте себе возможную экономию после их замены.

Затем сделайте сравнение люменов. В то время как мощность измеряет количество потребляемой энергии, люмены составляют яркость лампы. Возьмем тот же пример из предыдущего. Люминесцентные лампы T8, потребляющие 32 Вт энергии, обычно производят 2500 люменов света. Его светодиодный эквивалент, потребляя всего 17 Вт, дает световой поток 2200 люмен.

Кроме того, срок службы светодиодных ламп T8 составляет 50 000 часов, что более чем в 3 раза превышает средний срок службы люминесцентных ламп T8 в 15 000 часов.Также учитывайте гарантийный срок. Обычно гарантия на большинство люминесцентных ламп составляет 2 года. На их светодиодные аналоги предоставляется гарантия сроком до 5 лет с даты покупки.

Типы трубок

Есть два типа светодиодных трубок T8: Plug and Play и Ballast Bypass. Если вы хотите произвести быструю замену и установку, вам нужны светодиоды Plug and Play. Эти модели соответствуют названию. В ремонте не требуется, и это снижает затраты на обслуживание.Установка светодиодов байпаса балласта немного сложнее, и для выполнения этой работы следует нанять профессионального электрика. Сначала необходимо удалить имеющийся балласт в приспособлении. Эти лампы работают за счет напряжения, которое течет непосредственно в розетку.

Все светодиодные лампы имеют холодный белый цвет или дневную цветовую температуру, соответствующие цветам уже установленных ламп. Светодиодные лампы T8 обеспечивают меньшее потребление энергии, большую экономию энергии, более длительный срок службы лампы и меньшие затраты на техническое обслуживание.Они созданы для того, чтобы коммутатор был одновременно бесшовным и того стоил в долгосрочной перспективе.

Что такое балластный фактор и как он влияет на люминесцентные лампы?

Балластный коэффициент — это число, обычно от 0,70 до 1,2, которое говорит вам, сколько света будет излучать лампа с этим балластом.

Балластный коэффициент рассчитывается путем деления светового потока комбинации лампа-балласт на световой поток той же лампы (ей) на эталонном балласте. Коэффициент балласта <1 означает, что ваша флуоресцентная система будет производить меньше света (люменов), чем эталонный балласт, а коэффициент> 1 означает, что она будет производить больше света.

Нужен балластный грунт? Прочтите наш пост «Что такое балласт?»

Балластный коэффициент для электронного балласта T8 обычно бывает трех разновидностей — низкий, нормальный или высокий . Помимо влияния на светоотдачу, существует также косвенное влияние на потребление энергии. Как правило, чем ниже балластный коэффициент, тем меньше потребляемая мощность вашей системы.

В автомобильном мире коэффициент балласта может быть аналогичен сравнению размера трех различных четырехцилиндровых двигателей.В общем, небольшой двигатель обеспечивает максимальную топливную экономичность и наименьшую мощность. По мере того, как вы переходите к более мощному двигателю, эффективность использования топлива обычно снижается (при использовании большего количества энергии в режиме освещения) и увеличивается производительность (в режиме освещения увеличивается светоотдача).

Примечание. Для автолюбителей аналогия ограничена. Мы говорим об обычных безнаддувных двигателях для серийных автомобилей, а не о гоночных двигателях F1.

Как выбрать балластный коэффициент?

Одним из наиболее важных вариантов выбора балласта для флуоресцентной системы является балластный фактор.

Вот наши рекомендации по выбору балластного фактора.

Когда использовать

низкий балластный коэффициент

Используйте низкий балластный коэффициент, если ваша основная цель — энергоэффективность и вы не против получить световой поток от люминесцентных ламп немного меньше номинального. Однако, если вы соединяете маломощный T8 с низким балластным коэффициентом, будьте осторожны с приложениями, которые подвержены низким температурам (морозильные камеры, наружные применения в холодном климате). Этот сверхэффективный вариант не очень любит холод.Честно говоря, светодиоды могут быть отличным вариантом для рассмотрения, если вы находитесь в этой лодке.

Когда использовать

нормальный балластный коэффициент

Если вас не волнует максимальная эффективность и вы ищете стандартный световой поток, или если ваше приложение подвержено низким температурам, нормальный балластный фактор может быть хорошим вариантом.

Когда использовать

высокий балластный коэффициент

Если вы пытаетесь получить максимально возможный световой поток от вашей флуоресцентной системы, высокий балластный фактор будет правильным решением.

Совет для профессионалов: если вы выполняете точечную замену, попробуйте сопоставить балластный коэффициент старого продукта с новым. Таким образом, вы получите приспособление, которое будет более точно соответствовать внешнему виду других.

Как балластный фактор влияет на потребление энергии?

Когда вы пытаетесь получить максимальную экономию и эффективность от линейной люминесцентной системы, первое, на что вы обычно обращаете внимание, — это мощность лампы. Вы можете подумать, что флуоресцентный T8 мощностью 32 Вт потребляет 32 Вт, а высокоэффективный флуоресцентный T8 мощностью 25 Вт потребляет 25 Вт.

Не совсем так.

Люминесцентная лампа имеет номинальную мощность, но мы рассчитываем фактическую мощность люминесцентной системы на основе мощности системы, которая включает влияние множества факторов (например, напряжения, тока и коэффициента мощности).

Самый надежный и точный способ рассчитать мощность системы для люминесцентного светильника — это обратиться к каталогу балластов и найти конкретную «Входную мощность» для комбинации конкретной лампы (ламп) и балласта, которую вы рассматриваете.Если у вас нет под рукой каталога балластов, существует также обычный способ оценить мощность системы люминесцентного светильника: умножить мощность лампы на количество ламп и балластный коэффициент.

Мощность лампы x количество ламп x балластный коэффициент

=

Расчетная общая мощность системы

Давайте посмотрим, как это может измениться для лампы мощностью 32 Вт в паре с балластами в низком, нормальном и высоком диапазоне коэффициентов.Хотя коэффициент балласта будет варьироваться в зависимости от производителя и типа балласта, давайте воспользуемся этими коэффициентами балласта для наших примеров:


Лампа 32 Вт x 1 лампа X 0,78 (низкий балластный коэффициент) =

Общая мощность системы 24,96 Вт

(Диапазон из каталогов балласта: от 25 Вт до 26 Вт)



Лампа 32 Вт x 1 лампа x 0,88 (нормальный балластный коэффициент) =

Общая мощность системы 28,16 Вт

(Диапазон из каталогов балласта: от 28 Вт до 31 Вт)



Лампа 32 Вт x 1 лампа X 1.2 (высокий балластный коэффициент) =

Общая мощность системы 38,4 Вт

(Диапазон от каталогов балласта: от 38 Вт до 41 Вт)


Как видите, колебание мощности от низкого балластного коэффициента к высокому составляет до 16 Вт для той же лампочки, что может существенно повлиять на ваши счета за электроэнергию и предполагаемую окупаемость проекта модернизации. Также стоит отметить, что метод оценки потребления энергии путем умножения мощности лампы на балластный коэффициент все еще находится в диапазоне точных чисел, указанных в каталогах балласта.

Вопросы по балластному коэффициенту

Линейные люминесцентные лампы невероятно распространены в коммерческих помещениях, поэтому, надеюсь, это поможет вам избавиться от жаргона и узнать, что вы получите, когда разместите следующий заказ на освещение в нашем интернет-магазине. Чтобы получить скидку, убедитесь, что вы зарегистрировали бизнес-аккаунт.

Мы всегда готовы помочь.

Должен ли я выключать флуоресцентные лампы, выходя из комнаты?

Должен ли я выключать флуоресцентный свет при выходе из комнаты?

Краткий ответ: Выключите их, если вы отсутствуете более 15 минут.Но …

Существует несколько неправильных представлений о флуоресцентном освещении, из-за которых слишком многие люди не могут выключать свет для экономии энергии. Первое заблуждение состоит в том, что для включения люминесцентной лампы требуется больше энергии, чем для ее запуска. Второе заблуждение заключается в том, что включение и выключение люминесцентного света сразу же его изнашивает. Как и во многих наших мифах об энергии, в этой вере есть доля правды. (Особая благодарность Стиву Селковичу из Национальной лаборатории Лоуренса Беркли за исследование, на котором была основана эта статья.)

Заблуждение № 1

Для запуска люминесцентного светильника требуется больше энергии, чем для его запуска, поэтому оставляйте свет постоянно включенным, чтобы сэкономить деньги на счетах за электроэнергию.

Реальность

Когда вы включаете люминесцентную лампу (правильно называемую «лампой»), происходит очень короткий скачок тока, когда балласт заряжает катоды и вызывает запуск лампы. Этот бросок тока может во много раз превышать нормальный рабочий ток лампы.Однако всплеск потребления тока обычно длится не более 1/10 секунды и потребляет примерно 5 секунд нормальной работы. Таким образом, если вы выключаете и включаете люминесцентную лампу чаще, чем каждые 5 секунд, вы будете использовать больше энергии, чем обычно. Итак, нормальное переключение люминесцентных ламп очень, очень , очень мало, мало влияет на счет за электроэнергию.

Заблуждение № 2

Выключение и включение люминесцентных ламп сразу же изнашивает их.

Реальность

Электрические фонари имеют опубликованный рейтинг ожидаемого срока службы. Этот рейтинг исчисляется сотнями часов для многих ламп накаливания и тысячами часов для большинства люминесцентных ламп. Срок службы люминесцентных ламп зависит от того, сколько часов они остаются включенными при каждом включении. Обычно это называется «временем горения», а для люминесцентных ламп время горения составляет три часа.

Каждый раз, когда включается люминесцентный свет, небольшое количество покрытия на электродах выгорает.В конце концов, достаточно покрытия выгорает, и лампа не запускается. Большинство полноразмерных люминесцентных ламп рассчитаны на срок службы 20 000 часов при включении в течение 3 часов при каждом включении. Это означает, что у лампы есть примерно 6667 запусков, доступных для использования. (20 000/3 = 6 667)

Если вы сжигаете люминесцентные лампы менее 3 часов в любой момент времени, вы быстрее используете свой потенциал. Если вы «сжигаете» их дольше 3 часов за один старт, вы израсходуете свои старты медленнее. Однако вы оплачиваете затраты на электроэнергию за время работы ламп, и самая эффективная лампа — та, которая не горит, когда в ней нет необходимости.-END-

Start it Up — Как работают люминесцентные лампы

В классической конструкции люминесцентных ламп, которая по большей части пришла на второй план, для зажигания лампы использовался специальный механизм включения стартера. Вы можете увидеть, как эта система работает, на схеме ниже.

При первом включении лампы путь наименьшего сопротивления проходит через цепь байпаса и через выключатель стартера . В этой цепи ток проходит через электроды на обоих концах трубки.Эти электроды представляют собой простые нити , как в лампе накаливания. Когда ток проходит через байпасную цепь, электричество нагревает нити. Это отрывает электроны от поверхности металла, отправляя их в газовую трубку, ионизируя газ.

В то же время электрический ток вызывает интересную последовательность событий в выключателе стартера. Обычный выключатель стартера представляет собой небольшую газоразрядную лампу, содержащую неон или другой газ.Колба имеет два электрода, расположенных рядом друг с другом. Когда электричество первоначально пропускается через байпасную цепь, электрическая дуга (по сути, поток заряженных частиц) прыгает между этими электродами, чтобы установить соединение. Эта дуга зажигает лампочку так же, как большая дуга зажигает люминесцентную лампу.

Один из электродов представляет собой биметаллическую полосу , которая изгибается при нагревании. Небольшое количество тепла от зажженной лампы сгибает биметаллическую полосу, так что она входит в контакт с другим электродом.Поскольку два электрода соприкасаются друг с другом, току больше не нужно прыгать по дуге. Следовательно, через газ не протекают заряженные частицы, и свет гаснет. Без тепла от света биметаллическая полоса охлаждается, отклоняясь от другого электрода. Это размыкает цепь.

К тому времени, когда это произойдет, нити уже ионизировали газ в люминесцентной лампе, создав электропроводящую среду. Для возникновения электрической дуги трубке просто требуется скачок напряжения на электродах.Этот толчок обеспечивается балластом лампы, специальным трансформатором, подключенным к цепи.

Когда ток течет через байпасную цепь, он создает магнитное поле в части балласта. Это магнитное поле поддерживается протекающим током. При размыкании переключателя стартера ток кратковременно отключается от балласта. Магнитное поле схлопывается, что вызывает внезапный скачок тока — балласт высвобождает накопленную энергию.

Этот выброс тока помогает создать начальное напряжение, необходимое для образования электрической дуги в газе.

Ламп

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *