+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

LM317T схема включения | Практическая электроника

В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:

  • способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
  • выходной ток может достигать 1,5 А;
  • максимальная рассеиваемая мощность 20 Вт;
  • встроенное ограничение тока, для защиты от короткого замыкания;
  • встроенную защиту от перегрева.

У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе. Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.

Второй параметр – ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум 100 мкА, но в реальных условиях он может достигать 500 мкА. Поэтому чтобы обеспечить стабильное выходное напряжение приходиться через делитель R1-R2 гнать ток от 5 мА. А это значит что сопротивление R1 не может больше 240 Ом, кстати именно такое сопротивление рекомендуют в схемах включения из datasheet.
Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:
R2=R1*((Uвых/Uоп)-1).
Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.

Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.

R1, Ом R2, Ом
LM317T схема включения 5v 120 360
LM317T схема включения 12v 240 2000

 

Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.

А вот расположение выводов LM317T:

  1. Регулировочный
  2. Выходной
  3. Входной

Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.

На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.

На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:

  • для одноватных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
  • для трехватных светодиодов I = 1 А, R1 = 1,2 Ом, мощностью не менее 1,2 Вт.

На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.

Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.

Мощные аналоги LM317T — LM350 и LM338

Если выходного тока в 1,5 А недостаточно, то можно использовать:

  • LM350AT, LM350T — 3 А и 25 Вт (корпус TO-220)
  • LM350K — 3 А и 30 Вт (корпус TO-3)
  • LM338T, LM338K — 5 А

Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.

hardelectronics.ru

Линейный стабилизатор напряжения с регулировкой на LM317 и PNP транзисторе

Всем привет!
В данной статье я расскажу об ещё одном линейном стабилизаторе напряжения, который собрал относительно недавно. Построен он на популярной микросхеме LM317 и биполярном PNP транзисторе. Готовый модуль выглядит следующим образом:

Видео по теме:

В прошлой статье я рассказал о похожем линейном стабилизаторе напряжения на TL431 и NPN транзисторах.

Данная схема в отличие от вышеупомянутой содержит немного меньше деталей, и способна выдерживать более высокие токи, благодаря более мощному транзистору.

Основные характеристики:
• Входное напряжение до 30В (в моем варианте т.к. конденсатор на входе на 35В)
• Выходное напряжение 3-25В (зависит от тока, чем больше ток, тем меньше максимальное выходное напряжение)
• Ток до 9А (с транзистором TIP36C при входном напряжении 18В и выходном 12В, а вообще зависит от выбранного транзистора и рассеиваемой мощности )

• Стабилизация выходного напряжения при изменении входного
• Стабилизация выходного напряжения при изменении тока нагрузки
• Отсутствие защиты от КЗ
• Отсутствие защиты по току

Модуль собран по следующей схеме:

Пояснения по схеме:
Микросхема LM317 куплена на АлиЭкспресс (скорее всего не оригинальная) имеет 3 вывода. Выводы обозначены на схеме и картинке в нижнем правом углу.

Микросхема управляет мощным биполярным PNP транзистором VT1. Я для этой цели использовал TIP36С. Основные характеристики транзистора: напряжение – 100В, ток коллектора – 25А (на самом деле 8-9А, т.к. транзистор не оригинальный и куплен на АлиЭкспресс), статический коэффициент передачи тока от 10.

Очень важно следить за мощностью, которую рассеивает транзистор, чтобы она не превышала 50-55 Ватт (для транзистора в корпусе ТО-247 или похожих по габаритам, а для транзисторов в корпусе ТО-220 – не более 25-30 Ватт) . Рассчитать можно по формуле:

P = (U выход -U вход)*I коллектора

Например входное напряжение — 18 В, мы выставили выходное напряжение — 12 В, ток у нас 9 А:
Р = (18В-12В) *9А = 54 Ватт

Резисторы R1, R2, R3 задают напряжение, которое наша схема будет стабилизировать. Резистор R1 берется стандартно на 240 Ом (мощность любая). Резистор R2 переменный, лучше брать в районе 2-3к Ом. Изначально я поставил на 4,7к Ом, в результате где-то в середине диапазона вращения ручки напряжение достигает максимального значения и дальше не меняется. Я припаял параллельно потенциометру резистор на 3,9к Ом, регулировка стала более плавной и стал использоваться весь диапазон вращения ручки. Резистор R3 дополнительный, служит для того, чтобы немного сдвинуть нижнюю и верхнюю границы диапазона регулировки в сторону увеличения. Общее правило: чем больше суммарное сопротивление резисторов R2 и R3, тем выше выходное напряжение. Это подтверждает формула из Даташита:

Линейный стабилизатор напряжения с регулировкой на LM317 и PNP транзисторе
Резистор R4 служит для небольшого ограничения тока на вход микросхемы LM317. Сопротивление 10 Ом. LM317 максимально может через себя пропустить около 1А ( до 1,5А, если оригинальная). На первый взгляд мощность резистора R4 должна быть:

P= I^2*R = 1*1*10 = 10 Ватт

Но т.к. ток проходит ещё и через базу транзистора VT1, в обход резистора, можно взять резистор R4 и на 5Ватт.

Указанные выше компоненты составляют ядро схемы, всё остальное — дополнительные элементы для улучшения стабильности и обеспечения некоторых защит.

Конденсатор C2 (керамический 1-10 мкФ) – припаивается параллельно переменному резистору и улучшает стабильность регулировки.Чтобы при разряде конденсатора C2 защитить микросхему LM317 ставится диод D2. Они вместе с диодом D1 защищают микросхему и транзистор от обратного тока. Диод D3 служит для защиты схемы от ЭДС самоиндукции при питании электродвигателей. Конденсаторы C4 (электролитический 35В 470-1000 мкФ) и C5 (керамический 1-10 мкФ) образуют входной фильтр, а конденсаторы C1 (электролитический 35В 1000-3300 мкФ) и C3 (керамический 1-10 мкФ) образуют выходной фильтр. Резистор R5 на 10к Ом (мощность любая) создает небольшую нагрузку для стабильности работы схемы на холостом ходу и помогает быстрее разрядить конденсаторы в случае отключения питания схемы.

Процесс сборки:
Сначала всё собрал навесным монтажом и протестировал.

Линейный стабилизатор напряжения с регулировкой на LM317 и PNP транзисторе
Далее спаял схему на макетной плате в виде модуля.
Линейный стабилизатор напряжения с регулировкой на LM317 и PNP транзисторе
Линейный стабилизатор напряжения с регулировкой на LM317 и PNP транзисторе
Добавил небольшой радиатор.
Линейный стабилизатор напряжения с регулировкой на LM317 и PNP транзисторе
С таким радиатором схема может долго работать только на небольших токах. Для того, чтобы схема работала долго на полную мощность нужен более массивный радиатор.
Линейный стабилизатор напряжения с регулировкой на LM317 и PNP транзисторе
LM317 и транзистор можно крепить на радиатор без изолирующих прокладок, т.к. по схеме эти выводы (выход LM317 и коллектор транзистора) соединены.

Протестировал готовый модуль и проверил характеристики.

Линейный стабилизатор напряжения с регулировкой на LM317 и PNP транзисторе
В целом схема мне понравилась: довольно простая и ток можно получить приличный. Не хватает только защит от КЗ и по току. Ну и кончено КПД не высокий и тепла выделяет не мало. Но это особенность всех подобных линейных схем, которая лично меня не очень беспокоит.

Всем спасибо за внимание! Надеюсь, статья была для Вас полезной.

Линейный стабилизатор напряжения с регулировкой на LM317 и PNP транзисторе Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

LM317 регулируемый стабилизатор напряжения и тока. Характеристики, онлайн калькулятор, datasheet

Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с  регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.

Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.

Технические характеристики стабилизатора LM317:

  • Обеспечения выходного напряжения  от 1,2 до  37 В.
  • Ток нагрузки до  1,5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

 

Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.

Назначение выводов микросхемы:

Онлайн калькулятор LM317

Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.


Калькулятор для расчета стабилизатора тока на LM317 смотрите здесь.

Примеры применения стабилизатора LM317 (схемы включения)

Стабилизатор тока

Данный стабилизатор тока можно применить в схемах  различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.

В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току  от 10 мА до 1,56 A:

Источник питания на 5 Вольт с электронным включением

Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:

Регулируемый стабилизатор напряжения на LM317

Схема включения с регулируемым выходным напряжением

lm317 калькулятор

Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.

Скачать datasheet и калькулятор для LM317 (319,9 Kb, скачано: 41 596)

Аналог LM317

К аналогам  стабилизатора LM317 можно отнести следующие стабилизаторы:

  • GL317
  • SG31
  • SG317
  • UC317T
  • ECG1900
  • LM31MDT
  • SP900
  • КР142ЕН12 (отечественный аналог)
  • КР1157ЕН1 (отечественный аналог)

www.joyta.ru

БЛОК ПИТАНИЯ НА LM317

   Блок питания – это непременный атрибут в мастерской радиолюбителя. Я тоже решил собрать себе регулируемый БП, так как надоело каждый раз покупать батарейки или пользоваться случайными адаптерами. Вот его краткая характеристика: БП регулирует выходное напряжение от 1,2 Вольта до 28 Вольт. И обеспечивает нагрузку до 3 А (зависит от трансформатора), что чаще всего достаточно для проверки работоспособности радиолюбительских конструкций. Схема проста, как раз для начинающего радиолюбителя. Собранная на основе дешёвых компонентов — LM317 и КТ819Г.

Схема регулируемого блока питания LM317


Список элементов схемы:

  • Стабилизатор LM317
  • Т1 — транзистор КТ819Г
  • Tr1 — трансформатор силовой
  • F1 — предохранитель 0.5А 250В
  • Br1 — диодный мост
  • D1 — диод 1N5400
  • LED1 — светодиод любого цвета
  • C1 — конденсатор электролитический 3300 мкф*43В
  • C2 — конденсатор керамический 0.1 мкф
  • C3 — конденсатор электролитический 1 мкф*43В
  • R1 — сопротивление 18K
  • R2 — сопротивление 220 Ом
  • R3 — сопротивление 0.1 Ом*2Вт
  • Р1 — сопротивление построечное 4.7K

Цоколёвка микросхемы и транзистора

Цоколёвка микросхемы и транзистора БП

   Корпус взял от БП компьютера. Передняя панель изготовленная из текстолита, желательно установить вольтметр на этой панели. Я не установил, потому что пока не нашёл подходящего. Также на передний панели установил зажимы для выходных проводов.

Корпус для схемы на lm317 взял от БП компьютера

Корпус для схемы на lm317 БП

   Входную розетку оставил для питания самого БП. Печатная плата сделанная для навесного монтажа транзистора и микросхемы стабилизатора. Их закрепил на общем радиаторе через резиновую прокладку. Радиатор взял солидный (на фото его видно). Его нужно брать как можно больший — для хорошего охлаждения. Всё-таки 3 ампера — это немало!

БЛОК ПИТАНИЯ НА LM317 самодельный - детали

БЛОК ПИТАНИЯ НА LM317 для начинающих

   Посмотреть все характеристики и варианты включения микросхемы LM317 можно в даташите. Схема в настройке не нуждается и работает сразу. Ну по крайней мере у меня заработала сразу. Автор статьи: Владислав.

   Форум по микросхемам стабилизаторам

   Обсудить статью БЛОК ПИТАНИЯ НА LM317


radioskot.ru

Стабилизатор тока на lm317 | AUDIO-CXEM.RU

Ток на выходе блока питания может увеличиться вследствие уменьшения сопротивления нагрузки (простой пример, короткое замыкание), также изменение тока нагрузки происходит из-за изменения напряжения питания её. Стабилизатор тока на lm317 обеспечивает стабильность тока (ограничение тока) на выходе в случаях описанных выше.

Данный стабилизатор может быть применён в схемах питания светодиодов, зарядных устройствах (ЗУ), лабораторных источников питания и так далее.

Если, к примеру, рассматривать светодиоды, то необходимо учитывать тот факт, что для них нужно ограничивать ток, а не напряжение. На кристалл можно подать 12В и он не сгорит, при условии, что ток будет ограничен до номинального (в зависимости от маркировки и типа светодиода).

Расположение выводов LM317Расположение выводов LM317

Основные технические характеристики LM317

Максимальный выходной ток 1.5А

Максимальное входное напряжение 40В

Выходное напряжение от 1.2В до 37В

Более подробные характеристики и графики можно посмотреть в даташите

на стабилизатор.

Схема стабилизатора тока на lm317

Стабилизатор тока на LM317Стабилизатор тока на LM317

Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Минусом является низкий КПД (в счёт своей линейности), и поэтому происходит значительный нагрев кристалла микросхемы. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.

За величину тока стабилизации (ограничения) отвечает резистор R1. С помощью данного резистора можно выставить ток стабилизации, например 100мА, тогда даже при коротком замыкании на выходе схемы будет протекать ток, равный 100мА.

Сопротивление резистора R1 рассчитывается по формуле:

R1=1,2/Iнагрузки

Изначально необходимо определиться с величиной тока стабилизации. Например, мне необходимо ограничить ток потребления светодиодов равный 100мА. Тогда,

R1=1,2/0,1A=12 Ом.

То есть, для ограничения тока 0,1A необходимо установить резистор R1=12 Ом. Проверим на железе… Для проверки собрал схему на макетной плате. Резистор на 12 Ом искать было лень, зацепил в параллель два по 22 Ома (были под рукой).

Схема на макетной платеСхема на макетной плате

Выставил напряжение холостого хода, равное 12В (можно выставить любое). После чего, я замкнул выход на землю, и стабилизатор LM317 ограничил ток 0,1А. Расчеты подтвердились.

Ограничение тока

Ограничение тока Стабилизатор тока на LM317Стабилизатор тока на LM317

При увеличении или уменьшении напряжения ток остается стабильным.

Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.

Если использовать данный стабилизатор тока на LM317 в лабораторном блоке питания, то необходимо устанавливать переменный резистор проволочного типа, простой переменный резистор не выдержит токи нагрузки протекающие через него.

Для ленивых представляю таблицу значений резистора R1 в зависимости от нужного тока стабилизации.

ТокR1 (стандарт)
0.02551 Ом
0.0524 Ом
0.07516 Ом
0.113 Ом
0.158.2 Ом
0.26.2 Ом
0.255.1 Ом
0.34.3 Ом
0.353.6 Ом
0.43 Ома
0.452.7 Ома
0.52.4 Ома
0.552.2 Ома
0.62 Ома
0.652 Ома
0.71.8 Ома
0.751.6 Ома
0.81.6 Ома
0.851.5 Ома
0.91.3 Ома
0.951.3 Ома
11.3 Ома

Таким образом, применив галетный переключатель и несколько резисторов, можно собрать схему регулируемого стабилизатора тока с фиксированными значениями.

 стабилизатор токастабилизатор тока

Даташит на LM317 СКАЧАТЬ


Похожие статьи

audio-cxem.ru

Схема простого стабилизатора с регулировкой по напряжению

Лабораторный блок питания на LM317

Здравствуйте друзья!

Лабораторный блок питания необходим радиолюбителю, без него как без рук. Для начинающих радиолюбителей я предлагаю собрать схему простого стабилизатора с регулировкой по напряжению на микросхеме LM317, на очень распространенных и не дорогих радиоэлементах. Диапазон выходного напряжения от 1,5 до 37В. Ток может достигать 5А, зависит от используемого силового транзистора и теплоотвода. Входной трансформатор можно использовать любой выдающий нужный вам ток и  напряжение до 37В. Стабилизатор не боится короткого замыкания, однако держать длительное время выводы замкнутыми не рекомендуется, так как КТ818 и LM317 при этом начинают достаточно ощутимо греться и при неэффективном теплоотводе могут выйти из строя.

Принципиальная  схема стабилизатора с регулировкой по напряжению

Принципиальная схема стабилизатора с регулировкой по напряжению LM317

Печатная плата стабилизатора с регулировкой по напряжению

Печатная плата стабилизатора с регулировкой по напряжению LM317

Достоинства данного стабилизатора.

  • простота в изготовлении
  • надежность
  • дешевизна
  • доступность компонентов

Недостатки

  • низкий КПД.
  • необходимость использования массивных радиаторов.
  • не смотря на компактность самой платы. Размеры стабилизатора с радиатором достаточно внушительного размера.

Для изготовления данного устройства Вам понадобится:

  • Стабилизатор LM317 -1шт.
  • Транзистор КТ818 -1шт. в пластиковом корпусе (TO-220)
  • Диод КД522 или аналогичный -1шт.
  • Резистор R1 -47ОМ желательно от 1Вт -1шт.
  • Резистор R3 220Ом от 0.25 Вт -1шт.
  • Переменный резистор линейный — 5кОм -1шт.
  • Конденсатор электролитический 1000мФ от 50В -1шт.
  • Конденсатор электролитический 100мФ от 50В -1шт.
  • Диодный мост током от 5А

Данная схема не критична к точному соблюдению номиналов радио элементов. Например резистор R1 может быть от 30 до 50 Ом, резистор R3 от 200 до 240Ом. Диод можно не ставить.

Фильтрующие конденсаторы можно поставить и большей емкостью, однако стоит учитывать, что конденсатор дает небольшой прирост по напряжению.

Транзистор КТ818 можно заменить аналогичными импортного производства 2N5193, 2N6132, 2N6469, 2N5194, 2N6246, 2N6247.

Сборка стабилизатора на LM317

Сборка стабилизатора выполняется на одностороннем стеклотекстолите и выглядит примерно так.

готовая плата блока питания на LM317готовая плата блока питания на LM317

Диодную сборку следует выбирать исходя из максимального тока способного дать трансформатор.

Установка платы блока питания на LM317

Транзистор и микросхему я установил на радиатор через изолирующие прокладки. Радиатор выбрал максимально большой из имеющихся и подходящий под мой корпус. Закрепил его двумя болтами к нижней крышке корпуса.

Сборка лаболаторного блока питания на LM317 и КТ818

На радиатор установил кулер от старой видеокарты, для более эффективного охлаждения. В верхней и задней крышке просверлил вентиляционные отверстия.

Сборка лаболаторного блока питания на LM317 и КТ818

У выбранного мной трансформатора для стабилизатора на LM317 только одна вторичная обмотка на 27В. По этому для питания вольтметра и вентилятора я использовал плату от зарядного устройства мобильного телефона. Она выдает напряжение 5В и ток до 900мА.

Вид задней крышки лаболаторного блока питания

Готовый блок питания выглядит так.

Вид готового лаболаторного питания с нагрузкойВид готового лаболаторного питания без нагрузки

Простой двух полярный стабилизатор напряжения на LM317.

За основу устройства взята схема описанная в выше, и добавлено плечо стабилизации отрицательного напряжения.

схема двухполярного стабилизатора с регулировкой напряжения

Характеристики и достоинства двух полярного стабилизатора

  • напряжение стабилизации от 1,2 до 36 В;
  • максимальный ток до 5 А;
  • используется малое количество элементов;
  • простота в выборе трансформатора, так как можно использовать вторичную обмотку без центрального отвода;

Детали устанавливаются на односторонний стеклотекстолит. Транзистор VT1, VT2 и микросхемы LM317 и LM337 следует устанавливать на радиаторы. При установке на общий радиатор следует использовать изолирующие прокладки и втулки.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

electrongrad.ru

Lm317t Характеристики Схема Подключения — tokzamer.ru

Тогда схема нашего регулируемого двуполярного источника может выглядеть например так: Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов.


Например, мне необходимо ограничить ток потребления светодиодов равный мА. Его мощность выбирается не менее 0,5 Вт; для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт.

Недостаток — бОльшее количество элементов, наличие помех. При низком падении lm не способна обеспечить необходимый коэффициент стабилизации, что может приводить к нежелательным пульсациям при работе.
Очень простой регулируемый блок питания на LM317

Для ее работы зная потребляемый светодиодом ток, необходимо подобрать сопротивление подстроечного резистора R1. В момент включения такого источника на его выходе минимальное напряжение, которое плавно увеличивается до установленного 15В по мере заряда конденсатора C1.

Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения или тока LM по цене 18 центов за штуку.

Рекомендации по номиналам конденсатора на выходе LM очень впечатляют,- это диапазон от 10 до мкФ.

А началось все с недоумения — почему это на выходе во всех схемах такой низкоомный делитель?


В Datasheets всех производителей есть параметр Adjustment Pin Current ток по входу подстройки. Светодиод будет включаться, с требуемой яркостью, которая не будет зависеть от поданного постоянного питания на вход микросхемы.

Схема простого регулируемого БП на LM317T Часть 1

Похожие статьи

Как проверить lm мультиметром? Мощность рассеивания не более 20 Вт.

Встречается в различных видов корпусов.

В других регуляторах регулирование осуществляется по цепи Отрицательной обратной связи, что максимально улучшает все параметры. Описание и применение

Параметр весьма интересный и важный, определяющий, в частности, максимальную величину резистора в цепи входа Adj. Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.


Простенько и со вкусом,- закрылся себе транзистор при напряжении база-эмиттер ниже 1,25 В и все тут.

Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. И уж точно — лучшую регулировку, а также и широчайший диапазон по типам и номиналам резисторов и конденсаторов.

О принципе регулирования выходного напряжения LM
Стабилизатор тока на LM 317

Мощные аналоги LM317T — LM350 и LM338

Правда, это честно показано на диаграмме Ripple Rejection. Теперь — о самом неприятном, а именно о несоответствии реальных электрических характеристик заявленным.


Это типовая схема стабилизатора напряжения с выходным напряжением 12 В.

Рекомендации по применению защитных диодов для LM носят обще-теоретический характер и рассматривают ситуации, которых не бывает на практике. Самым эффективный способ, это собрать простой стенд используя макетную плату для проверки и запитать все от батарейки,. Для этого в управляющую цепь включаем цепочки из транзисторов и резисторов, как показано на рисунке ниже.

Микросхема LM в корпусе ТО способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. А схемы и данные в его datasheet все те же … Итак, недостатки LM, как микросхемы и ошибки в рекомендациях по ее использованию.

Также легко сделать на этой микросхеме источник с несколькими фиксированными напряжениями, которые можно переключать программно, с помощью микроконтроллера. Конфигурация выводов Типовая схема включения LM Схема регулируемого блока питания на LM будет выглядеть так: Мощность трансформатора Вт, напряжение вторичной обмотки вольт. Следовательно, на вход Vin надо подать больше чем 5 вольт.

Технические характеристики:


Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. А для LM она фактически означает степень собственной ущербности и показывает, как же хорошо LM борется с пульсациями, которые сама же берет с выхода и опять загоняет внутрь самой себя. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так: Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. Кроме отечественной интегральной схемы КРЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в раза больше.

Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Стабилизация и защита схемы Емкость С2 и диод D1 не обязательны. Аналоги lm Иногда найти конкретно требуемую микросхему на рынке не удается возможным, тогда можно воспользоваться подобными ей. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.

Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах. Можно упростить себе жизнь, если использовать микросхему LM — аналог микросхемы LM, но на отрицательное напряжение. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Поэтому вам даже не придется переделывать схему готового устройства с целью подгонки параметров регулятора напряжения или неизменяемого стабилизатора.
Блок питания на LM338T part 1

Техническая документация к электронным компонентам на русском языке.

Мощность рассеивания не более 20 Вт.

А, значит, все рекомендации и особенно схемы приложений, приводимые в datasheets, носят теоретический, рекомендательный характер.

Заинтересовавшихся прошу… Немного теории: Стабилизаторы бывают линейные и импульсные.

А в LM — при снижении выходного напряжение ниже 1,25 В. Надо бы хуже, да некуда. В процессе подбора сопротивлений допускается небольшое отклонение 8…10 мА. Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах.

Смотрите также: Подключение к двухклавишному выключателю

Его мощность выбирается не менее 0,5 Вт; для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт. Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля.

Теперь — о самом неприятном, а именно о несоответствии реальных электрических характеристик заявленным. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.

Производители этих компонентов гарантируют более высокую стабильность выходного напряжения, низкий ток регулирования, повышенную мощность с тем же минимальным выходным напряжением не более 1,3 В. Что касается второго параметра Iadj, то это фактически паразитный ток. Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения или тока LM по цене 18 центов за штуку. И не удивительно в связи с этим, что в цепи Adj рекомендуется ставить конденсатор С2. Вот только одно маленькое НО … Внутренняя часть LM содержит стабилизатор тока, в котором использован стабилитрон на напряжение 6,3 В.

Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля. Значит, надо следить не только за максимальным током нагрузки, но и за минимальным тоже? Его мощность выбирается не менее 0,5 Вт; для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт. Затем подключают в схему со светодиодом.
Параллельное включение стабилизаторов …

tokzamer.ru

Схема

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *