+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Схема изготовления стабилизатора на 12в своими руками

Стабилизаторы напряжения являются важнейшей частью всех электронных схем, они дают непрерывное, устойчивое питание компонентам системы, обеспечивая стабильность её параметров и защиту при неисправностях в схеме или в первичном источнике напряжения. 12 вольт постоянного напряжения – наиболее востребованное, применяется для питания множества устройств, используемых отдельно или встроенных в различные конструкции.

Стабилизация с помощью стабилитрона

Классический стабилизатор

Большинство систем питания построено по схеме линейного стабилизатора напряжения на 12 вольт, которая может иметь несколько вариантов исполнения:

  • Параллельный – регулировка с помощью включённого параллельно управляющего элемента;
  • Последовательный – включение элемента регулировки последовательно с нагрузкой.

Простейшим стабилизатором напряжения является стабилитрон, также называемый диодом Зенера – это диод, работающий постоянно в режиме пробоя. Напряжение, при котором наступает пробой, – это напряжение стабилизации, основной параметр стабилитрона. При параллельном включении нагрузки получается элементарный стабилизатор напряжения, примерно равного напряжению стабилизации.

Балластное сопротивление R определяет ток стабилитрона, указанный в спецификации. Такое решение отличается низким коэффициентом стабилизации, зависимостью от температуры и применяется при малых токах нагрузки для питания отдельных компонентов основной схемы. Возможно значительно увеличить выходной ток, если последовательно с нагрузкой установить мощный транзистор.

Линейный стабилизатор с транзистором

В этой схеме транзистор подключён последовательно с нагрузкой как эмиттерный повторитель, весь ток течёт через его переход. Уровнем на базе управляет стабилитрон: при возрастании тока на выходе на базу подаётся большее напряжение, проводимость транзистора увеличивается, и выходное напряжение восстанавливается. Мощность такого стабилизатора определяется типом транзистора и может достигать десятков ватт.

Важно отметить! В таком виде стабилизатор не защищён от перегрузки и короткого замыкания, при котором мгновенно выходит из строя. Для практического применения схема значительно усложняется: вводятся элементы ограничения тока и различные защитные функции.

Интегральный стабилизатор

Стабилизатор напряжения 12 вольт легко может быть реализован, если применить специализированный интегральный линейный стабилизатор из серии 78ХХ с фиксированным выходным напряжением. Для выходного напряжения 12 вольт выпускаются микросхемы 7812, у разных производителей они носят наименование LM7812, L7812, K7812 и т.д.

Отечественный аналог – КР142ЕН8Б. Производятся в корпусах TO – 220, TO – 3, D2PAK с тремя выводами. Эти микросхемы можно найти в блоках питания любой аппаратуры, они практически вытеснили стабилизаторы на дискретных элементах.

Основные характеристики стабилизатора в широко распространённом корпусе TO – 220:

  • Выходное стабилизированное напряжение – от 11,5 до 12,5 В;
  • Входное напряжение – до 30 В;
  • Выходной ток – до 1А;
  • Встроенная защита от перегрузки и короткого замыкания.

Входное напряжение должно превышать выходное (12 вольт) минимум на 3 вольта во всём диапазоне выходного тока. На выходной ток до 100 мА выпускается вариант микросхемы –78L12. Типовая схема включения позволяет своими руками собрать надёжный стабилизатор напряжения 12 вольт с характеристиками, подходящими для многих задач.

Включение микросхемы 7812

Конденсатор фильтров рекомендуется устанавливать не далее 30 мм от выводов микросхемы. Если выходного тока 1 ампер недостаточно, можно установить дополнительный транзистор.

Увеличение выходного тока

Схема имеет параметры стабилизации, аналогичные применённой микросхеме.

В некоторых случаях целесообразно использование микросхем серии 1083/84/85. Это интегральные стабилизаторы с выходным током 3, 5, и 7, 5 ампер. Устройства относятся к типу Low Dropout (с низким падением напряжения) – для них разница между входным и выходным напряжением может быть 1 вольт. Схема включения полностью соответствует микросхемам типа 7812.

Видео

Оцените статью:

Крен 7812 схема включения | Домострой

На смену популярной отечественной линейке КРЕНхх пришёл импортный стабилизатор на микрохеме L7812 (или просто 7812). Его схема включения не изменилась, да и характеристики улучшились незначительно. Подробнее смотрите в даташите к нему.

Технические параметры L7812

  • Корпус TO220
  • Номинальный выходной ток, А 1.2
  • Максимальное входное напряжение, В 40
  • Выходное напряжение, В 12

Цоколёвка показана на рисунке ниже. Там вы можете увидеть и отличия по подключению L7812 от L7912, работающего с общим плюсом.

При всех своих достоинствах, данный стабилизатор напряжения обладает максимальным током нагрузки в 1,5А, что зачастую не позволяет его использовать для питания различного рода токоемких устройств, к примеру автомобильную магнитолу. Однако неплохие характеристики этого стабилизатора и наличие защиты создали ему популярность. Описанная в datasheet схема увеличения максимального тока использует дополнительный мощный P-N-P транзистор.

Описанная же мной схема работает c N-P-N транзисторами, куда отлично впишутся КТ803/КТ805/КТ808, которые можно найти везде. Поэтому если вы живете в деревне и мощных P-N-P транзисторов вам не найти, как в 70-80-е годы прошлого века, смело собирайте.

Диод D1 компенсирует падение 0,6В на силовом транзисторе Q1, включенном по схеме эмиттерного повторителя. В качестве D1 пойдут 1N4007 и аналогичные. В качестве Q1 КТ803, КТ805, КТ808, КТ819 в металлических корпусах. Можно все оставить так, а можно сделать и так:

Как выбрать радиатор? Выделяемая на силовом транзисторе мощность приблизительно равна:

P=(Uвход-Uвыход)*Iнагр

Тогда приблизительно каждый ватт тепла необходимо рассеить на 10см2 охлаждающей поверхности.

Сам стабилизатор L7812 устанавливается на тот-же радиатор или на отдельный, по площади приблительно в 30 раз меньшей, чем у Q1.2)/R1=1.8Вт, с технологическим запасом 50% вам потребуется резистор мощностью 4Вт.

Этот стабилизатор размещен в корпусе ТО – 220, имеющем три вывода. Он способен стабилизировать напряжение 12 вольт, что дает возможность применять его в разных электронных приборах.

  • Тип выхода – постоянный.
  • Ток выхода – 1 ампер.
  • Наименьшая температура работы — 0 градусов.
  • Наибольшая рабочая температура — 125 градусов.
  • Число выводов – 3.
  • Номинальное напряжение – 12 вольт.
  • Наименьшее напряжение входа – 14,5 вольт.
  • Наибольшее напряжение входа – 27 вольт.
  • Тип корпуса – ТО – 220 АВ.

Чаще всего такие стабилизаторы используются в какой-то одной части схемы в том случае, когда нет смысла для создания целого блока питания устройств. В стабилизаторе 7812 используется внутренняя токовая защита от перегрева. Это делает блок на его базе очень надежным. При хорошем охлаждении радиатором, устройство стабилизации 7812 способен выдать ток 1 ампер. Наибольшее напряжение входа должно равняться не ниже 14,8 В и не выше 35 В.

Такие стабилизаторы создавались для источников определенного постоянного напряжения 12 В, с использованием дополнительных элементов можно переделать эти устройства в стабилизированные источники тока с возможностью регулировки.

Схема действия стабилизатора, подходящая для всех микросхем этого типа:

Трехвыводные стабилизаторы

Для многих неответственных использований оптимальным выбором будет обычный 3-выводный стабилизатор. У него имеется всего 3 наружных вывода. Он имеет заводскую настройку на фиксированное напряжение. Серия 7800 – это представители стабилизаторов этого типа. В последних двух цифрах указывается напряжение. Об одном из этой серии, мы уже рассказывали ранее (7805)

На рисунке изображено, как просто выполнить стабилизатор, к примеру, на 5 вольт, применив одну схему. Емкость, подключенная параллельно выходу, оптимизирует процессы перехода и задерживает сопротивление выхода на низком уровне при повышенных частотах. Если прибор находится далеко от фильтра, то нужно использовать вспомогательный конденсатор входа. Серия 7800 производится в металлических и пластиковых корпусах.

lm7812 стабилизатор 12 В

Стабилизатор напряжения 7812 изменяет напряжение величиной до 20 В в 12 В. Этот прибор часто использовался для создания стабильного напряжения работы устройств низкого напряжения: усилителя звука, микроконтроллеров, осветительных ламп.

На входной каскад можно подключить нестабильную величину напряжения, и даже переменное значение. LM 7812 является стабилизатором, входящим в серию микросхем 78хх. Они отличаются лишь напряжением выхода, остальные параметры остаются прежними.

Для лучшего отвода тепла прикрепляют охлаждающий радиатор к корпусу стабилизатора. Его можно снять от старых устройств с платы. Вместо радиатора можно использовать жесть от банок, нарезав ее полосками, и просверлив в них отверстия для крепления на винт.

Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.

Стабилизаторы семейства LM

В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Характеристики LM стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Работа LM на практике

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме

Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких – это конденсаторы, хотя их ставить необязательно.

Итак, провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как сделать блок питания на 5, 9,12 Вольт?

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.

Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.

Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.

Заключение

Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.

Купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.

Kia 7812 схема подключения

Стабилизатор 7812 – технические параметры

Этот стабилизатор размещен в корпусе ТО – 220, имеющем три вывода. Он способен стабилизировать напряжение 12 вольт, что дает возможность применять его в разных электронных приборах.

  • Тип выхода – постоянный.
  • Ток выхода – 1 ампер.
  • Наименьшая температура работы — 0 градусов.
  • Наибольшая рабочая температура — 125 градусов.
  • Число выводов – 3.
  • Номинальное напряжение – 12 вольт.
  • Наименьшее напряжение входа – 14,5 вольт.
  • Наибольшее напряжение входа – 27 вольт.
  • Тип корпуса – ТО – 220 АВ.

Чаще всего такие стабилизаторы используются в какой-то одной части схемы в том случае, когда нет смысла для создания целого блока питания устройств. В стабилизаторе 7812 используется внутренняя токовая защита от перегрева. Это делает блок на его базе очень надежным. При хорошем охлаждении радиатором, устройство стабилизации 7812 способен выдать ток 1 ампер. Наибольшее напряжение входа должно равняться не ниже 14,8 В и не выше 35 В.

Такие стабилизаторы создавались для источников определенного постоянного напряжения 12 В, с использованием дополнительных элементов можно переделать эти устройства в стабилизированные источники тока с возможностью регулировки.

Схема действия стабилизатора, подходящая для всех микросхем этого типа:

Трехвыводные стабилизаторы

Для многих неответственных использований оптимальным выбором будет обычный 3-выводный стабилизатор. У него имеется всего 3 наружных вывода. Он имеет заводскую настройку на фиксированное напряжение. Серия 7800 – это представители стабилизаторов этого типа. В последних двух цифрах указывается напряжение. Об одном из этой серии, мы уже рассказывали ранее (7805)

На рисунке изображено, как просто выполнить стабилизатор, к примеру, на 5 вольт, применив одну схему. Емкость, подключенная параллельно выходу, оптимизирует процессы перехода и задерживает сопротивление выхода на низком уровне при повышенных частотах. Если прибор находится далеко от фильтра, то нужно использовать вспомогательный конденсатор входа. Серия 7800 производится в металлических и пластиковых корпусах.

lm7812 стабилизатор 12 В

Стабилизатор напряжения 7812 изменяет напряжение величиной до 20 В в 12 В. Этот прибор часто использовался для создания стабильного напряжения работы устройств низкого напряжения: усилителя звука, микроконтроллеров, осветительных ламп.

На входной каскад можно подключить нестабильную величину напряжения, и даже переменное значение. LM 7812 является стабилизатором, входящим в серию микросхем 78хх. Они отличаются лишь напряжением выхода, остальные параметры остаются прежними.

Для лучшего отвода тепла прикрепляют охлаждающий радиатор к корпусу стабилизатора. Его можно снять от старых устройств с платы. Вместо радиатора можно использовать жесть от банок, нарезав ее полосками, и просверлив в них отверстия для крепления на винт.

Посылка стабилизаторы L7812CV + проверка

(9 оценок, среднее: 3,89 из 5)

7805, 7812, 7815

Ниже будет описание и схема включения стабилизатора, которая подходит для всех микросхем этой серии.

На конденсаторы малой емкости не смотрим, желательно поставить побольше.

Output voltage – выходное напряжение. Input voltage – входное напряжение. В нашем примере выдает нам на выходе 5 вольт. Желательным входным напряжением производители отметили не более 10 в. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Здесь мы видим, что стабилизатор L7805 может нам выдать одно из напряжений диапазона 4.75 – 5.25 в, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 ампер. Нестабилизированное постоянное напряжение может быть от 7.5 и до 20 в, при это на выходе будет всегда 5 в. Это есть большой плюс данного радиокомпонента.

При нагрузке свыше 14 Вт, стабилизатор желательно установить на алюминиевый теплоотвод, чем больше нагрузка тем больше нужна площадь охлаждаемой поверхности. Производят в основном в корпусе ТО-220 Максимальный ток нагрузки: 1.5, а Допустимое входное напряжение: 35 в Выходное напряжение: 5 в Число регуляторов в корпусе: 1 Ток потребления: 6 мА Погрешность: 4 % Диапазон рабочих температур: 0 C . +140 C

Отечественный аналог КР142ЕН5А

Для того, чтобы стабилизатор не вывести из строя окончательно, нужно придерживаться нужного минимума на входе микросхемы, то есть если L7805, то на вход пускаем примерно 7-8 в. Это связано с тем, что излишнюю мощность стабилизатор будет рассеивать на себе. Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть перегрев. В результате нагрева такой прибор может перейти в состояние защиты. Легкое в использовании и отсутствие наладки и дополнительных радиокомпонентов привело к тому что стабилизатор хорошо распространился среди радиолюбителей как начинающих так и профессионалов.

Стабилизатор напряжения 12 вольт

Главная > Теория > Стабилизатор напряжения 12 вольт

  • 1 Классический стабилизатор
  • 2 Интегральный стабилизатор
  • 3 Видео

Стабилизаторы напряжения являются важнейшей частью всех электронных схем, они дают непрерывное, устойчивое питание компонентам системы, обеспечивая стабильность её параметров и защиту при неисправностях в схеме или в первичном источнике напряжения. 12 вольт постоянного напряжения – наиболее востребованное, применяется для питания множества устройств, используемых отдельно или встроенных в различные конструкции.

Стабилизация с помощью стабилитрона

Классический стабилизатор

Большинство систем питания построено по схеме линейного стабилизатора напряжения на 12 вольт, которая может иметь несколько вариантов исполнения:

  • Параллельный – регулировка с помощью включённого параллельно управляющего элемента;
  • Последовательный – включение элемента регулировки последовательно с нагрузкой.

Простейшим стабилизатором напряжения является стабилитрон, также называемый диодом Зенера – это диод, работающий постоянно в режиме пробоя. Напряжение, при котором наступает пробой, – это напряжение стабилизации, основной параметр стабилитрона. При параллельном включении нагрузки получается элементарный стабилизатор напряжения, примерно равного напряжению стабилизации.

Балластное сопротивление R определяет ток стабилитрона, указанный в спецификации. Такое решение отличается низким коэффициентом стабилизации, зависимостью от температуры и применяется при малых токах нагрузки для питания отдельных компонентов основной схемы. Возможно значительно увеличить выходной ток, если последовательно с нагрузкой установить мощный транзистор.

Линейный стабилизатор с транзистором

В этой схеме транзистор подключён последовательно с нагрузкой как эмиттерный повторитель, весь ток течёт через его переход. Уровнем на базе управляет стабилитрон: при возрастании тока на выходе на базу подаётся большее напряжение, проводимость транзистора увеличивается, и выходное напряжение восстанавливается. Мощность такого стабилизатора определяется типом транзистора и может достигать десятков ватт.

Важно отметить! В таком виде стабилизатор не защищён от перегрузки и короткого замыкания, при котором мгновенно выходит из строя. Для практического применения схема значительно усложняется: вводятся элементы ограничения тока и различные защитные функции.

Интегральный стабилизатор

Стабилизатор напряжения 12 вольт легко может быть реализован, если применить специализированный интегральный линейный стабилизатор из серии 78ХХ с фиксированным выходным напряжением. Для выходного напряжения 12 вольт выпускаются микросхемы 7812, у разных производителей они носят наименование LM7812, L7812, K7812 и т.д.

Отечественный аналог – КР142ЕН8Б. Производятся в корпусах TO – 220, TO – 3, D2PAK с тремя выводами. Эти микросхемы можно найти в блоках питания любой аппаратуры, они практически вытеснили стабилизаторы на дискретных элементах.

Основные характеристики стабилизатора в широко распространённом корпусе TO – 220:

  • Выходное стабилизированное напряжение – от 11,5 до 12,5 В;
  • Входное напряжение – до 30 В;
  • Выходной ток – до 1А;
  • Встроенная защита от перегрузки и короткого замыкания.

Входное напряжение должно превышать выходное (12 вольт) минимум на 3 вольта во всём диапазоне выходного тока. На выходной ток до 100 мА выпускается вариант микросхемы –78L12. Типовая схема включения позволяет своими руками собрать надёжный стабилизатор напряжения 12 вольт с характеристиками, подходящими для многих задач.

Включение микросхемы 7812

Конденсатор фильтров рекомендуется устанавливать не далее 30 мм от выводов микросхемы. Если выходного тока 1 ампер недостаточно, можно установить дополнительный транзистор.

Увеличение выходного тока

Схема имеет параметры стабилизации, аналогичные применённой микросхеме.

В некоторых случаях целесообразно использование микросхем серии 1083/84/85. Это интегральные стабилизаторы с выходным током 3, 5, и 7, 5 ампер. Устройства относятся к типу Low Dropout (с низким падением напряжения) – для них разница между входным и выходным напряжением может быть 1 вольт. Схема включения полностью соответствует микросхемам типа 7812.

Видео

Теперь поговорим о трех выводном стабилизаторе L7805. Микросхема выпускается в двух видах, в пластмассовом корпусе – ТО-220, например как транзистор КТ837 и металлическом корпусе – ТО-3, например как всем известный КТ827. Три вывода, если считать слева на право – то соответственно вход, минус и выход. Последних две цифры в маркировке указывают на стабилизированный выход микросхемы – L7805 – 5 в, 7806 – 6 в.

Стабилизатор напряжения 12 вольт

Классический стабилизатор напряжения 12 вольт. Интегральные стабилизаторы: основные характеристики и отличительные особенности. Целесообразность использование микросхем серии 1083/84/85 при изготовлении стабилизаторов 12в своими руками.

lm7812 стабилизатор 12 В

Стабилизатор напряжения 7812 изменяет напряжение величиной до 20 В в 12 В. Этот прибор часто использовался для создания стабильного напряжения работы устройств низкого напряжения: усилителя звука, микроконтроллеров, осветительных ламп.

На входной каскад можно подключить нестабильную величину напряжения, и даже переменное значение. LM 7812 является стабилизатором, входящим в серию микросхем 78хх. Они отличаются лишь напряжением выхода, остальные параметры остаются прежними.

Для лучшего отвода тепла прикрепляют охлаждающий радиатор к корпусу стабилизатора. Его можно снять от старых устройств с платы. Вместо радиатора можно использовать жесть от банок, нарезав ее полосками, и просверлив в них отверстия для крепления на винт.

(

15

оценок, среднее:

3,73

из 5)

Технические параметры L7812

  • Корпус TO220
  • Номинальный выходной ток, А 1.2
  • Максимальное входное напряжение, В 40
  • Выходное напряжение, В 12

Цоколёвка показана на рисунке ниже. Там вы можете увидеть и отличия по подключению L7812 от L7912, работающего с общим плюсом.

При всех своих достоинствах, данный стабилизатор напряжения обладает максимальным током нагрузки в 1,5А, что зачастую не позволяет его использовать для питания различного рода токоемких устройств, к примеру автомобильную магнитолу. Однако неплохие характеристики этого стабилизатора и наличие защиты создали ему популярность. Описанная

в datasheet

схема увеличения максимального тока использует дополнительный мощный P-N-P транзистор.

Описанная же мной схема работает c N-P-N транзисторами, куда отлично впишутся КТ803/КТ805/КТ808, которые можно найти везде. Поэтому если вы живете в деревне и мощных P-N-P транзисторов вам не найти, как в 70-80-е годы прошлого века, смело собирайте.

Диод D1 компенсирует падение 0,6В на силовом транзисторе Q1, включенном по схеме эмиттерного повторителя. В качестве D1 пойдут 1N4007 и аналогичные. В качестве Q1 КТ803, КТ805, КТ808, КТ819 в металлических корпусах. Можно все оставить так, а можно сделать и так:

Конденсатор С3 – дополнительная емкость для предотвращения возбуждений, слишком большой номинал ставить не следует, уменьшится коэффициент передачи транзистора. Введена защита от КЗ, при определенном токе, на резисторе R1 начинает падать 0,6В и транзистор Q2 начинает шунтировать переход транзистора Q1.2)/R1=1.8Вт, с технологическим запасом 50% вам потребуется резистор мощностью 4Вт.

Ну и вот что у меня получилось:

Нагрузочный резистор:

И сами испытания усиленной L7812:

Больше, к сожалению, с моего трансформатора выжать не смог. Дальше вы сможете поэкспериментировать со схемой и сами. Автор: sheriff

Основные характеристики разных вариантов исполнения KA7812:
Part NumberКорпусРабочая температураМакс. ток нагрузки
(долговременный)
Напряжение стабилизацииДиапазон входных напряженийТочность выходного напряжения
KA7812TO-2200…+125 °C1.0 A
12.0 V13-35 V4%
KA7812ATO-2200…+125 °C1.0 A
12.0 V13-35 V2%
KA7812RD-PAK0…+125 °C1.0 A
12.0 V13-35 V4%

Назначение выводов, цоколёвка, габаритные размеры корпусов KA7812:

Типовая схема включения KA7812:

В зависимости от корпуса, температурных характеристик и точности выходного напряжения замену KA7812 можно подобрать из следующих стабилизаторов: µA7812, LM7812ACT, L7812, KIA7812A, LM7812CT.

Daewoo Lanos 2008, двигатель бензиновый 1.5 л., 87 л. с., передний привод, механическая коробка передач — тюнинг

Участвовать в обсуждениях могут только зарегистрированные пользователи.

Качество компонентов

В реальности производитель очень важен. Всегда старайтесь покупать стабилизаторы, да и любые детали от крупных производителей и у проверенных поставщиков. Я лично предпочитаю STMicroelectronics. Их отличает эмблема ST в углу.

Ноунейм стабилизаторы или производства дедушки чаньханьбздюня очень часто имеют значительный разброс значений выходного напряжения от изделия к изделию. На практике встречалось, что стабилизатор 7805, который должен давать 5 вольт выдавал 4.63, либо же некоторые образцы давали до 5.2 вольта.

Ладно бы это, напряжение то он держит постоянным, но проблема еще и в том, что в несколько раз сильнее выбросы, фон и больше потребление самого стабилизатора. Думаю вы поняли.

Стабилизаторы семейства LM

В нашей статье мы  рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах  ТО-3 (слева)  и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

7812 – стабилизатор напряжения 12 вольт

7812 схема

7812 имеет встроенную защиту по току и защита от перегрева, делая блок питания на его основе практически неубиваемым. Если применяется достаточный теплоотвод (радиатор), то 7812 стабилизатор может отдать в нагрузку ток до 1А. Максимальное напряжение на входе должно быть не меньше 14,8 вольт и не больше 35 вольт.

Хотя эти стабилизаторы и разрабатывались для источников фиксированного стабилизированного напряжения 12 вольт, при применении необходимых “навесных” элементов можно превратить эти стабилизаторы в стабилизированные источники питания регулируемого напряжения от 12 В и более.

Цоколёвка – такая же, как у 7805.

Характеристики стабилизатора L7805CV, его аналоги

Основные параметры стабилизатора L7805CV:

  1. Входное напряжение — от 7 до 25 В;
  2. Рассеиваемая мощность — 15 Вт;
  3. Выходное напряжение — 4,75…5,25 В;
  4. Выходной ток — до 1,5 А.

Характеристика микросхемы приведена в таблице ниже, данные значения справедливы при условии соблюдения некоторых условий. А именно температура микросхемы находится в пределах от 0 до 125 градусов Цельсия, входном напряжении 10 В, выходном токе 500 мА (если иное не оговорено в условиях, колонка Test conditions), и стандартном обвесе конденсаторами по входу 0,33 мкФ и по выходу 0,1 мкФ.

Из таблицы видно, что стабилизатор прекрасно себя ведет при питании на входе от 7 до 20 В и на выходе будет стабильно выдаваться от 4,75 до 5,25 В. С другой стороны, подача более высоких значений приводит к уже более значительному разбросу выходных значений, поэтому выше 25 В не рекомендуется, а понижение по входу менее 7 В , вообще, приведет к отсутствию напряжения на выходе стабилизатора.

При работе на больших нагрузках, более 5 Вт, на микросхему необходимо установить радиатор во избежания перегрева стабилизатора, конструкция позволяет это сделать без каких-либо вопросов. Для более точной (прецизионной) техники, естественно, такой стабилизатор не подходит, т.к. имеет значительный разброс номинального напряжения при изменении входного напряжения.

Так как стабилизатор линейный, использовать его в мощных схемах бессмысленно, потребуется стабилизация, построенная на широтно-импульсном моделировании, но для питания небольших устройств, как телефонов, детских игрушек, магнитол и прочих гаджетов, вполне пригоден L7805. Аналог отечественный — КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог также находится в одной категории.

Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.

Стабилизаторы семейства LM

В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Характеристики LM стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Читать также: Как сделать простую коптильню в домашних условиях

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Работа LM на практике

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме

Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких – это конденсаторы, хотя их ставить необязательно.

Итак, провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как сделать блок питания на 5, 9,12 Вольт?

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.

Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.

Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.

Заключение

Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.

Купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как  по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Схема источника тока на 78xx

Величина тока задается резистором R*, который является нагрузкой для стабилизатора. При этом стабилизатор не заземлен. Заземление происходит только через нагрузку Rн. Такая схема включения вынуждает микросхему пытаться обеспечить в нагрузку заданный ток, путем регулировки напряжения на выходе.

Проверка работоспособности L7805CV

Как проверить работоспособность микросхемы? Для начала можно просто прозвонить выводы мультиметром, если хоть в одном случае наблюдается закоротка, то это однозначно указывает на неисправность элемента. При наличии у вас источника питания на 7 В и выше, можно собрать схему согласно датащита, приведенную выше, и подать на вход питание, на выходе мультиметром фиксируем напряжение в 5 В, соответственно элемент абсолютно работоспособен. Третий способ более трудоемкий, в случае если у вас отсутствует источник питания. Однако в этом случае вы параллельно получите и источник питания на 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисункe, представленного ниже.

Для проверки нужен понижающий трансформатор с коэффициентом трансформации в 18 — 20 и выпрямительный мост, дальнейший обвес стандартный два конденсатора на стабилизатор и все, источник питания на 5 В готов. Значения номиналов конденсаторов тут завышены по отношению к схеме включения L7805 в datasheet, это связано с тем, чтобы лучше сгладить пульсации напряжения после выпрямительного моста. Для более безопасной работы, желательно добавить индикацию для визуализации включения прибора. Тогда схема приобретет такой вид:

Читать также: Датчик отключения компрессора по давлению

Если на нагрузке будет много конденсаторов или любой другой емкостной нагрузки, можно защитить стабилизатор обратным диодом, во избежание выгорания элемента при разряде конденсаторов.

Большим плюсом микросхемы является достаточно легкая конструкция и простота использования, в случае, если вам необходимо питание одного значения. Схемы чувствительные к значениям напряжения обязательно должны снабжаться подобными стабилизаторами чтобы предохранить чувствительные к скачкам напряжения элементы.

Выходной ток источника тока на L78

Небольшой неприятностью представляется ток покоя Id, который складывается с выходным током. Величина тока покоя указывается в даташите. Для большинства стабилизаторов Id = 8мА. Эта цифра показывает наименьшее значение выходного тока. Т.е. Получить источник тока с величиной тока менее 8 млА не выйдет.

В идеале из стабилизатора можно выжать токи от 8 мА до 1 А. Однако при токах больше 200-300 мА крайне желателен радиатор. Гнать токи более 700-800 мА в принципе не желательно. Указанный в даташите 1А — это пиковое значение, в реальности стабилизатор скорее всего перегреется. На основании сказанного можно заключить, что диапазон выходных токов составляет 10-700 мА.

Точность тока и выходное напряжение

При этом нестабильность тока покоя составляет ΔId = 0.5мА. Эта величина определяет точность установки выходного тока. Так же точность задания величины выходного тока определяется точностью сопротивления R*. Лучше использовать резистор, точностью не хуже 1%.

Определенное удобство тут представляет тот факт, что схемы не может выдать напряжение выше заложенного напряжения стабилизации. Например при использовании стабилизатора 7805, напряжение на выходе не сможет превысить 5 вольт. Это бывает критично.

Где купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.


А в видео можете посмотреть как сделать самый простой стабилизатор на LM 317:

Сопротивление нагрузки

В то же время стоит учитывать сопротивление нагрузки. Например если требуется обеспечить 100 мА через нагрузку сопротивлением 100 Ом, то по закону ома получаем напряжение

V= I*R = 0.1 * 100 = 10 Вольт

Такими нехитрыми подсчетами мы получили величину напряжения, которую требуется приложить к нагрузке в 100 Ом, чтобы обеспечить в ней ток в 100мА. Это означает, что для данной задачи рационально поставить стабилизатор 7812 или 7815 на 12вольт и 15 вольт соответственно, дабы иметь запас.

А вот обеспечить такой же ток, через резистор в 10кОм уже не выйдет. Для этого необходимо напряжение в 100 вольт, что данные микросхемы уже не умеют.

Микросхемы стабилизаторы напряжения. Главная ошибка при использовании.

В данной статье рассказано как правильно использовать характеристики микросхем линейных стабилизаторов напряжения 7805,7808,7812 и аналогичных КР142ЕН5,8,12.

Самые распространенные микросхемы, которые применяются в блоках питания различных устройств. Такое широкое распространение получили ввиду предельно простой схемы подключения и довольно хороших параметров при правильном использовании. Основная схема подключения выглядит так:

Микросхемы стабилизаторы напряжения выпускаются разной мощности:

Обозначения на микросхеме:

Корпуса микросхем в зависимости от мощности тоже разные:

Микросхемы стабилизаторы напряжения большой мощности выпускают на выходные напряжения от 5В до 24В:

При этом входные напряжения и температурные характеристики такие:

Характеристики для микросхем средней мощности такие:

И для микросхем малой мощности соответственно такие:

 

 

При этом ряд напряжений на выходе для микросхем малой мощности выглядит так:

3.3; 5; 6; 8; 9; 10; 12; 15; 18; 24 Вольта

Какие же параметры для микросхем стабилизаторов напряжения в основном приводят в интернете? Рассмотрим наиболее распространенные случаи на конкретном примере:

При нагрузке свыше 14 Вт, стабилизатор желательно установить на алюминиевый теплоотвод, чем больше нагрузка, тем больше нужна площадь охлаждаемой поверхности.
Производят в основном в корпусе ТО-220
Максимальный ток нагрузки: 1.5 В
Допустимое входное напряжение: 35 В
Выходное напряжение: 5 В
Число регуляторов в корпусе: 1
Ток потребления: 6 мА
Погрешность: 4 %
Диапазон рабочих температур: 0 C … +140 C
Отечественный аналог КР142ЕН5А

 

Казалось, бы, все выписано из документации (DataSheet). Как человек воспринимает такую информацию. Наибольшее напряжение 35 В, хорошо, я не буду брать предел, возьму 30В. Максимальный ток нагрузки 1,5 А. Не буду брать предельное значение, возьму 1 А. Собирает схему по этим данным, а она, проработав некоторое время выходит из строя. Некоторые не понимают, грешат на качество микросхем. Ведь не заставлял работать микросхему на предельных значениях напряжения и тока, а она вышла из строя.

А все дело в том, что многие забывают о главном параметре, который указан в документации, но как-то не привлекает внимание так как напряжение и ток. Это максимальная мощность, которую может рассеивать микросхема стабилизатор. Как правило ее указывают прямо. Например, для мощных микросхем это 1,5 Вт без радиатора и 15 Вт с радиатором.

Что же получается при выбранном токе 1А и максимальном напряжении 30В, например, для микросхемы с выходным напряжением 5В. Поскольку стабилизатор линейный то на микросхеме упадет 30 – 5 = 25 В. При токе 1А мощность, рассеиваемая на микросхеме, составит 1А × 25В = 25Вт. Это почти в два раза больше допустимой мощности с радиатором. Вот она и выходит из строя. Получается, что при входном напряжении 30 В максимальный ток в нагрузке не может превышать 15 Вт : 25 В = 0,6 А.

В таблицах, приведенных выше в этой статье, для микросхем средней мощности без радиатора предельная мощность 1,2 Вт, а с радиатором, 12 Вт. Для микросхем малой мощности установка радиаторов не предусмотрена и максимальная рассеиваемая мощность составляет 0,625 Вт.

Именно мощность является определяющей при выборе предельных значений тока и напряжения.

Для наглядности предельные значения мощности, напряжения и тока для микросхем стабилизаторов напряжения разной мощности сведены в одну таблицу:

Минимальное падение напряжения на микросхеме 2,5В.

Если руководствоваться этим правилом, микросхемы будут работать надежно.

Материал статьи продублирован на видео:

Стабилизатор напряжения 12 вольт

Классический стабилизатор напряжения 12 вольт. Интегральные стабилизаторы: основные характеристики и отличительные особенности. Целесообразность использование микросхем серии 1083/84/85 при изготовлении стабилизаторов 12в своими руками.

lm7812 стабилизатор 12 В

Стабилизатор напряжения 7812 изменяет напряжение величиной до 20 В в 12 В. Этот прибор часто использовался для создания стабильного напряжения работы устройств низкого напряжения: усилителя звука, микроконтроллеров, осветительных ламп.

На входной каскад можно подключить нестабильную величину напряжения, и даже переменное значение. LM 7812 является стабилизатором, входящим в серию микросхем 78хх. Они отличаются лишь напряжением выхода, остальные параметры остаются прежними.

Для лучшего отвода тепла прикрепляют охлаждающий радиатор к корпусу стабилизатора. Его можно снять от старых устройств с платы. Вместо радиатора можно использовать жесть от банок, нарезав ее полосками, и просверлив в них отверстия для крепления на винт.

(

15

оценок, среднее:

3,73

из 5)

Технические параметры L7812

  • Корпус TO220
  • Номинальный выходной ток, А 1.2
  • Максимальное входное напряжение, В 40
  • Выходное напряжение, В 12

Цоколёвка показана на рисунке ниже. Там вы можете увидеть и отличия по подключению L7812 от L7912, работающего с общим плюсом.

При всех своих достоинствах, данный стабилизатор напряжения обладает максимальным током нагрузки в 1,5А, что зачастую не позволяет его использовать для питания различного рода токоемких устройств, к примеру автомобильную магнитолу. Однако неплохие характеристики этого стабилизатора и наличие защиты создали ему популярность. Описанная

в datasheet

схема увеличения максимального тока использует дополнительный мощный P-N-P транзистор.

Описанная же мной схема работает c N-P-N транзисторами, куда отлично впишутся КТ803/КТ805/КТ808, которые можно найти везде. Поэтому если вы живете в деревне и мощных P-N-P транзисторов вам не найти, как в 70-80-е годы прошлого века, смело собирайте.

Диод D1 компенсирует падение 0,6В на силовом транзисторе Q1, включенном по схеме эмиттерного повторителя. В качестве D1 пойдут 1N4007 и аналогичные. В качестве Q1 КТ803, КТ805, КТ808, КТ819 в металлических корпусах. Можно все оставить так, а можно сделать и так:

Конденсатор С3 – дополнительная емкость для предотвращения возбуждений, слишком большой номинал ставить не следует, уменьшится коэффициент передачи транзистора. Введена защита от КЗ, при определенном токе, на резисторе R1 начинает падать 0,6В и транзистор Q2 начинает шунтировать переход транзистора Q1.2)/R1=1.8Вт, с технологическим запасом 50% вам потребуется резистор мощностью 4Вт.

Ну и вот что у меня получилось:

Нагрузочный резистор:

И сами испытания усиленной L7812:

Больше, к сожалению, с моего трансформатора выжать не смог. Дальше вы сможете поэкспериментировать со схемой и сами. Автор: sheriff

Основные характеристики разных вариантов исполнения KA7812:
Part NumberКорпусРабочая температураМакс. ток нагрузки
(долговременный)
Напряжение стабилизацииДиапазон входных напряженийТочность выходного напряжения
KA7812TO-2200…+125 °C1.0 A
12.0 V13-35 V4%
KA7812ATO-2200…+125 °C1.0 A
12.0 V13-35 V2%
KA7812RD-PAK0…+125 °C1.0 A
12.0 V13-35 V4%

Назначение выводов, цоколёвка, габаритные размеры корпусов KA7812:

Типовая схема включения KA7812:

В зависимости от корпуса, температурных характеристик и точности выходного напряжения замену KA7812 можно подобрать из следующих стабилизаторов: µA7812, LM7812ACT, L7812, KIA7812A, LM7812CT.

Daewoo Lanos 2008, двигатель бензиновый 1.5 л., 87 л. с., передний привод, механическая коробка передач — тюнинг

Участвовать в обсуждениях могут только зарегистрированные пользователи.

Качество компонентов

В реальности производитель очень важен. Всегда старайтесь покупать стабилизаторы, да и любые детали от крупных производителей и у проверенных поставщиков. Я лично предпочитаю STMicroelectronics. Их отличает эмблема ST в углу.

Ноунейм стабилизаторы или производства дедушки чаньханьбздюня очень часто имеют значительный разброс значений выходного напряжения от изделия к изделию. На практике встречалось, что стабилизатор 7805, который должен давать 5 вольт выдавал 4.63, либо же некоторые образцы давали до 5.2 вольта.

Ладно бы это, напряжение то он держит постоянным, но проблема еще и в том, что в несколько раз сильнее выбросы, фон и больше потребление самого стабилизатора. Думаю вы поняли.

Стабилизаторы семейства LM

В нашей статье мы  рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах  ТО-3 (слева)  и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

7812 – стабилизатор напряжения 12 вольт

7812 схема

7812 имеет встроенную защиту по току и защита от перегрева, делая блок питания на его основе практически неубиваемым. Если применяется достаточный теплоотвод (радиатор), то 7812 стабилизатор может отдать в нагрузку ток до 1А. Максимальное напряжение на входе должно быть не меньше 14,8 вольт и не больше 35 вольт.

Хотя эти стабилизаторы и разрабатывались для источников фиксированного стабилизированного напряжения 12 вольт, при применении необходимых “навесных” элементов можно превратить эти стабилизаторы в стабилизированные источники питания регулируемого напряжения от 12 В и более.

Цоколёвка – такая же, как у 7805.

Характеристики стабилизатора L7805CV, его аналоги

Основные параметры стабилизатора L7805CV:

  1. Входное напряжение — от 7 до 25 В;
  2. Рассеиваемая мощность — 15 Вт;
  3. Выходное напряжение — 4,75…5,25 В;
  4. Выходной ток — до 1,5 А.

Характеристика микросхемы приведена в таблице ниже, данные значения справедливы при условии соблюдения некоторых условий. А именно температура микросхемы находится в пределах от 0 до 125 градусов Цельсия, входном напряжении 10 В, выходном токе 500 мА (если иное не оговорено в условиях, колонка Test conditions), и стандартном обвесе конденсаторами по входу 0,33 мкФ и по выходу 0,1 мкФ.

Из таблицы видно, что стабилизатор прекрасно себя ведет при питании на входе от 7 до 20 В и на выходе будет стабильно выдаваться от 4,75 до 5,25 В. С другой стороны, подача более высоких значений приводит к уже более значительному разбросу выходных значений, поэтому выше 25 В не рекомендуется, а понижение по входу менее 7 В , вообще, приведет к отсутствию напряжения на выходе стабилизатора.

При работе на больших нагрузках, более 5 Вт, на микросхему необходимо установить радиатор во избежания перегрева стабилизатора, конструкция позволяет это сделать без каких-либо вопросов. Для более точной (прецизионной) техники, естественно, такой стабилизатор не подходит, т.к. имеет значительный разброс номинального напряжения при изменении входного напряжения.

Так как стабилизатор линейный, использовать его в мощных схемах бессмысленно, потребуется стабилизация, построенная на широтно-импульсном моделировании, но для питания небольших устройств, как телефонов, детских игрушек, магнитол и прочих гаджетов, вполне пригоден L7805. Аналог отечественный — КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог также находится в одной категории.

Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.

Стабилизаторы семейства LM

В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Характеристики LM стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Читать также: Как сделать простую коптильню в домашних условиях

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Работа LM на практике

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме

Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких – это конденсаторы, хотя их ставить необязательно.

Итак, провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как сделать блок питания на 5, 9,12 Вольт?

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.

Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.

Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.

Заключение

Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.

Купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как  по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Схема источника тока на 78xx

Величина тока задается резистором R*, который является нагрузкой для стабилизатора. При этом стабилизатор не заземлен. Заземление происходит только через нагрузку Rн. Такая схема включения вынуждает микросхему пытаться обеспечить в нагрузку заданный ток, путем регулировки напряжения на выходе.

Проверка работоспособности L7805CV

Как проверить работоспособность микросхемы? Для начала можно просто прозвонить выводы мультиметром, если хоть в одном случае наблюдается закоротка, то это однозначно указывает на неисправность элемента. При наличии у вас источника питания на 7 В и выше, можно собрать схему согласно датащита, приведенную выше, и подать на вход питание, на выходе мультиметром фиксируем напряжение в 5 В, соответственно элемент абсолютно работоспособен. Третий способ более трудоемкий, в случае если у вас отсутствует источник питания. Однако в этом случае вы параллельно получите и источник питания на 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисункe, представленного ниже.

Для проверки нужен понижающий трансформатор с коэффициентом трансформации в 18 — 20 и выпрямительный мост, дальнейший обвес стандартный два конденсатора на стабилизатор и все, источник питания на 5 В готов. Значения номиналов конденсаторов тут завышены по отношению к схеме включения L7805 в datasheet, это связано с тем, чтобы лучше сгладить пульсации напряжения после выпрямительного моста. Для более безопасной работы, желательно добавить индикацию для визуализации включения прибора. Тогда схема приобретет такой вид:

Читать также: Датчик отключения компрессора по давлению

Если на нагрузке будет много конденсаторов или любой другой емкостной нагрузки, можно защитить стабилизатор обратным диодом, во избежание выгорания элемента при разряде конденсаторов.

Большим плюсом микросхемы является достаточно легкая конструкция и простота использования, в случае, если вам необходимо питание одного значения. Схемы чувствительные к значениям напряжения обязательно должны снабжаться подобными стабилизаторами чтобы предохранить чувствительные к скачкам напряжения элементы.

Выходной ток источника тока на L78

Небольшой неприятностью представляется ток покоя Id, который складывается с выходным током. Величина тока покоя указывается в даташите. Для большинства стабилизаторов Id = 8мА. Эта цифра показывает наименьшее значение выходного тока. Т.е. Получить источник тока с величиной тока менее 8 млА не выйдет.

В идеале из стабилизатора можно выжать токи от 8 мА до 1 А. Однако при токах больше 200-300 мА крайне желателен радиатор. Гнать токи более 700-800 мА в принципе не желательно. Указанный в даташите 1А — это пиковое значение, в реальности стабилизатор скорее всего перегреется. На основании сказанного можно заключить, что диапазон выходных токов составляет 10-700 мА.

Точность тока и выходное напряжение

При этом нестабильность тока покоя составляет ΔId = 0.5мА. Эта величина определяет точность установки выходного тока. Так же точность задания величины выходного тока определяется точностью сопротивления R*. Лучше использовать резистор, точностью не хуже 1%.

Определенное удобство тут представляет тот факт, что схемы не может выдать напряжение выше заложенного напряжения стабилизации. Например при использовании стабилизатора 7805, напряжение на выходе не сможет превысить 5 вольт. Это бывает критично.

Где купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.


А в видео можете посмотреть как сделать самый простой стабилизатор на LM 317:

Сопротивление нагрузки

В то же время стоит учитывать сопротивление нагрузки. Например если требуется обеспечить 100 мА через нагрузку сопротивлением 100 Ом, то по закону ома получаем напряжение

V= I*R = 0.1 * 100 = 10 Вольт

Такими нехитрыми подсчетами мы получили величину напряжения, которую требуется приложить к нагрузке в 100 Ом, чтобы обеспечить в ней ток в 100мА. Это означает, что для данной задачи рационально поставить стабилизатор 7812 или 7815 на 12вольт и 15 вольт соответственно, дабы иметь запас.

А вот обеспечить такой же ток, через резистор в 10кОм уже не выйдет. Для этого необходимо напряжение в 100 вольт, что данные микросхемы уже не умеют.

Микросхемы стабилизаторы напряжения. Главная ошибка при использовании.

В данной статье рассказано как правильно использовать характеристики микросхем линейных стабилизаторов напряжения 7805,7808,7812 и аналогичных КР142ЕН5,8,12.

Самые распространенные микросхемы, которые применяются в блоках питания различных устройств. Такое широкое распространение получили ввиду предельно простой схемы подключения и довольно хороших параметров при правильном использовании. Основная схема подключения выглядит так:

Микросхемы стабилизаторы напряжения выпускаются разной мощности:

Обозначения на микросхеме:

Корпуса микросхем в зависимости от мощности тоже разные:

Микросхемы стабилизаторы напряжения большой мощности выпускают на выходные напряжения от 5В до 24В:

При этом входные напряжения и температурные характеристики такие:

Характеристики для микросхем средней мощности такие:

И для микросхем малой мощности соответственно такие:

 

 

При этом ряд напряжений на выходе для микросхем малой мощности выглядит так:

3.3; 5; 6; 8; 9; 10; 12; 15; 18; 24 Вольта

Какие же параметры для микросхем стабилизаторов напряжения в основном приводят в интернете? Рассмотрим наиболее распространенные случаи на конкретном примере:

При нагрузке свыше 14 Вт, стабилизатор желательно установить на алюминиевый теплоотвод, чем больше нагрузка, тем больше нужна площадь охлаждаемой поверхности.
Производят в основном в корпусе ТО-220
Максимальный ток нагрузки: 1.5 В
Допустимое входное напряжение: 35 В
Выходное напряжение: 5 В
Число регуляторов в корпусе: 1
Ток потребления: 6 мА
Погрешность: 4 %
Диапазон рабочих температур: 0 C … +140 C
Отечественный аналог КР142ЕН5А

 

Казалось, бы, все выписано из документации (DataSheet). Как человек воспринимает такую информацию. Наибольшее напряжение 35 В, хорошо, я не буду брать предел, возьму 30В. Максимальный ток нагрузки 1,5 А. Не буду брать предельное значение, возьму 1 А. Собирает схему по этим данным, а она, проработав некоторое время выходит из строя. Некоторые не понимают, грешат на качество микросхем. Ведь не заставлял работать микросхему на предельных значениях напряжения и тока, а она вышла из строя.

А все дело в том, что многие забывают о главном параметре, который указан в документации, но как-то не привлекает внимание так как напряжение и ток. Это максимальная мощность, которую может рассеивать микросхема стабилизатор. Как правило ее указывают прямо. Например, для мощных микросхем это 1,5 Вт без радиатора и 15 Вт с радиатором.

Что же получается при выбранном токе 1А и максимальном напряжении 30В, например, для микросхемы с выходным напряжением 5В. Поскольку стабилизатор линейный то на микросхеме упадет 30 – 5 = 25 В. При токе 1А мощность, рассеиваемая на микросхеме, составит 1А × 25В = 25Вт. Это почти в два раза больше допустимой мощности с радиатором. Вот она и выходит из строя. Получается, что при входном напряжении 30 В максимальный ток в нагрузке не может превышать 15 Вт : 25 В = 0,6 А.

В таблицах, приведенных выше в этой статье, для микросхем средней мощности без радиатора предельная мощность 1,2 Вт, а с радиатором, 12 Вт. Для микросхем малой мощности установка радиаторов не предусмотрена и максимальная рассеиваемая мощность составляет 0,625 Вт.

Именно мощность является определяющей при выборе предельных значений тока и напряжения.

Для наглядности предельные значения мощности, напряжения и тока для микросхем стабилизаторов напряжения разной мощности сведены в одну таблицу:

Минимальное падение напряжения на микросхеме 2,5В.

Если руководствоваться этим правилом, микросхемы будут работать надежно.

Материал статьи продублирован на видео:

Схема простого блока питания на +19В (7812, КТ819)

Этот блок питания предназначен для сетевого питания ноутбуков и моноблоков. Альтернативным он назван за то, что не является импульсным блоком питания, а построен по «старой» схеме — силовой трансформатор — выпрямитель — стабилизатор напряжения. Это конечно делает его тяжелым и крупным, но в «стационарных» условиях это большого значения не имеет.

После выхода из строя штатного блока питания, было поставлено «техническое задание», — выходное напряжение 19V, ток не ниже 5А. На всякий случай, ток было решено взять с запасом, — до 10А.

Принципиальная схема

Основой любого не импульсного блока питания является низкочастотный силовой трансформатор. В данном случае это тороидальный довольно тяжелый трансформатор типа TST250W/24V. Его номинальное выходное переменное напряжение 24V при токе 10А и входном напряжении 230V.

Рис. 1. Принципиальная схема мощного стабилизатора напряжения +19В.

У данного трансформатора нет никаких колодок для подключения или клемм, — просто «колесо» с четырьмя проводами для подключения.

Конечно, можно применить любой другой трансформатор с вторичным напряжением 20-25V. В магазинах промышленного электрооборудования можно приобрести другой трансформатор соответствующей мощности на 24V, например, на Ш-образ-ном сердечнике.

Переменное напряжение с вторичной обмотки силового трансформатора Т1 поступает на выпрямительный мост VD1 и конденсатор С1, сглаживающий пульсации.

В принципе, соглашусь, что емкости 2200 мкФ при токе 10А не слишком достаточно. Но, это же не УНЧ питаем. На задней стенке ноутбука вообще стоит значок пульсирующего напряжения. Так что для данного случая, этого вполне достаточно.

Стабилизатор напряжения сделан на основе микросхемы 7812. Но её выходное напряжение равно 12V, а нам нужно 19V, плюс максимальный ток 1А, а нужно, как было решено, 10А.

Выходная мощность была увеличена за счет транзистора VТ1 типа КТ819, на котором сделан эмиттерный повторитель выходного напряжения стабилизатора А1.

Напряжение стабилизации было поднято за счет стабилитрона VD2, это Д814А, его напряжение стабилизации 8V. Так что 12+8=20. Однако, около одного вольта падает на транзисторе VТ1, так что выходит как раз как и надо.

Детали и конструкция

Транзистор VТ1 расположен на пластинчатом алюминиевом радиаторе от транзистора источника питания старого телевизора «Philips», его внешние габаритные размеры 70x50x30 мм.

Другой аналогичный радиатор, но меньших размеров (50x45x30), использован для микросхемы -стабилизатора А1. Налаживания не требуется.

Пантелеев А. В. РК-01-18.

Блок питания на 12 вольт 1 ампер – Поделки для авто

Иногда бывает нужно в гараже блок питания на 12 вольт, проверить лампочку например, ну и многое другое, вот и решил собрать его своими руками, так сказать не помешает.

И так, что нам для этого понадобится:

1. кусочек текстолита
2. диоды 1N4001-4шт
3. трансформатор, который на выходе должен иметь 14В-35В переменное напряжение, и с выходным током 100 мА-1А, в зависимости сколько энергии вам надо на выходе. В моем случае был использован трансформатор 16v 200mA, который я нашел в сломанном будильнике.
4.  конденсатор 1000mF – 4700mF
5. конденсатор-1mF
6. конденсатор 100nF-2 шт.

Если вы собираетесь из этого бп “вытащить” около 1 ампер, то обязательно нужно микросхему поставить на теплоотвод ( радиатор), так как она сильно греется.

А если вам хватит и несколько сотен мА (ниже 500мА), то радиатор не обязательно, хотя микросхема будет чуточку греться.

Ниже схема устройства:

Я также добавил зеленый светодиод, чтобы горел когда блок питания работает. После сборки убедитесь, что все детали припаяны правильно, потом уже проверьте его на работоспособность .

У меня на выходе получилось 11.73 Вольт, не так уж плохо для моих потребностей. Если вы хотите получить БП на 5 вольт, то вам следует просто заменить микросхему LM7812 на LM7805.

LM7812-Линейный стабилизатор напряжения. Имеет следующие параметры защиты;

1.Защита от перегрева
2.Защита от короткого замыкания
3.Защита от превышения выходного тока

Характеристики

Тип стабилизатора- Линейный.
Напряжение стабилизации- 12 Вольт.
Максимальный ток- 1,5 Ампер.
Максимальное входное напряжение- 35 Вольт.
Корпус- TO-220.
Рабочая температура-  -10…70 °C.

LM7805-Линейный стабилизатор напряжения. Имеет 2 защиты: защита от короткого замыкания и защита от превышения выходного тока.

Характеристики

Тип стабилизатора- Линейный.
Напряжение стабилизации- 5 Вольт.
Максимальный ток- 1,5 Ампер.
Максимальное входное напряжение- 35 Вольт.
Корпус- TO-220.
Рабочая температура- -10…70 °C.

 

Источник постоянного питания 12 В для светодиодных цепей (Часть 4/13)

В предыдущих проектах были разработаны регулируемые цепи питания. Иногда напряжение для управления конкретной схемой уже известно, и необходимо спроектировать схему источника питания для вывода постоянного напряжения. В этом проекте разработана схема постоянного питания 12 В для питания цепей светодиодов. Схема должна быть спроектирована таким образом, чтобы в ней не было никаких колебаний или ряби. Схема будет получать питание от основных источников переменного тока и преобразует его в источник постоянного тока 12 В без пульсаций.Схема сможет потреблять максимальный ток 1А.

В схемах светодиодов избыточный ток через светодиоды, превышающий их номинальный прямой ток, может привести к чрезмерному повышению их температуры, навсегда или временно повредив их. Следовательно, в таких случаях очень важно иметь постоянное напряжение. Один светодиод или комбинация светодиодов, для которых требуется сетевой вход 12 В, могут быть подключены к выходу схемы, разработанной в этом проекте.

В силовой цепи, разработанной в этом проекте, используется стабилизатор напряжения 7812 IC и стандартные шаги проектирования силовой цепи, такие как понижение напряжения переменного тока, преобразование напряжения переменного тока в напряжение постоянного тока и сглаживание напряжения постоянного тока для получения прямого ввода от сети переменного тока.

Необходимые компоненты —

Рис.1: Список компонентов, необходимых для постоянного источника питания 12 В для светодиодных цепей

Блок-схема —

Рис. 2: Блок-схема постоянного источника питания 12 В для светодиодных цепей

Подключение цепей —

Схема собирается поэтапно, каждая ступень служит определенной цели. Для понижения 230 В переменного тока используется трансформатор 18 — 0 — 18 В.Вторичная обмотка трансформатора соединена с мостовым выпрямителем. Полный мостовой выпрямитель создается путем соединения друг с другом четырех диодов 1N4007, обозначенных на схемах как D1, D2, D3 и D4. Катод D1 и анод D2 соединены с одной из вторичной катушки, а катод D4, а анод D3 соединен с центральной лентой вторичной катушки. Катоды D2 и D3 подключены, из которых одна клемма снята с выхода выпрямителя, а аноды D1 и D4 подключены, из которых другая клемма снята с выхода двухполупериодного выпрямителя.Провод протягивается от центральной ленты трансформатора, который служит землей для положительного и отрицательного выходов постоянного тока.

Предохранитель на 1 А последовательно подключен к выходу двухполупериодного выпрямителя для защиты от источников переменного тока. Конденсатор емкостью 470 мкФ (обозначенный на схеме как C1) подключен между выходными клеммами двухполупериодного выпрямителя для сглаживания. Для регулирования напряжения микросхема LM-7812 подключена параллельно сглаживающему конденсатору. Выходной сигнал поступает с клеммы выхода напряжения микросхемы 7812 IC.

Как работает схема —

Силовая цепь работает по четко определенным стадиям, каждая из которых служит определенной цели. Схема работает в следующих этапах —

1. Преобразование переменного тока в переменный

2. Преобразование переменного тока в постоянный — полноволновое выпрямление

3. Сглаживание

4. Регулирование напряжения

Преобразование переменного тока в переменный

Напряжение основных источников питания (электричество, подаваемое через промежуточный трансформатор после понижения линейного напряжения от генерирующей станции) составляет приблизительно 220–230 В переменного тока, которое в дальнейшем необходимо понизить до уровня 12 В.Для понижения напряжения 220 В переменного тока до 12 В переменного тока используется понижающий трансформатор с центральной обмоткой. Использование трансформатора с центральным ответвлением позволяет генерировать на входе как положительное, так и отрицательное напряжение, однако с трансформатора будет поступать только положительное напряжение. В схеме наблюдается некоторое падение выходного напряжения из-за резистивных потерь. Поэтому необходимо использовать трансформатор с высоким номинальным напряжением, превышающим требуемые 12 В. Трансформатор должен обеспечивать на выходе ток 1А. Наиболее подходящий понижающий трансформатор, отвечающий указанным требованиям по напряжению и току, — 18–0–18 В / 2 А.Эта ступень трансформатора снижает сетевое напряжение до +/- 18 В переменного тока, как показано на рисунке ниже.

Рис. 3: Схема трансформатора 18-0-18 В

Преобразование переменного тока в постоянный — полноволновое выпрямление

Пониженное напряжение переменного тока необходимо преобразовать в напряжение постоянного тока путем выпрямления. Выпрямление — это процесс преобразования переменного напряжения в постоянное. Есть два способа преобразовать сигнал переменного тока в сигнал постоянного тока. Один — это полуволновое выпрямление, а другое — полноволновое выпрямление.В этой схеме двухполупериодный мостовой выпрямитель используется для преобразования 36 В переменного тока в 36 В постоянного тока. Двухполупериодное выпрямление более эффективно, чем полуволновое выпрямление, поскольку оно обеспечивает полное использование как отрицательной, так и положительной стороны сигнала переменного тока. В конфигурации двухполупериодного мостового выпрямителя четыре диода соединены таким образом, что ток течет через них только в одном направлении, что приводит к возникновению сигнала постоянного тока на выходе. Во время двухполупериодного выпрямления одновременно два диода становятся смещенными в прямом направлении, а еще два диода смещаются в обратном направлении.

Рис. 4: Принципиальная схема полноволнового выпрямителя

Во время положительного полупериода питания диоды D2 и D4 проходят последовательно, в то время как диоды D1 и D3 смещены в обратном направлении, и ток протекает через выходной контакт, проходя через D2, выходной контакт и D4. Во время отрицательного полупериода питания диоды D1 и D3 проходят последовательно, но диоды D1 и D2 смещены в обратном направлении, и ток протекает через D3, выходную клемму и D1. Направление тока в обоих направлениях через выходную клемму в обоих условиях остается неизменным.

Рис. 5: Принципиальная схема, показывающая положительный цикл полнополупериодного выпрямителя

Рис. 6: Принципиальная схема, показывающая отрицательный цикл полнополупериодного выпрямителя

Диоды 1N4007 выбраны для создания двухполупериодного выпрямителя, поскольку они имеют максимальный (средний) номинальный прямой ток 1 А и в состоянии обратного смещения они могут выдерживать пиковое обратное напряжение до 1000 В. Поэтому в этом проекте для двухполупериодного выпрямления используются диоды 1N4007.

Сглаживание

Сглаживание — это процесс сглаживания или фильтрации сигнала постоянного тока с помощью конденсатора. Выход двухполупериодного выпрямителя не является постоянным напряжением постоянного тока. Частота на выходе выпрямителя в два раза выше, чем у основного источника питания, но есть пульсации. Следовательно, его необходимо сгладить, подключив конденсатор параллельно выходу двухполупериодного выпрямителя. Конденсатор заряжается и разряжается в течение цикла, давая на выходе стабильное постоянное напряжение.Итак, конденсатор (обозначенный на схеме как C1) большой емкости подключен к выходу схемы выпрямителя. Поскольку постоянный ток, который должен быть выпрямлен схемой выпрямителя, имеет много всплесков переменного тока и нежелательных пульсаций, для уменьшения этих выбросов используется конденсатор. Этот конденсатор действует как фильтрующий конденсатор, который пропускает через него весь переменный ток на землю. На выходе среднее оставшееся постоянное напряжение более плавное и без пульсаций.

Рис.7: Принципиальная схема сглаживающего конденсатора

Регулирование напряжения

Для обеспечения на выходе стабилизированного 12В используется микросхема LM7812.Эта ИС способна обеспечивать ток до 1А. Он будет обеспечивать регулируемое и стабилизированное напряжение на выходе независимо от изменений входного напряжения и тока нагрузки. Микросхема LM7812 может иметь входное напряжение от 14,8 В до 27 В и обеспечивает постоянное выходное напряжение от 11,5 до 12,5 В. Микросхема способна обеспечивать на выходе максимальный ток 1А.

LM7812 имеет следующую допустимую внутреннюю рассеиваемую мощность:

Pout = (максимальная рабочая температура IC) / (тепловое сопротивление, переход от окружающей среды + тепловое сопротивление, переход от корпуса к корпусу)

Pout = (125) / (65 + 5) (значения согласно даташиту)

Pout = 1.78 Вт

Таким образом, внутренняя часть LM7812 может выдерживать рассеиваемую мощность до 1,78 Вт. При мощности выше 1,78 Вт микросхема не переносит выделяемое количество тепла и начинает гореть. Это также может вызвать серьезную опасность возгорания. Поэтому радиатор необходим для отвода избыточного тепла от ИС.

Рис. 8: Принципиальная схема регулятора напряжения для постоянного источника питания 12 В

Тестирование и меры предосторожности —

При сборке схемы следует соблюдать следующие меры предосторожности —

• Номинальный ток понижающего трансформатора, мостовых диодов и ИС регулятора напряжения должен быть больше или равен требуемому току на выходе.В противном случае он не сможет подавать требуемый ток на выходе.

• Номинальное напряжение понижающего трансформатора должно быть больше максимального требуемого выходного напряжения. Это связано с тем, что микросхема 7812 принимает падение напряжения от 2 до 3 В. Таким образом, входное напряжение должно быть на 2–3 В выше максимального выходного напряжения и должно находиться в пределах входного напряжения (14,5–27 В. ) Из LM7812.

• Конденсаторы, используемые в цепи, должны иметь более высокое номинальное напряжение, чем входное напряжение.В противном случае конденсаторы начнут пропускать ток из-за превышения напряжения на их пластинах и вырвутся наружу.

• На выходе выпрямителя следует использовать конденсатор, чтобы он мог справляться с нежелательными сетевыми шумами. Аналогичным образом рекомендуется использовать конденсатор на выходе регулятора для обработки быстрых переходных процессов и шума на выходе. Емкость выходного конденсатора зависит от отклонения напряжения, колебаний тока и переходного времени отклика конденсатора.

• Для работы с высокой нагрузкой на выходе необходимо установить радиатор в отверстия регулятора. Это предотвратит сдувание микросхемы из-за рассеивания тепла.

• Поскольку ИС регулятора может потреблять ток только до 1А, необходимо подключить предохранитель на 1А. Этот предохранитель ограничит ток в регуляторе до 1А. При токе выше 1 А предохранитель сгорит, и это отключит входное питание от цепи. Это защитит микросхему схемы и регулятора от тока более 1 А.

После того, как схема собрана, ее можно проверить с помощью мультиметра. Измерьте выходное напряжение на выводах 7812 IC и начните тестирование с последовательными цепями светодиодов.

Давайте сначала протестируем схему со светодиодами 1,8 В. Максимум 6 светодиодов этого номинала могут быть подключены последовательно к выходу с ограничивающим резистором 68 Ом. Каждому светодиоду требуется примерно 1,8 В для смещения вперед и начала свечения. Напряжение на входе в схему — 12В,

Vin = 12 В (из 7812)

Суммарное падение напряжения на 6 светодиодах будет 10.8 В,

В = 1,8 * 6 = 10,8 В

Выходной ток, отдаваемый этим источником питания / Ток, потребляемый цепью, будет —

I = (Входное напряжение — падение напряжения на светодиодах) / R1

I = (12 — 10,8) / 68

I = 17,6 мА

Для светодиода с напряжением 1,8 В требуется приблизительно 20 мА прямого тока для надлежащего освещения без нарушения его предельного значения прямого тока. Только для этой цели используется последовательное сопротивление (в данном случае 68 Ом) для ограничения тока.

Рассеиваемая мощность микросхемы LM7812 с этой светодиодной схемой в качестве нагрузки будет:

Рассеиваемая мощность

P выход = (Vin — Vout) * Iout

Pвых = (12-10,8) * (0,0176)

Pout = 21,12 мВт

Рис.9: Принципиальная схема светодиодов серии

Тестирование схемы с помощью светодиодов 2.2V привело к следующим результатам. На выходе можно последовательно подключить не более 5 светодиодов этого номинала с ограничивающим резистором 47 Ом. Каждому светодиоду нужно примерно 2.2 В, чтобы сместиться вперед и начать светиться. Напряжение на входе в схему — 12В,

Vin = 12 В (из 7812)

Суммарное падение напряжения на 5 светодиодах будет 11 В,

В = 2,2 * 5 = 11 В

Выходной ток, отдаваемый этим источником питания / Ток, потребляемый цепью, будет —

I = (Входное напряжение — падение напряжения на светодиодах) / R1

I = (12–11) / 47

I = 21,2 мА

Для светодиода с напряжением 2,2 В требуется приблизительно 25 мА прямого тока для правильного освещения без нарушения ограничения прямого тока.Только для этой цели используется последовательное сопротивление (в данном случае 47 Ом) для ограничения тока.

Рассеиваемая мощность микросхемы LM7812 с этой светодиодной схемой в качестве нагрузки будет:

Рассеиваемая мощность

P выход = (Vin — Vout) * Iout

P вых = (12-11) * (0,0212)

P вых = 21,2 мВт

Рис.10: Принципиальная схема светодиодов серии

Тестирование схемы с помощью светодиодов 3,3 В привело к следующим результатам. Максимум 3 светодиода этого номинала могут быть подключены последовательно к выходу с ограничивающим резистором 6 или 7 Ом.Каждому светодиоду требуется примерно 3,3 В для смещения вперед и начала свечения. Напряжение на входе в схему — 12В,

Vin = 12 В (из 7812)

Суммарное падение напряжения на 3 светодиодах составит 10 В,

В = 3,3 * 3 = 9,9 В

Выходной ток, отдаваемый этим источником питания / Ток, потребляемый цепью, будет —

I = (Входное напряжение — падение напряжения на светодиодах) / R1

I = (12 — 9,9) / 6

I = 350 мА

Для светодиода 3.3 В, для правильного освещения без нарушения ограничения прямого тока требуется примерно 300–350 мА прямого тока. Только для этой цели используется последовательное сопротивление (в данном случае 6 или 7 Ом) для ограничения тока.

Рассеиваемая мощность микросхемы LM7812 с этой светодиодной схемой в качестве нагрузки будет:

Рассеиваемая мощность

P выход = (Vin — Vout) * Iout

P вых = (12-9,9) * (0,350)

P вых = 735 мВт

Рис.11: Принципиальная электрическая схема светодиодов серии

Другие комбинации светодиодов также могут быть проверены при условии использования правильного токоограничивающего резистора и с учетом того, что входной ток, необходимый для схемы (комбинация светодиодов), не должен превышать 1 А.Из приведенных выше тестов видно, что рассеиваемая мощность всегда меньше 1,78 Вт (внутренний допустимый предел 7812). Тем не менее, рекомендуется использовать радиатор для охлаждения ИС и увеличения срока ее службы.

Схема блока питания, разработанная в этом проекте, может использоваться для питания светодиодных лент и тросов. Его также можно использовать для питания светодиодных плат. Как правило, с помощью этого блока питания можно запитать любую схему, которая требует постоянного напряжения 12 В с ограничением тока 1 А.

Принципиальные схемы



Подано в: Избранные статьи


7812 Регулятор напряжения 12 В / 1 А

Описание

7812 — это линейный стабилизатор с фиксированным напряжением, который может выдавать 12 В при токе до 1 А с диапазоном входного напряжения от 14 до 35 В.

В ПАКЕТЕ:

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ РЕГУЛЯТОРА НАПРЯЖЕНИЯ 7812:
  • Линейный регулятор постоянного напряжения
  • Диапазон входного напряжения 14-35 В
  • Фиксированное выходное напряжение 12 В
  • 1A постоянный ток с 2.Возможность перенапряжения 2A
  • ТО-220 упаковка

Линейные регуляторы постоянного напряжения серии 78xx являются одними из самых популярных линейных регуляторов на рынке, которые существуют уже очень давно. Они имеют встроенное ограничение тока и защиту от перегрева и, как правило, являются довольно надежными устройствами. Префикс может различаться в зависимости от производителя, поэтому вы можете увидеть их в списке как LM78xx, MC78xx, L78xx или просто 78xx.

Основные операции

7812 — широко используемый линейный регулятор.Входное напряжение может находиться в диапазоне от 14 до 35 В постоянного тока, а на выходе — фиксированное 12 В при токе более 1 А и до 2,2 А при импульсном токе.

Для основной работы внешние компоненты не требуются. Просто подключите входное напряжение и землю, и на выходе будет 5 В.

Если вы используете его на достаточном расстоянии (> 10 дюймов) от источника питания, обеспечивающего входное напряжение, то рекомендуется конденсатор входного фильтра 0,33 мкФ или больше. Деталь в идеале должна быть деталью с низким ESR, такой как танталовый или майларовый конденсатор, но небольшие электролитические конденсаторы обычно работают нормально.Выходной конденсатор 0,1 мкФ или больше также может быть добавлен для улучшения выходной переходной характеристики, как показано ниже

.

Рассеиваемая мощность

Линейные регуляторы

имеют меньшую пульсацию на своих выходах по сравнению с преобразователями постоянного тока в постоянный, которые можно использовать для тех же основных целей, но компромисс заключается в том, что линейные регуляторы также имеют тенденцию рассеивать больше тепла в процессе. Причина в том, что линейный регулятор использует на выходе последовательно проходной транзистор для снижения избыточного напряжения.

Рассеиваемая мощность линейного регулятора зависит от разницы между входным напряжением (Vin) и выходным напряжением (Vout), а также от величины тока, потребляемого регулятором. Чем больше разница в напряжении между Vin и Vout, тем выше будет рассеиваемая мощность, что ограничивает ток, который может потребляться от устройства.

Рассеиваемая мощность устройства 7812 легко вычисляется как Рассеиваемая мощность = (Vin — Vout) * Iout .

Если на входе 7812 напряжение 15 В и ток составляет 1 А, тогда рассеиваемая мощность = (15 В — 12 В) * 1 А = 3 Вт. Корпус 7812 TO-220 должен рассеивать 3 Вт мощности. В типичных условиях устройство может рассеивать около 1–1,25 Вт до того, как потребуется радиатор, поэтому в нашем примере здесь устройству потребуется радиатор. Максимальный выходной ток без радиатора в этом случае будет ограничен примерно 300 — 350 мА, и устройство будет работать в диапазоне 85-95 ° C.

Как правило, вы всегда хотите использовать как можно более низкое входное напряжение, чтобы минимизировать потери мощности через устройство и максимально увеличить доступный выходной ток.

Примечания:

  1. Язычок 7812 совпадает с контактом заземления.
  2. При сильноточных нагрузках или при больших перепадах входного и выходного напряжения устройство может сильно нагреваться, поэтому будьте осторожны при обращении.

Технические характеристики

Максимальные характеристики
V IN Максимальное входное напряжение 35V
I O Максимальный выходной ток 1A (типовой)
I МАКС Пиковый импульсный ток (тип.) 2.2А
Эксплуатационные характеристики
В О Выходное напряжение 12,0 В +/- 2%
V I — V O Отключение напряжения 2,0 В
Упаковка К-220
Тип корпуса Пластиковый язычок, 3-выводный, сквозное отверстие
Производитель ON Semiconductor
Лист данных 7812

Стабилизатор напряжения по схеме 12 вольт.Перечень элементов регулируемой схемы питания на LM317. Схема преобразователя со стабильным напряжением смещения

24.06.2015

Представляем мощный стабилизированный блок питания на 12 В. Он построен на микросхеме стабилизатора LM7812 и транзисторах TIP2955, обеспечивающий ток до 30 А. Каждый транзистор может давать ток до 5 А, соответственно 6 транзисторов будут обеспечивать ток. до 30 А. путем изменения количества транзисторов и получения требуемого значения тока. Микросхема выдает ток около 800 мА.

На выходе предохранитель 1 и для защиты от больших переходных токов. Необходимо предусмотреть хороший теплоотвод из транзисторов и микросхем. Когда ток через нагрузку велик, мощность, рассеиваемая каждым транзистором, также увеличивается, так что избыточное тепло может привести к пробою транзистора.

В этом случае для охлаждения потребуется очень большой радиатор или вентилятор. Резисторы на 100 Ом используются для стабильности и предотвращения насыщения, т.к. коэффициенты усиления имеют некоторый разброс от однотипных транзисторов.Мостовые диоды рассчитаны не менее 100 А.

Банкноты

Самым дорогим элементом всей конструкции, пожалуй, является входной трансформатор, возможно использование двух последовательно соединенных автомобильных аккумуляторов. Напряжение на входе стабилизатора должно быть несколько выше требуемого (12 В), чтобы он мог поддерживать стабильный выход. Если используется трансформатор, то диоды должны выдерживать довольно большой пиковый постоянный ток, обычно 100А или более.

Через LM 7812 будет проходить не более 1 А, остальное обеспечивают транзисторы.Так как схема рассчитана на нагрузку до 30А, то шесть транзисторов включаются параллельно. На каждую из них выделяется мощность 1/6 от общей нагрузки, но все же необходимо обеспечить достаточный теплоотвод. Максимальный ток нагрузки приведет к максимальной дисперсии, и потребуется большой радиатор.

Для эффективного отвода тепла от радиатора рекомендуется использовать вентилятор или радиатор с водяным охлаждением. Если блок питания загружен на максимальную нагрузку, а силовые транзисторы вышли из строя, то весь ток пройдет через микросхему, что приведет к катастрофическому результату.Во избежание поломки микросхемы на ее выходе предохранитель на 1 А. Нагрузка 400 мОм предназначена только для тестирования и в итоговую схему не входит.

Расчеты

Эта схема — отличная демонстрация законов Кирхгофа. Величина токов, входящих в узел, должна быть равна сумме токов, выходящих из этого узла, а сумма падений напряжения на всех ответвлениях любой замкнутой цепи цепи должна быть равна нулю. В нашей схеме входное напряжение 24 В, из которых 4 В падает на R7 и 20 В на входе LM 7812, т.е.е. 24-4-20 = 0. На выходе полного тока нагрузки 30а регулятор подает 0,866а и 4,855а каждый из 6 транзисторов: 30 = 6 * 4,855 + 0,866.

Ток базы составляет около 138 мА на транзистор, чтобы получить ток коллектора около 4,86 ​​А. Коэффициент усиления постоянного тока для каждого транзистора должен быть не менее 35.

TIP2955 удовлетворяет этим требованиям. Падение напряжения на R7 = 100 Ом при максимальной нагрузке составит 4В. Рассеиваемая на нем мощность рассчитывается по формуле P = (4 * 4) / 100, т.е. 0,16 Вт. Желательно, чтобы этот резистор был мощностью 0,5 Вт.

Входной ток микросхемы проходит через резистор в цепи эмиттера и транзисторы b-E. Еще раз применим законы Кирхгофа. Входной ток регулятора состоит из тока 871 мА, протекающего по основной цепи, и 40,3 мОм через R = 100 Ом.
871,18 = 40,3 + 830. 88. Входной ток стабилизатора всегда должен быть больше выходного. Мы видим, что он потребляет всего около 5 мА и практически не должен греться.

Проверка и ошибка

Во время первого теста подключать нагрузку не нужно. Изначально замеряем напряжение на розетке, оно должно быть 12 вольт, или совсем другое значение. Затем подключите сопротивление около 100 Ом, 3 Вт в качестве нагрузки. Вольтметр менять не должен. Если вы не видите 12 В, то после отключения питания следует проверить правильность установки и качество пайки.

Один из считывателей получил на выходе 35 В вместо стабилизированных 12 В.Это произошло из-за короткого замыкания силового транзистора. Если есть какой-либо из транзисторов, вам придется выкопать все 6, чтобы проверить мультиметр переходов эмиттер-коллектор.

Схемы самодельных импульсных преобразователей постоянного напряжения на транзисторах, семь примеров.

Из-за высокого КПД импульсные стабилизаторы напряжения получают в последнее время более широкое распространение, хотя обычно они более сложные и содержат больше элементов.

Поскольку только небольшая часть энергии, подаваемой в импульсный стабилизатор энергии, преобразуется в тепловую энергию, его выходные транзисторы меньше нагреваются, поэтому за счет уменьшения площади радиатора уменьшаются масса и габариты устройства.

Существенным недостатком импульсных стабилизаторов является наличие высокочастотных пульсаций на выходе, что значительно сужает область их практического использования — чаще всего импульсные стабилизаторы используются для питания устройств на цифровых микросхемах.

Понижающий импульсный стабилизатор напряжения

Стабилизатор с выходным напряжением без входного может быть собран на трех транзисторах (рис. 1), два из которых (VT1, VT2) образуют ключевой регулирующий элемент, а третий (tz) — усилитель сигнала рассогласования.

Рис. 1. Схема импульсного стабилизатора напряжения с КПД 84%.

Устройство работает в автоколебательном режиме. Положительная обратная связь от коллектора составного транзистора ѴT1 через конденсатор C2 поступает в цепь базы транзистора ѵT2.

Элементом сравнения и усилителем сигнала рассогласования является каскад на транзисторе ѵtz. Его эмиттер подключен к источнику опорного напряжения — стабилитрону VD2, а база — к делителю выходного напряжения R5 — R7.

В импульсных стабилизаторах регулирующий элемент работает в ключевом режиме, поэтому выходное напряжение регулируется изменением открытия ключа.

Включение / выключение транзистора VT1 через сигнал транзистора ѵTZ управляет транзистором ѵT2. В моменты, когда транзистор ѵT1 открыт, в дросселе L1 из-за протекания тока нагрузки усиливается электромагнитная энергия.

После закрытия транзистора энергия окружающей среды через диод VD1 передается на нагрузку.Пульсации выходного напряжения стабилизатора сглаживаются фильтром L1, SZ.

Характеристики стабилизатора полностью определяются свойствами транзистора ѵT1 и диода VD1, быстродействие которых должно быть максимальным. При входном напряжении 24 В, выходном — 15 В и токе нагрузки 1 измеренный КПД КПД составил 84%.

Дроссель L1 имеет 100 витков провода диаметром 0,63 мм на кольце К26х16х12 из феррита с магнитной проницаемостью 100.Его индуктивность при токе утечки 1 А составляет около 1 мп.

СТУПЕНЧАТЫЙ преобразователь напряжения постоянного тока в постоянный на + 5В

Схема простого импульсного стабилизатора представлена ​​на рис. 2. Дроссели L1 и L2 намотаны на пластмассовые рамки, размещенные в бронированных магнитопроводах В22 из феррита М2000НМ.

Дроссель L1 содержит 18 витков жгута из 7 проводов ПЭВ-1 0,35. Между чашками его магнитного трубопровода вкладывается толщина 0,8 мм.

Активное сопротивление обмотки дроссельной заслонки L1 27 МОм.Дроссель L2 имеет 9 витков жгута 10 проводов ПЭВ-1 0,35. Зазор между его чашками — 0,2 мм, активное сопротивление обмотки — 13 МОм.

Прокладки могут быть выполнены из жесткого термостойкого материала — текстолита, слюды, электрокартона. Винт, скрепляющий чашку магнитопровода, должен быть из немагнитного материала.

Рис. 2. Схема простого ключевого стабилизатора напряжения с КПД 60%.

Установить стабилизатор на его выход, сопротивление 5… К его выходу подключено 7 Ом и 10 Вт. Подбором резистора R7 устанавливают номинальное выходное напряжение, затем увеличивают ток нагрузки до 3 А и, выбирая номинал конденсатора С4, устанавливают такую ​​частоту генерации (примерно 18 … 20 кГц), при которой высокочастотное напряжение излучается. на конденсаторе СЗ минимальны.

Выходное напряжение стабилизатора можно поднять до 8 … 10В, увеличив размер резистора R7 и установив новое значение рабочей частоты. В этом случае мощность, рассеиваемая на транзисторе ѵtz, также увеличится.

В схемах импульсных стабилизаторов желательно использовать конденсаторы электролитические К52-1. Необходимое количество емкостей получается параллельным включением конденсаторов.

Основные характеристики:

  • Входное напряжение, В — 15 … 25.
  • Выходное напряжение, В — 5.
  • Максимальный ток нагрузки, А — 4.
  • Пульсации выходного напряжения при токе нагрузки 4 А во всем диапазоне входных напряжений, МВ, не более — 50.
  • КПД,%, не ниже — 60.
  • Рабочая частота при входном напряжении 20 В и токе нагрузки 3 А, кГц — 20.

Вариант улучшенного импульсного стабилизатора на + 5В

По сравнению с предыдущей версией импульсного стабилизатора в новой конструкции А.А. Миронова (рис. 3) улучшены такие его характеристики, как КПД, стабильность выходного напряжения, длительность и характер переходного процесса при воздействии импульсная нагрузка.

Рис. 3. Схема импульсного стабилизатора напряжения.

Оказалось, что во время работы прототипа (рис. 2) возникает так называемый сквозной ток через транзистор с составным ключом. Этот ток появляется в те моменты, когда ключевой транзистор открывается по сигналу сборки сравнения, а коммутирующий диод еще не успел замкнуться. Наличие такого тока вызывает дополнительные потери на нагрев транзистора и диода и снижает КПД устройства.

Еще один недостаток — значительная пульсация выходного напряжения при токе нагрузки, близком к предельному.Для борьбы с пульсациями на стабилизаторе (рис. 2) был введен дополнительный выходной LC-фильтр (L2, C5).

Уменьшить нестабильность выходного напряжения от изменения тока нагрузки можно только за счет активного сопротивления дросселя L2.

Улучшение динамики переходного процесса (в частности, уменьшение его длительности) связано с необходимостью уменьшения индуктивности дросселя, но при этом неизбежно будет возрастать пульсация выходного напряжения.

Следовательно, этот выходной фильтр оказалось целесообразным исключить, а увеличение емкости C2 C2 в 5 … 10 раз (параллельно включению нескольких конденсаторов в батарее).

Цепочка R2, C2 в штатном стабилизаторе (рис. 6.2) практически не меняет длительность выходного тока длительностью, поэтому ее можно убрать (замкнуть резистор R2), а сопротивление на резисторе R3 увеличить до 820 Ом. .

Но тогда при увеличении входного напряжения с 15 6 до 25 6 ток, протекающий через резистор R3 (в устройстве-источнике), увеличится на 1.В 7 раз, а мощность рассеивания в 3 раза (до 0,7 Вт).

Подключив нижний по выходной схеме R3 (на модифицированной схеме стабилизатора это резистор R2) к плюсовому выходу конденсатора C2, этот эффект можно ослабить, но при этом сопротивление R2 (рис. 3) должно уменьшится до 620 Ом.

Один из эффективных способов борьбы со сквозным током — увеличение тока через открытый ключевой транзистор.

Тогда при полном открытии транзистора ток через диод VD1 уменьшится почти до нуля.Этого можно добиться, если форма тока через ключевой транзистор близка к треугольной.

Как показывает расчет, для получения такой формы тока индуктивность накопительного дросселя L1 не должна превышать 30 мкГн.

Другой способ — использование более быстрого переключающегося диода VD1, например, CD219B (с барьером разнесения). Эти диоды имеют более высокое быстродействие и меньшее падение напряжения при одном и том же значении постоянного тока по сравнению с обычными кремниевыми высокочастотными диодами.Конденсатор С2 типа К52-1.

Улучшение параметров устройства можно получить и при смене ключевого транзистора. Особенностью мощного транзистора ѵtz в оригинальном и улучшенном стабилизаторах является то, что он работает в активном режиме, а не в насыщенном, а потому имеет высокое значение коэффициента прохождения тока и быстро закрывается.

Однако из-за повышенного напряжения на нем в открытом состоянии емкость в 1,5 … 2 раза превышает минимально достижимое значение.

Уменьшить напряжение на ключевом транзисторе можно за счет положительного (относительно положительного источника питания) напряжения смещения на эмиттер транзистора ѵt2 (см. Рис.3).

Требуемая величина напряжения смещения выбирается при установке стабилизатора. Если он питается от выпрямителя, подключенного к сетевому трансформатору, то для получения напряжения смещения может быть предусмотрена отдельная обмотка на трансформаторе. Однако напряжение смещения будет изменяться в зависимости от сети.

Схема преобразователя

со стабильным напряжением смещения

Для получения стабильного напряжения смещения необходимо доработать стабилизатор (рис. 4), а дроссель превратить в трансформатор Т1, намотать дополнительную обмотку II.Когда ключевой транзистор закрыт, а диод VD1 открыт, напряжение на обмотке I определяется из выражения: U1 = Ubyl + U VD1.

Т.к. выходное напряжение и на диоде в это время меняется незначительно, вне зависимости от входного напряжения, на обмотке II напряжение практически стабильно. После выпрямления он подается на эмиттер транзистора VT2 (и VT1).

Рис. 4. Схема модифицированного импульсного стабилизатора напряжения.

Теплопотери уменьшились в первом варианте финального стабилизатора на 14.7%, а во втором — на 24,2%, что позволяет им работать при токе нагрузки до 4 А без установки ключевого транзистора на радиатор.

В стабилизаторе варианта 1 (рис. 3) дроссель L1 содержит 11 витков, намотанных жгутом из восьми проводов ПЭВ-1 0,35. Обмотка размещена в броневом магнитопроводе Б22 из Феррита 2000НМ.

Между чашками нужно уложить прокладку из текстолита толщиной 0,25 мм. В стабилизаторе варианта 2 (рис. 4) трансформатор Т1 образован путем намотки на катушку дросселя L1 двух витков провода ПЭВ-1 0.35.

Вместо германского диода D310 можно использовать кремний типа CD212A или CD212B, при этом количество витков обмотки II следует увеличить до трех.

Стабилизатор постоянного напряжения

Стабилизатор с импульсно-импульсным управлением (рис.5) по принципу действия близок к стабилизатору, описанному в, но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент замыкается при превышение напряжения на нагрузке или увеличение тока, потребляемого нагрузкой.

При подаче питания на вход текущего тока резистор R3 открывает ключевой элемент, образованный транзисторами VT.1, VT2, в результате чего транзистор VT1 — дроссель L1 — является нагрузкой — Возникает резистор R9. Конденсатор С4 заряжается и накапливается энергия дроссельной заслонки L1.

Если сопротивление нагрузки достаточно велико, напряжение на ней достигает 12 В, и стабилитрон VD4 открывается. Это приводит к открытию транзисторов VT5, ѵtz и закрытию ключевого элемента, а за счет наличия диода VD3 дроссель L1 передает накопленную энергию на нагрузку.

Рис. 5. Схема стабилизатора-стабилизатора с КПД до 89%.

Технические характеристики стабилизатора:

  • Входное напряжение — 15 … 25 В.
  • Выходное напряжение — 12 В.
  • Номинальный ток нагрузки — 1 А.
  • Пульсация выходного напряжения при токе нагрузки 1 А — 0,2 В. КПД (при UBX = 18 6, IH = 1 А) — 89%.
  • Потребление тока при UBX = 18 В в режиме замыкания грузовой цепи — 0.4 А.
  • Выходной ток КЗ (при UBX = 18 6) — 2,5 А.

По мере того, как ток уменьшается через дроссель и разряд конденсатора C4, напряжение нагрузки также будет уменьшаться, что приведет к закрытию транзисторов VT5, ztz и открытию ключевого элемента. Далее процесс работы стабилизатора повторяется.

Конденсатор С3, уменьшающий частоту колебательного процесса, увеличивает КПД стабилизатора.

При малом сопротивлении нагрузки иначе происходит колебательный процесс в стабилизаторе.Увеличение тока нагрузки приводит к увеличению падения напряжения на резисторе R9, открытию транзистора ѵT4 и замыканию ключевого элемента.

Во всех режимах стабилизатора потребляемый ток меньше тока нагрузки. Транзистор ѵT1 должен быть установлен на радиаторе размером 40×25 мм.

Дроссель L1 представляет собой 20 витков жгута трех проводов ПЭВ-2 0,47, помещенных в чашку магнитопровода В22 из феррита 1500 нм. Магнитная цепь имеет 0.Зазор толщиной 5 мм из немагнитного материала.

Стабилизатор легко восстановить другое выходное напряжение и ток нагрузки. Выходное напряжение задается выбором типа стабилитрона VD4, а максимальный ток нагрузки пропорционален сопротивлению резистора R9 или подаче на базу транзистора небольшого тока от отдельного параметрического стабилизатора через переменный резистор.

Для снижения уровня пульсаций выходного напряжения желательно применить LC-фильтр, аналогичный тем, которые используются на схеме на рис.2.

Стабилизатор напряжения импульсный с преобразованием КПД 69 … 72%

Импульсный стабилизатор напряжения (рис.6) состоит из пускового узла (R3, VD1, ѵT1, VD2), источника опорного напряжения и устройства сравнения (DD1.1, R1), усилителя постоянного тока (Т2, DD1.2). , ѵT5), транзисторный ключ (ѵtz, ѵt4), индуктивный накопитель энергии с переключаемым диодом (VD3, L2) и фильтрами — вход (L1, C1, C2) и выход (C4, C5, L3, C6). Частота коммутации индуктивного энергопривода в зависимости от тока нагрузки находится в пределах 1.3 … 48 кГц.

Рис. 6. Схема импульсного стабилизатора напряжения с эффективностью преобразования 69 … 72%.

Все индукторы индукторов L1 — L3 одинаковые и намотаны в броне магнитопроводами Б20 из феррита 2000НМ с зазором между чашками около 0,2 мм.

Номинальное выходное напряжение 5 В при изменении входа от 8 до 60 В и КПД преобразования 69 … 72%. Коэффициент стабилизации — 500.

Амплитуда пульсаций выходного напряжения при токе нагрузки 0.7 А не более 5 мВ. Выходное сопротивление 20 МОм. Максимальный ток нагрузки (без радиаторов для транзистора VT4 и диода VD3) — 2 А.

Стабилизатор напряжения импульсный на 12В

Импульсный стабилизатор напряжения (рис. 6.7) при входном напряжении 20 … 25 В обеспечивает выходное стабильное напряжение 12 В при токе нагрузки 1,2 А.

Пульсация на выходе до 2 мВ. Из-за высокого КПД в устройстве не используются радиаторы. Индуктивность дросселя L1 составляет 470 мкГн.

Рис. 7. Схема импульсного стабилизатора напряжения с небольшими пульсациями.

Аналоги транзисторов: SW547 — КТ3102А] СП548В — КТ3102Б. Примерные аналоги транзисторов Сибирского Кодекса Сибиряка 807 — КТ3107; БД244 — КТ816.

Описание нюансов сборки стабилизатора напряжения 12 вольт на машину, перечень необходимых запчастей, 3 схемы. + Тест для самотестирования. Мы занимаемся 5 основными вопросами по теме и 3 основными припоями для плат.

ТЕСТ:

Чтобы понять, достаточно ли у вас информации о автомобильных стабилизаторах, вам следует пройти небольшой тест:
  1. Зачем устанавливать на свой автомобиль стабилизатор на 12 вольт? А) автомобильная сеть дает непостоянное напряжение. Это зависит от степени зарядки аккумулятора. Напряжение колеблется в пределах 11,5 — 14,5 вольт. Но для светодиодных ламп требуется всего 12 вольт. Запитать нужное напряжение и поставить ЦЗ.
    б) Светодиодные лампы работают от 18 вольт. Чтобы они функционировали при подключении на автомобиле, приходится давать дополнительную нагрузку через стабилизатор.
  2. Почему светодиодные лампы часто перегорают без стабилизатора? А) основная причина — некачественный производитель светодиодов.
    б) Из-за скачкообразного напряжения на них.
  3. В каком случае к стабилизатору дополнительно подключают алюминиевый радиатор? А) Если на автомобиле установлено более 10 светодиодов.
    б) при установке на станке светодиодных ламп разного цвета.
  4. Как подключаются светодиоды? А) 3 светодиода подключаются последовательно к резистору, а после собранного комплекта параллельно подключаются следующие светодиоды.
    б) 3 светодиода подключаются параллельно резистору, а затем собранный набор последовательно подключается к следующим светодиодам.

Ответы:

  1. а) В зависимости от степени заряда АКБ на светодиодные лампы будет действовать колебательное напряжение — от 11,5 до 14,5. Именно поэтому его подключают к лампам для получения постоянного напряжения, равного 12 вольт (такой индикатор нужен светодиодам).
  2. б) Светодиоды не рассчитаны на скачки напряжения, которые исходят от АКБ, так что скоро без стабилизатора сгорают.
  3. а) Если на автомобиле установлено более 10 светодиодов, желательно оснастить схему алюминиевым радиатором.
  4. б) Сначала к резистору последовательно подключаются 3 светодиода, а после берут новую заминку и уже параллельно соединяют между собой.

Автовладельцы часто устанавливают на свой автомобиль светодиодную подсветку. Но лампочки часто выходят из строя, и вся созданная красота тут же вспыхивает. Объясняется это тем, что светодиодные лампочки работают некорректно, если их просто подключить к электрической сети.Для них необходимо использовать специальные стабилизаторы. Только в этом случае лампы будут защищены от перепадов напряжения, перегрева, повреждения важных узлов. Чтобы установить стабилизатор напряжения на свой автомобиль, вам необходимо подробно разобраться в этом вопросе и изучить простую схему, которая будет собрана своими руками.

Определение: CH 12 вольт для автомобиля — небольшое устройство, предназначенное для очистки от чрезмерного автомобильного напряжения, идущего от аккумулятора. В результате подключенные светодиодные лампы получаются постоянной нагрузкой в ​​12 вольт.

Подбор стабилизатора 12 В

Бортовая сеть автомобиля обеспечивает питание от 13 В, но для работы светодиодов нужно всего 12 В. Поэтому необходимо установить стабилизатор напряжения, который будет обеспечивать 12 В.

Установив такое оборудование для обеспечения нормальных условий работы. светодиодное освещение, что долго не выйдет из строя. Выбирая стабилизаторы, автомобилисты сталкиваются с проблемами, ведь конструкций очень много, и работают они по-разному.

Выбирает стабилизатор, который:

  1. Он будет нормально работать.
  2. Обеспечивают надежную защиту и безопасность осветительной техники.

Стабилизатор напряжения простой 12 своими руками

Если есть даже небольшие навыки сборки электрической схемы, то стабилизатор напряжения приобретается по желанию по готовому виду. На изготовление самодельного устройства Человек потратит 50 рублей и меньше, готовая модель несколько дороже. Переплачивать нет смысла, ведь в результате получается качественный аппарат, отвечающий всем необходимым требованиям.

Самый простой, но функциональный стабилизатор можно сделать своими руками без особых усилий. Импульсный прибор собрать очень сложно, особенно новичку, а потому стоит рассмотреть на нем линейные стабилизаторы и любительские схемы.

Самый простой стабилизатор напряжения 12 вольт собран из схемы (готов), как и сопротивление резистора. Желательно использовать микросхему LM317. Все элементы будут прикреплены к перфорированной панели или универсальной печатной плате.Если правильно собрать прибор и подключить к автомобилю, можно обеспечить хорошее освещение — лампочки перестанут мигать.


Перечень деталей CH 12 V

Чтобы сделать стабилизатор напряжения своими руками, следует найти или купить следующие детали:

  1. Доска — 35 на 20 мм.
  2. Микросхема
  3. LD 1084.
  4. Диодный мост RS407. Если этого нет, выбираем любой маленький диод, предназначенный для обратного тока.
  5. Блок питания с транзистором и двумя сопротивлениями.Это оборудование нужно для того, чтобы выключить торец при включении ближнего или дальнего света.

Три светодиода необходимо преобразовать в токоограничивающий резистор, регулирующий электричество. Этот набор после того, как он должен быть подключен к следующему комплекту лампочек.

Как сделать стабилизатор напряжения на 12 вольт для светодиодов в машине на микросхеме L7812

Для сборки качественного стабилизатора напряжения можно использовать трехконтактный стабилизатор постоянного напряжения, выпускаемый серией L7812.Это устройство позволит не только отделить этикетки в автомобиле, но и целую ленту из светодиодов.


L7812.
Компоненты:
Микросхема
  1. L7812.
  2. Конденсатор 330 MKF 16 В.
  3. Конденсатор 100 мкФ 16 В.
  4. Выпрямительный диод на 1 ампер. Вы можете использовать 1N4001 или диод Шоттки.
  5. Термоусадочная на 3 мм.
  6. Электропроводка соединительная.
Порядок сборки:
  1. Слегка укоротите одну ножку стабилизатора.
  2. Используйте припой.
  3. Добавьте диод в короткую ножку, а после и конденсаторы.
  4. Накладываем термоусадку на проводку.
  5. Занимаемся коммутацией проводов.
  6. Носим термоусадочную пленку, прессуем строительным феном или зажигалкой. Важно не переставлять и не растапливать термоусадку.
  7. На входе с левой стороны подаем питание, справа будет выводиться светодиодная лента.
  8. Проводим тест — включаем освещение.Лента должна загореться, теперь ее работа увеличится.

Это делает стабилизатор напряжения 12 своими руками.

Схема стабилизатора напряжения 12 вольт для светодиодов в авторучках на базе LM2940CT-12.0


Также для сборки качественного стабилизатора напряжения используется схема LM2940CT-12.0. В качестве корпуса мы используем абсолютно любой материал, кроме дерева. Если в автомобиле планируется установить более 10 светодиодных ламп, то алюминиевый радиатор желательно прикрепить к стабилизатору.

Возможно, у кого-то уже был опыт работы с таким оборудованием, и они скажут, что нет необходимости использовать дополнительные детали — напрямую подключайте светодиоды и получайте удовольствие от работы. Так можно поступить, но в этом случае лампочки будут постоянно находиться в неблагоприятных условиях, а значит, скоро сгорят.

Достоинства всех перечисленных схем стабилизатора напряжения — упрощенная сборка. Чтобы собрать стабилизатор, не нужно обладать какими-то специальными навыками и навыками.Но если представленные картинки только вызывают недоумение, то не пытайтесь собрать схему своими руками.

Еще важно знать 3 нюанса, как собрать стабилизатор напряжения 12 вольт своими руками

  1. Светодиоды предпочтительно подключаются через стабилизатор тока. Таким образом удастся уравновесить колебания электрической сети, а владелец автомобиля не будет беспокоиться о сбрасывании тока.
  2. Требования к питанию также должны соблюдаться, потому что, таким образом, собственный самосборный стабилизатор может быть правильно настроен под электрическую сеть.
  3. Желательно собрать такой агрегат, который обеспечит достойную устойчивость, надежность и устойчивость — стабилизатор должен продержаться долгие годы. Именно поэтому не обязательно дешеветь на комплектующие — приобретайте в хороших магазинах электронику.

Как избежать 3х ошибок при пайке схем

  1. Перед началом всех работ по штырю обязательно подберем наиболее подходящий паяльный аппарат для сборки микросхемы. Старый, который лежит дома или в гараже, подойдет только опытным людям, новенький испортит плату, не справился с мощностью.Наиболее подходящий диапазон напряжений для подключения платы и проводки — 15-30 Вт. Мы не используем большую мощность, иначе плата сгорит и придется начинать все заново, с новыми деталями.
  2. Перед тем, как приступить к подключению соединений пайкой, убедитесь, что схема хорошо очищена. Для качественной обработки используется простой состав — смешивается любое мыло с чистой водой. После чистой салфетки вырисовался приготовленный раствор и доска очень качественная по всей поверхности.Если на металле остались места мыла, то протираем их аккуратной сухой тканью. На досках часто бывают довольно плотные отложения. Чтобы избавиться от них, придется отправиться в магазин с электрооборудованием и купить специальный очищающий состав. Продавцы подскажут все необходимое. Обработайте до появления светлого металлического блеска.
  3. Контакты на плате У нас в правильной последовательности — для начала работаем с небольшими резисторами, а потом переходим к большим деталям. Если сначала скрепить все основные детали, то мелкие детали будет очень неудобно прикреплять — большие детали помешают.

Не пренебрегайте советами. Они создадут более качественный состав, что означает долговечность стабилизатора.

Паяльник Top 3 для плат

Чтобы упростить себе работу на шипе стабилизатора, желательно купить качественный паяльник. В магазинах есть агрегаты хороших и проверенных производителей, на которые стоит обратить внимание:

  1. ERSA — немецкая компания. Товар очень хороший и надежный, но дорогой, а потому для дома по карману далеко не каждому.
  2. Китайская фирма Quick. Качество на высоте, а цена приемлемая.
  3. Лаки. Самый бюджетный вариант. Нельзя оставлять включенный автомат без присмотра — возможно возгорание.

Паяльник потребляет 10 Вт, чтобы сделать простой микропланшет. При покупке читайте ручку — она ​​не должна быстро нагреваться. Лес — идеальный вариант. Пластик быстро нагревается, эбонит тяжелый, поэтому работать с мелкими деталями затруднительно.

Пауэрс Желательно выбирать из меди — ее легко очистить от нагара после работы.Балай бывает разной формы и продается наборами. Это бесполезно, но опытным людям будет удобно пользоваться насадками разной конфигурации.

Стабилизаторы напряжения автомобильные

Ответы на 5 часто задаваемых вопросов по пайке

  1. Сколько нужно держать предварительно нагретое жало на деталях для хорошей фиксации? — 3 секунды хватит, если протянуть дольше, плата сгорает.
  2. Сколько добавляется припой? — Смотрите, чтобы покрыть обработанную часть.Иногда хватает и капель.
  3. Пайка по внешнему виду должна стать блестящей или матовой? — блестящий.
  4. Купить дополнительные средства защиты? — Только очки. Если вы подобрали хороший паяльник, защищать руки не нужно.
  5. Какая температура у микросхемы? — 230 градусов.

radiohome.ru.

cXEMA.org — Мощный импульсный блок питания 12В 40А

Такое устройство недавно заказали в местном магазине. Устройство рассчитано на подхватывание стенда сразу с 30 автомагнитол. Ясный случай, если прикинуть, одно радио будет потреблять ток около 1 ампера, это легко, если он включен, но если вы работаете на полной громкости, то потребление одного радио будет в районе 7-8 ампер.30 Magnetol 1 А это уже 30 ампер, а при напряжении 12 вольт мощность блока питания должна быть не менее 350-400 ватт. Так как финансы были ограничены, то собирать такой бизнес с сетевым трансформатором на 400 ватт крайне не выгодно, поэтому решил замутить импульсную схему. Один из самых простых вариантов построен на поллитровом высоковольтном драйвере. IR2153. Несмотря на простоту сборки, такой блок питания может обеспечивать заданную мощность.

Стоимость комплектующих не превышает 10 долларов, при этом блок оказался минимальным.

Силовой фильтр встроен на вводе питания, предохранитель. Термистор защищает края от скачков напряжения во время подачи питания. Диодный мост построен на 4-х выпрямителях 1N5408, он представляет собой 3-амперный диод с обратным напряжением 1000 вольт. Конденсаторы 200В 470МКФ — сняты с блока компьютера. Питание. При замене емкости можно увеличить или уменьшить мощность блока питания в целом. Несмотря на то, что он нагружал блок питания почти до максимума, но за 3 минуты работы клавиши были полностью холодными.Сами клавиши за счет изоляции укреплены на общем радиаторе небольших размеров. Обдув осуществляется кулером, питающим отдельный БП на 3 Вт, такой блок убрали со светодиодной лампы. Такое решение связано с тем, что в случае прокладки кулера от общей шины 12 вольт может образоваться фон, а это в свою очередь приводит к искажениям, если блок подключается к автомобилю.

Трансформатор пришлось заводить с нуля.

Ядро было взято от блока питания компьютера.Все промышленные обмотки необходимо снять и намотать. Сетевая обмотка состоит из 40 витков провода 0,8 мм. Вторичная обмотка намотана покрышкой из 7жил проводов 0,8 мм, обмотка состоит из 2х3 витков. На выходе сдвоенный диод Schottky 2x30a, радиатором для него является корпус блока питания, а сам корпус взят от вычислителя bp.

Ограничительный резистор для промывки микросхемы нужен мощный (2 Вт) при работе. Может немного перегреться, номинал может отклониться в ту или иную сторону на 10%.

В итоге получился очень мощный блок питания, который неделю питает стойку с автомагнитолой, работает 12 часов в сутки без перерывов.

С уважением — Ака Касьян

vip-cxema.org.

Как сделать блок питания 12 В своими руками

Блок питания постоянного напряжения 12 В состоит из трех основных частей:

  • Понижающий трансформатор от условного входного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение , снижается только примерно до 16 вольт на холостом ходу — без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и выставляет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большого контейнера, который сглаживает полусинусоиды напряжения, заставляя их приближаться к прямой линии с напряжением 16 вольт. Это сглаживание лучше, чем емкость конденсатора.

Самое простое — получить постоянное напряжение, способное питать устройства, рассчитанные на 12 вольт — лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять от старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с намотками и перемоткой. Однако, чтобы в конечном итоге выйти на желаемое напряжение 12 вольт во время работы нагрузки, вам нужно взять трансформатор, который снижает напряжение до 16.

Для моста вы можете взять четыре выпрямляемых диода 1N4001, рассчитанные на диапазон напряжений или аналогичный.

Емкость конденсатора должна быть не менее 480 мкФ. Для хорошего качества выходное напряжение также может быть более 1000 мкФ или выше, но необязательно для питания осветительных устройств.Диапазон рабочих нагрузок конденсатора нужен, скажем, до 25 вольт.

Схема устройства

Если мы хотим сделать достойное устройство, которое не будет стыдно тогда подключать в качестве источника постоянного питания, скажем, для цепочку из светодиодов нужно начинать с трансформатора, монтажных плат электронных компонентов и коробки, где все это будет закрепляться и подключаться. Выбирая коробку, важно учитывать, что электрические цепи в процессе эксплуатации нагреваются. Поэтому хорошо подойдет коробка подходящей по размеру и с вентиляционными отверстиями.Можно купить в магазине или снять корпус от блока питания компьютера. Последний вариант может быть громоздким, но в нем в качестве упрощения можно оставить существующий трансформатор даже вместе с охлаждающим вентилятором.

Корпус блока питания

Корпус блока питания

По трансформатору нас интересуют низковольтные обмотки. Если это дает снижение напряжения с 220 В до 16 В — идеальный случай. Если нет, придется перематывать. Перемотав и проверив напряжение на выходе трансформатора, его можно закрепить на плате.И сразу подумайте, как монтажная плата будет крепиться внутри коробки. Для этого у нее есть посадочная яма.

Обмотка низкого напряжения

Печатная плата

Дальнейшие монтажные работы будут проводиться на этой печатной плате, это означает, что она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы , или чип, который по-прежнему должен быть помещен в выбранное поле.

Диодный мост

Диодный мост собран на печатной плате, должно получиться такое ромбирование из четырех диодов.Причем левая и правая пара в равной степени состоят из последовательно соединенных диодов, причем обе пары параллельны друг другу. Один конец каждого диода отмечен полосой — это обозначено плюсом. Сначала припаиваем диоды попарно друг к другу. Последовательно — это означает, что плюс первого связан с минусом второго. Получатся и свободные концы пары — плюс и минус. Параллельно соединить пары — значит припаять как плюсовые пары, так и оба минуса. Теперь у нас выходные контакты моста — плюс и минус.Или их можно назвать жердями — верхними и нижними.

Схема диодного моста

Остальные два полюса левый и правый — используются как входные контакты, на них подается переменное напряжение от вторичной обмотки понижающего трансформатора. А на выходах оси диоды будут заполнять пульсирующее высокое напряжение.

Если теперь подключить параллельно выходу конденсаторного моста, соблюдая полярность — к плюсу моста — плюс конденсатор, то он начнет сглаживание, а также у него есть контейнер.1000 МКФ хватит, а еще поставить 470 мкФ.

Внимание! Электролитический конденсатор — опасное устройство. При неправильном подключении, при подаче напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом по округе разбросано все его внутреннее содержимое — лохмотья корпуса, металлическая фольга и брызги электролита. Что очень опасно.

Ну вот и получился самый простой (если не сказать примитивный) блок питания для устройств с напряжением 12 В постоянного тока, то есть постоянного тока.

Проблемы простого источника питания с нагрузкой

Сопротивление, изображенное на диаграмме, эквивалентно нагрузке. Нагрузка должна быть такой, чтобы ток, ее питающий, при подаче напряжения 12 В не превышал 1 А., можно рассчитать нагрузочную способность и сопротивление по формулам.

Откуда сопротивление r = 12 Ом, а мощность p = 12 Вт. Это значит, что если мощность больше 12 Вт, а сопротивление меньше 12 Ом, то наша схема заработает с перегрузкой, она будет очень греться и быстро сгорает.Решить проблему можно несколькими способами:

  1. Стабилизируйте выходное напряжение так, чтобы при текущем сопротивлении нагрузки ток не превышал максимально допустимого значения или при резких скачках тока в сети нагрузки — например, в момент включение определенных устройств — пиковые значения тока обрезаются до номинальных. Такие явления возникают при питании источника питания от радиоэлектронных устройств — радиоприемников и т. Д.
  2. Используйте специальные схемы защиты, которые отключили бы питание при превышении тока на нагрузке.
  3. Используйте более мощные блоки питания или блоки питания с большим запасом мощности.

Блок питания со стабилизатором на микросхеме

На рисунке ниже показано развитие предыдущей простой схемы с включением 12-вольтового стабилизатора на микросхеме LM7812.

Блок питания со стабилизатором на микросхеме

Уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания все равно не должен превышать 1 А.

Увеличенный блок питания

А мощность более мощная питание может быть выполнено добавлением нескольких мощных каскадов в тип TIP2955 Дарлингтона на схеме.Одна ступень даст увеличение тока нагрузки на 5 А, шесть составных транзисторов, включенных параллельно, обеспечат ток нагрузки в 30 А.

TIP2955 транзисторы Дарлингтона

Схема с такой выходной мощностью требует соответствующего охлаждения. Транзисторы необходимо снабдить радиаторами. Потребуется дополнительный вентилятор охлаждения. Кроме того, вы можете обезопасить себя предохранителями (на схеме не показаны).

На рисунке показано подключение одного составного транзистора Дарлингтона, позволяющего увеличить выходной ток до 5 ампер.Можно еще увеличить, подключив новые каскады параллельно указанному.

Подключение одного составного транзистора Дарлингтона

Внимание! Одна из главных катастроф в электрических цепях — это внезапное короткое замыкание в нагрузке. При этом, как правило, идет поток гигантской силы, сжигающий все на своем пути. В этом случае сложно придумать такой мощный блок питания, который сможет его выдержать. Затем применяют схемы защиты, начиная от предохранителей и заканчивая сложными схемами с автоматическим отключением на интегрированных микросхемах.

lampagid.ru.

radiohome.ru.

Блок питания 12 вольт, 20 ампер и 240 ватт с пассивным охлаждением

Почему я люблю ковырять блоки питания особо расписывать нет смысла, а почему именно 12 вольт, напишу.
Так уж сложилось, но блоки питания на 12 вольт одни из самых популярных наряду с 5 вольтами и 19 вольтами.
5 вольт использовали для питания небольших устройств, но большей популярности прибавило то, что такое же напряжение дает порт USB, поэтому стали «сбываться» такие БП.
19 Вольт используются в ноутбуках, а также такие БП энтузиасты используют радиолюбители для всевозможных паяльных станций и усилителей, в основном за счет приемлемой мощности и компактности.
Ну, 12 вольт — это просто для начала безопасное напряжение и в то же время позволяет передавать гораздо большую мощность. Конечно, на мой взгляд часто можно (а иногда и нужно) на 24 вольта, но это напряжение больше используется в промышленных устройствах.
При жизни от 12 вольт можно питать распространение светодиодных лент для декоративной подсветки и освещения, от 12 вольт также питать системы видеонаблюдения, иногда небольшие компьютеры, а также различные граверы, 3D-принтеры и т. Д.

В общем, в планах сделать несколько обзоров аналогичных БП, но разной мощности и сегодня мне достался блок питания на 240 ватт с пассивной системой охлаждения.
На данный момент обычные несведущие БП имеют мощность до 240-300 ватт, а вторые встречаются гораздо реже и я бы сказал, что 240 ватт — это почти максимум.

На этом я закончу краткую запись и перейду к теме обзора.
БП в привычном металлическом корпусе, думаю, многие видели в продаже аналогичные решения.Упакована
была в обычном белом ящике, на фото она не попадала, да и не особо там что посмотреть.

Вход и выход вынесены на одну большую клеммную планку, есть наклейка с указанием назначения контактов, но наклеена сдвигом, что может запутать неопытного пользователя.

Клеммная коробка имеет защитную крышку, и она открывается на 90 градусов, что даже мало, но плюс, так как есть варианты, когда крышка не открывается полностью.

Подстроечный резистор и светодиод, указывающий источник питания на блоке питания, подключенном справа от терминала.
Заявленные параметры — 12 вольт 20 ампер, реальный производитель неизвестен, стандарт маркировки многих недорогих БП — S-240-12
Переключатель входного напряжения 110/200 вольт расположен, лучше перед первым включением проверить, что он находится в правильное положение. Дата выпуска
конец 2016 г., так что БП можно сказать свежей.

Для начала замеряем, что на выходе БП настроен.Выставлено
12,3 Вольта, диапазон регулировки 10-14,5 вольт. После проверки поставил что-то близкое к 12 вольт.

Внешне осматривать больше нечего, потому что снимаем верхнюю крышку И посмотрим, что внутри.

А внутри блок питания ничем не отличается от других аналогичных недорогих блоков.
Он мне напомнил блок питания на 48 вольт 240 ватт, я бы даже сказал, что они одни.
Даже наверное не так, по сути это тот же БП, просто в другом напряжении, потому что я в самом начале и писал, что настоящий производитель неизвестен.

Классический контроль пломб.
1. Входной фильтр присутствует, но не полностью, конденсатора после дросселя и варистора нет. К сожалению, это особенность подавляющего большинства китайских БП.
2. Встречные конденсаторы в опасной цепи — Y1, в менее опасном, нормальном высоковольтном, можно сказать, что нормальном.
3. Установлен входной диодный мост с запасом, 8 ампер 1000 вольт, но нет радиатора. В предыдущей версии диодный мост был на 20 ампер.
Также рядом два термистора включены параллельно.
4. Конденсаторы входные RUBICON г. Запос под РУБИКОН, если остальные параметры соответствовали заявленным, но об этом позже.
5. Пара высоковольтных транзисторов прижата к алюминиевому корпусу, работающему как радиатор.
6. Силовой трансформатор На нем четко обозначена мощность 240 Вт 12 вольт. Вид неплохой, видны следы пропитки лаком.

Китайские производители продолжают штамповать свои блоки питания на классической элементной базе.Не скажу, что это плохо, но более именитые производители гораздо реже будут делать БП на базе TL494.
По-своему имеет свои преимущества, ремонт такой силовой установки достаточно простой, комплектующие есть везде, и документации на них очень много.

Как и в варианте 48 вольт, здесь также используется усиленный вариант радиатора, узел выходных диодов прижат к ребристому радиатору, который уже отводит часть тепла к корпусу.Если на 48-вольтовой версии в этом особо не было необходимости, то при токах в 20 ампер такое решение не лишнее.

1. Выходной дроссель при вполне нормальных габаритах намотан только в два провода, а сечение провода сопоставимо с тем, что использовалось в БП на 48 вольт.
2. Выходные конденсаторы имеют заявленную емкость 2200мкФ, производитель тоже неизвестен, однако я не ожидал увидеть конденсаторы от Nichicon или хотя бы Samwha.
3.4. Но момент с фиксатором силовых элементов я проверил отдельно, так как в прошлый раз у меня были большие претензии к креплению диодной сборки. В этом случае все в принципе нормально. Можно немного натянуть транзисторы (слева), но практика показала, что все в порядке.

Берем плату с корпуса и смотрим качество пайки и заводские «косяки».

Высоковольтные транзисторы применяются с запасом, можете не волноваться.Кроме того, корпус Т247, в который они комплектуются, улучшает отвод тепла на радиаторе.
Выходной диодный узел MBR30200 представляет собой два высоковольтных диода Шоттки. Я немного скептически отношусь к использованию высоковольтных диодов Шоттки, так как они уже не имеют преимущества перед обычными в плане падения напряжения, но преимущество остается в большей скорости переключения, т.е. меньше динамических потерь.

Общая форма днища печатной платы.

Пайка вполне нормальная, в этой части БП все нормально, даже чисто.

Силовые дорожки дополнительно прикрыты смещением для увеличения сечения, тут тоже претензий нет, хотя кое-где на мой взгляд припоя не хватает.

Но все же нашел один неприятный момент. Один из силовых контактов не очень хорошо пропаигнут. Можно конечно сказать, что на полюсе три контакта, но может и так нагружается. Соб

www.kirich.blog.

Самодельный блок питания на 12В

Привет всем радиолюбителям, в этой статье я хочу представить вам блок питания с регулировкой напряжения от 0 до 12 вольт.Добиться нужного напряжения очень просто, даже в Милвольте. В схеме нет покупных деталей — все это можно вытащить из старой техники, как импортной, так и советской.



Концепция БП (уменьшенный)

Корпус деревянный, посередине прикручен трансформатор на 12 вольт, конденсатор на 1000 мкФ x 25 вольт и плата, регулирующая напряжение .

Конденсатор С2 нужно брать большой емкости, например, для подключения усилителя к блоку питания и чтобы напряжение не пропадало на низких частотах.

Транзистор VT2 лучше устанавливать на небольшой радиатор. Т.к. при долгой работе может нагреться и сгореть, у меня уже 2 штуки сгорело, пока не поставил приличный по размерам радиатор.

Резистор R1 можно поставить постоянным, большой роли это не играет. Сверху на корпусе есть переменный резистор, на котором регулируется напряжение, и красный светодиод, показывающий, есть ли напряжение на выходе БП.

На выходе устройства, чтобы постоянно ни к чему не прикручивать проводку, припаял крокодилов — с ними очень удобно.Схема не требует никаких настроек и работает надежно и стабильно, ее действительно может сделать любой радиолюбитель. Спасибо за внимание, удачи! .

Форум по схемам простейшего БП

Обсудить самодельный блок питания на 12В

radioskot.ru.

Мощный блок питания на 12 вольт, описанный в этой статье, сегодня пользуется большим спросом, это связано с тем, что для множества различного оборудования и электронных устройств требуется стабилизированное питание на 12 вольт с высоким потреблением тока до 10 ампер.Это потребители, как мощные светодиодные ленты, автомобильные магнитолы, которые используются в стационарных условиях, любительские конструкции и различные электрические инструменты.

Схема блока питания на 12 вольт очень проста, так как для стабилизации напряжения и хорошей фильтрации помех на микросхеме КР142ЕН 18Б используется встроенный стабилизатор. Для увеличения выходного тока применен мощный биполярный транзистор TIP3055 Падение напряжения на транзисторе в пределах 0.5 вольт компенсируется диодом VD2, входящим в среднюю ножку цепи стабилизатора, тем самым поднимая напряжение на выходе микросхемы на нужное нам половое вольт.
Важным элементом блока питания 12 вольт является понижающий трансформатор, так как схема рассчитана на большой ток, он должен иметь параметры не ниже следующих: напряжение на вторичной обмотке от 12 до 18 вольт и выходной ток не менее 10 ампер. Микросхему можно заменить на L7812abv, MC7812BT или LM7812CT, устанавливается транзистор любой марки, с током коллектора не менее 15 ампер.Используемые на схеме конденсаторы рассчитаны на напряжение от 25 В, диодный мост на ток не менее 10 ампер, VD2 заменен практически на любой кремниевый диод.

Мощный регулируемый блок питания 12 вольт 20 ампер на транзисторе Kt827 | Радио

В статье представлена ​​схема довольно простого, но мощного блока питания, вполне пригодного не только для зарядки автомобильных аккумуляторов 12 вольт, но и для питания и тестирования многих самодельных схем, требующих мощного стабилизированного напряжения.Незаменимая вещь в гараже автолюбителя. Желаемое напряжение на выходе устройства плавно изменяется в диапазоне 0 — 12 вольт. Выходная нагрузка может достигать 20 ампер. Коллекторы силовых транзисторов соединены между собой и могут быть установлены на один алюминиевый ребристый радиатор с площадью охлаждаемой поверхности не менее 200 кв. М.

Трансформатор подойдет к старым советским телевизорам, например, ТС-270, он Вполне подойдет и большая мощность, но габаритные размеры агрегата увеличатся.Все вторичные обмотки снимаются и поверх сетевой обмотки медным эмалированным проводом диаметром намотки 2 мм, на напряжение 14 — 16 вольт. Витки следует распределять равномерно по всей ширине каркаса трансформатора. Схема лёгкая в повторении и не требует особых навыков в радиолюбительском деле, не требует настройки и настройки, работает сразу с хорошими деталями и правильной сборкой.
Все радиодетали устройства отечественные и имеют множество зарубежных аналогов:
SA1 — сетевой выключатель на 5 ампер
FU1 — предохранитель на 2 ампера
VT1 — Kt827 — Импортные аналоги 2N6059, 2N6284, BDX63, BDX65A, MJ4035
VT2 — CT947 — Замена на 2N6047, BDP620
VD1 — D132-50
VD2 — D132-50
VD3 — D815E.
C1 — 1000 мкФ x 25 В
C2 — 0,01 мкФ
C3 — 1000 мкФ x 25 В
R1 — 1 ком
R2 — 10 ком — сильный
R3 — 1 ком

Для 1-2 ампер, но более высокий ток уже проблематичен. Здесь будет описан блок питания повышенной мощности, стандартное напряжение 13,8 (12) вольт. Диаграмма для 10 ампер, но вы можете увеличить это значение. В схеме предлагаемого БП ничего особенного нет, кроме того, что показали тесты, он способен выдавать ток до 20 ампер кратковременно или 10а непрерывно.Для дальнейшего увеличения емкости используйте трансформатор большего размера, выпрямитель на диодном мосту, большую емкость и количество транзисторов. Схема блока питания для удобства представлена ​​на нескольких рисунках. Транзисторы не обязательно ставить строго так, как указано в схеме. 2N3771 (50В, 20А, 200Вт) использовались, потому что их много в наличии.


Регулятор напряжения работает в небольших пределах, от 11 В до 13,8 при полной нагрузке. При напряжении холостого хода значение 13.8 В (номинальное напряжение аккумулятора 12 В), выходная мощность упадет на 13,5 примерно на 1,5 А и на 12,8 В примерно на 13 А.


Выходные транзисторы подключены параллельно, мощностью 0,1 Ом 5 ​​Вт с проволочными резисторами в схемах излучения. Чем больше транзисторов вы используете, тем больший пиковый ток можно удалить из схемы.


Светодиоды покажут неправильную полярность, а реле блокирует стабилизатор БП от выпрямителей. Тиристор большой мощности BT152-400 Открывается при перенапряжении и принимает ток на себя, что приводит к возгоранию предохранителя.Не думайте, что первым сгорит Симистор, BT152-400R выдерживает до 200а за 10 мс. Этот источник пищи может служить в качестве зарядного устройства. для автомобильных аккумуляторов, но во избежание возгорания не нужно оставлять АКБ на длительное время подключенным без присмотра .

7805, 7812 и т. Д. »Электроника

Стабилизаторы напряжения серии 7800, включая 7805, 7812, 7815, 7824 и т. Д., Очень просты в использовании для различных схем и приложений линейного питания.


Схемы линейного источника питания Праймер и руководство Включает:
Линейный источник питания Шунтирующий регулятор Регулятор серии Ограничитель тока Регуляторы серий 7805, 7812 и 78 **

См. Также: Обзор электроники блока питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


В течение многих лет линейные регуляторы напряжения серии 7800, включая более популярные версии этой серии, такие как 7805, 7812 и т. Д., Были самыми популярными доступными микросхемами регуляторов напряжения и использовались во многих электронных схемах, больших и малых.

Стабилизаторы напряжения серии 7800 были очень просты в использовании, стоили дешево и обеспечивали отличные характеристики.

Хотя сейчас они немного устарели, их все же можно приобрести очень дешево и обеспечить отличные характеристики — идеальный выбор для многих электронных устройств и схем, особенно для домашних конструкторов и т. Д.

Существовали не только линейные регуляторы напряжения серии 7800, дающие положительное выходное напряжение, но также были дополнительные стабилизаторы серии 7900, используемые для линий отрицательного напряжения.

Технические характеристики регуляторов напряжения серии 7800

Стабилизаторы напряжения серии 7800 очень просты в использовании, а их технические характеристики означают, что их можно очень легко использовать в различных приложениях для регуляторов напряжения и линейных источников питания.


7800 Варианты регулятора напряжения и особые характеристики
Параметр Номер IC мин. Макс Блок
Входное напряжение 7805 7 25 В
7808 10.5 25 В
7810 12,5 28 В
7812 14,5 30 В
7815 17,5 30 В
7824 27 38 В
Выходной ток, I O 1.5 A
Рабочая температура перехода, Т Дж 7800 серии 125 ° С

Другие электрические характеристики незначительно различаются в пределах диапазона, поэтому 7805 был выбран как один из наиболее широко используемых. Технические характеристики других регуляторов напряжения серии 7800, таких как 7812, можно оценить по 7805, поскольку они имеют аналогичные общие характеристики, но изменены для конкретного напряжения устройства.

Четыре линейных регулятора напряжения серии 7800, каждый с разным выходным напряжением: 5 В, 9 В, 12 В, 15 В

, 7812, 7815, 7824 и др.

Комплекты регуляторов напряжения серии 7800

Основной пакет для регуляторов серии 7800: от 7805 и 7808 до 7812 и 7812 и т. Д. — это пакет TO220.Распиновка очень простая — есть три подключения, а именно: вход, выход и общий. Металл на корпусе соединен с общим проводом, поэтому он идеально подходит для установки на радиаторы, которые обычно механически и электрически связаны с землей системы.

Корпус регулятора напряжения серии 7800 и его распиновка.

Металлическая точка крепления / крепления подключается к контакту заземления. В большинстве рабочих условий контакт заземления такой же, как и электрическое заземление, но будьте осторожны при использовании регулятора в конфигурации с переменным напряжением, когда ему может потребоваться установка над землей.В этом случае требуется набор изолирующих шайб при прикручивании к радиатору.

Варианты мощности серии 7800

Хотя основной тип регуляторов серии 7800 использует корпус в стиле TO220 и обеспечивает выходную мощность 1,5 А, существуют также другие варианты, которые могут обеспечивать различные уровни мощности.

Хотя многие из основных спецификаций остаются неизменными, ограничения мощности различны, что позволяет включать их в разные пакеты. Таким образом, их можно использовать во многих различных областях.

Выбор интегральных схем регулятора напряжения серии 7800

Эти варианты обозначаются размещением в номере детали такой буквы, как H, для высокой мощности, M для средней мощности и L для низкой мощности.

Технические характеристики для различных параметров регуляторов напряжения серии 7805
Параметры и условия мин. Типовой Макс Блок
Выходное напряжение при 25 ° C 4,8 5,0 5.2 В
Выходное напряжение от 0 ° C до 125 ° C 4,75 5,25 В
Регулировка входного напряжения при ° 25 ° C В I = от 7 В до 25 В 3 100 мВ
Подавление пульсаций, В I от 8 до 18 В f = 120 Гц 62 78 дБ
Регулировка выходного напряжения, I O от 5 мА до 1.5А 15 100 мВ
Выходное сопротивление, f = 1 кГц 0,017 Ом
Температурный коэффициент напряжения, I O 5 мА -1,1 мВ / ° C
Отключение напряжения, I O = 1A 2 В
Выходной ток короткого замыкания при 25 ° C 750 мА
Пиковый выходной ток при 25 ° C 2.2 A
Регулятор серии Типичный максимальный ток (A) Общие типы пакетов
7800 от 1,0 до 1,5 TO220
78H00 5 ТО3
78M00 0.5 ТО126
78L00 0,1 ТО92

Примечание: Фактический максимальный номинальный ток для интегральных схем регулятора напряжения может незначительно отличаться от одного производителя к другому. Приведенные значения являются типичными и задаются большинством устройств в определенном диапазоне, но сверьтесь с фактическими техническими характеристиками, прежде чем им потребуется запускать их близко к заявленным максимальным значениям.

Преимущества и недостатки регуляторов 7800

Хотя регуляторы серии 78xx во многих случаях представляют собой очень хорошее решение для линейного регулятора напряжения, стоит обратить внимание как на преимущества, так и на недостатки использования этих схем регулятора напряжения.

Преимущества регуляторов серии 78xx

  • Очень прост в использовании — просто выберите требуемый регулятор серии 7800 и поместите его в цепь, чтобы он заработал.
  • Требуется очень мало дополнительных электронных компонентов — при использовании базовой схемы для входа и выхода требуются только конденсаторы.
  • Низкая стоимость — эти линейные регуляторы напряжения можно получить по очень низкой цене.

Недостатки регулятора серии 78xx

  • Стабилизаторы серии 7800 — это старая технология, и в наши дни обычно используются более современные интегральные схемы.
  • Это линейный стабилизатор напряжения, поэтому они обладают низким КПД по сравнению с импульсными источниками питания.
  • Для работы микросхемы регулятора напряжения требуется падение напряжения на ней — обычно это напряжение составляет около 2.Минимум 5В, а лучше больше.
7815 линейный регулятор напряжения IC

Базовая схема регулятора напряжения серии 7800

Разработать электронную схему с использованием регуляторов напряжения серии 7800 очень просто. Это почти вопрос их включения в цепь: вход, выход и земля.

Естественно, есть несколько дополнительных электронных компонентов, которые могут потребоваться для обеспечения правильной работы схемы регулятора напряжения.

Базовая схема регулятора напряжения серии 7800

* Этот конденсатор необходим для обеспечения стабильности регулятора.Обычно, если сглаживающий конденсатор для выпрямителей находится близко, его можно не использовать, но если есть провод какой-либо длины, его необходимо включить, чтобы гарантировать стабильность цепи.

** Этот конденсатор включен в цепь для удаления шумов и переходных процессов.

Это основная схема, используемая для любого регулятора напряжения серии 7800. Он очень успешен и не требует дополнительных компонентов, кроме тех, которые показаны для основной операции.

Цепь отрицательного питания регулятора напряжения серии 7800

Несмотря на то, что существуют регуляторы серии 7900 для отрицательного питания, в некоторых случаях требуется стабилизатор отрицательного напряжения, который может быть недоступен, или может потребоваться уменьшить количество электронных компонентов.В любом случае можно использовать стабилизатор серии 7800 с некоторыми изменениями в цепи для регулирования линии отрицательного напряжения.

Отрицательная шина Цепь регулятора напряжения серии 7800

Важное примечание: Для правильной работы этой цепи обе входные клеммы (Vi) должны быть плавающими. Если они заземлены, то на выходе регулятора произойдет короткое замыкание, и он не будет работать.

Схема регулятора переменного напряжения

Несмотря на то, что регуляторы серии 7800 по сути являются стабилизаторами постоянного напряжения, при тщательном проектировании электронных схем можно получить возможность регулировать выходной сигнал.

Для достижения переменного выходного напряжения необходимо повысить потенциал общей линии, добавив несколько дополнительных электронных компонентов.

Общие характеристики регулятора не так хороши, как если бы общая линия была подключена непосредственно к земле, но все же очень хороши для большинства приложений.

Переменный линейный источник питания с использованием регулятора напряжения серии 7800

Значение компонентов и выходное напряжение можно определить из следующего уравнения:

Где
В xx = напряжение регулятора, т.е.е. 12 вольт для 7812
I O = ток в общей линии

При расчете значений резисторов имейте в виду, что ток, потребляемый общим соединением, обычно составляет около 5 мА, а не более нормальное значение около 5 мкА, потребляемое микросхемой регулятора, такой как LM317, которая была разработана для работы в этом режиме. Убедитесь, что резисторы достаточно малы, чтобы выдержать этот ток.

Источник питания с регулируемой регулировкой, использующий интегральную схему серии 7800, является полезным способом обеспечения некоторого изменения напряжения с использованием одного из этих очень полезных электронных компонентов.

Серия 7800/7900 с двойным питанием

С операционными усилителями и многими другими схемами, требующими двойных, т. Е. Положительных и отрицательных шин, часто бывает полезно иметь источник питания с регуляторами напряжения, которые обеспечивают как положительное, так и отрицательное питание.

Стабилизаторы напряжения серии 7800 идеально подходят для обеспечения положительной шины, а их собратья, регуляторы серии 7900, обеспечивают то же самое, но для отрицательной шины. Таким образом, две микросхемы регулятора напряжения дополняют друг друга, как и предполагалось.

Двойной стабилизатор напряжения, обеспечивающий положительное и отрицательное питание с использованием микросхем регуляторов серий 7800 и 7900

Схема двойного линейного стабилизатора напряжения очень понятна. Схема относительно устойчива к реальным значениям конденсаторов, но ошибается на стороне большего, а не на меньшей стороне, гарантируя, что конденсаторы 0,1 мкФ и 0,33 мкФ соответствуют этим значениям, которые необходимо удалить, и RF, для которых электролитические конденсаторы не будут работать почти так же хорошо. Электролитические конденсаторы имеют тенденцию иметь верхний предел частоты примерно 100 кГц в результате электролитического действия, которое придает им их емкость.

Эта схема сдвоенного линейного регулятора напряжения проста в сборке с использованием относительно небольшого количества электронных компонентов и работает очень хорошо.

Интегральные схемы регуляторов напряжения серии 7800 — одни из самых полезных микросхем стабилизаторов, когда-либо созданных. В то время как другие типы обогнали их в различных аспектах, микросхемы 7800 по-прежнему широко доступны и используются в больших количествах. Чипы можно купить у различных поставщиков и дистрибьюторов.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Сильноточный источник питания 12 В — 13,8 В при 30 А, 25 А, 20 А, 15 А

Вот схема сильноточного источника питания 13,8 В. Зачем? Тем, кто хочет использовать в доме автомобильный радиопередатчик. Вы должны использовать источник питания для радиолюбителей 12 В / 13,8 В.

Это лучший способ, если он будет иметь высокую мощность от 5А до 30А в зависимости от размера передатчика.

И я очень рекомендую эту сильноточную схему питания. Из-за хорошей производительности выходное напряжение от 13 В до 14 В в зависимости от нагрузки.

Также вы можете изменить / добавить компоненты, чтобы установить выходной ток 5A, 10A, 15A, 20A, 25A, 30A. Согласно реальному использованию. Итак, помогите сэкономить и проще построить.

Чем интересна эта схема

Конечно, вы можете купить такой простой и эффективный блок питания самых разных размеров. Но если вы построите их вместе со своими или друзьями. Это будет прекрасное время для создания этого проекта. И по завершении запускает свою функцию. Будет очень горд.

Кроме того, данная схема питания полезна еще и в большом количестве.Такие как большой двигатель постоянного тока, автомобильная аудиосистема и другие. Что вы можете применить, изменив напряжение и ток по мере необходимости. Эта схема очень гибкая.

Сильноточный источник питания 13,8 В схема

Концепция выбора схемы

Нам нужна схема, в которой используются обычные детали. Так легко купить в местных магазинах рядом с нами, да и дешевле.

Иногда эти компоненты могут быть у вас дома.

Представьте, у вас много силовых транзисторов, 2N3055.Потому что он популярен в транзисторных усилителях мощности.

Линейная схема питания — лучший выбор. Потому что это настолько простая схема.

Мы часто используем микросхему трехконтактного регулятора, например 78xx, 7812 или 7815.

Но это большой размер с большими компонентами.

Например, трансформатор, если вам нужен выходной ток 30А. Значит, вам нужен трансформатор на 30А минимум. Он такой большой.

Кстати.

Его размер для вас не проблема. Предположим, вы получили от дедушки большой трансформатор.

Да, можно попробовать.

Люблю линейную схему.

Примечание: Если вы новичок, эта схема может вам не подойти. Вы можете использовать схемы ниже.

Принцип работы схемы сильноточного источника питания 13,8 В

Должен быть качественный чек-лист!

Нам это нужно.

  • Хорошая схема защиты — при коротком замыкании или перегрузке на выходе.
  • Вы также можете построить схему с выходными токами по своему усмотрению.Вы можете увеличивать ток поэтапно, каждый шаг на 5А. Начните с минимального значения тока 5А. А дальше шаг 10А, 15А, 20А, 25А и максимум 30А.

Что еще? См. Части схемы.

Нерегулируемый источник питания

Для этой цепи требуется высокое постоянное напряжение. См. Схему ниже — это нерегулируемая цепь источника питания 21V 30A.

Это гибкий. Вы можете выбрать множество устройств по своему усмотрению, выполните следующие действия.

1.C1 и F1 с использованием этой таблицы.

Выходной ток C1 F1
5 A 10,000 мкФ 2A
10 A 15,000 мкФ
9018 9018 9018 6A
20 A 33000 мкФ 8A
25 A 47000 мкФ 10A
30 A 68315 9018
30 A 68000 9018 9018 9018 9018 построить выходной ток 15А.С выходным напряжением 13,8В.

Следует выбрать C1-22000 мкФ 25В.

Конденсаторы аналог

Но может и не продается. Мы можем использовать пять конденсаторов по 4700 мкФ 25 В для параллельного соединения. Итак, у нас общая емкость 4700 мкФ x 5 составляет 23 500 мкФ. Достаточно использовать.

На выходе 30А, если вы не можете купить электролитический конденсатор на 68000 мкФ 25В. Вы можете использовать 10,000 мкФ 25 В x 6, соединенные параллельно. Это экономит деньги и просто.

Купить на amazon.com 10,000uF 25V

Например, вы хотите 20,000uF, вы можете использовать 2x 10,000uF.

Используйте плавкий предохранитель номиналом 5А или плавкий предохранитель с задержкой срабатывания.

Регулятор постоянного напряжения

В этой цепи источника питания 13,8 В используется микросхема стабилизатора , LM340T-15. Он поддерживает уровень постоянного напряжения 15В. Внутри этой микросхемы есть защита от короткого замыкания и предотвращает перегрев.


CR: LM340-15 на mouser.com

В результате эта схема может также поддерживать уровень выходного напряжения.И, если есть перегрузка или короткое замыкание. Это тоже не повредит.

Примечание:
Теперь мы должны использовать LM7815, потому что он популярен, чем этот.

Как ток выше

В норме 7812 может запитать только 1А. Нужна помощь от силовых транзисторов 2N3055.

Сначала посмотрите эту схему. Это стабилитрон и транзисторный стабилизатор, с которыми мы хорошо знакомы.

Представьте, что мы используем 7815 вместо стабилитрона.
И используйте силовой транзистор, чтобы еще больше увеличить выходной ток.

Learn: принцип работы стабилизатора напряжения

Вы тоже можете это увидеть.

Выходное напряжение 14,4 В. Потому что падение напряжения 0,6 В. на BE транзистора.

Затем снова посмотрите на полную принципиальную схему. К выходу IC1 будет подключен эмиттерный повторитель Дарлингтона с транзистором Q1. Затем Q1 параллельно управляет шестью транзисторами Q2-Q7.

Почему транзистор подключается параллельно

Для увеличения тока вверх.Когда подключать эти 7 транзисторов Q1-Q7 в комплекте. Это позволяет повысить ток до 30 А.

Параллельно транзистору Q2, начиная с Q3. Каждый транзистор может увеличивать ток на 5А.

Резистор 0,15 Ом на эмиттере каждого транзистора имеет два действия:

  1. Проверьте ток, протекающий через транзистор. Потому что на них есть падение напряжения, пропорциональное току, протекающему через каждый транзистор.
  2. Установите одинаковый ток через транзистор.

Подробнее: Токоограничивающий резистор

Примечание: Q1-Q7 — это силовой транзистор 2N3055 NPN. Также вы можете использовать в ТО-247 мощные транзисторы TIP35. Но дороже 2N3055.

Лучшая защита

LM340-15 или LM7815 имеют прекрасную систему защиты.

  • Короткое замыкание или перегрузка по току,
    Этот источник питания исправен. IC1 очень хорошо предотвращает перегрузку. Даже при длительном коротком замыкании в течение дня.Он все еще в хорошем состоянии.
  • Горячий не работает.
    Когда температура очень необычная. Система защиты от перегрева прикажет ему временно перестать реагировать. Пока не упадет температура. Запускается как обычно.

С преимуществами данной ИС. Его следует установить на радиаторе рядом с транзистором.

Когда IC1 нагревается выше определенного транзистора. Это останавливается! Конечно, на транзистор нет тока. Итак, он постепенно снижает тепло.IC1 снова вернется к работе.

Продолжайте читать: символы электронных цепей

SCR Максимальная токовая защита


В условиях короткого замыкания. Или перегрузка, или использование слишком большого тока. Q2 тянется током 5А. До падения напряжения 0,75В на R5 — 0,15 Ом. (вывод эмиттера Q2). Затем это напряжение подается на вывод затвора SCR1. Далее достаточно, чтобы триггер SCR1 сработал сразу.

IC1 временно не отвечает. Потому что он перегружен.Ранее ток 1А протекал через IC1 и SCR1 загружался напрямую. Не на всех транзисторах.

SCR1 работает на удержание. Пока не отключится питание. Который автоматически перезагружается таким образом, называется электронным автоматическим выключателем.

Сколько выходного напряжения

Выходное напряжение сильноточной силовой цепи 13,8 В равно выходному напряжению IC1 (15 В) за вычетом падения напряжения на базе (B) — эмиттере (E) драйвера транзистора (Q1) и транзистор через (Q2) и падение напряжения на эмиттере R5 Q2.

Vout = vIC — vbeQ1 — vbeQ2
= 15 В — 0,6 В — 0,6 В
= 13,8 В

Однако, поскольку падение напряжения на R5 может быть изменено током, протекающим через него.

Таким образом, напряжение на выходе этой схемы немного изменилось: переключение с 14 В (без нагрузки) может быть 13 В в условиях полной нагрузки (регулирование).

На этом уровне будет поддерживаться напряжение лучше, чем на электромобиле автомобиля. Его выходное напряжение может быть изменено с 11 В до 16 В.

И передатчик, обычно используемый в автомобиле с аккумулятором 12 В, рассчитан на совместимость с существующим напряжением 13-14 В.

Как он строится

Потому что компонентов, используемых в этой цепи питания 13,8 В, не так много. И большинство из них большие. Который необходимо установить на радиатор.

Эксплуатация данного проекта, поэтому нет необходимости использовать печатную плату. Можно использовать точечное подключение шнура питания, затянуть гайку на радиаторе. Затем подключите провода к другим частям радиатора.

Кредит: Фото amazon.com

Выбирайте детали по своему усмотрению.

2. Выберите мостовой диодный выпрямитель и трансформатор T1 в соответствии с использованием.

Поскольку LM7815 требует низкого входного напряжения до 17 В. Таким образом, входное постоянное напряжение от нерегулируемого к выходному падению на C1 должно быть от 18 до 20 В.

Если менее 17В может оказаться недостаточно для использования схемы. Причем, если более 20В превышает 20%.

Он может иметь больше потерь энергии в транзисторах и ИС. При изготовлении необходимо использовать радиатор большего размера.Это тоже потребляет больше энергии, чем необходимо.

Вы можете выбрать трансформатор номиналом 15А. Мои друзья ходят на стальной сердечник EI в антикварный магазин, а потом идут на прокат, сделали новый трансформатор. Это прочно и недорого.

Силовой транзистор — Вы можете использовать 2N3055, который легче купить. Или используйте TIP3055, такой же, как 2N3055. Зато удерживать теплоотвод с ТО-3П несложно. Самый лучший, TIP35 — это более мощный ток более 25А коллекторного тока.

Вы можете выбрать любое число SCR1 — 200 В, 5 А, например 2N4441, C122, C106 и т. Д.

Вы можете добавить светодиодный дисплей, чтобы показывать включение таким способом.

Примечание:

Если вам не нравится эта схема, вы можете посмотреть другие схемы ниже.

  1. 0-30V 20A Сильноточная схема регулируемого регулятора напряжения
  2. Источник питания для аудиоусилителя, несколько выходов 12В, 15В, 35В
  3. Повышение токов регулятора для IC-78xx
  4. LM338 | Технический паспорт | Регулируемый источник питания 5A и 10A

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

7805 Схема выводов ИС регулятора напряжения

Источники напряжения в цепи могут иметь колебания, в результате чего выходное напряжение не фиксируется. ИС регулятора напряжения поддерживает постоянное значение выходного напряжения. Регулятор напряжения 7805, член серии 78xx фиксированных линейных регуляторов напряжения, используемых для поддержания таких колебаний, является популярной интегральной схемой регулятора напряжения (ИС).

xx в 78xx указывает выходное напряжение, которое он обеспечивает. 7805 IC обеспечивает источник питания с регулируемым напряжением +5 В с возможностью добавления радиатора.

7805 Рейтинг IC

  • Диапазон входного напряжения 7–35 В
  • Номинальный ток I c = 1A
  • Диапазон выходного напряжения В Макс. = 5,2 В, В Мин. = 4,8 В

Подробная информация о выводе 7805 IC

Штифт № Штифт Функция Описание
1 ВХОД Входное напряжение (7–35 В) На этом выводе IC подается положительное нерегулируемое напряжение в режиме стабилизации.
2 ЗЕМЛЯ Земля (0 В) В этом штыре, где дана земля. Этот вывод нейтрален как для входа, так и для выхода.
3 ВЫХОД Регулируемая мощность; 5 В (4,8-5,2 В) Выход регулируемого напряжения 5 В выводится на этот вывод регулятора IC.

Как вы могли заметить, существует значительная разница между входным и выходным напряжениями регулятора напряжения.Эта разница между входным и выходным напряжением выделяется в виде тепла. Чем больше разница между входным и выходным напряжением, тем больше выделяется тепла.

Если регулятор не имеет радиатора для отвода этого тепла, он может выйти из строя и выйти из строя. Следовательно, рекомендуется ограничить напряжение максимум на 2-3 В выше выходного напряжения. Итак, теперь у нас есть 2 варианта. Либо спроектируйте свою схему так, чтобы входное напряжение, поступающее в регулятор, было ограничено на 2-3 В выше выходного регулируемого напряжения, либо установите соответствующий радиатор, который может эффективно рассеивать тепло.

Что делать со всем жаром?

Регулятор напряжения

7805 не очень эффективен и имеет проблемы с пропаданием напряжения. Много энергии тратится впустую в виде тепла. Если вы собираетесь использовать радиатор, лучше рассчитайте его размер правильно. Приведенная ниже формула должна помочь в определении подходящего размера радиатора для таких приложений.

Выработанное тепло = (входное напряжение — 5) x выходной ток

Если у нас есть система с входом 15 вольт и требуемым выходным током.5 ампер, имеем: (15 — 5) х 0,5 = 10 × 0,5 = 5Вт;

5 Вт энергии тратится впустую в виде тепла, поэтому для рассеивания этого тепла требуется соответствующий радиатор. С другой стороны, фактически используемая энергия: (5 x 0,5 А) = 2,5 Вт.

Итак, вдвое больше энергии, которая фактически используется, тратится впустую. С другой стороны, если на входе подается 9 В при той же нагрузке: (9-5) x 0,5 = 2 Вт

2 Вт энергии будет потрачено впустую в виде тепла.

Что мы узнали: чем выше входное напряжение, тем менее эффективен ваш 7805.

Расчетное эффективное входное напряжение будет около 7,5 В.

Прочие компоненты схемы?

Если регулятор напряжения расположен на расстоянии более 25 см (10 дюймов) от источника питания, необходимы конденсаторы для фильтрации остаточного шума переменного тока. Регуляторы напряжения эффективно работают при подаче чистого сигнала постоянного тока. Шунтирующие конденсаторы помогают уменьшить пульсации переменного тока.

По сути, они сокращают шум переменного тока от сигнала напряжения и пропускают только постоянное напряжение в регулятор. Два конденсатора не обязательно требуются, и их можно не устанавливать, если вас не беспокоят линейные шумы.

Однако для зарядного устройства мобильного телефона или логической оценки вам понадобится хорошая чистая линия постоянного тока. Конденсаторы в этом случае будут полезны, поскольку они хороши для максимального регулирования напряжения. Номиналы конденсаторов также можно немного изменить.

Давайте посмотрим, что заставляет IC работать.

Схема микросхемы стабилизатора напряжения 7805

Сердцем 7805 IC является транзистор (Q16), который регулирует ток между входом и выходом и, таким образом, регулирует выходное напряжение.Эталон ширины запрещенной зоны (желтый) поддерживает стабильное напряжение. Он принимает масштабированное выходное напряжение в качестве входного (Q1 и Q6) и выдает сигнал ошибки (на Q7) для индикации, если напряжение слишком высокое или низкое. Ключевой задачей запрещенной зоны является обеспечение стабильного и точного эталона даже при изменении температуры чипа.

Сигнал ошибки от эталона запрещенной зоны усиливается усилителем ошибки (оранжевый). Этот усиленный сигнал управляет выходным транзистором через Q15. Это замыкает контур отрицательной обратной связи, регулирующий выходное напряжение.

Цепь запуска (зеленая) обеспечивает начальный ток в цепи с запрещенной зоной, поэтому она не застревает в выключенном состоянии. Цепь фиолетового цвета обеспечивает защиту от перегрева (Q13), чрезмерного входного напряжения (Q19) и чрезмерного выходного тока (Q14). Эти схемы уменьшают выходной ток или отключают регулятор, защищая его от повреждения в случае неисправности. Делитель напряжения (синий) уменьшает напряжение на выходном контакте для использования в качестве эталона запрещенной зоны.

Масштабирование вывода

Масштабированный выход 7805 обеспечивает входное напряжение (Vin) для эталонной ширины запрещенной зоны, а ширина запрещенной зоны обеспечивает сигнал ошибки на выходе.Схема запрещенной зоны 7805 устраняет петлю обратной связи, которая существует внутри традиционного эталона запрещенной зоны. Вместо этого весь чип становится петлей обратной связи.

Если выходное напряжение правильное (5 В), то делитель напряжения обеспечивает 3,75 В на Vin. Любое изменение выходного напряжения распространяется через Q6 и R7, вызывая соответственно повышение или падение напряжения на базе Q7. Это изменение усиливается Q7 и Q8, генерируя вывод ошибки. Выходной сигнал ошибки, в свою очередь, уменьшает или увеличивает ток через выходной транзистор.Контур отрицательной обратной связи регулирует выходное напряжение до тех пор, пока оно не станет правильным.

Области применения для 7805 IC

7805 IC используется в широком спектре схем. Основные из них:

  • Регулятор с фиксированным выходом
  • Регулятор положительного напряжения в конфигурации отрицательного напряжения
  • Регулируемый выходной регулятор
  • Регулятор тока
  • Регулируемый регулятор напряжения постоянного тока
  • Регулируемое двойное питание
  • Схема защиты от переполюсовки выходной полярности
  • Схема проецирования обратного смещения

7805 Регулятор напряжения также находит применение в электрических цепях для измерителя индуктивности, зарядного устройства для телефона, портативного проигрывателя компакт-дисков, инфракрасного пульта дистанционного управления и цепей питания ИБП.

Более подробную информацию об ИС регулятора напряжения 7805 можно найти в даташите.

На слайд-шоу ниже также показаны некоторые моменты, связанные с регуляторами напряжения. Взглянуть.

Дополнительные руководства доступны на учебных ресурсах


Эта статья была впервые опубликована 14 октября 2017 г. и обновлена ​​19 ноября 2020 г.

RJM Audio — стабилизатор напряжения X-Reg

Малошумящий стабилизатор напряжения с широким диапазоном частот для аудиосхем.


Введение

Потратьте сколько угодно времени на то, чтобы оптимизировать схемы операционных усилителей, чтобы они звучали наилучшим образом, и рано или поздно вы обнаружите, что захотите обновить регуляторы напряжения. От серии LM78xx до регулируемого LM317, возможно, до LT1086, а затем и до DIY. Подход «сделай сам» к регуляторам, как это определено схемами Зульцера, Боберли и Юнга, хорошо резюмирован в этом обзоре Tangent. Больше (намного больше) о регуляторах напряжения для аудио на сайте Уолта Юнга здесь.Основное преимущество этих схем по сравнению с типичным интегрированным корпусом, таким как LM7812, заключается в том, что компоненты регулятора разделены и оптимизированы индивидуально. Например, для усилителя ошибки выбирается высокоскоростной операционный усилитель с низким уровнем шума и используется высокопроизводительный фильтрованный источник опорного напряжения. Однако фундаментальная топология практически не изменилась.

X-Reg отличается тем, что с самого начала спроектирован вокруг источника с разделенным напряжением, имеющего как положительную, так и отрицательную шины.Неинвертирующий усилитель ошибки с однополярным питанием, общий почти для всех конструкций регуляторов, заменен инвертирующим каскадом усиления, работающим от раздельных источников питания. Инвертирующая топология означает, что опорное напряжение имеет противоположную полярность выходному напряжению: положительный выход принимает опорное значение, генерируемое отрицательным входным напряжением, и наоборот. Именно от этой перекрестной ссылки, которая образует «X» на дорожке печатной платы, X-reg берет свое имя. Схема имеет смысл только тогда, когда, конечно, необходимы как положительное, так и отрицательное регулируемое напряжение.Он также ограничен относительно низкими выходными напряжениями, на практике примерно до ± 12 В. Он предназначен для использования с низковольтными слаботочными аудиосхемами, такими как полупроводниковые фонокорректоры, предусилители и усилители для наушников.


Как это работает

Суть стандартного последовательного регулятора напряжения показана на следующей схеме. Он включает в себя усилитель, проходной транзистор и пару резисторов, питаемых тремя напряжениями: сильноточное, необработанное входное напряжение, которое будет регулироваться, В ++ , низкое, отфильтрованное напряжение для самой схемы регулятора, V ‘++ и стабильное опорное напряжение с очень низким уровнем шума, + Vref .(В интегральных регуляторах как сильноточные, так и слаботочные цепи питаются от источника В ++ , и опорный сигнал генерируется внутренне.) Усилитель ошибки реагирует на поддержание выходного напряжения В + , постоянного кратного опорного напряжения. Отрицательный стабилизатор, который обычно требуется в дополнение к положительному стабилизатору для аудиосхем операционного усилителя, имеет ту же базовую топологию, но требует трех дополнительных напряжений питания; V — , V ‘- , а отрицательная ссылка -Vref .

Конструкция X-Reg возникла из осознания того, что цепи положительного и отрицательного стабилизаторов выиграют от разделения этих шести напряжений между ними, а не от использования только трех с той же полярностью, что и выход. Положительная сторона регулятора X-Reg использует V ++ , V ‘++ , V’ — и отрицательную ссылку -Vref .

В отрицательной половине X-Reg, который использует V — , V ‘++ , V’ — и + Vref , транзистор прохода NPN заменен его эквивалентом PNP.

Первое, что следует отметить, это то, что операционные усилители работают от раздельных источников питания. Это дает реальную выгоду от отказа от виртуальной земли. Поскольку операционный усилитель теперь может обрабатывать как положительные, так и отрицательные входы и выходы, мы можем дополнительно перенастроить операционный усилитель как инвертирующий каскад и оставить неинвертирующий терминал заземленным. Инвертирующая топология является «родным» состоянием операционного усилителя и предлагает несколько преимуществ, из которых, пожалуй, наиболее важна стабильность.Для инвертирующего каскада требуется опорное напряжение противоположной полярности выходной, это опорное напряжение «позаимствовано» из другой половины схемы.

Это касается нововведений в топологии. Последний элемент X-Reg, требующий объяснения, — это опорное напряжение. Вместо использования стабилитрона или опорного сигнала с шириной запрещенной зоны, которые являются зашумленными по сравнению с пассивными компонентами, используется простой делитель напряжения в сочетании с усиленной фильтрацией. По сути, это большой RC-фильтр, фактически реализованный как многоступенчатая RCRC-сеть, подключенная к V ‘++ или V’ — .Большая часть шума питания ослабляется ниже минимального уровня шума операционного усилителя, но для достижения такого уровня фильтрации опорное напряжение оказывается довольно небольшим, всего несколько сотен милливольт. Следовательно, усиление инвертирующего каскада должно быть установлено достаточно высоким для компенсации, чтобы естественным образом разворачиваться отклик на частоте около 300 кГц, что делает регулятор относительно стабильным. Дополнительным преимуществом делителя напряжения в качестве эталона является то, что он автоматически запускает регулятор в течение нескольких секунд, устраняя удары при включении и ограничивая броски тока через проходные транзисторы.

Конечно, опорное напряжение не является абсолютным значением, а скорее определяется как часть входного напряжения В ‘++ или В’ — . Если линейное напряжение колеблется во времени, превышающем постоянную времени фильтра — как обычно реализуется, 10 секунд или около того — выходное напряжение будет постепенно пропорционально изменяться. В этом отношении он ведет себя как нерегулируемый источник питания, и поэтому X-Reg точнее назвать стабилизатором напряжения или более гладкой линией, чем регулятор напряжения.Обычно я все еще называю его регулятором, потому что X-Reg заменяет и выполняет функцию регуляторов напряжения, обеспечивая малошумящие шины с низким выходным сопротивлением.


Платы

Схема X-Reg обычно является неотъемлемой частью схемы, которую она питает, и обычно размещается на той же печатной плате. Значения компонентов выбираются в соответствии с конкретным приложением. Первым применением X-Reg стал проект Phonoclone 3, в котором он был хорошо скомбинирован с фонокорректором Phonoclone MC.Если вы заинтересованы, загрузите последнюю версию файлов схемы и макета Phonoclone 3 со страницы продуктов RJM Audio.

Для общего использования ниже представлена ​​автономная схема, которая будет выдавать напряжение около ± 9–12 В от входов ± 18 В постоянного тока. Он предназначен для работы в паре с трансформатором с вторичными обмотками 12 В переменного тока. (Например, источники питания VSPS или Phonoclone.) Выходное напряжение можно установить, изменив значение R2, R2A и / или R3, R3A. Для облегчения выбора резистора предоставляется таблица Excel.Если требуется выходной ток более 150 мА, проходные транзисторы должны иметь теплоотвод.

Оценочная плата является двусторонней и имеет размеры 5×8 см. Для этого требуется двойной операционный усилитель, такой как NE5532. Плату можно использовать для тестирования или модернизировать для модернизации существующего оборудования.

Загрузить схему (BOM)

Значительное внимание было уделено выбору значений емкости, чтобы гарантировать, что секции опорного усилителя и операционного усилителя не добавят пульсации или чрезмерного шума на выходе.От их дальнейшего увеличения мало что можно получить. Реализованный в Phonoclone 3, X-Reg работает и работает хорошо в заявленной цели — значительном улучшении звука аудиосхем операционного усилителя.

Стабилизат

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *