+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Простая защита от короткого замыкания для блока питания схема своими руками |

Простейшая защита от короткого замыкания актуальна как для опытного, так и для начинающего радиолюбителя, так как от ошибок не застрахован никто. В этой статье приведено простую, но весьма оригинальную схему, которая поможет вам уберечь ваше устройство от не желательного выхода из строя. Самовосстанавливающийся предохранитель обесточивает схему, а светодиоды сигнализируют об аварийной ситуации, быстро, надёжно и просто.

Схема защиты от КЗ:

Схема, приведённая на рисунке №1, является весьма простой в настройке защитой для радиолюбительского блока питания или любой другой схемы.

Рисунок №1 – Схема защиты от коротко замыкания.

Работа схемы защиты от короткого замыкания:

Схема весьма простая, и понятная. Так как ток течёт по пути наименьшего сопротивления пока предохранитель FU1 цел, то подключена выходная нагрузка Rн рисунок №2 и через неё протекает ток. При этом постоянно горит светодиод VD4 (желательно зелёного цвета свечения).

Рисунок №2 – Работа схемы при целом предохранителе

Если же ток нагрузки, превышает максимальный ток допустимый для предохранителя, он срабатывает тем самым разрывая (шунтируя) цепь нагрузки рисунок №3. При этом загорается светодиод VD3 (красного цвета свечения) а VD4 гаснет. При этом не страдает и ваша нагрузка ни схема (конечно при условии своевременно срабатывания предохранителя).

Рисунок №3 – Сработал предохранитель

 

Диоды VD1,VD5 и стабилитрон VD2, защищают светодиоды от обратных токов. Резисторы R1,R2 ограничивают ток в схеме защиты. В качестве предохранителя FU1 я рекомендую использовать  самовосстанавливающийся предохранитель. А номиналы всех элементов схемы вы подбираете в зависимости от ваших потребностей.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/ 

bip-mip.com

Защита от переполюсовки и КЗ зарядного устройства, блока питания своими руками

Многие самодельные блоки имеют такой недостаток, как отсутствие защиты от переполюсовки питания. Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.

В этой статье будет рассмотрено 3 варианта защит от переполюсовки, которые работают безотказно и не требуют никакой наладки.

Вариант 1

Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

В случае внедрения такой защиты в зарядное устройство автомобильного аккумулятора, стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности зарядника. В среднем стоит использовать реле на 15-20 А.

Вариант 2

Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.

Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.

При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте. Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой. Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.

Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.

Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.

Вариант 3

Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.

Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.

Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.

А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.

Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.

Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.

Итог

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

Автор:  Эдуард Орлов –  

Прикрепленные файлы: СКАЧАТЬ.


 

volt-index.ru

Схема защиты от перегрузки и короткого замыкания – Поделки для авто

Реализовать схему защиты не сложно, тем более что она очень важна для защиты всех своих устройств от короткого замыкания и перегрузки. Если в приборе по каким-либо причинам случается короткое замыкание это может привести к непоправимым последствиям для него. Чтобы защитить вас от лишних затрат, а прибор от выгорания, достаточно сделать небольшую доработку, по нижеприведенной схеме.

Важно отметить что вся схема построена на комплементарной паре транзисторов. Для понимания расшифруем смысл фразы. Комплементарной парой называют транзисторы с одинаковыми параметрами, но разными направлениями p-n переходов.

Т.е. все параметры напряжения, тока, мощности и прочие у транзисторов абсолютно одинаковые. Отличие лишь проявляется в типе транзистора p-n-p или n-p-n. Также приведем примеры комплементарных пар, чтобы облегчить вам покупку. Из российской номенклатуры: КТ361/КТ315, КТ3107/КТ3102, КТ814/КТ815, КТ816/КТ817, КТ818/КТ819. В качестве импортных прекрасно подойдут BD139/BD140. Реле надо выбирать на рабочее напряжение не менее 12 В, 10-20 А.

Принцип действия:

При превышении определенного порога (порог устанавливается переменным резистором, опытным путем) замыкаются ключи комплементарной пары транзисторов. Напряжение на выходе прибора пропадает и загорается светодиод, свидетельствующий о срабатывании защитной системы прибора.

Кнопка между транзистора, позволяет осуществить сброс защиты (в стационарном состоянии замкнута, т.е. работает на размыкание). Сбросить защиту можно и другим путем, просто выключить и включить блок. Защита актуальна для источников питания или аккумуляторных зарядок.

Автор; АКА Касьян

Похожие статьи:

xn—-7sbgjfsnhxbk7a.xn--p1ai

Схема защиты блока питания и зарядных устройств

Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания — сетевыми, импульсными и аккумуляторами постоянного тока. Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов. 

Схема защиты блока питания

 Силовая часть — мощный полевой транзистор — в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается. Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8 Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных. Шунт можно сделать также из резисторов с мощностью 1-3 ватт.

Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора. Схема защиты блока питания, регулятор ограничения тока Схема защиты блока питания, регулятор ограничения тока

 ~~~При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным

~~~Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные — IRF3205, IRL3705, IRL2505 и им подобные.

~~~Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.

~~~Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.

Комментарии
Защита от короткого замыкания, переплюсовки полярноси и перегруза собрана на отдельной плате. Силовой транзистор использован серии IRFZ44, но при желании можно заменить на более мощный IRF3205 или на любой другой силовой ключ, который имеет близкие параметры. Можно использовать ключи из линейки IRFZ24, IRFZ40, IRFZ46, IRFZ48 и другие ключи с током более 20 Ампер. В ходе работы полевой транзистор остается ледяным,. поэтому в теплоотводе не нуждается.

Мощность блока питания довольно приличная, выходной ток доходит до 6-7 Ампер, что вполне достаточно для зарядки автомобильного аккумулятора.

Резисторы шунта выбрал с мощностью 5 ватт, но можно и на 2-3 ватт.

Если все сделано правильно, то блок начинает работать сразу, замыкайте выход, должен загореться светодиодный индикатор защиты, который будет гореть до тех пор, пока выходные провода находятся в режиме КЗ.

Собираем схему индикатора.

vluvn.blogspot.com

Простое устройство защиты от короткого замыкания схема |

Начинающие радиолюбители часто делают ошибки при проектировании новых устройств, это нормально «на ошибках учатся». Но технику безопасности необходимо знать и соблюдать в любом деле. В этой статье описано простое устройство, которое поможет радиолюбителям обезопасить домашнюю электропроводку от своих экспериментов с электричеством даже при коротком замыкании.

Автомат для защиты сети от короткого замыкания своими руками:

Безусловно, самый простой и доступный способ обезопасить как сеть питания, так и ваше устройство от выгорания это плавкий предохранитель, или самовосстанавливающийся. Но если вы ещё не уверены в своих знаниях электротехники, а всё ровно экспериментируете с электричеством воспользуйтесь самодельным автоматом для защиты от короткого замыкания (КЗ) рисунок №1.

Рисунок №1 – Автомат для защиты сети от КЗ схема

R1 –  220В/ предполагаемый ток (I А). На пример:  R1=220В/2А = 110 Ом

EL1 – Лампа накаливания 220В/100 или 75 Вт

KM1 – Реле подбирается под те параметры которые вам необходимо (на пример для сети 220В можно использовать реле типа МПКО-110 А)

Работа устройства автомата для защиты сети от короткого замыкания:

Когда вы подключаете к устройству автомат для защиты сети от КЗ  нагрузку, реле KM1 замыкает контакт таким образом, что бы ток шел, минуя лампу EL1. В случае короткого замыкания реле разомкнёт контакты и загорится лампа накаливания EL1, которая спасёт вашу проводку от выгорания, но такое решение не убережет ваше устройство от замыкания, потому, не смотря на подобного рода страховку, будьте внимательны и осторожны при работе с электричеством. Сопротивление R1 определяет максимально допустимый ток через нагрузку, R1 должен подходить по  мощности к вашей нагрузке (берите с двукратным запасом).  А сами элементы схемы обязательно расположите в диэлектрический надежный корпус рисунок №2.

Рисунок №2 – Пример автомата для защиты от КЗ (в корпусе)

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/

bip-mip.com

cxema.org — Схема защиты блока питания и зарядных устройств

Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания — сетевыми, импульсными и аккумуляторами постоянного тока.
Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.

Силовая часть — мощный полевой транзистор — в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается.
Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных.
Шунт можно сделать также из резисторов с мощностью 1-3 ватт.


Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора.

При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным
Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные — IRF3205, IRL3705, IRL2505 и им подобные.


Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.
Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.

С уважением — АКА КАСЬЯН

  • < Назад
  • Вперёд >

vip-cxema.org

Схема защиты от переполюсовки и короткого замыкания – Поделки для авто

Любое хорошее зарядное устройство для автомобильного аккумулятора не должно бояться коротких замыканий и случайной переполюсовки питания. Имея опыт в ремонте зарядных устройств хочу заметить, что функцией защиты от переполюсовки питания могут похвастаться далеко не все зарядные устройства.

Как право в бюджетных версиях применен обычный предохранитель, который при смене полярности сгорает ( в отдельной статье рассмотрим и эту защиту), поэтому сегодня подробно остановимся на одной из многочисленных схем защиты от кз и переполюсовки.

Сразу скажу – на авторство не претендую, схема еще давно была опубликована на сайте радиокот.

Основные достоинства схемы

1) Минимальное количество компонентов
2) Функция самовосстановления
3) Высокая скорость срабатывания
4) Минимальные затраты

В схеме нет сложных узлов и микросхем, благодаря электронной основе схема не имеет ограничения по сроку службы компонентов (как например в релейной защите.)

Работает следующим образом .

Когда на выход подключен аккумулятор и последний заряжается (т.е не нарушена полярность питания), полевой транзистор открыт и ток заряда протекает по нему на аккумулятор, плюс в схем общий.

Силовой шунт на входе схемы задействован как датчик тока и как только на выходе смениться полярность на неправильную или образуется короткое замыкание, это приведет к увеличению тока в схеме и образуется падение напряжение на шунте и на полевом транзисторе В этот момент откроется маломощный транзистор VT2 и затвор полевого транзистора по открытому переходу VT2 будет зашунтирован за землю и полевик будет полностью закрыт, следовательно минус питания не дойдет со выхода.

В этот момент загорится также светодиод, питание для которого поступает по открытому каналу VT2
Схема может находиться в таком состоянии бесконечно долго, поскольку полевой транзистор закрыт и на нем не образуется тепловыделение.

Шунт можно взять от амперметра на 10 Ампер или собрать из низкоомных резисторов, хотя последний вариант более затратный. Есть еще вариант выдрать нужный шунт из платы контроля аккумулятора ноутбука.

Полевой транзистор можно взять от материнской платы, важен допустимый ток – от 30 Ампер, установит на радиатор.

В следующей статье мы рассмотрим еще два способа защит от переполюсовки питания и кз.

Автор; АКА КАСЬЯН

Похожие статьи:

xn—-7sbgjfsnhxbk7a.xn--p1ai

Схемы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *