+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

§79. Характеристики асинхронных двигателей | Электротехника

Характеристики асинхронных двигателей.

Для правильной эксплуатации асинхронного двигателя необходимо знать его характеристики: механическую и рабочие.

Механическая характеристика.

Зависимость частоты вращения ротора от нагрузки (вращающегося момента на валу) называется механической характеристикой асинхронного двигателя (рис. 262, а). При номинальной нагрузке частота вращения для различных двигателей обычно составляет 98—92,5 % частоты вращения n1 (скольжение sном = 2 – 7,5 %). Чем больше нагрузка, т. е. вращающий момент, который должен развивать двигатель, тем меньше частота вращения ротора.

Как показывает кривая на рис. 262, а, частота вращения асинхронного двигателя лишь незначительно снижается при увеличении нагрузки в диапазоне от нуля до наибольшего ее значения. Поэтому говорят, что такой двигатель обладает жесткой механической характеристикой.

Наибольший вращающий момент Mmax двигатель развивает при некотором скольжении skp, составляющем 10—20%. Отношение Mmax/Mном

определяет перегрузочную способность двигателя, а отношение Мпном — его пусковые свойства.

Рис. 262. Механические характеристики асинхронного двигателя: а — естественная; б — при включении пускового реостата

Двигатель может устойчиво работать только при обеспечении саморегулирования, т. е. автоматическом установлении равновесия между приложенным к валу моментом нагрузки Мвн и моментом М, развиваемым двигателем. Этому условию соответствует верхняя часть характеристики до достижения Mmax (до точки В).

Если нагрузочный момент Мвн превысит момент Mmax, то двигатель теряет устойчивость и останавливается, при этом по обмоткам машины будет длительно проходить ток в 5—7 раз больше номинального, и они могут сгореть.

При включении в цепь обмоток ротора пускового реостата получаем семейство механических характеристик (рис. 262,б). Характеристика 1 при работе двигателя без пускового реостата называется естественной. Характеристики 2, 3 и 4, получаемые при подключении к обмотке ротора двигателя реостата с сопротивлениями R

1п (кривая 2), R2п (кривая 3) и R3п (кривая 4), называют реостатными механическими характеристиками.

При включении пускового реостата механическая характеристика становится более мягкой (более крутопадающей), так как увеличивается активное сопротивление цепи ротора R2 и возрастает sкp. При этом уменьшается пусковой ток. Пусковой момент Мп также зависит от R2. Можно так подобрать сопротивление реостата, чтобы пусковой момент Мп был равен наибольшему Мmax.

В двигателе с повышенным пусковым моментом естественная механическая характеристика приближается по своей форме к характеристике двигателя с включенным пусковым реостатом. Вращающий момент двигателя с двойной беличьей клеткой равен сумме двух моментов, создаваемых рабочей и пусковой клетками.

Поэтому характеристику 1 (рис. 263) можно получить путем суммирования характеристик 2 и 3, создаваемых этими клетками. Пусковой момент Мп такого двигателя значительно больше, чем момент М’п обычного короткозамкнутого двигателя. Механическая характеристика двигателя с глубокими пазами такая же, как и у двигателя с двойной беличьей клеткой.

Рис. 263. Механическая характеристика асинхронного двигателя с повышенным пусковым моментом (с двойной беличьей клеткой)

Рабочие характеристики.

Рабочими характеристиками асинхронного двигателя называются зависимости частоты вращения n (или скольжения s), момента на валу М

2, тока статора I1 коэффициента полезного действия η и cosφ1, от полезной мощности Р2 = Рmx при номинальных значениях напряжения U1 и частоты f1 (рис. 264).

Рис. 264. Рабочие характеристики асинхронного двигателя

Они строятся только для зоны практической устойчивой работы двигателя, т. е. от скольжения, равного нулю, до скольжения, превышающего номинальное на 10—20%. Частота вращения n с ростом отдаваемой мощности Р2 изменяется мало, так же как и в механической характеристике; вращающий момент на валу М2 пропорционален мощности Р2, он меньше электромагнитного момента М на значение тормозящего момента М

тр, создаваемого силами трения.

Ток статора I1, возрастает с увеличением отдаваемой мощности, но при Р2 = 0 имеется некоторый ток холостого хода I0. К. п. д. изменяется примерно так же, как и в трансформаторе, сохраняя достаточно большое значение в сравнительно широком диапазоне нагрузки.

Наибольшее значение к. п. д. для асинхронных двигателей средней и большой мощности составляет 0,75—0,95 (машины большой мощности имеют соответственно больший к. п. д.). Коэффициент мощности cosφ1 асинхронных двигателей средней и большой мощности при полной нагрузке равен 0,7—0,9.

Следовательно, они загружают электрические станции и сети значительными реактивными токами (от 70 до 40% номинального тока), что является существенным недостатком этих двигателей.

При нагрузках 25—50 % номинальной, которые часто встречаются при эксплуатации различных механизмов, коэффициент мощности уменьшается до неудовлетворительных с энергетической точки зрения значений (0,5—0,75).

При снятии нагрузки с двигателя коэффициент мощности уменьшается до значений 0,25—0,3, поэтому нельзя допускать работу асинхронных двигателей при холостом ходе и значительных недогрузках.

Работа при пониженном напряжении и обрыве одной из фаз.

Понижение напряжения сети не оказывает существенного влияния на частоту вращения ротора асинхронного двигателя. Однако в этом случае сильно уменьшается наибольший вращающий момент, который может развить асинхронный двигатель (при понижении напряжения на 30% он уменьшается примерно в 2 раза). Поэтому при значительном падении напряжения двигатель может остановиться, а при низком напряжении — не включиться в работу.

На э. п. с. переменного тока при уменьшении напряжения в контактной сети соответственно уменьшается и напряжение в трехфазной сети, от которой питаются асинхронные двигатели, приводящие во вращение вспомогательные машины (вентиляторы, компрессоры, насосы).

Для того чтобы обеспечить нормальную работу асинхронных двигателей при пониженном напряжении (они должны нормально работать при уменьшении напряжения до 0,75Uном), мощность всех двигателей вспомогательных машин на э. п. с. берется примерно в 1,5—1,6 раза большей, чем это необходимо для привода их при номинальном напряжении.

Такой запас по мощности необходим также из-за некоторой несимметрии фазных напряжений, так как на э. п. с. асинхронные двигатели питаются не от трехфазного генератора, а от расщепителя фаз.

При несимметрии напряжений фазные токи двигателя будут неодинаковы и сдвиг между ними по фазе не будет равен 120°. В результате по одной из фаз будет протекать больший ток, вызывающий увеличенный нагрев обмоток данной фазы. Это заставляет ограничивать нагрузку двигателя по сравнению с работой его при симметричном напряжении.

Кроме того, при несимметрии напряжений возникает не круговое, а эллиптическое вращающееся магнитное поле и несколько изменяется форма механической характеристики двигателя. При этом уменьшаются его наибольший и пусковой моменты.

Несимметрию напряжений характеризуют коэффициентом несимметрии, который равен среднему относительному (в процентах) отклонению напряжений в отдельных фазах от среднего (симметричного) напряжения. Систему трехфазных напряжений принято считать практически симметричной, если этот коэффициент меньше 5 %.

При обрыве одной из фаз двигатель продолжает работать, но по неповрежденным фазам будут протекать повышенные токи, вызывающие увеличенный нагрев обмоток; такой режим не должен допускаться.

Пуск двигателя с оборванной фазой невозможен, так как при этом не создается вращающееся магнитное поле, вследствие чего ротор двигателя не будет вращаться.

Использование асинхронных двигателей для привода вспомогательных машин э. п. с. обеспечивает значительные преимущества по сравнению с двигателями постоянного тока. При уменьшении напряжения в контактной сети частота вращения асинхронных двигателей, а следовательно, и подача компрессоров, вентиляторов, насосов практически не изменяются. В двигателях же постоянного тока частота вращения пропорциональна питающему напряжению, поэтому подача этих машин существенно уменьшается.

Характеристики асинхронного двигателя ~ Электропривод

К энергетическим характеристикам асинхронного двигателя относятся КПД двигателя(η) коэффициент мощности (cosφ) и скольжение S.
коэффициент полезного действия (η) вычисляется как отношение полезной мощности на валу двигателя Р2 кВт, к активной мощности, потребляемой двигателем из сети Р1 кВт;
η = Р2/ Р1 коэффициент мощности (cos(φ)вычисляется как отношение потребляемой активной мощности Р1 кВт, к полной мощности, потребляемой из сети S1 кВА;

По ГОСТ Р. 51677-2000 асинхронные двигатели общепромышленного назначения делятся на двигатели с нормальным КПД и двигатели с повышенным КПД. У асинхронных двигателей с повышенным КПД, суммарные потери не меньше, чем на 20%, чем у двигателей с нормальным КПД такой же мощности и частоты вращения. Коэффициенты мощностей (cosφ) асинхронных двигателей определены в ГОСТ.Р 51677. Значения КПД и cosφ конкретного асинхронного двигателя можно узнать по каталогу или по шильдику.

Причем КПД и cosφ асинхронного двигателя определяются и нагрузкой машины. В справочниках по электрическим машинам можно увидеть эти зависимости.

Линейный ток двигателя можно определить исходя из номинальной полезной мощность (Р2, кВт), номинального напряжения (UH, В ), КПД (η) и cosφ.

Мощность, потребляемая из сети можно определить из формулы:

Скольжение вычисляется как разницу между номинальной n1 и синхронной nc частотой вращения двигателя, приведенной к номинальной скорости двигателя n1:

Номинальную частоту вращения ротора n1 или скольжение (S, %)можно определить по каталогу двигателя или прочесть на его шильдике.

Механические и пусковые характеристики асинхронного двигателя

Одной из основных характеристик асинхронного двигателя, является механическая характеристика. Механической характеристикой называют зависимость скорости вращения или скольжения от вращающего момента на валу двигателя. Она позволяет сравнить и согласовать механические свойства двигателя и рабочего механизма. Соответственно, зависимость скорости вращения или скольжения от тока статора называют электромеханической характеристикой.

Механическая характеристика асинхронного двигателя определяет зависимость момента на валу двигателя от скольжения, при сохранении неизменного напряжении и частоты питающей сети

Пусковые характеристики определяют величину пускового моментаMп, минимального момента Мmin, максимального или критического момента Мкр., пускового тока Iп или пусковой мощности Sп или их отношениями. Диаграмма момента, приведенного к номинальному моменту, от скольжения получила название относительной механической характеристики.

Номинальный вращающий момент можно определить по формуле:

P2н- номинальная мощность , кВт,
N1н- номинальная частота вращенияю, об/мин.

Пусковые характеристики асинхронного двигателя

Пусковые характеристики асинхронного двигателя регламентирует ГОСТ 28327 ( МЭК 60034 — 12), а их значения приводятся в каталогах. Стандартные асинхронные двигатели могут иметь два исполнения по механическим характеристикам, которые определены в ГОСТ 28327 и МЭК 60034-12:
N – двигатели с нормальный моментом;
Н –двигатели с повышенным моментом.

Двигатели , изготовленные в исполнении N, рассчитывают на два последовательных пуска с остановкой между пусками из холодного состояния или на один пуск из нагретого состояния, после работы при номинальной нагрузке.

Момент сопротивления нагрузки при запуске прямо пропорционален квадрату частоты вращения и равняется номинальному моменту при номинальной частоте вращения, а значение внешнего момента инерции, γ , кг*м2, не должно превышать рассчитанного по формуле

где Р-номинальная мощность двигателя, кВт;
р — число пар полюсов;

При построении характеристики предполагается, что момент сопротивления нагрузки остается постоянным и равен номинальному моменту. Кроме того он не зависит от частоты вращения. Значение же внешнего момента инерции не превышаетт 50% величины, полученной по приведенной выше формуле.

Механические характеристики асинхронных мшин зависят в том числе и от типа ротора, его номинальной мощности, и от числа пар полюсов.

Ввиду того, что разность в значениях момента при соответствующих скольжениях у двигателей с различным числом пар полюсов невелика, и не превышает значения поля допуска на моменты. Различные механические характеристики для разных исполнений асинхронных двигателей показаны на рис

1 — исполнение N; 2 — исполнение Н; 3 — с повышенным скольжением. Механические характеристики группы двигателей, одной серии, или ее части обычно укладываются в некоторую зону. По средней линии этой зоны можно составить групповую механическую характеристику. Величина зоны групповой характеристики меньше поля допуска двигателей на моменты.

7. Асинхронные двигатели. Технические средства автоматизации и управления. Учебное пособие

7.1. Принцип действия асинхронного двигателя

7. 2. Статические характеристики асинхронного двигателя

7.3. Управление асинхронными двигателями

7.3.1. Управление трехфазными асинхронными двигателями

7.3.2. Управление двухфазными асинхронными двигателями

7.1. Принцип действия асинхронного двигателя

Двигатели переменного тока делятся на синхронные и асинхронные двигатели. Асинхронные двигатели (АД) в свою очередь делятся на двух и трехфазные, из которых в качестве исполнительных двигателей в системах автоматического управления в основном применяются маломощные двигатели до 300 Вт.

Их преимущества перед ДПТ: малая инерционность, бесконтактность, дешевизна.

Их недостатки в сравнении с ДПТ: большие тепловые потери, малый пусковой момент, нелинейные характеристики.

Принцип действия рассмотрим на примере двухфазного асинхронного двигателя, с полым ротором в виде алюминиевого стакана. На статоре этого двигателя расположены две обмотки. Эти обмотки расположены на магнитопроводе под углом 900 друг к другу. На эти обмотки подаются синусоидальные напряжения, сдвинутые по фазе на 900 друг к другу. Под действием этих напряжений в обмотках протекают токи I1, I2, также синусоидальные и сдвинутые по фазе на 900. Будем считать, что амплитуды их равны. Эти токи, в свою очередь, создают в магнитопроводе два пульсирующих вектора магнитной индукции и, соответственно два магнитных потока, равных по амплитуде и сдвинутые по фазе на 900 друг к другу в пространстве и времени. Они суммируются, и создается результирующий магнитный поток, имеющий постоянную амплитуду и вращающийся по окружности с частотой w, где w=2p¦, а ¦частота сети.

Рассмотрим получение кругового вращающегося магнитного поля в случае двухфазной системы (рис. 70).

Рис. 70. Двухфазная система

При пропускании через катушки гармонических токов каждая из них в соответствии с вышесказанным будет создавать пульсирующее магнитное поле. Векторы ВА и ВВ, характеризующие эти поля, направлены вдоль осей соответствующих катушек, а их амплитуды изменяются также по гармоническому закону. Если ток в катушке В отстает от тока в катушке А на 900, то ВА= Вmsin(wt) и ВВ= Вmsin(wt-900).

Найдем проекции результирующего вектора магнитной индукции Вна оси x и y декартовой системы координат, связанной с осями катушек:

Модуль результирующего вектора магнитной индукции в соответствии с рис. 70 равен,

при этом для тангенса угла a , образованного этим вектором с осью абсцисс, можно записать

, откуда a=wt.

Полученные соотношения показывают, что вектор результирующего магнитного поля неизменен по модулю и вращается в пространстве с постоянной угловой частотой , описывая окружность, что соответствует круговому вращающемуся полю.

Симметричная трехфазная система катушек также позволяет получить круговое вращающееся магнитное поле. Рис. 71. Каждая из катушек А, В и С при пропускании по ним гармонических токов создает пульсирующее магнитное поле. Катушки питаются трехфазной системой токов с временным сдвигом по фазе на 1200. Поэтому для мгновенных значений индукций катушек имеют место соотношения

; ; .

Произведя аналогичные расчеты, получим, что модуль результирующего вектора магнитной индукции равен В=1,5 Вm, и также вращается в пространстве с постоянной угловой частотой ,

Рис. 71. Трехфазная система

Силовые линии вращающегося магнитного поля пересекают ротор двигателя, выполненный, например, в виде алюминиевого стакана. В материале ротора наводятся вихревые токи, которые взаимодействуют с вращающимся магнитным потоком статоре и создают движущий момент. Под действием этого момента ротор начинает раскручиваться и набирает скорость до тех пор, пока движущий момент не будет уравновешен моментом, создаваемым нагрузкой.

Скорость вращения ротора асинхронного двигателя всегда меньше скорости вращения поля, так как в случае их равенства результирующий магнитный поток будет неподвижен относительно ротора, вихревых токов не будет, и, следовательно, не будет движущего момента. Поэтому двигатель называется асинхронным. Величина отставания скорости вращения ротора от скорости вращения поля характеризуется скольжением.

При заторможенном роторе S=1, в идеальном случае при вращении со скоростью поля S=0.

Используются различные конструкции ротора АД. Есть трехфазные АД с фазным ротором, при этом на роторе также намотаны три, пространственно сдвинутых обмотки. В эти обмотки обычно включают внешние сопротивления (реостаты), которыми ограничивается пусковой ток и может регулироваться скорость вращения ротора. Двухфазные АД изготавливают с короткозамкнутой обмоткой: в виде беличьего колеса; в виде вала или стакана из проводящего материала. .Рис 72, 73, 74.

Рис. 72. Трехфазный АД с фазным ротором

Рис. 73. Ротор АД в виде беличьей клетки (а) и в виде стакана (б)

7.2. Статические характеристики асинхронного двигателя

Под действием электромагнитной индукции в обмотках или элементах короткозамкнутого ротора («беличьей клетке») индуктируются вторичные ЭДС и токи частоты ω2, которые взаимодействуют с вращающимся магнитным полем, создается электромагнитный момент M, что приводит к вращению ротора с частотой ω1. Рассмотрим для примера модель двигателя, в которой число пар полюсов p=1.

Частота индуцируемых во вторичной обмотке (роторе) ЭДС и токов ω2 зависит от скольжения S:

.

Эквивалентная схема цепи ротора в рабочем режиме показана на Рис 74.

Рис. 74. Схема цепи ротора АД

Она содержит изменяемый источник ЭДС Eрп·S и изменяемое индуктивное сопротивление xр=xрп·S. Они изменяются при изменении скольжения S (частоты вращения), а активное сопротивление Rp не изменяется.

Мы можем привести рабочий режим двигателя к режиму неподвижного ротора и рассматривать асинхронную машину как обычный трансформатор с неподвижными обмотками; в результате преобразования получаем эквивалентную схему. АД, с учетом параметров обмотки статора.

Рис. 75. Эквивалентная электрическая схема АД

На схеме обозначены: — приведенные сопротивления, n- коэффициент трансформации, а r1— активное сопротивление цепи статора. На основании этой схемы получим выражение для тока ротора

Выражение для вращающегося момента можем получить из энергетического уравнения M·ω1= M·ω+m1·Ip2·Rp, где m1— количество фаз. Левая часть уравнения — электромагнитная мощность, а правая — механическая плюс электрическая мощности.

Подставляя сюда выражения для тока ротора, получим аналитическое выражение для электромагнитного момента и, если пренебречь активным сопротивлением обмотки статора, получается уравнение Клосса, отражающее зависимость электромагнитного момента от скольжения. Выражение для момента двигателя представлено через параметры критической точки:

.

Скольжение, соответствующее максимальному моменту, называется критическим и обозначается SK или SM.

Критическое скольжение за зависит от соотношение активного и индуктивного сопротивлений ротора. При r1=0 получим и .

Вид зависимости электромагнитного момента и тока ротора от скольжения показан на. рис. 76.

Рис. 76. Зависимость электромагнитного момента АД от скольжения

Пусть исполнительный механизм, приводимый во вращение данным двигателем, создает противодействующий тормозной момент М2. На рис. 76 имеются две точки, для которых справедливо равенство Мэм = М2; это точки а и в.

В точке а двигатель работает устойчиво. Если двигатель под влиянием какой-либо причины уменьшит частоту вращения, то скольжение его возрастет, вместе с ним возрастет вращающий момент. Благодаря этому частота вращения двигателя повысится, и вновь восстановится равновесие Мэм = М2;.

В точке в работа двигателя не может быть устойчива: случайное отклонение частоты вращения приведет либо к остановке двигателя, либо к переходу его в точку а. Следовательно, вся восходящая ветвь характеристики является областью устойчивой работы двигателя, а вся нисходящая часть — областью неустойчивой работы. Точка б, соответствующая максимальному моменту, разделяет области устойчивой и неустойчивой работы.

Максимальному значению вращающего момента соответствует критическое скольжение Sk. Скольжению S = 1 соответствует пусковой момент. Если величина противодействующего тормозного момента М2больше пускового МП, двигатель при включении не запустится, останется неподвижным. Еще выводы:

  • величина максимального вращающего момента не зависит от активного сопротивления цепи ротора;
  • с увеличением активного сопротивления цепи ротора максимальный вращающий момент, не изменяясь по величине, смещается в область больших скольжений;
  • вращающий момент пропорционален квадрату напряжения сети.

Механической характеристикой асинхронного двигателя называется зависимость частоты вращения двигателя от момента на валу n2 = f (M2). Механическую характеристику получают при условии U — const, w1 — const. На рис. 77 изображена типичная механическая характеристика асинхронного двигателя.

Рис. 77. Механическая характеристика асинхронного двигателя

На механической характеристике АД можно выделить два участка, которые разделены значением Мкр:

  • режим устойчивой работы,
  • режим неустойчивой работы.

Для каждого двигателя есть свое значение Мкр. При работе двигателя на первом участке Мкр.< Мн<0. и двигатель может развить вращающий момент, компенсирующий момент нагрузки. При работе двигателя на втором участке Мкр.> Мн происходит торможение и двигатель останавливается.

Различают 3 статических режима работы:

  • Двигательный. В этом режиме направление вращения ротора и поля совпадают и . wp<w.
  • Режим генераторного торможения. В этом режиме направление вращения ротора и поля совпадают, но . wp>w. Это возможно, если момент нагрузки поменяет знак. Двигатель не потребляет, а отдает энергию.
  • Режим торможения противовключением. Реализуется, если в обмотке управления изменится фаза на 1800, после этого вращающий момент поменяет знак и будет тормозить ротор.

7.3. Управление асинхронными двигателями

Есть различные способы управления асинхронными двигателями:

  • параметрическое управления трехфазными асинхронными двигателями.
  • симметричное частотное управление,
  • несимметричное амплитудно–фазовое управление,

7.

3.1. Управление трехфазными асинхронными двигателями

1. Рассмотрим сначала способы управления трехфазными асинхронными двигателями. Первый способ используется для двигателей с фазным ротором. Критическое скольжение Skr определяется активным сопротивлением ротора Rr. Если Rr изменять, то будет изменяться наклон механической характеристики и соответственно скорость вращения ротора. Рис.78..

Рис. 78. Механическая характеристика асинхронного двигателя

Такой способ используется при пуске двигателя под нагрузкой, когда желательно, чтобы пусковой момент был максимальным. Для регулирования он применяется редко, т. к. велики тепловые потери в роторной цепи. Другим способом регулирования скорости является изменение напряжения на статоре, для АД вращающий момент изменяется пропорционально квадрату напряжения. При этом изменение напряжения питания мало влияет на частоту вращения ротора на рабочем участке и диапазон управления напряжением весьма ограничен.

2. Плавное регулирование скорости в широких пределах с сохранением достаточной жесткости характеристик возможно только при частотном управлении.. Изменяя частоту вращения поля ω1, можно изменять частоту вращения ротора ω при этом желательно, чтобы. жесткость характеристики не изменялась. Для этого одновременно с частотой, изменяют напряжение питания Uc так, чтобы их отношение оставалось постоянным Uc/w1=const.

Такое управление называется пропорциональным частотным управлением. Вид механических характеристик при пропорциональном управлении показан на рис. 79.

Рис. 79. Частотное управление асинхронным двигателем

При симметричном частотном управлении требуется специальное устройство преобразователь частоты, формирующий на выходе синусоидальный сигнал с изменяемой частотой w. Поле при этом управлении круговое, амплитуды на обмотках равны. Диапазон частот должен быть ограничен, так как при низких частотах падает индуктивное сопротивление обмоток и сильно растет ток, для высоких частот тоже существуют конструктивные и электрические ограничения. Поэтому при частотном управлении на самом деле идет управление по двум параметрам: частоте и амплитуде.

Функциональная схема частотного управления представлена на. на рис. 80. Она состоит из управляемого выпрямителя УВ, преобразующего напряжение переменного тока частотой 50 Гц в напряжение постоянного тока Uп, величина которого может регулироваться устройством управления УУ. Автономный инвертор АИ преобразует напряжение Uп в трехфазное напряжение изменяемой частоты f1. Управляющее устройство, изменяя частоту f в зависимости от задания ωз, изменяет также и напряжение Uп так, чтобы их отношение оставалось постоянным. Система управления может иметь обратную связь по скорости вращения через тахогенератор ТГ.

Более совершенным, чем пропорциональное управление, является частотно-токовое управление, при котором контролируется, кроме частоты вращения, ток якоря от датчика, что позволяет оставлять постоянным поток при изменении частоты f1 и нагрузки.

Рис. 80. Функциональная схема частотного управления асинхронным двигателем

7.3.2. Управление двухфазными асинхронными двигателями

В исполнительных приводах малой мощности широко в основном используются управляемые и неуправляемые двухфазные асинхронные двигатели. Эти , двигатели имеют две обмотки: одна включается в сеть непосредственно и называется обмоткой возбуждения (главной). На обмотку управления (вспомогательную), сдвинутую на статоре на90o градусов напряжение подается через фазосдвигающий элемент. Ротор всегда короткозамкнутый.

При таком способе управления есть разные варианты: амплитудное, фазовое и амплитудно–фазовое управление. При этих способах. на второй обмотке можно менять амплитуду напряжения, его фазу или оба параметра одновременно. При этом поле превращается из кругового в эллиптическое. При этом наряду с напряжениями и токами прямой последовательности фаз, создающими двигательный режим, возникает напряжение и токи обратной последовательности, вызывающие торможение. Таким образом, меняя степень асимметрии, можно регулировать скорость двигателя. Рис.81.

Рис. 81. Конденсаторный и управляемый двухфазные АД

При Uy=0, получим пульсирующее поле и w=0. Наиболее распространенным способом является конденсаторное управление. Чаще всего используется амплитудное несимметричное управление, когда UB=UC, а Uγ=α·Uc, где α меняется от 0 до 1. Можно получить выражения для вращающего момента при амплитудном управлении, аналогичное уравнению Клосса.

При симметрии напряжений, когда α=1, из этого уравнения получим нормальное уравнение выражение для асинхронной машины Так как в двухфазных двигателях SM>1, то при α=0, т.е. при отключении обмотки управления двигатель тормозится, и останавливается при S=1.

Механические и регулировочные характеристики асинхронного двигателя. нелинейны. Их заменяют в рабочей области прямыми:

M = b1U-b2w.

Коэффициенты b1 и b2 определяют по паспортным данным АД. В момент пуска М =Мп, w = 0, поэтому

Мп = b1∙Un и b1 = Мн/Un.

Для номинального режима аналогично получим, учитывая , что PN = MN∙wN,

MN = Мп -b2∙ wN и b2∙ = (Мп -MN)/wN.

Мы получим уравнение линеаризованной механической характеристики :

w = (b1/ b2)∙UM/ b2.

Механические и регулировочные характеристики асинхронного двигателя показаны на рис. 82.

Рис. 82. Механическая и регулировочная характеристики двухфазного АД

После линеаризации асинхронный двигатель может быть представлен как линейная динамическая система, описываемая следующими уравнениями (bw = b1, bu = b2):

.

Рассмотрим случай, когда сухое трение отсутствует и есть только скоростное трение, то есть МТ = F∙w. Заменив . и проведя преобразования получим:

.

Отсюда выражение для передаточной функции

, где коэффициент передачи и электромеханическая постоянная времени

Этой передаточной функции соответствует структурная схема и переходный процесс, представленные на рис. 83.

Рис. 83. Структурная схема и переходный процесс АД

Технические характеристики трехфазных асинхронных двигателей с короткозамкнутым ротором производства ОАО «ВЭМЗ»

Технические характеристики двигателей основного исполнения, степень защиты IP54, класс нагревостойкости изоляции «F», 2р=12; n=500 об/мин

Тип двигателя
Ном. мощ
ность,
кВт
Ном. частота враще
ния,
об/мин
КПД, % Коэф. мощ
ности
Ном. ток при 380 В, А  Ном. момент, Нм Мпуск/ Мном Iпуск/ Iном  Ммакс/ Мном Дина
мический
момент
инерции
ротора, кг*м2
Масса, кг
5АМ315S12e 45 490 93,0 0,79 93,2 876 1,8 5,6 2,0 5,97 888
5АМ315МА12e 55 490 93,0 0,79 114 1071 1,8 5,6 2,0 6,78 927
5АМ315МВ12 75 490 92,2 0,8 155 1460 1,6 5,3 2,0 6,78 975

Технические характеристики двигателей основного исполнения, степень защиты IP54, класс нагревостойкости изоляции «F», 2р=10; n=600 об/мин

Тип двигателя
Ном. мощ
ность,
кВт
Ном. частота враще
ния,
об/мин
КПД, % Коэф. мощ
ности
Ном. ток при 380 В, А  Ном. момент, Нм Мпуск/ Мном Iпуск/ Iном  Ммакс/ Мном Дина
мический
момент
инерции
ротора, кг*м2
Масса, кг
5АМ280S10e 37 590 93 0,79 76,6 598 1,5 6,5 2,5 3,14 710
5АМ280М10e 45 590 93,5 0,8 91,6 728 1,5 6,5 2,5 4,07 760
5АМ315S10e 55 590 93,5 0,82 109 890 1,6 6,5 2,2 5,97 885
5АМ315МА10e 75 590 93,5 0,85 143 1213 1,9 6,1 2,2 6,78 927
5АМ315МВ10 90 590 93,0 0,81 182 1456 2,1 5,8 2,2 6,78 975

Технические характеристики двигателей основного исполнения, степень защиты IP54, класс нагревостойкости изоляции «F», 2р=8; n=750 об/мин

Тип двигателя
Ном. мощ
ность,
кВт
Ном. частота враще
ния,
об/мин
КПД, % Коэф. мощности Ном. ток при 380 В, А  Ном. момент, Нм Мпуск/ Мном Iпуск/ Iном  Ммакс/ Мном Дина
мический
момент
инерции
ротора, кг*м2
Масса, кг
5А80МА8 0,37 695 56 0,62 1,6 5,1 2,0 3,5 2,2 0,0036 13,5
5А80МВ8 0,55 700 58 0,6 2,4 7,5 2,0 3,5 2,2 0,0047 15,7
5АМ112МА8 2,2 710 79 0,7 6,0 29 2,0 4,8 2,5 0,024 50
5АМ112МВ8 3,0 710 79 0,7 8,3 40 2,2 4,6 2,5 0,029 54,5
АИРМ132S8 4,0 715 82 0,7 10,6 53,4 2,0 4,8 2,5 0,053 68,5
АИРМ132M8 5,5 715 83 0,73 13,8 73,4 2,0 5,3 2,5 0,074 82
5А160S8 7,5 725 86 0,72 18,4 99 1,6 5,0 2,2 0,11 120
5А160М8 11 725 87 0,74 26 145 1,6 5,0 2,2 0,15 145
АИР180М8 15 730 88 0,78 33 196 1,6 5,3 2,2 0,27 180
5А200М8 18,5 735 90 0,76 41,0 240 2,0 6,4 2,7 0,41 240
5А200L8 22 735 90 0,77 48,5 286 2,0 6,2 2,6 0,46 260
5А225М8 30 735 91 0,78 64,5 389 2,1 5,5 2,2 0,70 340
5АМ250S8 37 740 92 0,73 84,0 477 1,8 6,5 2,6 1,20 430
5АМ250М8 45 740 93 0,75 98,0 580 1,8 6,8 2,6 1,40 460
5АМ280S8e 55 740 93,6 0,83 108 709 1,9 5,9 2,0 3,29 705
5АМ280М8e 75 740 94,0 0,82 148 967 2,0 6,0 2,1 4,00 790
5АМ315S8e 90 740 94,5 0,85 170 1161 1,4 6,0 2,1 5,21 965
5АМ315МА8e 110 740 94,5 0,86 206 1419 1,4 5,9 2,1 6,03 1,1
5АМ315МВ8e 132 740 94,5 0,84 253 1702 1,7 6,5 2,3 1130

Технические характеристики двигателей основного исполнения, степень защиты IP54, класс нагревостойкости изоляции «F», 2р=6; n=1000 об/мин

Тип двигателя
Ном. мощ
ность,
кВт
Ном. частота враще
ния,
об/мин
КПД, % Коэф. мощности Ном. ток при 380 В, А  Ном. момент, Нм Мпуск/ Мном Iпуск/ Iном  Ммакс/ Мном Дина
мический
момент
инерции
ротора, кг*м2
Масса, кг
5А80МА6 0,75 930 70,0 0,68 2,4 7,7 2,0 4,5 2,3 0,0033 14
5А80МВ6 1,1 930 71,0 0,69 3,4 11,3 2,0 4,5 2,3 0,0048 16
5АМ112МА6 3 950 81,0 0,8 7,0 30 2,3 5,5 2,6 0,024 50,5
5АМ112МВ6 4 955 82,0 0,81 9,2 40 2,3 5,5 2,6 0,029 55
АИРМ132S6 5,5 960 84,5 0,8 12,4 54,7 2,0 5,8 2,5 0,048 68,5
АИРМ132M6 7,5 960 85,5 0,8 16,7 74,6 2,2 6,3 2,8 0,067 81,5
5А160S6 11 970 87,0 0,82 23,4 108 1,9 6,5 2,5 0,11 122
5А160М6 15 970 88,5 0,83 31,0 148 2,0 6,8 2,7 0,15 150
АИР180М6 18,5 980 89,5 0,84 37,5 180 1,9 6,5 2,7 0,27 180
5А200М6 22 975 90,5 0,83 44,5 215 2,2 6,0 2,2 0,41 245
5А200L6 30 975 90,5 0,84 60,0 294 2,4 6,0 2,2 0,46 280
5А225М6 37 980 91,5 0,84 73,0 360 2,3 6,2 2,5 0,65 330
5АМ250S6 45 985 93,0 0,84 87,5 436 2,0 6,2 2,0 1,20 430
5АМ250М6 55 985 92,5 0,84 108 533 2,0 6,2 2,0 1,30 450
5АМ280S6e 75 990 94,5 0,85 142 723 1,9 6,2 2,0 3,04 720
5АМ280М6e 90 990 94,5 0,85 171 868 1,9 6,2 2,2 3,25 780
5АМ315S6e 110 990 94,8 0,88 201 1060 1,8 6,9 2,6 4,54 913
5АМ315МА6e 132 990 95,0 0,9 235 1273 1,6 6,6 2,4 5,13 1010
5АМ315МВ6e 160 990 95,1 0,89 288 1543 2,0 7,5 2,4 5,88 1090

Технические характеристики двигателей основного исполнения, степень защиты IP54, класс нагревостойкости изоляции «F», 2р=4; n=1500 об/мин

Тип двигателя
Ном. мощ
ность,
кВт
Ном. частота враще
ния,
об/мин
КПД, % Коэф. мощности Ном. ток при 380 В, А  Ном. момент, Нм Мпуск/ Мном Iпуск/ Iном  Ммакс/ Мном Дина
мический
момент
инерции
ротора, кг*м2
Масса, кг
5А80МА6 0,75 930 70,0 0,68 2,4 7,7 2,0 4,5 2,3 0,0033 14
5А80МВ6 1,1 930 71,0 0,69 3,4 11,3 2,0 4,5 2,3 0,0048 16
5АМ112МА6 3 950 81,0 0,8 7,0 30 2,3 5,5 2,6 0,024 50,5
5АМ112МВ6 4 955 82,0 0,81 9,2 40 2,3 5,5 2,6 0,029 55
АИРМ132S6 5,5 960 84,5 0,8 12,4 54,7 2,0 5,8 2,5 0,048 68,5
АИРМ132M6 7,5 960 85,5 0,8 16,7 74,6 2,2 6,3 2,8 0,067 81,5
5А160S6 11 970 87,0 0,82 23,4 108 1,9 6,5 2,5 0,11 122
5А160М6 15 970 88,5 0,83 31,0 148 2,0 6,8 2,7 0,15 150
АИР180М6 18,5 980 89,5 0,84 37,5 180 1,9 6,5 2,7 0,27 180
5А200М6 22 975 90,5 0,83 44,5 215 2,2 6,0 2,2 0,41 245
5А200L6 30 975 90,5 0,84 60,0 294 2,4 6,0 2,2 0,46 280
5А225М6 37 980 91,5 0,84 73,0 360 2,3 6,2 2,5 0,65 330
5АМ250S6 45 985 93,0 0,84 87,5 436 2,0 6,2 2,0 1,20 430
5АМ250М6 55 985 92,5 0,84 108 533 2,0 6,2 2,0 1,30 450
5АМ280S6e 75 990 94,5 0,85 142 723 1,9 6,2 2,0 3,04 720
5АМ280М6e 90 990 94,5 0,85 171 868 1,9 6,2 2,2 3,25 780
5АМ315S6e 110 990 94,8 0,88 201 1060 1,8 6,9 2,6 4,54 913
5АМ315МА6e 132 990 95,0 0,9 235 1273 1,6 6,6 2,4 5,13 1010
5АМ315МВ6e 160 990 95,1 0,89 288 1543 2,0 7,5 2,4 5,88 1090

Технические характеристики двигателей основного исполнения, степень защиты IP54, класс нагревостойкости изоляции «F», 2р=2; n=3000 об/мин

Тип двигателя
Ном. мощ
ность,
кВт
Ном. частота враще
ния,
об/мин
КПД, % Коэф. мощности Ном. ток при 380 В, А  Ном. момент, Нм Мпуск/ Мном Iпуск/ Iном  Ммакс/ Мном Дина
мический
момент
инерции
ротора, кг*м2
Масса, кг
5А80МА2 1,5 2850 80,0 0,84 3,4 5,0 2,4 6,5 2,5 0,0018 14,0
5А80МВ2 2,2 2850 81,0 0,85 4,9 7,4 2,7 6,5 2,8 0,0021 15,5
5АМ112М2 7,5 2895 87,5 0,89 14,6 24,7 2,9 7,5 3,3 0,0131 56,5
АИРМ132М2 11 2915 88,5 0,9 21,0 36 2,5 8,0 3,3 0,024 77,5
5А160S2 15 2920 90,0 0,89 28,5 49 2,2 6,8 3,0 0,039 122
5А160М2 18,5 2920 90,5 0,89 34,9 60,5 2,2 7,0 3,0 0,045 133
АИР180S2 22 2930 90,5 0,89 41,5 72 2,0 6,8 2,9 0,063 160
АИР180М2 30 2940 91,5 0,89 56,3 97 2,4 8,0 3,3 0,076 180
5А200М2 37 2940 93,0 0,9 67,0 120 2,3 7,4 3,0 0,13 235
5А200L2 45 2940 93,4 0,9 81,5 146 2,4 7,4 3,0 0,15 255
5А225М2 55 2950 93,4 0,91 98,5 178 2,3 7,5 2,8 0,21 340
5АМ250S2 75 2960 93,6 0,92 133 242 2,0 7,5 3,0 0,47 475
5АМ250М2 90 2955 93,5 0,93 157 290 1,8 7,0 2,7 0,52 505
5АМ280S2 110 2965 93,5 0,92 195 354 1,6 6,5 2,3 0,85 685
5АМ280М2 132 2965 94,5 0,92 232 425 1,8 7,2 2,5 1,02 770
5АМ315S2 160 2970 94,0 0,93 278 515 1,7 7,0 2,5 1,42 970
5АМ315МА2 200 2970 95,0 0,93 344 643 1,8 8,0 2,7 1,78 1110
5АМ315МВ2 250 2975 95,7 0,93 427 802 2,0 8,5 2,7 2,05 1190

Общие характеристики электродвигателей ВЭМЗ 
Присоединительные размеры и чертежи электродвигателей ВЭМЗ
Технические характеристики электродвигателей

 

В данном разделе представлены электродвигатели российских производителей и производителей стран СНГ.


Технические характеристики асинхронных двигателей | Официальный сайт компании «АС и ПП»

Технические характеристики асинхронных двигателей

Технические характеристики электродвигателей:

  • Мощность от 0,18 до 11 кВт;
  • Напряжение питания – любое до 1000 В;
  • Двигатели пригодны для эксплуатации в условиях климатических исполнений: У2, У1, УХЛ2, УХЛ1, Т2, Т1 по ГОСТ 15150.
  • Номинальные значения климатических факторов внешней среды по ГОСТ 15543.1 (п.2; 5 ¸14) и ГОСТ 15150 (п.1¸4), при этом
  1. высота над уровнем моря не более 1200 м;
  2. запылённость воздуха не более 1,3 г/м3;
  3. окружающая среда не взрывоопасна, не содержит токопроводящей пыли, не содержит паров веществ, вредно влияющих на изоляцию.
  • Степень защиты двигателей – IP 55 и IP54 по ГОСТ 17494.
  • Двигатели могут быть оборудованы встроенной температурной защитой.
  • Группа механического воздействия по стойкости к воздействию механических внешних воздействующих факторов – М3 по ГОСТ 17516.1 (п.1¸3; 6; 15).
  • Способ охлаждения двигателей IC0141 по ГОСТ 20459 (п.6).
  • Изоляция маслостойкая класса нагревостойкости F (155оС) или Н (180оС) по ГОСТ 8865 (п.1¸5).
  • Режим работы – продолжительный S1 и повторно-кратковременный S3 по ГОСТ 183. Повторно-кратковременный режим работы с ПВ от 0 % до 50 %. Допускается работа с ПВ от 50 % до 100 % в течение двух часов, но не чаще одного раза за 3 часа эксплуатации. Среднее количество пусков электродвигателя не более 30 в час. Количеством пусков в течение суток не более 200. Суммарное количество пусков в течение года не более 30000.
  • Двигатели при рабочей температуре выдерживают в течение 2 мин без повреждений и видимых остаточных деформаций повышение частоты вращения до 120% номинальной.
  • Двигатели выдерживают стоянку под током короткого замыкания после установившегося номинального режима работы при номинальном напряжении не менее 10 с.
  • Изоляция обмотки статора относительно корпуса и между обмотками выдерживает в течение 1 минуты испытательное напряжение 2500 В частоты 50 Гц.
  • Изоляция обмотки статора между смежными ее витками выдерживает в режиме холостого хода в течение 5 минут испытательное напряжение выше номинального значения на 50% с увеличенной частотой напряжения питания на 20%.
  • Двигатели выдерживают 50% перегрузку по току в течение 2 минут.
  • Двигатели, начиная с высоты вращения 80, имеют приспособления для подъема и транспортирования.
  • Двигатели имеют коробку выводов с двумя сальниковыми вводами, допускающую возможность поворота на 180º с целью подвода кабелей с двух сторон.
  • По способу защиты человека от поражения электрическим током двигатели имеют класс 1 по ГОСТ 12.2.007.0. В части пожаробезопасности двигатели соответствуют требованиям ГОСТ 12.1.004. Вероятность возникновения пожара не превышает 10-6 в год.

Технические характеристики двигателей серии АДЭМ

Асинхронный двигатель

Для построения векторной диаграммы асинхронного двигателя необходимо чтобы параметры цепи ротора были приведены к цепи статора. Это достигается заменой числа витков одной фазной обмотки w2, с числом фаз m2 и обмоточным коэффициентом kоб2 на w1, m1, kоб1.

Читать дальше →

  • Просмотров: 8554
  • При практических расчетах вместо реального асинхронного двигателя, на схеме его заменяют эквивалентной схемой замещения, в которой электромагнитная связь заменена на электрическую. При этом параметры цепи ротора приводятся к параметрам цепи статора.

    Читать дальше →

  • Просмотров: 17069
  • Работа асинхронного двигателя, как и любой другой машины, сопровождается потерями. Потери в конечном итоге, приводят к нагреву двигателя и снижению его КПД.

    КПД асинхронного двигателя, представляет собой отношение полезной мощности на выходе P2 к подводимой двигателю мощности P1, выраженная в процентах

    Читать дальше →

  • Просмотров: 17680
  • Для оценки свойств асинхронного двигателя прибегают к построению механической характеристики.

    Механическая характеристика асинхронного двигателя выражает зависимость между электромагнитным моментом и частотой вращения, либо скольжением. Скольжение – это величина, которая показывает, насколько частота вращения магнитного поля опережает частоту вращения ротора.

    Читать дальше →

  • Просмотров: 25231
  • Долгое время в промышленности использовались нерегулируемые электроприводы на базе АД, но, в последнее время возникла надобность в регулировании скорости асинхронных двигателей.

    Читать дальше →

  • Просмотров: 20068
  • Чтобы подключить к сети асинхронный двигатель (АД), нужно узнать, на какое напряжение он рассчитан, какие схемы соединения обмоток допустимы, какие токи в момент пуска возникнут. Для этого нужно обратиться к паспортным данным двигателя, которые указаны в табличке, расположенные на его корпусе. Эту табличку также называют шильдиком, на котором указаны основные необходимые данные АД, в котором кроме выше перечисленного, указывается номер двигателя, номинальная мощность и обороты, КПД, коэффициент мощности, режим работы, класс изоляции, ГОСТ, год изготовления двигателя и завод.

    Читать дальше →

  • Просмотров: 9591
  • Асинхронный двигатель получил большое применение благодаря своей простоте, надежности и дешевизне. Именно поэтому он широко используется в промышленности. Чтобы улучшить его характеристики и продлить время службы, существуют различные устройства, которые позволяют регулировать, запускать или защищать двигатель. Одним из них является устройство для плавного пуска (УПП) или софт-стартер. Хотя термин “софт-стартер” применим и к различным электромагнитным муфтам, частотным преобразователям и вообще любым устройствам, позволяющим осуществить плавный пуск двигателя.

    Читать дальше →

  • Просмотров: 2340
  • При использовании асинхронного двигателя, в качестве составной части какого-либо электропривода, часто возникает потребность в искусственной остановке двигателя. В настоящее время существует множество различных способов торможения асинхронного двигателя, вот некоторые из них.

    Читать дальше →

  • Просмотров: 23814
  • Механическая характеристика асинхронного двигателя

    Асинхронный двигатель преобразовывает электрическую энергию в механическую. Механическая характеристика асинхронного двигателя, электромеханическая и другие содержат информацию, без которой невозможна его правильная эксплуатация.

    Эта конструкция достаточно широко применяется в различных сферах человеческой жизнедеятельности. Без них немыслима работа станков, транспортеров, подъемно-транспортных машин. Двигатели, обладающие небольшой мощностью, широко используются в автоматике.

    ОГЛАВЛЕНИЕ

    Устройство асинхронной машины

    Схематичное устройство асинхронной машины

    Классическая асинхронная машина состоит из 2 основных частей: ротора (подвижной) и статора (неподвижной). Три отдельные фазы составляют обмотку статора. С1, С2 и С3 — обозначения начала фаз. С3, С4 и С5 — соответственно концы фаз. Все они подсоединены к клеммному разъему по схеме звезда или треугольник, что показано на рисунках а, б, в. Схему выбирают учитывая паспортные данные двигателя и сетевое напряжение.

    Статор создает внутри электродвигателя магнитное поле, которое постоянно вращается.

    Ротор различают короткозамкнутый и фазный.

    В короткозамкнутом скорость вращения не регулируется. Конструкция с ним проще и дешевле. Однако пусковой момент у него слишком мал по сравнению с машинами, у которых фазный ротор. Здесь скорость вращения регулируется за счет возможности ввода дополнительного сопротивления.

    Принцип работы асинхронной машины

    Подавая напряжение на обмотку статора, по каждой фазе можно наблюдать изменяющиеся магнитные потоки, которые по отношению друг к другу смещены на 120 градусов. Общий результирующий поток получается вращающимся и создает ЭДС внутри проводников ротора.

    Там появляется ток, который во взаимодействии с результирующим потоком создает пусковой момент. Это приводит к вращению ротора.

    Возникает скольжение S, т. е. разность между частотой вращения самого ротора n2 и частотой магнитного поля статора n1. Первоначально оно равно 1. Впоследствии частота возрастает, разность n1 – n2 уменьшается. Это ведет к уменьшению вращающего момента.

    На холостом ходу скольжение минимально. Оно достигает критического значения Sкр, когда увеличивается статический момент. Превышение Sкр ведет к нестабильной работе машины.

    Механическая характеристика

    Как основная, помогает проводить детальный анализ работы электродвигателя. Она выражает непосредственную зависимость частоты вращения самого ротора от электромагнитного момента n=f (M).

    Из графика видно, что на участке 1-3 машина работает устойчиво. 3-4 — непосредственный отрезок неустойчивой работы. Идеальный холостой ход соответствует точке 1.

    Точка 2 — номинальный режим работы. Точка 3 — частота вращения достигла критического значения. Пусковой момент Мпуск — точка 4.

    Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

    Существуют технические способы расчетов и построения механической характеристики с учетом данных паспорта.

    В первоначальной точке 1 n0=60f/p (p – количество пар полюсов). Поскольку nн и Mн непосредственно координаты точки 2, расчет номинального момента производится по формуле Mн=9,55*Рн/ nн, где Рн — номинальная мощность. Значение nн указано в паспорте двигателя. В точке 3 Mкр=Mнλ. Пусковой момент в точке 4 Mпуск=Mн*λпуск (значения λ, λпуск — из паспорта).

    Механическая характеристика, построенная таким образом, называется естественной. Изменяя другие параметры можно получить искусственную механическую характеристику.

    Полученные результаты дают возможность проанализировать и согласовать механические свойства самого двигателя и рабочего механизма.

    Электромеханическая характеристика

    Она являет собой зависимость угловой скорости вращения от тока статора. Используя несколько опорных точек можно построить электромеханическую характеристику. Номинальный ток рассчитывается по формуле:

    Ток холостого хода составляет 30—40% от номинального.

    Формула расчета при критическом скольжении:

    Ток в начальный момент пуска:

    Все значения отражают электромеханическую характеристику.

    Рабочие характеристики

    Рабочие характеристики асинхронного электродвигателя — это взаимосвязь нескольких параметров от полезной мощности P2. В их число входят: частота вращения самого ротора n2, момент на валу М, скольжение S, ток статора I1, расходуемая мощность P, коэффициент мощности СОSφ и КПД.

    Причем частота электрического тока и напряжение неизменны, в отличие от нагрузки.

    Как правило, рабочие характеристики асинхронного двигателя строятся в диапазоне значений скольжения от 0 до значения, превышающего номинальное на 10%. Это зона, где машина работает устойчиво.

    Частота вращения ротора n2 уменьшается при возрастании нагрузки на валу. Но эти изменения не превышают 5%. Ток I1 растет, поскольку при последующем увеличении нагрузки его активная составляющая превышает реактивную.

    СОSφ при холостом ходе мал. Но затем он возрастает. При повышенных нагрузках СОSφ уменьшается из-за возрастающего внутри обмотки ротора реактивного сопротивления.

    КПД холостого хода равен 0. С увеличением нагрузки наблюдается его резкий рост, а впоследствии, снижение.

    Асинхронный двигатель

    | Асинхронный двигатель

    Самым распространенным двигателем в мире является асинхронный или асинхронный двигатель. Это двигатель, который может работать без электрического подключения к ротору. В этом посте будет обсуждаться асинхронный двигатель (асинхронные двигатели), его типы, то есть однофазный, трехфазный, короткозамкнутый корпус, контактное кольцо и т. Д., Особенности, принцип работы, применение, преимущества и недостатки.

    Что такое асинхронный двигатель (асинхронный двигатель)

    Асинхронный двигатель или асинхронный двигатель — это самый основной и распространенный тип электродвигателя, который имеет только обмотки Armortisseur. , что означает вспомогательную обмотку только на якоре.В асинхронном двигателе (или асинхронном двигателе) статорная часть двигателя передает электромагнитное поле своей обмоткой на роторную часть двигателя. Это генерирует электрический ток в роторе. Электрический ток создает крутящий момент, который приводит в движение.

    Рис.1 — Введение в асинхронный двигатель (асинхронный двигатель)

    Он упоминается как «Асинхронный двигатель », поскольку он всегда будет работать со скоростью, меньшей, чем его синхронная скорость.Синхронная скорость определяется как скорость магнитного поля вращающейся машины, которая снова определяется количеством полюсов и частотой в машине.

    Поскольку в этом типе двигателя ротор получает поток и вращение за счет магнитного поля в статоре, существует задержка между токами в статоре и роторе. Из-за этого ротор никогда не достигает своей синхронной скорости. Отсюда термин «асинхронный двигатель». На рис. 2 показаны части асинхронного двигателя.

    Фиг.2 — Детали асинхронного двигателя (асинхронный двигатель)

    Конструкция асинхронного двигателя (асинхронного двигателя)

    Он состоит в основном из двух частей, а именно:

    Статор

    Это стационарная часть электродвигателя. Эта часть обеспечивает электромагнитное поле, необходимое для вращения вращающейся части двигателя. Он состоит из ряда штамповок с прорезями для трехфазной обмотки. Каждая обмотка отделена от другой обмотки на 120 градусов.

    Ротор

    Это вращающаяся часть двигателя. Более распространенный тип ротора в асинхронных двигателях (или асинхронных двигателях) — это ротор с короткозамкнутым ротором. Ротор имеет форму якоря с сердечником цилиндрической формы. Вокруг сердечника есть параллельные прорези, через которые проходит ток. Сердечник имеет стержень из алюминия, меди или сплава.

    Рис.3 — Базовый ротор и статор

    Типы асинхронных двигателей (асинхронные двигатели)

    Он подразделяется на два типа:

    • Однофазный асинхронный двигатель
    • Трехфазный асинхронный двигатель

    Однофазный асинхронный двигатель

    Однофазный асинхронный двигатель

    не является двигателем с автоматическим запуском.Здесь двигатель подключен к однофазному источнику питания, который передает переменный ток к основной обмотке. Поскольку источник переменного тока представляет собой синусоидальную волну, он создает пульсирующее магнитное поле в обмотке статора.

    Пульсирующие магнитные поля — это два магнитных поля, вращающихся в противоположных направлениях; следовательно, крутящий момент не создается. Таким образом, после подачи тока ротор должен быть перемещен в любом направлении извне, чтобы двигатель заработал. Однофазный индуктор отсюда; могут иметь разные разновидности в зависимости от устройства, которое используется для запуска двигателя:

    • Двухфазный двигатель
    • Двигатель с экранированными полюсами
    • Конденсаторный пусковой двигатель
    • Конденсаторный пусковой двигатель и конденсаторный двигатель

    Фиг.4 — Принципиальная схема (а) однофазного (б) трехфазного асинхронного двигателя

    Трехфазный асинхронный двигатель (асинхронный двигатель)

    Это двигатели, для запуска которых не требуется никаких внешних устройств, таких как конденсатор, центробежный переключатель или пусковая обмотка. Принцип работы этого двигателя основан на использовании трех однофазных фаз, разность фаз между которыми составляет 120 градусов. Таким образом, магнитное поле, вызывающее вращение, будет иметь одинаковую разность фаз между ними, это заставит ротор двигаться без какого-либо внешнего крутящего момента.

    Для дальнейшего упрощения предположим, что это три фазы: phase1, phase2 и phase3. Итак, первая фаза 1 намагничивается, и ротор начинает двигаться в этом направлении, вскоре после этого будет возбуждена фаза 2, и тогда ротор будет притягиваться к фазе 2, а затем, наконец, к фазе 3. Таким образом, ротор продолжит вращаться.

    Далее они подразделяются на категории в зависимости от типа используемого ротора:

    • Асинхронный двигатель с короткозамкнутым ротором
    • Асинхронный двигатель с контактным кольцом или двигатель с фазным ротором
    Асинхронный двигатель с короткозамкнутым ротором

    Ротор этого типа имеет форму беличьей клетки, отсюда и название.Ротор изготовлен из стали с очень токопроводящими металлами, такими как алюминий и медь на поверхности. Скорость асинхронного двигателя этого типа очень легко изменить, просто изменив форму стержней в роторе.

    Рис.5 — Асинхронный двигатель с короткозамкнутым ротором

    Асинхронный двигатель с контактным кольцом или двигатель с фазным ротором

    Он также известен как асинхронный двигатель с фазовой обмоткой. Здесь ротор подключается к внешнему сопротивлению через контактные кольца.Скорость ротора регулируется путем регулировки внешнего сопротивления. Поскольку у этого двигателя больше обмоток, чем у асинхронного двигателя с короткозамкнутым ротором, его также называют асинхронным двигателем с фазным ротором.

    Рис.6 — Асинхронный двигатель с контактным кольцом

    Характеристики асинхронного двигателя (асинхронный двигатель)

    Ниже приведены характеристики двух различных типов асинхронных двигателей.

    Характеристики однофазного асинхронного двигателя
    • Здесь мы выделим некоторые характеристики, которые применимы только к однофазным асинхронным двигателям:
    • Однофазные асинхронные двигатели не запускаются автоматически и используют однофазное питание для вращения.
    • Чтобы изменить направление вращения в однофазных двигателях, лучше всего остановить двигатель и изменить его, иначе существует вероятность повреждения двигателя из-за момента инерции, который действует против направления, на которое необходимо изменить вращение. .
    • Для запуска двигателя вам потребуется конденсатор и / или центробежный переключатель.
    • У этих двигателей низкий пусковой крутящий момент.
    • Они в основном используются дома или в бытовых приборах из-за низкого коэффициента мощности и эффективности.

    Характеристики трехфазного асинхронного двигателя

    Ниже перечислены некоторые особенности трехфазного асинхронного двигателя, которые отличают его от однофазного двигателя:

    • Это автономные двигатели, не требующие специальных пускателей.
    • Имеются три однофазных линии с разностью фаз 120 градусов.
    • Он имеет более простое подключение и более надежен, чем однофазные асинхронные двигатели.
    • Пусковой момент у этих двигателей выше, чем у однофазных двигателей.
    • Они в основном используются на заводах и в промышленности из-за высокого коэффициента мощности и эффективности.

    Как работает асинхронный двигатель (асинхронный двигатель) Работа

    Явление, которое заставляет асинхронные двигатели работать, весьма интересно. Двигатели постоянного тока нуждаются в двойном возбуждении для вращения, одно для статора, а другое для ротора.Но в этих двигателях мы должны отдавать это только статору, что делает это уникальным. Как следует из названия, принцип работы этого двигателя основан на индукции. Давайте сделаем серию шагов, которые происходят при вращении этого двигателя:

    • На обмотки статора подается питание, идет ток и создается магнитный поток.
    • Обмотка в роторе устроена таким образом, что каждая катушка закорачивается.
    • Короткозамкнутая обмотка ротора обрезается магнитным потоком статора.

    Рис.7 — Работа асинхронного двигателя

    Согласно законам электромагнитной индукции Фарадея, магнитное поле взаимодействует с электрической цепью, создавая ЭДС (электродвижущую силу). Итак, в соответствии с этим законом в катушках ротора начинает течь ток.

    • Ток в роторе генерирует другой поток.
    • Теперь есть два потока: один в статоре, а другой в роторе.
    • Поток ротора отстает от потока статора, что создает крутящий момент в роторе в направлении магнитного поля.

    Применение асинхронных двигателей

    В числе приложений:

    • Они широко используются в миксерах, игрушках, вентиляторах и т. Д.
    • Они также используются в насосах и компрессорах.
    • Малые асинхронные двигатели используются в электробритвах.
    • Они используются в буровых станках, лифтах, кранах и дробилках.
    • Они подходят для приводов текстильных фабрик и маслоэкстракционных заводов.

    Преимущества асинхронного двигателя

    Ниже приведены некоторые преимущества асинхронных двигателей:

    • Высокоэффективный и простой в конструкции.
    • Очень прочный и может работать в любых условиях.
    • Низкие эксплуатационные расходы, поскольку в них не так много деталей, как коммутаторы или щетки.
    • Они могут развивать очень высокую скорость, не беспокоясь о том, что они износятся, поскольку у них нет щеток.
    • Они просты в эксплуатации, поскольку к ротору не подключены электрические разъемы.
    • Поскольку у них нет щеток, искры не боятся, поэтому их можно использовать в загрязненных или взрывоопасных средах.
    • Скорость от малой нагрузки до номинальной меняется очень мало.

    Недостатки асинхронного двигателя

    Асинхронные двигатели имеют простую конструкцию, которая может иметь несколько недостатков, как указано ниже:

    • Трудно контролировать скорость асинхронного двигателя, поэтому его нельзя использовать в местах, где требуется точный контроль скорости.
    • При малых нагрузках наблюдается падение КПД.
    • Они имеют высокие входные импульсные токи, что дает низкое напряжение при пуске двигателя.

    См. Также: Видео на YouTube об асинхронных двигателях

      Также читают:
    Маховик как накопитель энергии, расчеты и требования к ротору
    Повышающий трансформатор - работа, конструкция, применение и преимущества
    Синхронный двигатель - конструкция, принцип, типы, характеристики
    Что такое клещи (клещи-тестеры) - типы, принцип работы и порядок эксплуатации  

    Лакшми — B.E (Электроника и связь) и имеет опыт работы в RelQ Software в качестве инженера-испытателя и HP в качестве руководителя службы технической поддержки. Она является автором, редактором и партнером Electricalfundablog.

    Асинхронные двигатели — Руководство по электрическому монтажу

    Асинхронный (т.е. асинхронный) двигатель прочен и надежен и очень широко используется. 95% двигателей, установленных по всему миру, являются асинхронными. Следовательно, защита этих двигателей имеет большое значение во многих приложениях.

    Введение

    Асинхронные двигатели используются в самых разных областях. Вот несколько примеров приводных машин:

    • кондиционеры,
    • чиллеры,
    • лифтов,
    • вентиляторы и нагнетатели,
    • пожарный насос,
    • центробежные насосы,
    • компрессоры,
    • дробилки,
    • Конвейеры
    • ,
    • подъемников и кранов,

    Последствия отказа двигателя из-за неправильной защиты или невозможности работы схемы управления могут включать следующее:

    • Для лиц:
      • Удушье из-за блокировки вентиляции мотора
      • Удар электрическим током из-за нарушения изоляции в двигателе
      • Авария из-за того, что двигатель не остановился из-за отказа цепи управления
    • Для ведомой машины и процесса:,
      • Муфты валов, оси, приводные ремни,… повреждены из-за остановки ротора
      • Пострадавшая продукция
      • Отложенное производство
    • Для самого мотора:
      • Перегорели обмотки двигателя из-за остановки ротора
      • Стоимость ремонта
      • Стоимость замены

    Таким образом, безопасность людей и товаров, а также уровень надежности и доступности во многом зависят от выбора средств защиты.

    С экономической точки зрения необходимо учитывать общую стоимость отказа. Эта стоимость увеличивается с увеличением размера двигателя и трудностями доступа и замены. Потери производства — еще один, очевидно, важный фактор.
    Конкретные характеристики двигателя влияют на цепи питания, необходимые для удовлетворительной работы.

    Цепь питания двигателя имеет определенные ограничения, которые обычно не встречаются в других (общих) схемах распределения.Это связано с особыми характеристиками двигателей, напрямую подключенных к линии, таких как:

    • Высокий пусковой ток (см. , рис. N74), который в основном является реактивным и поэтому может быть причиной значительного падения напряжения
    • Количество и частота пусковых операций в целом высокие
    • Высокий пусковой ток означает, что устройства защиты двигателя от перегрузки должны иметь рабочие характеристики, предотвращающие срабатывание во время периода пуска.

    Рис. N74 — Характеристики прямого пускового тока асинхронного двигателя

    Разница между синхронным и асинхронным двигателем (со сравнительной таблицей)

    Разница между синхронным двигателем и асинхронным двигателем объясняется с учетом таких факторов, как его тип, скольжение, потребность в дополнительном источнике питания, требования к контактным кольцам и щеткам, их стоимость, эффективность, коэффициент мощности, источник тока, скорость, самозапуск , влияние на крутящий момент из-за изменения напряжения, их рабочей скорости и различных применений как синхронного, так и асинхронного двигателя.

    Различия между синхронным и асинхронным двигателем объясняются ниже в табличной форме.

    BASIS СИНХРОННЫЙ ДВИГАТЕЛЬ АСИНХРОННЫЙ ДВИГАТЕЛЬ
    Определение Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора.
    N = NS = 120f / P
    Асинхронный двигатель — это машина, ротор которой вращается со скоростью, меньшей, чем синхронная скорость.
    N
    Тип Бесщеточный двигатель, двигатель с переменным сопротивлением, двигатель с регулируемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. Асинхронный двигатель переменного тока известен как асинхронный двигатель.
    Скольжение Без проскальзывания. Значение скольжения равно нулю. Имеют пробуксовку, поэтому величина пробуксовки не равна нулю.
    Дополнительный источник питания Требуется дополнительный источник постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Не требует дополнительных источников запуска.
    Контактное кольцо и щетки Требуются контактное кольцо и щетки Контактное кольцо и щетки не требуются.
    Стоимость Синхронный двигатель дороже по сравнению с асинхронным двигателем Дешевле
    КПД КПД выше, чем у асинхронного двигателя. Менее эффективный
    Коэффициент мощности Изменяя возбуждение, коэффициент мощности может быть соответственно отрегулирован как отстающий, опережающий или единичный. Асинхронный двигатель работает только с отстающим коэффициентом мощности.
    Электропитание Ток подается на ротор синхронного двигателя Ротор асинхронного двигателя не требует тока.
    Скорость Скорость двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
    Самозапуск Синхронный двигатель не самозапускается Самозапуск
    Влияние на крутящий момент Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя Изменение приложенного напряжения влияет на крутящий момент асинхронного двигателя
    Рабочая скорость Они работают плавно и относительно хорошо на низкой скорости, ниже 300 об / мин. Двигатель работает со скоростью выше 600 об / мин безупречно.
    Приложения Синхронные двигатели используются на электростанциях, обрабатывающей промышленности и т. Д., Они также используются в качестве регулятора напряжения. Используется в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и подъемниках. и т. д.

    Синхронный двигатель — это двигатель, который работает с синхронной скоростью, то есть скорость ротора равна скорости статора двигателя.Отсюда следует соотношение N = N S = 120f / P, где N — скорость ротора, а Ns — синхронная скорость.

    Асинхронный двигатель — это асинхронный двигатель переменного тока. Ротор асинхронного двигателя вращается со скоростью меньше синхронной, т.е. N S

    Разница между синхронным и асинхронным двигателем

    1. Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора. Асинхронный двигатель — это машина, ротор которой вращается со скоростью меньше синхронной.
    2. Бесщеточный двигатель, двигатель с регулируемым сопротивлением, двигатель с регулируемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. Асинхронный двигатель переменного тока известен как асинхронный двигатель.
    3. Синхронный двигатель не имеет скольжения. Значение скольжения равно нулю. Асинхронный двигатель имеет скольжение, поэтому значение скольжения не равно нулю.
    4. Синхронному двигателю требуется дополнительный источник постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Асинхронный двигатель не требует дополнительного источника пуска.
    5. Контактное кольцо и щетки необходимы в синхронном двигателе, тогда как асинхронный двигатель не требует контактного кольца и щеток. Только асинхронный двигатель с обмоткой требует и контактного кольца, и щеток.
    6. Синхронный двигатель дороже асинхронного двигателя.
    7. КПД синхронного двигателя больше, чем у асинхронного двигателя.
    8. Путем изменения возбуждения коэффициент мощности синхронного двигателя может быть соответственно отрегулирован как отстающий, опережающий или единичный, тогда как асинхронный двигатель работает только с отстающим коэффициентом мощности.
    9. На ротор синхронного двигателя подается ток. Ротор асинхронного двигателя не требует тока.
    10. Скорость синхронного двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
    11. Синхронный двигатель не запускается автоматически, тогда как асинхронный двигатель запускается автоматически.
    12. Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя, но влияет на крутящий момент асинхронного двигателя.
    13. Синхронный двигатель работает плавно и относительно хорошо на низкой скорости, которая ниже 300 об / мин, тогда как скорость выше 600 об / мин работа асинхронного двигателя превосходна. Асинхронные двигатели используются в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и лифтах. и т. д.
    14. Синхронный двигатель используется в различных сферах применения на электростанциях, обрабатывающей промышленности и т. Д. Он также используется в качестве регулятора напряжения.

    Таким образом, синхронный двигатель отличается от асинхронного двигателя.

    ▷ Синхронные и асинхронные двигатели — где их использовать?

    Многие люди часто путают термины «синхронные» и «асинхронные двигатели» и их применение. Именно поэтому один из новейших членов сообщества электротехники написал эту статью. Проверьте это ниже:

    Следующая информация касается общих принципов работы синхронных и асинхронных двигателей, их преимуществ, а также где они обычно используются и чего можно достичь с помощью каждого из этих двигателей.

    Давайте сначала сконцентрируемся на их принципах работы…

    Синхронные и асинхронные двигатели — принципы работы

    Синхронные двигатели

    Это типичный электродвигатель переменного тока, способный развивать синхронную скорость. В этих двигателях и статор, и ротор вращаются с одинаковой скоростью, что обеспечивает синхронизацию. Основной принцип работы заключается в том, что когда двигатель подключен к сети, электричество течет в обмотки статора, создавая вращающееся электромагнитное поле.Это, в свою очередь, индуцируется на обмотках ротора, который затем начинает вращаться.

    Требуется внешний источник постоянного тока, чтобы синхронизировать направление и положение вращения ротора с направлением вращения статора. В результате такой блокировки двигатель либо должен работать синхронно, либо не вращаться совсем.

    Двигатели асинхронные

    Принцип работы асинхронных двигателей почти такой же, как и у синхронных двигателей, за исключением того, что к ним не подключен внешний возбудитель.Проще говоря, асинхронные двигатели, также известные как асинхронные двигатели, также работают по принципу электромагнитной индукции, в которых ротор не получает никакой электроэнергии за счет теплопроводности, как в случае двигателей постоянного тока.

    Единственная загвоздка в том, что в асинхронных двигателях нет внешнего устройства, подключенного для возбуждения ротора, и, следовательно, скорость ротора зависит от переменной магнитной индукции. Это изменяющееся электромагнитное поле заставляет ротор вращаться со скоростью, меньшей, чем скорость магнитного поля статора.Поскольку скорость ротора и скорость магнитного поля статора меняются, эти двигатели известны как асинхронные двигатели. Разница в скорости известна как «проскальзывание».

    Синхронные и асинхронные двигатели — преимущества и недостатки

    1. Синхронный двигатель работает с постоянной скоростью и заданной частотой независимо от нагрузки. Но скорость асинхронного двигателя уменьшается с увеличением нагрузки.
    2. Синхронный двигатель может работать в широком диапазоне коэффициентов мощности, как с запаздыванием, так и с опережением, тогда как асинхронный двигатель всегда работает с запаздыванием p.f, который может быть очень низким при уменьшении нагрузок.
    3. Синхронный двигатель не запускается автоматически, тогда как асинхронный двигатель может запускаться самостоятельно.
    4. На крутящий момент синхронного двигателя не влияют изменения приложенного напряжения, как на асинхронный двигатель.
    5. Для запуска синхронного двигателя требуется внешнее возбуждение постоянного тока, но асинхронный двигатель не требует внешнего возбуждения для работы.
    6. Синхронные двигатели обычно дороги и сложны по сравнению с асинхронными двигателями, которые менее дороги и удобны для пользователя.
    7. Синхронные двигатели особенно хороши для низкоскоростных приводов (ниже 300 об / мин), потому что их коэффициент мощности всегда можно отрегулировать до 1,0, и они очень эффективны. С другой стороны, асинхронные двигатели отлично подходят для скоростей выше 600 об / мин.
    8. В отличие от асинхронных двигателей, синхронные двигатели могут работать на сверхнизких скоростях за счет использования мощных электронных преобразователей, которые генерируют очень низкие частоты. Их можно использовать для привода дробилок, вращающихся печей и шаровых мельниц с регулируемой скоростью.

    Синхронные и асинхронные двигатели — применение

    Приложения для синхронных двигателей
    1. Они обычно используются на электростанциях для достижения соответствующего коэффициента мощности. Они работают параллельно шинам и часто перегружаются извне для достижения желаемого коэффициента мощности.
    2. Они также используются в обрабатывающей промышленности, где используется большое количество асинхронных двигателей и трансформаторов для преодоления запаздывающей p.f.
    3. Используется на электростанциях для выработки электроэнергии с заданной частотой.
    4. Используется для управления напряжением путем изменения его возбуждения в линиях передачи.
    Применение асинхронных двигателей

    Более 90% двигателей, используемых в мире, являются асинхронными двигателями, и они находят широкое применение в самых разных областях. Вот некоторые из них:

    1. Центробежные вентиляторы, нагнетатели и насосы
    2. Компрессоры
    3. Конвейеры
    4. Подъемники, а также краны большой грузоподъемности
    5. Станки токарные
    6. Масляные, текстильные, бумажные комбинаты и т. Д.
    Заключение

    В заключение, синхронные двигатели используются только тогда, когда от машины требуются характеристики низкой или сверхнизкой скорости, а также при желаемых коэффициентах мощности (как отстающих, так и опережающих). В то время как асинхронные двигатели преимущественно используются в большинстве вращающихся или движущихся машин, таких как вентиляторы, подъемники, шлифовальные машины и т. Д.

    Что вы думаете об этой статье? Вам это помогло?

    Характеристики асинхронного двигателя (электродвигатель)

    1.1

    ТРЕХФАЗНЫЕ ИНДУКЦИОННЫЕ ДВИГАТЕЛИ

    Трехфазные асинхронные двигатели различных типов с интегральной мощностью, то есть выше 1 л.с., приводят в действие больше промышленного оборудования, чем любые другие средства. Наиболее распространенные трехфазные (многофазные) асинхронные двигатели относятся к следующим основным типам:
    Модель NEMA (Национальная ассоциация производителей электрооборудования)
    B: нормальный крутящий момент, нормальное скольжение, нормальный ток при заторможенном токе NEMA, конструкция A: высокий крутящий момент, низкое скольжение, высокое блокированный ток Исполнение NEMA C: Высокий крутящий момент, нормальное скольжение, нормальный блокированный ток
    Исполнение NEMA D: Высокий крутящий момент заблокированного ротора, высокое скольжение Ротор с обмоткой: Характеристики зависят от внешнего сопротивления
    Многоскоростной: Характеристики зависят от конструкции — переменный момент, постоянный крутящий момент , постоянная мощность
    Существует множество специально разработанных электродвигателей с уникальными характеристиками для удовлетворения конкретных потребностей.Однако большинство потребностей можно удовлетворить с помощью предыдущих двигателей.
    1.1.1

    Двигатели NEMA Design B

    Двигатель NEMA конструкции B является основным встроенным двигателем в лошадиных силах. Это трехфазный двигатель, рассчитанный на нормальный крутящий момент и нормальный пусковой ток, и обычно имеет скольжение при номинальной нагрузке менее 4%. Таким образом, скорость двигателя в оборотах в минуту составляет 96% или более синхронной скорости двигателя. Например, четырехполюсный двигатель, работающий на частоте сети 60 Гц, имеет синхронную скорость 1800 об / мин или скорость полной нагрузки
    1800 — (1800 x скольжение) — 1800 — (1800 x 0.04) = 1800 — 72 = 1728 об / мин
    или
    1800 x 0,96 = 1728 об / мин
    Как правило, большинство трехфазных двигателей в диапазоне от 1 до 200 л.с. имеют скольжение при номинальной нагрузке примерно 3% или, у четырехполюсных двигателей частота вращения при полной нагрузке 1745 об / мин. На рисунке 1.1 показана типовая конструкция полностью закрытого двигателя NEMA конструкции B с вентиляторным охлаждением и одинарным ротором из литого алюминия.
    На рис. 1.2 показана типичная кривая скорость-крутящий момент для двигателя NEMA конструкции B. Этот тип двигателя имеет умеренный пусковой крутящий момент, тяговый момент, превышающий крутящий момент при полной нагрузке, и крутящий момент пробоя (или максимальный крутящий момент), в несколько раз превышающий крутящий момент при полной нагрузке.Таким образом, он может обеспечить пуск и плавное ускорение для большинства нагрузок и, кроме того, выдерживать временные пиковые нагрузки без остановки. Стандарты производительности NEMA для двигателей конструкции B показаны в таблицах 1.1–1.3.

    РИСУНОК 1.1 NEMA, конструкция B, полностью закрытый, многофазный асинхронный двигатель с вентиляторным охлаждением. (С любезного разрешения Magnetek, Сент-Луис, Миссури)
    В прошлом не существовало установленных стандартов эффективности или коэффициента мощности для асинхронных двигателей NEMA конструкции B. Однако NEMA установила стандарты для тестирования и маркировки асинхронных двигателей.Недавно NEMA установила стандарты эффективности для энергоэффективных многофазных асинхронных двигателей. Эти стандарты подробно обсуждаются в теме 2.
    1.1.2


    Двигатели NEMA Design A

    Модель NEMA Двигатель представляет собой многофазный асинхронный двигатель с короткозамкнутым ротором, в котором крутящий момент и ток заторможенного ротора превышают соответствующие значения для двигателей NEMA конструкции B. Критерием отнесения к двигателю конструкции A является то, что значение тока заблокированного ротора должно превышать значение для двигателей конструкции B NEMA.Двигатель конструкции NEMA A обычно применяется в специальных приложениях, которые не могут обслуживаться двигателями конструкции B NEMA, и чаще всего для этих применений требуются двигатели с более высоким, чем обычно, крутящим моментом пробоя для удовлетворения требований высоких переходных или кратковременных нагрузок. Двигатель типа NEMA A также применяется для нагрузок, требующих чрезвычайно низкого скольжения, порядка 1% или меньше.

    РИСУНОК 1.2 Кривая скорость-крутящий момент двигателя NEMA конструкции B.
    1.1.3

    Двигатели NEMA Design C

    Двигатели NEMA конструкции C представляют собой асинхронные двигатели с короткозамкнутым ротором, которые развивают высокий крутящий момент с заторможенным ротором для приложений, которые трудно запускать.На рис. 1.3 показана конструкция каплезащищенного двигателя NEMA конструкции C с ротором из литого под давлением алюминия с двойной обоймой. На рисунке 1.4 показана типичная кривая крутящего момента для двигателя NEMA конструкции C. Эти двигатели имеют скольжение при номинальной нагрузке менее 5%.

    ТАБЛИЦА 1.1 Момент заторможенного ротора двигателей NEMA конструкции A и B 8-15
    л.с. Синхронная скорость, 60 Гц
    3600 об / мин 1800 об / мин 1200 об / мин 900 об / мин
    1 275 170 135
    1.5 175 250 165 130
    2 170 235 160 130
    3 160 215 155 130
    5 150 185 150 130
    7,5 140 175 150 125
    10 135 165 150 120
    15 130 160 140 125
    ■ В) 130 150 13 5 125
    25 130 150 135 125
    30 130 150 135 125
    ■ 10 125 140 135 125
    50 120 110 L35 125
    м 120 140 135 125
    75 105 140 135 125
    100 105 125 125 125
    125 100 110 125 120
    150 100 110 120 120
    200 100 100 L20 120
    250 70 80 100 100

    a Односкоростные многофазные двигатели с короткозамкнутым ротором средней мощности с постоянной мощностью (в процентах от крутящего момента при полной нагрузке).b Информацию о других скоростях и номинальных значениях см. в стандарте NEMA MG1-12.38.1. Источник: перепечатано с разрешения публикации стандартов NEMA № MG1-1987 «Двигатели и генераторы», авторское право 1987 г. принадлежит Национальной ассоциации производителей электрооборудования.
    Стандарты производительности NEMA для двигателей NEMA конструкции C показаны в таблицах 1.3–1.5.
    1.1.4

    Двигатели NEMA Design D

    Двигатель NEMA конструкции D сочетает в себе высокий крутящий момент с заторможенным ротором и высокое скольжение при полной нагрузке. Обычно предлагаются два стандартных исполнения, один
    ТАБЛИЦА 1.2 Момент пробоя двигателей NEMA конструкции A и B 8-15

    л.с. Синхронный скорость, 60 Гц
    3600 об / мин 1800 об / мин 1200 об / мин 900 об / мин
    1 300 265 215
    1,5 250 280 250 210
    2 2 10 270 240 210
    :.я 230 250 230 205
    5 215 225 215 205
    7,5 200 215 205 200
    10 200 200 200 200
    15 200 200 200 200
    20 200 200 200 200
    25 200 200 200 200
    30 200 200 200 200
    40 200 200 200 200
    50 200 200 200 200
    00 200 200 200 200
    75 200 200 200 200
    100 200 200 200 200
    125 200 200 200 200
    150 200 200 200 200
    200 200 200 200 200
    250 175 175 175 175

    a Односкоростные многофазные двигатели с короткозамкнутым ротором средней мощности с постоянной мощностью (в процентах от крутящего момента при полной нагрузке).b Информацию о других скоростях и номинальных значениях см. в стандарте NEMA MG1-12.39.1. Источник: перепечатано с разрешения публикации стандартов NEMA № MG1-1987 «Двигатели и генераторы», авторское право 1987 г. принадлежит Национальной ассоциации производителей электрооборудования.
    со скольжением при полной нагрузке 5-8%, а другой — со скольжением при полной нагрузке 813%. Крутящий момент заблокированного ротора для обоих типов обычно составляет 275–300% крутящего момента при полной нагрузке; однако для специальных применений крутящий момент заторможенного ротора может быть выше. На рисунке 1.5 показаны типичные кривые скорость-крутящий момент для двигателей NEMA конструкции D.Эти двигатели рекомендуются для циклических нагрузок, например, в пробивных прессах, у которых

    ТАБЛИЦА 1.3 Ток заторможенного ротора конструкции B, C и D по NEMA

    Моторса, б, в
    Заторможенный ротор Дизайн NEMA
    л.с. ток A письмо Кодовое письмо
    1 30 Б, Д N
    1.5 ■ 10 Б, Д M
    2 50 Б, Д L
    3 64 B, C, D К
    5 92 B, C, D • I
    7,5 127 B, C, D 11
    10 162 B, C, D II
    ].-> 232 B, C, D G
    20 290 B, C, D с,
    365 B, C, D G
    ;: o 435 B, C, D G
    10 580 B, c, n G
    50 725 B, c, n G
    60 870 B, C, D G
    75 1085 B, C, D G
    100 1450 B, C, D G
    125 1815 B, C, D G
    150 2170 B, C, D G
    2i) 0 2900 B, C G
    250 3650 B G

    a Трехфазные, 60 Гц, средней мощности асинхронные двигатели с короткозамкнутым ротором, рассчитанные на 230 В.
    b Для других значений мощности см. Стандарт NEMA MG1-12.35.
    c Ток заторможенного ротора для двигателей, рассчитанных на напряжение, отличное от 230
    В, должен быть обратно пропорционален напряжению.
    Источник: перепечатано с разрешения публикации стандартов NEMA № MG1-1987 «Двигатели и генераторы», авторское право 1987 г. принадлежит Национальной ассоциации производителей электрооборудования.

    РИСУНОК 1.3 Каплезащищенный многофазный асинхронный двигатель конструкции C по стандарту NEMA. (С любезного разрешения Magnetek, Сент-Луис, Миссури)
    Системы накопления энергии в виде маховиков для усреднения нагрузки двигателя и отлично подходят для кратковременных нагрузок с частыми запусками и остановками.Для правильного применения этого типа двигателя требуется подробная информация об инерции системы, рабочем цикле и рабочей нагрузке, а также о характеристиках двигателя. Имея эту информацию, двигатели выбираются и применяются в зависимости от их тепловой мощности.
    1.1.5

    Асинхронные двигатели с фазным ротором

    Асинхронный двигатель с фазным ротором — это асинхронный двигатель, в котором вторичная (или вращающаяся) обмотка представляет собой изолированную многофазную обмотку, аналогичную обмотке статора.Обмотка ротора обычно заканчивается коллекторными кольцами на роторе, и неподвижные щетки контактируют с каждым коллекторным кольцом, обеспечивая доступ к контуру ротора. Доступен ряд систем для управления вторичным сопротивлением двигателя и, следовательно, его характеристиками. Использование и применение асинхронных двигателей с фазным ротором ограничивается в основном подъемными механизмами и краном, а также специальным регулятором скорости.
    заявок. Типичные кривые скорость-крутящий момент двигателя с фазным ротором для различных значений сопротивления в цепи ротора показаны на рис. 1.6. По мере увеличения значения сопротивления характеристика кривой «скорость-крутящий момент» переходит от кривой 1 без внешнего сопротивления к кривой 4 с высоким внешним сопротивлением. При соответствующем оборудовании управления можно изменять характеристики двигателя

    .

    ТАБЛИЦА 1.4 Крутящий момент заторможенного ротора двигателей NEMA Design C3
    л.с. Синхронная скорость, 60 Гц
    1800 об / мин 1200 об / мин 900 об / мин
    3 250 225
    5 250 250 225
    7.5 250 225 200
    10 250 225 200
    15 225 200 200
    20-200 200 200 200
    включительно

    a Односкоростные многофазные двигатели с короткозамкнутым ротором средней мощности с постоянным номинальным значением (в процентах от крутящего момента полной нагрузки), MG1-12.38.2. Источник: Перепечатано с разрешения публикации стандартов NEMA № MG1-1987 «Двигатели и генераторы», авторское право 1987 г. принадлежит Национальной ассоциации производителей электрооборудования.
    ТАБЛИЦА 1.5 Момент пробоя двигателя NEMA Design C Motorsa

    л.с. Синхронная скорость, 60 Гц
    1800 об / мин 1200 об / мин 900 об / мин
    225 200
    5 200 200 200
    7.5-200 190 190 100
    включительно

    a Односкоростные многофазные двигатели с короткозамкнутым ротором средней мощности с постоянным номинальным значением (в процентах от крутящего момента полной нагрузки), MG1-12.39.2. Источник: Перепечатано с разрешения публикации стандартов NEMA № MG1-1987 «Двигатели и генераторы», авторское право 1987 г. принадлежит Национальной ассоциации производителей электрооборудования.

    РИСУНОК 1.5 Кривые скорости-момента двигателя NEMA конструкции D: скольжение 5-8% и 8-13%.
    , изменив это значение внешнего сопротивления ротора. Были разработаны твердотельные инверторные системы, которые при включении в цепь ротора вместо резисторов возвращают потери скольжения двигателя в линию питания. Эта система существенно повышает эффективность двигателя с фазным ротором, используемого в устройствах с регулируемой скоростью.

    РИСУНОК 1.6 Кривые скорости вращения двигателя с фазным ротором: 1 — короткое замыкание ротора; 2-4, увеличение значений внешнего сопротивления.
    1.1.6

    Многоскоростные двигатели

    Также доступны двигатели, которые работают с более чем одной скоростью, с характеристиками, аналогичными характеристикам односкоростных двигателей типа NEMA. Многоскоростные асинхронные двигатели обычно имеют одну или две первичные обмотки. В однообмоточных двигателях соотношение двух скоростей должно быть 2: 1; Например, возможные комбинации скоростей: 3600/
    , 1800, 1800/900 и 1200/600 об / мин. В двухобмоточных двигателях соотношение скоростей может быть любым в определенных конструктивных пределах, в зависимости от количества пазов обмотки в статоре.Самые популярные комбинации — 1800/1200, 1800/900 и 1800/600 об / мин. Кроме того, двухобмоточные двигатели могут быть намотаны для обеспечения двух скоростей на каждой обмотке; это делает возможным для двигателя

    РИСУНОК 1.7 Кривые скорость-крутящий момент для однообмоточного двухскоростного двигателя с переменным крутящим моментом.
    работают на четырех скоростях, например, 3600/1800 об / мин на одной обмотке и 1200/600 об / мин на другой обмотке. Моторы
    Multispeed доступны со следующими характеристиками крутящего момента.
    Переменный крутящий момент. Многоскоростной двигатель с регулируемым крутящим моментом имеет выходной крутящий момент, который напрямую зависит от скорости, и, следовательно,

    РИСУНОК 1.8 Кривые скорость-крутящий момент для многоскоростного двигателя с переменным крутящим моментом с двумя обмотками, двумя скоростями и четырехполюсным на шесть -полюсное соотношение. Выходная мощность
    лошадиных сил зависит от квадрата скорости. Этот двигатель обычно используется с вентиляторами, воздуходувками и центробежными насосами для управления мощностью приводимого устройства. На рисунке 1.7 показаны типичные кривые скорость-крутящий момент для этого типа двигателя.На кривую «скорость-крутящий момент» наложена кривая «скорость-крутящий момент» для типичного вентилятора, где мощность, потребляемая вентилятором, изменяется пропорционально кубу скорости вентилятора. Другой популярный привод для вентиляторов — двухобмоточный

    РИСУНОК 1.9 Кривые скорость-крутящий момент для однообмоточного двухскоростного двигателя с постоянным крутящим моментом.
    двухскоростной двигатель, например, 1800 об / мин на высокой скорости и 1200 об / мин на низкой скорости. На рис. 1.8 показана типичная кривая «скорость-крутящий момент» для двухобмоточного двигателя с регулируемым крутящим моментом с наложенной кривой «скорость-крутящий момент» вентилятора.
    Постоянный крутящий момент. Многоскоростной двигатель с постоянным крутящим моментом имеет выходной крутящий момент, который одинаков на всех скоростях, и, следовательно, мощность в лошадиных силах

    РИСУНОК 1.10 Кривые скорость-крутящий момент для однообмоточного двухскоростного двигателя постоянной мощности.
    Мощность напрямую зависит от скорости. Этот двигатель можно использовать с фрикционными нагрузками, например, на конвейерах, для управления скоростью конвейера. На рисунке 1.9 показаны типичные кривые скорость-крутящий момент.
    Постоянная мощность. Многоскоростной двигатель постоянной мощности имеет одинаковую мощность на всех скоростях.Этот тип двигателя используется в станках, где требуется более высокий крутящий момент при более низких скоростях. На рисунке 1.10 показаны типичные кривые скорость-крутящий момент.

    Двигатели переменного тока

    | Конструкция машины


    Синхронные двигатели и синхронные двигатели — это две основные категории двигателей переменного тока. Асинхронный двигатель является распространенной формой асинхронного двигателя и в основном представляет собой трансформатор переменного тока с вращающейся вторичной обмоткой. Первичная обмотка (статор) подключена к источнику питания, а закороченная вторичная (ротор) несет наведенный вторичный ток.Крутящий момент создается действием токов ротора (вторичных) на поток воздушного зазора. Синхронный двигатель сильно отличается по конструкции и эксплуатационным характеристикам и считается отдельным классом двигателей.

    Асинхронные двигатели: Асинхронные двигатели — это самый простой и надежный электродвигатель, состоящий из двух основных электрических узлов: статора с обмоткой и узла ротора. Асинхронный двигатель получил свое название от токов, протекающих во вторичном элементе (роторе), которые индуцируются переменными токами, протекающими в первичном элементе (статоре).Комбинированное электромагнитное воздействие токов статора и ротора создает силу, вызывающую вращение.

    Роторы обычно состоят из многослойного цилиндрического железного сердечника с прорезями для размещения проводников. Самый распространенный тип ротора имеет литые алюминиевые жилы и замыкающие концевые кольца. Эта «беличья клетка» вращается, когда движущееся магнитное поле индуцирует ток в закороченных проводниках. Скорость вращения магнитного поля является синхронной скоростью двигателя и определяется числом полюсов статора и частотой источника питания: n s = 120 f / p , где n s = синхронная скорость, f = частота и p = количество полюсов.

    Синхронная скорость — это абсолютный верхний предел скорости двигателя. Если ротор вращается с той же скоростью, что и вращающееся магнитное поле, то проводники ротора не перерезают силовые линии и крутящий момент равен нулю. Во время работы ротор всегда вращается медленнее, чем магнитное поле. Скорость ротора достаточно мала, чтобы обеспечить протекание надлежащего количества тока ротора, так что результирующий крутящий момент будет достаточным для преодоления потерь на ветер и трение и управления нагрузкой. Разница скоростей между ротором и магнитным полем, называемая скольжением, обычно выражается в процентах от синхронной скорости: с = 100 ( n с n a ) / n с , где с = скольжение, n с = синхронная скорость и n a = фактическая скорость.

    Многофазные двигатели: Многофазные двигатели с короткозамкнутым ротором — это в основном машины с постоянной скоростью, но некоторая степень гибкости в рабочих характеристиках является результатом изменения конструкции паза ротора. Эти изменения вызывают изменения крутящего момента, тока и скорости при полной нагрузке. Эволюция и стандартизация привели к появлению четырех основных типов двигателей.

    Конструкции A и B: Двигатели общего назначения с нормальным пусковым моментом и током и малым скольжением.Многофазные двигатели с дробной мощностью обычно имеют конструкцию B. Из-за падающих характеристик конструкции B многофазный двигатель, который производит такой же пробивной (максимальный) крутящий момент, что и однофазный двигатель, не может достичь той же точки скорости-момента для скорости при полной нагрузке. как однофазный двигатель. Следовательно, момент пробоя должен быть выше (минимум 140% момента пробоя однофазного двигателя общего назначения), чтобы скорости при полной нагрузке были сопоставимы.

    Конструкция C: Высокий пусковой момент при нормальном пусковом токе и малом скольжении.Эта конструкция обычно используется там, где отрывные нагрузки высоки при пуске, но которые обычно работают при номинальной полной нагрузке и не подвергаются высоким требованиям к перегрузке после достижения рабочей скорости.

    Конструкция D: Высокое скольжение, очень высокий пусковой момент, низкий пусковой ток и низкая скорость при полной нагрузке. Из-за высокого проскальзывания скорость может упасть при работе с колеблющимися нагрузками. Эта конструкция подразделяется на несколько групп, которые различаются в зависимости от скольжения или формы кривой скорость-крутящий момент.

    Конструкция F: Низкий пусковой момент, низкий пусковой ток и малое скольжение. Эта конструкция предназначена для получения низкого тока заторможенного ротора. Как заторможенный ротор, так и момент пробоя низкие. Обычно используется при низком пусковом моменте и при отсутствии высоких перегрузок после достижения рабочей скорости.

    Двигатели с фазным ротором: Двигатели с короткозамкнутым ротором относительно негибки в отношении характеристик скорости и крутящего момента, но специальная версия с фазным ротором имеет регулируемые скорость и крутящий момент.Применение двигателей с фазным ротором заметно отличается от двигателей с короткозамкнутым ротором из-за доступности цепи ротора. Рабочие характеристики получены путем введения различных значений сопротивления в цепь ротора.

    Двигатели с фазным ротором обычно запускаются с вторичным сопротивлением в цепи ротора. Сопротивление последовательно уменьшается, чтобы двигатель разгонялся. Таким образом, двигатель может развивать значительный крутящий момент при ограничении тока заторможенного ротора.Это вторичное сопротивление может быть рассчитано на непрерывную работу для рассеивания тепла, выделяемого при непрерывной работе на пониженной скорости, частом ускорении или ускорении с большой инерционной нагрузкой. Внешнее сопротивление придает двигателю такую ​​характеристику, которая приводит к значительному падению оборотов при довольно небольшом изменении нагрузки. Обеспечивается пониженная скорость примерно до 50% от номинальной скорости, но эффективность низкая.

    Многоскоростные двигатели: Двигатели с последовательными полюсами рассчитаны на одну скорость.Путем физического повторного соединения проводов можно получить передаточное число 2: 1. Типичные синхронные скорости для двигателя 60 Гц: 3600/1800 об / мин (2/4 полюса), 1800/900 об / мин (4/8 полюса) и 1200/600 об / мин (6/12 полюсов).

    Двухобмоточные двигатели имеют две отдельные обмотки, которые можно намотать на любое количество полюсов, чтобы можно было получить другие соотношения скоростей. Однако соотношение больше 4: 1 нецелесообразно из-за размера и веса двигателя. Однофазные многоскоростные двигатели обычно имеют конструкцию с регулируемым крутящим моментом, но доступны двигатели с постоянным крутящим моментом и постоянной мощностью.

    Выходная мощность многоскоростных двигателей может быть пропорциональна каждой скорости. Эти двигатели разработаны с выходной мощностью в лошадиных силах в соответствии с одной из следующих нагрузочных характеристик.

    Переменный крутящий момент: Двигатели имеют характеристику крутящего момента скорости, которая изменяется как квадрат скорости. Например, двигатель со скоростью 1800/900 об / мин, который развивает 10 л.с. при 1800 об / мин, выдает 2,5 л.с. при 900 об / мин. Поскольку для некоторых нагрузок, таких как центробежные насосы, вентиляторы и воздуходувки, требуется крутящий момент, который изменяется пропорционально квадрату или кубу скорости, эта характеристика двигателя обычно является адекватной.

    Постоянный крутящий момент: Эти двигатели могут развивать одинаковый крутящий момент на каждой скорости, поэтому выходная мощность напрямую зависит от скорости. Например, двигатель мощностью 10 л.с. при 1800 об / мин выдает 5 л.с. при 900 об / мин. Эти двигатели используются в приложениях с требованиями к постоянному крутящему моменту, таких как смесители, конвейеры и компрессоры.

    Постоянная мощность: Эти двигатели развивают одинаковую мощность на каждой скорости, а крутящий момент обратно пропорционален скорости.Типичные области применения включают станки, такие как дрели, токарные и фрезерные станки.

    Однофазные двигатели: Однофазные асинхронные двигатели обычно имеют дробную мощность, хотя однофазные интегральные двигатели доступны в более низком диапазоне мощности. Наиболее распространенными однофазными двигателями с дробной мощностью являются электродвигатели с разделенной фазой, с конденсаторным пуском, с постоянным разделенным конденсатором и с экранированным полюсом.

    Двигатели бывают многоскоростные, но есть практический предел количества получаемых скоростей.Доступны двух-, трех- и четырехскоростные двигатели, и выбор скорости может осуществляться последовательно-полюсными или двухобмоточными методами.

    Однофазные двигатели вращаются в том направлении, в котором они были запущены; и они запускаются в заданном направлении в соответствии с электрическими соединениями или механической настройкой пусковых средств. Двигатели общего назначения могут работать в любом направлении, но стандартное вращение — против часовой стрелки, если смотреть на конец, противоположный приводному валу.Двигатели можно повторно подключить, чтобы изменить направление вращения.

    Универсальные двигатели: Универсальный двигатель работает с почти эквивалентной производительностью на постоянном или переменном токе с частотой до 60 Гц. Он отличается от двигателя постоянного тока из-за передаточных чисел намотки и более тонких металлических пластин. Двигатель серии постоянного тока работает от переменного тока, но с низким КПД. Универсальный двигатель может работать от постоянного тока с практически эквивалентными характеристиками переменного тока, но с меньшими коммутационными характеристиками и меньшим сроком службы щеток, чем у эквивалентного двигателя постоянного тока.

    Важной характеристикой универсального двигателя является то, что он имеет самое высокое соотношение мощности на фунт среди всех двигателей переменного тока, поскольку он может работать на скоростях, во много раз превышающих скорость любого другого двигателя с частотой 60 Гц.

    При работе без нагрузки универсальный двигатель имеет тенденцию к разбегу, а скорость ограничивается только ветром, трением и коммутацией. Поэтому большие универсальные двигатели почти всегда подключаются напрямую к нагрузке для ограничения скорости. На портативных инструментах, таких как электрические пилы, нагрузка на шестерни, подшипники и охлаждающий вентилятор достаточна для поддержания скорости холостого хода на безопасном уровне.

    С универсальным двигателем регулирование скорости является простым, поскольку скорость двигателя чувствительна как к изменениям напряжения, так и к изменениям магнитного потока. С помощью реостата или регулируемого автотрансформатора скорость двигателя можно легко изменять от максимальной до нуля.

    Синхронные двигатели: Синхронные двигатели по своей сути являются двигателями с постоянной скоростью и работают в абсолютном синхронизме с частотой сети. Как и в случае асинхронных двигателей с короткозамкнутым ротором, скорость определяется количеством пар полюсов и всегда является отношением к частоте сети.

    Типоразмеры синхронных двигателей варьируются от субфракционных двигателей с самовозбуждением до двигателей большой мощности с возбуждением от постоянного тока для промышленных приводов. В диапазоне дробных лошадиных сил синхронные двигатели используются в основном там, где требуется точная постоянная скорость.

    Синхронные двигатели большой мощности, применяемые в промышленных нагрузках, выполняют две важные функции. Во-первых, это высокоэффективное средство преобразования энергии переменного тока в механическую.Во-вторых, он может работать с опережающим или единичным коэффициентом мощности, тем самым обеспечивая коррекцию коэффициента мощности.

    Существует два основных типа синхронных двигателей: без возбуждения и с возбуждением от постоянного тока.

    Невозбужденные двигатели изготавливаются в реактивном и гистерезисном исполнении. Эти двигатели используют схему самозапуска и не требуют внешнего источника возбуждения.

    Двигатели с возбуждением от постоянного тока имеют мощность более 1 л.с. и требуют постоянного тока, подаваемого через контактные кольца для возбуждения.Постоянный ток может подаваться от отдельного источника или от генератора постоянного тока, непосредственно подключенного к валу двигателя.

    Однофазные или многофазные синхронные двигатели не могут запускаться без привода или без подключения ротора по схеме самозапуска. Поскольку поле вращается с синхронной скоростью, двигатель должен быть ускорен, прежде чем он сможет синхронизироваться. Ускорение с нулевой скорости требует проскальзывания до достижения синхронизма. Следовательно, необходимо использовать отдельные средства запуска.

    В конструкциях с автоматическим запуском для типоразмеров мощности используются методы пуска, общие для асинхронных двигателей (расщепленная фаза, конденсаторный пуск, отталкивающий пуск и затененные полюса). Электрические характеристики этих двигателей заставляют их автоматически переключаться на синхронный режим.

    Хотя двигатель с возбуждением от постоянного тока имеет короткозамкнутый ротор для запуска, называемый амортизатором или демпферной обмоткой, присущий ему низкий пусковой момент и потребность в источнике питания постоянного тока требует системы запуска, которая обеспечивает полную защиту двигателя при запуске, применяется постоянный ток. возбуждение поля в нужное время, устраняет возбуждение поля при выдергивании ротора (максимальный крутящий момент) и защищает обмотку с короткозамкнутым ротором от теплового повреждения в условиях сбоя.

    Крутящий момент — это минимальный крутящий момент, развиваемый от состояния покоя до точки втягивания. Этот крутящий момент должен превышать крутящий момент нагрузки с достаточным запасом, чтобы удовлетворительная скорость ускорения поддерживалась при нормальных условиях напряжения.

    Момент сопротивления возникает из-за выступа (предпочтительного направления намагничивания) полюсных наконечников ротора и пульсирует на скоростях ниже синхронной. Это также влияет на крутящие моменты втягивания и извлечения двигателя, поскольку невозбужденный ротор с явным полюсом имеет тенденцию выравниваться с магнитным полем статора для поддержания минимального магнитного сопротивления.Этого реактивного крутящего момента может быть достаточно, чтобы синхронизировать слегка нагруженную малоинерционную систему и развить примерно 30% крутящего момента отрыва.

    Синхронный крутящий момент — это крутящий момент, развиваемый после приложения возбуждения, и представляет собой общий установившийся крутящий момент, доступный для привода нагрузки. Он достигает максимума при отставании ротора от магнитного поля вращающегося статора примерно на 70 °. Это максимальное значение фактически является крутящим моментом отрыва.

    Вытягивающий момент — это максимальный устойчивый крутящий момент, который двигатель развивает при синхронной скорости в течение одной минуты с номинальной частотой и нормальным возбуждением.Нормальный момент отрыва обычно составляет 150% от крутящего момента при полной нагрузке для двигателей с единичным коэффициентом мощности и от 175 до 200% для двигателей с опережающим коэффициентом мощности 0,8.

    Момент втягивания синхронного двигателя — это крутящий момент, который он развивает при переводе подключенной инерционной нагрузки в синхронизм при приложении возбуждения. Вращающий момент создается при переходе от скорости скольжения к синхронной скорости, когда двигатель переключается с асинхронного режима на синхронный. Обычно это самый критический период при запуске синхронного двигателя.Крутящие моменты, развиваемые амортизатором и обмотками возбуждения, становятся нулевыми при синхронной скорости. Таким образом, в точке втягивания эффективны только реактивный момент и синхронизирующий момент, обеспечиваемый возбуждением обмоток возбуждения.

    Двигатели с синхронизацией: Двигатели с синхронизацией мощностью менее 1/10 л.с. используются в качестве первичных двигателей для устройств синхронизации. Поскольку двигатель используется в качестве таймера, он должен работать с постоянной скоростью.

    Двигатели переменного и постоянного тока могут использоваться в качестве синхронизирующих двигателей.Двигатели с синхронизацией постоянного тока используются для портативных приложений или там, где требуются высокое ускорение и низкие изменения скорости. Преимущества включают в себя пусковой момент, превышающий десятикратный рабочий крутящий момент, эффективность от 50 до 70% и относительно простое управление скоростью. Но требуется регулятор скорости, механический или электронный.

    Двигатели переменного тока используют доступную мощность, дешевле, имеют более длительный срок службы и не создают радиопомех. Однако двигатели переменного тока не могут быть легко адаптированы для портативных приложений, имеют относительно низкие пусковые моменты и намного менее эффективны, чем двигатели постоянного тока.

    Серводвигатели переменного тока : Серводвигатели переменного тока используются в сервомеханизмах переменного тока и компьютерах, которые требуют быстрого и точного отклика. Для достижения этих характеристик серводвигатели имеют роторы малого диаметра с высоким сопротивлением. Малый диаметр обеспечивает низкую инерцию для быстрого пуска, останова и реверса, в то время как высокое сопротивление обеспечивает почти линейную зависимость скорости от крутящего момента для точного управления.

    Серводвигатели имеют двухфазную намотку, физически расположенную под прямым углом или в пространственной квадратуре.Фиксированная или опорная обмотка возбуждается от источника постоянного напряжения, в то время как обмотка управления возбуждается регулируемым или переменным управляющим напряжением, обычно от сервоусилителя. Обмотки обычно проектируются с одинаковым соотношением напряжения и витков, так что потребляемая мощность при максимальном возбуждении с фиксированной фазой и при максимальном сигнале фазы управления находятся в равновесии.

    В идеальном серводвигателе крутящий момент на любой скорости прямо пропорционален напряжению обмотки управления. Однако на практике эта взаимосвязь существует только при нулевой скорости из-за присущей асинхронному двигателю неспособности реагировать на изменения входного напряжения в условиях небольшой нагрузки.

    Собственное демпфирование серводвигателей уменьшается с увеличением номинальных значений, и двигатели имеют разумный КПД за счет линейности скорости-момента. Большинство более крупных двигателей имеют встроенные вспомогательные воздуходувки для поддержания температуры в безопасных рабочих диапазонах. Серводвигатели доступны с номинальной мощностью от менее 1 до 750 Вт и размерами от 0,5 до 7 дюймов. OD. Большинство конструкций доступны с модульными или встроенными редукторами.

    Разница между синхронным двигателем и асинхронным двигателем

    Двигатели переменного тока можно разделить на две основные категории — (i) синхронный двигатель и (ii) асинхронный двигатель .Асинхронный двигатель обычно называют асинхронным двигателем. Оба типа сильно отличаются друг от друга. Основные различия между синхронным двигателем и асинхронным двигателем обсуждаются ниже.
    Конструктивная разница
    • Синхронный двигатель : Статор имеет осевые пазы, которые состоят из обмотки статора, намотанной на определенное количество полюсов. Обычно используется ротор с явнополюсным ротором, на котором установлена ​​обмотка ротора. Обмотка ротора запитана постоянным током с помощью контактных колец.Также можно использовать ротор с постоянными магнитами.
      Синхронный двигатель
    • Асинхронный двигатель : Обмотка статора аналогична обмотке синхронного двигателя. Он накручивается на определенное количество полюсов. Можно использовать ротор с короткозамкнутым ротором или ротор с обмоткой. В роторе с короткозамкнутым ротором стержни ротора постоянно замкнуты накоротко с концевыми кольцами. В роторе с намоткой обмотки также постоянно закорочены, поэтому контактные кольца не требуются.
      Асинхронный двигатель
    Разница в рабочем
    • Синхронный двигатель : Полюса статора вращаются с синхронной скоростью (Нс) при питании от трехфазного источника питания. Ротор питается от источника постоянного тока. Во время пуска ротор необходимо вращать со скоростью, близкой к синхронной. В этом случае полюса ротора магнитно соединяются с вращающимися полюсами статора, и, таким образом, ротор начинает вращаться с синхронной скоростью.
      • Синхронный двигатель всегда работает со скоростью, равной его синхронной скорости.
        т.е. фактическая скорость = синхронная скорость
        или N = Ns = 120f / P
      • Узнайте больше о работе синхронного двигателя здесь.
    • Асинхронный двигатель : Когда на статор подается двух- или трехфазный источник переменного тока, создается вращающееся магнитное поле (RMF). Относительная скорость между вращающимся магнитным полем статора и ротором вызовет индуцированный ток в проводниках ротора.Ток ротора порождает поток ротора. Согласно закону Ленца, направление этого индуцированного тока таково, что он будет иметь тенденцию противодействовать причине его образования, то есть относительной скорости между RMF статора и ротором. Таким образом, ротор будет пытаться догнать RMF и снизить относительную скорость.
    Другие отличия
    • Синхронным двигателям требуется дополнительный источник постоянного тока для питания обмотки ротора. Асинхронные двигатели не требуют дополнительного источника питания.
    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *