+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Схема переключателя. Проходной выключатель схема подключения на 2 точки. Три варианта


Схема подключения проходного выключателя » Полезные самоделки

 

Схемы подключения проходных выключателей.

Использования проходных выключателей позволяют осуществлять включение и выключение освещения с двух и более различных мест их установки. Это в некоторых случаях не просто удобно, а и очень необходимо. К примеру, имеется длинный коридор. Он естественно освещается. Включив свет в начале, и имея эту самую схему подключения проходного выключателя, Вам не придётся вновь возвращаться для отключения, а можно это сделать вторым выключателем, что установлен в другом конце коридора.

Или же возьмем к примеру ночник находящийся на лестнице между 1-м и 2-м этажом в частном доме и коттедже. Придя домой поздно ночью можно включить свет на 1 м этаже и выключить его уже на 2-м этаже.

Схема подключения проходного выключателя для управления 1-ой группой светильника из 2-х мест.

Для этого потребуется:

— 2 переключателя (их обычно называют проходными). У каждого одноклавишного переключателя имеется по 3 контакта и по два положения самого переключения (см. принцип работы схемы).

Причём, режим переключения должен быть «перекидного характера», то есть — один контакт является общим для двух других. В одном положении он замкнут с одним из них, а в другом положении, естественно, с другим. Следовательно, общая замкнутость всех трёх контактов полностью исключена.

 

Рис.1. Схема подключения проходного переключателя в 2-х местах на 2 направления для управления 1-ой группой светильников.

Для того, чтобы Вам проще было разобраться с данной схемой обратите внимание на рисунок принцип работы схемы:

 

Рис.2 Принцип работы схемы проходного переключателя.

Работа данной схемы очень проста и заключается просто в переключении в механизмах самих переключателей.

Для монтажа можно использовать 3-х жильный провод. Подключение осуществляется следующим образом.

— К переключателю № 1 подводиться фазный проводник L, а к переключателю № 2 вывод к светильнику. — Второй вывод светильника подключается к нулевому проводнику N.

— Оба переключателя соединяются между собой перемычкой из 2-х кабелей, обязательно обращайте внимание на расположение проводов,указанных на схеме.

Если, написания от руки вам не понятно, воспользуйтесь наглядной схемой подключения переключателей от компании LeGrand

 

 Схема подключения 3 переключателей для управления 1 группой светильников.

 

Здесь потребуется 2 проходных переключателя и один промежуточный.

 

Наглядная схема от компании Legrand ниже:

 

Схема подключения 2-х 2 клавишных проходных выключателей для управления 2 группами светильников

 

Схема подключения проходного выключателя для управления 2-мя группами светильников уже более сложна и отличается уже только тем, что к каждому переключателю подводиться не 3 а 6 проводов.

Принцип действия схемы аналогичен предыдущей разве, что сложнее на порядок.

 

 

 

Схемы подключения проходных выключателей подобного типа хороши тем, что относительно просты в своём конструктивном исполнении (не требуется дополнительных компонентов). И они не ограниченны количеством таких мест управления, их может быть от 2-ух до бесконечности (при условии использования первого и последнего включателя 3-х контактного, а все между ними 4- контактные).

 

А вот и схемка на 2 подключения от компании  Legrand.

 

 

Существуют и иные схемы, которые позволяют обойти это ограничение. Но данные схемы очень редко находят себе применение.

Хотелось бы ещё раз обратить Ваше внимание на специфику данных выключателей. Они обязательно должны быть «перебрасывающего принципа действия». при покупке также обратите внимание на рекомендации по подключения конкретного производителя.

 

Александр Борисов, г. Самара

www.freeseller. ru

Схемы подключения переключателей

 

Главное отличие перекидных выключателей — переключателей от обычных выключателей состоит в способе управления ими электрической цепью с лампой осветительного прибора. Если обычный выключатель просто замыкает (размыкает) цепь с лампой включая (выключая) светильник или люстру, то дублирующий выключатель — еще одно название переключателя, перекидывает питание с одного контакта на другой. Таким образом, создается другая электрическая цепь питания лампы.

 

Схема подключения двух одноклавишных переключателей

 

На схеме переключатели отмечены красным и зеленым цветами, каждый имеет два коммутационных положения. Видно, что при совпадении положений переключателей электрическая цепь лампы замыкается и на нее подается питающее напряжение. В данном случае подвижные контакты обоих переключателей стоят в положении 2, обеспечивая непрерывность цепи.

 

При нажатии на клавишу какого-нибудь переключателя его подвижный контакт перейдет в положение 1, что вызовет размыкание цепи питания лампы. Теперь, что-бы зажечь свет достаточно нажать на клавишу любого переключателя. Таким образом, осуществляется управление светом с двух мест.

 

По аналогичной схеме подключаются и двухклавишные переключатели. По своей конструкции они представляют собой два независимых друг от друга одноклавишных переключателя. То есть, каждый из них подключается по схеме выше в электрическую цепь нужной лампы или группы ламп.

 

 

Схема управления светом с трех мест

 

Количество мест, с которых можно управлять светом не ограничивается двумя. Схема управления светом с трех мест состоит из двух переключателей и одного перекрестного выключателя. Это вид проходных выключателей, созданных для управления одним источником света с трех и более мест.

В отличие от переключателей имеют четыре, а не три контакта. Добавлением в схему еще одного промежуточного перекрестного выключателя можно увеличить количество мест, откуда можно оперировать светом.

 

При монтаже электропроводки для переключателей следует помнить, что одноклавишные переключатели имеют три контакта (на схеме выделен синим цветом), поэтому закладывать в штробу нужно три провода, для обвязки двухклавишных переключателей необходимо уже 6 проводов.

В случае использования схемы управления с трех мест, для перекрестного выключателя должно быть заложено четыре провода.

volt220.ru

Схема подключения проходного выключателя

Проходные выключатели позволяют управлять светом из разных мест. Что очень удобно, например перемещаясь по квартире Вы можете включить свет в коридоре и выключить его из комнаты. Или выключить свет в спальне уже находясь в кровати. Возможно Вы уже знакомы со всеми плюсами этих выключателей и Вам нужна лишь схема подключения и подробное руководство. Ну что ж, начнем!

В схеме подключения проходного выключателя ошибаются даже опытные электрики, либо применяют распаечные коробки, какие-то хитрые варианты и шаманства. На самом деле все значительно проще.

Основы успеха:

Используем проверенные компоненты, экономим время и нервы.

Никакой отсебятины и советов бывалых, в помощь нам техническая документация производителя.

Проводка в квартире должна учитывать наличие проходных выключателей.

Они должны быть связаны между собой дополнительным кабелем, 3х жильным. И даже двумя 3х жильными кабелями, в случае подключения двухклавишных проходных переключателей. Подобное используется при управлении включении-выключении бра, с любой стороны кровати.

Обозначения на схеме L-фаза, N-ноль. Все схемы увеличиваются в отдельном окне.

К первому проходному выключателю, подводим 3х жильный питающий кабель. Между собой переключатели связаны дополнительным (промежуточным) 3х жильным. На источник света (лампа) тянем кабель от второго.

Проходной выключатель схема подключения

Для организации используем: Переключатель на два направления Legrand (арт.774406) Это правильное название ” народного” Проходного выключателя.

Питающий кабель: фазу подключаем к первому проходному. N ноль (синий провод), соединяем с синим проводом промежуточного кабеля, что позволит получить 0 в подрозетнике второго проходного выключателя.

Между собой проходные выключатели соединяем двумя жилами кабеля согласно схемы. На рисунке обозначено черным, но фактически Вы используете, две оставшиеся. Кроме синей, она задействована на передачу N.

Кабель лампы: синий провод соединяем с синим промежуточного кабеля. Для всех соединений проводов используем клеммники, винтовые или wagо (без пасты). Фазу подключаем ко второму выключателю.

Подобным образом можно организовать управление светом из двух, трех и более мест. Но здесь дополнительно используются промежуточные переключатели (арт.774407)

Схема подключения двухклавишного проходного выключателя

При использовании двухклавишных проходных переключателей на два направления схема усложняется дополнительным соединительным кабелем. Не забывайте об этом. Соединение аналогично рассмотренному ранее

remontofil.ru

Схема подключения перекрестного переключателя

 

 

Довольно часто, приходя в магазин электрооборудования с желанием купить переключатели часть из которых проходные, а часть перекрестные и не получив квалифицированной помощи, наши читатели сталкиваются с проблемой, как отличить между собой перекрестный переключатель и проходной?

Действительно, внешне они идентичны, более того, точно так же выглядит обычный одноклавишный выключатель, поэтому ошибиться очень легко.

Основная отличительная особенность перекрестного переключателя, на которую и нужно обращать внимание при покупке, связана со схемой его подключения – это количество подсоединяемых проводов и соответственно клемм для них на механизме.

 

Запомните, для работы одноклавишного перекрестного переключателя требуется ЧЕТЫРЕ провода, для проходного переключателя – ТРИ, а обычного выключателя ДВА. В случае с двухклавишными устройствами (и да, двухклавишные перекрестные переключатели так же встречаются), количество подключаемых проводов соответственно увеличивается вдвое, для каждого случая.

Обычно, на обратной стороне перекрестного переключателя, рядом с клеммами для подключения проводов, нанесены следующие обозначения:

 

В данном случае, в качестве примера, использован перекрестный переключатель ABB Busch-Jaeger серии Basic55. Как видите, у него четыре пружинных зажима для подключения проводов. Чтобы не ошибиться при их коммутации, давайте рассмотрим схему подключения перекрестного переключателя.

 

На схеме указаны также два проходных переключателя, без них тяжело разобраться в принципе работы перекрестного выключателя, так как он используется обычно как минимум третьим в схеме и без двух проходных не применяется.

По большому счету, перекрестный переключатель является связующим компонентом между проходными, поэтому, как видно на схеме, в него приходят две жилы с первого проходного выключателя и выходят две на второй.

Теперь, я думаю, вам становятся понятны обозначения, нанесенные на его тыльной стороне, рассмотренные в начале статьи. Две стрелки, направленные внутрь промежуточного выключателя (две верхние) показывают клеммы для пары проводников идущие с первого проходного переключателя

 

а к клеммам со стрелками, указывающими наружу, подключаются провода, идущие на второй, конечный проходной переключатель. 

Соответственно подключение проводов к перекрестному переключателю необходимо выполнять именно в этом порядке – две жилы, идущие от одного проходного переключателя в схеме в одну пару клемм, а две другие жилы, идущие ко второму проходному переключателю в схеме, ко второй паре клемм.

 

 

Таким образом, промежуточный переключатель имеет два основных режима работы.

Первый: Когда сигнал, идущий между проходными переключателями не изменяется. Можно считать, что провода неразрывны, это равносильно схеме просто из двух проходных переключателей. Условно это выглядит так:

Второй: Когда сигнал перенаправляется, провода, идущие к конечному проходному переключателю, меняются местами между собой, иными словами перекрещиваются с проводниками приходящими от первого проходного переключателя. Условно это выглядит так:

Эти изображения наглядно иллюстрируют схему работы перекрестного выключателя, теперь, я думаю понятно, как он действует и почему он так называется.

 

Подробная пошаговая инструкция по подключению и установке перекрестного переключателя описана ЗДЕСЬ.

 

Итак, подведем итоги:

1. Решив сделать у себя дома систему переключателей в которой управление освещением осуществляется из трех и более мест, необходимо включать в схему перекрестные переключатели, располагая их между двумя проходными.

 

2. Для правильной работы к промежуточному переключателю должны быть проложены по две жилы от каждого из проходных переключателей, в общей сложности четыре провода.

Если в системе два перекрёстных выключателя (а это соответственно четыре места управления светом), то они соединяются по тому же принципу, последовательно: от первого проходного выключателя две жилы к первому перекрестному, дальше две жилы ко второму перекрестному, а уж от него две к конечному проходному.

Подробнее схема управления светом, состоящая из четырех переключателей представлена на изображении ниже.

 

3. Подключение проводов к перекрестному переключателю осуществляется в следующем порядке: две жилы от первого проходного переключателя в первую пару клемм, а два провода, по схеме выходящих дальше (неважно на следующий перекрестный переключатель или на последний проходной), подключается ко второй паре клемм.

4. Чтобы при покупке отличить перекрестный переключатель от проходного, необходимо смотреть на схему подключения указанную обычно с тыльной стороны, а также на количество подключаемых к устройству проводов и клемм для них, у перекрестного выключателя их ЧЕТЫРЕ, а у проходного ТРИ.

Это основная информация, которую необходимо знать, чтобы правильно подсоединить перекрестный переключатель, схема подключения которого, оказывается не такая уж и сложная, если разобраться в принципе его работы.

Если же, у вас все равно остались вопросы, по схеме подключения перекрестного переключателя, обязательно оставляете их в комментариях к статье, постараемся помочь!

rozetkaonline.ru

Схема подключения проходного выключателя с 3х мест

Далеко не все знают, что такое проходной выключатель и как его монтировать. Такой прибор более сложный в установке, чем стандартный, знакомый всем переключатель, ведь одной точкой освещения можно будет управлять с большого количества устройств. Схема подключения проходного выключателя с 3-х мест требует определенных знаний и сноровки при практической реализации.

Зачем нужны проходные выключатели

Включение света в длинном темном коридоре может быть довольно неудобным, если есть лишь один выключатель, расположенный в конце комнаты. Наиболее рациональна установка проходных переключателей (другое название — перекрестные выключатели) в разных сторонах комнаты. Так можно будет включить, выключить свет сразу после входа в коридор. Это особенно актуально в подъезде дома, где квартиры расположены одной линией по длинной лестничной площадке, на лестничных пролетах, в офисах, производственных помещениях.

Еще один вариант использования такой схемы управления — большая спальня с несколькими кроватями. Если установить проходные переключатели у каждого спального места, можно включить лампочку, не вставая. Монтирование таких устройств оправдано на дачах, приусадебных участках, дворах частных домов. Включать свет можно на выходе из дома — после завершения дел нет необходимости идти в темноте.

Правильная схема проходных выключателей

Наиболее часто используется подключение проходных выключателей по схеме с трех мест. При монтаже нужно учесть все, что будет входить в схему:

  • коробка;
  • осветительные приборы;
  • провода;
  • выключатели.

На вид перекрестный переключатель — обычный прибор с одной клавишей, который только переключает контакты электрической цепи. Механизм в нем стоит посередине контактов (их три). Двухклавишный выключатель имеет 2 клавиши, 6 контактов. Схема подключения следующая.

У первого устройства один контакт идет для фазы, два контакта — для промежуточных кабелей. У третьего прибора первый контакт соединяется с промежуточным кабелем, два провода предназначены для выходной фазы. Второй выключатель перекрестный, у него есть 4 контакта, по два на каждое устройство. Свет будет загораться, когда один из промежуточных приборов замкнет цепь.

Принцип работы перекрестного отсоединителя

Проходной прибор включения и выключения света внутри имеет четыре клеммы — на вид такой же, как обычные выключатели. Такое внутреннее устройство необходимо для крестообразного соединения двух линий, которые будет регулировать выключатель. Отсоединитель в один момент может сделать расключение двух оставшихся выключателей, после чего их вместе соединяет. Результатом становится включение-выключение света.

Для создания схемы применяют два и более проходных выключателя. Схема может включать любое количество проходных устройств, но увеличение их числа будет серьезно усложнять работу — необходимо четко знать порядок расположения кабелей и соединений в коробке.

Как работает схема освещения

В качестве примера можно описать следующий порядок работы проходных устройств:

  1. Включение клавиши на первом приборе приводит к подключению лампочки. Электрический ток пойдет по фазе.
  2. Выключение клавиши приводит к прекращению горения лампочки.
  3. После переключения переходного отсоединителя лампочка загорается.
  4. При повторном нажатии этой клавиши лампочка отключается.
  5. Аналогичным образом работает третий выключатель: при нажатии на клавишу лампа загорается, при повторном нажатии — прекращает работать.

Если коридор в помещении слишком длинный, вполне можно смонтировать 4 и более точки регулирования электрических устройств.

Что понадобится для монтажа

Кроме собственно выключателей, монтажной коробки и кабеля нужной длины, монтажник должен иметь:

  • изоленту;
  • крестообразную и простую отвертки;
  • острый нож;
  • пассатижи;
  • гаечные ключи;
  • клеммы;
  • бокорезы.

Проще всего подключить приборы, если в комнате уже сделана качественная проводка. В этом случае придется только сделать штробы для вывода выключателей.

Если это невозможно, есть вариант выполнения открытой проводки в кабель-каналах. Для указанных целей понадобится перфоратор со специальной насадкой или кабель-канал, в зависимости от выбранного варианта подключения.

Для закрепления гофротрубы нужно купить алебастр, а для завершения ремонта — штукатурку. Лучший способ сэкономить время и деньги — делать монтаж проходных выключателей на этапе ремонта.

Порядок монтирования

Выполнять подключение проходных устройств нужно так:

  1. Убедиться, что электроэнергия отключена. Выполнить проверку сети отверткой-индикатором.
  2. Уточнить местоположение проводки. Все действия нужно осуществлять аккуратно, чтобы не повредить кабели.
  3. Выбрать место будущего нахождения распределительной коробки, установить ее.
  4. Проложить трех-, четырехжильные кабели (для промежуточного устройства применяются четырехжильные).
  5. Соединить концы всех кабелей в распределительной коробке, закрепить клеммами, строго соблюдая схему подключения.
  6. Подсоединить проходные устройства.

Полученная трехместная система управления освещением помещения делает очень удобной его эксплуатацию. После удачного монтажа можно пытаться делать более сложные схемы в квартире и на даче.

Схема подключения проходного выключателя с 3х мест

220.guru

Переключатели электрические.Виды.Устройство.Работа.Применение

Переключатели в электротехнике служат для отключения и включения электрических цепей низкого напряжения поочередно. Например, проходные переключатели предназначены для удобства управления освещением в различных комнатах, лестницах, коридорах. Такие переключатели электрические монтируют между этажами, возле дверей помещений с несколькими входами.

Из дома удобно управлять освещением гаража и других помещений, а также фонарями на приусадебном участке. Переключатели позволяют управлять функционированием освещения, находясь при этом в другом месте, что создает определенные удобства и комфорт, а также экономится электроэнергия.

Простой выключатель имеет клавишу на две позиции и одну пару контактов, к которым подключены проводники. Переключатель, в отличие от выключателя, имеет три или более контактов. Один контакт общий, остальные являются перекидными. К каждому из этих контактов подключены провода. Чтобы управлять освещением из других мест, необходим переключатель на несколько контактов. Переключатели электрические позволяют управлять работой любых электрических устройств, а не только освещением.

Принцип действия

Переключатели электрические работают следующим образом. Смысл их работы заключается в перекидывании основного контакта с одной цепи на другую. Чаще всего на обратной стороне корпуса переключателя изображена схема подключений проводов.

Один контакт общий (1), другие два контакта – перекидные (2 и 3). Используя два таких переключателя, и расположив их в разных местах, можно выполнить наиболее популярную и простую схему управления освещением из двух разных мест.

Совпадающие по обозначениям клеммы 2 и 3 с переключателями ПВ-1 и ПВ-2 соединены проводниками между собой. Вход 1 от ПВ-1 подключен к фазе, а ПВ-2 подключен к арматуре освещения. Другой конец светильника соединен с нулевым проводником сети.

Проверка работоспособности схемы осуществляется включением переключателя. Сначала подается напряжение, при этом лампа поочередно загорается и гаснет от отдельного действия любого из переключателей. При размыкании цепи одного из переключателей, в работу включается другая линия цепи.

Виды и конструктивные особенности

Для правильного выбора переключателя необходимо определить тип движения управления рукояткой, решаемыми задачами, схемой соединений, свойствами соединяемых цепей.

Существуют переключатели электрические, делящиеся на виды по типу движения управления рукояткой:
  • Угловые.
  • Нажимные.
  • Поворотные.
Угловые переключатели типа тумблера изготавливаются по двум схемам:
  • С врубными контактами (рисунок «а»).
  • Коромыслового типа (рисунок «б»).

Оба типа переключателей имеют две устойчивые позиции рукоятки. При передвижении рукоятки (1) пружина (2) сжимается, концентрируя энергию сжатия. При нахождении в позиции, изображенной пунктирной линией, устройство находится в неустойчивом равновесии.

При небольшом сдвиге рукоятки пружина резко перемещает подвижный контакт (3) в устойчивое положение. В результате подвижный контакт скачкообразно подключается к неподвижному контакту (6).

По схеме подключения тумблерные переключатели с врубными контактами делятся на:
  • Однополюсные (рисунок «а»).
  • Однополюсные сдвоенные (рисунок «б»).
  • Двухполюсные на две позиции (рисунок «в, г»).

Рукоятки этих переключателей могут находиться в двух фиксированных позициях. Схемы коммутации могут быть самыми разными. Тумблеры используются для переключения схем переменного и постоянного тока. Они способны выдерживать нагрузку в цепи силой тока до 6 ампер. Сопротивление их контактов очень мало (0,02 Ом).

Надежность работы тумблеров можно выразить возможным числом переключений, которое достигает 10000 раз.

Микротумблеры

Такие тумблеры небольших размеров выигрывают в габаритах и массе, по сравнению с другими видами тумблеров.

Нажимные переключатели электрические
 
Переключатели в виде кнопок классифицируются по типу управления:

• Обычные. Цепь разомкнута или замкнута только при нажатом положении.• Залипающие. Цепь замыкается при отсутствии усилия нажатия. Для размыкания цепи необходимо снова произвести нажатие.• Сдвоенные. Цепь замыкается при нажатии одной кнопки, размыкается с помощью другой кнопки. Устройство кнопки производят на основе тумблерных переключателей, микровыключателей. Кроме основных, существуют оригинальные устройства.

Схемы подключения обычных и залипающих кнопок делят на:
  • Однополюсные включения (рисунок «а»).
  • Однополюсные выключения (рисунок «б»).
  • Однополюсные включения-выключения (рисунок «в»).
  • Двухполюсные включения (рисунок «г»).

Нажимные переключатели выполняют с защитой от пыли и влаги, и без защиты.

Поворотные переключатели
Галетные переключатели

Среди электрических переключателей поворотного вида наибольшей популярностью пользуются галетные переключатели. С их помощью можно одновременно подключать сразу несколько электрических цепей, связанных между собой.

Устройство галетного переключателя выполнено таким образом, что металлическое кольцо (2) с выступом жестко связано с осью (1) переключателя. Общее число контактов, располагающихся через 30 градусов – 12 штук. При повороте оси на 330 градусов выполняется коммутация общего вывода с 11-ю различными цепями, которые подключены к контактам (4).

Существуют некоторые модификации галетных переключателей. Например, кольцо может выполняться разрезанным. На каждой части делается выступ. При вращении оси два общих вывода синхронно соединяются с 5-ю различными цепями.

В галетных поворотных переключателях применяются врубные ножевые контакты, которые изготавливают из сплавов меди (бронза, латунь), с покрытием слоем серебра. Ножевой контакт дает возможность снизить влияние погрешности изготовления сборки и деталей, увеличить его вибрационную стойкость и надежность.

Галетные переключатели способны переключать электрические цепи силой тока до 3 ампер, напряжением до 350 вольт постоянного тока. Для переменного тока допустимое напряжение составляет не более 300 вольт. Надежность таких переключателей составляет до 10000 переключений.

Установка переключателей производится путем пайки, кроме тумблерных видов переключателей, которые соединяются с цепью винтами. Главным требованием механической установки переключателей является требование: не изменять положение корпуса и внутренней части переключателя при приложении усилия управления. В связи с этим при применении переключателя необходимо использовать только те методы крепления, которые соответствуют техническим условиям определенного вида переключателя.

Схема перекрестного переключателя освещения

Для монтажа переключателей в трех местах необходимо вспомогательное устройство с перекрестной схемой коммутации. Такое устройство состоит из двух 1-клавишных переключателей с внутренними перемычками, выполненными в одном корпусе.

Перекрестный переключатель монтируется между 2-мя обычными. Он используется только совместно с ними, и отличается наличием 4-х клемм. Чтобы управлять освещением из 4-х мест, необходимо добавить в схему дополнительно такое же устройство. Перекрестный переключатель подключается к перекидным контактам выключателей таким образом, чтобы образовалась рабочая цепь питания освещения.

Сложные группы контактов нуждаются в большом числе проводников и подключений. Оптимальным вариантом будет сборка нескольких простых схем, вместо одной сложной, так как они будут работать более надежно, и удобнее в эксплуатации. Все основные соединения необходимо производить в распредкоробках. Выполнять скрутки проводов не допускается.

Похожие темы:

 

electrosam.ru

Проходной выключатель схема подключения на 2 точки. Три варианта

Коридорный, он же проходной, выключатель весьма хорошо известен электромонтерам старшего поколения. В наше время данное устройство немного подзабыто, в связи с этим  в данной статье немного проясним схему подключения двойного, и не только, электронного проходного выключателя.

Проходной выключатель схема подключения на 2 точки

Рассмотрим следующую ситуацию. Вы выходите из квартиры. В длинном коридоре, где нет естественного освещения, вы нажимаете выключатель (A) и загорается свет, далее  проходите до его конца и щелкаете вторым (B) и свет гаснет. В следующий раз за вами выходит другой человек, и он может также включить освещение выключателем (A) и выключить его (B).

Схема подключения на 2 точки позволяет также включать и выключать освещение в обратном порядке,  то есть с начала включаете (B),а выключаете свет выключателем (A). Для реализации подобной схемы включения проходного выключателя обычные выключатели не подойдут, так как у них контакты работают на замыкание-размыкание. Нам же нужны переключатели.

Схема довольно таки  проста. Электролампа будет гореть только тогда,  когда оба переключателя SA1 и SA2 подключены  на один и тот же электропровод верхний или нижний,  иначе электролампа не будет гореть.

Подключение проходного выключателя на 3 точки

Так же можно реализовать схему подключения проходного выключателя и для трех разных точек, которые можно реализовать не только в коридоре, но и у себя дома. Допустим, один из них будет находиться возле кровати, второй у выхода комнаты, а третий возле рабочего стола. Таким образом, можно будет включать, и отключать свет из разных мест.

Для этого нужно будет два переключателя как у описанной выше схемы плюс еще один, но уже с двумя группами контактов. Если сравнивать с предыдущей схемой, то данный вариант подключения немного посложнее. В нее добавлен новый компонент – переключатель SA3, представляющий собой сдвоенный переключатель.

Все три переключателя переведены в положение включения света. Можно с легкостью  проследить движение тока от источника до лампы. Теперь если какой либо из переключателей, допустим SA1, перевести в противоположное состояние, то эта цепь разорвется и свет погаснет. Если же теперь переключатели SA2 или SA3 перевести в противоположное положение, то лампа снова загорится. Подобная  схема подключения проходных переключателей позволяет включать и выключать свет из трех мест, допустим в коридоре с тремя дверями.

В принципе данный проходной выключатель,  возможно,  подключить и с большим числом переключателей, но это существенно усложнит электрическую схему. Поскольку в этом случае при каждом добавлении нового переключателя, он должен иметь на одну пару контактов больше предыдущего, а так же с большим числом переключателей сильно усложняется монтаж и понимание алгоритма работы схемы.

Что же делать, если нужно допустим десять точек управления светом. Решить данную проблему можно при помощи электронного переключателя. Особенность его в том, что при помощи его можно подключить множество выключателей.

Подключение неограниченного числа проходных выключателей

Принцип функционирования его основан на работе триггера – нажали кнопку, свет загорелся, нажали еще раз, свет выключился. В данной схеме нужны выключатели без фиксации, к примеру, кнопка дверного звонка.

Для того чтобы триггер работал в счетном режиме, на его вход D подается сигнал с инверсного выхода.  Это типовое подключение триггера, в результате которого очередной входной импульс, поступающий на вход C, меняет логический уровень выхода на противоположный. Кнопки SA1…SAn как раз и подают входные импульсы на схему.

Для предотвращения дребезга контактов кнопок, при котором возможны искажения в работе проходного выключателя, в схему добавлены элементы R2, C2. В момент нажатия на кнопку заряжается конденсатор C2, и  разряжается через вход триггера C, при отпускании кнопки. Элементы R1 и C1, подключенные к выводу R, предназначены для сброса триггера в момент подачи питания на схему.

Для управления лампой освещения к прямому выходу триггера подключен узел коммутации, состоящий из транзистора и электромагнитного реле.

Источник: electrik.info

www.joyta.ru

Переключатель BLANCA одноклавишный наружный (схема 6) с подсветкой и изоляционной пластиной 10а 250b белый

Код товара 6771693

Артикул BLNVA106111

Страна Россия

Наименование  

Упаковки 10 шт

Сертификат RU C-RU. АЯ96.B00172

Тип изделия Выключатель

Способ монтажа Открытый

Номинальный ток,А 10

Тип серии Моноблок

Количество клавиш 1

Степень защиты IP20

Напряжение, В 220

Цвет Белый

Индикация Да

Крепление Винтовое

Тип подключения Винтовое

Тип управления Клавиша/Кнопка

Материал изделия Пластик

Номинальное напряжение, В 250

Тип обработки поверхности Глянцевый

Комплектация Механизм с верхней частью корпуса

Все характеристики

Характеристики

Код товара 6771693

Артикул BLNVA106111

Страна Россия

Наименование  

Упаковки 10 шт

Сертификат RU C-RU. АЯ96.B00172

Тип изделия Выключатель

Способ монтажа Открытый

Номинальный ток,А 10

Тип серии Моноблок

Количество клавиш 1

Степень защиты IP20

Напряжение, В 220

Цвет Белый

Индикация Да

Крепление Винтовое

Тип подключения Винтовое

Тип управления Клавиша/Кнопка

Материал изделия Пластик

Номинальное напряжение, В 250

Тип обработки поверхности Глянцевый

Комплектация Механизм с верхней частью корпуса

Все характеристики

Всегда поможем:
Центр поддержки
и продаж

Скидки до 10% +
баллы до 10%

Доставка по городу
от 150 р.

Получение в 150
пунктах выдачи

Переключатель схемы обучения (интерактивной помощи) — Power Platform

  • Чтение занимает 2 мин

В этой статье

Схема обучения (интерактивная помощь) включена по умолчанию.

Включение и отключение плана обучения для отдельного пользователя

Этот параметр влияет только на пользователя, выполнившего это изменение.

  • Чтобы отключить Learning Path: на панели навигации щелкните значок Параметры > Отказаться от схемы обучения.

  • Чтобы включить Learning Path: на панели навигации щелкните значок Параметры > Согласиться на схему обучения.

Включение и отключение плана обучения для всей организации

Этот параметр задает изменение доступа к плану обучения для всей организации.

  1. Убедитесь, что у вас есть роль безопасности «Системный администратор», «Настройщик системы» или эквивалентные разрешения.

    Проверка вашей роли безопасности

    1. Следуйте этим инструкциям: Просмотр профиля пользователя.

    2. У вас нет нужных разрешений? Обратитесь к администратору системы.

  2. В центре администрирования Power Platform выберите среду.

  3. Выберите Параметры > Продукт > Функции.

  4. В разделе Функции справки, задайте Схема обучения на Вкл..

Уведомление о конфиденциальности

Включив функцию плана обучения, статический HTML, вы разрешаете хранить изображения и скрипты в сети доставки содержимого (CDN) Azure. Кроме того, все отображаемое динамическое содержимое будет храниться в кэше Redis для Azure, используемом для предварительного кэширования из базы данных SQL Azure.

Администратор может включить и отключить использование функции плана обучения в экземпляре Dynamics 365 (online) с помощью параметра «Включить управляемую справку» в организации Dynamics 365.

Компоненты и службы Azure, используемые с функцией плана обучения, подробно рассматриваются в следующих разделах.

Облачные службы

Среда выполнения схемы обучения (веб-роль)

Это веб-приложение, которое предоставляет содержимое для пользователей.

Служба схемы обучения (рабочая роль)

Рабочая роль отвечает за обработку данных из базы данных SQL Azure и их кэширование в кэше Redis для Azure.

База данных SQL Azure

Схема обучения использует базу данных SQL, чтобы хранить:

Хранилище BLOB-объектов Azure

HTML, изображения, JavaScript и CSS хранятся в хранилище больших двоичных объектов Azure.

Сеть доставки содержимого (CDN) Azure

Схема обучения использует сеть доставки содержимого Azure для предоставления статического содержимого для среды выполнения опросов, такого как HTML, изображения, JavaScript и CSS.

Azure Active Directory

Схема обучения использует службу Azure Active Directory для проверки подлинности веб-служб, в частности для конструктора. В настоящее время конструктор недоступен для клиентов и партнеров. Таким образом, проверка подлинности выполняется только в пределах домена Корпорация Майкрософт.

Кэш Redis для Azure

Схема обучения использует кэш Redis для Azure для кэширования динамического содержимого, предоставляемого пользователям.

Диспетчер трафика Azure

Схема обучения использует диспетчер трафика для повышения доступности важных приложений за счет отслеживания Azure или внешних сайтов и служб и автоматического направления пользователей в новое расположение в случае сбоя.

Диспетчер ресурсов Azure

Схема обучения использует диспетчер ресурсов Azure для развертывания CDN, кэша Redis, базы данных SQL и облачных служб как групп ресурсов, чтобы они находились в согласованном состоянии и были доступны для повторного развертывания.

См. также

Создание управляемой справки (схемы обучения) для приложения
Видео. Конструктор справки схемы обучения в приложении для клиентов и партнеров

Схема кулачкового переключателя КПУ11-10/3186 | Заметки электрика

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В данной статье я хотел бы рассказать Вам про схему подключения кулачкового переключателя КПУ11-10/3186 от TDM.

В ассортименте у данного производителя (и не только) имеется множество различных схем переключателей.

Все варианты я приводить в пример не буду, Вы их можете самостоятельно найти в соответствующих каталогах.

Помимо применения переключателей в цепях управления, также имеются различные варианты переключателей для подключения вольтметров и амперметров.

Но в данной статье я остановлюсь именно на переключателе КПУ11-10/3186, т.к. этому предшествовали интересные события из моей практики.

Переключатель КПУ11-10/3186 установлен на дверце одной из наших КТПН 10/0,4 (кВ) и используется в качестве вольтметрового переключателя. Напомню для тех кто забыл, что КТПН — это комплектная трансформаторная подстанция наружного исполнения.

Приведу расшифровку его обозначения:

  • КПУ — кулачковый переключатель
  • 11 — открытое исполнение со степенью защиты со стороны контактов IP20 (читайте про расшифровку всех кодов степеней защиты IP)
  • 10 — номинальный ток контактов (в амперах)
  • 3168 — имеет 7 положений

С помощью КПУ11-10/3186 осуществляется переключение режимов измерения фазных и линейных напряжений, причем при использовании лишь одного вольтметра.

Из расшифровки известно, что переключатель имеет 7 положений:

  • L1L2 (AB)
  • L2L3 (BC)
  • L3L1 (CA)
  • O — нулевое положение
  • L1N (AO)
  • L2N (BO)
  • L3N (CO)

Так почему же я решил рассказать о схеме его подключения?!

КТПН 10/0,4 (кВ) была вновь вводимой и после подачи напряжения у нас не заработал вольтметр. Вернее, он показывал напряжение лишь в одном положении переключателя (L3N), а на остальных никак не реагировал и показания вольтметра были на нуле.

Кстати, на этой же КТПН я занимался настройкой цифрового температурного реле ТР-100, о чем подробно рассказывал в своей публикации (переходите по указанной ссылочке).

В первую очередь я измерил напряжение на клеммах вводного автомата — на всех трех фазах напряжение находилось в пределах 400 (В). Естественно, что после этого я решил проверить схему подключения вольтметрового переключателя.

Открываю дверцу и вижу, что на переключатель приходит три фазных провода (А-301, В-302, С-303) с нулем (провод синего цвета), а также вижу два отходящих на вольтметр провода (304 и 305). Напряжение на клеммах (301-302-303) тоже присутствовало. И вроде бы все верно!

Тем более на схеме, прикрепленной на дверце, именно так и изображено подключение данного переключателя!

Но не тут то было! На самом деле схема подключения переключателя КПУ11-10/3186 выглядит следующим образом. Для его правильной работы необходимо дополнительно установить 6 перемычек между клеммами: (1-3), (5-7), (2-6), (6-10), (4-8), (8-12).

Причем тех, кто занимался монтажом и сборкой вторичных цепей КТПН, не смутила имеющаяся перемычка, которая, скорее всего шла в комплекте с переключателем. Они явно посчитали ее лишней и просто напросто прикрепили ее на приходящие провода (заказчик самостоятельно найдет ей правильное применение).

В итоге, мне пришлось устранять данную неисправность на месте. Перемычку, которая была прикреплена на проводах, я установил на клеммы (2-6-10), а остальные перемычки, изготовленные из провода ПуГВ сечением 1,5 кв.мм, подключил на клеммы (4-8), (8-12), (1-3) и (5-7).

После этого вольтметровый переключатель заработал с полной своей функциональностью. Браво! Причем это была не единственная ошибка монтажников — также на данной КТПН не работала сигнальная арматура положения вводного автомата, неправильно были разделаны кабели от термодатчиков и не заземлены их экраны, и еще много разной мелочи.

Вот посмотрите видео, где я показываю работу вольтметра до и после устранения неисправности в схеме его подключения:

Дополнение. Как оказалось, перемычки (1-3) и (5-7) уже установлены внутри переключателя и их отдельно устанавливать не нужно. Визуально эти перемычки не видно, только если разобрать переключатель, что категорически не нужно делать, или прозвонить соответствующие выводы. Почему тогда на схеме перемычки (1-3) и (5-7) не обозначили, например, жирными линиями, в отличии от остальных?! Лично для меня не понятна логика такого подключения. Почему бы не подключить и остальные перемычки внутри переключателя?! Две перемычки установили, а остальные самим ставить? В общем имейте ввиду данный нюанс.

P.S. Будьте внимательны при проведении электромонтажных работ и прочих работ по обслуживанию электрооборудования! Никогда не спешите и всегда проверяйте за собой и друг за другом! Поверьте, в этом не ничего зазорного. Всем спасибо за внимание, до новых встреч!

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Схема переключателя ламп подвесного потолка » Паятель.Ру


Модные сейчас подвесные потолки с точечными источниками света нуждаются в специальном оборудовании для переключения и зонирования освещения. Имеющиеся в широкой продаже двойные механические выключатели для этого мало пригодны, так как могут управлять только двумя группами ламп, а число вариантов освещения не может быть больше четырех (выключено, включена 1-я группа, включена 2-я группа, включены обе группы).


Электронным способом можно достигнуть большего разнообразия и эффективности освещения. Здесь приводится схема электронного переключателя четырех групп светильников, позволяющего выбрать из 16-ти вариантов освещения. Органов управления — два, это обычный сетевой выключатель и кнопка без фиксации. Выключатель S2 служит для отключения светильников, а кнопка S1 для выбора вариантов.

Сразу после подачи питания схема переходит на нулевой вариант, — когда все светильники выключены. Затем нужно нажать кнопку S1. Пока вы её держите нажатой происходит перебор вариантов освещения. Как только увидите, что светильники зажглись в таком порядке как вам нужно, — отпустите кнопку.

Выключателем S2 вы можете выключить светильники, сохранив в памяти схемы последний вариант их включения. При включении выключателя, если не было перерыва в электроснабжении, светильники будут гореть так же как до выключения.

На самом деле никакой памяти, в прямом смысле слова, в этой схеме нет. Просто когда вы выключаете выключатель S2, вы отключаете светильники, а электронная часть схемы остается под напряжением, и сохраняет свое установившееся состояние.

Теперь подробнее о схеме. Светильники питаются пульсирующим напряжением, полученным с мостового выпрямителя VD2. Тип моста нужно выбирать из условия максимальной мощности в сумме всех ламп. Все лампы подвесного потолка сгруппированы в четыре группы, каждая из которых включается ключевым полевым транзистором с низким сопротивлением открытого канала.

Максимальная мощность в сумме всех ламп, входящих в одну группу не должна быть больше 100 Вт. При такой мощности радиаторы полевым транзисторам не нужны.

Логическая часть схемы сделана на одной микросхеме — CD4060B, представляющей собой 14-разрядный двоичный счетчик с элементами мультивибратора. В схеме мультивибратора работают С3, R2, R3. Генерируемая частота около 100 Гц. Кнопка S1 — размыкающая, пока она не нажата, она шунтирует частото-задающую цепь мультивибратора и таким образом не допускает его генерации. При нажатии кнопка размыкается и мультивибратор работает.

Дребезг контактов, который обязательно имеет место, здесь существенного влияния на работу схемы не оказывает, поскольку импульсы с выхода мультивибратора подвергаются делению как минимум на 64, да и сама частото-задающая RC-цепь оказывает на помехи от дребезга подавляющее действие.

Схема собрана на печатной макетной плате размерами 72×59 мм. Такие платы часто бывают в продаже, на них по 546 отверстий с круглыми печатными площадками. Отверстия расположены рядами с шагом в 2,5 мм.

Импульсные схемы — переключатель — CoderLessons.com

Переключатель — это устройство, которое создает или разрывает цепь или контакт. Кроме того, он может конвертировать аналоговые данные в цифровые данные. Основные требования к коммутатору должны быть быстрыми и переключаться без искрения. Основными частями являются переключатель и связанные с ним схемы.

Есть три типа выключателей . Они —

  • Механические выключатели
  • Электромеханические переключатели или реле
  • Электронные выключатели

Механические выключатели

Механические выключатели — это выключатели более старого типа, которые мы ранее использовали. Но они были заменены электромеханическими переключателями, а затем и электронными переключателями в нескольких приложениях, чтобы преодолеть недостатки первого.

Недостатки механических переключателей заключаются в следующем —

  • Они имеют высокую инерцию, что ограничивает скорость работы.
  • Они производят искры при разрыве контакта.
  • Контакты переключателя сделаны тяжелыми, чтобы нести большие токи.

Механические переключатели выглядят как на рисунке ниже.

Эти механические переключатели были заменены электромеханическими переключателями или реле, которые имеют хорошую скорость работы и уменьшают искрение.

Реле

Электромеханические переключатели также называются реле . Эти переключатели являются частично механическими и частично электронными или электрическими. Они больше по размеру, чем электронные переключатели, и меньше по размеру, чем механические переключатели.

Строительство Эстафеты

Реле выполнено так, что замыкание контакта подает питание на нагрузку. Во внешней цепи у нас есть источник питания для нагрузки и источник питания катушки для управления работой реле. Внутри рычаг соединен с железным ярмом жесткой пружиной для удержания рычага вверх. Соленоид соединен с ярмом с намотанной на него рабочей катушкой. Эта катушка связана с источником питания катушки, как упоминалось.

Рисунок ниже объясняет конструкцию и работу реле.

Работа реле

Когда выключатель замкнут, устанавливается электрический путь, который возбуждает соленоид. Рычаг соединен тяжелой пружиной, которая поднимает рычаг и удерживает его. Когда соленоид получает питание, он тянет рычаг к нему, против силы натяжения пружины. Когда рычаг тянут, движущийся контакт встречает неподвижный контакт, чтобы соединить цепь. Таким образом, соединение цепи включено или установлено, и лампа светится, указывая на это.

Когда переключатель выключен, соленоид не получает ток и обесточивается. Это оставляет рычаг без какого-либо притяжения к соленоиду. Пружина тянет рычаг вверх, что разрывает контакт. Таким образом, соединение цепи отключается.

На рисунке ниже показано, как выглядит практичное реле.

Давайте теперь посмотрим на преимущества и недостатки электромагнитного переключателя.

преимущества

  • Реле потребляет меньше энергии, даже для того, чтобы справиться с большой мощностью в нагрузке.
  • Оператор может находиться на большем расстоянии, даже справиться с высоким напряжением.
  • Нет искрения при включении или выключении.

Недостатки

  • Медленно в работе
  • Части подвержены износу

Типы защелок в реле

В зависимости от режима работы существует множество типов реле, таких как электромагнитное реле, твердотельное реле, тепловое реле, гибридное реле, герконовое реле и т. Д.

Реле выполняет соединение с помощью защелки, как показано на следующем рисунке.

Существует четыре типа защелок в реле. Они —

  • Однополюсный однопроходный (SPST) — этот фиксатор имеет однополюсный и брошен в один бросок для установления соединения.

  • Однополюсный двойной ход (SPDT) — этот фиксатор имеет однополюсный и двойной ход для соединения. У него есть возможность установить соединение с двумя разными цепями, для которых были подключены два броска.

  • Двухполюсный однопроходный (DPST) — этот фиксатор имеет двухполюсный и однопроходный для соединения. Любая из двух цепей может сделать подключение доступным для одной цепи.

  • Double Pole Double Throw (DPDT) — эта защелка имеет двойной полюс и брошена в двойной ход, чтобы выполнить два соединения одновременно.

Однополюсный однопроходный (SPST) — этот фиксатор имеет однополюсный и брошен в один бросок для установления соединения.

Однополюсный двойной ход (SPDT) — этот фиксатор имеет однополюсный и двойной ход для соединения. У него есть возможность установить соединение с двумя разными цепями, для которых были подключены два броска.

Двухполюсный однопроходный (DPST) — этот фиксатор имеет двухполюсный и однопроходный для соединения. Любая из двух цепей может сделать подключение доступным для одной цепи.

Double Pole Double Throw (DPDT) — эта защелка имеет двойной полюс и брошена в двойной ход, чтобы выполнить два соединения одновременно.

На следующем рисунке показан схематический вид всех четырех типов соединений с защелкой.

Электронный переключатель

Следующий тип переключателя, который будет обсуждаться, — это электронный переключатель. Как упоминалось ранее, транзистор является наиболее часто используемым электронным переключателем из-за его высокой скорости работы и отсутствия искрения .

На следующем рисунке показана практичная электронная схема, созданная для обеспечения работы транзистора в качестве переключателя.

Транзистор работает как переключатель во включенном состоянии, когда он работает в области насыщения. Он работает как переключатель в состоянии ВЫКЛ, когда он работает в отключенной области. Он работает как усилитель в линейной области, которая лежит между транзистором и отсечкой. Чтобы иметь представление об этих областях работы, обратитесь к главе о транзисторах из учебного пособия ОСНОВНАЯ ЭЛЕКТРОНИКА.

Когда внешние условия настолько устойчивы и преобладают высокие температуры, тогда простой и нормальный транзистор не подойдет. Для таких целей используется специальное устройство под названием Silicon Control Rectifier , просто SCR . Это будет подробно обсуждаться в учебнике POWER ELECTRONICS.

Преимущества электронного выключателя

Есть много преимуществ электронного переключателя, таких как

  • Меньше по размеру
  • Легче в весе
  • Сверкающая операция
  • Нет движущихся частей
  • Менее подвержен износу
  • Шум меньше операции
  • Быстрая операция
  • Дешевле, чем другие переключатели
  • Меньше обслуживания
  • Безотказный сервис из-за твердого состояния

Транзистор — это простой электронный переключатель, имеющий высокую рабочую скорость. Это твердотельное устройство, и все контакты просты, и поэтому во время работы исключается искрение. Мы обсудим этапы переключения в транзисторе в следующей главе.

Схема цифрового переключателя входов усилителя » Схемы электронных устройств


Когда для нескольких устройств используется один усилитель с одним входом, необходим переключатель входов для усилителя. Для удобства переключатель нужно сделать дистанционным. В качестве коммутирующего элемента используется мультиплексор D4. Это микросхема КМОП серии. Коммутация происходит изменением сопротивления канала полевого транзистора.
Принципиальная схема переключателя двух каналов на четыре направления изображена на рисунке.

Каналы этой микросхемы отличаются высокой линейностью в различном диапазоне коммутируемых аналоговых сигналов,кроне того микросхема позволяет коммутировать как сигналы положительной полярности, так и отрицательной (для этого на микросхему подается двухполярное напряжение питания). Информация о необходимости включения определенного входа поступает в двоичном коде на выводы 10 и 9 микросхемы. При коде числа на этих входах «0» (00) включаются X1 и У1, при коде «1» (01) — Х2 и У2, при коде «2» (10) — Х3 и У3, при «3» — (И) Х4 и У4.

Код для переключении мультиплексора формируется регистровым счетчиком D2, который в данном случае используется только как регистр. С помощью кнопок S1 — S4 на входах «1» и «2» этого счетчика формируется двоичный код нужного входа. Например при нажатии на кнопку S4 через диоды VD1 и VD2 на оба входа поступают единичные уровни, при нажатии на S2 — только на первый вход, на S3 — на второй. При нажатии на S1 на обеих входах нули.

Теперь нужно, чтобы этот код был записан в регистры микросхемы D2. При нажатии на любую из кнопок на одном из входов элемента D1.1 появляется единица, на его выходе ноль. Конденсатор С2 разряжается через резистор R3 и после того как напряжение на ней достигнет логического нуля на выходе элемента D1.2 возникает единица.

Положительный импульс зарядного тока конденсатора С5 поступает на вывод 1 микросхемы D2 и переносит установленный на её входах «1» к «2» код в память, одновременно этот код появляется на её выходах «1» и «2» (выводы 6 и 11), откуда код поступает на управляющие входы мультиплексора D4. Теперь можно отпустить нажатую кнопку, и код на выходах микросхемы D2 не изменится.

Подавление дребезга контактов в данной схеме происходит за счет того что при отпускании кнопки, на входе элемента D1.2 логическая единица устанавливается не сразу, а по истечении времени зарядки конденсатора С2 через резистор R3. Во время дребезга на выходе элемента D1.1 будут импульсы, которые не дадут конденсатору С2 зарядиться до уровня единицы. Это только тогда будет возможно, когда кнопка будет полностью отпущена.

Для индикации номера включенного входа используется светодиодный семисегментным индикатор Н1. Он показывает номера входов — «0», «1», «2» и «3». Микросхема D3 преобразует двоичный код на своих входах в семь сигналов управления сегментами индикатора.

В момент включения схему устанавливается в положение включенного первого входа «0». Для этого используется цепь C1 F2. При включении зарядный ток конденсатора С1 создает положительный импульс на выводе 9 микросхемы D2. Этот вывод используется для установки счетчика и регистра в состояние, когда ка всех выходах нули. Это состояние хранится в памяти до тех пор, пока не будет нажата одна из кнопок.

Вместо микросхем К561 можно использовать такие-же из серии К564. Дешифратор D3 можно заменить на К176ИД2 или К514ИД1. В первом случае совсем другая цоколевка, а во втором потребуется индикатор с общим катодом, например АЛС3 24А, его выводи 3, 9 и 14 придется соединить с общим проводом.

Сравнение сетей с коммутацией пакетов и сетей с коммутацией каналов | Computerworld

Определения: Сети с коммутацией пакетов перемещают данные отдельными небольшими блоками — пакетами — в зависимости от адреса назначения в каждом пакете. При получении пакеты повторно собираются в правильной последовательности, чтобы составить сообщение. Сети с коммутацией каналов требуют выделенных двухточечных соединений во время вызовов.

Сети с коммутацией каналов и сети с коммутацией пакетов традиционно занимали разные пространства внутри корпораций.Сети с коммутацией каналов использовались для телефонных звонков, а сети с коммутацией пакетов обрабатывали данные. Но из-за доступности телефонных линий, а также эффективности и низкой стоимости сетей передачи данных эти две технологии годами выполняли общие обязанности.

Разработанные в 1878 году сети с коммутацией каналов резервируют выделенный канал для всей связи.

Основным оборудованием для сети с коммутацией каналов является система частной телефонной станции (PBX). Компьютерные серверы питают сети с коммутацией пакетов.

В современных сетях с коммутацией каналов электронные сигналы проходят через несколько коммутаторов, прежде чем будет установлено соединение. И во время разговора никакой другой сетевой трафик не может использовать эти коммутаторы.

В пакетных сетях, однако, сообщение разбивается на небольшие пакеты данных, которые ищут наиболее эффективный маршрут по мере того, как каналы становятся доступными. Каждый пакет может идти по разному маршруту; его адрес в заголовке сообщает ему, куда идти, и описывает последовательность повторной сборки на конечном компьютере, говорит Джоэл Малофф, президент консалтинговой компании Maloff Group International Inc.в Анн-Арборе, штат Мичиган

Technologies Converge

Раньше цифровые сети с коммутацией пакетов подключались к портам с коммутацией каналов для получения доступа к компьютерным сетям в разных местах. Но в настоящее время удаленный коммутируемый доступ к корпоративным компьютерам обычно осуществляется через Интернет с использованием глобальных поставщиков Интернет-услуг (ISP), — говорит Рон Вестфолл, аналитик Current Analysis Inc. в Стерлинге, штат Вирджиния.

«Для крупной организации: результат очевиден », — говорит Вестфол.»Если вы можете перейти от оплаты одного междугороднего звонка из отеля в Сингапуре к (оплате) одного местного звонка к провайдеру в Сингапуре и другого звонка к провайдеру рядом с вашей штаб-квартирой в Нью-Йорке, вы платите только за две платы за местный доступ «.

Аналитики прогнозируют постепенный отход от сетей с коммутацией каналов с расширением использования Интернета для передачи голоса и видео.

«Сеть с коммутацией каналов хороша для определенных типов приложений с ограниченным количеством точек доступа.Если вы делаете только голосовые приложения, это здорово, — говорит Малофф. — Но если у вас есть несколько мест, куда нужно добраться, и большие объемы данных для передачи, лучше разбить их на пакеты ».

Voice-over- Поставщики IP отмечают, что вызовы на основе IP дешевле, чем вызовы на основе каналов, но аналитики говорят, что пройдет много времени, прежде чем корпорации откажутся от проверенных систем PBX и будут использовать сети с пакетной передачей данных для передачи данных, голоса и видео. Самое большое препятствие для передачи голоса -over-IP — это плохое качество передачи голоса и задержка вызова, говорит аналитик Майкл Ареллано из Degas Communications Group Inc.в Вестпорте, штат Коннектикут. «Что произойдет в сетях с коммутацией пакетов, если пакеты, содержащие голосовые сигналы, поступят в разное время или в другом порядке? (Перегруженная сеть) также может отбрасывать пакеты».

«В настоящее время в доме есть офисная АТС, а в доме — ИТ», — говорит Вестфолл. «Но если вы опросите ИТ-менеджеров, они не прыгают вверх и вниз, чтобы передать голос в сети передачи данных. У них достаточно проблем с обслуживанием сети передачи данных».

«УАТС — проверенная технология. Несмотря на свою собственность, она эффективна для доставки голосового трафика и предлагает такие функции, как голосовая почта», — говорит Вестфолл.

«Коммутация пакетов более эффективна», — соглашается Малофф. «Но в ближайшие несколько лет у нас будут гибридные системы».

См. Дополнительные Computerworld QuickStudies

Copyright © 2000 IDG Communications, Inc.

Что такое коммутация каналов (сеть с коммутацией каналов)?

Что такое коммутация цепи?

Коммутация каналов — это тип сетевой конфигурации, в которой физический путь получается и выделяется для одного соединения между двумя конечными точками в сети на время выделенного соединения.Обычная служба голосовой связи использует коммутацию каналов. Этот зарезервированный канал используется на время разговора. Пока продолжается звонок, цепь не может быть использована ни для чего другого.

При коммутации каналов полоса пропускания и скорость передачи данных являются фиксированными. Коммутация каналов ориентирована на установление соединения, то есть для ее работы требуется физическое соединение между хостами.

Для чего используется коммутация цепи?

Примеры использования коммутации цепей:

  • Постоянные соединения. Коммутация каналов используется для соединений, которые должны быть непрерывными в течение длительных периодов времени, таких как междугородная связь. Традиционные телефонные системы, т. Е. Стационарные телефоны, являются примером технологии, использующей коммутацию каналов.
  • Коммутируемые сетевые соединения. Когда компьютеры подключаются к Интернету через коммутируемый доступ, они используют коммутируемую сеть общего пользования. При коммутируемом доступе пакеты данных Интернет-протокола (IP) передаются по телефонной сети с коммутацией каналов.
  • Коммутация оптических цепей. В сетях центров обработки данных также используется коммутация каналов. Коммутация оптических цепей используется для масштабирования традиционных центров обработки данных и удовлетворения растущих требований к пропускной способности.

Какие фазы переключения цепи?

Это три основные фазы коммутации цепи:

  1. Установление соединения. Также называется установкой вызова , эта фаза устанавливает выделенный канал между двумя взаимодействующими конечными точками.Стороны отправляют сообщение туда и обратно, подтверждая установленное соединение. Обычно между двумя сторонами существуют промежуточные звенья или переключатели.
  2. Передача данных. Данные — обычно голосовые — передаются от источника к месту назначения. Связь остается неизменной на протяжении всего взаимодействия.
  3. Отказ от подключения. Это также называется этапом разборки . В конце взаимодействия одна из двух конечных точек отправляет сообщение, инициирующее отключение.Путь связи, включая промежуточные звенья, прекращается.
Посмотрите, как коммутация каналов создает выделенный канал, по которому могут связываться два устройства.

Чем отличаются сети с коммутацией пакетов и сетей с коммутацией каналов?

Основное различие между сетями с коммутацией пакетов и сетями с коммутацией каналов состоит в том, что сети с коммутацией каналов ориентированы на установление соединения, а сети с коммутацией пакетов — без установления соединения. Voice over IP — это протокол телефонии, использующий коммутацию пакетов.

При коммутации пакетов информация разбивается на пакеты данных, которые отправляются по сети независимо друг от друга. Нет фиксированного выделенного канала, как при коммутации каналов. Вместо этого пакеты отправляются по сети, которую разделяют другие хосты. Передача тоже не непрерывная.

Некоторые сети с коммутацией пакетов, такие как X.25, имеют коммутируемые виртуальные каналы. Коммутация виртуальных каналов устанавливает выделенное соединение с использованием технологии коммутации пакетов.Виртуальное соединение с коммутацией каналов — это выделенное логическое соединение, которое позволяет нескольким соединениям виртуальных каналов совместно использовать физический путь.

Пакетная коммутация не резервирует заранее всю полосу пропускания для соединения. Благодаря этому он более энергоэффективен. Одним из недостатков коммутации пакетов является то, что качество передачи может быть низким, поскольку могут быть потеряны или отброшены пакеты.

Посмотрите различия между коммутацией пакетов и коммутацией каналов.

Каковы преимущества сетей с коммутацией каналов?

К преимуществам сетей с коммутацией каналов относятся следующие:

  • Выделенный канал. Сети с коммутацией каналов резервируют канал выделенного канала связи, к которому могут получить доступ только две конечные точки.
  • Надежно. Выделенный канал между двумя хостами на время этого соединения снижает вероятность потери данных или других проблем с надежностью.
  • Безопасность. Сети с коммутацией каналов более безопасны, чем сети с коммутацией пакетов, благодаря наличию только двух взаимодействующих сторон на выделенном канале.
  • Качество. После установления соединения этот тип сети обычно имеет стабильное качество соединения без задержек в потоке данных.

Каковы недостатки коммутации цепи?

К недостаткам использования сети с коммутацией каналов можно отнести следующие:

  • Ограниченное использование. Сети с коммутацией каналов могут использоваться только для голосовой связи и недоступны для других типов соединений.
  • Неэффективно. Когда канал постоянно резервируется, даже когда он не используется, пропускная способность сети тратится.
  • Негибкий. Выделенный канал может использоваться только для сетевого трафика с коммутацией каналов и ничего больше. А если выделенных каналов недостаточно, вызовы могут завершиться ошибкой.
  • Более высокая стоимость. Выделенный канал стоит дороже за одно использование.
  • Задержка. Перед отправкой данных требуется дополнительное время для установления соединения.

На вынос

Коммутация каналов — это основа традиционных систем электросвязи и стационарных линий связи.Коммутация пакетов — основа современного Интернета. У каждого есть свои преимущества и недостатки. А иногда они перекрываются — например, когда сеть с коммутацией пакетов имитирует технологию коммутации каналов и устанавливает метод передачи данных с установлением соединения.

Сегодня Интернет и большинство телефонных услуг полагаются на коммутацию пакетов. Но большинство устаревших сетей были разработаны для трафика с коммутацией каналов. Новая архитектура оптической маршрутизации может помочь восполнить этот пробел.

Цепи переключения

— обзор

11.1 Голосовые услуги на основе технологии коммутации каналов

Коммутация каналов — это традиционная технология, используемая в телефонной сети, где между двумя конечными пользователями во время телефонного разговора устанавливается постоянная связь. Одно из видений EPS заключается в том, что IP-технология будет использоваться для всех услуг, включая голосовые, и эффективно заменить услуги с коммутацией каналов. Чтобы понять, как голосовые услуги будут предоставляться с использованием IP-технологии, необходимо иметь базовое представление о технологии, которую она должна заменить.Поэтому в этом разделе кратко описывается технология с коммутацией каналов, а в последующих разделах рассматривается реализация голоса в мобильных сетях с использованием IP-технологии. В EPC мультимедийные услуги операторского уровня предоставляются с помощью технологии IMS, которая рассматривается в следующем разделе.

Центральной частью архитектуры сети с коммутацией каналов является Центр коммутации мобильных услуг (MSC). Это основная сетевая функция, поддерживающая голосовые вызовы, обрабатывая как сигнализацию, относящуюся к вызовам, так и коммутируя фактические голосовые вызовы.Современные развертывания базовых сетей с коммутацией каналов обычно проектируются с разделением функций сигнализации (обрабатываемых сервером MSC) от функций, управляющих медиаплоскостью (обрабатываемых медиашлюзом). На рисунке 11.1 показана упрощенная архитектура.

Рисунок 11.1. Упрощенная архитектура для CS Voice.

Здесь MSC-сервер включает функции управления вызовами и управления мобильностью, в то время как медиа, то есть фактические кадры данных, составляющие голосовые вызовы, проходят через медиа-шлюз, который может преобразовывать между различными медиа и транспортными форматами, а также вызывать определенные функции голосовых вызовов, например функции эхоподавления или конференц-связи.Сервер MSC управляет действиями, предпринимаемыми медиа-шлюзом при конкретном вызове, и взаимодействует с домашним регистром местоположения / домашним сервером подписчика (HLR), который обрабатывает данные подписки для пользователей услуг с коммутацией каналов.

Хотя голосовые вызовы в мобильных сетях были преобразованы в потоки цифровых данных с начала 1990-х годов, сами кадры данных не пересылаются между мобильными устройствами и сетями с использованием общих каналов или IP-технологии.

Это означает, что уникальные ресурсы в сети должны быть выделены для каждого голосового вызова на протяжении всего разговора.Соединение устанавливается при установке вызова и поддерживается до завершения вызова, когда сетевые ресурсы высвобождаются. Таким образом, соединения с коммутацией каналов потребляют сетевые ресурсы с фиксированной полосой пропускания и фиксированной задержкой на время вызова. Это также верно, если фактическое общение не происходит, т.е. если ни одна из сторон не имеет, что сказать. Пока вызов продолжается, выделенные сетевые ресурсы недоступны другим пользователям. Нет очевидного способа оптимизировать эти ресурсы для нескольких пользователей.

Однако следует отметить, что это в некоторой степени упрощение. Чтобы улучшить использование ресурсов для услуг с коммутацией каналов, были разработаны некоторые механизмы, позволяющие несколько более эффективно использовать доступную полосу пропускания, например, за счет использования периодов молчания в голосовых вызовах и включения мультиплексирования нескольких пользователей в общий канал. Кроме того, в беспроводной системе доступная полоса пропускания в некоторой степени изменяется из-за характеристик радиоканала, изменяющихся во время вызова.Это может привести к изменениям качества голоса, поскольку голосовой кодер адаптируется к изменяющейся среде радиосвязи.

Поскольку голосовые данные для сервисов с коммутацией каналов не передаются с использованием IP-пакетов между устройствами и сетью, также нет способа мультиплексировать несколько сервисов в один и тот же сервисный поток или предоставить стандартный интерфейс прикладного программирования (API). к другим службам или приложениям на устройстве.

Однако услуги пакетной передачи данных в GSM, WCDMA и LTE предлагают IP-соединение между мобильным устройством и узлом шлюза.Это IP-соединение может использоваться для любого IP-приложения и может использоваться несколькими приложениями одновременно. Одно из таких приложений — это, естественно, голос. Более того, вызов как таковой может быть чем-то большим, чем голосовой вызов, и состоять из нескольких мультимедийных компонентов в дополнение к самой голосовой среде.

Теперь перейдем к реализации голоса с использованием IP-технологии, которая в рамках EPS с использованием спецификаций 3GPP достигается с помощью мультимедийной IP-подсистемы — IMS.

Что лучше с точки зрения коммутации каналов по сравнению с коммутацией пакетов для MSP?

Сети с коммутацией пакетов и с коммутацией каналов обычно занимают разные пространства внутри корпораций.Несмотря на то, что сети с коммутацией каналов используются преимущественно для телефонных звонков, а сети с коммутацией пакетов используются для обработки данных, доступность телефонных линий и, следовательно, доступность сетей знаний означает, что границы между этими двумя методами с годами стираются. Что лучше всего подходит для вашего бизнеса? Вот коммутация каналов и коммутация пакетов.

Что такое переключение цепей?

При коммутации каналов два узла должны установить канал, прежде чем узлы смогут обмениваться данными.Это метод, при котором выделенный физический путь или цепь подключается к 2 узлам или местоположениям на время соединения. Цепные соединения часто называют сетями, ориентированными на соединение. Основные недостатки коммутации цепи включают в себя;

  • Ссылка останется активной, даже если два устройства не обмениваются данными, что приведет к большой трате памяти.
  • Это намного медленнее, чем коммутация пакетов, поскольку требуется время для подключения двух хостов перед обменом данными.

Коммутация каналов обеспечивает основу для традиционных телефонных сетей. Это может гарантировать, что все сложности создания вызова решаются централизованными средствами сети. Коммутация каналов позволяет свести к минимуму задержку во время телефонных звонков, чтобы обеспечить простейшее взаимодействие с конечным пользователем. Напротив, коммутация пакетов не может поддерживать одинаковый стандарт обслуживания на протяжении всего процесса.

Что такое коммутация пакетов?

Пакетная коммутация — это передача информации по разным сетям.Информационные блоки обеспечивают более быструю и эффективную передачу данных, улучшая взаимодействие с конечным пользователем. Когда пользователь отправляет данные по сети, они передаются небольшими пакетами данных, а не целиком. В отличие от коммутации каналов, коммутация пакетов не требует развертывания канала. Ради эффективности каждый пакет может использовать уникальный маршрут. Несмотря на высокий уровень внедрения в различных компаниях, коммутация пакетов имеет некоторые недостатки:

  • Он не идеален для приложений, которые постоянно используются, например, для голосовых вызовов с большой громкостью.
  • Во время высокого трафика сети могут терять пакеты данных.
  • Отсутствуют протоколы безопасности для пакетов данных во время передачи.

Пакетная коммутация позволяет пользователям одинаково распределять ресурсы полосы пропускания, но не дает никаких обещаний относительно качества. Это полезно для передачи данных, не требующих оперативного реагирования. Коммутация пакетов использует интеллект конечных узлов, а не сетевых средств. Он использует прямую базовую сеть, которая направляет пакеты только с одной стороны на другую.

Пакетная коммутация не идеальна для голосовых вызовов, но ее преимущества трудно игнорировать. Пакеты могут находить свои пути данных к месту назначения без необходимости в канале. Это также надежно, потому что ограничивает потери; Пакеты будут отправлены повторно, если они не достигнут намеченного пункта назначения.

Так как же эти двое равняться друг другу?

Коммутация цепей VS коммутация пакетов

Давайте рассмотрим некоторые из основных различий между двумя вариантами.

Фазы: При коммутации цепи необходимо учитывать три фазы: установление соединения, передача данных и разъединение соединения. Коммутация пакетов может быть прямой передачей данных.

Назначение данных: Когда данные передаются посредством коммутации каналов, информационному блоку известен общий адрес пути, предоставленный источником. Это означает, что вы знаете, что данные редко не достигают места назначения. При коммутации пакетов информационный блок знает только конечный пункт назначения, и поэтому маршрутизаторы определяют непосредственный путь.Бывают случаи, когда коммутация пакетов действительно не работает, но вы можете легко повторно отправить данные, не потеряв их.

Обработка данных: При коммутации каналов данные просто обрабатываются исходной системой. Напротив, при коммутации пакетов данные обрабатываются всеми ближайшими узлами, включая исходную систему. Это означает, что данные могут быть переданы в пункт назначения быстрее, чем если бы они были переданы через переключение каналов.

Задержка между модулями: При коммутации каналов существует небольшая задержка в потоке данных, поскольку существует выделенный путь передачи.Коммутация пакетов не имеет задержки, но существует вероятность различных и длительных задержек при передаче пакетов.

Зарезервированные ресурсы: Резервирование ресурсов — основная функция коммутации каналов, поскольку трейл фиксирован для передачи данных. При коммутации пакетов нет резервирования ресурсов, поскольку полоса пропускания распределяется между пользователями.

Потери данных: Поскольку для коммутации каналов требуется постоянное соединение, возникает значительный объем потерь информации.Часто это не является требованием для коммутации пакетов. Поэтому мощность намного ниже.

Техника хранения и пересылки: Коммутация пакетов основывается на методе накопления и пересылки, чего нет в коммутации каналов. Использование метода промежуточного хранения гарантирует экономичное обслуживание, отложенное соединение (еще одна функция снижения затрат) и не требует физического соединения.

Перегрузка: Перегрузка может возникнуть во время соединения, так как в некоторых случаях канал уже занят коммутацией каналов.При коммутации пакетов на этапе передачи информации может возникнуть перегрузка; многие пакеты доступны в режиме реального времени.

Двусторонний трафик: Коммутация каналов не может обрабатывать двусторонний трафик, тогда как коммутация пакетов была предназначена для обработки двустороннего трафика, поэтому она более эффективна и подходит для крупных предприятий, у которых может быть значительный трафик.

Плата: При коммутации каналов плата зависит от времени и расстояния, а не от трафика внутри сети, тогда как при коммутации пакетов плата зависит от количества байтов и времени соединения.Если ваш бизнес является местным, но имеет дело с большими объемами трафика, вам лучше подойдет коммутация каналов. Но компаниям среднего уровня с более широким охватом следует рассмотреть возможность коммутации пакетов.

Дополнительные соображения для коммутаторов пакетов и каналов

Также следует подумать о том, как возможна запись пакетов с коммутацией пакетов, а не с коммутацией каналов, и как при коммутации каналов существует физический путь между источником информации и получателем данных — чего не происходит при коммутации пакетов.Наконец, коммутация пакетов поддерживает передачу с сохранением и пересылкой, а коммутация каналов — нет.

Сделайте свой окончательный выбор

В целом, коммутация пакетов — более доступный и недорогой вариант. Поскольку вся полоса пропускания часто используется одновременно, коммутация пакетов более эффективна, поскольку не требует поддержки ограниченных соединений, которые могут не использовать всю эту полосу пропускания.

Пакетная коммутация также может работать с простой инфраструктурой по сравнению с коммутацией каналов, и она может быстро реагировать на поломку или сбой частей сети, что ускоряет и удешевляет установку новых узлов, когда они необходимы.

В зависимости от ваших повседневных деловых операций вы предпочтете один метод переключения, а не другой. Коммутация пакетов доступна по цене, эффективна и имеет минимальные потери данных, в то время как коммутация каналов более традиционна и включает в себя более высокий стандарт обслуживания.

Ищете комплексные RMM и PSA для управления вашими требованиями к обслуживанию? Сообщите нам о начале 14-дневной бесплатной пробной версии Atera.

Пакетная коммутация против коммутации каналов

Полное понимание того, как ваша сеть связана вместе, лучше подготовит вас к реагированию на проблемы с подключением, а также к устранению более крупных и критических сетевых проблем.

Двумя основными методами ускорения сетевых подключений являются коммутация каналов и коммутация пакетов. Эти две модели облегчают отправку и получение пакетов данных.

В этой статье мы разберем разницу между коммутацией каналов и коммутации пакетов и расскажем о преимуществах каждого метода.

Что такое переключение цепей?

Коммутация каналов была разработана специально для голосовой связи и не идеальна для передачи данных. При коммутации каналов необходимо создать выделенный канал между отправителем и получателем, прежде чем они смогут общаться друг с другом.

Коммутация каналов чаще всего встречается в телефонных системах, которым требуется выделенный физический тракт.

Коммутация каналов, которая устанавливается на физическом уровне, отправляет все сообщение через выделенный канал. Этот тип переключения не идеален для передачи данных, потому что данные отправляются и принимаются потоками, а это означает, что линия будет оставаться в режиме ожидания в промежутках между всплесками передачи. Это было бы пустой тратой полосы пропускания.

Преимущества коммутации каналов по сравнению с коммутацией пакетов:

  • Уменьшает задержку, которую испытывает пользователь до и во время вызова.
  • Вызов будет выполняться с постоянной пропускной способностью, выделенным каналом и постоянной скоростью передачи данных.
  • Пакеты всегда доставляются в правильном порядке

Недостатки коммутации каналов:

  • Отлично подходит только для голосовой связи
  • Не использует ресурсы эффективно
  • Выделенные каналы для коммутации каналов недоступны для любого другого использования
  • Выделение одного канала за одно использование требует более высокой стоимости

Что такое коммутация пакетов?

В отличие от коммутации каналов, коммутация пакетов не требует использования выделенного канала.Пакетные сети разбивают сообщение на более мелкие пакеты данных, которые затем ищут наиболее эффективный из доступных маршрутов. Ради эффективности каждый пакет данных может идти своим маршрутом. Адрес заголовка содержит исходный и целевой узлы. Как только все пакеты данных достигают правильного места назначения, пакеты извлекаются и повторно собираются, чтобы создать исходное сообщение отправителя.

Пакетная коммутация чаще всего используется для данных и голосовых приложений, которые не зависят от времени.

Преимущества коммутации пакетов над коммутацией каналов:

  • Более эффективен, чем коммутация каналов
  • Пакеты данных могут найти место назначения без использования выделенного канала
  • Уменьшает потерю пакетов данных, поскольку коммутация пакетов позволяет повторно отправлять пакеты
  • Более экономически выгодно, поскольку нет необходимости в выделенный канал для передачи голоса или данных

Недостатки коммутации пакетов:

  • Не идеально подходит для приложений, которые постоянно используются, например, для голосовых вызовов с большой громкостью.
  • Сети с большим объемом данных могут терять пакеты данных во время высокого трафика; эти пакеты данных не могут быть восстановлены или повторно отправлены во время передачи
  • Отсутствуют протоколы безопасности для пакетов данных во время передачи

Хотя коммутация каналов и коммутация пакетов являются наиболее распространенными методами передачи данных по сетям, выбор правильного зависит от потребности вашего бизнеса в передаче голоса и данных.

Если вашей целью является создание четких и надежных каналов голосовой связи, лучшим вариантом может быть коммутация каналов. Если вашей целью является одновременная поддержка нескольких приложений для передачи голоса и данных, то лучшим вариантом может быть коммутация пакетов.

Хотите начать работу с управляемой сетью как услугой?

Datto Networking — это наиболее ориентированная на MSP линейка сетевых продуктов в мире. От ценообразования до развертывания и постоянного управления в облаке — Datto Networking была создана для модели управляемых услуг.

Эта линейка продуктов была создана в облаке и включает установку «просто подключаемый модуль», автоматическую оптимизацию и непрерывность сети. От точек беспроводного доступа до коммутаторов с облачным управлением и граничных маршрутизаторов Datto Networking обеспечивает бесперебойную работу в сети.

Чтобы узнать больше о коммутации каналов по сравнению с коммутацией пакетов и о том, какой из них лучше всего подходит для сетевых нужд вашего бизнеса, свяжитесь с Datto.

Поставщики и ресурсы беспроводной связи RF

О мире беспроводной связи RF

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи.На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, оптоволокно, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, Bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д. Эти ресурсы основаны на стандартах IEEE и 3GPP.Он также имеет академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.

Статьи о системах на основе Интернета вещей

Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей. Читать дальше➤
Также обратитесь к другим статьям о системах на основе Интернета вещей следующим образом:
• Система очистки туалетов самолета. • Система измерения столкновений • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной торговли • Система мониторинга качества воды. • Система Smart Grid • Система умного освещения на базе Zigbee • Умная парковка на базе Zigbee • Система умной парковки на основе LoRaWAN


RF Статьи о беспроводной связи

В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты. Он также охватывает статьи, относящиеся к испытаниям и измерениям, по тестированию на соответствие, используемым для испытаний устройств на соответствие RF / PHY. УКАЗАТЕЛЬ СТАТЬИ ДЛЯ ССЫЛКИ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Читать дальше➤


Основы повторителей и типы повторителей : В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤


Основы и типы замирания : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые замирания и т.д. Читать дальше➤


Архитектура сотового телефона 5G : В этой статье рассматривается структурная схема сотового телефона 5G с внутренними модулями 5G Архитектура сотового телефона. Читать дальше➤


Основы помех и типы помех: В этой статье рассматриваются помехи в соседнем канале, помехи в совмещенном канале, Электромагнитные помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤


5G NR Раздел

В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д. 5G NR Краткий указатель ссылок >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • 5G NR CORESET • Форматы DCI 5G NR • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Эталонные сигналы 5G NR • 5G NR m-последовательность • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • Уровень MAC 5G NR • Уровень 5G NR RLC • Уровень 5G NR PDCP


Учебные пособия по беспроводным технологиям

В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводной связи.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д. См. УКАЗАТЕЛЬ Учебников >>


Учебное пособие по 5G — В этом учебном пособии по 5G также рассматриваются следующие подтемы по технологии 5G:
Учебное пособие по основам 5G Частотные диапазоны Учебник по миллиметровым волнам Волновая рама 5G мм Зондирование волнового канала 5G мм 4G против 5G Испытательное оборудование 5G Сетевая архитектура 5G Сетевые интерфейсы 5G NR канальное зондирование Типы каналов 5G FDD против TDD Разделение сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G TF


В этом учебном пособии GSM рассматриваются основы GSM, сетевая архитектура, сетевые элементы, технические характеристики системы, приложения, Типы пакетов GSM, структура или иерархия кадров GSM, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания, MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы работы с мобильным телефоном, Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Подробнее.

LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE, Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.


RF Technology Stuff

Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты RF на примере преобразователя RF UP от 70 МГц до диапазона C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, колодки аттенюатора. ➤Подробнее.
➤Проектирование и разработка радиочастотного трансивера ➤Конструкция RF-фильтра ➤Система VSAT ➤Типы и основы микрополосковой печати ➤ОсновыWaveguide


Секция испытаний и измерений

В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования ИУ на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.УКАЗАТЕЛЬ испытаний и измерений >>
➤Система PXI для T&M. ➤ Генерация и анализ сигналов ➤Измерения слоя PHY ➤Тест устройства на соответствие WiMAX ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤Тест на соответствие TD-SCDMA


Волоконно-оптическая технология

Оптоволоконный компонент , основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в оптоволоконной связи. Оптические компоненты INDEX >>
➤Учебное пособие по оптоволоконной связи ➤APS в SDH ➤SONET основы ➤SDH Каркасная конструкция ➤SONET против SDH


Поставщики, производители радиочастотных беспроводных устройств

Сайт RF Wireless World охватывает производителей и поставщиков различных радиочастотных компонентов, систем и подсистем для ярких приложений, см. ИНДЕКС поставщиков >>.

Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, PLL, VCO, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, микросхема резистора, микросхема конденсатора, индуктор микросхемы, ответвитель, оборудование ЭМС, программное обеспечение для проектирования радиочастот, диэлектрический материал, диод и т. д.Производители радиокомпонентов >>
➤Базовая станция LTE ➤RF Циркулятор ➤RF Изолятор ➤Кристаллический осциллятор


MATLAB, Labview, встроенные исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. ИНДЕКС ИСХОДНОГО КОДА >>
➤3-8 декодер кода VHDL ➤Код MATLAB для дескремблера ➤32-битный код ALU Verilog ➤T, D, JK, SR триггеры labview коды


* Общая информация о здравоохранении *

Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
СДЕЛАЙТЕ ПЯТЬ
1. РУКИ: часто мойте их
2. КОЛЕНО: Откашляйтесь
3. ЛИЦО: Не трогай его
4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВОВАТЬ: Болен? Оставайся дома

Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и установить систему видеонаблюдения >> чтобы спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таким странам, как США и Китай, чтобы остановить распространение COVID-19, поскольку это заразное заболевание.


RF Беспроводные калькуляторы и преобразователи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц измерения. Сюда входят такие беспроводные технологии, как GSM, UMTS, LTE, 5G NR и т. Д. СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤5G NR ARFCN против преобразования частоты ➤Калькулятор скорости передачи данных LoRa ➤LTE EARFCN для преобразования частоты ➤Калькулятор антенн Яги ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
См. Главную страницу IoT >> и следующие ссылки.
➤ НИТЬ ➤EnOcean ➤Учебник по LoRa ➤Учебник по SIGFOX ➤WHDI ➤6LoWPAN ➤Zigbee RF4CE ➤NFC ➤Lonworks ➤CEBus ➤UPB



СВЯЗАННЫЕ ЗАПИСИ


Учебники по беспроводной связи RF



Датчики различных типов


Поделиться страницей

Перевести страницу

Иридиум для передачи данных с коммутацией каналов (CSD)

Иридиум для передачи данных с коммутацией каналов (CSD)

Асинхронный, с коммутацией каналов, двунаправленный

Асинхронная двунаправленная служба с коммутацией каналов, скорость 2400 бит / с, которая позволяет предоставлять услуги коммутируемого доступа.Его можно использовать для больших объемов данных, включая файлы размером в десятки и сотни мегабайт.

Асинхронный, с коммутацией каналов, двунаправленный

Асинхронная двунаправленная служба с коммутацией каналов, скорость 2400 бит / с, которая позволяет предоставлять услуги коммутируемого доступа. Его можно использовать для больших объемов данных, включая файлы размером в десятки и сотни мегабайт.

Идеально подходит для приложений, где ограниченному количеству полевых устройств необходимо отправлять свои данные несколько раз в день, или где пользователь из центрального пункта обращается к полевым приложениям для получения своих данных.

  • Сеть из 66 активных низкоорбитальных спутников Iridium покрывает Землю, обеспечивая надежное покрытие от полюса до полюса
  • Получайте аналитические данные и отправляйте беспроводные команды для бизнес-операций и удаленных ресурсов в любую точку мира
  • Сеть Iridium LEO обеспечивает соединения с малой задержкой через более короткие пути передачи, чем сети GEO
  • Компактные, легкие, маломощные и недорогие варианты для доставки Iridium CSD через ваши индивидуальные решения
  • Подобно телефонному звонку, CSD использует технологию коммутации каналов через модем коммутируемого доступа и ISDN для передачи данных с низкой пропускной способностью, чтобы хост-приложение могло инициировать / завершать многочисленные соединения

Связанные технологии для разработчиков

Войдите, чтобы получить доступ к дополнительным ресурсам

Пример

Последнее обновление

Размер

Название документа

Пример: Iridium Polar Research Solutions

Имя файла

CS_Iridium Polar Research Solutions_MAY18.pdf

Описание

Пример использования решений Iridium для полярных исследований

Дата

31 мая 2018 г. 09:06 AM EST

Сопутствующие товары

Ядро Iridium 9523, модуль Iridium 9602, модуль Iridium 9602

Сопутствующие услуги

Iridium RUDICS, Iridium Short Burst Data® (SBD®), Iridium Circuit Switched Data (CSD)

Сравнительная таблица

Название документа

Iridium 000 Mobile Satellite Services — Сравнительная таблица Имя файла

CC_Iridium Mobile Satellite Services_Сравнительная таблица_010821 (2).pdf

Описание

Таблица сравнения узкополосных услуг Iridium с услугами Iridium Certus Midband и широкополосного доступа Дата: 8 января 2021 г.

Дата

8 января 2021 г. 11:40 утра EST

Сопутствующие услуги

Данные коммутации каналов Iridium (CSD), Iridium Short Burst Data® (SBD®)

Verticals

Iridium Certus, Land Mobile

Официальное уведомление

Название документа

Iridium — Политика справедливого доступа

Имя файла

LGL_Iridium Fair Access Policy_Block 1_v.

Схем

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *