+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

что это такое, особенности, как выбирается

Определение.

Допустимый длительный ток (continuous current-carrying capacity ampacity) (Iz) — это максимальное значение электрического тока, который проводник, устройство или аппарат способен проводить в продолжительном режиме без превышения его установившейся температуры определенного значения (определение согласно ГОСТ 30331.1-2013) [1].

Данный термин в некоторой нормативной документации некорректно называют «допустимой токовой нагрузкой проводника», «токопроводящей способностью проводника» или «номинальным током проводника». По сути эти 3 термина тождественны между собой, но корректно использовать именно термин «допустимый длительный ток проводника», так как он получил более широкое распространение.

Особенности.

Харечко Ю.В., проведя всесторонний анализ нормативной документации заключил следующее [2]:

« В национальной нормативной документации термин «допустимый длительный ток», как правило, используют в качестве характеристики проводников, посредством которой устанавливают максимальный электрический ток, который проводник способен проводить в продолжительном режиме (неделями, месяцами, годами), не перегреваясь при этом.

Допустимый длительный ток проводника фактически является его номинальным током. »

« Сечение проводников, используемых в электроустановках зданий, всегда выбирают с учетом электрических токов, которые могут по ним протекать при нормальных условиях. Электрический ток, протекающий по любому проводнику, не должен превышать его допустимый длительный ток. При соблюдении этого условия установившаяся температура проводника не будет превышать предельно допустимую температуру, заданную нормативными документами. »

« В противном случае, если электрический ток, протекающий в проводнике, превышает его допустимый длительный ток, проводник будет перегреваться. Его изоляция будет подвержена ускоренному старению. При очень больших электрических токах проводник, разогретый до нескольких сотен градусов, может стать причиной пожара. Для исключения перегрева проводников в электроустановках зданий применяют специальную защиту, именуемую защитой от сверхтока, с помощью которой сокращают до безопасного значения продолжительность протекания по проводникам электрических токов, превышающих их допустимые длительные токи.

»

В разделе 523 «Допустимые токовые нагрузки»1 ГОСТ Р 50571.5.52-2011, который цитируется дальше, в частности, указано, что «В качестве допустимой токовой нагрузки для заданного периода времени при нормальных условиях эксплуатации принимается нагрузка, при которой достигается допустимая температура изоляции. Данные для разных типов изоляции приведены в таблице 52.1. Значение тока должно быть выбрано в соответствии с 523.2 или определено в соответствии с 523.3».

Примечание 1:

« В ГОСТ Р 50571.5.52-2011 вместо словосочетания «допустимая токовая нагрузка» следовало использовать термин «допустимый длительный ток проводника». Поэтому раздел 523 должен быть назван иначе: «Допустимые длительные токи». »

Первое требование в стандарте МЭК 60364‑5‑52 сформулировано иначе: «Ток, проводимый любым проводником для длительного периода при нормальном оперировании, должен быть таким, чтобы не была превышена предельная температура изоляции. »

То есть в требованиях международного стандарта упомянут ток, протекающий по проводнику, измеряемый в амперах, а не нагрузка на проводник, которую измеряют в киловаттах.

В таблице 52.1 ГОСТ Р 50571.5.52-2011 приведены максимально допустимые температуры, которые могут иметь проводники с разной изоляцией.

Извлечения из таблицы 52.1 «Максимальные рабочие температуры для типов изоляции» ГОСТ Р 50571.5.52-2011:

Тип изоляцииМаксимальная температура, °С
Термопласт (PVC1)70 проводника
Реактопласт (XLPE2 или резина EPR3)90 проводника
Минеральная (оболочка термопласт (PVC), или голая4, доступная прикосновению)70 оболочки
Минеральная (голая, не доступная прикосновению и не в контакте с горючими веществами)105 оболочки

Пояснения к таблице:

1) PVC – поливинилхлорид (ПВХ).


2) Cross-linked polyethylene – сшитый полиэтилен.
3) Ethylene-propylene rubber – этиленпропиленовая резина.
4) В стандарте МЭК 60364-5-52 указано иначе: Минеральная без оболочки.

Как выбирается допустимый длительный ток проводника?

Для изолированных проводников и кабелей без брони требования п. 523.2 ГОСТ Р 50571.5.52-2011 предписывают выбирать допустимые длительные токи проводников по таблицам приложения В:

  • в таблице В.52.2 которого приведены допустимые длительные токи проводников при разных вариантах монтажа электропроводки, имеющей два нагруженных медных или алюминиевых проводника с изоляций из поливинилхлорида;
  • в таблице В.52.4 – три нагруженных проводника.
  • В таблицах В.52.3 и В.52.5 приложения В указаны допустимые длительные токи проводников соответственно для двух и трех нагруженных медных и алюминиевых проводников с изоляцией из сшитого полиэтилена и этиленпропиленовой резины.

В приложении В имеются также другие таблицы.

Харечко Ю.В. при этом дополняет [2]:

« При этом два нагруженных проводника могут быть в составе двухпроводной электрической цепи переменного тока, выполненной фазным и нейтральным проводниками или двумя фазными проводниками, а также двухпроводной электрической цепи постоянного тока, выполненной полюсным и средним проводниками или двумя полюсными проводниками. Три нагруженных проводника могут быть в трех- или четырехпроводной электрической цепи переменного тока, выполненной соответственно тремя фазными проводниками или тремя фазными и нейтральным проводниками. В последнем случае током, протекающим по нейтральному проводнику, пренебрегают. »

Пункт 523.3 ГОСТ Р 50571.5.52-2011 предусматривает следующие альтернативные способы определения значений допустимых длительных токов проводников: или в соответствии с требованиями комплекса МЭК 60287 «Электрические кабели. Вычисление номинального тока», в состав которого входит 8 стандартов, или в результате испытаний, или вычислением по методике, утвержденной в установленном порядке. Причем там, где это необходимо, должно быть уделено внимание характеристике нагрузки проложенных в земле кабелей с учетом теплового сопротивления почвы.

Список использованной литературы

  1. ГОСТ 30331.1-2013
  2. Харечко Ю.В. Краткий терминологический словарь по низковольтным электроустановкам. Часть 4// Приложение к журналу «Библиотека инженера по охране труда». – 2015. – № 6. – 160.
  3. ГОСТ Р 50571.5.52-2011

Допустимый Ток для Медных Шин

Расчет сечения медной шины по длительно допустимым токам нужно проводить в соответствии с главой 1.3 «Правил устройства электроустановок» выпущенных Министерством Энергетики СССР в 1987 году. То есть те самые ПУЭ 1.3.24, знакомые всем электрикам « При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т. п.).». На основании их выбираются допустимые длительные токи для неизолированных проводов и шин. Кроме того, часто в среде электротехники можно услышать, что это пропускная способность по току медной полосы. Предельно допустимые длительные токи для медных шин прямоугольного сечения ПУЭ 1.3.31 для постоянного и переменного тока при подключении 1 полосы на фазу собраны в нижеследующей таблице токов медных шин:

Пропускная способность медной шины

Сечение шины, ммПостоянный ток, АПеременный ток, А
Допустимый ток шина медная 15×3210210
Допустимый ток шина медная 20×3275275
Допустимый ток шина медная 25×3340340
Допустимый ток шина медная 30×4475475
Допустимый ток шина медная 40×4625625
Допустимый ток шина медная 40×5705700
Допустимый ток шина медная 50×5870860
Допустимый ток шина медная 50×6960955
Допустимый ток шина медная 60×611451125
Допустимый ток шина медная 60×813451320
Допустимый ток шина медная 60×1015251475
Допустимый ток шина медная 80×615101480
Допустимый ток шина медная 80×817551690
Допустимый ток шина медная 80×1019901900
Допустимый ток шина медная 100×618751810
Допустимый ток шина медная 100×821802080
Допустимый ток шина медная 100×1024702310
Допустимый ток шина медная 120×826002400
Допустимый ток шина медная 120×1029502650

Купить электротехнические медные и алюминиевые шины можно в нашей компании со склада и под заказ:

Расчет теоретического веса электротехнических шин:

Кабель АСБ допустимый ток — таблица

Согласно ГОСТ 18410-73 кабель АСБ имеет следующую пропускную способность или длительно допустимые токовые нагрузки (представлены в таблице 1. Значения указаны в Амперах (А).

Таблица 1 АСБ длительно допустимый ток (А) при монтаже кабеля в земле и по воздуху.

Сечение жилы, мм2 в земле на воздухе
1 кВ 6 кВ 10 кВ 20 кВ 35 кВ 1 кВ 6 кВ 10 кВ 20 кВ 35 кВ
3х6 45



40



3х10 60 59


55 55


3х16 79 77 74

72 73 67

3х25 102 100 91 100
95 95 87 95
3х35 126 121 110 115
118 117 106 110
3х50 153 149 134 140
146 146 132 135
3х70 184 180 162 170
180 178 161 170
3х95 219 213 192 205
218 214 194 205
3х120 248 243 218 235 225 261 248 234 240 235
3х150 281 275 246 265 250 300 285 264 270 265
3х185 314 307 275 300
342 333 298 315
3х240 359 351 314

402 389 347

Примечания:

  1. Для кабелей с 4-мя жилами с нулевой жилой меньшего сечения, (например, АСБ 3х120+1х70) ток соответствует указанным в таблице. Для определения тока кабеля АСБ с 4-мя жилами одинакового сечения (например, АСБ 4х120) необходимо умножить табличные значения на коэффициент 0,93.
  2. Токи при прокладке АСБ в землю до 0,7 м глубиной указан для почв с удельным тепловым сопротивлением 1,2 °С·м/Вт.
    Длительно допустимый ток АСБ указан для переменного тока.
  3. Значения тока в таблице 1 указаны для температуры воздуха +25 С и земли +15 С. При прокладке кабеля АСБ при других температурах необходимо учитывать поправочные коэффициенты (см. таблицу 2)

Таблица 2


Определение допустимой длительной токовой нагрузки на кабельную линию | Эксплуатация кабельных линий 1-35 кВ | Архивы

Страница 3 из 14

Требованием Правил технической эксплуатации предусматривается, чтобы для каждой кабельной линии при вводе ее в эксплуатацию были установлены наибольшие допустимые токовые нагрузки. Это требование ПТЭ обусловлено тем, что длительная перегрузка кабельной линии может вызвать перегрев изоляции выше допустимого предела, ее преждевременное старение, а затем и повреждение в результате тепловой неустойчивости кабеля. Поэтому токовые нагрузки на кабельные линии устанавливаются такими, чтобы нагрев токопроводящих жил не превышал определенных значении, а следовательно возможность перегрева изоляции была бы исключена.
Действующими ГОСТ для кабелей с пропитанной бумажной изоляцией и с пластмассовой изоляцией установлены следующие максимально допустимые значения температур для токопроводящих жил:


При номинальном напряжении

Бумажная ИЗОЛЯЦИЯ, ° С

Пластмассовая
ИЗОЛЯЦИЯ, ° С

до 3 кВ         

80

70

то же 6 кВ    

65

70

» » 10 кВ ….

60

70

» » 20 — 35 кВ . .

50

70

В режиме короткого замыкания Правилами устройства электроустановок допускается кратковременное повышение температуры токопроводящих жил для кабелей с бумажной изоляцией напряжением до 10 кв  с медными и алюминиевыми жилами до 200° С, на напряжение 20—35 кВ — до 125° С, кабелей с поливинилхлоридной изоляцией до 150° С, а с полиэтиленовой — до 120° С. В процессе эксплуатации силового кабеля в нем выделяется значительное количество тепла. Источником его является тепло, выделяющееся в токопроводящих жилах при прохождении электрического тока нагрузки, а также для кабелей высокого напряжения и одножильных за счет потерь в изоляции, металлических оболочках и броне.
Мощность Р, переходящая в тепло Q, которое выделяется в токопроводящих жилах трехфазного кабеля, составляет:
где I — величина тока нагрузки кабеля, a; R — сопротивление жил, ом; п — количество жил (в данном случае 3).
Таким образом, нагрев кабеля пропорционален квадрату силы тока, протекающему по его токопроводящим жилам, и чем выше токовая нагрузка кабеля, тем выше поднимается температура токопроводящих жил.
Процесс повышения температуры жил и нагревания кабеля не будет беспредельным, так как сопровождается рассеиванием тепла в окружающее пространство. С повышением температуры кабеля одновременно повышается разность температур между кабелем и средой, где он проложен. Чем выше эта разность, тем интенсивнее будет происходить отдача тепла в окружающую среду. В какой-то момент разность температур достигнет такой величины, при которой все выделяемое тепло будет переходить в окружающую среду и температура токопроводящих жил больше повышаться не будет.

* Без учета температурного коэффициента удельного электрического сопротивления.
Такое состояние называется установившимся режимом работы кабельной линии. При этом
Приведенное выражение называется тепловым законом Ома, где разность температур жилы и среды (tm — *ср) в нем соответствуют разности потенциалов, величина s соответствует сопротивлению тепловому потоку или тепловому сопротивлению и тепловых омах по аналогии с сопротивлением R цепи электрического тока, a Q — величина теплового потока — величине электрического тока I.
Величина суммарного теплового сопротивления s кабеля и окружающей среды слагается из теплового сопротивления: изоляции кабеля — sb защитных покровов — s2, поверхности кабеля — ss, а также окружающей почвы —
В случае прокладки кабеля в блочной канализации величина суммарного теплового сопротивления должна учитывать дополнительно s5 — сопротивление массива блока и se — сопротивление от поверхности блока к почве.
Таким образом, величина суммарного теплового сопротивления кабеля определяется способом прокладки.
Так, при прокладке кабеля в земле (траншее)
S = S1 + s2 + s4.
при прокладке кабеля в воздухе S = S1 + s2 + s3.


Чем меньшее сопротивление оказывается тепловому потоку, тем интенсивнее будет происходить отдача тепла во внешнюю среду, тем ниже будет температура токопроводящей жилы и тем большую нагрузку можно допустить на кабель. В наиболее благоприятных условиях в отношении теплового режима находится кабель, проложенный в проточной воде. Вода обеспечивает наилучшие условия отвода тепла с поверхности кабеля, и благодаря наличию течения сопротивление тепловому излучению в этом случае практически равно нулю. Поэтому длительно допустимые нагрузки на кабель, проложенный в воде, являются наибольшими. При прокладке кабельной линии в земле — траншее большое влияние на величину теплового сопротивления имеет состав грунта, его способность удерживать влагу.
Песок, гравий, обладая высокой пористостью, имеют большее сопротивление, чем глинистые почвы. Наличие воздушных промежутков между кабелем и грунтом в траншее приводит к сильному возрастанию теплового сопротивления. Этим обстоятельством и вызвано требование ПУЭ об устройстве для кабелей, прокладываемых в земле, снизу подсыпки, а сверху засыпки мелкой землей, не содержащей камней, строительного мусора и шлака.
Качество грунта, его тщательное уплотнение в момент засыпки проложенного в траншее кабеля имеют решающее влияние на тепловой режим работы кабельной линии. Кабель, проложенный в воздухе, находится в менее благоприятных условиях в отношении нагрева, чем кабель, проложенный в земле. Это объясняется значительной величиной сопротивления тепловому излучению от поверхности кабеля в воздух. По этой причине и допустимые нагрузки на кабель, проложенный в воздухе, ниже аналогичного кабеля, проложенного в земле.
В особо неблагоприятных условиях в отношении нагрева находятся кабели, прокладываемые в блочной канализации. Последовательное включение ряда дополнительных тепловых сопротивлений, как воздуха в канале, стенок блока, взаимный подогрев кабелей, расположенных в несколько рядов, создают крайне тяжелый тепловой режим работы кабелей блока. Естественно, что этому способу прокладки соответствуют минимальные значения допустимых нагрузок по сравнению со всеми другими способами прокладки (в земле, в воздухе, в коллекторах и туннелях).
Зная допустимые по ГОСТ или ТУ температуры нагрева токопроводящих жил, можно определить величину допустимого на кабель тока:

откуда
где im = tmu — допустимая по ГОСТ температура нагрева токопроводящей жилы кабеля; IСр — температура среды, где кабель проложен; п — число жил кабеля; Es — суммарное значение последовательно включенных тепловых сопротивлений в тепловых омах*.

*Тепловым сопротивлением в один тепловой ом обладает тело размерами в 1 см\ которое при разности температур на противоположных поверхностях в 1° пропускает через себя тепловой поток мощностью 1 вт.


Таким образом, допустимая расчетная нагрузка на кабель обратно пропорциональна 2s, т. е. суммарному значению последовательно включенных тепловых сопротивлений самого кабеля и сопротивления внешней среды (земли или воздуха), где кабель проложен. Тепловое сопротивление кабеля не является величиной постоянной и возрастает в процессе его эксплуатации в связи с высыханием изоляции и наружных покровов. Тепловое сопротивление земли определяется, как нами было установлено выше, пористостью и способностью грунта удер живать влагу.
Опытные данные показывают, что для средних и больших сечений тепловое сопротивление самого кабеля составляет лишь 30—35% общего теплового сопротивления кабеля и среды прокладки. Теплоотдача в землю или в воздух, таким образом, является решающей при определении допустимой нагрузки на кабель.
Выполнение расчетов допустимых токов нагрузок в каждом отдельном случае и для большого числа кабельных линий, находящихся в эксплуатации, по изложенному выше способу сложно, требует больших затрат времени и труда. Поэтому расчетные значения длительно допустимых токов нагрузки для кабелей в зависимости от сечения, напряжения и условий прокладки установлены Правилами устройства электроустановок и приведены в табл. 1. Из приведенных в табл. 1 значений легко вывести соотношение допустимых нагрузок для трехжильных кабелей с поясной изоляцией в зависимости от вида прокладки. В табл. 2 приводятся эти данные для средних и больших сечений кабеля, принимая за единицу прокладку в земле.
Как видно из приведенных данных, допустимая нагрузка на кабель, проложенный в воздухе, примерно на 25—30% ниже допустимой нагрузки на аналогичный
Таблица 1
Допустимые длительные расчетные нагрузки для кабелей с медными (в числителе) и алюминиевыми (в знаменателе)
жилами с нестекающей и маслоканифольной нормально пропитанной бумажной изоляцией в общей свинцовой или алюминиевой оболочке, а также с отдельно освинцованными (или отдельно опрессованными) алюминиевыми оболочками, в зависимости от условий прокладки

Продолжение табл. I

Таблица 2

Соотношение допустимых нагрузок в зависимости от способа прокладки


Сечение токопроводящих жил, л4ле*

Для кабелей напряжением 3 кВ

Для кабелей напряжением 6 кВ

Для кабелей напряжением 10 кВ

в земле +15° С

в воздухе +25 С

в воде +15° С

в земле +15° С

в воздухе +25 С

в воде +15 С

в земле +15° С

в воздухе +25°С

в воде + 15° С

35

1

0,66

1,30

I

0,70

1,28

1

0,70

1,2

70

1

0,70

1,30

1

0,70

1,27

1

0,76

1,28

120

1

0,73

1,30

1

0,73

1,26

1

0,77

1,27

185

1

0,77

1,26

1

0,74

1,24

1

0,76

1,25

кабель, проложенный в земле. Токовые нагрузки, приведенные в табл. 1 для кабелей, проложенных в земле, приняты из расчета прокладки одного кабеля в траншее на глубине 0,7—1 м при температуре земли +15° С и удельном сопротивлении грунта 120 ом • см тепловых.
Для кабелей, проложенных в воде, токовые нагрузки в таблице приняты из расчета температуры воды +15° С, а в случае прокладки в воздухе — при температуре воздуха, равной +25° С. В кабельных сооружениях и помещениях токовые нагрузки приняты для расстояний в свету между кабелями не менее 35 мм, а в каналах — не менее 50 мм при любом числе проложенных кабелей. Однако на глубине 0,7—1 м такая температура в средней полосе России бывает лишь в июне, июле, августе и сентябре месяцах. В январе, феврале, марте температура почвы на этой глубине составляет величину порядка 0° С,
в апреле и ноябре 1-5° С, а в мае и октябре +10° С.
Поэтому при определении допустимых длительных нагрузок на кабели в условиях эксплуатации районов Крайнего Севера, вечной мерзлоты, тропиков и г. п., когда температура среды значительно отличается от установленных выше значений, применяются поправочные коэффициенты, приведенные в табл. 3 и 4.
Таблица 3
Поправочные коэффициенты на температуру земли


Нормальная температура жилы, С

Значения поправочных коэффициентов при фактической температуре земли и волы, °С

-5

0

+5

+10

+15

+20

+25

+30

+35

+40

+45

80

1,14

1.10

1,08

1,04

1,0

0,96

0,92

,0,88

0,83

0,78

! 0,73

65

1,18

1.14

1,10

1,05

1,0

0,95

0,89

 0,84

0,77

0,71

| 0,63

60

1,20

1,15

1,12

1,06

1,0

0.94

0,88

0,82

0,75

0,67

0,57

55 50

1,22

1,17

1,12

1,07

1.0

0.93

0,86

0,79

0,71

0,61

1 0,50

1,25

1,20

1,14

1,07

1,0

0,93

0,84,0,76

0,66

0,54

, 0,37

Таблица 4
Поправочные коэффициенты на температуру воздуха


Нормальная температура жилы,»С

Значения поправочных коэффициентов при фактической температуре среды, °С

о

+S

+10

+15

+20

+25

+30

+35

+40

+45

80

1,24

1,20

1.17

1.13

1,09

1,04

1.0

0,95

0,90

0,85

0,80

65

1,32

1,27

1,22

1,17

1,12

1,06

1,0

0,94

0,87

0,79

0,71

60

1,36

1,31

1,25

1,20

1,13

1,07

1,0

0,93

0,85

0,76

0,66

55

1,41 1,48

1,35

1.29

1,23

1,15

1,08 1,09

1,0

0,91

0,82

0,71

0,58

50

1,41

1,34

1,26

1,18

1,0

0,89

0,78

0,63

0,45

При определении допустимых нагрузок с учетом поправочных коэффициентов необходимо учитывать, что под температурой почвы следует понимать максимальную среднемесячную температуру почвы на уровне (отметках) прокладки в данном районе, а при прокладке в воздухе — наибольшую среднюю суточную температуру в месте прокладки.
При отсутствии этих данных расчетную температуру почвы принимают равной +15° С, а воздуха — соответственно +25° С. Как указано выше, приведенные в таблицах расчетные токовые нагрузки предусматривают работу одиночного кабеля, проложенного в траншее. При прокладке нескольких кабелей в общей траншее допустимые токовые нагрузки, указанные в табл. 1, необходимо уменьшить из-за взаимного подогрева кабелей.
Поправочные коэффициенты на число работающих кабелей, приведенные в табл. 5, применяются при расчете допустимых длительных нагрузок в одинаковой мере как для кабелей, лежащих рядом в земле, так и проложенных в трубах, если в них отсутствует вентиляция, при этом резервные из числа работающих и рядом проложенных кабелей не учитываются.
Таблица 5
Поправочные коэффициенты на число работающих кабелей, лежащих рядом в земле в трубах и без труб

Пользуясь табл. 1 допустимых нагрузок, поправочными коэффициентами на температуру среды и на число работающих кабелей, лежащих рядом, произведем расчет допустимой длительной токовой нагрузки на кабельную линию марки ААБ сечением 3 X 185 мм2, напряжением 10 кВ, проложенной в земле и в пучке с тремя другими кабелями на период январь — февраль и март месяцы (температура почвы 0°С).
По табл. 1 находим, что допустимая нагрузка для такого кабеля с алюминиевыми жилами при прокладке в земле составляет 310 а.
Определяем значения поправочных коэффициентов:
а)        К1 — на число работающих кабелей в траншее. Для четырех кабелей при расстоянии между ними в свету 100 мм по табл. 5 находим величину Кj = 0,8.
б)        Кг — на фактическую температуру почвы в период январь — март, равной 0 С.
По табл. 3 находим IС2 равным 1,15.
Таким образом,

Допустимая длительная токовая нагрузка этой кабельной линии на период июль — август — сентябрь месяцы, когда температура почвы на глубине 0,7—1 м равна 15° С, составит:

Если этот же кабель марки ААБ сечением Зх 185 мм2, напряжением 10 кВ проложить в земле, в таком же пучке из 4 кабелей, но в трубах, то для этих условий прокладки допустимая нагрузка должна приниматься по табл. 1 как для кабеля, проложенного в воздухе, т. е. 235 а. Тогда для периода июль, август, сентябрь месяцы:


Для периода времени январь — февраль — март соответственно:
Расчеты подтверждают приведенные в табл. 2 большую зависимость допустимых нагрузок на кабели от условий прокладки и температуры среды, где кабель проложен. При смешанной прокладке кабелей допустимые длительные токовые нагрузки устанавливаются по участку трассы с наихудшими тепловыми условиями, если длина его составляет более 10 м.
В условиях городов и промышленных предприятий пересечение проездов, улиц и площадей с усовершенствованными покрытиями, с интенсивным движением транспорта должно выполняться в трубах или блоках. Ввиду этого допустимые нагрузки для большинства кабельных
линий городских сетей и промышленных предприятий, проложенных в земле, устанавливаются как для кабелей, проложенных в воздухе. Эти небольшие участки пересечения с наихудшими тепловыми условиями обычно имеют длину более 10 м и, таким образом, ограничивают пропускную способность всей линии.
Поэтому при определении нагрузок для таких кабельных линий допустимая нагрузка, принятая по нормам для кабелей, проложенных в воздухе, должна быть пересчитана со среднерасчетной температуры воздуха +25° С на среднерасчетную температуру грунта +15° С по формуле
где I„ — допустимая длительная токовая нагрузка, взятая по табл. 1 для воздуха: tm — допустимая температура нагрева жил кабеля по ГОСТ.
В табл. 6 приведены значения коэффициентов К3 для кабельных линий напряжением 3—35 кВ.
Таблица 6 Значения поправочных коэффициентов Кш


Номинальное напряжение кабеля, кВ

3

6

10

20-35

Значение коэффициента Кг

1,09

1,12

1,13

1.18

Пользуясь приведенными выше данными таблиц, произведем перерасчет длительно допустимой нагрузки для принятой нами ранее кабельной линии сечением 3 X 185 кВ-мм и напряжением 10 кВ, проложенной в земле с выполненными пересечениями в трубах, имеющих длину более 10 м, на период январь — февраль — март (t = 0° С):
Для периода июль — август — сентябрь (Iпочвы = .= 15° С)
Приведенные поправочные коэффициенты Кз в табл. 6 применяются для расчета нагрузок кабельных линий, проложенных в асбоцементных и других изолирующих
трубах. В случае же прокладки кабелей в металлических трубах нагрузки могут быть дополнительно увеличены для кабелей сечением до 70 мм2 на 4—5%, а для кабелей 3 X 95 мм2 и выше — на 7—8%.
В городских сетях с номинальным рабочим напряжением 6 кВ в ряде случаев прокладываются кабельные линии с конструктивным напряжением 10 кВ, учитывая перспективу перевода нагрузок этих линий с 6 на 10 кВ. Если установить нагрузку на такие кабельные линии по конструктивному напряжению кабелей (допустимая температура жил 60°С), то пропускная способность линии не будет полностью использована. Если же установить нагрузку на линии по рабочему напряжению (допустимая температура жил 65°С), то кабель будет перегружаться.
Поэтому расчетная нагрузка таких линий может быть пересчитана по следующей формуле:

где IДоп — нагрузка кабеля (табл. 1), соответствующая конструктивному напряжению кабеля; tж — температура жилы, допускаемая для рабочего напряжения, под которым используется кабель; I—температура жилы, допускаемая для конструктивного напряжения кабеля; Iокр — температура окружающей кабель среды (грунта, воздуха).
Значения поправочных коэффициентов Ki для определения нагрузок кабелей, работающих не под номинальным (конструктивным) напряжением, для линий, проложенных в земле и в воздухе, приведены в табл. 7.
Таблица 7
Поправочные коэффициенты Л*4

 

Номинальное (конструктивное) напряжение кабеля, кВ

Рабочее напряжение кабеля, Кв

Для линий, проложенных

Для линий, проложенных в воздухе

 

3

6

10

20

3

6

10

20

3 6 10
20

1,00 0,878

1,14 1,00 0,95

1,20 1,055 1,00 0,835

1,13 1,00

1,00 0,853

1,17 1,00
0,936

1,25 1,07 1,00 0,79

1,18 1,00

Пусть указанная выше кабельная линия сечением 3 X 185 мм2 с номинальным напряжением 10 кВ, проложенная в земле, а при пересечении проездов в асбоцементных трубах длиной более 10 м используется на напряжение 6 кВ. Требуется определить допустимо длительную токовую нагрузку на эту линию.
Принимая исходную нагрузку для кабеля ААБ — 3 X 185—10 кВ (прокладка в воздухе) равной 235 а, получим:
Значение коэффициента Кл находим по табл. 7.
Для периода июль — август — сентябрь (Iпочвы = = 15° С)
Для периода январь — февраль — март (Iпочвы = = 0°С)
В особо тяжелом тепловом режиме работают кабели, проложенные в блочной канализации. Допустимые длительные токовые нагрузки на кабели для этого способа прокладки определяются месторасположением кабеля в блоке и конфигурацией самого блока по эмпирической формуле
Iдоп = abclo,
где I0 — ток, определяемый по рис. 3; а — коэффициент, выбираемый в зависимости от сечения и расположения кабеля в блоке по табл. 8; b — коэффициент, выбираемый в зависимости от номинального напряжения кабеля, по табл. 9; с — коэффициент, выбираемый в зависимости от среднесуточной нагрузки всего блока по табл. 10.
Ток I0, величина которого выбирается по рис. 3 в зависимости от конфигурации блока и по номеру занимаемого канала, установлен для трехжильного кабеля сечением 3 X 95 мм2 с медными и алюминиевыми жилами, с бумажной изоляцией, на напряжение 10 кВ. Каналы, в которых прокладывается кабель, на рисунках блоков обозначены соответствующими цифрами. Каналы блоков, не имеющих номеров, предназначены для резервных кабелей. Включение их может быть произведено только при условии предварительного отключения рабочих кабелей.


Рис. 3. Допустимые токовые нагрузки для кабелей, проложенных в блоках.
Допустимые длительные токовые нагрузки на кабели, прокладываемые в двух параллельных блоках одинаковой конфигурации, должны уменьшаться путем умножения на коэффициенты, приведенные в табл. 11, а в случае прокладки кабеля другого сечения и напряжения (отличного от 3 X 95 мм2— 10 кВ) применяются коэффициенты, приведенные в табл. 8 и 9. Значения поправочных коэффициентов на нагрузку блока приведены в табл. 10.
Таблица 8
Поправочные коэффициенты а на сечение кабеля


Сечение, мм

Величина коэффициента при номере канала блока

1

2

3

4

25

0,44

0,46

0,47

0,51

35

0,54

0.57

0,57

0,60

50

0,67

0,69

0,69

0,71

70

0,81

0,84

0,84

0,85

95

1,00

1,00

1,00

1,00

120

1,14

1.13

1,13

1.2

150

1,33

1,30

1,29

1,26

185

1,50

1,46

1,45

1,38

240

1,78

1,70

1,68

1,55

Таблица 9
Поправочные коэффициенты b на напряжение кабеля


Номинальное напряжение кабеля, кВ

10

6

До 3

Величина коэффициента

  1 

1,05

1,09

Произведем расчет допустимой длительной токовой нагрузки на кабель марки АСГТ 3 X 185 мм, напряжением 6 кВ, проложенного в 4-м канале группы VI, рис. 3.
По рис. 3 находим значение Iо = 91 а (VI группа, 4-й канал).
По табл. 8 поправочных коэффициентов на сечение кабеля находим а = 1,38 (для сечения 185 мм из алюминиевых жил и 4-го номера канала).
По табл. 9 поправочный коэффициент на напряжение кабеля находим Ь = 1,05.
Таблица 10
Поправочные коэффициенты с на среднесуточную нагрузку блока, определяемые в зависимости от отношения среднесуточной передаваемой мощности к номинальной


Среднесуточная Номинальная

1,00

0,85

0,70

Величина коэффициента

1,00

1,07

1,16

Таблица 11
Коэффициенты уменьшения допустимой токовой нагрузки на кабели, прокладываемые в параллельных блоках одинаковой конфигурации


Расстояние между блоками, мм

500

1000

1500

2000

2500

3000

Величина коэффициента

0,85

0,9

0,91

0.93

0,95

0,96

Принимая величину коэффициента с = 1 по табл. 10, т. е.получаем: Iдоп = 91 X 1,32 X 1,05 X
X 1 = 132 а.
Кабельные линии вследствие высокой теплоемкости изоляции достигнут своей максимально допустимой температуры нагрева лишь спустя значительное время после включения нагрузки. Если кабельная линия имеет прерывистую нагрузку и подвергается охлаждению, то максимальная температура нагрева может быть достигнута при более высокой нагрузке. Поэтому ПТЭ допускают кратковременную перегрузку кабельных линий 6—10 кВ, предварительная нагрузка которых меньше номинальной. На время ликвидации аварий для кабельных линий до 10 кВ включительно допускается перегрузка в течение 5 суток. Пределы допустимых перегрузок для нормального и аварийного режима работы сети в зависимости от вида прокладки приведены в табл. 12.
Перегрузка кабельных линий напряжением 20—35 кВ не допускается. Для кабельных линий до 10 кВ, находящихся в эксплуатации более 15 лет, значения допустимых перегрузок, указанных в табл. 12, необходимо понизить на 10%.
Допустимые перегрузки в нормальном и аварийном режимах


Коэффициент предварительной нагрузки

Вид прокладки

Б нормальном режиме

В аварийном режиме

допустимый перегрев по отношению к номинальному в Т! « —

допустимый перегрев го отношению к номинальному при длительности максимума, ч

1.5

2.0

3,0

1

з

6

0,6

в земле

1,35

1,30

1.15

1.50

1,35

1.25

 

в воздухе

1.25

1,15

1,10

1,35

1,25

1,25

0,8

в земле

1,20

1,15

1,10

1,35

1,25

1,20

 

в воздухе

1,15

1,10

1,05

1,30

1,25

1,25

 

в трубах

 

 

 

 

 

 

 

(в земле)

1,10

1,05

1,00

1,20

1,15

1,10

Допустимые длительные токовые нагрузки на кабельные линии по нагреву проверяются на экономическую плотность тока, указанную в табл. 13, по формуле q = I:j, где I—расчетный ток, о; j — экономическая плотность тока для данных условий работы; q — экономически целесообразное сечение, мм2.
Таблица 13 Экономическая плотность тока


Продолжительность использования максимума нагрузки в год, ч

Экономическая плотность тока для кабелей, а/мм2

С медными жилами

с алюминиевыми жилами

До 1000 включительно . . .

Не проверяется

От 1000 до 3 000   

3

1.6

От 3000 до 5 000   

2,5

1,4

Более 5000

0

1.2

Если нагрузка кабеля, установленная по экономической плотности тока, превышает допустимую по нагреву, нагрузка на кабельную линию должна быть установлена по допустимому нагреву.

Максимально допустимая сила тока в медном кабеле: таблица мощности и сечений

Правильная подготовка проекта электроснабжения обеспечивает высокий уровень безопасности, предотвращает аварийные ситуации. Чтобы определить допустимый ток для медных проводов, кроме базовых формул, необходим учет реальных условий эксплуатации. Пригодятся теоретические знания о физических процессах и сведения о выборе подходящей кабельной продукции.

Медные провода применяют для создания качественных сетей электроснабжения

Определение допустимого тока

Все проводники при прохождении тока нагреваются. Чрезмерное повышение температуры провоцирует механическое разрушение конструкции, включая защитные и декоративные оболочки. Чтобы сохранить работоспособность трассы пользуются понятием «длительно допустимый ток». Справочные значения для проводов с медными и алюминиевыми жилами приведены в правилах ПУЭ и отраслевых ГОСТах.

Таблица разрешенных токовых нагрузок

Материал проводникаОболочкаПлощадь поперечного сечения жилы, мм кв.Допустимые токовые нагрузки, АТип трассы, количество кабелей в канале
медьполивинилхлорид1,523монтаж в открытом лотке
медьрезина + свинец 1,533в земле, двухжильный кабель
алюминийполивинилхлорид2,524открытый лоток
алюминийполимер2,529в земле, трехжильный кабель
медьпластик, резина2,540перемещаемая конструкция, одножильный кабель

Для точного расчета специалисты пользуются формулой теплового баланса, которая содержит:

  • электрическое сопротивление метра проводника при определенной температуре;
  • поправочные коэффициенты для учета передачи тепла в окружающее пространство с помощью конвекции, инфракрасного излучения;
  • нагрев от внешних источников.

Отвод тепловой энергии улучшается при прокладке трассы в земле (под водой). Хуже условия, когда несколько кабелей находится в одном канале.

К сведению. Иногда применяют аналог расчета по мощности с учетом неразрушающего уровня нагрева.

Допустимая плотность тока для медного провода

При создании сетей в современных объектах недвижимости предпочитают использовать именно такие проводники. При одинаковом сечении они меньше перегреваются, по сравнению с алюминиевыми аналогами. В многожильном исполнении медные кабели хорошо подходят для создания сетевых соединительных шнуров, удлинителей. Их можно использовать для создания поворотов с малым радиусом.

Тепловой нагрев

Для расчета количества тепла (Q), выделяемого проводником, пользуются формулой I*2*R*t, где:

  • I – сила тока, в амперах;
  • R – сопротивление одного метра медного проводника;
  • t – время испытания в определенных условиях.

Рассеивание тепла при работе кабеля

Тонкие проводники эффективно отдают тепловую энергию окружающей среде. На процесс оказывают существенное влияние конкретные условия. Как отмечено выше, контакт оболочки с водой существенно улучшает охлаждение.

По мере увеличения сечения часть энергии расходуется для нагрева прилегающих слоев. Этим объясняется постепенное снижение допустимой плотности тока в расчете на единицу площади.

Распределение температур в кабельной продукции

На рисунке хорошо видно, как при уменьшении изоляционного слоя улучшается теплоотдача.

Падение напряжения

Этот параметр несложно рассчитать по закону Ома (U=R*I) с учетом электрического сопротивления соответствующего материала. Удельное значение для меди берут 0,0175 Ом *мм кв./ метр. С помощью формул вычисляют на участке определенной длины падение напряжения. При сечении 1,5 мм кв. на каждый метр потери составят 0,01117 Вольт.

Допустимая плотность тока

Этот относительный параметр показывает разрешенный нормативами ток на один мм кв. площади сечения. Отмеченные выше тенденции по изменению теплоотдачи при увеличении размеров проводника подтверждаются расчетами и данными лабораторных испытаний.

Таблица допустимых значений плотности тока для разных условий в медном проводнике

Поперечное сечение, мм кв. Ток (А)/ Плотность тока (А/ мм кв.)
Для трассы в зданииМонтаж на открытом воздухе
673/ 12,276/ 12,6
10103/ 10,3108/ 10,8
25165/ 6,6205/ 8,2
50265/ 5,3335/ 6,7

Пути повышения допустимого тока

Существенное значение имеют действительные условия эксплуатации трассы электроснабжения, трансформаторов, установок. Снизить рассматриваемые нагрузки можно с помощью хорошей вентиляции, естественной или принудительной. Хороший отвод тепла получится с применением перфорированных металлических коробов, которые не затрудняют прохождение конвекционных потоков и одновременно выполняют функции радиатора.

В некоторых ситуациях пригодится квалифицированно составленный временной график. Стиральная машина при нагреве воды и в режиме сушки потребляет много электроэнергии. Ее можно настроить на автоматическое выполнение рабочих операций в ночные часы. Если снабжающие организации предлагают соответствующую тарификацию, получится дополнительная экономия денежных средств.

Вентилятор обеспечивает эффективное охлаждение проводников, которые установлены в микроволновой печи

Допустимый ток и сечение проводов

Лучшие показатели теплообмена при остальных равных условиях характерны для проводников с относительно меньшей площадью поперечного сечения.

Таблица токовых параметров для кабелей с медными жилами

Сечение, мм кв.Плотность тока, А/ мм кв.Ток, А
11515
1,513,320
2,510,827
165,792
254,9123

Расчет сечения кабелей и проводов

Для бытовой сети 220 V можно вычислить допустимый ток по формуле I=(P*K)/U*cos φ), где:

  • Р – суммарная мощность всех потребителей, подключенных к соответствующей части цепи электропитания;
  • К – поправочный коэффициент (0,7-0,8), учитывающий одновременно работающие устройства;
  • cos φ – для стандартного жилого объекта принимают равным 1.

Далее пользуются табличными данными для выбора подходящей кабельной продукции с учетом сечения, оболочки, технологии монтажа.

Маркировка проводов

В стандартных обозначениях приведены важные характеристики продукции этой категории. Если указана буква «А», значит, жила сделана из алюминия. Медь никак не отмечают. Следующие позиции:

  • вид провода: «П» – плоский, «У» – установочный;
  • материал оболочки (проводника, общей): «В» – поливинилхлорид;
  • дополнительная защита: «Б» – бронирование стальной лентой;
  • (количество жил) * (площадь поперечного сечения проводника, мм кв.) – (номинальное напряжение, V): 2*1,5-220.

Медные жилы проводов и кабелей

Продукцию этого вида выпускают с площадью сечения от 0,5 до 1000 и более мм кв. Для решения бытовых задач подойдут приведенные ниже модификации.

Таблица для выбора кабельной продукции

Сечение проводника, мм кв.Ток (А)/ Суммарная мощность потребителей (кВт) для сетей
220 V380 V
1.519/4,116/10,5
2.527/5,925/16,5
438/8,330/19,8
646/10,140/26,4
1070/15,450/33
1685/18,775/49,5

Подбор диаметра проволоки предохранителя

В этом случае нужно решить обратную задачу. Тепловое разрушение проволоки прекратит подачу питания, выполняя защитные функции.

Таблица для выбора предохраняющего элемента

Максимальный ток, А0,5125
Диаметр проводника в мм для материаловМедь0,030,050,090,16
Алюминий0,070,10,19

Кратковременные режимы работы

Допустимые токовые нагрузки на провода и кабели корректируют умножением на поправочный коэффициент. В профессиональных расчетах учитывают дополнительные факторы:

  • действительные температурные условия;
  • количество и взаимное расположение кабелей в канале;
  • средние значения по нагрузкам;
  • существенное изменение параметров;
  • особенности конструкции трассы.

Коэффициент для кратковременного (повторного) режима равен 0,875/√П. Здесь «П» – относительная величина (время включения/длительность цикла). Эту поправку применяют при следующих условиях:

  • сечение медного проводника 10 мм кв. и более;
  • рабочий цикл составляет до 4 минут включительно;
  • длительность пауз – от 6 мин.

Как выбрать вводной провод в квартиру

На первом этапе составляют список всех потребителей со стационарным и временным подключением. Итоговый результат умножают на коэффициент одновременной работы (стандарт – 0,75). Подразумевается малая вероятность одновременного включения кондиционера для охлаждения в зале и обогревателя в спальне. Далее пользуются табличными данными для определения критериев подходящей кабельной продукции.

Выбор проводки для отдельных групп потребителей

Экономные светодиодные светильники можно подключить медной жилой с площадью сечения не более 0,5 кв. мм. Для розеток их выбирают в диапазоне 1,5-2,5. Отдельные линии с защитными автоматами создают для подключения духового шкафа, варочных панелей, других мощных потребителей.

Как рассчитать трехфазную проводку

В этом варианте применяют формулу для тока I=P/(1,73*U*cos φ). Данные из таблиц допустимых значений берут для трехфазных сетей с учетом обязательных дополнительных параметров (оболочек, эффективности теплоотвода).

Ошибки при выборе и расчете сечения кабеля

Инженерные сети проектируют с учетом нынешних и перспективных нагрузок. Это значит, что надо учесть возможное подключение дополнительной техники, совместное использование групп розеток. Особое внимание следует проявлять при расчете длинных участков с потерями более 5%. По специальной методике вычисляют параметры линий питания для подключения нагрузок с реактивными характеристиками (насосное оборудование, станки). Мощность распределяют равномерно при работе с трехфазными сетями.

Последствия превышения тока

Чрезмерное увеличение температуры разрушает проводник и цепь прохождения электрического тока. Нарушение изоляции в результате теплового воздействия создает благоприятные условия для коррозии, повышает вероятность короткого замыкания. Кроме повреждений оборудования, ухудшается безопасность. Необходимо подчеркнуть дополнительные затраты, которые вызваны сложными операциями по восстановлению работоспособности скрытой проводки.

Приведенные выше рекомендации надо соблюдать в комплексе. Не следует превышать длительно допустимый правилами ток. Необходимо поддерживать благоприятные условия эксплуатации. Нужно не забывать о соответствующих коррекциях при разовом или постоянном подключении мощных нагрузок.

Видео 

Длительно допустимый ток для медных шин

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *