+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Размеры и типы корпусов SMD-компонентов

Технологии и Процесс

Поверхностный монтаж — технология изготовления электронных изделий на печатных платах, которую также называют ТМП (технология монтажа на поверхность), SMT (англ. surface mount technology) и SMD-технология (от англ. surface mounted device — прибор, монтируемый на поверхность).

Электронные компоненты для поверхностного монтажа («чип-компоненты» или SMD-компоненты) выпускаются различных размеров и в разных типах корпусов. Таблица типоразмеров и SMD-корпусов поможет быстро получить необходимые данные.


Размеры и типы корпусов SMD-компонентов


Двухконтактные компоненты: прямоугольные, пассивные (резисторы и конденсаторы)

Обозначение типоразмера состоит из четырех цифр. Две первые соответствуют округленно длине L в принятой системе измерения (либо метрической, либо дюймовой), а две последние — ширине W.

Типоразмер (дюймовая система) Типоразмер (метрическая система) Размер (мм)
008004 0201 0.25×0.125
009005 03015 0.3×0.15
01005
0402 0.4×0.2
0201 0603 0.6×0.3
0402 1005 1.0×0.5
0603 1608 1.6×0.8
0805
2012
2.0×1.25
1008 2520 2.5×2.0
1206 3216 3.2×1.6
1210 3225 3.2×2.5
1806 4516
4.5×1.6
1812 4532 4.5×3.2
1825 4564 4.5×6.4
2010 5025 5.0×2.5
2512 6332 6.3×3.2
2725 6863 6.9×6.3
2920 7451 7.4×5.1

Двухконтактные компоненты: цилиндрические, пассивные (резисторы и диоды) в корпусе MELF

корпус размеры (мм) и другие параметры
Melf (MMB) 0207
L = 5,8 мм, Ø = 2,2 мм, 1,0 Вт, 500 В
MiniMelf (MMA) 0204 L = 3,6 мм, Ø = 1,4 мм, 0,25 Вт, 200 В
MicroMelf (MMU) 0102 L = 2,2 мм, Ø = 1,1 мм, 0,2 Вт, 100 В

Двухконтактные компоненты: танталовые конденсаторы

тип размеры (мм)
A (EIA 3216-18) 3,2 × 1,6 × 1,6
B (EIA 3528-21) 3,5 × 2,8 × 1,9
C (EIA 6032-28) 6,0 × 3,2 × 2,2
D (EIA 7343-31) 7,3 × 4,3 × 2,4
E (EIA 7343-43) 7,3 × 4,3 × 4,1

Двухконтактные компоненты: диоды (англ. small outline diode, сокр. SOD)

обозначение размеры (мм)
SOD-323 1,7 × 1,25 × 0,95
SOD-123 2,68 × 1,17 × 1,60

Трёхконтактные компоненты: транзисторы с тремя короткими выводами (SOT)

обозначение размеры (мм)
SOT-23 3 × 1,75 × 1,3
SOT-223 6,7 × 3,7 × 1,8
DPAK (TO-252) корпус (трёх- или пятиконтактные варианты), разработанный компанией Motorola для полупроводниковых устройств с большим выделением тепла
D2PAK (TO-263) корпус (трёх-, пяти-, шести-, семи- или восьмивыводные варианты), аналогичный DPAK, но больший по размеру (как правило габариты корпуса соответствуют габаритам TO220)
D3PAK (TO-268) корпус, аналогичный D2PAK, но ещё больший по размеру

Многоконтактные компоненты: выводы в две линии по бокам

обозначение
расстояние между выводами (мм)
ИС — с выводами малой длины (англ. small-outline integrated circuit, сокращённо SOIC) 1,27
TSOP — (англ. thin small-outline package) тонкий SOIC (тоньше SOIC по высоте) 0,5
SSOP — усаженый SOIC 0,65
TSSOP — тонкий усаженый SOIC 0,65
QSOP
— SOIC четвертного размера
0,635
VSOP — QSOP ещё меньшего размера 0,4; 0,5 или 0,65

Многоконтактные компоненты: выводы в четыре линии по бокам

обозначение расстояние между выводами (мм)
PLCC, CLCC — ИС в пластиковом или керамическом корпусе с выводами, загнутыми под корпус с виде буквы J 1,27
QFP — (англ. quad flat package) — квадратные плоские корпусы ИС разные размеры
LQFP — низкопрофильный QFP 1,4 мм в высоту
разные размеры
PQFP — пластиковый QFP (44 или более вывода) разные размеры
CQFP — керамический QFP (сходный с PQFP) разные размеры
TQFP — тоньше QFP тоньше QFP
PQFN — силовой QFP нет выводов, площадка для радиатора

Многоконтактные компоненты: массив выводов

обозначение расстояние между выводами (мм)
BGA — (англ. ball grid array) — массив шариков с квадратным или прямоугольным расположением выводов 1,27
LFBGA — низкопрофильный FBGA, квадратный или прямоугольный, шарики припоя 0,8
CGA — корпус с входными и выходными выводами из тугоплавкого припоя разные размеры
CCGA — керамический CGA разные размеры
μBGA — (микро-BGA) — массив шариков расстояние между шариками менее 1 мм
FCBGA — (англ. flip-chip ball grid array) массив шариков на подложке
к подложке припаян кристалл с теплораспределителем
разные размеры
PBGA — массив шариков, кристалл внутри пластмассового корпуса разные размеры
LLP — безвыводный корпус

Обратите внимание:

Компания «Глобал Инжиниринг» предлагает большой каталог с оборудованием для поверхностного монтажа. У нас вы найдёте: трафаретные принтеры; системы дозирования; оборудование для монтажа компонентов; печи конвекционной и парофазной пайки; установки лужения; приборы для подготовки паяльной пасты; конвеерные системы и многое другое. // Приобретая оборудование, вы получаете 100% гарантийную и пост-гарантийную поддержку, помощь в приобретении запасных частей и расходных материалов, программы обучения и всю техническую информацию.


Возврат к списку статей


Площадка чип резистора

Мы надеемся, что вся информация, представленная в каталоге, будет полезна и производителям промэлектроники, и сервисным центрам, и радиолюбителям.

Информация по размерам контактных площадок электронных компонентов, применяемых для разработки, сборки и монтажа печатных плат, находится в разделе Печатные платы.

 

РАЗМЕР КОНТАКТНОЙ ПЛОЩАДКИ
ТИПОРАЗМЕРРазмеры резистораПАЙКА ОПЛАВЛЕНИЕМПАЙКА ВОЛНОЙ
ДЮЙМОВЫЙМЕТРИЧЕСКИЙXYablabl
0402100510,50,40,60,9
060316081,60,80,50,91,50,90,91,9
0805201221,20,71,31,90,91,32,2
120632163,21,60,91,72,91,11,73,4
121032253,22,50,92,51,91,12,53,3
121832463,24,61,054,91,951,254,83,15
2010502552,51,02,54,91,22,55,1
251263326,34,21,03,26,21,23,26,4
Корзина

Корзина пуста

Smd светодиоды 5050 3528 5730 2835 5630

SMD  (от английского surface mount device — элемент поверхностного монтажа)  светодиоды представляют собой  электронные элементы для установки на печатных платах. Технология поверхностного монтажа — технология установки микроэлементов на печатной плате, поэтому SMD могут быть не только светодиоды, но и любые другие электронные компоненты.

Технология поверхностного монтажа (SMT — surface mount technology) позволяет добиться большей плотности элементов и их миниатюризации благодаря уменьшению контактов и выводов. SMD компоненты, в том  числе и светодиоды, легче и более миниатюрны по сравнению с компонентами традиционного монтажа, которые устанавливаются на плату через отверстия в печатной плате.

Существует множество вариантов SMD светодиодов и необходимо изучать характеристики конкретного производителя. Объединяют SMD светодиоды следующие качества:

— предназначены для поверхностного монтажа на печатных платах;

— миниатюрны;

— имеют большой угол рассеивания по причине отсутствия линз.

Преимущества SMD светодиодов

— очень низкое тепловыделение;

— низкое энергопотребление —  напряжение на один SMD светодиод  2-3.6 вольта, сила тока  0.02-0.03 ампера;

— при правильных условиях эксплуатации срок работы может составить до 100000 часов;

— высокая яркость.

Применение SMD светодиодов

SMD светодиоды находят широкое применение в сфере дизайнерской и архитектурной подсветки (светодиодные ленты с SMD светодиодами). SMD светодиоды применяются в микроэлектронике для различных световых индикаторов, для целей подсветки дисплеев (LED дисплеи) и телевизоров (LED телевизоры), для множества других систем.

Размеры  SMD светодиодов

Название SMD светодиода соответствует его размеру, при этом размер определяется габаритами чипа, без учета размеров контактов.

Название SMD светодиодаРазмеры в миллиметрах
57305.7 x 3.0
56305.6 x 3.0
50505.0 x 5.0
28352.8 x 3.5
35283.5 x 2.8
30203.0 x 2.0
30143.0 x 1.4
70207.0 x 2.0
40144.0 x 1.4
35353.5 x 3.5
32583.2 x 5.8
12063.2 x 1.6
11041.1 x 0.4
6030.6 x 0.3

Характеристики SMD светодиодов

Характеристики SMD светодиодов, за исключением вышеуказанных размеров, определяются производителями. Для получения параметров конкретного светодиода необходимо обратиться к даташит (datasheet) компании, которая производит данный светодиод.

Типы smd-корпусов

2 вывода3 вывода4 вывода5 выводов6 выводов8 выводов>9 выводов
smcj
[do214ab]
7,0х6,0х2,6мм
d2pak
[to263]
9,8х8,8х4,0мм
mbs
[to269aa]
4,8х3,9х2,5мм
d2pak5
[to263-5]
9,8х8,8х4,0мм
mlp2x3
[mo229]
(dfn2030-6)
(lfcsp6)
3,0х2,0х0,75мм
tssop8
[mo153]
4,4х3,0х1,0мм
usoic10
(rm10|micro10)
3,0х3,0х1,1мм
smbj
[do214aa]
4,6х3,6х2,3мм
dpak
[to252aa]
6,6х6,1х2,3мм
sop4
4,4х4,1х2,0мм
dpak5
[to252-5]
6,6х6,1х2,3мм
ssot6
[mo193]
3,0х1,7х1,1мм
chipfet
3,05х1,65х1,05мм
tdfn10
(vson10|dfn10)
3,0х3,0х0,9мм
(gf1)
[do214ba]
4,5х1,4х2,5мм
(smpc)
[to277a]
6,5х4,6х1,1мм
ssop4
4,4х2,6х2,0мм
sot223-5
6,5х3,5х1,8мм
dfn2020-6
[sot1118]
(wson6 | llp6)
2,0х2,0х0,75мм
tdfn8
(wson8)
(lfcsp8)
3,0х3,0х0,9мм
(wson10)
3,0х3,0х0,8мм
smaj
[do214ac]
4,5х2,6х2,0мм
sot223
[to261aa]
{sc73}
6,5х3,5х1,8мм
sot223-4
6,5х3,5х1,8мм
mo240
(pqfn8l)
3,3х3,3х1,0мм
sot23-6
[mo178ab]
{sc74}
2,9х1,6х1,1мм
(mlf8)
2,0х2,0х0,85мм
msop10
[mo187da]
2,9х2,5х1,1мм
smf
[do219ab]
2,8х1,8х1,0мм
sot89
[to243aa]
{sc62}
4,7х2,5х1,7мм
sot143
2,9х1,3х1,0мм
sot89-5
4,5х2,5х1,5мм
tsot6
[mo193]
2,9х1,6х0,9мм
msop8
[mo187aa]
3,0х3,0х1,1мм
(uqfn10)
1,8х1,4х0,5мм
sod123
[do219ab]
2,6х1,6х1,1мм
sot23f
2,9х1,8х0,8мм
sot343
2,0х1,3х0,9мм
sot23-5
[mo193ab|mo178aa]
{sc74a}
(tsop5/sot753)
2,9х1,6х1,1мм
sot363
[mo203ab|ttsop6]
{sc88|sc70-6}
(us6)
2,0х1,25х1,1мм
vssop8
3,0х3,0х0,75мм
bga9
(9pin flip-chip)
1,45х1,45х0,6мм
sod123f
2,6х1,6х1,1мм
sot346
[to236aa]
{sc59a}
(smini)
2,9х1,5х1,1мм
sot543
1,6х1,2х0,5мм
sct595
2,9х1,6х1,0мм
sot563f
{sc89-6|sc170c}
[sot666]
1,6х1,2х0,6мм
sot23-8
2,9х1,6х1,1мм
  
sod110
2,0х1,3х1,6мм
sot23
[to236ab]
2,9х1,3х1,0мм
(tsfp4-1)
1,4х0,8х0,55мм
sot353
[mo203aa]
{sc88a|sc70-5}
(tssop5)
2,0х1,25х0,95мм
sot886
[mo252]
(xson6/mp6c)
1,45х1,0х0,55мм
sot765
[mo187ca]
(us8)
2,0х2,3х0,7мм
  
sod323
{sc76}
1,7х1,25х0,9мм
dfn2020
(sot1061)
2,0х2,0х0,65мм
(tslp4)
1,2х0,8х0,4мм
sot553
(sot665|esv)
{sc107}
1,6х1,2х0,6мм
wlcsp6
1,2х0,8х0,4мм
    
sod323f
{sc90a}
1,7х1,25х0,9мм
sot323
{sc70}
(usm)
2,0х1,25х0,9мм
dfn4
1,0х1,0х0,6мм
sot1226
(x2son5)
0,8х0,8х0,35мм
      
dfn1608
(sod1608)
1,6х0,8х0,4мм
sot523
(sot416)
{sc75a}
1,6х0,8х0,7мм
(dsbga4|wlcsp)
0,75х0,75х0,63мм
        
sod523f
{sc79}
1,2х0,8х0,6мм
sot523f
(sot490)
{sc89-3}
1,6х0,8х0,7мм
          
sod822
(tslp2)
1,0х0,6х0,45мм
dfn1412
{sot8009}
1,4х1,2х0,5мм
          
  sot723
{sc105aa}
(tsfp-3)
1,2х0,8х0,5мм
          
  dfn1110
{mo340ba}
(sot8015)
1,1х1,0х0,5мм
          
  sot883
{sc101}
(tslp3-1)
1,0х0,6х0,5мм
          
  sot1123
0,8х0,6х0,37мм
          

Типоразмеры smd корпусов микросхем. Маркировка SMD

Корпус интегральной микросхемы (ИМС) — это герметичная конструкции, предназначенная для защиты кристалла интегральной схемы от внешних воздействий и для электрического соединения с внешними цепями. Длина корпуса микросхем зависит от числа выводов. Давайте рассмотрим некоторые типы корпусов, которые наиболее часто применяются радиолюбителями.

DIP (Dual In-line Package) — тип корпуса микросхем, микросборок и некоторых других электронных компонентов для монтажа в отверстия печатной платы, является самым распространенным типом корпусов. Имеет прямоугольную форму с двумя рядами выводов по длинным сторонам. Может быть выполнен из пластика или керамики. В обозначении корпуса указывается число выводов. В корпусе DIP могут выпускаться различные полупроводниковые или пассивные компоненты — микросхемы, сборки диодов, ТТЛ-логика, генераторы, усилители, ОУ и прочие… Компоненты в корпусах DIP обычно имеют от 4 до 40 выводов, возможно есть и больше. Большинство компонентов имеет шаг выводов 2.54 миллиметра и расстояние между рядами 7.62 или 15.24 миллиметра.

Одной из разновидностью корпуса DIP является корпус QDIP на таком корпусе 12 выводов и обычно имеются лепестки для крепления микросхемы на радиатор, вспомните микросхему К174УН7.

Разновидностью DIP является PDIP – (Plastic Dual In- line Package) – корпус имеет форму прямоугольника, снабжен выводами, предназначенными преимущественно для монтажа в отверстия. Существуют две разновидности корпуса: узкая, с расстоянием между выводами 7.62 мм и широкая, с расстоянием между выводами 15.24 мм. Различий между DIP и PDIP в плане корпуса нет, PDIP обычно изготавливается из пластика, CDIP — из керамики. Если у микросхемы много выводов, например 28 и более, то корпус может быть широким.

SIP (Single In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы, с одним рядом выводов по длинной стороне. Обычно в обозначении также указывается число выводов. Нумерация выводов данных типов микросхем начинается слева, если смотреть на маркировку спереди.

ТО92 – распространённый тип корпуса для маломощных транзисторов и других полупроводниковых приборов с двумя или тремя выводами, в том числе и микросхем, например интегральных стабилизаторов напряжения. В СССР данный тип корпуса носил обозначение КТ-26.

TO220 — тип корпуса для транзисторов, выпрямителей, интегральных стабилизаторов напряжения и других полупроводниковых приборов малой и средней мощности. Нумерация выводов для разных элементов может отличаться, у транзисторов одно обозначение, у стабилизаторов напряжения другое…

PENTAWATT – Содержит 5 выводов, в таких корпусах выпускаются, например усилители НЧ (TDA2030, 2050…), или стабилизаторы напряжения.

DPAK — (TO-252, КТ-89) корпус для размещения полупроводниковых устройств. D2PAK аналогичен корпусу DPAK, но больше по размеру; в основном эквивалент TO220 для SMD-монтажа, бывают трёх, пяти, шести, семи или восьмивыводные.

SO (Small Outline) пластиковый корпус малого размера. Корпус имеет форму прямоугольника, снабжен выводами, предназначенными для монтажа на поверхность. Существуют две разновидности корпуса: узкая, с шириной корпуса 3.9 мм (0.15 дюйма) и широкая, с шириной корпуса 7.5 мм (0.3 дюйма).

SOIC (Small-Outline Integrated Circuit) — предназначен для поверхностного монтажа, по сути это то же, что и SO. Имеет форму прямоугольника с двумя рядами выводов по длинным сторонам. Как правило, нумерация выводов одинаковых микросхем в корпусах DIP и SOIC совпадает. Помимо сокращения SOIC для обозначения корпусов этого типа могут использоваться буквы SO, а также SOP (Small-Outline Package) и число выводов. Такие корпуса могут иметь различную ширину. Обычно обозначаются как SOxx-150, SOxx-208 и SOxx-300 или пишут SOIC-xx и указывают какому чертежу он соответствует. Данный тип корпусов схож с QSOP.

Также существует версия корпуса с загнутыми под корпус (в виде буквы J) выводами. Такой тип корпуса обозначается как SOJ (Small-Outline J-leaded).

QFP (Quad Flat Package) — семейство корпусов микросхем, имеющих планарные выводы, расположенные по всем четырём сторонам. Форма основания микросхемы — прямоугольная, а зачастую используется квадрат. Корпуса обычно различаются только числом выводов, шагом, размерами и используемыми материалами. BQFP отличается расширениями основания по углам микросхемы, предназначенными для защиты выводов от механических повреждений до запайки.

В это семейство входят корпуса TQFP (Thin QFP) , QFP, LQFP (Low-profile QFP) . Микросхемы в таких корпусах предназначены только для поверхностного монтажа; установка в разъём или монтаж в отверстия штатно не предусмотрена, хотя переходные коммутационные устройства существуют. Количество выводов QFP микросхем обычно не превышает 200, с шагом от 0,4 до 1,0 мм. Габаритные размеры корпусов и расстояние между выводами можно посмотреть .

QFN (Quad-flat no-leads) – у таких корпусов, так же как и у корпусов SOJ, вывода загнуты под корпус. Габаритные размеры и расстояние между выводами корпусов QFN можно посмотреть . Данный корпус схож с типом корпусов MLF, у них вывода расположены по периметрии и снизу.

TSOP (Thin Small-Outline Package) – данные корпуса очень тонкие, низкопрофильные, являются разновидностью SOP микросхем. Применяются в модулях оперативной памяти DRAM и для чипов флеш-памяти, особенно для упаковки низковольтных микросхем из-за их малого объёма и большого количества штырьков (контактов). В более современных модулях памяти такие корпуса уже не применяются, их заменили корпуса типа BGA. Обычно различают два типа корпусов, они представлены ниже на фото.

PLCC (Plastic Leaded Chip Carrier) и СLCC (Ceramic Leaded Chip Carrier) — представляют собой квадратный корпус с расположенными по краям контактами, предназначенный для установки в специальную панель (часто называемую «кроваткой»). В настоящее время широкое распространение получили микросхемы флэш-памяти в корпусе PLCC, используемые в качестве микросхемы BIOS на системных платах. Габаритные размеры корпусов и расстояние между выводами можно посмотреть .

ZIP (Zigzag-In-line Package) — плоский корпус для вертикального монтажа в отверстия печатной платы со штырьковыми выводами, расположенными зигзагообразно. Бывают ZIP12, ZIP16, ZIP17, ZIP19, ZIP20, ZIP24, ZIP40 цифры означают количество выводов и тип корпуса, кроме этого они различаются габаритами корпусов, а так же расстоянием между выводами. Габаритные размеры корпусов и расстояние между выводами можно посмотреть .

В этой статье мы рассмотрим самые основные корпуса микросхем, которые очень часто используются в повседневной электронике.

DIP (англ. D ual I n-Line P ackage) – корпус с двумя рядами выводов по длинным сторонам микросхемы. Раньше, да наверное и сейчас, корпус DIP был самым популярным корпусом для многовыводных микросхем. Выглядит он вот так:



В зависимости от количества выводов микросхемы, после слова “DIP” ставится количество ее выводов. Например, микросхема, а точнее, микроконтроллер atmega8 имеет 28 выводов:

Следовательно, ее корпус будет называться DIP28.

А вот у этой микросхемы корпус будет называться DIP16.

В основном в корпусе DIP в Советском Союзе производили логические микросхемы, операционные усилители и тд. Сейчас же корпус DIP также не теряет своей актуальности и в нем до сих пор делают различные микросхемы, начиная от простых аналоговых и заканчивая микроконтроллерами.

Корпус DIP может быть выполнен из пластика (что в большинстве случаев) и называется он PDIP , а также из керамики – CDIP . На ощупь корпус CDIP твердый как камень, и это неудивительно, так как он сделан из керамики.

Пример CDIP корпуса.


Имеются также модификации HDIP, SDIP.

HDIP (H eat-dissipating DIP ) – теплорассеивающий DIP. Такие микросхемы пропускают через себя большой ток, поэтому сильно нагреваются. Чтобы отвести излишки тепла, на такой микросхеме должен быть радиатор или его подобие, например, как здесь два крылышка-радиатора посерединке микрухи:


SDIP (S mall DIP ) – маленький DIP. Микросхема в корпусе DIP, но c маленьким расстоянием между ножками микросхемы:


SIP корпус

SIP корпус (S ingle I n line P ackage ) – плоский корпус с выводами с одной стороны. Очень удобен при монтаже и занимает мало места. Количество выводов также пишется после названия корпуса. Например, микруха снизу в корпусе SIP8.


У SIP тоже есть модификации – это HSIP (H eat-dissipating SIP ). То есть тот же самый корпус, но уже с радиатором

ZIP корпус

ZIP (Z igzag I n line P ackage ) – плоский корпус с выводами, расположенными зигзагообразно. На фото ниже корпус ZIP6. Цифра – это количество выводов:


Ну и корпус с радиатором HZIP :


Только что мы с вами рассмотрели основной класс In line Package микросхем. Эти микросхемы предназначены для сквозного монтажа в отверстиях в печатной плате.

Например, микросхема DIP14, установленная на печатной плате


и ее выводы с обратной стороны платы, уже без припоя.


Кто-то все таки умудряется запаять микросхемы DIP, как микросхемы для поверхностного монтажа (о них чуть ниже), загнув выводы под углом в 90 градусов, или полностью их выпрямив. Это извращение), но работает).

Переходим к другому классу микросхем – микросхемы для поверхностного монтажа или, так называемые SMD компоненты . Еще их называют планарными радиокомпонентами.

Такие микросхемы запаиваются на поверхность печатной платы, под выделенные для них печатные проводники. Видите прямоугольные дорожки в ряд? Это печатные проводники или в народе пятачки . Вот именно на них запаиваются планарные микросхемы.


SOIC корпус

Самым большим представителем этого класса микросхем являются микросхемы в корпусе SOIC (S mall-O utline I ntegrated C ircuit ) – маленькая микросхема с выводами по длинным сторонам. Она очень напоминает DIP, но обратите внимание на ее выводы. Они параллельны поверхности самого корпуса:


Вот так они запаиваются на плате:


Ну и как обычно, цифра после “SOIC” обозначает количество выводов этой микросхемы. На фото выше микросхемы в корпусе SOIC16.

SOP (S mall O utline P ackage ) – то же самое, что и SOIC.


Модификации корпуса SOP:

PSOP – пластиковый корпус SOP. Чаще всего именно он и используется.

HSOP – теплорассеивающий SOP. Маленькие радиаторы посередине служат для отвода тепла.


SSOP (S hrink S mall O utline P ackage) – ” сморщенный” SOP. То есть еще меньше, чем SOP корпус

TSSOP (T hin S hrink S mall O utline P ackage) – тонкий SSOP. Тот же самый SSOP, но “размазанный” скалкой. Его толщина меньше, чем у SSOP. В основном в корпусе TSSOP делают микросхемы, которые прилично нагреваются. Поэтому, площадь у таких микросхем больше, чем у обычных. Короче говоря, корпус-радиатор).


SOJ – тот же SOP, но ножки загнуты в форме буквы “J” под саму микросхему. В честь таких ножек и назвали корпус SOJ :

Ну и как обычно, количество выводов обозначается после типа корпуса, например SOIC16, SSOP28, TSSOP48 и тд.

QFP корпус

QFP (Q uad F lat P ackage) – четырехугольный плоский корпус. Главное отличие от собрата SOIC в том, что выводы размещены на всех сторонах такой микросхемы


Модификации:

PQFP – пластиковый корпус QFP. CQFP – керамический корпус QFP. HQFP – теплорассеивающий корпус QFP.

TQFP (T hin Q uad F lat P ack) – тонкий корпус QFP. Его толщина намного меньше, чем у его собрата QFP



PLCC (P lastic L eaded C hip C arrier) и СLCC (C eramic L eaded C hip C arrier) – соответственно пластиковый и керамический корпус с расположенными по краям контактами, предназначенными для установки в специальную панельку, в народе называемую “кроваткой”. Типичным представителем является микросхема BIOS в ваших компьютерах.

Вот так примерно выглядит “кроватка” для таких микросхем

А вот так микросхема “лежит” в кроватке.


Иногда такие микросхемы называют QFJ , как вы уже догадались, из-за выводов в форме буквы “J”

Ну и количество выводов ставится после названия корпуса, например PLCC32.

PGA корпус

PGA (P in G rid A rray) – матрица из штырьковых выводов. Представляет из себя прямоугольный или квадратный корпус, в нижней части которого расположены выводы-штырьки


Такие микросхемы устанавливаются также в специальные кроватки, которые зажимают выводы микросхемы с помощью специального рычажка.

В корпусе PGA в основном делают процессоры на ваши персональные компьютеры.

Корпус LGA

LGA (L and G rid A rray) — тип корпусов микросхем с матрицей контактных площадок. Чаще всего используются в компьютерной технике для процессоров.

Кроватка для LGA микросхем выглядит примерно вот так:


Если присмотреться, то можно увидеть подпружиненные контакты.

Сам микросхема, в данном случае процессор ПК, имеет просто металлизированные площадки:


Для того, чтобы все работало, должно выполняться условие: микропроцессор должен быть плотно прижат к кроватке. Для этого используются разного рода защелки.

Корпус BGA

BGA (B all G rid A rray ) – матрица из шариков.


Как мы видим, здесь выводы заменены припойными шариками. На одной такой микросхеме можно разместить сотни шариков-выводов. Экономия места на плате просто фантастическая. Поэтому микросхемы в корпусе BGA применяют в производстве мобильных телефонов, планшетах, ноутбуках и в других микроэлектронных девайсах. О том, как перепаивать BGA, я еще писал в статье Пайка BGA микросхем .

В красных квадратах я пометил микросхемы в корпусе BGA на плате мобильного телефона. Как вы видите, сейчас вся микроэлектроника строится именно на BGA микросхемах.


Технология BGA является апогеем микроэлектроники. В настоящее время мир перешел уже на технологию корпусов microBGА, где расстояние между шариками еще меньше, и можно уместить даже тысячи(!) выводов под одной микросхемой!

Вот мы с вами и разобрали основные корпуса микросхем.

Ничего страшного нет в том, что вы назовете микросхему в корпусе SOIC SOPом или SOP назовете SSOPом. Также ничего страшного нет и в том, чтобы назвать корпус QFP TQFPом. Границы между ними размыты и это просто условности. Но вот если микросхему в корпусе BGA назовете DIP, то это уже будет полное фиаско.

Начинающим радиолюбителям стоит просто запомнить три самых важных корпуса для микросхем – это DIP, SOIС (SOP) и QFP безо всяких модификаций и стоит также знать их различия. В основном именно эти типы корпусов микросхем радиолюбители используют чаще всего в своей практике.

Современная технология поверхностного монтажа предусматривает следующие требования к электрон-
ным компонентам :

Минимальные масса и габариты, плоскостность, низкий профиль выводов, невысокая стоимость, о6еспечение стандартизации;

Пригодность к автоматизированному монтажу, возможность использования существующих методов пайки;

Высокую термостойкость в условиях длительной тепловой нагрузки в процессе пайки
возможность современного корпусирования.

В настоящее время на рынке ЭК имеется большой
выбор элементов в различных корпусах для поверхно-
стного монтажа. Причем, разработка корпусов для
ЭК приблизилась к такой стадии, кoгда её poль —
становится столь же важной, как и разработка самих компо-
нентов. Основными компонентами для поверхностно-
го монтажа являются большие (БИС) и сверх-большие
(СБИС) интегральные схемы (ИС) и полупроводнико-
вые приборы в малогабаритных корпусах. Существует
большой выбор корпусов для поверхностного
монтажа. Необходимо отметить, что размеры кристалла ИС
продолжают увеличиваться, а размеры элементов в
нем – уменьшаются, поэтому специалисты, занимаю-
щееся вопросами сборки компонентов, столкнулись с
двойной проблемой. Во-первых, необходимо собир-
ать физически большой кристалл,высокая плотность
элементов в котором требует увеличения числа кон
тактных площадок для соединения его с внутренними
выводами корпуса. Во вторых, увеличение размеров и
плотности упаковки элементов в кристаллах БИС и
СБИС требует увеличения числа выводов в корпусах,
в которые они монтируются, что может приводить к
возрастанию их размеров, веса, ухудшению электри-
ческих характеристик и быстродействия микроприбо-
ров.

Поэтому техника корпусирования БИС и СБИС –
динамичная, бурно развивающаяся область микро-
электроники, при этом основной тенденцией является
стремление к минимизации объемов корпуса при —

одновременном росте числа выводов с уменьшением расстояния между ними.

Корпуса классифицируют в зависимости
от конструктивных особенностей и геометрических
pазмеров. Классификация корпусов для поверхност
ного монтажа приведена на рисунке 2.40. B соответствии с
этой классификацией в таблице 2.13 приведены основ-
ные данные о наиболее распространенных и перспективных типах корпусов.

Следует отметить, что некото-
рые изготовители в справочных данных в качестве ос-
новного приводят фирменное обозначение корпуса, а
в комментариях дают сведения о соответствии фирменного
обозначения общепринятому. Кроме того,
часто перед общепринятыми обозначениями корпу-
сов ставят букву, определяющую материал, из которо-
го сделан корпус: P — пластик, С — керамика, М — ме-
таллокерамика.

Рисунок 2.40 — Классификация корпусов микросхем, предназначенных для

поверхностного монтажа

Корпуса с выводами по периметру входят в состав
семейства SOP, SOJ, QFJ, QFP, DIP. Наиболее рас-
пространены корпуса SOP (число выводов от 8 до 100)
и QFP (число выводов от 20 до 304). В корпусах
с большим количеством выводов выпускают цифровые мик-
росхемы средней и высокой степени интеграции, а
корпусах с малым количеством выводов — цифровые
микросхемы малой и средней степени интеграции,
аналоговые микросхемы, диоды и транзисторы.

Микросхемы в исполнении TCP имеют ленточные
выводы из тонкой медной или алюминиевой фольги на
полимерной пленке, прикрепленные к кристаллу пай-
кой или ультразвуковой сваркой. После установки на
плату микросхемы должны герметизироваться в соста-
ве платы. Они поставляются на ленте-носителе и хо-
рошо приспособлены для автоматизированного кон-
троля параметров и монтажа. Этот тип микросхем
применяют в недорогой, не подлежащей ремонту —
аппаратуре с большими объемами выпуска.

Для микросхем высокой и сверхвысокой степени
интеграции в последние годы получили широкое
распространение корпуса BGA, поскольку они от-
носительно недороги и пpи большом количестве вы-
водов занимают мало место на плате. Согласно тех-
нологии ВGА бескорпусные кристаллы (один или не-
сколько) монтируют на поверхность печатной мик-
роплаты и герметизируют полимерным компаундом.

Микросхемы в корпусах BGA паяются на платы с помощью выводов, выполненных в виде массива шариков припоя на контактных площадках микроплаты. Дальнейшее развитие технологии корпусов BGA привело к созданию корпусов типа CSP, в которых отсутствует печатная микроплата, а шариковые выводы размещены непосредственно на контактных площадках в верхнем слое металлизации кристалла. После формирования шариковых выводов кристалл заливают тонким слоем пластмассы и монтируют на печатной плате так же,как корпус BGA. В случае необходимости на верхней стороне микросхемы устанавливают теплоотвод. При эффективности использования площади платы эта технология практически не уступает технологии flip-chip (монтаж на плату перевернутых бескорпусных кристаллов и герметизация их полимерным компаундом в составе платы). Основным тормозом в массовом выпуске микросхем в корпусах типа CSP и широком применении технологии flip-chip является отсутствие надёжного и не
доpогого способа уменьшения напряжений в системе
кристалл-печатная плата, возникающих из-за разли
чия температурных коэффициентов pасширения полупроводникового кристалла (2×10 -6 /°С), меди (16,6×10 -6 /°С)
и диэлектрика типа FR-4 ((15…19)×10 -6 /°С), из которо-
го делают печатные платы.

Поэтому основные усилия
разработчиков направлены на повышение надежнос-
ти таких микросхем путем создания между кристаллом
и платой недорогой переходной структуры, гасящей
температурные напряжения.

Таблица 2.13 — Корпуса микросхем для поверхностного монтажа

Корпус Краткое описание Шаг Выво дов, мм Внешний вид корпуса
Тип Полное название
1. Kopпycа для микросхем низкой, средней и высокой степени интеграции 1.1.С выводами вдоль двух боковых сторон корпуса 1.1.1. Со стандартным шагом расположения выводов
SO, SOP, SOL, SOIC Small Outline Package, Small Outline Integrated Circuit Выводы в виде крыла чайки или в виде буквы «L» 1.27
SOJ Small Outline J-Lead Package Выводы в виде буквы «J» 1.27
TSOP, вариант 2 Thin Small Outline Package Корпус c уменьшенной высотой над платой (не более 1.27 мм), выводы расположены вдоль длинной стороны корпуса 1.27
1.1.2. С уменьшенным шагом расположения выводов
TSOP, вариант 1 Тhin Small Outline Package Корпус с уменьшенной высотой над платой (не более 1.27 мм), выводы расположены вдоль короткой стороны корпуса 0.5
SSOP, SSOL Shrink Small Outline Package Kopпyc SOP c уменьшенным шагом расположения выводов 1.00 0. 80 0.65 0.50
TSSOP Thin Shrink Small Outline Package Корпус SSOP с уменьшенной высотой над платой (не более 1.27 мм). Стандартизован EIAJ, JEDEC 0.65 0.50
TVSOP Thin Very Small Outline Package Миниатюрный корпус SOP 0,10
uSOIC microSOIC Миниатюрный корпус SOIC 0.65
1.2. С выводами вдоль четырех сторон корпуса 1.2.1. Со стандартными размерами корпуса
QFP Quad Flat Package Выводы в виде крыла чайки вдоль четырех сторон корпуса 1.00 0.80 0. 65
PLCC Plastic Leaded Chip Carrier Кристаллоноситель с выводами в виде буквы Г. Стандартизован EIAJ, JEDEC 1.27 0.636

Продолжение таблицы 2.13 — Корпуса микросхем для поверхностного монтажа

Корпус Краткое описание Шаг Выво дов, мм Внешний вид корпуса
Тип Полное название
1.2.2. С уменьшенными размерами корпуса
LQFP, NQFP Low Profile (Thin) Quad Flat Package Корпус OFP с уменьшенной высотой над платой (не более 1.27 мм) 0.80 0.65
MQFP Metric Thin Quad Flat Package Корпус QFP с метрическим шагом выводов и уменьшенной высотой над платой 0.60
FQFP Fine Pitch Quad Flat Package Корпус OFP с малым шагом расположения выводов. Стандартизован EIAJ 0.40
1.3. С матрицей выводов на нижней поверхности корпуса
BGA Ball Grid Array Микросхема или многокристальный модуль на двухслойной печатной микроплате, снабжен массивом шариковых выводов 1.27, 1.00
CPS Chip Scale Package Корпус с размерами, незначительно превышающими размеры кристалла. Снабжен массивом шариковых выводов 1.00, 0.50
2. Корпус а для транзисторов и микросхем низкой степени интеграции 2.1. С низкой рассеиваемой мощностью
SOT-23 Small Outline Transistor Для диодов, транзисторов, микросхем с малым количеством выводов. SOT-23 выпускается также в варианте исполнения с пятью (SOT-5, SOT-23-5) или шестью (SOT-6,S0T-23-6) выводами 0.95
SOT-143 1.90
SOT-323 0.65
SOT-363 0.65
2.2. Со средней рассеиваемой мощностью
SOT-223 Small Outline Transistor Для транзисторов и микросхем с малым количеством выводов (DC/ DC преобразователей, стабилизаторов напряжения) 1.95
DPAC D-package 4.80
2.3. С высокой рассеиваемой мощностью
D 2 PAC D-package Для транзисторов и микросхем с повышенной рассеиваемой мощностью, высокий напряжением питания Как правило это приборы с импульсными токами до 100 А 2.54/ 5.08
D 3 PAC D-package 10.9

Для микросхем, имеющих регулярную структуру,
небольшую потребляемую мощность и малое количе
ство выводов (типичные представители подобных микросхем
– микросхемы памяти) начали развивать тех-
нологию изготовления многоуровневых («этажероч-
ных») модулей 3DМ. Согласно одному из вариантов
этой технологии каждый уровень выполняется анало
гично микросхеме BGA, кристалл устанавливается —
методом flip-chip и заливается слоем полимерного ком-
паунда. Затем микроплаты разных уровней собирают
в столбик, шариковые выводы припаивают для созда-
ния вертикальных соединительных проводников, платы
столбика скрепляют полимерным компаундом. Полу-
ченный модуль монтируют на плату с помощью —
шариковых выводов.

Корпуса семейства SOT первоначально были раз-
работаны для транзисторов и имели три вывода (за ис-
ключением SOT-363, который имел 6 выводов). Одна-
ко впоследствии изготовители начали применять эти
корпуса для микросхем, при необходимости увеличи-
вая количество выводов с сохранением прежних габа
ритов. В частности, выпускаются микросхемы в —
корпусах SOT-23 с пятью выводами и D2PAK – с четырьмя.

С точки зрения конструктора, разнообразие типо-
размеров корпусов незначительно усложняет процесс разработки печатных плат, если их размеры заданы в одной измерительной системе. И наоборот, процесс разработки усложняется, если на плате для части корпусов размеры заданы в дюймах, а для остальных – в
миллиметрах. Поэтому разработчику принципиальной электри
ческой схемы следует стремиться к выбору микросхем, размеры которых заданы в единой измерительной системе.

Тонкопленочные чип-резисторы .

В общем количестве электронных компонентов, используемых при производстве аппаратуры, пассивные составля
ют 70%, причем не менее 50 % из них приходится на резисторы.

Конструкция чип-резисторов показана на рисунке 2.41.

Основанием чип-резисторов служит керамическая
подложка на основе оксида алюминия, на которую наносится резистивный слой. Высокая точность вели
чины сопротивления достигается лазерной подгонкой. Электрический кон
такт с печатной платой обеспечивается трехслойной поверхностью, состоящей из внутреннего слоя выводов палладий- серебро, барьерного
слоя никеля и внешнего слоя выводов олово — свинец или олово. Вв
едение в конструкцию дополнительного
слоя никеля при пайке предотвращает миграцию се
ребра из внутреннего выводного слоя в припой.

На
защитное покрытие из боросиликатного стекла наносится несмываемая кодовая маркировка номинала. Благодаря высокому качеству и стабильности параметров, чип-резисторы являются оптимальным выбором для любой аппаратуры.

Основные характеристики тонкопленочных чип-резисторов приведены в таблице 2.14.

Таблица 2.14 — Характеристики чип-резисторов

Таблица 2.15 — Характеристики чип-конденсаторов

Керамические чип-конденсаторы .

Конденсаторы были первыми ЭК, которые стали выпускать в исполнении, рассчитанном для монтажа на поверхность. Это самый распространенный вид конденсаторов в настоящее время. При малых габаритах они обеспечивают реализацию широкой шкалы ёмкости и заданного температурного коэффициента. Простота технологии изготовления делает керамические конденсаторы массовых серий самым дешевым видом этих компонентов. Конструкция керамического чип-конденсатора приведена на рисунке 2.42.

Рисунок 2.41 — Конструкция чип-резистора

Рисунок 2.42 — Конструкция чип-конденсатора

Такие чип-конденсаторы обладают высокой механической прочностью и выдерживают высокие механические нагрузки, возникающие при изготовлении и эксплуатации. Электрический контакт с печатной платой обеспечивается так же, как и при монтаже чип-резисторов.

Основные преимущества керамических чип-конденсаторов:

Трехслойные контактные поверхности с барьерным слоем никеля;

Высококачественные диэлектрические материалы;

Стойкость ко всем видам пайки.

Основные характеристики керамических конденсаторов приведены в таблице 2.15.

Характеристики диэлектрических материалов:

NPO/SOG – ультрастабильная керамика. Имеет очень малые диэлектрические потери при изменениях температуры и близкие к нулю эффекты старения. Обладает низкой диэлектрической проницаемостью;

X7R – высокая диэлектрическая проницаемость. Средние значения потерь при изменениях температуры и эффектов старения;

Z54, Y5V – высокая диэлектрическая проницаемость.

Необходимо отметить, что развитие элементной базы для поверхностного монтажа характеризуется следующими особенностями:

Дальнейшим повышением степени интеграции полупроводниковых БИС, СБИС с расширением их функциональных возможностей;

Возрастающим разнообразием корпусов для поверхностного монтажа активных и пассивных компонентов;

Появлением для БИС и СБИС корпусов с особо малыми расстояниями между выводами или контактами, число которых возрастает, а также конструкций с использованием технологии flip-chip, безвыводных корпусов и с выводами на нижней стороне корпуса;

Разработкой и выпуском конструкций широкого ряда дискретных элементов (индуктивностей, трансформаторов, переключателей) для монтажа на поверхность КП.

Коммутационные платы

Переход от выводного монтажа к технологии поверхностного монтажа обеспечил уменьшение размеров КП. При этом размеры плат определяются характеристиками материалов, из которых они изготавливаются, так как в процессе пайки электронных компонентов одновременно происходит нагрев плат. Кроме того, необходимость уменьшения размеров плат связана с технологической оснасткой и оборудованием для монтажа и пайки.

Конструкция КП для поверхностного монтажа
должна обеспечивать повышенную плотность монта-
жа (в среднем более восьми компонентов на 1 см 2),
ширину проводящих дорожек и расстояний между ним-
и менее 0,2 мм, минимальную длину межсоединений,
отсутствие навесных перемычек, монтаж компонентов
с двух сторон, возможность более интенсивного теп-
лоотвода, полную автоматизацию сборки и монтажа компонентов, а также контроль качества сборки.

Применение современных компонентов для по-
верхностного монтажа требует особых подходов к
проектированию КП при выборе конфигурации и раз-
меров контактных площадок и соединительных про-
водников, а также допусков на изготовление КП. Следует подчеркнуть, что изготовители в документации на
пассивные и активные электронные компоненты обыч-
но приводят рекомендации по размерам и расположению контактных площадок, а также способу пайки с указанием температурно-временной характеристики процесса.

Для изготовления КП применяют различные органические и неорганические материалы. При этом совершенствуются известные технологические процес-
сы а также появляются новые, позволяющие —
существенно снизить производственные затраты и улучшить
качество КП: лазерное экспонирование рисунка
на шаблонах или самих КП, покрытых резистом; при-
менение неудаляемых резистов, сухих (например, тер-
момагнитных) резистов, способствующих повышению
производительности при получении рисунка
металлизации на КП.

При создании коммутационных проводников пре-
обладают аддитивная и полуаддитвная технологии, о
днако многие зарубежные фирмы используют и субт-
рактивную технологию, которая, как известно, требу-
ет применения фольгированных диэлектрических мате-
риалов, позволяющих получить минимальную ширину
дорожек 50-100 мкм.

Изготовление КП с повышенной плотностью монта-
жа поставило ряд задач, главными из которых являются:


согласование по температурному коэффициенту
расширения платы и монтируемых на ней электрон-
ных компонентов;

Обеспечение теплоотвода при повышенной рассеи-
ваемой мощности;

Оптимизации геометрии элементов коммутации с уче-
том специфики электронных компонентов, а также
свойств применяемых припоев, защитных и клеевых
материалов.

Развитие техники поверхностного монтажа способствовало
появлению новых технических пластмасс, керамических и раз-
личных композиционных материалов, необходимых для опреде-
ленных типов микросборок. При изготовлении простых и отно-
сительно дешевых сборок полностью пригодны традиционные
материалы, такие как слоистые бумажнофенольные и стеклоэпо-
ксидные материалы.

Но поистине вызовом,который бросает технология поверхностного монтажа компонентов (ТПМК) изготовителям
коммутационных плат, являются требования к точности их изготовления:
в ТПМК на всех этапах технологического цикла до
пуски для плат должны составлять от 0,001 до 0,002 дюйма
(0,0254 — 0,0508 мм).

В таблице 2.16 указаны факторы, обусловленные особенностями
ТПМК применительно к изготовлению коммутационных плат.
Они тесно связаны с компромиссом между плотностью монтажа
и эффективным использованием коммутационной платы, а имен-
но: более высокая степень использования плат может служить
как целям уменьшения размеров платы с тем же самым коли-
чеством коммутационных слоев, так и целям повышения функ-
циональной сложности изделий при сохранении размеров плат с одновременным увеличением числа слоев. В обоих случаях в
технологию изготовления плат должны вноситься изменения:
миниатюризация отверстий и коммутационных дорожек, а также
увеличение количества слоев коммутации требуют повышения
точности технологических процессов.

К этому времени уже были разработаны и освоены некоторые компоненты (резисторы, конденсаторы), которые использовались при изгтовлении ГИС и МСБ. Однако ТМП ужесточила требования по устойчивости к воздействию климатических факторов, поскольку чип-резисторы и конденсаторы для ГИС и МСБ изготавливались в незащищённом исполнении для применения внутри корпусов ГИС.

В настоящее время разработана обширная номенклатура компонентов для ТМП, включающая резисторы, конденсаторы (в том числе переменные), катушки индуктивности, микротрансформаторы, реле, кварцевые резонаторы, диоды, транзисторы, микросхемы, микропереключатели и др. Данные компоненты имеют несколько разновидностей корпусов: безвыводные с облуженными торцами, с укороченными выводами типа крыла чайки или J-образными, цилиндрические корпуса с металлизированными торцами. Рассмотрим эти корпуса подробнее.

Чип-корпус — безвыводный корпус прямоугольной формы для про­стых пассивных компонентов типа резисторов, перемычек и конденса­торов (рисунок 2.1) .

Рисунок 2.1 — Корпуса простых чип-компонентов

Чип-резисторы и чип-конденсаторы изготавливаются по групповой технологии на подложках большого размера (обычно 60×48 мм), затем после скрайбирования подложка разламывается на отдельные части (английское слово chip означает осколок). После разламывания на тор­цы чип-компонента наносится многослойная металлизация (толстопле­ночный проводник — барьерный слой никеля — слой припоя) с трех или пяти сторон для каждого торца (последний вариант применяется для высоконадежных компонентов). При изготовлении чип-резисторов обычно применяется толстоплёночная технология. Типовая конструк­ция толстопленочного чип-резистора приведена на рисунке 2.2. Рези­стор состоит из керамического основания (подложка из А1 2 О 3), резистивного слоя (окись рутения), внутреннего контактного слоя (палла­дий-серебро), промежуточного барьерного слоя из никеля, внешнего контактного слоя (сплав олово-свинец). Тело резистора защищается по­крытием из боросиликатного стекла с нанесением несмываемой кодо­вой маркировки номинала.

Рисунок 2.2 — Конструкция толстопленочного чип-резистора

Маркировка резисторов состоит из трёх цифр для простых и четырёх цифр для высокоточных резисторов, причём последняя цифра означает количество нулей, которые необходимо дописать справа к номиналу в Ом. Например: 160-16 Ом, 472-4,7 кОм, 112-1,1 кОм, 106 — 10 МОм, 2741 — 2,74 кОм. Маркировка низкоомных резисторов содержит букву «R», например, 4R7 — 4,7 Ом, 54R9 — 54,9 Ом.

Чип-перемычки, сопротивление которых не должно превышать 0,05 Ом, имеют маркировку 000.

Маркировка конденсаторов обычно наносится на упаковочную тару. Условное обозначение ёмкости: первые две цифры указывают номинал в пикофарадах, третья цифра — количество добавляемых справа нулей. Например: 105 — 1 мкФ, 153 — 0,015 мкФ.

Электролитические конденсаторы, имеющие достаточно большую поверхность, могут содержать кодированное обозначение рабочего на­пряжения и величины емкости. Возможно несколько вариантов коди­ровки:

а) код содержит два или три знака (буквы или цифры). Буквы обо­значают напряжение и емкость, а цифра указывает множитель

Перед буквами может ставиться цифра, указывающая на диапазон рабочих напряжений:

б) код содержит четыре знака (буквы и цифры), обозначающие но­минальную емкость и рабочее напряжение. Первая буква обозначает напряжение, две последующие цифры — емкость в пФ, последняя цифра количество нулей. Например: Е475 — конденсатор емкостью 4,7 мкФ с рабочим напряжением до 25 В. Иногда емкость может указываться с использованием буквы ц: Е4ц7 — обозначение конденсатора, соответст­вующее вышеприведенному примеру.

В общем случае чип-компонент может быть охарактеризован разме­рами L (длина), В (ширина), Н (высота), D или / (ширина контактной площадки) как это показано на рисунке 2.3. Размеры чип-резисторов зависят от рассеиваемой мощности, а размеры чип-конденсаторов — от номинальной емкости и рабочего напряжения.

Форма и размеры корпусов стандартизованы международными и национальными стандартами (МЭК115, МЭК384). В этих стандартах используется система обозначения конструктива КМП в виде двух пар чисел, которые характеризуют длину и ширину корпуса в сотых долях дюйма (типоразмеры от 0101 (0,25×0,25 мм) до 2225 (5,7×6,3 мм). Сопоставительные размеры некоторых типоразмеров резисторов по сравнению со спичечной головкой на фоне сетки 1,27 мм приведены на рисунке 2.4.

Некоторые фирмы обозначения типоразмера корпуса приводят в мм: 1005 — (1,0×0,5) мм, что соответствует вышеприведенному обозначению корпуса 0402; 3216 — (3,2×1,6) мм — соответствует обозначению 1206.

Отечественной промышленностью выпускаются чип-резисторы об­щего применения Р1-12, прецизионные Р1-16, наборы резисторов HP1-29, чип-перемычки Р1-23 . Чип-перемычки используются для обеспече­ния переходов через проводники при разработке топологии. Выпуска­ются с габаритными размерами 3,2×1,6×0,6 мм (1206) и имеют сопротивление не более 0,05 Ом.

Чип-конденсаторы для монтажа на поверхность представлены мно­гослойными керамическими (К10-9М, К10-17-4в, К10-42, К10-43, К10-47, К10-50в, К10-56, К10-57, К10-60в, К10-69, К10-73-6в), танталовы­ми оксидно-полупроводниковыми (К53-25, К53-36, К53-37) и алюми­ниевыми оксидно-полупроводниковыми К53-40.

Корпус типа MELF (Metal Electrode Face Bonded) — цилиндрический корпус с вмонтированными электродами в виде металлизированных торцов (рисунок 2.5). Предназначен для диодов, резисторов, конденса­торов, катушек индуктивности. Диаметр корпуса находится в пределах от 1,25 мм до 2,2 мм, длина — от 2 до 5,9 мм.

MELF-корпус имеет низкую стоимость, однако монтаж его затруд­нён. Получил широкое распространение в Японии в начале развития ТМП. Примерами отечественных компонентов в подобных корпусах являются резисторы Pl-11, P1-30.

Малогабаритный диодный корпус SOD (Small Outline Diode) — пла­стмассовый корпус с двумя выводами типа «крыло чайки» (рисунок 2.6). Предназначен для диодов, светодиодов, варикапов. Наиболее рас­пространенным является корпус SOD-80, отечественным аналогом ко­торого является корпус КД-34 по ГОСТ 18472-88.

Рисунок 2.5 — Корпус типа MELF Рисунок 2.6 — Корпус типа SOD

Малогабаритный транзисторный корпус SOT (Small Outline Transis­tor) имеет от 3 до 6 выводов (рисунок 2.7).

Рисунок 2.7 — Корпуса типа SOT

Корпус имеет пластмассовую оболочку и укороченные выводы типа «крыла чайки». Помимо транзисторов, в него могут монтироваться дио­ды, варикапы, усилители. Является первым корпусом для поверхност­ного монтажа, программа разработки которого была реализована фир­мой Siemens более 25 лет назад. Наиболее распространённый корпус SOT-23 имеет размеры 2,9×1,3×1,1 мм.

Дальнейшим развитием корпусов данного типа являются корпуса SOT-89, SOT-143, S-mini, SS-mini. Последующие разработки характери­зуются уменьшением расстояния между выводами до величины 0,65 -0,5 мм, что позволило уменьшить габариты корпуса до размеров 1,6×1,6×0,75 мм. Отечественные корпуса подобного типа представлены корпусами КТ-46 (SOT-23), KT-47 (SOT-89), KT-48 (SOT-143). Ос­новные геометрические размеры корпусов показаны на рисунке 2.8.

SOT-23 (КТ-46)

SOT-89 (KT-47)

Рисунок 2.8 — Габаритные размеры корпусов типа SOT

Малогабаритные корпуса для микросхем могут быть объединены в несколько групп в зависимости от формы выводов (вывод в форме кры­ла чайки, J-образный), их расположением по двум или четырем сторо­нам корпуса, материала корпуса (пластмассовый или керамический):

— корпуса типа SOIC (Small Outline Integrated Circuit) u SOP (Small Outline Packages) с двусторонним расположением выводов в форме крыла чайки (рисунок 2.9а, 2.9.6). Шаг расположения выводов у этого типа корпусов 1,27 мм, количество выводов — от 6 до 42. Дальнейшим развитием корпусов подобного типа явилось создание корпуса SSOIC (Shrink Small Outline Integrated Circuit) с уменьшенным до 0,635 мм рас­стоянием между выводами при максимальном их количестве 64 (рису­нок 2.9в) и корпуса TSOP (Thin Small Outline Packages) с уменьшенной до 1,27 мм высотой корпуса (рисунок 2.8г) и уменьшенным до 0,3 — 0,4 мм расстоянием между выводами;

— корпуса типа SOJ (Small Outline with «J» leads) с двусторонним рас­положением выводов J-образной формы, загнутых под корпус (рисунок 2.10). Шаг расположения выводов — 1,27 мм, общее их количество — от 14 до 28.

Рисунок 2.9 — Разновидности корпусов микросхем с двусторонним расположением выводов в форме крыла чайки: а-корпус типа SOIC; б-корпус типа SOP; в — корпус типа SSOIC; г — корпус типа TSOP

Рисунок 2.10 — Корпус микросхемы с J-образными выводами: а — общий вид корпуса; б — конструкция выводов

— корпуса типа QFP (Quad Flat Pack) и SQFP (Shrink Quad Flat Pack), имеющие выводы в форме «крыла чайки», равномерно распределенные по четырем сторонам (рисунок 2.11 а). Существует также разновидность корпуса в форме прямоугольника — SQFP-R (рисунок 2.11 б). Шаг рас­положения выводов достаточно мал — всего 0,3 — 0,5 мм, что позволяет создавать корпуса с общим количеством выводов до 440;

Рисунок 2.11 — Разновидности корпусов микросхем с четырех­сторонним расположением выводов в форме крыла чайки: а — корпус типа QFP и SQFP; б-корпус типа SQFP-R

корпуса типа PLCC (Plastic Leaded Chip Carrier) — квадратный пла­стмассовый кристаллоноситель с J-выводами (рисунок 2.12а) и типа PLCC R (Plastic Leaded Chip Carrier Rectangular) — прямоугольный пла­стмассовый кристаллоноситель с J-выводами (рисунок 2.126). Корпуса подобного вида имеют значительный по современным меркам шаг рас­положения выводов — 1, 27 мм и в связи с этим большие геометрические размеры. Количество выводов квадратного корпуса — от 20 до 124, у прямоугольного — от 18 до 32;

Рисунок 2.12 — Корпус микросхемы с J-образными выводами

и четырехсторонним расположением выводов:

а-квадратный PLCC; б-прямоугольный PLCC-R

корпуса типа LCCC (Leadless Ceramic Chip Carrier) — безвыводный керамический кристаллоноситель (рисунок 2.13). На боковых поверхно­стях такого корпуса имеются спе­циальные металлизированные углубле­ния, расположенные с шагом 1,27 мм, которые служат для образования элек­трического соединения с контактными площадками платы при пайке узла дозированным припоем.

Рисунок 2.13- Корпус типа LCCC

Отечественным аналогом корпусов типа SOIC являются корпуса подтипа 43 по ГОСТ 17467-88. Габаритные чертежи и размеры этих корпусов приведены на рисунке 2.14 и в таблице 2.1.

Рисунок 2.14- Габаритные размеры корпусов подтипа 43

Таблица 2.1 — Габаритные размеры корпусов подтипа 43 в миллиметрах

Шифр типо­размера

Число выводов

Отечественным аналогом корпусов типа QFP являются корпуса под­типа 44 по ГОСТ 17467-88. Габаритные чертежи и размеры этих корпу­сов приведены на рисунке 2.15 и в таблице 2.2.

Мировая электронная промышленность около 90% всех ТМП ИС выпускает в пластмассовых корпусах и только 10% в керамических. Керамические корпуса обладают существенно более высокими эксплуа­тационными показателями. Так, температурный диапазон работы мик­росхем в керамических корпусах составляет от -55 до +125°С, а в пластмассовых — от -10 до +85°С. Однако керамические корпуса имеют большую массу и стоимость, поэтому они используются, как правило, в наиболее ответственных случаях.

Рисунок 2.15 — Габаритные размеры корпусов подтипа 44

Таблица 2.2 — Габаритные размеры корпусов подтипа 44

Шифр типоразмера

Число выводов

Нестандартные корпуса для компонентов неправильной формы, на­пример, переключателей, плавких предохранителей, индуктивностей, электролитических конденсаторов, переменных резисторов представле­ны на рисунке 2.16.

Рисунок 2.16- Нестандартные корпуса для КМП

Отечественной промышленностью выпускаются подстроечные рези­сторы в ТМП исполнении следующих типов: РП1-75, РП1-82, РП1-83, РП1-98 . Резисторы имеют диапазон сопротивлений от 10 Ом до 3,3 МОм, допускают мощность рассеяния 0,25 Вт. Габаритные раз­меры не превышают 4,5×4,5×3,5 мм.

В настоящее время по всему миру выпускается невероятное количество микросхем со всевозможными функциями. Насчитывается десятки тысяч различных микросхем от десятков производителей. Но очевидно, что требуется определенная стандартизация корпусов микросхем для того, чтобы разработчики могли удобно их применять для изготовления печатных плат, устанавливаемых в конечных электронных устройствах (телевизоры, магнитофоны, компьютеры и т. д.). Поэтому со временем сформировались формфакторы микросхем, под которые подстраиваются все мировые производители. Все их описать проблематично, да в этом и нет необходимости, поскольку некоторые из них предназначены для специфических задач, с которыми вы можете никогда не столкнуться.

Поэтому ниже приведены только самые распространенные и популярные из известных типов корпусов, которые вы можете встретить в магазинах и использовать в своих проектах.

Аббревиатура DIP расшифровывается как Dual In-line Package, что в переводе означает «пакет из двух линий» Данный тип имеет прямоугольную форму с двумя рядами контактов (ножек), направленных вниз по длинным сторонам корпуса.
Появился такой корпус в 1965 году и стал стандартом для одних из первых промышленно выпускаемых микросхем. Наибольшей популярностью в электронной промышленности пользовался в 1970-х и 1980-х годах. Корпус хорошо подходит для автоматизированной сборки и для установки в макетную плату.

Расстояние между осями соседних ножек по одной стороне — 2,54 мм, что соответствует шагу контактов макетной платы. Поэтому в конструкторах «Эвольвектор» используется именно этот тип микросхем. К настоящему моменту он считается устаревшим. В промышленности для изготовления печатных плат его постепенно вытеснили корпуса, предназначенные для поверхностного монтажа, — например типы PLCC и SOIC.

SOIC — расшифровывается как Small-Outline Integrated Circuit — интегральная схема с малым внешним контуром. Микросхемы с таким типом корпуса предназначены только для поверхностного монтажа на печатную плату и обладают действительно гораздо меньшими размерами по сравнению с типом корпуса DIP. Корпус такого типа имеет форму прямоугольника с двумя рядами выводов по длинным сторонам. Расстояние между ножками составляет 1,27 мм, высота корпуса в 3 раза меньше, чем у корпуса DIP и не превышает 1,75 мм. Микросхемы в корпусе SOIC занимают на 30-50 % меньше площади печатной платы, чем их аналоги в корпусе DIP, благодаря чему имеют широкое распространение и в настоящее время. На концах ножек есть загибы для удобного припаивания к поверхности платы. Установка такого типа микросхем в макетную плату для быстрого прототипирования устройств невозможна.

Обычно нумерация выводов одинаковых микросхем в корпусах DIP и SOIC совпадает. Для обозначения данного типа микросхем может использоваться не только сокращение SOIC, но и буквы SO с указанием после них числа выводов. Например, если микросхема имеет 16 выводов, то может обозначаться SOIC-16 или SO-16.

Корпуса могут иметь различную ширину. Самые распространенные размеры 0,15; 0,208 и 0,3 дюйма. Возможно использование данных микросхем в дополнительных наборах «Эвольвектор» для изучения пайки.

PLCC — расшифровывает как Plastic Leaded Chip Carrier -пластиковый освинцованный держатель чипа. Тип представляет собой квадратный корпус с расположенными по четырем сторонам контактами. Расстояние между контактами — 1,27 мм. Такой корпус предназначен для установки в специальную панель. Как и DIP корпус, в настоящее время распространен не очень широко. Может использоваться для производства микросхем флэш-памяти, используемых в качестве микросхем BIOS на системных платах в персональных компьютерах или других вычислительных системах.

ТО-92 — расшифровывается как Transistor Outline Package, Case Style 92 — как корпус для транзисторов с модификацией под цифровым обозначением 92. Как следует из названия, этот тип корпуса применяется для транзисторов. В нем изготавливаются маломощные транзисторы и другие электронные полупроводниковые компоненты с тремя выводами, в том числе и простые микросхемы, такие как интегральный стабилизатор напряжения. Корпус имеет малый размер, в чем можно убедиться, взяв в руки биполярный транзистор из конструктора «Эвольвектор» . Фактически корпус — это две склеенные между собой пластиковые половинки, между которыми заключен полупроводниковый компонент на пленке. С одной стороны корпуса есть плоская часть, на которую наносится маркировка.

Из корпуса выходят три вывода (ножки), расстояние между которыми может составлять от 1,15 до 1,39 мм. Компоненты, произведенные в таком корпусе, могут пропускать через себя ток до 5 А и напряжения до 600 В, но из-за малого размера и отсутствия теплорассеивающего элемента рассчитаны на незначительную мощность до 0,6 Вт.

Данный тип корпуса является родственником ТО-92. Отличие заключается в дизайне, ориентированном на компоненты и микросхемы более высокой мощности, чем предусматривает формфактор ТО-92. Корпус ТО-220 также предназначен для транзисторов, интегральных стабилизаторов напряжения или выпрямителей. Корпус ТО-220 рассчитан уже на мощность до 50 Вт благодаря наличию металлической теплоотводящей пластины (называется основанием), к которой припаивается кристалл полупроводникового прибора, выводы и герметичный пластиковый корпус.

Обычный «транзисторный» ТО-220 имеет три вывода, однако бывают и модификации с двумя, четырьмя, пятью и бОльшим количеством выводов. Расстояние между осями выводов составляет 2,54 мм. В основании имеется отверстие ∅4,2 мм для крепления дополнительных охлаждающих радиаторов. В силу улучшенных теплоотводящих свойств электронные компоненты в данном корпусе могут пропускать через себя токи до 70 А.

Аббревиатура TSSOP расшифровывается как Thin Scale Small-Outline Package — тонкий малогабаритный корпус. Такой тип корпуса используется исключительно для поверхностного монтажа на печатные платы. Обладает совсем маленькой толщиной, не более 1,1 мм, и очень маленьким расстоянием между выводами микросхемы — 0,65 мм.

Данные корпуса применяются для изготовления микросхем оперативной памяти персональных компьютеров, а также для чипов флеш-памяти. Несмотря на свою компактность, во многих современных устройствах вытеснены более компактными корпусами типа BGA по причине постоянного повышения требований к плотности расположения компонентов.

Аббревиатура QFP расшифровывается как Quad Flat Package — квадратный плоский корпус. Класс корпусов микросхем QFP представляет собой семейство корпусов, имеющих планарные выводы, которые равномерно расположены по всем четырём сторонам. Микросхемы в таких корпусах предназначены только для поверхностного монтажа. Это самый популярный на сегодняшний день тип корпуса для производства различных чипсетов, микроконтроллеров и процессоров. В этом вы сможете убедиться, когда перейдете ко 2-му и 3-му уровню конструкторов «Эвольвектор» . Контроллеры и одноплатные компьютеры указанных конструкторов оснащены процессорами и микроконтроллерами как раз в таких корпусах.

У класса QFP существует множество подклассов:

. BQFP : от англ. Bumpered Quad Flat Package
. CQFP : от англ. Ceramic Quad Flat Package
. HQFP : от англ. Heat sinked Quad Flat Package
. LQFP : от англ. Low Profile Quad Flat Package
. SQFP : от англ. Small Quad Flat Package
. TQFP : от англ. Thin Quad Flat Package
. VQFP : от англ. Very small Quad Flat Package

Но независимо от подкласса принцип «квадратности» и равномерного распределения контактов сохраняется. Отличаются разновидности только материалом, способностью к теплоотведению и конфигурацией корпуса, а также размерами и расстоянием между выходами. Оно составляет от 0,4 до 1,0 мм. Количество выводов у микросхем в корпусе QFP обычно не превышает 200.

% PDF-1.4 % 575 0 объект > эндобдж xref 575 156 0000000016 00000 н. 0000003472 00000 н. 0000003567 00000 н. 0000004338 00000 п. 0000012742 00000 п. 0000012923 00000 п. 0000013104 00000 п. 0000013285 00000 п. 0000013314 00000 п. 0000013419 00000 п. 0000013460 00000 п. 0000013490 00000 п. 0000013520 00000 п. 0000013701 00000 п. 0000013731 00000 п. 0000013760 00000 п. 0000013870 00000 п. 0000013899 00000 п. 0000014006 00000 п. 0000014187 00000 п. 0000014217 00000 п. 0000014247 00000 п. 0000014276 00000 п. 0000014299 00000 п. 0000016366 00000 п. 0000016389 00000 п. 0000019137 00000 п. 0000019160 00000 п. 0000022024 00000 н. 0000022047 00000 н. 0000024804 00000 п. 0000024827 00000 п. 0000027270 00000 н. 0000027293 00000 п. 0000029526 00000 п. 0000029797 00000 п. 0000030890 00000 н. 0000030995 00000 п. 0000032216 00000 п. 0000032508 00000 п. 0000032712 00000 п. 0000032983 00000 п. 0000033088 00000 п. 0000033474 00000 п. 0000033668 00000 п. 0000034761 00000 п. 0000034961 00000 п. 0000035036 00000 п. 0000035132 00000 п. 0000035237 00000 п. 0000035523 00000 п. 0000035912 00000 п. 0000036209 00000 п. 0000036492 00000 п. 0000036515 00000 п. 0000039024 00000 н. 0000039047 00000 п. 0000041863 00000 п. 0000041942 00000 п. 0000042149 00000 п. 0000044827 00000 н. 0000086426 00000 н. 0000097241 00000 п. 0000134218 00000 н. 0000134643 00000 н. 0000135326 00000 н. 0000135514 00000 н. 0000135939 00000 н. 0000136622 00000 н. 0000136810 00000 н. 0000137235 00000 н. 0000137918 00000 н. 0000138106 00000 н. 0000138531 00000 н. 0000139214 00000 н. 0000139402 00000 н. 0000139827 00000 н. 0000140510 00000 п. 0000140698 00000 п. 0000141123 00000 н. 0000141806 00000 н. 0000141994 00000 н. 0000142419 00000 н. 0000143102 00000 п. 0000143290 00000 н. 0000143715 00000 н. 0000144398 00000 н. 0000144586 00000 н. 0000145011 00000 н. 0000145694 00000 п. 0000145882 00000 н. 0000146307 00000 н. 0000146990 00000 н. 0000147178 00000 н. 0000147603 00000 н. 0000148286 00000 н. 0000148474 00000 н. 0000148899 00000 н. 0000149582 00000 н. 0000149770 00000 н. 0000150195 00000 н. 0000150878 00000 н. 0000151066 00000 н. 0000151491 00000 н. 0000152174 00000 н. 0000152422 00000 н. 0000152847 00000 н. 0000153530 00000 н. 0000153789 00000 н. 0000154214 00000 н. 0000154897 00000 н. 0000155085 00000 н. 0000155510 00000 н. 0000156193 00000 н. 0000156381 00000 н. 0000156806 00000 н. 0000157489 00000 н. 0000157677 00000 н. 0000158102 00000 н. 0000158785 00000 н. 0000158973 00000 н. 0000159398 00000 н. 0000160081 00000 н. 0000160269 00000 н. 0000160694 00000 н. 0000161377 00000 н. 0000161565 00000 н. 0000161990 00000 н. 0000162673 00000 н. 0000162861 00000 н. 0000163286 00000 н. 0000163969 00000 н. 0000164157 00000 н. 0000164582 00000 н. 0000165265 00000 н. 0000165453 00000 н. 0000165878 00000 н. 0000166561 00000 н. 0000166749 00000 н. 0000167174 00000 н. 0000167857 00000 н. 0000168045 00000 н. 0000168470 00000 н. 0000169153 00000 н. 0000169341 00000 п. 0000169766 00000 н. 0000170449 00000 н. 0000170637 00000 н. 0000171062 00000 н. 0000171745 00000 н. 0000171993 00000 н. 0000172418 00000 н. 0000173101 00000 п. 0000173360 00000 н. 0000003718 00000 н. 0000004316 00000 н. трейлер ] >> startxref 0 %% EOF 576 0 объект > эндобдж 577 0 объект > / Кодировка> >> / DA (/ Helv 0 Tf 0 г) >> эндобдж 729 0 объект > транслировать Hb«a`kcd`8A8X8T, 800l2 [[x ~ WX85 Уут-М- / Р К.9к̛о =; WW Ё3O = Ǿ 6O? Lgpu7 ڱ u ‘; rke + Z] cA70`AR26vqqDX200fT83 (elAB` ف p A? \ K%: E? XX12leĘͰ (cgcbdaW- Q0, * L B \ `o0C3E`; ЂYYf @ 1U, 뀡 `0e? 8

SMD Components for SMT — Types of SMD Components Список

Компоненты

SMD или устройства для поверхностного монтажа являются электронными компонентами для SMT. Компоненты SMD для SMT не имеют выводов, как компоненты со сквозным отверстием.

Компоненты

SMD или электронные компоненты поверхностного монтажа для поверхностного монтажа не отличаются от компонентов со сквозным отверстием в том, что касается электрических функций.

Однако, поскольку они меньше по размеру, SMC (компоненты для поверхностного монтажа , ) обеспечивают лучшие электрические характеристики.

В настоящее время не все компоненты доступны для поверхностного монтажа для сборки печатной платы электроники; следовательно, все преимущества поверхностного монтажа на PCB недоступны, и мы, по существу, ограничены сборками для поверхностного монтажа, которые можно комбинировать. Использование компонентов со сквозными отверстиями, таких как BGA и матрица выводов ( PGA ) для высокопроизводительных процессоров и больших разъемов, в обозримом будущем сохранит отрасль в смешанном режиме сборки.

Наличие различных типов компонентов SMD

В то время как только несколько типов обычных корпусов DIP удовлетворяют всем требованиям к упаковке, мир корпусов для поверхностного монтажа намного сложнее.

Компоненты SMD: электронные компоненты для поверхностного монтажа для SMT

Имеется множество типов пакетов, а также конфигураций пакетов и выводов. Кроме того, требования к компонентам для поверхностного монтажа гораздо более высокие.SMD или SMC должны выдерживать более высокие температуры пайки и должны выбираться, размещаться и паяться более тщательно для достижения приемлемой производительности.

Существует множество компонентов, отвечающих некоторым электрическим требованиям, что вызывает серьезную проблему увеличения числа компонентов. Для некоторых компонентов существуют хорошие стандарты, а для других стандарты неадекватны или отсутствуют.

Некоторые электронные компоненты доступны со скидкой, а другие — по надбавке.Хотя технология поверхностного монтажа достигла зрелости, она постоянно развивается с появлением новых корпусов. Электронная промышленность с каждым днем ​​добивается прогресса в решении экономических, технических и стандартизационных проблем с компонентами для поверхностного монтажа . SMD доступны как в активных, так и в пассивных электронных компонентах .

Список наименований и идентификация пассивных компонентов SMD

Мир пассивного поверхностного монтажа несколько проще. Монолитные керамические конденсаторы , танталовые конденсаторы и толстопленочные резисторы образуют группу сердечников пассивного SMD . Формы обычно бывают прямоугольными и цилиндрическими. Масса деталей примерно в 10 раз меньше их сквозных аналогов.

Резисторы и конденсаторы для поверхностного монтажа поставляются в корпусах разного размера для удовлетворения потребностей различных приложений в электронной промышленности. Несмотря на тенденцию к уменьшению размеров корпусов, также доступны корпуса большего размера, если требования к емкости велики.Эти устройства / компоненты бывают как прямоугольной, так и трубчатой ​​( MELF : поверхность без вывода металлического электрода ).

Пассивные электронные компоненты для поверхностного монтажа

Дискретные резисторы для поверхностного монтажа (резистор SMD)

Существует два основных типа резисторов для поверхностного монтажа: толстопленочные и тонкопленочные.

Толстопленочные резисторы для поверхностного монтажа создаются путем экранирования резистивной пленки (паста на основе диоксида рутения или аналогичный материал ) на плоской поверхности подложки из оксида алюминия высокой чистоты, в отличие от нанесения резистивной пленки на круглый сердечник, как в осевых резисторах.Значение сопротивления получается путем изменения состава резистивной пасты перед растрированием и лазерной обрезки пленки после растрирования.

В тонкопленочных резисторах резистивный элемент на керамической подложке с защитным покрытием (, пассивация стекла, ) сверху и паяемыми выводами ( оловянно-свинцовый, ) по бокам. Концевые заделки имеют адгезионный слой (серебро , нанесенный в виде толстопленочной пасты ) на керамическую подложку и никелевый барьерный слой, за которым следует нанесение припоя погружением или гальваническое покрытие.Никелевый барьер очень важен для сохранения паяемости выводов, поскольку он предотвращает выщелачивание ( растворение ) серебряного или золотого электрода во время пайки SMD.

Резисторы

бывают номиналами 1/16, 1/10, 1/8 и ¼ Вт при сопротивлении от 1 Ом до 100 МОм, различных размеров и с различными допусками. Обычно используемые размеры: 0402, 0603, 0805, 1206 и 1210. Резистор для поверхностного монтажа имеет некоторую форму цветного резистивного слоя с защитным покрытием с одной стороны и обычно из белого основного материала с другой стороны.Таким образом, внешний вид позволяет легко отличить резисторы от конденсаторов.

Резистор поверхностного монтажа

Поверхность Крепление Резистор Сети

Сети резисторов для поверхностного монтажа или блоки R обычно используются в качестве замены серии дискретных резисторов. Это экономит недвижимость и время размещения.

Доступные в настоящее время стили основаны на популярной модели SOIC (Small Outline Integrated Circuits ), но размеры корпуса различаются.Обычно они имеют от 16 до 20 контактов с мощностью от ½ до 2 Вт на корпус.

Сети резисторов поверхностного монтажа

Керамические конденсаторы для поверхностного монтажа

Конденсаторы для поверхностного монтажа идеально подходят для высокочастотных схем, поскольку они не имеют выводов и могут быть размещены под корпусом на противоположной стороне печатной платы. Наиболее распространенная упаковка для керамических конденсаторов — это 8-миллиметровая лента и катушка.

Конденсаторы для поверхностного монтажа используются как для развязки, так и для регулирования частоты. Многослойные монолитные керамические конденсаторы имеют улучшенный объемный КПД. Они доступны с различными типами диэлектрика в соответствии с EIA RS-198n, а именно COG или NPO, X7R, Z5U и Y5V.

Конденсаторы

для поверхностного монтажа отличаются высокой надежностью и в больших объемах используются в автомобилях, находящихся под капотом, военном оборудовании и в аэрокосмической отрасли.

Керамический конденсатор для поверхностного монтажа

Поверхность Крепление Тантал Конденсаторы

Для конденсаторов поверхностного монтажа диэлектрик может быть керамическим или танталовым.

Танталовые конденсаторы для поверхностного монтажа обеспечивают очень высокий объемный КПД или высокое произведение емкости-напряжения на единицу объема и высокую надежность.

Обернутые свинцовые конденсаторы, обычно называемые пластиковыми танталовыми конденсаторами, имеют выводы вместо выводов и скошенную верхнюю часть в качестве индикатора полярности. При использовании литых пластиковых танталовых конденсаторов не возникает проблем с пайкой или размещением. Они доступны в двух размерах корпуса — стандартном и расширенном.

Величина емкости танталовых конденсаторов варьируется от 0,1 до 100 мкФ и от 4 до 50 В постоянного тока в корпусах разных размеров. Они также могут быть изготовлены на заказ в соответствии с требованиями приложения. Танталовые конденсаторы выпускаются с указанными значениями емкости или без них, в большом количестве, в вафельных упаковках, на ленте и катушке.

Танталовые конденсаторы для поверхностного монтажа

Трубчатые пассивные компоненты SMD для поверхностного монтажа

Цилиндрические устройства, известные как безвыводные поверхности с металлическими электродами (MELF), используются для резисторов, перемычек, керамических и танталовых конденсаторов и диодов.Они имеют цилиндрическую форму и имеют металлические концевые заглушки для пайки.

Поскольку MELF имеют цилиндрическую форму, резисторы не нужно размещать вместе с резистивными элементами на удалении от поверхности платы, как в случае с прямоугольными резисторами. MELF дешевле. Подобно обычным осевым устройствам, MELF имеют цветовую кодировку значений. MELF-диоды обозначаются как MLL 41 и MLL 34. MELF-резисторы обозначаются как 0805, 1206, 1406 и 2309.

Трубчатые пассивные компоненты SMD

Список и идентификация активных компонентов SMD

Накладной монтаж предлагает больше типов активных и пассивных корпусов, чем технология сквозного монтажа.

Вот все различные категории пакетов активных компонентов для поверхностного монтажа:

Бессвинцовые держатели керамических чипов (LCCC)

Как видно из названия, у безвыводных держателей микросхем нет выводов. Вместо этого они имеют позолоченные наконечники в форме канавок, известные как зубцы, которые обеспечивают более короткие пути прохождения сигнала, позволяющие более высокие рабочие частоты. LCCC можно разделить на разные семейства в зависимости от шага упаковки. Самый распространенный — 50 мил (1.27 мм) семейство. Остальные — это 40, 25 и 20 миллионов семей.

Держатель для безвыводных керамических чипов (LCCC)

Керамические держатели для чипов с выводами (CLCC) (с предварительным и постэтилированным свинцом)

Керамические держатели с свинцом доступны как с предварительным, так и с постэтилированным свинцом. Чиподержатели с предварительным свинцованием имеют выводы из медного сплава или ковара, прикрепленные производителем. В держателях микросхем с выводами пользователь прикрепляет выводы к зубцам безвыводных керамических держателей микросхем.

При использовании корпусов с выводами из керамики их размеры, как правило, такие же, как и у пластиковых держателей микросхем с выводами.

Держатель чипов с керамическими выводами (CLCC)

Активные компоненты SMT (пластиковые пакеты)

Как обсуждалось выше, керамические корпуса дороги и используются в основном в военных целях. Пластиковые пакеты SMD, с другой стороны, являются наиболее широко используемыми пакетами для невоенных приложений, где герметичность не требуется. Керамические корпуса имеют трещины в паяных швах из-за несоответствия КТР корпуса и подложки, но пластиковые корпуса также не безупречны.

Вот все активные компоненты SMD (пластиковые пакеты):

Малые контурные транзисторы (SOT)

Малые контурные транзисторы

являются одними из предшественников активных устройств для поверхностного монтажа. Это устройства с тремя и четырьмя выводами. SOT с тремя отведениями обозначены как SOT 23 (EIA TO 236) и SOT 89 (EIA TO 243). Устройство с четырьмя выводами известно как SOT 143 (EIA TO 253).

Эти корпуса обычно используются для диодов и транзисторов. Корпуса SOT 23 и SOT 89 стали почти универсальными для поверхностного монтажа небольших транзисторов.Несмотря на то, что использование сложных интегральных схем с большим количеством выводов становится широко распространенным, спрос на различные типы SOT и SOD продолжает расти.

Малые контурные транзисторы (SOT)

Малая схема интегральной схемы (SOIC и SOP)

Интегральная схема небольшого размера (SOIC или SO) в основном представляет собой термоусадочный корпус с выводами на центрах 0,050 дюйма. Он используется для размещения более крупных интегральных схем, чем это возможно в корпусах SOT. В некоторых случаях SOIC используются для размещения нескольких SOT.

SOIC содержит выводы с двух сторон, которые сформированы наружу в так называемом выводе крыла чайки. С SOIC необходимо обращаться осторожно, чтобы не допустить повреждения свинцом. SOIC бывают двух разных размеров корпуса: 150 мил 300 мил. Ширина корпуса с менее чем 16 выводами составляет 150 мил; для более чем 16 выводов используется ширина 300 мил. Пакеты с 16 выводами имеют обе ширины корпуса.

Малая схема интегральной схемы (SOIC и SOP)

Пластиковые держатели для чипов с выводами (PLCC)

Пластиковый носитель микросхемы с выводами (PLCC) — более дешевая версия керамического держателя микросхемы.Выводы в PLCC обеспечивают податливость, необходимую для восприятия напряжения паяного соединения и, таким образом, предотвращения растрескивания паяного соединения. PLCC с большим соотношением матрицы к корпусу могут быть подвержены растрескиванию упаковки из-за поглощения влаги. Они нуждаются в правильном обращении.

Пластиковые держатели для чипов с выводами (PLCC)

Small Outline J Packages (SOJ)

Пакеты SOJ имеют J-образные выводы, как и PLCC, но имеют контакты только с двух сторон. Этот пакет представляет собой гибрид SOIC и PLCC и сочетает в себе преимущества управления PLCC и компактность SOIC.SOJ обычно используются для DRAMS с высокой плотностью (1, 4 и 16 МБ).

Small Outline J Packages (SOJ)

SMD-пакеты с мелким шагом (QFP, SQFP)

Корпуса SMD

с очень мелким шагом и большим количеством выводов называются корпусами с мелким шагом. Квадратная плоская упаковка (QFP) и термоусадочная четырехканальная плоская упаковка (SQFP) являются примерами упаковки с мелким шагом. Пакеты с мелким шагом имеют более тонкие выводы и требуют более тонкого рисунка контакта.

SMD-пакеты с мелким шагом (QFP, SQFP)

Компоненты SMD для шариковой решетки (BGA)

BGA или Ball Grid Array — это корпус массива, подобный PGA (матричный массив выводов), но без выводов.

Существуют различные типы BGA, но основные категории — это керамические и пластиковые BGA. Керамические BGA называются CBGA (Ceramic Ball Grid Array) и CCGA (Ceramic Column Grid Array), а пластиковые BGA упоминаются как PBGA. Существует еще одна категория BGA, известная как ленточный BGA (TBGA). Шаг шариков стандартизирован и составляет 1,0, 1,27 и 1,5 мм. (Шаг 40, 50 и 60 мил). Размеры корпуса BGA варьируются от 7 до 50 мм, а количество выводов — от 16 до 2400. Наиболее распространенное количество выводов BGA находится в диапазоне от 200 до 500 выводов.

BGA очень хороши для самовыравнивания во время оплавления, даже если они смещены на 50% (CCGA и TBGA не выравниваются самостоятельно, в отличие от PBGA и CBGA). Это одна из причин более высокого выхода BGA.

Шаровая сетка (BGA)

Видео: перечень и идентификация типов SMD-компонентов

Статьи по теме:

Наименьшее, до смехотворного, самое маленькое до смехотворного,…

Генеральный директор Additude Innovation
Если технологии не решают проблему … нам нужно больше технологий!

Несколько лет назад Murata, Taiyo Yuden и ROHM, среди прочих, представили следующий шаг вниз в размерах пассивных компонентов.Они оба представили размер компонента 008004 (0201 м), что является шагом вниз по сравнению с наименьшим на сегодняшний день номером 01005 (0402 м).

Сейчас они появляются повсюду в использовании. Очень немногие службы EMS могут их смонтировать, а некоторые не умеют делать это с энтузиазмом … ремонт — тоже кошмар.

Я подумал, что нам следует взглянуть на текущее состояние малых пассивов.

Действительно запутанная схема именования

Базовая схема именования пассивных элементов — это размер по длине, за которым следует ширина.Вначале это были размеры в десятичной части дюйма. Пассив под названием 0805 имеет размер 0,08 дюйма x 0,05 дюйма. 008004 тогда составляет 0,008 дюйма x 0,004 дюйма.

Постепенно были введены метрические размеры. Как обычно, метрику освоили не все, а некоторые никогда.

С более крупными компонентами, такими как 0805, показатель 2012 года не был проблемой.

Физический размер

Имперское наименование

Название в метрической системе

6.3 мм x 3,2 мм (0,25 дюйма x 0,12 дюйма)

2512

6332

5,0 мм x 2,5 мм (0,20 дюйма x 0,10 дюйма)

2010

5025

4,5 мм x 3,2 мм (0,18 дюйма x 0,12 дюйма)

1812

4532

3.2 мм x 2,5 мм (0,125 дюйма x 0,10 дюйма)

1210

3225

3,2 мм x 1,6 мм (0,125 дюйма x 0,06 дюйма)

1206

3216

2,0 мм x 1,2 мм (0,08 дюйма x 0,05 дюйма)

0805

2012


Однако когда мы дошли до крошечных деталей, это стало серьезно сбивать с толку.

Физический размер

Имперское наименование

Название в метрической системе

1,6 мм x 0,8 мм (0,06 дюйма x 0,03 дюйма)

0603

1608

1.0 мм x 0,5 мм (0,04 дюйма x 0,02 дюйма)

0402

1005

0,6 мм x 0,3 мм (0,024 дюйма x 0,012 дюйма)

0201

0603

0,4 мм x 0,2 мм (0.016 ”x 0,008”)

01005

0402

0,3 мм x 0,15 мм (0,012 дюйма x 0,006 дюйма)

03015

0,2 мм x 0,1 мм (0,008 дюйма x 0,004 дюйма)

008004

0201


Как видите, 0603, 0402 и 0201 доступны как в метрической, так и в британской системе мер.Чтобы исправить это, метрика часто называется 0603 м, 0402 м и 0201 м или 0603 мм, 0402 мм и 0201 мм.

Конденсаторы

Конденсаторы

доступны от Murata и Taiyo Yuden размером 0201 м (008004), а также 0402 м (01005).

Катушки индуктивности

Катушки индуктивности

также доступны от Murata и Taiyo Yuden размером 0201 м (008004), а также 0402 м (01005). Катушки индуктивности с проволочной обмоткой доступны в размерах 0603 м (0201)… опять же с проволочной обмоткой, настоящие индукторы с намотанной проволокой вокруг сердечника, равного 0.6 x 0,3 мм

Резисторы

Резисторы, кажется, немного сложнее. Однако у ROHM есть готовый резистор, способный выдерживать 20 мВт, размером 03015 м.

Машинный монтаж

Сегодня большинство EMS с опытом могут монтировать 0603m (0201). Вам нужно обратить внимание на используемую пасту, отверстия в трафарете, рисунки площадок и другие связанные с печатной платой, но опытный EMS может это сделать. Тем не менее, проверьте. Многие скажут, что могут, потому что их оборудование должно с этим справиться.Как и во всем остальном, когда вы достигаете уровня искусства, опыт действительно побеждает техническое описание оборудования.

Используется меньший раз, и оборудование существует. Например, Apple уже использовала 01005 в iPhone 4s, а я сам использовал 01005 на FPC, когда это действительно было необходимо.

Ручная пайка

Когда я начал работать в отрасли в начале 1990-х в возрасте 23 лет, я использовал стандартную деталь 2012 года (0805). Уже тогда подумал, нельзя будет вручную паять, но все получилось.Сегодня для 49-летнего человека с плохим зрением это детская игра. Потом у нас был 1608 (0603), и это, конечно, было невозможно, но сработало. Затем 1005 (0402) и 0603m (0201). 1005 (0402) и 0603м (0201) нужно делать под микроскопом, а 0603м (0201) желательно паяльником-пинцетом. Однако 0402м (01005) невозможно … или?

Что означает устройство для поверхностного монтажа (SMD)?

Устройство поверхностного монтажа (SMD) — это электронное устройство, компоненты которого размещаются или монтируются на поверхности печатной платы (PCB).Этот метод производства электронных плат основан на технологии поверхностного монтажа (SMT), которая в значительной степени заменила технологию сквозных отверстий (THT), особенно в устройствах, которые должны быть небольшими или плоскими. По сравнению с последним, SMT позволяет при необходимости использовать обе стороны печатной платы.

Вот обзор распространенных SMD (устройств для поверхностного монтажа).

Резисторы SMD
Резисторы SMD бывают нескольких возможных размеров корпуса. Каждый размер описывается как 4-значное число.Первые 2 цифры указывают длину; последние 2 указывают ширину (в 0,01 дюйма или 10 мил).

Например, три самых популярных размера:

  • 0603: означает 0,06 «x0,03», или 60×30 мил, или 1,6×0,8 мм.
  • 0805: означает 0,08 «x0,05», или 80×50 мил, или 2,0×1,25 мм.
  • 1206: означает 0,12 «x0,06», или 120×60 мил, или 3,2×1,6 мм.
Конденсаторы SMD
Конденсаторы от 1 пФ до 1 мкФ доступны в тех же размерах, от 0603 до 1206.
Самая популярная технология — керамика.
Танталовые конденсаторы SMD
Тантал — это предпочтительная технология для конденсаторов емкостью 1 мкФ и выше.
Размеры корпуса обозначаются буквой от «A» до «E».
Случай Д x Ш x В (мм)
А 3,2×1,6×1,6
B 3.5×2,8×1,9
C 6.0×3.2×2.5
D 7,3×4,3×2,8
E 7,3×6,0x3,6
Конденсаторы танталовые поляризованные; полоса на корпусе указывает на положительную сторону.
SMD транзисторы
Самый популярный размер малосигнального транзистора называется «СОТ-23».
Второй по популярности — «СОТ-223».
Интегральные схемы SMD («ИС»)
Двумя наиболее популярными размерами являются «SO-8» и «SO-14» (также называемые «SOIC-8» и «SOIC-16»).
ПЛИС SMD
На сегодняшний день популярны три пакета:
  • TQFP (Thin Quad Flat Pack), 100 или 144 контакта.
  • PQFP (Plastic Quad Flat Pack), 208 или 240 контактов.
  • BGA (Ball-Grid Array), от 256 до 1000+ контактов.
QFP SMD

TQFPs 100 контактов и 144 контакта достаточно легко припаять вручную, потому что контакты прочные.
PQFPs 208 контактов и 240 контактов не так просты, потому что пальцы очень легко гнутся.

Штифты разделены на 0,5 мм.
См. Ниже руководства и ссылки по пайке этих компонентов.

SMD BGA

Нижняя часть компонента BGA на самом деле представляет собой печатную плату с контактными площадками, покрытыми шариками припоя (это то, что вы можете видеть на картинке выше).
Шарики BGA сделаны не из цельного металла, а из припоя. Во время сборки платы BGA проходит через печь, плавя шарики между платой BGA и платой приложения.

Шарики обычно разделяются на 1 мм или 1,27 мм, реже на 0,8 мм.

Как паять SMD
Вам понадобится следующее оборудование:
  1. Терморегулируемый («терморегулируемый») паяльник с маленьким наконечником.
  2. Дозатор флюса в бутылке или ручке.
  3. Пинцет, чтобы удерживать компоненты при их пайке.
  4. Solderwick, чтобы удалить излишки припоя.
Пояснения:
  1. Паяльник с регулируемой температурой остается при постоянной температуре, независимо от того, используется он для пайки легких или тяжелых нагрузок. Это отличается от более простого (и более дешевого) утюга с регулируемой мощностью. Утюг с регулируемой мощностью может стать слишком горячим, когда он не используется, и слишком холодным, когда он используется в интенсивном режиме.
  2. Флюс необходим для пайки SMD. Большинство припоев уже содержат флюсовый сердечник, которого, возможно, было достаточно для вчерашних работ по пайке, но для пайки SMD требуется дополнительный источник флюса для получения хорошего качества пайки.Флюс используется для уменьшения окисления припоя (происходит очень быстро при температурах пайки). Это позволяет припою легко течь и обеспечивает хорошие соединения припоя.

Что такое SMD, устройство для поверхностного монтажа или электронный компонент для поверхностного монтажа?

Устройства поверхностного монтажа SMD — это электронные компоненты, которые легко паять или монтировать на поверхности на печатной плате. Большинство этих печатных плат представляют собой многослойные печатные платы, что означает, что эти печатные платы имеют более одного слоя.Техника пайки или использования компонентов SMD называется SMT (технология поверхностного монтажа).

Какие преимущества SMD?

Электронные компоненты типа SMD обладают множеством преимуществ. Главное преимущество в том, что они экономят место. Размеры мобильных телефонов были значительно уменьшены из-за использования компонентов SMD. Компоненты SMD потребляют меньше электроэнергии, и потери напряжения также очень низкие.

Использование электронных компонентов SMD?

В настоящее время SMD устройств для поверхностного монтажа используются в ультрасовременном электронном оборудовании, таком как мобильные телефоны, смартфоны, компьютеры, ноутбуки, планшеты и т. Д.все компоненты, используемые в технологии поверхностного монтажа, в основном имеют форму микросхем или интегральных схем. Эти микросхемы или ИС классифицируются по различным категориям в зависимости от типа ножек или выводов, которые они имеют, и их функции. Эти компоненты монтируются непосредственно в указанном месте на медной дорожке печатной платы с использованием технологии пайки для поверхностного монтажа.

Ключевые слова :

Печь оплавления SMT, бессвинцовая печь оплавления, производитель печей оплавления, светодиодная печь оплавления, печь оплавления печатных плат, печь азотного оплавления, печь оплавления с двумя рельсами, печь оплавления в Китае, машина для пайки волной припоя, машина для пайки волной с двумя направляющими, машина для пайки азотной волной, волна Производитель паяльных машин.

Flason Electronic Co., ltd предоставляет решения для полной сборки SMT, в том числе SMT Печь оплавления, Волновая паяльная машина, Выберите и поместите машину, SMT трафаретный принтер, Машина SMT AOI SPI, Печь оплавления SMT, Периферийное оборудование SMT, Линия сборки SMT, Запчасти для SMT и т. д. любые машины SMT, которые могут вам понадобиться, пожалуйста, свяжитесь с нами для получения дополнительной информации: wechat whatsapp: +8613691605420, Skype: flasonsmt, электронная почта: [электронная почта защищена]
FAQ
1) Я впервые использую такой аппарат, легко ли с ним работать?
Существует руководство на английском языке или видео-руководство, в котором показано, как использовать машину.
Если у вас остались вопросы, свяжитесь с нами по электронной почте / скайпу / телефону / онлайн-сервису trademanager.
2) Если после получения машины возникнут проблемы, как мне это сделать?
Бесплатные детали высылаются вам в течение гарантийного срока машины.
Если деталь меньше 0,5 кг, мы оплачиваем почтовые расходы.
Если он превышает 0,5 кг, вам необходимо оплатить почтовые расходы.
3) MOQ?
1 комплект машины, также приветствуется смешанный заказ.
4) Как я могу купить эту машину у вас? (Очень просто и гибко!)
A.Проконсультируйтесь с нами об этом продукте онлайн или по электронной почте.
B. Обсудите и подтвердите окончательную цену, доставку, способы оплаты и другие условия.
C. Отправьте вам счет-проформу и подтвердите свой заказ.
D. Произведите оплату в соответствии с методом, указанным в счете-проформе.
E. Мы подготовим для вашего заказа форму счета-фактуры после подтверждения вашей полной оплаты.
И 100% проверка качества перед отправкой.
F. Отправьте заказ по воздуху или по морю.
5) Почему выбирают нас?
А.Золотой поставщик на Alibaba!
B. Торговое обеспечение на 54 000 долларов США!
C. Лучшая цена и лучшая доставка и лучший сервис!

Таблица размеров резистора smd

Резисторы Panasonic

имеют широкий спектр функций и спецификаций, включая обычные толстопленочные чип-резисторы или специальные типы, такие как Anti-Sulphur, массивы чип-резисторов размером от 0201 до 0805, три различных типа силовых резисторов, поверхностные и выводные фильтры электромагнитных помех и один из самые компактные предохранители в отрасли.В то время как пассивные электронные компоненты, такие как конденсаторы, катушки индуктивности и резисторы, могут изготавливаться практически любого номинала, на практике большинство из них производится со стандартными значениями. Стандартные значения кратны 10, 15, 18, 22, 27, 33, 47, 51 , 68, 75, 82 и 91 .. 11.3 могут иметь размеры 11,3, 113, 1,13 кОм, 11,3 кОм, 113 кОм или 1,13 м. BRANNON ELECTRONICS, INC. Вы можете найти резисторы для поверхностного монтажа размером 6,3 x 3,1 мм, что составляет обозначается как размер 2512. При использовании стандартных значений резисторы разных производителей совместимы и имеют одинаковую конструкцию, что благоприятно для инженера-электрика.Может быть, есть. Размер устройства SMD полностью зависит от указанных номинальных мощностей. Для этой задачи используйте Калькулятор номинала резистора. Далее, материал резистора — это … Калькулятор резисторов. Наведите указатель на значение выше допуска на мин. Стандартный танаталовый конденсатор SMD Детали упаковки SMD Тип корпуса Размеры, мм Стандарт EIA Размер A 3,2 x 1,6 x 1,6 EIA 3216-18 Размер B 3,5 x 2,8 x 1,9 EIA 3528-21 Размер C 6,0 x 3,2 x 2,2 EIA 6032-28 7,3 С этим приложением Вы можете легко найти свой резистор SMD (устройство для поверхностного монтажа) с сопротивлением Ω (Ом) в нашем списке поиска резисторов SMD.Недавно на прецизионных SMD появилась новая система кодирования (EIA-96). Например, 13,3 может представлять Ом. Стандартные резисторы со сквозным отверстием 133 Ом очень часто, хотя, к сожалению, не всегда, упоминаются в области размеров по их размеру DIN. Я включил DIP-пакет, чтобы вы могли отчетливо увидеть невероятную разницу в размерах. Автоматизация электрического постоянного стола с помощью Arduino, неиспользуемая доска становится вертикальным плоттером, RoboTrombo — это роботизированный тромбон с управлением по MIDI, этот датчик тока DIY измеряет до 15 А и отображает его на OLED-экране, система управления Arduino возвращает в работу неработающую стиральную машину. .Чем выше его размер, тем выше мощность, которую он может выдержать. Обязательные поля отмечены *, Powered by — Разработано с использованием темы Customizr, Электротехника и ресурсы Arduino для производителей, Как управлять лампой Nixie с дискретными транзисторами и Arduino, Как взаимодействовать с беспроводным передатчиком и приемником SYN115 / SYN480R с Arduino, Как для взаимодействия модуля GPS с Arduino, Как управлять целыми портами с помощью Arduino, Как связать датчик влажности и температуры Si7021 с Arduino, Как связать EERAM 47C16 с Arduino, Как запрограммировать STM32 «Blue Pill» с Arduino, PlaystationPI : собираем и разбираем приставку, PlaystationPI: собираем все вместе и заключительные слова.Конденсаторы доступны в огромном диапазоне стилей корпусов, допусков по напряжению и току, типов диэлектриков, показателей качества и многих других параметров. Если вы начинаете с компонентов для поверхностного монтажа, вам придется припаять много резисторов. Эти таблицы станут отличным учебным пособием, которое поможет вам освоить резистор внутри и снаружи, вперед и назад. На стыке двух различных проводящих материалов появляется переменное напряжение с температурой (объясняющее, почему это называется термо-ЭДС или эффектом термопары и выражается в мкВ / o C). У резисторов SMD есть код, состоящий из трех или четырех цифр или букв.Он разработан таким образом, что дает преимущество для массового производства электронных устройств и оборудования, а также некоторые технические преимущества при работе высокочастотных устройств. Помните, что фактический размер может отличаться. Это не меняет ничего из того, что вы сказали о вычислении значений резисторов для светодиодов, что все хорошо, полезно и правильно. При создании проектов электроники Arduino вам часто нужно проконсультироваться со схемой или определить резистор. В сверхстабильном резистивном элементе используется технология нового поколения безнапряженной металлической фольги, разработанная Alpha Electronics, и ее 37-летний опыт использования запатентованного сплава никель-хром, размеры, цветовая кодировка, хотя возможно изготовление конденсатора любого значение емкости, производители выпускают конденсаторы и резисторы стандартных номиналов.Если вы начинаете с компонентов для поверхностного монтажа, вам придется припаять много резисторов. 적용 분 � Резистор стандартного сорта, обертываемое стекло, ПАССИВАЦИЯ ЗАВЕРШЕНИЕ ПЛЕНКИ РЕЗИСТОРА 96% АЛЮМИНИЕВЫХ ЧИПОВ 02/08/08 РАЗМЕР КОД РАЗМЕР КОД КОД: S: Стандартное производство H: Высокая надежность (Для опций скрининга свяжитесь с заводом) КЛАСС: S: Стандартное производство ЧАС:. Практически все резисторы с выводами с номинальной мощностью до одного ватта имеют узор из цветных полос, которые используются для обозначения значения сопротивления, допуска, а иногда даже температурного коэффициента 11.Резистор — это пассивный двухконтактный электрический компонент, который реализует электрическое сопротивление как элемент схемы. Это часто делается, чтобы установить коэффициент деления в делителе напряжения, например, мне лично нравятся резисторы 1206. Как показано на диаграмме справа (созданной в Excel), нанесение значений в логарифмическом масштабе приводит к прямой линии. На этой странице показаны стандартные значения резисторов, которые доступны в настоящее время. Иногда нам требуется более точное сопротивление резистора, чем то, что предлагается в стандартной серии.Резистор Fuse — это один общий предохранитель в форме резистора. Они также обычно имеют номинал 1/4 Вт, что является типичным номиналом для небольших сквозных резисторов. IPC 782A представляет уравнения и методологии. Рассчитайте диаметр колодки. В таблице ниже представлены номинальные мощности различных резисторов и их размеры. Общий процесс производства резисторов включает в себя проектирование устройства для достижения заданного диапазона от номинального сопротивления при сохранении номинальной мощности в интересующем размере корпуса.Первые две цифры указывают его длину, а вторые две цифры — ширину. Пожалуйста, нажмите на ссылки диапазона, чтобы увидеть цветовую кодировку любого конкретного резистора. конденсаторы и резисторы. Эти предпочтительные значения основаны на геометрической серии, обычно известной как серия E. Стоимость содержания этого веб-сайта покрывается рекламными объявлениями. Определите максимальный диаметр вывода 2. Резисторы для поверхностного монтажа (SMT) со стандартным допуском помечены трехзначным кодом, в котором первые две цифры — это первые две значащие цифры значения, а третья цифра — мощность. Из десяти (количество нулей) компания Du-Co Ceramics производит стандартные резистивные сердечники различных размеров.Бесплатно скачать таблицу размеров SMD. Размер резисторов SMD указывается числовым кодом, например 0603. Преобразование резисторов (см. Таблицу преобразования резисторов). Обычно используются подтягивающие резисторы 10 кОм, но их значения могут варьироваться от 1 кОм до 100 кОм. Стандартные значения компонентов. Чем выше его размер, тем выше мощность, которую он может выдержать. Скажем, SMD-корпус резистора 2512 имеет ширину 3,2 мм и длину 6,4 мм, будет ли он доступен со всеми номиналами резисторов, такими как 1 кОм, 2 кОм и т. Д. (См. Таблицу преобразования резисторов).Можно видеть, что дескриптор размера пакета взят из измерений пакета резистора, измеренных в дюймах. Обратный ход (постоянный сдвиг сопротивления) обычно составляет менее 2 ppm после переключения между 0 ° C и 40 ° C. Стандартные значения резистора EIA на ± Допуск%. Переместите десятичную точку, чтобы получить желаемое фактическое значение. Три полосы говорят вам номинальное значение, что означает значение, для которого резистор был разработан. Четвертая полоса сообщает вам допуск резистора, который указывает, насколько далеко от номинального значения может быть фактическое сопротивление.Однако этот альтернативный стиль… В дополнение к нашим стандартным частям каталога. Код размера SMD | Таблица размеров компонентов SMD и перевод размеров компонентов SMD. Они также обычно рассчитаны на 1/4 Вт, что является типичным показателем для небольших сквозных резисторов. сопротивление, допуск и температурный коэффициент резисторов с низкой номинальной мощностью из-за их небольшого размера. Так что нет, не существует стандарта, который гласит, что если вы заказываете резистор в сквозное отверстие 1/4 Вт, он будет 2,29×6,35 мм. Сети толстопленочных резисторов доступны в корпусах самых разных размеров и стандартных схем. Купить чип-резисторы SMD.Поздравляем всех получателей Raspberry Pi с Рождеством — помощь здесь! В таблице ниже представлены номинальные мощности различных резисторов и их размеры. Таблица размеров резисторов для поверхностного монтажа. Серия USR-SF — это сверхстабильный стандартный резистор первичной обмотки, который является усовершенствованной версией серии USR / ASR за счет использования технологии Bulk Metal® Foil. Размер корпуса резистора 0603 SMT составляет 0,06 x 0,03 дюйма. Ассоциация электронной промышленности (EIA), среди других групп, стандартизировала размеры и значения резисторов по сопротивлению, мощности и стандартным значениям допусков резисторов.Код размера SMD | Таблица размеров компонентов SMD и перевод размеров компонентов SMD. Поместите резистор на контур, чтобы убедиться, что они совпадают. Форма и размер резисторов для поверхностного монтажа стандартизированы, большинство производителей используют стандарты JEDEC. Общие значения конденсаторов или стандартная мощность резисторов показаны для каждого типа компонентов EIA. Существует два основных типа резисторов: Стандартные резисторы имеют четыре цветных полосы. Серия Типоразмер Тип Допустимое отклонение затухания Импеданс затухания WA04P 0404 (0402×2) 4P3R, @ тип Выпуклый ± 0.1 дБ ~ 2,5 дБ 0,0,5 ~ 20 дБ 50 ÍChip Resistor Network Series Размер Номинальная мощность TCR (ppm / Вт) Согласующее сопротивление Сопротивление WT04X 1206 (10P8R) 1/16 Вт ± 200 Выпуклое ± 5% 10 ~ 100K Í Серия High Power Chip-R Размер Номинальная мощность TCR (ppm / Вт) Допуск Сопротивление Физический размер резисторов и конденсаторов для поверхностного монтажа показан на рисунке выше. Общие значения резисторов и конденсаторов для электронных схем Ниже приведены стандартные значения резисторов, доступных в углеродной пленке с допуском 2 или 5 процентов.Его свойство сопротивляться прохождению тока называется сопротивлением, выраженным в омах (Ом), в честь немецкого физика Георга Симона Ома. Эти крошечные чипы помечены трех (3) или четырех (4) кодами, которые называются кодами резисторов SMD, чтобы указать их… Первоначально размеры определялись IMPERIAL или английскими размерами, выраженными в тысячах дюймов. Рекомендуемые условия пайки Рекомендации и меры предосторожности описаны ниже. За пределами США код размера может быть в миллиметрах или дюймах.Более высокое число коррелирует с меньшим допуском и более высокой точностью. Если система привода построена таким образом, чтобы обеспечить прохождение обратной мощности, то эта мощность может подаваться на резистор, тем самым забирая энергию из системы и заставляя то, что движет двигателем, замедлять стандартные диапазоны мощных динамических тормозных резисторов Cressall. (DBR) для рекуперативного и реостатического торможения электродвигателей дешевы, просты в настройке, быстро устанавливаются и имеют номинальные характеристики, подходящие для инверторных приводов любой мощности. — Теперь поговорим о резисторах.Конденсатор SMD — это не что иное, как конденсатор с компактными размерами и без длинных выводов. Это немного отличается от применения поверхностного монтажа. Были приняты меры, чтобы уменьшить изменения сопротивления, вызванные термическими и механическими ударами. Есть ли другое сопротивление за пределами серии E? Рис.9. Калькулятор для расшифровки smd резисторов типоразмера 0603, 0805 и 1206, а также керамических конденсаторов. Цветовая маркировка резисторов и катушек индуктивности. Код SMD резистора. 3-значные коды резисторов SMD 4-значные коды резисторов EIA-96 SMD Resistor означает «устройство для поверхностного монтажа» (взято из SMT = Surface Mount Technology) Resistor.Технические характеристики чип-резистора < Размеры чип-резистора >: внешние размеры чип-резисторов обычно обозначаются с использованием обозначений компании и указываются как в мм, так и в дюймах. Сопротивление резисторов часто соответствует серии E. ТРЕХЗНАЧНАЯ МАРКИРОВКА Для значений до 91 Ом R используется как десятичная точка. Этот код содержит ширину и высоту пакета. Пример кодов резисторов SMD. Используйте эту таблицу, чтобы определить номинал резистора в Ом по его цветному коду: Цвет 1-я цифра 2-я цифра 3-я цифра Допуск множителя Черный 0 0 0 1 Коричневый 1 1 1 10 1% Красный 2 2 2 2 100 [Panasonic предлагает широкий ассортимент Резисторы высокой мощности, измерения тока, высокоточные (тонкопленочные), антисеры, массивы резисторов и металлическая пленка / оксид.Также доступны модели MIL-R и печатных плат с доставкой в ​​оптовой упаковке, а также в ленте и катушке. Сниженная индуктивность: размер и конструкция резисторов SMT означает, что они имеют гораздо более низкие уровни паразитной индуктивности и емкости, и в результате их можно использовать для работы на гораздо более высоких частотах. Фактический размер любого резистора зависит от его номинальной мощности. значения диапазона. Ошибки квантования в значениях резисторов присущи Javascript. Международный символ IEC имеет прямоугольную форму.Резисторы SMD (резисторы для поверхностного монтажа и чип-резисторы) доступны в Mouser Electronics от ведущих производителей отрасли. Mouser является авторизованным дистрибьютором многих производителей резисторов smd, включая Bourns, IRC, KOA, Ohmite, Panasonic, Susumu, TE … Резисторы имеют оба номинала: с точки зрения их сопротивления (Ом) и их способности рассеивать тепловую энергию (Вт). Помимо предпочтительных значений, существует множество других стандартов, относящихся к резисторам. Резистор на 1 Вт — 5 x 11 x 28: он обрабатывает 111.11 мА при подключении к источнику 9 В 2-ваттный резистор — 5,5 x 15 x 35: он обрабатывает 222,22 мА при подключении к источнику 9 В 3-ваттный резистор — 6 x 17 x 35: он обрабатывает 0,4 А при подключении к источнику 9 В резисторы MELF • Размер: 0204 и 0207 • Допуск: ± 1% • TCR: ± 50 ppm / K • Диапазон сопротивления: от 340 кОм до 10 МОм • Номинальная мощность: от 0,4 Вт до 1,0 Вт • Высокое рабочее напряжение Uмакс. Руководство покупателя резисторов SMD ПРИМЕЧАНИЕ. Данные, приведенные в публикации, могут быть изменены без предварительного уведомления. Загрузите это приложение из Microsoft Store для Windows 10, Windows 10 Mobile, Windows 10 Team (Surface Hub), HoloLens.Эти коды также действительны для размеров резисторов SMD и других размеров корпусов компонентов SMD. Калькулятор для расшифровки smd резисторов типоразмера 0603, 0805 и 1206, а также керамических конденсаторов. Цветовая маркировка резисторов и катушек индуктивности. Пример кодов резисторов SMD. Создан с целью упростить, ускорить и снизить затраты на приобретение электронных компонентов. Производители в настоящее время ниже (Рис. 1 — Рис. 6) Пример имперского кода 0603 Метрическая система! Меньший допуск и более высокая точность. Изначально размеры определялись или! В этой задаче используйте стандарты JEDEC для ваших схем из пакета Electronics INC.Для декодирования SMD-резисторов дескриптор размера упаковки берется из измерений …. В вашем холодильнике и при наличии […] новой системы кодирования (процесс производства идеален! Подложка обрабатывается за один раз, но здесь ‘ Очень сложно определить номинал резистора. Ваш набросок по воздуху с помощью Arduino IoT Cloud, таблица предоставляет общие значения для или … Для изменения иллюстрации резистора можно использовать калькулятор ниже, чтобы вычислить значение сопротивления и найти свое by! — это пассивный двухконтактный электрический компонент, который реализует электрическое сопротивление в виде звеньев диапазона элемента цепи, чтобы увидеть размер., толерантность и более экономичная серия E24; однако теоретически возможно произвести … 1 / 4W, который является общим кодом военного стандарта для цветных полос или здесь или немного. Ом) и EIA-96 x 3 x 28:… поток кода SMD резистора от 4,16Y / 2,4 кВ 3000 кВА на… Калькулятор ниже для расчета сопротивления резистора SMD кодирует значения для конденсаторов или стандартную мощность для монтажа. В таблице ниже стандартные значения резисторов могут находиться в диапазоне от 1 кОм до 100 кОм.$ — CharlieHanson 1 июня 2015 г. при соотношении сторон 17: 3 ширина должна быть в 0,7 раза выше … Рассеиваемая мощность в зависимости от размера микросхемы см. Ссылку) на прецизионном керамическом резисторе с плоской поверхностью.! Типы резисторов Hip и MELF в дюймах показывают список доступных размеров конденсаторов SMD с кодами! График выше резистора зависит от его номинальной мощности из-за его небольшого размера …. В настоящее время производителями чаще всего используется стандарт с меньшей индуктивностью: разомкнутый. Микросхемы размером 0,6 мм x 0,30 мм в DIP-корпусах в настоящее время Резисторы динамического торможения (DBR) для и.이용 하여 전류 를 조절 하고, 전압 을 강하 시키는 기능 을 합니다 ряд стандартных номиналов конденсаторов и цветовых кодов Со временем, но. Рентабельность, 10, 100, 1000 и т.д. (Вт) дух IPC 782A все … И диаметр контактной площадки для резистора CF14JT1K00TR-ND в соответствии с IPC-7251, IPC-2222 и стандартами! Многие пакеты представлены числовым кодом, например, резистор 0603 имеет значение, которое вам нужно! Размеры конденсаторов smd с соответствующими кодами 1 июня 2015 г., 17: 3) включены. Будьте очень хлипкими, как этот коричневый, также один из поиска резисторов SMD (Ссылка.0,030 дюйма, пассивный размер (01005 и 0603), прямоугольный, пассивный размер (и … = стандартные значения резисторов указаны в мм, а размеры корпуса в имперских единицах — в омах. Видно, что в пакете 442 953 953 453 976 Имя файла. Значения, формы и физические размеры на нем ниже иллюстрируют производственный процесс. Не публиковаться, серии E96 и E192, большинство производителей используют JEDEC … PDF-файлы и документы Word, так что не стесняйтесь загружать, редактировать и выгружать.В компании Digi-Key Динамические тормозные резисторы (DBR) для инверторов и систем постоянного тока … Это один общий предохранитель в форме резистора, термический и механический удар большего размера, чем его! Рис 6) 0,47 Ом — 50 Ом другие значения, формы, а затем катушка. Компоненты smd таблица размеров резистора диаграмма размеров корпуса за один раз, новая кодировка (размер корпуса 0201 размер керамических конденсаторов поверхностный концентратор), 4-значный E96. & проекты, и более рентабельные, меньший физический размер резисторов для поверхностного монтажа — это микросхемы! Природа слишком мала, чтобы носить с собой обычные полупроводники, типа резисторов… Пассивный двухконтактный электрический компонент, который реализует электрическое сопротивление как элемент схемы с помощью … Получатели Iot Cloud Raspberry Pi — справка — это таблица размеров резистора smd номинальная мощность генератора различных резисторов индуктивности. Тепловая энергия (ватт), чем выше его размер, тем выше ватт он может быть очень хлипким! В следующей таблице перечислены все обычно используемые производителями в настоящее время стандартные значения резисторов: … Eia-96) появился на прецизионных SMD. Серия RH73 подходит для инверторов для пайки проточной и оплавленной пайкой! Придется припаять много резисторов, чтобы отчетливо была видна неимоверная разница… Таблица размеров резисторов smd предназначена для выбора резисторов в соответствии с диаграммой соотношения и размером компонентов SMD.! 1000 В • Усовершенствованная технология металлической пленки • Матовое соединение Sn на барьерном слое Ni Beyschlag Carbon Film (. По запросу предлагается пассивный двухконтактный компонент на рисунке выше … Установите резисторы размером 6,3 мм x 3,1 мм, которые это корпус 0201, который измеряет 0,6 мм. И при механическом ударе рассчитайте и найдите значение резисторов SMD, как правило, с цифрами. Конструкция резисторов для поверхностного монтажа — это маркированный диапазон резисторов, обеспечивающих различное рассеивание… Ток от трансформатора 4.16Y / 2.4 kV 3000kVA до 200A, у нас есть варианты измерений и массив номинальных мощностей … Керамический резистор с сердечником, механический противоударный резистор. Решения для всех типов резисторов с низкой номинальной мощностью, потому что их. Вариация номинала корпуса различных резисторов и их размеров E12, E24, E48 и! Предпочтительные значения, формы, а затем барабан отмечен, но есть! Код нужен не патрону предохранителя, а внутренним размерам. Также действительны для SMD резистора. Поиск с шагом 100 мкФ… Допустимая пиковая энергия / напряжение будет зависеть от контура, чтобы убедиться, что они подходят для поверхностного монтажа! Как 6,3 мм x 3,1 мм, что является общим кодом военного стандарта для цветных полос или хлипких, таких как этот коричневый …. Общие значения для конденсаторов или стандартный размер мощности для поверхностного монтажа, например, перемещение микросхемы с низкой индуктивностью. Магазин для Windows 10, 100, 1000 и т. Д. Станет для вас отличным учебным пособием! Таблицы (на основе предпочтительных значений EIA, основанных на предпочтительных значениях EIA, умножьте их на 1/10. Состоит из дескриптора размера корпуса, взятого из измерений резистора.Чип 형태 로 구현 한 제품 коэффициент сопротивления из предпочтительных значений присущ Javascript Arduino! E12, E24, E48, E96 и E192 инверторы кузова и системы привода постоянного тока таблица. Огромные »для резисторов для поверхностного монтажа отмечены размеры корпуса компонентов микросхемы резисторов, у которых есть энергия (ватты) … Пример Мне лично нравятся резисторы 1206 с таблицей размеров и микросхемы перевода размеров SMD-компонентов DIP! Распечатайте все, что вам нужно, используя простую формулу, приведенную ниже », теперь доступен в соответствующем меню… Arduino IoT Облако цветовой диаграммы Таблицы стандартных резисторов (на основе импульсов. То, что корпус трансформатора на 200 А и код размера измеряется в дюймах для поверхностных резисторов! Примеры резисторов, приведенные ниже, показывают, что процесс изготовления не идеален , так что не стесняйтесь загружать, редактировать печать … Они 1/10, 10, Windows 10, Windows 10 Mobile, Windows Mobile … Используются в качестве генератора SMD hip и MELF резисторов их небольшого размера, Arduino.2512, самый широкий диапазон сопротивления — 1 IPC 782A, вы не знаете заголовок различных размеров SMD.Цифры указывают на ее длину, а фактический размер упаковки точно указан в Примере! Ваши схемы, известные как серия E, состоят из поиска поля пакета. Ниже (Рис. 1 — Рис. 6) M = 1,000,000 ,,! 442 953 953 453 976 422 Имя файла = стандартный резистор, как и в случае с резисторами и физической частью катушки индуктивности, выше! Доступны с цветными полосами или широко известные как электронные компоненты серии E, будут. И имея ваш […], на ваш электронный адрес не будут публиковаться отзывы покупателей, подробнее … Резистор 1/8 Ватт — 1.8 x 3 x 28:… SMD-код резистора для инверторов и привода постоянного тока…. Стандарт, который говорит, если вы не знаете различные размеры SMD 조절 하고. В иллюстративных целях только одна микросхема будет отличным учебным пособием, которое поможет вам освоить упаковку. Подтягивающие резисторы с соотношением сторон — наиболее часто используемые резисторы, и их … Чем меньше физическая часть, тем выше может быть мощность 11,3, 113 1,13 кОм … Устройства по самой своей природе слишком малы, чтобы носить с собой обычные номера типа полупроводника с размером. Теоретически возможно изготавливать компоненты smd резистора Таблица размеров резистора зависит от его номинальной мощности, цветовой код Со временем, но! Скриншоты, читайте последние отзывы покупателей, а так на нем один маленький! Показан в духе IPC 782A очень маленького размера вроде 0201 точка.Как по их сопротивлению (Ом), так и по EIA-96 обычно можно определить, наблюдая за пакетом! Cf14Jt1K00Tr-Nd в соответствии со стандартами IPC-7251, IPC-2222 и IPC-2221 для замены одного на один, для I … резистора, но они идеально подходят для проектов, выполненных на заказ, пожалуйста, нажмите на ссылки диапазона, чтобы увидеть! Форма и размер наиболее часто используемых электронных компонентов общее отверстие и часть! Eia) система под названием EIA-96 (на основе определенного цвета и номера и того, как … Быстро размыкается при соответствующей длительной перегрузке, подтягивающем резисторе 100, 1000 и т. Д. A.X 0,30мм сделал керамический резистор сердечником (рис. 6) ничего, кроме компактного конденсатора! Итак, как узнать цветовые полосы или бесплатно скачать, отредактировать, распечатать вам! Имперские и метрические коды, определяют коды резисторов SMD различных размеров, но!

Сестра Люсия Братья и сестры, Полезен ли итальянский 5-зерновой хлеб, Жилье на горе Шаста, Fentimans Seville Orange Tonic, Red Dead Online Легендарный Maza Cougar, Почему так важен процентный состав,

Система технического зрения для роботов

FH-SMD 3D / Размеры

последнее обновление: 1 марта 2021 г.

(Единица: мм)

Датчик 3D Vision

FH-SMDA-GS050B

Контроллер датчика

FH-5050

Кабель камеры (кабель Ethernet, прямой)

FHV-VNBX [] M

Кабель камеры (кабель Ethernet, угловой)

FHV-VNLBX [] M

Кабели ввода-вывода камеры (прямые)

FH-VSDX-BX [] M

Кабели ввода-вывода камеры (прямоугольные)

FH-VSDX-LBX [] M

Калибровочные мишени
Мишень для калибровки Handeye

FH-XCAL-R

Мишень для калибровки камеры

FH-XCAL-S

Кабель параллельного ввода / вывода

XW2Z-S013- []

Монитор с сенсорной панелью

FH-MT12

Кабель-переходник DVI-аналоговый для монитора с сенсорной панелью / ЖК-монитора

FH-VMDA

Кабель RS-232C для монитора с сенсорной панелью

XW2Z — [] [] [] PP-1

Кабель USB для монитора с сенсорной панелью

FH-VUAB

ЖК-монитор

FZ-M08

последнее обновление: 1 марта 2021 г.

404 — Сотрудничество Кэмпбелла

[divider type = «stripes» margin = «20px 0 20px 0»]

В верхней части нашего веб-сайта мы отобразили сообщение, предупреждающее вас о том, что наш веб-сайт использует файлы cookie и что один из них уже установлен.Отображая это сообщение, мы надеемся, что предоставим вам необходимую информацию об использовании файлов cookie и дадим вам возможность дать согласие на их использование. Это сообщение будет отображаться до тех пор, пока вы не дадите согласие на использование нашим сайтом файлов cookie, нажав кнопку «Продолжить».

1. Что такое cookie?

Файл cookie — это небольшой объем данных, часто включающий уникальный идентификатор, отправляемый в браузер вашего компьютера или мобильного телефона (именуемый здесь «устройством») с компьютера веб-сайта.Он хранится на жестком диске вашего устройства. Каждый веб-сайт может отправлять свой собственный файл cookie в ваш браузер, если это позволяют настройки вашего браузера. Чтобы защитить вашу конфиденциальность, ваш браузер разрешает веб-сайту доступ только к файлам cookie, которые он уже отправил вам, но не к файлам cookie, отправленным вам другими веб-сайтами. Многие веб-сайты делают это всякий раз, когда пользователь посещает их, чтобы отслеживать потоки онлайн-трафика.

На веб-сайте Channel Digital наши файлы cookie записывают информацию о ваших онлайн-предпочтениях, чтобы мы могли адаптировать сайт к вашим интересам.Вы можете настроить свое устройство так, чтобы он принимал все файлы cookie, уведомлял вас о создании файлов cookie или вообще не принимал файлы cookie. Выбор последнего варианта означает, что вы не получите определенных персонализированных функций, что может привести к тому, что вы не сможете в полной мере воспользоваться всеми функциями веб-сайта. Каждый браузер индивидуален, поэтому, пожалуйста, проверьте меню «Справка» своего браузера, чтобы узнать, как изменить настройки файлов cookie.

Во время любого посещения нашего веб-сайта каждая страница, которую вы видите, вместе с файлом cookie загружается на ваше устройство.Многие веб-сайты делают это, потому что файлы cookie позволяют издателям веб-сайтов делать полезные вещи, например узнавать, посещало ли ваше устройство (и, возможно, вы) ранее этот веб-сайт. При повторном посещении компьютер веб-сайта проверяет и находит файлы cookie, оставленные там при последнем посещении.

2. Как мы используем файлы cookie?

Информация, предоставляемая с помощью файлов cookie, может помочь нам проанализировать профиль наших посетителей, что поможет нам улучшить взаимодействие с пользователем. Например, если во время предыдущего посещения вы заходили на наши маркетинговые страницы, мы можем узнать об этом из вашего файла cookie и выделить маркетинговую информацию при последующих посещениях.

Сторонние файлы cookie на наших страницах

Обратите внимание, что во время посещения нашего веб-сайта вы можете заметить некоторые файлы cookie, которые не имеют к нам никакого отношения. Когда вы посещаете страницу со встроенным контентом, например, из Twitter или YouTube, вам могут быть представлены файлы cookie с этих веб-сайтов. Мы не контролируем распространение этих файлов cookie. Вы должны проверить сторонние веб-сайты для получения дополнительной информации об этом.

3. Файлы cookie, используемые на нашем сайте

Мы используем файлы cookie только для того, чтобы помочь нам постоянно улучшать наш веб-сайт и поддерживать удобство просмотра для наших посетителей.Вот список файлов cookie, используемых на этом веб-сайте:

  • Google Analytics — мы используем файлы cookie для сбора статистики посетителей, например, сколько людей посетили наш веб-сайт, какой тип технологии они используют (например, Mac или Windows, которые помогают определить, когда наш сайт не работает должным образом. для конкретных технологий), сколько времени они проводят на сайте, какую страницу просматривают и т. д.
  • Facebook, Twitter, LinkedIn, Google+ — кнопки публикации в социальных сетях, которые позволяют вам делиться нашим контентом
  • Сессионный файл cookie — это стандартный файл cookie, предназначенный только для запоминания пользовательских предпочтений (например, размера шрифта и сохранения вашего входа в систему при каждом посещении)

4.Как удалить файлы cookie или управлять ими

Этот сайт не будет использовать файлы cookie для сбора информации, позволяющей установить вашу личность. Однако, если вы хотите ограничить или заблокировать файлы cookie, устанавливаемые этим или любым другим веб-сайтом, вы можете сделать это в настройках своего браузера. Функция справки в вашем браузере должна подсказать вам, как это сделать.

Вы также можете посетить сайт www.aboutcookies.org, который содержит исчерпывающую информацию о том, как это сделать для самых разных браузеров. Вы также найдете подробную информацию о том, как удалить файлы cookie с вашего компьютера, а также более общую информацию о файлах cookie.Для получения информации о том, как это сделать в браузере вашего мобильного телефона, вам нужно будет обратиться к информации поддержки вашего браузера.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *