Как Проверить Трехфазный Двигатель Мультиметром ~ VESKO-TRANS.RU
Как проверить состояние обмотки электрического двигателя
На 1-ый взор обмотка представляет кусочек проволоки смотанной спецефическим образом и в ней нечему особо ломаться. Но у нее есть особенности:серьезный подбор однородного материала по всей длине;
четкая калибровка формы и поперечного сечения;
нанесение в промышленных критериях слоя лака, владеющего высочайшими изоляционными качествами;
крепкие контактные соединения.
Если в каком-либо месте провода нарушена хоть какое из этих требований, то меняются условия для прохождения электронного тока и движок начинает работать с пониженной мощностью либо вообщем останавливается.
Чтоб проверить одну обмотку трехфазного мотора нужно отключить ее от других цепей. Какие электромоторы можно проверить мультиметром? Трехфазный как проверить изоляцию. Во всех электродвигателях они могут собираться по одной из 2-ух схем:
Концы обмоток обычно выводятся на клеммные колодки и маркируются знаками «Н» (начало) и «К» (конец). Как проверить двигатель мультиметром. Время от времени отдельные соединения могут быть спрятаны снутри корпуса, а для выводов употребляются другие методы обозначения, к примеру, цифрами.
У трехфазного мотора на статоре употребляются обмотки с схожими электронными чертами, владеющими равными сопротивлениями. Если при замере омметром они демонстрируют различные значения, то это уже повод серьезно задуматься над причинами разброса показаний.
Как проявляются неисправности в обмотке
Зрительно оценить качество обмоток не представляется вероятным из-за ограниченного допуска к ним. На практике инспектируют их электронные свойства, беря во внимание, что все неисправности обмоток появляются:
обрывом, когда нарушается целостность провода и исключается прохождение электронного тока по нему;
маленьким замыканием, возникающем при нарушении слоя изоляции меж входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;
межвитковым замыканием, когда изоляция нарушается меж одним либо несколькими близлежащими витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электронное сопротивление и не создавая ими определенной работы;
пробоем изоляции меж обмоткой и корпусом статора либо ротора.
Проверка обмотки на обрыв провода
Этот вид неисправности определяется замером сопротивления изоляции омметром. Устройство покажет огромное сопротивление — ∞, которое учитывает образованный разрывом участок воздушного места.
Проверка обмотки на возникновение короткого замыкания
Движок, снутри электронной схемы которого появилось куцее замыкание, отключается защитами от сети питания. Но, даже при резвом выводе из работы таким методом место появления КЗ отлично видно зрительно за счет последствий воздействия больших температур с ярко выраженным нагаром либо следами оплавления металлов.
При электронных методах определения сопротивления обмотки омметром выходит очень малая величина, очень приближенная к нулю. Ведь из замера исключается фактически вся длина провода за счет случайного шунтирования входных концов.
Проверка обмотки на возникновение межвиткового замыкания
Это более сокрытая и трудно определяемая неисправность. Для ее выявления можно пользоваться несколькими методиками.
Способ омметра
Устройство работает на неизменном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков делает существенно огромную индуктивную составляющую.
При замыкании 1-го витка, а их полное количество может быть несколько сотен, изменение активного сопротивления увидеть очень трудно. Ведь оно изменяется в границах нескольких процентов от общей величины, а тотчас и меньше.
Как прозвонить электродвигатель
Трёхфазный асинхронный электродвигатель, проверка тестером. На практике довольно проверить электродви.
Расположение контактов трехфазного двигателя и прозвонка обмоток
Рассматриваем размещение концов обмоток трехфазного двигателя, определяем, верно ли они подключены.
Можно испытать точно откалибровать устройство и пристально измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в данном случае не всегда будет видна.
Более четкие результаты позволяет получить мостовой способ измерения активного сопротивления, но это, обычно, лабораторный метод, труднодоступный большинству электриков.
Замер токов потребления в фазах
При межвитковом замыкании меняется соотношение токов в обмотках, проявляется лишний нагрев статора. У исправного мотора токи схожи. Потому прямое их измерение в действующей схеме под нагрузкой более точно отражает реальную картину технического состояния.
Измерения переменным током
Найти полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда может быть. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.
У выведенного из работы мотора можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток дозволит токоограничивающий резистор либо реостат соответственного номинала.
При выполнении замера обмотка находится снутри магнитопровода, а ротор либо статор могут быть извлечены. Баланса электрических потоков, на условие которого проектируется движок, не будет. Про то как проверить и двигатель от можно ли поверить мультиметром? И как можно. Потому употребляется пониженное напряжение и контролируются величины токов, которые не должны превосходить номинальных значений.
Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его остается сопоставить с чертами других обмоток.
Эта же схема позволяет снять вольтамперные свойства обмоток. Просто нужно выполнить замеры на различных токах и записать их в табличной форме либо выстроить графики. Если при сопоставлении с подобными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.
Шарик в статоре
Метод основан на разработке вращающегося электрического поля исправными обмотками. Как проверить электродвигатель мультиметром пошаговая. Для этого на их подается трехфазное симметричное напряжение, но непременно пониженной величины. С этой целью обычно используют три схожих понижающих трансформатора, работающих в каждой фазе схемы питания.
Для ограничения токовых нагрузок на обмотки опыт проводят краткосрочно.
Маленькой металлической шарик от шарикоподшипника вводят во крутящееся магнитное поле статора сходу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.
Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.
Во время теста нельзя превосходить ток в обмотках больше номинальной величины и следует учесть, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.
Электрическая проверка полярности обмоток
У статорных обмоток может отсутствовать маркировка начала и концов выводов и это сделает труднее корректность сборки.
На практике для поиска полярности употребляются 2 метода:
1. при помощи маломощного источника неизменного тока и чувствительного амперметра, показывающего направление тока;
2. способом использования понижающего трансформатора и вольтметра.
В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.
Проверка полярности посредством батарейки и амперметра
На наружной поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых нужно найти.
При помощи омметра вызванивают и отмечают вывода, относящиеся к каждой обмотке, к примеру, цифрами 1, 2, 3. Потом произвольно маркируют на хоть какой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой в центре шкалы, способной указывать направление тока.
Минус батарейки агрессивно подключают к концу избранной обмотки, а плюсом краткосрочно прикасаются к ее началу и сходу разрывают цепь.
При подаче импульса тока в первую обмотку он за счет электрической индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. При этом, если полярность обмоток угадана верно, то стрелка амперметра отклонится на право при начале импульса и отойдет на лево при размыкании цепи.
Если стрелка ведет себя по-другому, то полярность просто спутана. Остается только промаркировать выводы 2-ой обмотки.
Еще одна 3-я обмотка проверяется аналогичным образом.
Проверка полярности посредством понижающего трансформатора и вольтметра
Тут тоже сначала вызванивают обмотки омметром, определяя вывода, которые к ним относятся.
Потом произвольно маркируют концы первой избранной обмотки для подключения к понижающему трансформатору напряжения, к примеру, на 12 вольт.
Две оставшиеся обмотки случайным образом скручивают в одной точке 2-мя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в другие обмотки с таковой же величиной, так как у их равное число витков.
За счет поочередного подключения 2-ой и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. Как проверить датчик парктроника мультиметром (тестером. В нашем случае при совпадении направления обмоток данная величина будет составлять 24 вольта, а при разной полярности — 0.
Остается промаркировать все концы и выполнить контрольный застыл.
В статье дан общий порядок действий при проверке технического состояния какого-то случайного мотора без определенных технических черт. Они в каждом личном случае могут изменяться. Смотрите их в документации на ваше оборудование.
vesko-trans.ru
Проверка межвиткового замыкания обмоток двигателя — novaso
electrosam.ru
Способы определения межвиткового замыкания двигателя
Если какая-либо часть статора сильно нагревается, стоит прекратить работу и провести диагностику агрегата. Мы предлагаем следующие варианты:
- Токовые клещи. Измеряется нагрузка на каждую фазу, и, если на какой-либо из них она значительно увеличена, то это признак межвиткового замыкания. Однако чтобы избежать ошибки из-за, например, перекоса фаз на подстанции, стоит также измерить приходящее напряжение вольтметром.
- Прозвон обмоток тестером. Прозванивается каждая обмотка в отдельности, затем полученные результаты сопротивления сверяются. Но следует учесть, что этот способ может оказаться неэффективным при замыкании 2-3 витков, т.к. в этом случае расхождение будет небольшим.
- Измерения мегомметром. Чтобы обнаружить замыкание на корпус, один щуп прикладывается к корпусу двигателя, второй – к выходу обмоток в борно.
- Проверить межвитковое замыкание электродвигателя также можно визуально. Агрегат разбирается и тщательно осматривается на предмет наличия сгоревшей части обмотки.
- Проверка с помощью понижающего трехфазного трансформатора и шарика от подшипника или пластинки от трансформаторного железа. Этот способ считается самым надежным. Предупреждение: ни в коем случае не используйте данный алгоритм при напряжении в 380 вольт, это опасно для жизни! Последовательность действий такова: три фазы с понижающего трансформатора подаются на статор предварительно разобранного двигателя. Туда кидается шарик. Если он движется внутри статора по кругу – аппарат в рабочем состоянии. Если через несколько оборотов он «залипает» на одном месте – именно там и находится замыкание. Пластинка прикладывается к железу внутри статора. Если она «примагничивается», причин для беспокойства нет, а ее дребезжание указывает на межвитковое замыкание.
Следует также отметить, что все перечисленные выше способы проверки производятся исключительно с заземленным двигателем.
Таким образом, зная, как проверить обмотку электродвигателя на межвитковое замыкание, вы сможете самостоятельно выявить причину неисправности и принять решение о ее своевременном устранении.
www.szemo.ru
Замыкание обмотки якоря на корпус
Такого рода замыкание происходит из-за механических повреждений изоляции. Причинами механических повреждений являются: наличие в пазах выступающих листов активной стали и заусенцев, тугое заполнение паза, неплотная укладка обмотки в пазы, отчего провода под действием центробежных сил при вращении перемещаются в пазу, ослабление бандажей и другое.
Кроме механических повреждений изоляции, причинами замыкания на корпус могут явиться увлажнение изоляции, попадание в пазы и лобовые части припоя, сильный и длительный перегрев машины, распайка соединений и другое.
Замыкание обмотки якоря на корпус можно обнаружить контрольной лампой (рисунок 1, а). При проверке лампу присоединяют одним концом к сети, а другим к коллектору. Второй (свободный) конец сети присоединяют к валу якоря. Загорание лампочки свидетельствует о замыкании обмотки на корпус. Для такой проверки можно пользоваться также мегомметром.
Рисунок 1. Проверка замыкания обмоток на корпус.
а – контрольной лампой; б – мегомметром: 1 – мегомметр; 2 – коллектор; 3 – вал; 4 – подставка
Место замыкания обмотки на корпус можно определить по схеме, приведенной на рисунке 2.
В схеме, приведенной на рисунке 2, а, питание от источника постоянного тока подключают к щеткам через предохранитель П. Ток регулируют реостатом R. Щуп одного из проводов от милливольтметра mV присоединяют к сердечнику или валу якоря, а другим касаются любой пластины коллектора. Источником тока может служить аккумуляторная батарея или сеть постоянного тока напряжением 220 или 110 В. При отыскании повреждения достаточен ток 6 – 8 А. Милливольтметр берут со шкалой до 50 мВ.
При петлевой обмотке присоединение к коллектору производят в двух диаметрально противоположных точках. При волновой обмотке соединение к пластинам производят на расстоянии половины шага по коллектору.
При замыкании на корпус в петлевой обмотке стрелка прибора покажет отклонение, равное сумме падений напряжений в секциях, оказавшихся между секцией, замкнутой на корпус, и той, к которой присоединен щуп (рисунок 2, б, положение I – сплошная стрелка). Щуп, присоединенный к коллектору, передвигают в одну и другую стороны. При его приближении к замкнутой на корпус секции показания прибора будут уменьшаться (положение II – пунктирная стрелка), так как будет уменьшаться число секций, на которых измеряется падение напряжения. Когда щуп будет соединен с секцией, которая замкнута на корпус, стрелка милливольтметра станет на нуль (положение III). Если двигать щуп дальше, то стрелка прибора отклонится в обратную сторону (положение IV).
При проверке волновой обмотки наименьшие показания будут давать пластины коллектора, либо непосредственно замкнутые на корпус, либо замкнутые на корпус через секции обмотки.
Место замыкания определяют также «прослушиванием» обмотки (рисунок 2, в). Для этого аккумуляторную батарею и зуммер 3 присоединяют к валу якоря и любой коллекторной пластине. К валу присоединяют также один вывод телефона 1; другой вывод его перемещают по коллектору 2. Чем ближе перемещаемый проводник к замкнутой пластине или секции, тем слабее шум в телефоне. При касании проводником замкнутой на корпус секции шум исчезает.
Если указанные выше способы не дают положительных результатов, то приходится путем распайки делить обмотку на части и проверять мегомметром каждую часть в отдельности. При обнаружении замыкания в одной из частей обмотки ее продолжают делить на части до тех пор, пока не будет обнаружена секция, замкнутая на корпус.
Замыкания на корпус устраняют следующим образом:
- если замыкание произошло в местах выхода секций из пазов, то вгоняют под секцию небольшие клинья из фибры, бука или другого изоляционного материала;
- если замыкание произошло в пазовой части секции, то секцию переизолируют или заменяют новой;
- при отсыревании обмотки ее прослушивают;
- если обнаружено замыкание пластин на корпус, то следует произвести ремонт коллектора с разборкой.
Межвитковые замыкания
Такой вид замыканий представляет собой соединение витков внутри обмотки вследствие повреждения изоляции обмоточных проводов. Чаще всего межвитковые замыкания происходят при повреждении изоляции проводников во время рихтовки и осадки катушек, при укладке обмотки, из-за попадания припоя или стружки между витками, при пробое обмотки на корпус, вследствие перекрещивания проводов в пазовой части при всыпной обмотке и тому подобное.
Межвитковые замыкания могут быть в одной или нескольких секциях якоря или между секциями вследствие замыкания смежных пластин коллектора. При замыкании между концами секции или между пластинами коллектора, а также при соединении между собой отдельных витков секции в обмотке якоря образуются замкнутые контуры.
В петлевой обмотке замыкание между двумя смежными пластинами вызывает замыкание только секции, которая присоединена к этим пластинам, и число действующих в обмотке витков уменьшается на число витков, заключающихся в одной секции.
В волновой обмотке замыкание между двумя смежными пластинами вызывает замыкание ряда секций, которые заключены в одном полном обходе вокруг якоря. Число их равно числу пар полюсов машины.
В короткозамкнутых контурах при вращении их в магнитном поле индуктируется электродвижущая сила (ЭДС), которая вызывает большие токи короткого замыкания вследствие малого сопротивления этих контуров. Короткозамкнутые витки, появившиеся во время работы машины, сильно разогреваются проходящим через обмотку током и обычно сгорают.
Как определить межвитковое замыкание электродвигателя? У якорей с волновой обмоткой, а также в обмотках, имеющих уравнительные соединения при значительном числе замкнутых секций, невозможно по нагреву определить короткозамкнутую ветвь, так как нагревается весь якорь. Иногда место витковых замыканий может быть обнаружено при внешнем осмотре по обуглившейся и сгоревшей изоляции секции.
Наиболее простые и часто встречающиеся случаи (например, замыкания витков одной секции, между соседними коллекторными пластинами или же между соседними секциями, находящимися в одном слое обмотки) обнаруживаются по падению напряжения, прослушиванием и другими способами.
Способ определения повреждений по падению напряжения
Такой способ (рисунок 3) заключается в следующем. К паре коллекторных пластин 1 подводится постоянный ток с помощью щупов 3. Щупами 2 измеряют падение напряжения на этой же паре пластин. При замыкании в секции, которая присоединена к проверяемой паре пластин, получается меньшее падение напряжения при одном и том же токе, чем на другой паре пластин, между которыми нет замыкания. Чем больше короткозамкнутых витков, тем меньше падение напряжения. Наименьшее падение напряжения (или равное нулю) будет при замыкании между самими коллекторными пластинами.
Таким образом проверяется весь якорь и производится сравнение результатов измерений. Проверку якоря следует производить при поднятых щетках. Параметры схемы такие же, как и на рисунке 2, а.
Чтобы предупредить повреждение милливольтметра (рисунок 3), необходимо сначала прикладывать к коллектору щупы 3, а затем щупы 2; отнимать щупы нужно в обратном порядке.
Хорошие результаты этот способ дает при определении замыканий между витками в секции с небольшим количеством витков (стержневые обмотки). В многовитковых секциях при замыкании одного-двух витков разница в показаниях милливольтметра на коллекторных пластинах исправной секции и поврежденной может оказаться незначительной.
На рисунке 4 показаны схемы для определения межвитковых замыканий с помощью телефона и стальной пластины. Испытательная установка состоит из электромагнита 1, питаемого переменным током повышенной частоты. Якорь 3 устанавливают над электромагнитом. При межвитковом замыкании в какой-либо секции в ней будет проходить большой ток, что обнаружится по нагреву. С помощью телефона 2 и электромагнита 4 можно быстро определить паз с поврежденной секцией. При исправных секциях обмотки в телефоне 2 слышен слабый, одинаковой силы звук. Если же одна из секций имеет межвитковое замыкание, то звук в телефоне заметно усиливается.
Рисунок 4. Проверка якоря на межвитковое замыкание.
а – с помощью телефона; б – с помощью стальной пластины
Для полной проверки обмотки нужно переставлять электромагнит 4 по зубцам якоря, пока последний не будет обойден кругом. Если к зубцам сердечника, охватывающим неисправную секцию, поднести тонкую стальную пластину 5 (рисунок 4, б), то она начнет дребезжать. Этим способом обнаруживается замыкание смежных пластин коллектора, которое вызывает те же явления, что и межвитковое замыкание.
Для определения межвитковых замыканий может быть использована схема, показанная на рисунке 2, в. Для этого второй проводник присоединяют не к валу, как показано на рисунке, а к коллекторной пластине. Провода от телефона 1 присоединяют к двум смежным пластинам.
Секцию, имеющую витковое замыкание, обычно заменяют новой. Переизолировкой одного лишь места замыкания можно ограничится только в случае неполного контакта в месте замыкания, да и то при отсутствии иных повреждений изоляции.
В случае необходимости (в качестве временной меры) при небольшом числе коллекторных пластин производят выключение из работы поврежденных секций. Выключение одной секции не отражается заметным образом на коммутации машины.
Обрывы в обмотке якоря
Обрывы в обмотке возникают вследствие выплавления припоя из-за перегрева обмоток при перегрузках, короткого замыкания, надлома от частых изгибаний лобовых частей обмотки и тому подобного. Обрывы чаще всего происходят в обмотках из тонкого провода из-за его малой механической прочности. Обрыв обмотки или плохой контакт сильно ухудшает коммутацию машины и может вызвать значительное искрение на коллекторе и его подгорание. Если якорь работает длительное время с обрывом, то образующаяся в месте обрыва дуга может постепенно прожечь изоляцию и привести к замыканию обмотки на корпус.
В петлевой обмотке обрыв сопровождается искрением на коллекторе и подгоранием двух смежных пластин, к которым присоединена поврежденная секция. При волновой обмотке подгорает несколько пар соседних пластин (по числу полюсов), к которым присоединены секции одной последовательной цепи этой обмотки. При этом подгорают обращенные друг к другу края соседних пластин.
Как при плохом контакте, так и при обрыве при наличии уравнительных соединений могут подгореть, кроме пластин, относящиеся к неисправным секциям, и коллекторные пластины, отстоящие от них на двойное полюсное деление и связанные с ними уравнительными соединениями. Место обрыва можно определить по падению напряжения.
При обрыве какой-либо секции (рисунок 5, а) не будет тока во всей половине обмотки, в которой находится неисправная секция, поэтому прибор везде покажет нуль (положения II и III), кроме случая, когда провода прибора будут присоединены к концам оборванной секции. При этом цепь будет замкнута через прибор и стрелка его отклонится так же, как если бы провода прибора были присоединены непосредственно к источнику тока (положение I).
Рисунок 5. Отыскание одного (а) и двух (б) обрывов в петлевой обмотке
При двух обрывах (рисунок 5, б), если замыкать попарно пластины коллектора, прибор ничего не покажет на всем участке между пластинами, к которым подведено напряжение. Для нахождения мест обрывов поступают следующим образом: один из щупов от проводов, соединенных с прибором, устанавливают на коллекторную пластину, к которой подводится питание, а другой перемещают по коллектору, начиная от другого подводящего питание щупа. При этом показания прибора будут максимальными (положение IV). Когда передвигаемый по коллектору щуп «пройдет» место обрыва, прибор покажет нуль (положение V). Найдя один обрыв, таким же образом отыскивают и другой.
При обрывах в волновой обмотке наибольшее отклонение будет иметь место на нескольких парах пластин, находящихся попарно на расстоянии шага по коллектору друг от друга. Обрывы в якоре, имеющем параллельные ветви, могут быть также определены измерением их сопротивления. При обрыве одной из секций сопротивление обмотки резко возрастает.
После укладки обмотки якоря в пазы сердечника она должна быть проверена на правильность соединения с пластинами коллектора. Эту проверку производят после того, как концы секций обмотки зачищены до металлического блеска и заложены в прорези коллекторных пластин. На рисунке 6 показана схема установки, необходимой для этой цели. На деревянных стойках, привернутых к деревянному основанию 3, устанавливается якорь 2. Под якорем помещен электромагнит 5, сердечник которого изготовлен из П-образных листов электротехнической стали. Обмотка электромагнита 8 состоит из двух катушек, которые соединены так, что при прохождении по ним тока возникают два разноименных магнитных полюса С и Ю. Катушки получают питание от выпрямителя 4 через реостат 7. Выключателем служит ножная педаль 1. Вилкой 9 милливольтметр 6 соединяется с двумя смежными пластинами. В момент размыкания контактов педалью 1 в обмотке якоря индуктируются импульсы. При правильном соединении обмотки и положении вилки 9 на любых смежных пластинах коллектора стрелка милливольтметра 6 должна отклоняться в одну и ту же сторону и приблизительно до одного и того же деления шкалы.
Неисправности в обмотках полюсов и устранение их
Катушки полюсов меньше подвергаются повреждениям, так как они неподвижно закреплены на полюсах. Чаще всего катушки повреждаются на углах внутри катушки, у места выхода внутреннего выводного конца вследствие неправильной установки его вначале намотки и тому подобное. К причинам повреждения можно отнести нарушение изоляции из-за того, что она плохо натянута, неравномерную укладку изоляции, выступы и заусенцы металлического каркаса и другое. Наиболее часто встречаются следующие неисправности обмоток полюсов: обрыв или плохой контакт, межвитковые замыкания и замыкание обмоток на корпус.
Межвитковое замыкание в катушках полюсов
Поврежденная катушка со значительным числом замкнутых витков имеет уменьшенное сопротивление. Ее можно легко обнаружить, если измерить сопротивления всех катушек измерительным мостом, тестером, методом амперметра и вольтметра (постоянным током) и другими. При измерении сопротивления методом амперметра и вольтметра испытуемая катушка включается в сеть через сопротивление, которым может регулироваться ток в катушке. По показаниям амперметра и вольтметра находят по закону Ома сопротивление катушки. Сопротивление всех катушек, не имеющих витковых замыканий, одинаково. В катушках с замкнутыми витками будет меньше сопротивление, чем в катушках, не имеющих замкнутых витков.
Замыкания в обмотках полюсов, если они находятся не на выводных концах, устраняют частичной или полной перемоткой. С катушки отматывают витки и одновременно производят осмотр. Если витковые замыкания вызваны увлажнением изоляции, то катушку следует просушить.
Обрывы в обмотках полюсов
Обрывы в обмотках полюсов бывают только в катушках, которые изготовлены из проволоки небольшого сечения. Место обрыва можно определить вольтметром, которым измеряют напряжение на всех катушках (рисунок 7, а). При обрыве в катушке вольтметр, подключенный к зажимам поврежденной катушки, покажет полное напряжение сети. На исправных катушках вольтметр не даст отклонений. Обрыв можно также обнаружить контрольной лампой или мегомметром. Обрыв, а также плохой контакт в доступных местах устраняют пайкой.
data-src=/images/stories/669-the-definition-of-the-break.jpg data-jchll=true width=650 height=433 alt=»Определение места обрыва и замыкания на корпус в обмотках полюсов» title=»Определение места обрыва и замыкания на корпус в обмотках полюсов» name=»Определение места обрыва и замыкания на корпус в обмотках полюсов»/>
Рисунок 7. Определение места обрыва (а) и замыкания на корпус (б) в обмотках полюсов
Замыкание обмотки полюсов на корпус
Замыкание обмотки полюсов на корпус можно определить, если через всю обмотку пропустить постоянный ток. Один конец вольтметра (рисунок 7, б) присоединяют к корпусу машины, а другой (свободный) – к выводу катушки. Вольтметр покажет наименьшее напряжение на выводах катушки, замкнутой на корпус.
Проверка последовательной обмотки или обмотки добавочных полюсов производится при пониженном напряжении, величина которого регулируется включенным последовательно реостатом. Вместо вольтметра для измерения напряжения применяют милливольтметр.
Замкнутую на корпус катушку можно обнаружить контрольной лампой или мегомметром. Для этого катушки разъединяют и проверяют отдельно. Для устранения замыкания на корпус снимают катушку с сердечника полюса и осматривают места соприкосновения ее как с корпусом, так и со станиной. Замыкания на корпус устраняют переизолировкой катушек, установкой изоляционных прокладок, сушкой при увлажнении и другими способами.
Правильность соединения катушек полюсов проверяется компасом или намагниченной стрелкой (рисунок 8). Для этого по обмоткам полюсов пропускают постоянный ток и к каждой катушке подносят компас или стрелку. Если чередование полярности полюсов правильное, то при перемещении, например, компаса внутри машины (при вынутом якоре) от полюса к полюсу стрелка компаса будет поочередно притягиваться к полюсам то одним, то другим концом.
Источник: Логачев И. С., Родин Г. Г., «Ремонт обмоток машин постоянного тока» — Москва: Энергия, 1968 — 128 с.
www.electromechanics.ru
Как прозвонить: условия
Прежде чем проверить электродвигатель на неисправность, необходимо убедиться в том, что шнур и вилка прибора абсолютно исправны. Обычно об отсутствии нарушения подачи электрического тока в устройство, можно судить по светящейся контрольной лампе. Убедившись в том, что электрический ток поступает к электродвигателю, необходимо осуществить демонтаж его из корпуса устройства, при этом сам прибор должен быть полностью обесточен, во время выполнения данной операции.
Проверка якоря и статора электродвигателя производится мультиметром. Последовательность измерений зависит от модели электрического агрегата, при этом, прежде чем прозвонить электродвигатель, следует убедиться в исправности измерительного прибора. Наиболее частой «поломкой» мультиметров является уменьшение заряда батареи, в этом случае можно получить искажённые результаты замеров сопротивления.
Ещё одним важным условием для того чтобы прозвонить электрический агрегат правильно, является полное приостановление каких-либо других дел и полностью посвятить время на выполнение диагностических работ, иначе можно легко пропустить какой-либо участок обмотки электродвигателя, в котором и может быть причина неполадок.
Прозвонка асинхронного двигателя
Данный вид электродвигателя довольно часто используется в бытовых устройствах работающих от сети 220 В. После демонтажа агрегата из прибора и визуального осмотра, при котором не будут обнаружено короткое замыкание, диагностика осуществляется в такой последовательности:
- Произвести замеры сопротивления между выводами двигателя.
Данная операция может быть осуществлена мультиметром, который должен быть переведён в режим измерения сопротивления до 100 Ом. Исправный асинхронный двигатель должен иметь между одним крайним и средним выводом подключаемой обмотки сопротивление около 30 — 50 Ом, а между другим крайним и средним контактом — 15 — 20 Ом. Данные измерения указывают на полную исправность пусковой и основной обмотки агрегата. - Провести диагностику утечки тока на «массу».
Чтобы прозвонить агрегат на утечки электрического тока, необходимо перевести режим работы мультиметра в положение измерения сопротивления до 2 000 кОм и поочерёдным соединением каждой клеммы с корпусом электродвигателя определить наличие или отсутствие повреждения изоляции. Во всех случаях, на дисплее мультиметра не должно отображаться каких-либо показаний. Если для измерения утечки используется аналоговый прибор, то стрелка не должна отклоняться в процессе проведения диагностических манипуляций.
Если в процессе измерений были выявлены отклонения от нормы, то агрегат необходимо разобрать для более детальных исследований. Наиболее распространённой поломкой асинхронных электродвигателей является межвитковое замыкание. При такой неисправности, прибор перегревается и не развивает полной мощности, а если эксплуатацию устройства не прекратить, то можно полностью вывести из строя электрический агрегат.
Чтобы прозвонить межвитковые замыкания, мультиметр переводится в режим измерения сопротивления до 100 Ом.
Необходимо прозвонить каждый контур статора, и сравнить полученные результаты. Если величина сопротивление в одном из них будет существенно отличаться, то таким образом можно с уверенностью диагностировать межвитковое замыкание обмотки асинхронного электродвигателя.
evosnab.ru
Уровень профессионализма участников этого форума непрерывно растет, и я решил создать эту тему, посвященную проблеме, над которой я сейчас работаю. Возможно, раздел выбран неправильно, но это поправить недолго. Предыстория такова:
В ремонт пришла посудомоечная машина Аристон Ariston CIS LI 480AC S/N 705258106 64406470000.
Проблема:
Через 30-40 минут от начала работы выдает ошибку AL10 – (моргает 4 и 6 индикаторы, всего индикаторов 6), сливает горячую воду и встает. Ошибка звучит как «обрыв в цепи питания нагревательного элемента»
Осмотр показал, что ТЭН около 40 Ом, цепи в норме, воду греет.
Включил на мойку. И через некоторое время обнаружил, что импеллеры постепенно замедляют ход, а затем, видимо совсем встают.
Вывод: неисправен рециркуляционный насос. (механизм его виновности в ошибке AL10 я думаю, всем понятен, а если нет – могу объяснить подробнее)
Насос снял. Включил в розетку.
Крутит и тянет в принципе неплохо. Через 30 минут работы нагревается на холостом ходу градусов до 50-60. На мой взгляд, это много.
Если у этого мотора есть межвитковое замыкание, то оно находится где-то в конце обмотки. Т.е. неочевидное и простым тестером его не прозвонишь, И мощность развивает неплохую.
Так вот собственно вопрос:
Есть ли какой-нибудь научный способ проверить наличие короткого замыкания именно этого мотора (без замены или перемотки)?
Ненаучные способы я знаю, но в данном случае они не подходят – у этого мотора нет шкива.
Ещё:
Мотор YXW65-2B , китайский. Например, http://www.partmaster.co.uk/cgi-bin/pro … 393:113417
В моём случае при 220V потребляет 0,28А. При мощности 120W и заявленном рабочем токе 0,48 А.
Но, повторю, это холостой ход.
Просьба мысли высказывать любые, но желательно всё-таки конструктивные.
Спасибо, что дочитали до этого места.
www.elremont.ru
www.novaso.ru
Определение начала и конца обмоток электродвигателя
Здравствуйте, дорогие посетители и постоянные читатели сайта «Заметки электрика».
Продолжаю серию статей из раздела «Электродвигатели». В прошлых статьях я рассказывал Вам про устройство асинхронного двигателя, соединение в звезду и треугольник его обмоток, провел эксперимент подключения трехфазного двигателя в однофазную сеть.
Бывают ситуации, когда Вы подходите к двигателю с целью подключить его в сеть, а в клеммной колодке находятся 6 проводов, совершенно без бирочек и маркировки.
Что делать в такой ситуации?
Делается это не очень трудно. В качестве примера я покажу Вам наглядно как определить начало и конец обмоток электродвигателя АИР71А4.
Шаг 1
Самым первым шагом в определении начала и конца обмоток асинхронного двигателя является написание бирочек (кембриков). Для этого воспользуемся трубкой ПВХ диаметром 5 (мм) и маркером.
Нарезаем из трубки ПВХ шесть отрезков одинаковой длины и подписываем их маркером.
Про маркировку обмоток трехфазного асинхронного двигателя я Вам рассказывал в статье про соединение звездой и треугольником. Кто забыл, то переходите по ссылке и читайте.
Вот что получилось.
Шаг 2
Вы уже знаете, что обмотка статора асинхронного двигателя состоит из 3 обмоток, сдвинутых относительно друг друга на 120 электрических градуса. Так вот вторым шагом в определении начала и конца обмоток асинхронного двигателя является определение принадлежности всех шести выводов к соответствующим обмоткам.
Как это делается?
Можно воспользоваться обычным омметром, но я предпочитаю использовать цифровой мультиметр. Кстати, скоро в свет выйдет интересная и подробная статья о том, как пользоваться мультиметром при проведении различных видов электрических измерений.
Чтобы не пропустить выход новых статей на сайте, Вам необходимо подписаться на получение новостей в конце статьи или в правой колонке сайта.
Итак, с помощью мультиметра определяем первую обмотку. Переключатель режима работы мультиметра ставим в положение 200 (Ом).
Одним щупом встаем на любой из шести проводников. Вторым ищем его конец. Как только попадаем на искомый проводник, показания мультиметра покажут нам значение отличное от нуля. В моем примере это 14,7 (Ом).
Это и есть первая обмотка статора нашего электродвигателя. Одеваем на нее бирки U1 и U2 в произвольном порядке.
Аналогично продолжаем искать остальные две обмотки.
На найденные обмотки одеваем бирочки (кембрики), соответственно, V1, V2 и W1, W2.
В итоге получаем шесть проводов с надетыми на них бирочками (кембриками) в произвольной форме.
Шаг 3
Чтобы перейти к третьему шагу определения начала и концов обмоток трехфазного электродвигателя необходимо вкратце вспомнить теорию электротехники.
Кстати, кое-что Вы уже можете почитать в разделе «Электротехника». Правда этот раздел еще не наполнен статьями, все руки до него не доходят. Также можете почитать мой отзыв про курс электротехники от Михаила Ванюшина. Я его приобрел в свой архив и совсем не пожалел.
Итак, две обмотки, находящиеся на одном сердечнике, можно подключить либо согласовано, либо встречно.
При согласованном включении двух обмоток возникнет электродвижущая сила ЭДС, состоящая из суммы ЭДС первой и второй обмоток. Таким образом, в этих обмотках возникает процесс электромагнитной индукции, который наводит в рядом расположенной обмотке ЭДС, т.е. напряжение.
Если же две обмотки подключить встречно, то сумма ЭДС этих двух обмоток будет равна нулю, т.к. ЭДС каждой обмотки будут направлены друг на друга, и тем самым компенсируют друг друга. Поэтому в рядом расположенной обмотке ЭДС не наведется или наведется, но очень малой величины.
Перейдем к практике.
Берем первую катушку (U1и U2) и соединяем ее со второй (V1 и V2) следующим образом. Напоминаю, что эти обозначения у нас условные.
Эта же схема на моем примере.
На вывод U1 и V2 подаем переменное напряжение порядка 100 (В). Можно подать напряжение и 220 (В), но я ограничился 100 (В).
После этого с помощью вольтметра или мультиметра производим измерение переменного напряжения на выводах W1 и W2.
Если мультиметр покажет некоторое значение напряжения, то первая и вторая обмотки включены согласовано. Если напряжение на выводах будет равняться нулю или иметь совсем маленькое значение, то значит обмотки включены встречно.
Смотрим, что получилось в нашем случае.
Замеряю напряжения на выводах W1 и W2. Получаю значение около 0,15 (В). Это очень маленькое значение, поэтому я делаю вывод, что обмотки я подключил встречно. Поэтому на второй обмотке я меняю местами бирочки V1 и V2 и снова провожу измерение.
После замены на выводах W1 и W2 я измерил напряжение порядка 6,8 (В). Это уже что-то похожее на правду.
Делаю вывод, что первая (U1 и U2) и вторая (V1 и V2) обмотки подключены согласовано, а значит, данная маркировка их начал и концов верна.
Осталось дело за малым – это найти начало и конец у третьей обмотки (W1 и W2). Все делаем аналогично, только подключаем их согласно схемы, приведенной ниже.
Измерение переменного напряжения проводим на выводах V1 и V2.
Получилось напряжение 6,8 (В). Значит маркировка начала и конца третьей обмотки верна.
Шаг 4
После определения начала и конца обмоток трехфазного асинхронного двигателя необходимо проверить себя. Для этого соединяем звездой или треугольником обмотки в зависимости от типа двигателя и напряжения сети. В нашем случае обмотки двигателя я соединил треугольником.
Подаю питающее трехфазное напряжение на обмотки – двигатель работает.
Можно сделать вывод, что начала и концы обмоток двигателя мы нашли правильно.
Существует еще несколько способов определения начала и концов обмоток электродвигателя, но лично я пользуюсь именно этим.
Для наглядности предлагаю посмотреть видео:
P.S. Если статья оказалась Вам полезной. то поделитесь ей со своими друзьями в социальных сетях. А если возникли вопросы по материалу данной статьи, то задавайте их в комментариях.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
zametkielectrika.ru
Как проверить электродвигатель | Электрик
При поломке электродвигателя, бывает недостаточно просто осмотреть его, чтобы понять причину неисправности.
Постараемся использовать наиболее простые технические способы и минимум оборудования.
Механическая часть
Механическая часть электродвигателя, грубо говоря, состоит всего из двух элементов:1. Ротор — подвижный, вращающий элемент, который приводит в движения вал двигателя.
2. Статор — корпус с обмотками в центре которого находится ротор.
Два этих элемента между собой не прикасаются и разделены только с помощью подшипников.
Проверка электродвигателя начинается с внешнего осмотра
Прежде всего двигатель осматривают на предмет любых заметных дефектов, это могут быть, например, сломанные монтажные отверстия и подставки, потемнение краски внутри электродвигателя что явно говорит о перегреве, наличие загрязнений или посторонних веществ попавших внутрь двигателя, любые сколы и трещины.
Проверка подшипников
Большинство неисправностей электродвигателей вызваны неисправностью его подшипников. Ротор должен свободно втащатся внутри статора, подшипники которые расположены с двух сторон вала, должны минимизировать трение.
Есть несколько типов подшипников использующихся в электродвигателях. Два самых популярных типа: латунные подшипники скольжения и шарикоподшипники. Многие из них имеют фитинги для смазки, в другие смазка заложена при производстве и они как-бы «не обслуживаемые».
Для проверки подшипников, прежде всего, необходимо снять напряжение с электродвигателя и попробовать вручную прокрутить ротор (вал) двигателя.
Для этого поместите электродвигатель на твердую поверхность и положите одну руку на верхнюю часть двигателя, проверните вал другой рукой. Внимательно наблюдайте, старайтесь почувствовать и услышать трение, царапающие звуки, неравномерность вращения ротора. Ротор должен вращаться спокойно, свободно и равномерно.
После этого проверяют продольный люфт ротора, попробуйте потянуть-потолкать ротор в статоре. Характерный небольшой люфт допустим, но не более 3 мм, чем люфт меньше тем лучше. При большом люфте и неисправностях подшипников, двигатель «шумит» и быстро перегревается.
Часто проверить вращение ротора бывает проблематично из-за подключенного привода. Например, ротор двигателя исправного пылесоса довольно легко раскрутить одним пальцем. А чтоб провернуть ротор рабочего перфоратора, придется приложить усилие. Прокрутить вал двигателя, подключенного через червячный редуктор, вообще не получится из-за конструктивных особенностей этого механизма.
По этому проверять подшипники и легкость вращения ротора нужно только при отключенном приводе.
Причиной затрудненного движения ротора может быть отсутствие смазки в подшипнике, загустение солидола или попадание грязи в полость шариков, внутри самого подшипника.
Нездоровый шум во время работы электродвигателя создается неисправными, разбитыми подшипниками с повышенным люфтом. Для того чтоб убедится в этом достаточно пошатать ротор относительно стационарной части, создавая переменные нагрузки в вертикальной плоскости, и попробовать вставлять и вытаскивать его вдоль оси.
Электрическая часть электродвигателя
В зависимости от того, двигатель для постоянного или переменного тока, асинхронный или синхронный, отличается и его конструкция электрической части, но общие принципы работы, основанные на воздействии вращающегося электромагнитного поля статора на поле ротора который передает вращение (валу) приводу.
В двигателях постоянного тока магнитное поле статора создается не постоянными магнитами, а двумя электромагнитами, собранными на специальных сердечниках — магнитопроводах, вокруг которых расположены катушки с обмотками, а магнитное поле ротора создается током, проходящим через щетки коллекторного узла по обмотке, уложенной в пазы якоря.
В асинхронных двигателях переменного тока ротор выполнен в виде короткозамкнутой обмотки в которую не подается ток.
В коллекторных электродвигателях используется схема передачи тока от стационарной части на вращающиеся детали с помощью щеткодержателя.
Поскольку магнитопровод изготавливается из пластин специальных сталей, собранных с высокой надежностью, то поломки таких элементов происходят очень редко и под воздействием агрессивных условий работы или запредельных механических нагрузок на корпус. Потому проверять их магнитные потоки не приходится и основное внимание прикладывается состоянию электрообмоток.
Проверка щеточного узла
Графитовые пластины щеток должны создавать минимальное переходное сопротивление для нормальной работы двигателя, они должны быть чистыми и хорошо прилегать к коллектору.
Электродвигатель который много работал с серьезными нагрузками, как правило имеет загрязненные пластины на коллекторе с изрядно набитыми в пазах пластин, графитовыми стружками, что довольно сильно ухудшает изоляцию между пластинами.
Щетки усилием пружин прижимаются к пластинам коллекторного барабана. В процессе работы графит истирается а его стержень изнашивается по длине и прижимная сила пружин уменьшается, а это в свою очередь приводит к ослаблению контактного давления и увеличению переходного электрического сопротивление, что вызывает искрение в коллекторе. Начинается повышенный износ щеток и медных пластин коллектора.
Щеточный механизм осматривают на загрязненность, на выработку самых щеток, на прижимную силу пружин механизма, а также на предмет искрения в процессе работы.
Загрязнения убираются мягкой тряпочкой, смоченной спиртом. Зазоры (полости) между пластинами очищаются с помощью зубочистки. Щетки притирают мелкозернистой наждачной шкуркой.
Если на коллекторе имеются выбоины или выгоревшие участки, то его подвергают механической обработке и полировке до нужного уровня.
Проверка обмоток на обрыв или короткое замыкание
Большинство простых однофазных или трехфазных бытовых электродвигателей можно проверить обычным тестером в режиме омметра (в самом низком диапазоне). Хорошо если есть схема обмоток.
Сопротивление как правило небольшое. Большое значение сопротивления указывает на серьезную проблему с обмотками электродвигателя, которые могут иметь разрыв.
Проверка на короткое замыкание на корпус
Проверка производится с помощью мультиметра в режиме сопротивления. Зацепив один щуп тестера на корпус, поочередно прикасаются вторым щупом к выводам обмоток электродвигателя. В исправном электродвигателе сопротивление должно быть бесконечным.
Проверка изоляции обмоток относительно корпуса
Для нахождения нарушений диэлектрических свойств изоляции относительно статора и ротора применяют специальный прибор — мегомметр. Большинство бытовых мультиметров прекрасно справляются с замером сопротивления до 200МОм и хорошо подойдут для етой цели, но недостатком мультиметров есть низкое напряжение замера сопротивления, оно как правило не больше 10 вольт, а напряжение эксплуатации обмоток намного больше.
Но все же если не удалось найти «профессиональный прибор» замер сделаем тестером. Прибор выставляем в максимальное сопротивление (200МОм), один щуп фиксируем на корпусе двигателя или на заземляющем винте, обеспечив надежный контакт с металлом, а вторым поочередно, не прикасаясь руками, прижимаем щуп к контактам обмоток. Следует обеспечить надежную изоляцию щупов от рук и тела, так как измерения будут неверны.
Чем больше сопротивление тем лучше, иногда оно может составлять всего 100 МОм и ето может быть приемлемо.
Иногда в коллекторных двигателях графитовая пыль может «набиваться» между щеткодержателем и корпусом двигателя и можно будет увидеть куда меньшие показатели сопротивления, здесь следует обратить внимание не только на обмотки но и на потенциальные места «пробоя».
Проверка пускового конденсатора
Проверяют конденсатор тестером или же простым омметром.
Прикоснитесь щупами к выводам конденсатора, сопротивление должно начинаться с низких показателей и постепенно увеличиваться, так как небольшое напряжение, подающееся от батареек омметра, постепенно заряжает конденсатор. Если конденсатор остается короткозамкнутым или сопротивление не растет, то, вероятно, проблема с конденсатором, его необходимо заменить.
elektt.blogspot.com
асинхронный, коллекторный, 3 фазный, 1 фазный
Для выявления неисправности электродвигателя в домашних условиях за неимением дорогостоящего профессионального оборудования ничего не остается, как прозвонить электродвигатель мультиметром. С его помощью можно определить большинство поломок, и вам не придется привлекать специалиста. Итак, что нужно сделать?
Подготовка
Перед тем, как проводить диагностику, следует:
- Обесточить агрегат. Если измерение сопротивления осуществляется в цепи, подключенной к электросети, прибор выйдет из строя.
- Откалибровать аппарат, то есть выставить стрелку в нулевое положение (щупы должны быть замкнуты).
- Осмотреть двигатель и выяснить, не затоплен ли он, нет ли запаха горелой изоляции или отломанных деталей и т.д.
Асинхронный, коллекторный, однофазный и трехфазный двигатели прозваниваются по одной и той же методике, небольшая разница в конструкции особой роли не играет, но есть нюансы, которые необходимо учитывать.
Этапы работы
Самые частые неисправности можно поделить на два вида:
- Наличие контакта в месте, где его не должно быть.
- Отсутствие контакта в месте, где он должен быть.
Для начала рассмотрим, как прозвонить 3-фазный электродвигатель мультиметром. Он имеет три катушки, соединенные по схеме «треугольник» или «звезда». На его работоспособность влияют надежность контактов, качество изоляции и правильная намотка.
- Для начала проверьте замыкание на корпус (имейте в виду, значение получится приблизительное, так как для точных показаний требуются более чувствительные приборы).
- Установите значения измерений на мультиметре на максимум.
- Соедините щупы друг с другом, чтобы убедиться в правильности настроек и исправности прибора.
- Соедините один из щупов с корпусом двигателя, если есть контакт, присоедините второй щуп к корпусу и следите за показаниями.
- Если сбоев нет, поочередно коснитесь щупом вывода каждой из трех фаз.
- Если изоляция качественная, проверка должна показать достаточно высокое сопротивление (несколько сотен или тысяч мегом).
Необходимо помнить, что при измерении сопротивления изоляции с помощью мультиметра показания будут выше допустимых, так как ЭДС прибора не превышает 9в. Двигатель же работает при 220 или 380в. По закону Ома значение сопротивления зависит от напряжения, поэтому делайте скидку на разницу.
Далее проверьте целостность обмоток, прозвонив три конца, входящих в борно двигателя. При наличии обрыва дальнейшая проверка не имеет смысла, поскольку прежде нужно устранить эту неисправность.
Затем проверьте короткозамкнутые витки. При соединении «треугольником» показателем неисправности будет большее значение в концах А1 и А3. При соединении «звездой» прибор показывает завышенное значение в цепи А3.
Зная, как прозвонить асинхронный электродвигатель мультиметром, вы сэкономите время и деньги, так как, возможно, выявятся только мелкие неисправности, которые вы легко устраните самостоятельно. Для более серьезной и детальной диагностики требуются другие приборы, которые редко используются в быту по причине дороговизны. Если вы не смогли найти повреждения с помощью мультиметра, обратитесь к специалисту.
Проверка коллекторного электродвигателя
Теперь перейдем к вышеупомянутым нюансам, ведь двигатели бывают разных видов. Как прозвонить коллекторный электродвигатель мультиметром? Схема его проверки выглядит следующим образом:
- Включите прибор на единицы Ом и измерьте попарно сопротивление ламелей коллектора.
- Затем измерьте сопротивление между корпусом якоря и коллектором.
- Проверьте обмотки статора.
- Измерьте сопротивление между корпусом и выводами статора.
Межвитковое замыкание определяется только специальным прибором. Существует способ измерения сопротивления якоря. Снимите с него щетки и подведите к пластинам напряжение до 6в, измерьте падение напряжения между ними.
Для проверки однофазного двигателя прозвоните рабочую и пусковую обмотки. Сопротивление первой должно быть в полтора раза ниже, чем второй.
Для примера возьмем однофазный мотор с тремя выводами, использующийся в стиральных машинах (чаще старого образца). Если между концами очень большое сопротивление, значит катушки соединены последовательно. Остается найти среднюю точку и таким образом определить концы каждой из них в отдельности.
Поскольку электродвигатели встречаются в каждом доме в бытовых приборах – это и холодильник, и пылесос, и многое другое – и они периодически ломаются, знать, как проверить однофазный электродвигатель мультиметром, просто необходимо. Если поломка не слишком серьезная, нести прибор в ремонтную мастерскую нецелесообразно. И у вас появится возможность набраться опыта и получить навыки, работая с двигателями разных типов и модификаций.
www.szemo.ru
Как проверить электродвигатель мультиметром в домашних условиях
Конструкции многих механизмов и оборудования имеют электродвигатель. Эта неотъемлемая часть практически всей электротехники предназначена для преобразования электрической энергии в механическую. Сложность конструкции определяет то, что она может довольно часто выходить из строя.
Нарушение установленных стандартов применения и некоторое воздействие могут стать причиной появления серьезных проблем, для определения которых можно использовать мультиметр. Чтобы не тратить деньги на услуги мастерской, надо узнать, как можно сомостоятельно прозвонить электродвигатель мультиметром. У этой работы есть довольно большое количество особенностей.
Классификация электродвигателей
При проверке электродвигателя на исправность следует учитывать, что не все разновидности моторов могут проверяться подобным образом. Существуют самые различные варианты исполнения электродвигателей, большинство неполадок можно диагностировать при помощи мультиметра. При этом необязательно быть специалистом в этой сфере.
Современные электродвигатели можно разделить на несколько групп:
- Асинхронный трехфазный с короткозамкнутым ротором. Эта модель пользуется большой популярностью, так как устройство простое и подвергается диагностике при применении обычного измерительного инструмента.
- Асинхронный конденсаторный, короткозамкнутый с одной или двумя фазами. Такой вариант исполнения устанавливается в бытовой технике, питаться устройство может от обычной сети 220 В. Сегодня подобный электродвигатель также получил широкое распространение, встречается практически в каждом доме. Проверка на неисправность в этом случае проводится при применении стандартного тестера. Однофазная модель обладает экономичностью и практичностью в применении.
- Асинхронный, оснащенный фазным ротором. Прозвонок этого мотора проводится довольно часто, что связано с более мощным стартовым моментом. Устанавливается эта модель на различном производственном оборудовании и различной крупной технике. Примером назовем краны, подъемники или различные станки.
- Коллекторные, которые питаются от постоянного тока. Ревизия подобного прибора проводится довольно часто, используется в различных автомобилях для вентиляторов и насосов, дворников. Подобный электромотор может сгореть по различным причинам, своевременная проверка позволяет определить проблему.
- Коллекторный с переменным током. Ручной электрический инструмент получил весьма широкое распространение. Для передачи вращения устанавливается коллекторный мотор, проверить который можно при помощи мегаомметра.
Перед тем как проверить электродвигатель мультиметром, проводится его визуальный осмотр. Даже невооруженным взглядом можно определить сгоревшую обмотку или серьезные механические повреждения. Однако если визуально конструкция не имеет дефектов, то следует использовать специальный измерительный инструмент.
Конструктивные особенности
Устройство электродвигателей может существенно отличаться, но зачастую оно представлено сочетанием сходных элементов. Подвижный элемент принято называть ротором, неподвижный — стартером. Медная проволока может наматываться следующим образом:
- Катушка только на роторе.
- Катушка только на стартере.
- Обмотка на подвижной и неподвижной части.
Критерии выбора мультиметра
Для тестирования различного электрооборудования применяют мультиметры. В продаже можно встретить различные варианты исполнения этого измерительного прибора, все они имеют свои особенности. Основными критериями выбора назовем следующие моменты:
- Стрелочный или цифровой циферблат. Цифровой сегодня более востребован, так как обладает большим количеством различных функций и высокой точностью. Сегодня стрелочные модели практически не встречаются в продаже.
- Функциональные возможности. Чем больше функций, тем более широкая область применения устройства. За счет этого повышается стоимость измерительного прибора.
- Подсветка и кнопка удержания снятых показателей позволяют повысить комфорт применения мультиметра.
- Чем ниже погрешность в работе, тем точнее тестер. Большинство моделей имеют погрешность не более 3%.
- Если предусматривается профессиональное предоставление услуг, то следует уделить внимание модели с высокой степенью защиты от пыли или влаги. Чем выше степень защиты устройства, тем больше оно прослужит.
- Класс электробезопасности. Все измерительные приборы делятся на 4 класса, которые определяют область применения мультиметра.
Проверить основные показатели электрического двигателя можно при применении самого простого оборудования.
Проверка асинхронного трехфазного двигателя
Наибольшее распространение получили асинхронные двигатели, которые рассчитаны на две или три фразы.
Трехфазный мотор обладает высокой производительностью. Существует две основные неполадки этой конструкции:
- Контакт возникает в неположенном месте.
- Контакт отсутствует.
Конструкция представлена тремя катушками, которые соединяются в форме звезды или треугольника. Чтобы сделать проверку правильно, следует учитывать, что работоспособность мотора определяется несколькими факторами:
- Качество изоляции.
- Надежность всех контактов.
- Правильность намотки.
Сопротивление определяется следующим образом:
- Замыкание на корпус обычно проверяется при помощи мегомметра. При отсутствии этого инструмента можно использовать тестер, выставляется максимальный омический показатель. В случае применения тестера не следует рассчитывать на то, что показатель будет точным.
- Стоит учитывать, что перед использованием измерительного прибора следует отключить электрический двигатель от сети. В противном случае он сгорит.
- Перед применением измерительного прибора следует произвести калибровку прибора. Для этого нужно поставить стрелку на ноль при замкнутом положении щупов.
- Один щуп прикладывается к корпусу. Это делается для того, чтобы проверить наличие контакта. После этого проверяется показатель, для чего второй щуп также должен касаться корпуса. При нормальном показателе проводится проверка каждой фазы поочередно.
После проверки качества изоляции следует убедиться в том, что все три обмотки целые. Для этого можно их прозвонить. При обнаружении обрыва ее следует исправить, после чего дальше проводить проверку.
Тестирование двухфазной модели
Статор и многие другие конструктивные элементы двухфазного электрического двигателя имеют свои отличительные признаки, которые и определяют особенности проверки.
К особенностям проверки двухфазного электрического двигателя отнесем следующие моменты:
- В этом случае обязательно проверяется сопротивление на корпусе. Слишком низкий показатель указывает на то, что нужно выполнить перемотку статора.
- Для получения более точных показателей рекомендуется использовать мегомметр, однако подобный измерительный инструмент встречается дома крайне редко.
Перед тестированием электрического двигателя следует провести визуальный осмотр. Механические повреждения могут привести к серьезным проблемам с работой.
Коллекторная конструкция
Коллекторные модели также получили весьма широкое распространение. Их конструктивные особенности существенно отличаются, если сравнить с асинхронными моделями. Проверка работоспособности при применении мультиметра проводится следующим образом:
- Тестер устанавливается на определение Ом. Проверка начинается с замера сопротивления на коллекторных ламелях. Стоит учитывать, что в норме полученные данные не должны существенно различаться.
- Далее измеряется показатель сопротивления, для чего один щуп прибора прикладывается к корпусу якоря, другой — к коллектору. Полученное значение сопротивления должно быть высоким, стремиться к бесконечности. Это указывает на то, что изоляция находится в хорошем состоянии.
- Следующий шаг предусматривает определение статора на целостность обмотки. Для этого один щуп прикладывается на корпус статора, а другой — к выводам. Чем выше показатель, тем лучше.
При применении мультиметра проверить межвитковое замыкание не получится. Для этого применяется специальный аппарат.
Дополнительное оснащение
Электрические силовые установки довольно часто снабжаются специальными дополнительными элементами. Они предназначены для защиты устройства и оптимизации работы. Наиболее распространенным дополнительным оборудованием можно считать:
- Термический предохранитель. При повышении температуры до критического значения может нарушиться целостность изоляции. Термический предохранитель позволяет решить проблему с целостностью изолирующего материала. Как правило, предохранитель убирается под изоляцию обмотки или фиксируется на корпусе. Получить доступ к выводам довольно просто, при применении обычного тестера можно получить требующуюся информацию.
- В последнее время часто термический предохранитель заменяют на температурное реле. Выделяют два типа: замкнутый и разомкнутый. Марка устройства указывается на корпусе. Реле выбирается в соответствии с техническими параметрами электрического двигателя.
- Датчики оборотов устанавливаются на стиральных машинах. Подобное оборудование работает по принципу измерения разности потенциалов в пластинке, через которую проходит наиболее слабый ток. При этом есть три контакта, третий предназначен для проверки тока в рабочем режиме. Не рекомендуется проверять величину электропитания на момент включенного двигателя, так как это может привести к сгоранию измерительного прибора.
Обычный мультиметр может применяться для диагностики самых различных показателей, а также проверки неисправностей. Однако если этот измерительный прибор не позволил выявить неполадку, то могут применяться другие специальные инструменты. Их высокая стоимость определяет низкую доступность. Кроме этого, профессиональным оборудованием нужно уметь правильно пользоваться.
Важно не только определить основные показатели, но и правильно их интерпретировать. Именно поэтому при отклонении показателей от нормы многие решают сдать электрический двигатель на проверку в фирму, которая специализируется на тестировании и ремонте подобного оборудования.
chebo.pro
Как проверить обмотку электродвигателя | Сделай все сам
Электродвигатели на автомобиле могут исполнять самые многообразные функции. Они приводят в действие стеклоочистители и стеклоподъемник, отодвигают люк крыши, разрешают делать замкам с центральным управлением. Если электродвигатель перестал трудиться, то, допустимо, повод кроется в нарушении целостности его обмотки. Для проверки обмотки существуют особые приемы и приспособления.
Вам понадобится
- – мегаомметр.
Инструкция
1. При помощи мегаомметра проверьте сопротивление изоляции обмоток мотора между корпусом и фазами. Для этого сначала уберите перемычки на клеммнике мотора (они могут быть исполнены по типу «звезда» либо «треугольник»). Проверьте клеммник, замкнув его на корпус, а также между крепежными болтами соединения итогов.
2. У мотора с фазным ротором осуществите визуальную проверку изоляции щеткодержателей и контактных колец.
3. Моторы с номинальным напряжением менее 127В проверяйте мегаомметром, рассчитанным на 500В. Если номинальное напряжение выше, понадобится мегаомметр на 1000В.
4. Если по итогам проверки обмотки касательно корпуса и между фазами итоги измерения значительно отличаются, мотор подлежит ремонту либо замене. Возможнее каждого, он работает на 2-х фазах. Следует считать мотор неисправным, если сопротивление изоляции обмотки менее 1Мом.
5. Для проверки допустимых межвитковых замыканий используйте особую аппаратуру, от того что обыкновенный омметр, даже цифровой, покажет разницу между обмотками лишь при очевидном и теснее видимом на глаз коротком замыкании в витках.
6. Дабы измерить обмотку с малым сопротивлением, пропустите через нее непрерывный ток от аккумуляторной батареи. При помощи регулировочного реостата установите ток от 0,5-3,0А. Позже установки тока и до окончания измерений не меняйте расположение реостата.
7. Сейчас измерьте падение напряжения и тока, а после этого вычислите сопротивление обмотки по формуле R = U/I (где R – сопротивление, U – напряжение, а I – сила тока). Сопротивление обмотки не должно отличаться больше чем на 3%. Такой метод подходит и для проверки коллекторного мотора.
8. В некоторых случаях определить, что трехфазный мотор работает на 2-х фазах, дозволено путем визуального осмотра. Знаком неисправности будет потемнение в «лобовой» части только тех катушек, на которых было напряжение.
Многие устройства и механизмы автомобиля приводятся в действие электрическими моторами. Дабы все системы трудились слаженно, нужно поддерживать моторы в рабочем состоянии, проводя периодическую профилактику и осмотр. Это дозволит своевременно выявить и устранить неисправности, нарушающие работу устройств. Одной из допустимых неполадок в электродвигателе является обрыв в обмотке.
Вам понадобится
- – отвертка;
- – гаечные ключи;
- – омметр;
- – калькулятор.
Инструкция
1. Произведите визуальный осмотр мотора и его обмоток. Во многих случаях довольно наблюдательно оглядеть устройство, дабы найти следы нагара либо места пробоя обмотки . Если трехфазный мотор работает каждого на 2-х фазах, об этом будет свидетельствовать потемнение в передней части катушек, на которые подается напряжение.
2. Мотор с фазным ротором оглядите на предмет обнаружения повреждений контакных колец и держателей щеток.
3. Приготовьте омметр и проверьте при помощи этого прибора сопротивление изоляции, а также сопротивление между фазами и корпусом мотора. Перед проведением измерений снимите перемычки с клемм мотора. Замкните клеммник на корпус и измерьте величину сопротивления между болтами, крепящими итоги. Если параметры чудесны от заявленных в технической документации, обмотка мотора неисправна.
4. Электродвигатели со стандартным напряжением либо больше низким проверьте омметром, рассчитанным на напряжение до 500В. Если вы осуществляете проверку больше высокого напряжения, потребуется прибор с напряжением до 1кВ.
5. Знаком неисправности обмотки служит расхождение итогов измерений сопротивления между фазами и касательно корпуса устройства. Если сопротивление изоляции менее 1 Мом, это свидетельствует о неисправности электродвигателя. В этом случае замените обмотку либо каждый мотор целиком.
6. Не следует применять обыкновенный омметр для проверки межвитковых замыканий, чай такой прибор покажет разницу в сопротивлении только тогда, когда короткое замыкание в витках и так видимо на глаз. Для проведения таких измерений используйте особое оборудование, традиционно имеющееся в авторемонтных мастерских.
7. Для измерения параметров обмотки , владеющей незначительным сопротивлением, пропустите через обмотку ток от аккумулятора. Ток должен быть в пределах от 0,5А до 3,0А. Сила тока должна быть идентичной на каждым протяжении измерений. Для вычисления сопротивления обмотки используйте следующую формулу:R = U / I; гдеR – сопротивление обмотки ;U – напряжение в цепи;I – сила тока.Различие сопротивления обмотки от указанного в технической документации не должно при исправном двигателе и сохранной обмотке превышать 3 процентов.
Электродвигатели находят широкое использование во многих технических системах, включая автомобили. Для положительного подключения асинхронного электрического мотора нужно определить предисловие и конец обмотки статора. Это главно в тех случаях, когда стандартная маркировка итогов нарушена либо отсутствует. Неверный монтаж мотора может привести к выходу его из строя.
Вам понадобится
- – отвертка;
- – гаечные ключи;
- – тестер;
- – контрольная лампа;
- – вольтметр;
- – изоляционная лента.
Инструкция
1. Оглядите концы обмоток, отходящие от мотора; у некоторых моделей они выведены на особую доску зажимов. В соответствии со эталонами статорные обмотки асинхронного электрического мотора имеют шесть итогов, снабженных соответствующей заводской маркировкой: первая фаза – C1 и C4; вторая фаза – C2 и C5; третья – C3 и C6. Первое обозначение в всей паре соответствует началу обмотки, второе – ее концу.
2. При отсутствии доски зажимов ищите типовые обозначения согласованных итогов фаз обмотки на металлических обжимающих кольцах.
3. Если обжимающие кольца по каким-то причинам потеряны, выявите предисловие обмоток самосильно. Для этого сначала определите пары итогов, принадлежащих отдельным фазным обмоткам, применяя контрольную лампу.
4. К первому зажиму сети подсоедините один из шести итогов обмотки статора, а ко второму – конец контрольной лампы. Иной конец лампы поочередно поднесите к оставшимся пяти итогам, пока лампа не загорится. Это свидетельствует, что обнаруженные два итога принадлежат одной фазе обмотки. Пометьте итоги, привязав к ним цветную нить либо обмотав ломтиками изоляционной ленты.
5. Позже определения фаз обмотки обнаружьте их начала и концы, применяя метод трансформации либо метод подбора фаз.
6. При первом методе к одной из фаз подключите контрольную лампу, а две оставшиеся фазы включите в сеть. Лампа укажет на присутствие электродвижущей силы (ЭДС) слабым накалом. Накал не неизменно может быть невидим, следственно в качестве контрольного прибора дозволено добавочно применять вольтметр, определяя присутствие ЭДС по отклонению стрелки.
7. Найдя накал лампы либо напряжение на вольтметре, пометьте соответствующие концы обмоток бирками с пометками Н (предисловие фазы) и К (конец фазы).
8. 2-й метод определения начала и конца обмотки используйте для моторов мощностью 3-5 кВт. Позже нахождения итогов отдельных фаз объедините их наугад по типу «звезда». Для этого по одному итогу от всякой фазы подключите к сети, а оставшиеся объедините в всеобщую точку.
9. Включите мотор в сеть. Если всеобщая точка содержит все условные начала обмоток, мотор сразу начнет трудиться в типичном режиме.
10. Если же включенный мотор начинает мощно гудеть, поменяйте местами итоги одной из обмоток. При наличии шумов переходите к замене итогов дальнейшей обмотки, добившись верной работы мотора.
11. Как только электромотор стал трудиться типично, пометьте все итоги, объединенные в всеобщую точку, как «концы», а противоположные им – как «начала» обмоток.
Видео по теме
Обмотку имеет только электрический мотор, следственно ее предисловие и конец дозволено обнаружить только в этом устройстве. Это надобно делать для того, дабы позже подключения мотор просто не сгорел. Как водится, на корпусе мотора указываются зажимы начала и конца обмоток, но если их нет, сделайте это независимо.
Вам понадобится
- – электродвигатель;
- – тестер;
- – проводники.
Инструкция
1. В стандартном электродвигателе находится три обмотки. Возьмите тестер, настройте его на работу в режиме омметра и проверьте сопротивление между итогами. Если итоги не принадлежат одной обмотке, то сопротивление между ними будет приближаться к бесконечности, если это одна обмотка, то тестер покажет некоторое сопротивление. Пометьте пары итогов, которые выходят на одну обмотку. Позже этого объедините все три обмотки ступенчато и подключите к источнику тока, напряжением 220 В.
2. Единовременно подключите тестер параллельно к всякой из 3 обмоток, и замеряйте на ней напряжение. Если все обмотки подключены согласованно, то есть конец первой обмотки присоединен к началу 2-й обмотки, а конец 2-й к началу третьей, но на всякой из обмоток тестер покажет одно и то же напряжение. Если же на одной из обмоток напряжение будет огромнее, чем на 2-х других, то поменяйте местами ее итоги, она подключена ненормально. Позже этого на всякий из итогов повесьте соответствующие бирки.
3. Обнаружить предисловие и конец обмотки дозволено иным методом. Для этого определите контакты всякой из обмоток, как это описано в предыдущем пункте при помощи тестера. Ступенчато объедините две произвольные обмотки, а к третьей подключите тестер в режиме работы вольтметра. На объединенные обмотки подайте переменное напряжение. Если они объединены верно, то есть конец первой обмотки совмещен с началом 2-й, но на тестер зарегистрирует возникновение напряжения на третьей обмотке. Если же тестер не показал присутствие напряжения, поменяйте итоги одной из обмоток, объединенных ступенчато и вновь пустите по ним переменный ток для контроля. Если на третьей обмотке напряжение не возникло, значит мотор неисправен.
4. Позже того как две произвольные обмотки были согласованы, присоедините третью обмотку ступенчато к одной из согласованных, а к иной присоедините тестер. И вновь проделайте операцию по определению навала и конца обмоток, но в этом случае, если напряжение на обмотке не возникло, то меняйте местами итоги несогласованной обмотки.
Видео по теме
Если у вас имеется непотребный мотор, к примеру, от стиральной машины, вы можете собрать пригодные и надобные в хозяйстве устройства. Нужно только положительно его подключить.
Вам понадобится
- – прибор для определения сопротивления.
Инструкция
1. Для того дабы запустить мотор, определите итоги пусковой и рабочей обмотки. Используйте для этого имеющиеся у вас приборы – тестр, омметр и т.д. Возьмите всякий итог мотора и объедините с одним из щупов прибора. При помощи второго разыщите парный итог мотора. Примитивно соединяйте поочередно щуп с всяким из 3 оставшихся проводов. Если прибор показал присутствие какого-то сопротивления, запишите его значение, подметьте парные итоги.
2. Абсолютно видимо, что оставшиеся два провода – итоги 2-й обмотоки мотора. Вам нужно определить, какая из них пусковая, а какая рабочая. Измерьте сопротивление на 2-й паре итогов. Сравните с первым значением. Сопротивление пусковой обмотки неизменно огромнее чем рабочей. Сейчас вы можете подыскать схему для запуска мотора.
3. Допустима иная обстановка. Вы имеете однофазный мотор. У него также две обмотки. А вот проводов не четыре, а только три. Это говорит о том, что по одному итогу всей обмотки объединены между собой внутри мотора. В этом случае вам нужно знать, как работал мотор ранее – с пусковым реле либо с конденсаторами.
4. Замерьте сопротивление между итогами. Допустимы три комбинации: 1-2, 2-3, 1-3 . К примеру, вы определили, что наибольшее сопротивление имеет пара итогов 1-3. Вестимо, что рабочая обмотка имеет наименьшее его значение по сопоставлению с пусковой либо конденсаторной. Следственно, всеобщим является итог 2. Он будет включаться непринужденно в сеть.
5. Определите пару, имеющую самое низкое значение сопротивления. В данном определенном случае это комбинация 1-2. Итог 1 также будет подключен к сети. К нему должен подсоединяться провод 3.
6. Допустимы следующие варианты: 1-й – вспомогательная обмотка, имеющая итог 3, является пусковой. 2-й – она является конденсаторной. В первом случае подключение будет проходить только на время пуска. Во втором оно осуществляется ступенчато через конденсатор.
Для проверки генераторной установки и поиска неисправности довольно иметь омметр. Впрочем больше точную информацию об обмоточных узлах дозволено получить, применяя особые приборы, которые осуществляют поиск неисправности в обмотках способом сопоставления их параметров с заведомо годной обмоткой. Они годны для дефектовки как обмоток статора, так и возбуждения.
Вам понадобится
- Омметр, прибор ПДО-1
Инструкция
1. Проверьте обмотку ротора. Для этого включите омметр на измерение сопротивления обмотки, и поднесите его итоги к кольцам ротора. Сопротивление исправного ротора при напряжении 14 В находится в пределах: у генераторов, которые работают с регуляторами напряжения, рассчитанными на максимальную силу тока 3,5—4,0 А – 3-5 Ом, у работающих с регуляторами напряжения, которые рассчитаны на силу тока 5 А – 2,5—3 Ом.Если прибор показал безгранично огромное сопротивление, это значит, что цепь обмотки возбуждения разорвана. Обыкновенно это происходит в месте пайки итогов обмотки к кольцам, при сгорании обмотки либо при проворачивании каркаса с обмоткой возбуждения на полувтулках полюсных половин. Также об этом говорит и потемнение, а также и осыпание ее изоляции, что дозволено найти визуально. Данная неисправность приводит к межвитковому замыканию в обмотке, что сопровождается уменьшением всеобщего сопротивления.Определить частичное межвитковое замыкание, когда сопротивление обмоток изменяется немного, дозволено только особым прибором, скажем ПДО-1. При этом происходит сопоставление данной обмотки с заведомо исправной. Обмотку возбуждения бесконтактных генераторов (ГА2, 955.3701) проверяют омметром, выводные концы которого подсоединяются непринужденно к итогам обмотки. После этого проверьте неимение у нее замыкания на массу. Для этого следует один итог омметра поднести к его клюву, иной — к любому кольцу ротора, а у бесконтактных генераторов — к втулке индуктора и любому итогу обмотки. Исправная обмотка должна показать обрыв на омметре, т.е. беспредельно огромное сопротивление.
2. Проверьте обмотки статора. Для этого подсоедините концы омметра к одному из итогов обмотки и пакету железа, т.е. проверьте замыкание на «массу». Прибор у исправной обмотки должен показать обрыв цепи. Проверьте межвитковое замыкание в обмотках статора. Для этого измерьте сопротивление отдельных фаз и сравните полученные итоги между собой, разница не должна быть огромнее 10%. Сопротивление фазы составляет доли Ом, следственно для этого требуются высокоточные приборы измерения.Полную информацию о состоянии обмоток генератора может предоставить прибор ПДО-1, подключенный к итогам 3 фаз. Когда фазы одинаковы, то на экране отслеживается одна осциллографическая кривая, если нет (из-за межвиткового замыкания в фазе) то кривых две. Застыл следует повторить, заблаговременно поменяв фазы местами. Тем самым дозволено обнаружить и неодинаковость фаз, скажем, различное число витков в них, которое может появиться позже перемотки статора. Обрыв фазы проверяйте омметром, поочередно подсоединяя его к нулевой точке и к итогу всякой фазы.
Видео по теме
Полезный совет
Добавочные источники:«Ремонт электродвигателей. Пособие электромонтеру», Н.К. Мандыч, 1989.«Ремонт электродвигателей», С.А. Мандрыкин, 1983.
jprosto.ru