Вольт и ватт: в чем разница?
Люди часто путают единицы измерения тех или иных физических величин, особенно если они похожи по звучанию и употребляются в одной и той же области. Так и происходит с вольтами и ваттами. Эти единицы хоть и обе относятся к электротехнике, но измеряют разные ее параметры. Ни одна из этих единиц не входит в международную систему единиц (СИ), но они обе являются стандартными и общепринятыми.
Отличия
В ваттах (Вт) измеряют мощность. При мощности в 1 Вт за электрическим током за секунду совершается работа в 1 джоуль. Соответственно, ватт – единица производная от других единиц. Мощность прямо зависит от напряжения и равна его произведению с силой тока, поэтому вместо ватта зачастую употребляется вольт·ампер.
Вольт (В) характеризует напряжение (либо разницу электрических потенциалов или электрического потенциала и электродвижущей силы, что, по сути, является одним и тем же). Это величина того электрического напряжения, которое необходимо на концах проводника, чтобы при силе постоянного тока в 1 ампер устройству с мощностью 1 ватт выделилось количество теплоты. Иная характеристика для этой единицы – разность электропотенциалов в двух точках, для перемещения заряда в 1 кулон между которыми потребуется совершение работы в 1 джоуль.
Ток – это движение заряженных частиц по какому-то проводнику из области большего потенциала в область меньшего. И разница в потенциалах между двумя точками – это и есть напряжение на этом участке.
Однако все эти объяснения достаточно мудреные. Суть этих единиц будет несколько проще понять на аналогии, сравнив электричество с рекой:
- Напряжение в вольтах – разница между уровнями воды в разных местах речки;
- Мощность в ваттах – произведение этой разницы на количество протекшей по этому участку за секунду воды.
Применение
Обе единицы являются важными характеристиками любого электрического оборудования, поэтому обязательно указываются в технической документации к нему. Нередко мощность указывают и вольт·амперах и в ваттах. Хотя для ряда приборов эти показатели будут одинаковыми, для некоторых, например, компьютерного оборудования, вольт·амперная характеристика будет больше. Это происходит потому, что она показывает полную мощность — произведение подаваемого на прибор напряжения на силу потребляемого им тока, в то время как реальная потребляемая этим устройством мощность может быть меньше, а разница пойдет на нагрев устройства.
Напряжение в вольтах или ваттах — ватт и ампер разница
Разница между Вольтом и Ваттом
Одними из основных характеристик любого электрооборудования является напряжение и потребляемая мощность, в связи, с чем на любом приборе (или в паспорте к нему) имеется информация о мощности (Ватт) и напряжении (Вольт).
Определение
Ватт (Вт или W) — это единица измерения мощности.
Вольт (В или V) — это единица измерения электрического потенциала, напряжения, разности потенциалов и электродвижущей силы.
Сравнение
Вольт и Ватт — это единицы измерения для разных электротехнических параметров.
1 Вольт — это величина электрического напряжения на концах проводника, необходимая для выделения теплоты мощностью равной 1 Ватт при силе постоянного электрического тока, протекающего через данный проводник, равной одному Амперу. Также 1 Вольт можно охарактеризовать как разность электрических потенциалов между двумя имеющимися точками в случае, когда для перемещения электрического заряда величиной в 1 Кулон из точки в точку требуется произвести работу, равную 1 Джоулю.
Реклама
1 Ватт — величина мощности, при которой за одну секунду совершается работа равная одному Джоулю. Следовательно, Ватт — это производная от других величин единица. Так, например, мощность соотносится с напряжением следующим образом: Вт = В•А, где В – показатель величины напряжения, а А – показатель величины силы тока. Кроме механической мощности различают ещё электрическую и тепловую мощность.
Выводы TheDifference.ru
- Ватт (Вт или W) — стандартная единица измерения мощности.
- Вольт (В или V) — стандартная единица измерения напряжения, разности электрических потенциалов, электрического потенциала и электродвижущей силы.
- Мощность (Вт) любого прибора можно рассчитать, перемножив напряжение (В) на силу тока (А). АМПЕР (А) — стандартная единица измерения силы электрического тока.
Как перевести киловатты в амперы и наоборот
Наличие развитой электрической сети является таким же признаком современного объекта недвижимости как водопровод, канализация и система вентиляции.
Аналогично любой сложной технической системе, электрическая проводка как комплекс характеризуется определенными численными параметрами, среди которых чаще всего упоминаются амперы и киловатты.
Связано это с тем, что внутридомовая электрическая сеть имеет фиксированное напряжение (220 и 380 В), которое полностью определяется схемой, использованной при ее построении, тогда как амперы и киловатты меняются в широких пределах.
Даже при начальных знаниях в области электротехники, а также при первичном знакомстве с принципами построения и функционирования электрической проводки становится ясным, что указанные параметры взаимозависимы.
Поэтому сразу же возникает естественное стремление свести их к одной интегральной величине или, при нецелесообразности такого перехода, установить между ними простую взаимосвязь.
В чем состоит отличие ампер и киловатт
Фундаментальное отличие между единицами измерения параметров электрической сети, которые вынесены в заголовок этого раздела, состоит в том, что они представляют собой численную меру различных физических величин.
В данном случае:
- амперы (сокращение А) показывают силу тока;
- ватты и киловатты (сокращение Вт и кВт, соответственно) характеризуют активную (фактически полезную) мощность.
На практике используется также расширенное описание мощности с измерением ее в вольт-амперах и, соответственно киловольт-амперы, которые кратко обозначаются как ВА и кВА.
Они, в отличие от Вт и кВт, которыми описывается активная мощность, указывают на полную мощность.
В цепях постоянного тока полная и активная мощности совпадают. Аналогично, в сети переменного тока при небольшой мощности нагрузки на инженерном уровне строгости можно не учитывать различие между Вт (кВт) и ВА (кВА), т.е. работать только с двумя первыми единицами.
Для таких цепей действует следующее простое соотношение:
W = U*I, (1)
где W – (активная) мощность, задаваемая в Вт, U –напряжение, указываемое в вольтах, I – сила тока, измеряемая в амперах.
При увеличении мощности нагрузки до уровня тысяча ватт и выше для постоянного тока соотношение (1) не меняется, а для переменного тока его целесообразно записать как:
W = U*I*cosφ, (2)
где cosφ – так называемый коэффициент мощности ли просто “косинус фи”, показывающий эффективность преобразования электрического тока в активную мощность.
По физическому смыслу φ представляет собой угол между векторами переменного тока и напряжения или угол фазового сдвига между напряжением и током.
Хорошим критерием необходимость учета данной особенности являются те случаи, когда в паспортных данных и/или на корпусных табличках-шильдиках электроприборов, преимущественно мощных, потреблением более 1 кВт, вместо кВт указывают ВА или кВА.
Обычно для бытовых электрических устройств с мощными электродвигателями (стиральные и посудомоечные машины, насосы и аналогичные им) можно положить cosφ = 0,85.
Это означает, что 85% потребляемой энергии является полезной, а 15% образует так называемую реактивную мощность, которая непрерывно переходит из сети в нагрузку и обратно до тех пор, пока в процессе этих переходов она не рассеется в виде тепла.
При этом сама сеть должна быть рассчитана именно на полную мощность, а не на полезную. Для указания этого факта ее указывают не в ваттах, а в вольт-амперах.
Как единица измерения ватт (воль-ампер) иногда оказывается слишком маленьким, что приводит к сложным для визуального восприятия числам с большим количеством знаков. С учетом этой особенности в ряде случаев мощность указывают в киловаттах и киловольт-амперах.
Для этих единиц справедливо:
1000 Вт = 1 кВт и 1000 ВА = 1кВА. (3).
Почему возникает необходимость перехода от ампер к киловаттам и обратно
Свести описание электрической сети только к одной единице не получается. Необходимость использования двух разных единиц измерения параметров возникает из-за того, что в подавляющем большинстве случаев конкретная проводка обслуживает несколько потребителей, каждый из которых вносит свой вклад в силу протекающего тока.
В результате
- сечение проводов удобно рассчитывать по максимальной силе протекающего через них тока;
- аналогичным образом подбираются автоматические выключатели, которые защищают приемники и провода от перегрузки и короткого замыкания;
- основной же характеристикой любого подключаемого к розетке электрического устройства как токоприемника или нагрузки традиционно является его мощность.
Популярность указания мощности потребления, как одного из главных параметров электроприбора, определяется также тем, что оплата электроэнергии осуществляется по электросчетчику, который отградуирован в кВт*час.
Соответственно при известной стоимости одного кВт*час оплата электроэнергии определяется простым перемножение трех чисел: мощности, продолжительности работы и стоимости одного кВт*час.
С учетом особенности определения расходов на электроэнергию становится понятным преимущество применения для мощных устройств не полезной мощности, измеряемой в кВт, а полной мощности, которая определяется в кВА.
Оно выгодно тем, что дает возможность выполнять расчеты по единой методике без отдельного учета фактического фазового сдвига тока и напряжения.
Принцип идентичности расчетов при знании полной мощности распространяется также на расчет тока.
Сам пересчет из одной единицы в другую выполняется по представленным выше соотношениям (1) и (2) и из-за их простоты не составляет больших проблем.
В данном случае свою роль играет то, что напряжение U можно считать константой, которая меняется только от количества фаз проводки.
Далее приведем основные правила выполнения таких расчетов применительно к наиболее часто встречающихся на практике случаям.
Определение мощности по силе тока для однофазной сети
Необходимость выполнения этой процедуры чаще всего возникает при задании ограничений по максимальной мощности электроприбора, который можно подключить к конкретной розетке или их группе.
При нарушении данного ограничения возрастают риски пожара, а пластмассовые декоративные элементы розетки могут расплавиться из-за избытка выделяющегося тепла.
На основании определений, которые в математической форме описываются выражениями (1) и (2), для нахождения мощности следует просто умножить ток на напряжение.
Максимально допустимый ток выносится на маркировку розетки и для большинства комнатных бытовых изделий этой разновидности обычно составляет 6 А.
Напряжение, подаваемое от электросети на розетку, равно 220 – 230 В. Таким образом, максимальная мощность составляет 1,3 кВт.
Отдельно укажем на то, что риски повреждения розетки при подключении чрезмерно мощного устройства минимальны в правильно спроектированной бытовой проводке.
Это полезное свойство обеспечено:
- установкой автоматов;
- применением в мощных электроприборах вилок, которые физически не могут подключаться к обычным розеткам (механическая блокировка).
Своеобразным вариантом механической блокировки можно считать довольно популярное прямое соединение мощного стационарного устройства (кондиционер, бойлер) с сетью без использования розеток.
Пересчет мощности в ток для однофазной сети
Расчет тока выполняется обычно в процессе подбора автомата, обслуживающего мощный потребитель типа прямоточного водонагревателя.
На основании выражений (1) и (2) задача решается в одно действие. Для этого достаточно разделить мощность на напряжение.
Величина мощности приводится в техническом описании устройства или же указывается прямо на его корпусе. Напряжение принимается равным 220 В, что создает некоторый запас расчета.
Например, при мощности 3000 Вт в соответствии с приведенным правилом получаем ток в 3000/220 = 13,7 А, что указывает на необходимость применения 16-амперного защитного автомата.
При указании мощности в киловаттах в расчет добавляется одно действие: необходимо предварительно перевести киловатты в ватты с учетом формулы (3).
Например, нагреватель имеет мощность 2,8 кВт. Тогда расчет тока выполняется следующим образом:
- W = 2,8*1000 = 2800 Вт;
- I = W/220 = 12,7 А.
Главной особенностью в данном случае становится то, что с учетом типового для бытовых устройств cosφ = 0,85 полезную работу будет выполнять 11,6 А (т.е. 85% всего тока), тогда как оставшиеся 2,1 А являются реактивным током, который бесполезно расходуется на разогрев проводов.
Быстрая оценка токов и мощностей
Предельная простота исходных соотношений (1) и (2) позволяет заметно упростить выполнение текущих расчетов при дополнительном условии задания мощности в киловаттах.
В основу упрощения расчетов положен факт того, что с учетом примерного постоянства напряжения в бытовой однофазной 220-вольтовой сети пересчет мощности в ток можно выполнить умножением мощности на постоянный коэффициент.
Для определения такого коэффициента целесообразно воспользоваться тем, что при задании W в кВт имеем довольно точную оценку I = W*1000/220 = 4,5*W.
Например, при W = 2,8 кВт получаем 4,5*2,8= 12,6 А, т.е. выкладки выполняются быстрее и существенно удобнее по сравнению с “правильным” расчетом при незначительной потерей точности.
Аналогичным образом столь же легко показать, что W = 0,22*I кВт. Необходимо помнить о том, что ток I указывается в амперах.
Таким образом, получаем простые правила:
- один кВт соответствует 4,5 А тока;
- один ампер соответствует мощности 0,22 кВт.
Последнее правило часто закругляют до уровня один ампер эквивалентен 0,2 кВт.
Связь мощности и тока в трехфазной сети
Принцип расчета мощности и тока для трехфазных сетей остается прежним. Главное отличие заключается в незначительной модернизации расчетных формул, что позволяет полноценно учесть особенности построения этого вида проводки.
В качестве базового соотношения традиционно берется выражение:
W =1,73* U*I, (4)
причем U в данном случае представляет собой линейное напряжение, т.е. составляет U = 380 В.
Из выражения (4) вытекает выгодность применения в обоснованных случаях трехфазных сетей: при такой схеме построения проводки токовая нагрузка на отдельные провода падает в корень из трех раз при одновременном трехкратном увеличении отдаваемой в нагрузку мощности.
Для доказательства последнего факта достаточно заметить, что 380/220 = 1,73, а с учетом первого числового коэффициента получаем 1,73 * 1,73 = 3.
Приведенные выше правила связи токов и мощности для трехфазной сети формулируются в следующей форме:
- один кВт соответствует 1,5 А потребляемого тока;
- один ампер соответствует мощности 0,66 кВт.
Укажем на то, что все сказанное справедливо в отношении случая соединения нагрузки так называемой звездой, что наиболее часто встречается на практике.
Возможно еще соединение треугольником, которое меняет правила расчета, но оно встречается достаточно редко и в этой ситуации целесообразно обратиться к специалисту.
Особенности выполнения расчетов автоматов
Одной из наиболее часто встречающихся задач при проектировании электрической проводки в жилых помещениях является определение тока срабатывания автоматических выключателей.
Эти элементы обязательны для применения и защищают отдельные сети и подключенные к ним электрические приборы от выхода из строя и возгорания в случае превышения нагрузки, а саму линию от короткого замыкания.
Расчет представляет собой 4-шаговую процедуру, которая выполняется следующим образом:
- формируют перечень всех устройств, которые будут получать электроснабжение от данной сети;
- в технических данных этих устройств находят мощность;
- с учетом того, что отдельные устройства подключаются параллельно, вычисляют общий ток в амперах по формуле I = W /220;
- по величине общего тока определяют номинал автомата.
Проиллюстрируем приведенную методику примером.
Пусть конкретно взятый провод обслуживает следующие потенциально одновременно включенные потребители:
- настольную лампу мощностью 60 Вт;
- торшер с двумя лампами по 60 Вт;
- напольный кондиционер мощностью 1,7 кВт;
- персональный компьютер с мощностью потребления 600 Вт.
Находим общую мощность потребления имеющейся техники. Предварительно переводим потребляемую мощность в общие единицы (в данном случае это ватты). Имеем 60 + 2*60 + 1,7*1000 + 600 = 2480 Вт.
Кондиционер является потребителем, мощность которого превышает 1 кВт. Для увеличения общей эксплуатационной надежности создаваемой проводки выполним оценку величины тока сверху, т.е. положим коэффициент мощности равным cosφ = 1.
Фактическое значение тока будет несколько меньше, разницу считаем запасом расчета.
Обычным мультиметром замеряем напряжение в сети, которое равно 230 В.
Тогда ожидаемый ток при одновременном функционировании всех приборов на основании формулы (1) составит:
I = 2280/230 = 10,8 А.
Таблица.
Как вывод можем констатировать, что данный участок электрической сети целесообразно защищать 16-амперным автоматом.
Также можно воспользоваться калькулятором перевода ватт в амперы.
Мощность электроустановок. Вольт-амперы (ВА) и Ватты (Вт). В чем отличие?
Многие не раз замечали, что мощность одних электроустановок указывается в ваттах, а мощность других электроустановок — в вольт-амперах. В данной статье мы объясним в чем разница между этими двумя единицами измерения.
На большинстве бытовых электроприборах мощность указывается в ваттах. Данная характеристика говорит нам о величине активной мощности электроприбора. Активная мощность — это мощность, которая непосредственно совершает полезную работу. Один ватт — это мощность, при которой за одну секунду совершается работа, равная одному джоулю. Именно эту мощность мы приобретаем у коммунального предприятия. Казалось бы, все просто. Электроустановка получает электроэнергию и перерабатывает ее в другие виды энергии — механическую, тепловую и т.д. Однако, на деле, большинство электроустановок помимо активной мощности потребляют или генерируют реактивную мощность. Реактивная мощность — это мощность, которая не совершает непосредственно полезной работы, но необходима для нормальной работы электроустановки. Например, в работе трансформатора, передача электроэнергии с первичной обмотки на вторичную осуществляется с помощью электромагнитного поля. Для создания этого электромагнитного поля и используется реактивная энергия. Если пренебречь различными незначительными потерями на магнитопроводах, то можно сказать, что реактивная мощность постоянно присутствует в сети и не требует дополнительного расхода ресурсов при генерации. Однако при этом она оказывает значительное влияние на пропускную способность электросети. При большой составляющей реактивной энергии, не смотря на полезную активную мощность, приходится дополнительно увеличивать сечения кабелей, мощность трансформаторов и т. д. Естественно это приводит к дополнительным финансовым затратам.
Из активной и реактивной мощности состоит полная мощность. Именно она и измеряется в вольт-амперах. Полную мощность переменного тока можно найти умножив действующее значение силы тока в приемнике и напряжение на зажимах электроприемника. Очень часто полную мощность называют кажущейся, так как подразумевается, что не вся она участвует в совершении полезной работы. Более подробно о том, что такое активная, реактивная и полная мощности вы можете прочитать в соответствующей статье на нашем сайте.
Переводим Вольт-Амперы (ВА) в Ватты (Вт)
Нередко наши покупатели, видя в названии стабилизатора цифры, принимают их за мощность в Ваттах. На самом деле, как правило, производитель указывает полную мощность прибора в Вольт-Амперах, которая далеко не всегда равна мощности в Ваттах. Из-за этого нюанса возможны регулярные перегрузки стабилизатора по мощности, что в свою очередь приведет к его преждевременному выходу из строя.
Электрическая мощность включает в себя несколько понятий, из которых мы рассмотрим наиболее для нас важные:
Полная мощность (ВА) — величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт). Измеряется в Вольт-Амперах.
Активная мощность (Вт) — величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт) и на коэффициент нагрузки (cos φ). Измеряется в Ваттах.
Коэффициент мощности (cos φ) — величина, характеризующая потребитель тока. Говоря простым языком, этот коэффициент показывает, скольно нужно полной мощности (Вольт-Ампер), чтобы «запихнуть» требуемую на совершение полезной работы мощность (Ватт) в потребитель тока. Этот коэффициент можно найти в технических характеристиках приборов-потребителей тока. На практике он может принимать значения от 0.6 (например, перфоратор) до 1 (нагревательные приборы). Cos φ может быть близок к единице в том случае, когда потребителями тока выступают тепловые (тэны и т.п.) и осветительные нагрузки. В остальных случаех его значение будет варьироваться. Для простоты это значение принято считать равным 0.8.
Активная мощность (Ватты) = Полная мощность (Вольт-Амперы) * Коэффициент мощности (Cos φ)
Т.е. при выборе стабилизатора напряжения на дом или на дачу в целом, его полную мощность в Вольт-Амперах (ВА) следует умножить на коэффициент мощности Cos φ = 0.8. В результате мы получаем приблизительную мощностьв Ваттах (Вт) на которую рассчитан данный стабилизатор. Не забывайте в расчетах принять во внимание пусковые токи электродвигателей. В момент пуска их потребляемая можность может превысить номинальную от трёх до семи раз.
Для любознательных:
Электрическая мощность
Коэффициент мощности
Публикации по теме:
внедрение, тестирование портов коммутаторов, инжекторов, Ethernet сети
Power over Ethernet (PoE) представляет собой технологию, обеспечивающую подачу электрической энергии вместе с данными по сетевой инфраструктуре Ethernet. Впервые технология PoE была разработана для упрощения развертывания телефонов VoIP и исключения необходимости в дополнительном источнике электропитания на самом телефоне. С тех пор данная технология играет важную роль в увеличении числа подключенных к сети устройств, особенно в тех случаях, когда в месте установки таких устройств сложно или дорого установить дополнительные электрические розетки. Технология PoE обеспечивает расширение сетей Wi-Fi за счет использования активных точек доступа и систем IP-наблюдения за счет использования активных камер. С учетом прогнозируемого роста числа устройств IoT (Интернета вещей) в сочетании с недавно утвержденными в стандарте 802.3bt (4PPoE) более высокими уровнями мощности правильность функционирования систем PoE становится критически важной.
Когда передачу данных и подачу электропитания обеспечивает единая кабельная инфраструктура, без хорошего проектирования и правильных методов проверки многое может пойти не так. Обязательными условиями для беспрепятственного развертывания являются глубокие знания спецификаций электропитания и передачи данных для развертываемых устройств, а также понимание характеристик существующей или новой кабельной инфраструктуры, которая будет использоваться для соединения устройств и источников электропитания.
В этой статье описывается технология PoE, включая недавно принятую спецификацию IEEE 802.3bt, также называемую PoE++ или 4PPoE (PoE по четырем парам). Здесь можно будет найти ответы на следующие вопросы:
- Как работает технология PoE?
- Каковы особенности развертывания систем PoE, особенно при увеличении потребности в электрической мощности?
- Существуют ли стандартные проверенные методики для проверки и устранения неисправностей во время развертывания?
Типы оборудования PoE
Прежде чем погрузиться в рассмотрение технологии PoE, важно уяснить несколько ключевых терминов:
Термин |
Определение |
PSE (Power Source Equipment / Питающее оборудование) |
Это устройство, которое обеспечивает подачу электропитания. Устройство PSE может быть либо End-Span, либо Mid-Span (смотрите ниже). |
PD (Powered Device / Питаемое устройство) |
Это устройство, получающее электропитание от системы PoE. |
End-Span |
Источник электропитания End-Span – это обычно сетевой коммутатор или инжектор, который обеспечивает подачу электропитания от конца кабельной линии. |
Mid-Span |
Источник электропитания Mid-Span – это устройство (обычно PoE инжектор), которое обеспечивает питание PoE из середины кабельной линии, и находится между сетевым коммутатором и устройством PD. |
Кабельная инфраструктура |
Технология PoE использует кабели типа «витая пара» для соединения между устройствами PSE и PD. Сечение и материал кабеля и соединительного оборудования (например, патч-панели) влияют на потерю мощности. |
На рисунке ниже показаны конфигурации электропитания End-Span и Mid-Span для PSE. Оборудование End-Span обычно используется в новых установках, когда необходимы и другие обновления коммутатора (например, переход на технологию 1000-BaseT). Развертывание коммутатора PoE обеспечит более удобную подачу электропитания в вашей сети и добавит меньше потенциальных точек неисправностей и сложностей, чем в случае конфигурации Mid-Span.
Конфигурация Mid-Span используется, когда коммутатор, пусть и не поддерживающий технологию PoE, заменять нежелательно, а в сеть необходимо добавить только подачу электропитания, обычно с помощью PoE инжектора. При использовании абсолютно пассивного источника электропитания Mid-Span в линии передачи данных максимальное расстояния между коммутатором и устройством PD по-прежнему должно быть менее 100 метров. Некоторые источники Mid-Span могут получать электропитание от оконечного устройства PoE и работать как повторитель сигнала для увеличения расстояния между устройством PD и коммутатором за пределы установленного ограничения в 100 метров.
Типы источников PSE.
Power Source Equipment (PSE), e.g. Switch |
Питающее оборудование, например, коммутатор |
Powered Device (PD)), e.g. VoIP Phone |
Питаемое устройство, например, телефон VoIP |
Switch with no PoE |
Коммутаторы без PoE |
PoE Injector (PSE) |
Источник PoE (устройство PSE) |
Стандарты и совместимость PoE
С течением времени стандарты PoE эволюционировали, обеспечивая подачу все более высокой мощности для удовлетворения требований новых приложений. Это привело к появлению сложного многообразия продуктов PoE, как основывающихся на стандартах, так и являющихся достандартными реализациями. Эти многочисленные реализации различаются функционально, предлагаемыми уровнями напряжения, уровнями мощности, управлением подачей питания и классификацией. Из-за большого разнообразия представленного на рынке оборудования PSE и PD бремя выбора правильного оборудования и проверки совместимости ложится на потребителя. Требующие более высокой электрической мощности устройства PD, например, камеры PTZ с подогревом для систем уличного видеонаблюдения, отличаются тем, что имеют изменяющиеся требования к электропитанию, например, для режимов ожидания и активного состояния. Успешное развертывание систем PoE требует от установщика понимания этого многообразия и учета максимальной мощности, необходимой устройствам PD.
Ниже расписаны четыре типа PoE, заданные стандартом IEEE. Новый стандарт IEEE 802.3bt обеспечивает наивысший уровень максимальной мощности, подходящий для электропитания киосков и освещения. Существуют также нестандартные реализации PoE, такие как подача питания 12 или 24 В постоянного тока для камер видеонаблюдения и точек доступа конкретного производителя.
Характеристика / Стандарт (тип PoE) |
IEEE 802.3af (тип 1) PoE |
IEEE 802.3at / PoE+ (тип 2) |
UPOE / 802.3bt (тип 3) PoE++ |
802.3bt (тип 4) PoE++ |
Выходная мощность PSE [Вт] |
15,4 |
30 |
60 |
90 |
Мощность на устройстве PD [Вт] |
12,95 |
25,5 |
51 |
71,3 |
Выходное напряжение на PSE [В] |
44 — 57 |
50 — 57 |
50 — 57 |
52 — 57 |
Напряжение на устройстве PD [В] |
37 — 57 |
42,5 — 57 |
42,5 — 57 |
41,1 — 57 |
Максимальный ток в паре [мА] |
350 |
600 |
600 |
960 |
Вопросы развертывания PoE
Общее преимущество технологии PoE заключается в упрощении развертывания подключаемых к сети устройств. При развертывании системы PoE необходимо учитывать принцип доставки, типы/классы и управление электропитанием.
Доставка электроэнергии
Для подачи электропитания постоянного тока на поддерживающие технологию PoE устройства используются две или четыре витые пары стандартного кабеля Ethernet. Питание PoE подается по проводникам передачи данных путем приложения к каждой паре синфазного напряжения. Поскольку в витой паре Ethernet для передачи данных используется дифференциальная сигнализация, это не помешает передаче данных, пока соблюдаются следующие правила:
- Электропитание PoE подается по витой паре кабеля через разъем RJ45 в соответствии со схемой разводки проводов, определенной в стандарте IEEE 802.3 Ethernet.
- Напряжения на двух проводниках в паре имеют одинаковый уровень и полярность.
- На электропитание PoE распространяются те же ограничения по расстоянию, что и для стандартного кабельного канала: 100 метров или 328 футов.
Если для подачи электропитания PoE используются только две из четырех пар, и это пары 1-2 и 3-6, в стандарте IEEE такая схема называется Alternative А. Поскольку для 10BASE-T или 100BASE-TX необходимы только две из четырех пар, электропитание может передаваться по неиспользуемым проводникам кабеля, например, 4-5 и 7-8. В стандартах IEEE это называется Alternative B. Технологию PoE также можно использовать со стандартами Ethernet 1000BASE-T и 10GBase-T, когда для передачи данных используются все четыре пары. Позволяющие передавать более высокую электрическую мощность 4-парные системы PoE используют все четыре пары кабеля, как для электропитания, так и для передачи данных. В следующей таблице подробно показано, как электропитание подается по парам. Пары, по которым будет передаваться электрическая мощность, определяет источник PSE.
Подробная информация об организации подачи электропитания:
Контакт на коммутаторе |
TIA/EIA-568 Разводка T568B |
TIA/EIA-568 Разводка T568A |
10/100 Режим B |
10/100 Режим A |
1000 (1 гигабит) Режим B |
1000 (1 гигабит) Режим A |
1000 (1 гигабит) UPOE / 802.3bt |
|||||
1 |
Белый / оранжевый |
Белый / зеленый |
Rx+ |
|
Rx+ |
DC+ |
TxRx A+ |
|
TxRx A+ |
DC+ |
TxRx A+ |
DC+ |
2 |
Оранжевый |
Зеленый |
Rx- |
|
Rx- |
DC+ |
TxRx A- |
|
TxRx A- |
DC+ |
TxRx A- |
DC+ |
3 |
Белый / зеленый |
Белый / оранжевый |
Tx+ |
|
Tx+ |
DC- |
TxRx B+ |
|
TxRx B+ |
DC- |
TxRx B+ |
DC- |
4 |
Синий |
Синий |
|
DC+ |
|
|
TxRx C+ |
DC+ |
TxRx C+ |
|
TxRx C+ |
DC+ |
5 |
Белый / синий |
Белый / синий |
|
DC+ |
|
|
TxRx C- |
DC+ |
TxRx C- |
|
TxRx C- |
DC+ |
6 |
Зеленый |
Оранжевый |
Tx- |
|
Tx- |
DC- |
TxRx B- |
|
TxRx B- |
DC- |
TxRx B- |
DC- |
7 |
Белый / коричневый |
Белый / коричневый |
|
DC- |
|
|
TxRx D+ |
DC- |
TxRx D+ |
|
TxRx D+ |
DC- |
8 |
Коричневый |
Коричневый |
|
DC- |
|
|
TxRx D- |
DC- |
TxRx D- |
|
TxRx D- |
DC- |
Заманчиво передвинуть границу расстояния за пределы 100 метров, указанных в стандарте IEEE, когда единственной альтернативой является добавление питания переменного тока на устройстве PD или промежуточном коммутаторе / инжекторе. Хотя это и не рекомендуется, сетевой тестер позволяет проверить канал передачи данных, и в этих обстоятельствах все еще доступна максимальная мощность.
Типы и классы PoE
Стандарты PoE изменялись со временем для удовлетворения растущих потребностей питаемых устройств (PD) в электропитании. Созданный в 2003 году оригинальный стандарт IEEE 802.3af обеспечивает подачу электропитания постоянного тока мощностью до 13 Вт на каждое устройство. Обновленный в 2009 году стандарт IEEE 802.3at, также известный как PoE Plus (PoE+), обеспечивает электрическую мощность до 25,5 Вт. В собственной реализации UPOE компании Cisco для увеличения электрической мощности на устройстве PD до 51 Вт использовались все четыре пары кабеля. С принятием стандарта IEEE 802.3bt в настоящее время существует девять возможных классов мощности для четырех классов источников PSE. Для распознавания требований и возможностей электропитания между источниками PSE и устройствами PD используются различные схемы установления связи и согласования. В следующей таблице показаны тип PoE, мощность, пары и управляющий стандарт для каждого класса мощности.
Разделение уровней мощности по классу и типу:
Класс мощности |
Тип PoE |
Мощность на источнике (PSE) |
Мощность на устройстве (PD) |
Количество пар |
Стандарт IEEE |
0 |
1 |
15,4 Вт |
13,0 Вт |
2 |
802.3af |
1 |
1 |
4 Вт |
3,84 Вт |
2 |
802.3af |
2 |
1 |
7 Вт |
6,49 Вт |
2 |
802.3af |
3 |
1 |
15,4 Вт |
13 Вт |
2 |
802.3af |
4 |
2 |
30 Вт |
25,5 Вт |
2 |
802.3at |
5 |
3 |
45 Вт |
40 Вт |
4 |
802.3bt |
6 |
3 |
60 Вт |
51 Вт (4 пары) |
4 |
802.3bt |
7 |
4 |
75 Вт |
62 Вт (4 пары) |
4 |
802.3bt |
8 |
4 |
90 Вт |
71,3 Вт (4 пары) |
4 |
802.3bt |
Управление электропитанием
На многих источниках PSE максимальная доступная мощность самого устройства ограничивает общее количество портов, через которые может подаваться электропитание. Например, для устройств PD класса 4 требуется 30 Вт на выходе источника PSE, а 48-портовый коммутатор PoE типа 2 должен поддерживать мощность до 1440 Вт. Добавление стандарта 802.3bt и 90 Вт на порт источника PSE потребовало бы электрической мощности 4320 Вт только для той части коммутатора, которое обеспечивает питание PoE. Многие коммутаторы с функцией PoE поддерживают меньшую мощность, что делает необходимым управление электропитанием. Управление электропитанием усложняет перемещение, добавление и изменение, а также устранение неисправностей. Некоторые источники PSE позволяют устанавливать разные уровни приоритета для каждого порта. Когда к источнику PSE подключается устройство PD, PSE проверяет его класс и резервирует определенную мощность из своего доступного запаса электрической мощности. Когда источник PSE достигает своего предела мощности, следующее устройство PD, которое запрашивает больше мощности, чем доступно на источнике PSE, все еще можно подключить, если порт подключения имеет более высокий приоритет, чем другие порты. Единственный способ гарантировать, что запрошенная мощность может быть предоставлена на порту, состоит в том, чтобы проверить это.
Проверка PoE
Существует много точек, в которых при подаче электропитания PoE могут возникать неисправности. Это и порты коммутаторов и PoE инжекторов, а также в самой Ethernet сети. Тем более что многие кабельные инфраструктуры существовали еще до развертывания технологии PoE или при использовании только маломощного стандарта 802.3af. Благодаря использованию двух дополнительных пар и увеличению тока до 960 мА на пару доступная для устройств PD электрическая мощность увеличилась по сравнению со стандартом 802.3af в пять раз. А это говорит об использовании кабельной инфраструктуры так, как никогда раньше.
Horizontal Cabling |
Горизонтальная кабельная проводка |
Patch Cable 2 |
Патч-кабель 2 |
Powered Device (PD) |
Питаемое устройство (PD) |
Patch Panel |
Патч-панель |
Switch (PSE) |
Коммутатор (источник PSE) |
Patch Cable 1 |
Патч-кабель 1 |
Изображенная выше система подачи электропитания PoE имеет много точек, в которых могут возникать неисправности.
- Правильно ли настроен коммутатор (или PoE инжектор) для подачи запрошенной электрической мощности на правильные порты. Если коммутатор настроен правильно, нет ли у него каких-либо ограничений по электрической мощности?
- Обычно между источником PSE и устройством PD имеется два патч-кабеля. Имеют ли кабели правильную категорию, размер и состав?
- Имеют ли разъемы RJ-45 100-процентное соединение на всех 8 контактах?
- Имеет ли горизонтальная кабельная проводка надлежащую категорию, размер, материал проводника и экран? Правильно ли подключены пары кабелей на задней стороне патч-панели и на настенной розетке? Высокая температура, например, при плотной прокладке кабелей или в подвесном потолке с осветительными приборами, может приводить к снижению тока в кабеле.
- Совместимо ли устройство PD с источником PSE? Помимо согласования класса оборудования существует еще два разных протокола (LLDP и CDP), которые можно использовать для согласования дополнительной мощности.
Наилучшим способом гарантировать всю необходимую электрическую мощность на существующих и будущих устройствах PD является функциональная проверка возможности получения на устройстве PD максимальной запрошенной мощности.
Поиск неисправностей PoE с помощью Netscout LinkRunner G2
На приведенной ниже блок-схеме показаны основные этапы поиска неисправностей питания PoE с помощью сетевого тестера LinkRunner G2 (LR-G2).
Configure tester to the desired PD power level |
Настройте тестер на желаемый уровень мощности устройства PD |
TEST |
Тестировать |
YES |
Да |
NO |
Нет |
Received Class match Requested Class? |
Принимаемый класс совпадает с запрошенным классом? |
Is the power present under load? |
Присутствует ли питание под нагрузкой? |
Are you on the right port? |
Вы выбрали правильный порт? |
Success The switch and cabling is verified |
Успешно Коммутатор/инжектор и кабельная проводка проверены |
Retest at the switch to eliminate horizontal cabling |
Повторите тестирование на коммутаторе, чтобы исключить горизонтальную кабельную проводку |
Switch is not capable or not provisioned for the requested class |
Коммутатор не способен соответствовать или не предназначен для требуемого класса |
Re-patch to correct port |
Подключитесь к правильному порту |
Выполнение этих шагов позволит локализовать причину проблемы. Netscout LinkRunner G2 (LR-G2) настраивается на любой из девяти классов мощности для эмуляции любого устройства PD. Наличие тестера PoE, который включает в себя активные измерения сети, такие как скорость передачи / дуплексный режим, обнаружение портов, VLAN, помогает убедиться с оконечной точки кабеля в том, что вы находитесь на правильном порту коммутатора.
Во время согласования мощности тестер отобразит запрошенный класс, полученный класс и тип PSE. После согласования мощности LinkRunner G2 измеряет напряжение без нагрузки, используемые пары и полярность. Знание пар и полярности полезно при обнаружении и устранении неисправностей в PSE Mid-Span. При наличии нестандартного электропитания PoE тестер показывает напряжение (обычно 12 или 24 В), пары и полярность.
Единственный способ проверить источник электропитания и кабельную систему – это нагрузить ее, подобно автомобильному аккумулятору в холодный день. Запатентованная система измерения TruePower генерирует нагрузку, подобную запуску автомобиля. Чтобы обеспечить полную мощность на устройстве PD, тестер будет увеличивать свою нагрузку до максимального уровня класса. При полной нагрузке LR-G2 снова измеряет напряжение, чтобы убедиться в превышении напряжением на устройстве PD минимально допустимого уровня. На приведенной ниже иллюстрации видно, что удалось подать мощность 71 Вт, а напряжение упало до 49,6 В, что означает потерю в кабеле 5,3 В. При использовании более длинных или менее качественных кабелей напряжение может упасть ниже указанного в спецификации.
TruePower нагружает цепь, подвергая напряжению коммутаторы, коммутационные и горизонтальные кабели и патч-панели для проверки полной мощности перед установкой устройств PD. Это позволит сетевым установщикам и техническим специалистам быть уверенными, что устройство PD будет работать на требуемом уровне мощности.
Видео обзор тестирования POE при помощи различных измерительных приборов
Выводы
Технология PoE позволяет экономить средства, когда необходимо развертывать разнообразные сетевые устройства в самых разных местах. Особенно, когда организовать локальный источник электропитания для устройства дорого и неудобно. С принятием стандарта 802.3bt (4PPoE), который задает доступную на устройстве PD мощность до 71 Вт, прогнозируется рост числа и разнообразия устройств PoE, включая цифровые системы освещения, автоматизацию зданий и вывески.
Для обеспечения надежности и совместимости системы особое внимание необходимо уделить ее проектированию, выбору оборудования (PSE и PD), а также целостности и совместимости новой и существующей кабельной инфраструктуры. Проведение необходимых испытаний и использование системы документирования дают неоспоримые преимущества на этапах развертывания и обслуживания системы. Выбор правильного инструмента для установщиков и обслуживающего персонала, а также разработка и выполнение процедуры проверки и документирования параметров системы PoE увеличит ваши шансы на успех.
В чем разница кВт и кВа ?
Вольт-ампер (ва) — это единица полной мощности переменного тока, обозначается ВА или VA. Полная мощность переменного тока определяется как произведение действующих значений тока в цепи (в амперах) и напряжения на её зажимах (в вольтах).Ватт (вт) — единица мощности. Названа в честь шотландско-ирландского изобретателя-механика Джеймса Уатта, обозначается вт или W. Ватт -это мощность, при которой за 1 сек совершается работа, равная 1 джоулю. Ватт как единица электрической (активной) мощности равен мощности не изменяющегося электрического тока силой 1 ампер при напряжении 1 вольт.
При выборе стабилизатора или электростанции следует помнить, что кВА — это полная потребляемая мощность, а кВт — это активная (затраченная на совершение полезной работы) мощность. Полная мощность – это сумма реактивной и активной мощностей. Зачастую разные потребители имеют разное соотношение полной и активной мощности. Поэтому для определения суммарной мощности всех потребителей необходимо сложение полных мощностей оборудования, а не активных мощностей.
Номинальная мощность
В электротехнической промышленности принято мощность большинства потребителей определять в Ваттах. Это так называемая активная мощность – мощность, выделяющаяся на чисто резистивной нагрузке(Нагреватели,телевизоры,лампочки и т.п.). Активная мощность целиком идет на полезную работу (нагрев, механическое движение), и обычно именно ее понимают под потребляемой мощностью.Если потребитель активный (чайник, лампа накаливания, ТЭН), то другой информации о нем не требуется, на таких потребителях пишут (как правило) номинальную мощность в Вт, номинальное напряжение и все. Здесь нет вопросов о косинусе «фи», т.к. этот «фи» (угол между током и напряжением данных потребителей) равен нулю, косинус нуля равен 1, — отсюда, Активная мощность («P») равна произведению тока через потребитель и напряжению на потребителе, умноженному на этот пресловутый косинус «фи», т.е. P = I*U*Сos (fi) = P = I*U*1 = P=I*U.
Простой пример для тена с cos фи=1:
Полная мощность S=10 кВА cos фи=1
Тогда активная мощность P=10*1=10 кВт
У потребителей, имеющих в своем составе не только активное сопротивление, но и любое реактивное (индуктивность, емкость), принято писать на шильдике величину «P» в Ваттах, а так же указывать величину косинуса «фи». Величина косинуса «фи» определяется параметрами самих этих потребителей, а точнее — соотношением их активных и реактивных сопротивлений.
Например, обычный электродвигатель имеет на бирке: P=5кВт, Сos(fi)=0.8. Это значит следующее: Данный двигатель при работе (в номинальном режиме) потребляет полную Полную мощность (сумму активной и реактивной мощностей). Активную мощность «S» равную P/Cos(fi)=5/0,8= 6,25 кВа и Реактивную мощность «Q» в размере U*I/Sin(fi).
Для нахождения номинального тока двигателя нужно его Полную мощность «S» и разделить на рабочее напряжение (220), впрочем, ток указывается, как правило, на шильдике. Может появиться вопрос, почему же на генераторах (трансформаторах, стабилизаторах напряжения) указывается мощность в ВА (вольт-амперах)? А как ее еще указать? Допустим, что на стабилизаторе напряжения указана мощность 10000 Ва. Это должно значить, что, если я подцеплю кучу ТЭНов к данному трансформатору, то мощность, отдаваемая трансформатором в ТЭНы (в номинальном режиме работы трансформатора) не может превышать 10000 Вт. Вроде все сходится. А если я захочу нагрузить стабилизатор напряжения катушкой индуктивности или электродвигателем с Сos(fi)=0.8? (кучей катушек)? И данный стабилизатор будет отдавать мощность уже 8000 Вт?а при Сos(fi)=0.85 -8500 Вт. Тогда надпись на шильдике 10000 Ва будет уже не правомерной. Поэтому, мощность генераторов (трансформаторов и стабилизаторов напряжения) может определяться только в Полной мощности (в нашем случае 1000 кВА), а как ты ее (Полную мощность) будешь использовать — твое дело.
[i]Теперь можно перейти к подбору
стабилизатора напряжения, электростанции,
источника бесперебойного питания, инвертора.[/i]
Коэффициент мощности, косинус «фи»
Это отношение средней мощности переменного тока к произведению действующих значений напряжения и тока. Наибольшее значение коэффициента мощности равно 1. В случае синусоидального переменного тока, коэффициент мощности равен косинусу угла сдвига фаз между синусоидами напряжения и тока и определяется параметрами цепи: Сos ф = r/Z, где ф («фи») — угол сдвига фаз, r — активное сопротивление цепи, Z — полное сопротивление цепи. Коэффициент мощности может отличаться от 1 и в цепях с чисто активными сопротивлениями, если в них содержатся нелинейные участки. В этом случае коэффициент мощности уменьшается вследствие искажения формы кривых напряжения и тока.
Коэффициент мощности электрической цепи — это косинус фазового угла между основаниями кривых напряжения и тока. Согласно другому определению, коэффициент мощности — это соотношение активной и полной энергий. Коэффициент мощности (Сos φ = Активная мощность/Полная мощность = P/S (Вт/ВА), потребляемых нагрузкой.
Коэффициент мощности — комплексный показатель, характеризующий линейные и нелинейные искажения, вносимые нагрузкой в электросеть.
Типовые значения коэффициента мощности:
— 1.00 — идеальное значение;
— 0.95 — хороший показатель;
— 0.90 — удовлетворительный показатель;
— 0.80 — средний показатель современных электродвигателей;
— 0.70 — низкий показатель;
— 0.60 — плохой показатель.
Чем отличаются кВа и кВт?
Вольт-ампер (ВА или VA) – единица, используемая для обозначения полной мощности переменного тока, определяемая как произведение силы тока действующей в цепи (измеряется в амперах, сокращенно A) и напряжения на зажимах цепи (измеряется в вольтах, сокращенно B).
Ватт (Вт или W) – единица , применяемая для измерения мощности. Своим названием данная единица обязана шотландско-ирландскому изобретателю Джеймсу Уатту. 1 ватт – мощность, при которой за время равное 1с. совершается работа в 1Дж. Ватт является единицей активной мощности, значит, 1 ватт – мощность постоянного электрического тока силой 1A при напряжении равном 1B.
!Выбирая дизельный генератор нужно помнить о том, что полная мощность, потребляемая прибором, измеряется в кВА, а активная мощность, затрачиваемая на то, чтобы совершить полезную работу измеряется в кВт. Полная мощность рассчитывается как сумма двух слагаемых реактивной мощности и активной мощности. Весьма часто отношение полной и активной мощностей имеет различные значения для разных потребителей, поэтому, для того, чтобы найти суммарную мощность всего потребляющего оборудования требуется провести суммирование полных, а не активных мощностей оборудования.
Номинальная мощность
Мощность большинства промышленных электроприборов определяется в ваттах, это активная мощность, выделяющаяся на резистивной нагрузке (лампочка, нагревательные приборы, холодильник и т.п.).
Обычно под потребляемой мощностью понимают именно активную мощность, полностью идущую на полезную работу. В случае, если речь идет об активном потребителе (чайник, лампа накаливания), то на нем, как правило, написаны номинальное напряжение и номинальная мощность в Вт, этой информации достаточно, чтобы вычислить косинус «фи».
Угол «фи» – это угол между напряжением и током. Для активных потребителей угол «фи» равен 0, а, как известно, cos(0) = 1. Для того, чтобы вычислить активную мощность (обозначается P) нужно найти произведение трех множителей: тока через потребитель, напряжения на потребителе, косинуса «фи», то есть провести расчёты по формуле
P=I×U×сos(φ)= I×U×cos(0)=I×U
Рассмотрим пример для ТЭНа. Так как это активный потребитель, то cos(0) = 1. Полная мощность (обозначаемая S) будет равна 10кВА. Следовательно, P=10× cos(0)=10 кВт — активная мощность.
Если же речь идет о потребителях, имеющих не только активное, но и реактивное сопротивление, то на них, как правило, указывается P в Вт (активная мощность) и величина косинуса «фи».
Приведем пример для двигателя, на бирке которого написано: P=5 кВт, сos(φ)=0.8, отсюда следует, что этот двигатель, работая в номинальном режиме будет потреблять S = P/сos(φ)=5/0,8= 6,25 кВа — полная (активная) мощность и Q = (U×I)/sin(φ) — реактивная мощность.
Чтобы найти номинальный ток двигателя необходимо разделить его полную мощность S на рабочее напряжение равное 220 B.
Однако номинальный ток можно также прочитать на бирке.
Чтобы увидеть разницу между кВА и кВт на практике, изучите товары в разделе Дизельные генераторы >>
Почему мощность на генераторах указывается в ВА?
Ответ следующий: пусть мощность стабилизатора напряжения, указанная на бирке равна 10000 ВА, если к этому трансформатору подключить некоторое количество ТЭНов, то отдаваемая трансформатором мощность (трансформатор работает в номинальном режиме) не превысит 10000 Вт.
В данном примере все сходится. Однако, если же подключить к стабилизатору напряжения катушку индуктивности (много катушек) или электродвигатель со значением сos(φ)=0.8. В итоге мощность отдаваемая стабилизатором будет равна 8000 Вт. Если же для электродвигателя сos(ф)=0.85, то отдаваемая мощность будет равна 8500 Вт. Отсюда следует, что надпись 10000Ва на бирке трансформатора не будет соответствовать действительности. Именно поэтому, мощность генераторов (стабилизаторов и трансформаторов напряжения) определяется в полной мощности (для рассмотренного примера 1000 кВА).
Коэффициент мощности рассчитывается как соотношение средней мощности переменного тока и произведения действующих в цепи значений тока и напряжения. Максимальное значение,которое может принимать коэффициент мощности равно 1.
При рассмотрении синусоидального переменного тока, для определения коэффициента мощности используется формула:
сos(φ) = r/Z
r и Z – соответственно активное и полное сопротивления цепи, а угол φ– это разность фаз напряжения и тока. Отметим, что коэффициент мощности может принимать значения меньшие 1, даже в цепях с только активным сопротивлением, если в них присутствуют нелинейные участки, так как происходит изменение формы кривых тока и напряжения.
Коэффициент мощности равен также косинусу угла фаз между основаниями кривых тока и напряжения. Коэффициент мощности – отношение активной мощности к полной мощности: сos(φ) = активная мощность/полная мощность = P/S (Вт/ВА). Коэффициент мощности – это комплексная характеристика нелинейных и линейных искажений, которые вносятся в сеть нагрузкой.
Значения, принимаемые коэффициентом мощности:
- 1.00 – очень хороший показатель;
- 0.95 — хорошее значение;
- 0.90 — удовлетворительное значение;
- 0.80 — среднее значение;
- 0.70 — низкое значение;
- 0.60 — плохое значение.
Для того, чтобы увидеть отличия кВА и кВт на конкретном примере, перейдите в раздел Стабилизаторы напряжения >>
Параметры напряжения и сопротивления для атомайзеров и картомайзеров
Одно общее правило: больше напряжения = больше пара.
Чем выше напряжение на моде, тем более высокой будет температура нагревающего элемента, и тем больше получиться в результате пара. Атомайзеры и картомайзеры могут обладать различным показателем сопротивления. Чем выше сопротивления – тем меньше будет мощности, и, как следствие, и пара. Таким образом, катомайзер на 2.0 Ом будет производить больше пара, чем картомайзер на 2.5 Ом – даже при сохранении напряжения на одном уровне. То же самое касается и атомайзеров.
Сопротивление (Ом), в сущности, уменьшает мощность аккумулятора. Для того, чтобы получить необходимые характеристики пара, необходимо достигнуть некоего баланса электрических компонентов. Слишком высокое напряжение может привести к появлению жжёного привкуса, или даже к перегоранию картомайзера или атомайзера. Слишком низкое сопротивление может привести к тому, что устройство не включиться, приняв его за короткое замыкание.
В результате приложения определённого напряжения с определённым сопротивлением на выходе получается мощность. Мощность измеряется в Ватт. Чем больше Ватт – тем больше будет нагреваться спиралька. Чем больше нагревается спиралька – тем больше будет пара, и тем сильнее получится удар по горлу. Внизу приводится таблица, которая показывает отношение между сопротивлением, напряжением и мощностью.
Помните: слишком высокая мощность может привести к перегоранию картомайзера.
Напряжение | Сопротивление
| Мощность |
---|---|---|
3.7 | 1.7 | 8.1 |
3.7
| 2.0 | 6.8 |
3.7
| 3.2 | 4.3 |
3.7
| 5 | 2.7 |
5 | 1.7 | 14.7 |
5 | 2.0 | 12.5 |
5 | 3.2 | 7.8 |
5 | 5 | 5 |
7.4 | 1.7 | 32.2 |
7.4 | 2.0 | 27.4 |
7.4 | 3.2 | 17.1 |
7.4 | 5 | 11
|
Важно также отметить, что при низком сопротивлении / высоком напряжении жидкость из картомайзера будет расходоваться быстрее – так как при этом увеличивается мощность нагревательного элемента. Не забывайте при этом поддерживать картомайзер влажным. В противном случае, может возникнуть неприятный жжёный привкус. Проблемы контакта атомайзера с аккумулятором так же могут стать причиной неправильной работы электронной сигареты.
Обратите внимание, что аккумуляторы обладают своим собственным показателем мАч, или миллиампер/час. Это показатель того, как долго аккумулятор будет работать без подзарядки. Чем выше показатель мАч – тем дольше будет он работать. Если подключить два одинаковых аккумулятора последовательно, то в результате напряжение удвоиться, но показатель мАч останется таким же.
Два аккумулятора на 3 В, таким образом, будут производить вместе 6 В, но при этом дольше работать не станут. Параллельное подключение аккумуляторов не увеличивает напряжение, но удваивает время их работы без подзарядки. Пример последовательного подключения: один аккумулятор располагается сверху другого.
Внизу приведена полезная для многих читателей таблица:
Аккумулятор | Рекомендуемое сопротивление | Примечания
|
---|---|---|
510, 901,808 и другие китайские аккумуляторы | 2.5 Ом – стандарт, будут работать и на 2.0 Ом. Более высокое сопротивление – меньше пара. . | Ниже 2.0 Ом – значительно снижается срок работы аккумулятора, в отдельных случаях он даже может быть повреждён |
eGo | 2.0 — 2.5 Ом, см. Выше. | См. выше. |
Моды на 3.7 В, Roughstack, e-Power | 1.7 — 3.2 Ом | Выше 3.2 Ом – снижается количества пара. Ниже 1.7 Ом – аккумулятор может не включиться, приняв низкое сопротивление за короткое замыкание. |
Моды на 5 В | 2.5 — 3.2 Ом | 2.5 Ом – некоторые жидкости будут выдавать жжёный привкус. Более низкие сопротивления – могут вообще не работать, давать жжёный привкус, вызывать перегорание атомайзера / картомайзера. |
Моды на 6 В | 3.2 Ом и выше | Более низкие сопротивления — могут вообще не работать, давать жжёный привкус, вызывать перегорание атомайзера / картомайзера. |
Моды н 7 В | 4.5 — 5 | Меньше 4 Ом – жжёный привкус, более быстрое перегорание картомайзеров и атомайзеров. |
Подробно и просто о том, что такое вольты, амперы
Вольты, амперы… что-то из школьного курса физики, перекочевавшее во взрослую жизнь. Определение давно стерлось из памяти, а вот буковки V и А не дают о себе забыть. Так что же такое вольты и амперы? Давайте поговорим об этом простым языком.
Начнем с вольтов (V)
Что такое вольты? Это понятие нам знакомо. Мы помним, что в розетке 220V.
Вольты — это электрическое напряжение. Это не мера тока или что-то подобное, а скорее напор, с которым ток «продавливается» через кабель. В розетке ток переменный — 210/220/230V. Автомобильный аккумулятор выдает всего 12V, а вот батарейка AA и того меньше — 1,5 или 1,2V. Повторю еще раз, что вольт — это напряжение. Это ни о чем большем нам не говорит, ни о производительности, ни о длительности.
И тут в игру вступают амперы (A).
Что такое амперы?
Амперы — это сила тока или количество тока. Если грубо представить, то можно объяснить это так: вольты «проталкивают» амперы через кабель. Много об амперах нам знать и не нужно, только лишь то, что называется миллиампер час (mAh). Это значение указано на всех аккумуляторах (телефонов, планшетов, mp3 плееров, powerbank’oв и тд).
Что это означает?
Миллиампер/час показывает ёмкость или объем батареи. Другими словами, представьте литровую банку с водой и десятилитровое ведро. Напиться мы сможем из одного и другого, но воды в ведре нам хватит на дольше. Чем больше количество mAh, тем дольше он будет работать при одинаковом напряжении.
Поэтому, если вы планируете долго оставаться вдали от розетки, то вам необходим powerbank с бОльшим количеством mAh, например, один из этих.
А если вопрос только в том, чтобы пару раз подзарядиться в течении дня, то лучше купить power bank менее ёмкий, при это еще и сэкономить. Плюс этого еще и в том, что батарея меньшего объема заряжается быстрее. Хороший вариант — один из этих powerbank от 2500 до 10000mAh.
Как понять сколько вольт и ампер поступает в ваш гаджет при зарядке? На нашем сайте вы найдете очень простое в использовании утройство — USB тестер. С его помощью вы сможете получить исчерпывающую информацию о заряжаемой батарее. А еще сможете проверить насколько соответствует заявляемое продавцом количество mAh реальному их количеству.
Не забывайте заряжать свои гаджеты и держите online мир открытым!
Получать похожие полезные статьи!
Вольт, Ампер, Ватт
Вольт … Ампер … Ватт … Что все это значит?
Давайте начнем с основ и начнем с них.
Атомы — Атомы являются строительными блоками материи. Атом состоит из ядра с положительно заряженными протонами и нейтрально заряженными нейтронами, окруженного отрицательно заряженными электронами. У разных типов атомов разное количество протонов в ядрах. Представьте атом как миниатюрную солнечную систему, в которой протоны и нейтроны являются Солнцем, а электроны — планетами.Провода в вашей электрической системе состоят из материи, состоящей из атомов.
Электроны — Поскольку противоположные заряды притягиваются, электроны притягиваются к протонам в ядре, подобно тому, как гравитация удерживает планеты на орбите вокруг Солнца. В отличие от планет с их медленными эллиптическими орбитами, которые создают центробежную силу, чтобы удержать планеты от столкновения с Солнцем, электроны отталкиваются друг от друга из-за своего заряда, и они вращаются вокруг ядра со скоростью света по пути, который лучше всего описать как «Облако вероятностей».
Напряжение, Вольт, В, потенциал, заряд — Поскольку одинаковые заряды отталкиваются, а все электроны имеют отрицательные заряды, эта сила отталкивания увеличивается как «давление», когда электроны находятся в непосредственной близости друг от друга. Это «давление» в контексте электрической системы известно как напряжение.
Ампер, Ампер, Ампер, А, Ток, I — Когда электроны текут из области высокого напряжения (давления) в область низкого напряжения, скорость потока измеряется в Амперах. Усилитель — один кулон в секунду.18 (или 6 241 000 000 000 000 000) электронов.
Сопротивление, Ом, Ом — На пути от областей высокого напряжения к областям низкого напряжения электроны сталкиваются с сопротивлением. Это сопротивление контролирует скорость потока, как насадка на шланге. Это сопротивление измеряется в Ом.
Вт, энергия, Вт — Когда протекающие электроны сталкиваются с сопротивлением, работа может выполняться. Это то, что заставляет электричество действовать. Эта работа может быть измерена в ваттах и равна вольтам, умноженным на амперы (ватты = вольт x амперы).
Когда солнечный свет попадает на солнечную панель, возникают напряжение и ток. Этот ток, проталкиваемый напряжением, протекает по проводам в электрической системе и выполняет работу, когда встречает сопротивление, которое можно измерить в ваттах.
Чтобы узнать об ампер-часах, ватт-часах и мощности, перейдите к следующему разделу.
<ПРЕДЫДУЩИЙ | СЛЕДУЮЩИЙ>
Вт, В и Ампер легко объяснимо | Руководство по интерьеру
Если электричество было водой…
Примером, который часто называют составляющими тока, является следующий:
Электричество «течет» так же, как и вода.Итак, представьте течение как воду. Вольт (В) обозначает напряжение тока. Напряжение (P измеряется в вольтах) — это градиент, с которым электроны проходят через кабель. Это сравнимо с уклоном воды в водопроводе.
С другой стороны,Ампер (А) — это единица измерения силы тока. Это сопоставимо с толщиной ватерлинии: если линия очень толстая, может течь гораздо больше воды, чем при тонкой линии. В результате у воды больше силы.Амперы и вольт такие же, как давление воды и количество протекающей воды. Например, очиститель высокого давления может удалить грязь с алюминиевых дисков, потому что он создает давление, но он не подходит для большого пожара.
Другой пример, иллюстрирующий это, — сравнение с гидроэлектростанцией. Гидроэлектростанция может производить больше мощности (ватт), чем больше воды поступает и чем выше градиент (напряжение, измеряемое в вольтах), с которым вода ударяет по турбинам.Если в русле реки есть много крупных камней, которые замедляют течение воды, мощность соответственно уменьшится. Камни соответствуют электрическому сопротивлению, измеренному в омах (Ом). Общее количество воды представляет собой ток, измеренный в амперах (I).
Чем больше поперечное сечение русла реки на пути к гидроэлектростанции, тем больше тока может течь через эту реку. Более крупное сечение кабеля также означает, что кабель выдерживает больший ток и может нести большую мощность.Отсюда следует, что мощность (P) зависит от напряжения (U) и тока (I). Формула для расчета ватт:
Кто много делает, много и потребляет. Реальный носитель энергии у фена составляет около 1400 Вт. Но сколько использует фен, когда он делает так много? Расход фена измеряется в киловатт-часах (кВтч).
Аббревиатура кВтч, которую вы знаете из своего счета за электроэнергию. Чтобы объяснить, что играет роль в киловатт-часах, необходимо объяснить отдельные факторы: ватт, час и килограммы.1400 Вт соответствуют производительности фена. Чтобы правильно рассчитать расход, правильный вопрос: Сколько дует фен? Потребление всегда связано с периодом.
Следовательно, производительность измеряется по времени (в случае одного часа) для фена. Ватт-час (Втч) — это потребление, которое устройство мощностью 1 Вт потребляет в течение часа. В доме всего несколько устройств мощностью всего один ватт.
Фен мощностью 1400 Вт потребляет в час логически 1,4 кВтч. Слово «килограмм» происходит из греческого языка и означает не более чем «тысяча». Это добавлено, чтобы не приходилось звонить на бесконечные высокие номера. Один килограмм — это тысяча граммов. Таким образом, 1000 ватт-часов — это 1 киловатт-час (1000 Вт = 1 кВт-ч).
В чем разница между ваттами и вольт-амперами?
Эта статья является частью серии «Управление питанием»: в чем разница между ваттами, среднеквадратичным значением и другими показателями?
Загрузить статью в формате.Формат PDF
Ватты (Вт) и вольт-амперы (ВА) являются единицами измерения электрической мощности. Ватты относятся к «реальной мощности», а вольт-амперы — к «полной мощности». Обычно электронные продукты показывают одно или оба этих значения, чтобы предоставить информацию о том, сколько энергии они будут потреблять или какой ток они будут потреблять. Каждое из этих значений может использоваться для различных целей.
Что такое ватт?
Реальная мощность в ваттах — это мощность, которая выполняет работу или выделяет тепло.Мощность в ваттах — это скорость потребления (или выработки) энергии. Один ватт — это один джоуль (энергия) в секунду (1 Вт = 1 Дж / с). Вы платите своей коммунальной компании за ватты, выраженные в энергии, которая представляет собой мощность, потребленную за период времени, обычно показываемый вашей коммунальной компанией в киловатт-часах. Например, лампочка мощностью 100 Вт, оставленная включенной на 10 часов, потребляет 1 кВт-час энергии (100 Вт x 10 часов = 1000 Вт-час = 1 кВт-час).
Как рассчитывается ватт?
Реальная мощность для цепей постоянного тока — это просто напряжение ( В постоянного тока ), умноженное на ток (I постоянного тока ):
Вт = В постоянного тока x I постоянного тока (1)
Концепция расчета реальной мощности для цепей переменного тока проста, хотя выполнить расчет намного сложнее.Чтобы получить мощность в ваттах, вам необходимо знать мгновенное напряжение во времени, v (t), и мгновенный ток во времени, i (t). Когда вы умножаете их вместе, вы получаете мгновенную мощность со временем p (t).
Поскольку эта мгновенная мощность меняется со временем, нам нужно получить среднее значение, поэтому мы интегрируем мощность за период времени и делим на период времени, чтобы получить среднее значение. Это дает нам мощность, рассеиваемую устройством в цепи с напряжением v (t) на нем и током i (t) через него в течение оцениваемого периода времени.Предполагая, что напряжение и ток являются периодическими сигналами периода T, строгий математический способ выразить вычисление мощности для периодического сигнала периода T:
Итак, хотя это можно легко визуализировать, вычислить нелегко. Даже для измерения реальной мощности в ваттах для цепей переменного тока требуется специальное оборудование (ваттметр), поскольку формы сигналов напряжения и тока должны измеряться в течение определенного периода времени, измерения должны выполняться одновременно, а среднее значение должно вычисляться за время измерения. период.Стандартный мультиметр не может измерять мощность такого типа.
Для чего используются ватты?
Эти рейтинги полезны, если вам нужно избавиться от тепла, выделяемого устройством, потребляющим ватт, или если вы хотите знать, сколько вы заплатите своей коммунальной компании за использование вашего устройства, так как вы платите за киловатт-часы (мощность, используемая для Период времени). Чтобы объединить реальную мощность нескольких устройств постоянного или переменного тока, вы можете просто сложить индивидуальные номинальные мощности в ваттах каждого устройства, чтобы получить общую мощность (ватты складываются линейно).
Что такое вольт-амперы?
Полная мощность в ВА используется для упрощения расчетов номинальной мощности и упрощения расчета потребляемого тока. Поскольку VA = RMS вольт x RMS в амперах, вы можете разделить номинальную мощность VA на ваше RMS напряжение, чтобы получить RMS-ток, который устройство потребляет. Знание среднеквадратичного значения тока поможет вам правильно рассчитать размеры проводов и автоматических выключателей или предохранителей, которые подают ток на ваше устройство.
Как рассчитываются вольт-амперы?
Полная мощность для цепей постоянного тока — это просто напряжение ( В постоянного тока ), умноженное на ток (I постоянного тока ):
ВА = В постоянного тока x I постоянного тока (3)
Полная мощность для цепей постоянного тока такая же, как и реальная мощность для цепей постоянного тока (для постоянного тока, ВА = Вт).
Для цепей переменного тока ВА — это произведение среднеквадратичного напряжения (В RMS ) на среднеквадратичный ток (I RMS ):
ВА = В СКЗ x I СКЗ (4)
Вы можете рассчитать полную мощность в вольт-амперах для цепей переменного тока, умножив измеренное среднеквадратичное значение напряжения на измеренный среднеквадратичный ток. Стандартный мультиметр обычно может выполнять оба этих измерения среднеквадратичного значения.
Для чего используются вольт-амперы?
Вольт-ампер дают представление о величине тока, потребляемого продуктом или цепью, если вам известно напряжение.Например, стандартное напряжение для жилых помещений в США составляет 120 В RMS . Если продукт рассчитан на 300 ВА (номинал подразумевает, что это максимальная ВА, которую может потреблять продукт) и питается от сетевого напряжения 120 В RMS переменного тока, вы можете рассчитать ожидаемый максимальный ток как 300 ВА / 120 В RMS = 2,5 A RMS максимум (см. Рисунок) . Таким образом, вы должны убедиться, что провода и связанные с ними схемы, питающие этот продукт, вмещают как минимум 2.5 А RMS .
% {[data-embed-type = «image» data-embed-id = «5eda9ab00f349231008b468b» data-embed-element = «span» data-embed-size = «640w» data-embed-alt = «1. В электронных продуктах обычно указывается такая информация, как номинальная мощность переменного тока, напряжение в сети переменного тока, частота и максимальная номинальная мощность в ВА «. data-embed-src = «https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2020/06/WtD_Watts_and_Volt_Amperes_Figure.5eda9aaf57825.png?auto=format&fit=max&w=1440» data = «1.В электронных продуктах обычно указывается такая информация, как номинальная мощность переменного тока, напряжение в сети переменного тока, частота и максимальная номинальная мощность в ВА. «]}%
Чтобы объединить полную мощность нескольких устройств постоянного тока, вольт-амперы складываются линейно. Однако для объединения полной мощности (или тока) нескольких устройств переменного тока нет простого способа получить точную сумму, потому что токи для каждого устройства не обязательно совпадают по фазе друг с другом, поэтому они не складываются линейно. Но если вы просто сложите отдельные номинальные значения ВА (или токи) вместе, общая сумма будет консервативной оценкой для использования, поскольку фактическая сумма всегда будет меньше или равна этому значению.
Еще один термин, который может быть полезен в этом обсуждении, — коэффициент мощности (PF). Коэффициент мощности определяется как отношение Вт к ВА:
Коэффициент мощности = PF = Вт / ВА (5)
Коэффициент мощности — это всегда число от нуля до единицы, потому что потребляемая устройством мощность всегда меньше или равна вольт-амперам. Обратите внимание, что цепь может иметь большое напряжение на ней и потреблять значительный ток, но не потреблять энергию (рассеивать ноль ватт).
Хотя это кажется нелогичным, это правда, если схема является чисто реактивной (чистый конденсатор или чистый индуктор). Схема не работает и не выделяет тепла, поэтому потребляет (и рассеивает) нулевую мощность. Тем не менее, он может потреблять значительный ток, что приводит к значительной ВА.
В этом случае коэффициент мощности равен нулю. Это возможно, потому что фазовое соотношение между формами сигналов напряжения и тока таково, что схема попеременно поглощает реальную мощность и возвращает ее, так что чистая реальная потребляемая мощность равна нулю.
Сводка
Вт и ВА — единицы измерения мощности, но на этом сходство заканчивается. Ватты работают или выделяют тепло, в то время как вольт-амперы просто предоставляют информацию, необходимую для определения размеров проводов, предохранителей или автоматических выключателей. Ватты линейно добавляются, а вольт-амперы — нет. А для измерения W понадобится специальный ваттметр. Вы можете рассчитать ВА, используя стандартный мультиметр для измерения V RMS и I RMS и найдя произведение (см. Таблицу) .
% {[data-embed-type = «image» data-embed-id = «5eda99c55951c685068b462e» data-embed-element = «span» data-embed-size = «640w» data-embed-alt = «Wt D Таблица 1 ватт и вольт-ампер «data-embed-src =» https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2020/06/WtD_Watts_and_Volt_Amperes_Table_1.5eda99c57b995.png&fit=mat=format 1440 «data-embed-caption =» «]}%
Подробнее из серии «Управление питанием»: в чем разница между ваттами, среднеквадратичным значением и другими показателями?
Загрузите эту статью в формате.Формат PDF
Шпаргалка по закону Ома и закону Ватта
Закон
Ома устанавливает взаимосвязь между напряжением, током и сопротивлением. Закон Ватта устанавливает взаимосвязь между мощностью, напряжением и током.
Калькулятор закона Ома и закона Ватта
Быстрый старт
- Введите любые два известных значения и нажмите Вычислить , чтобы найти оставшиеся значения.
- Щелкните желаемое значение и выберите Ctrl + C, чтобы скопировать в буфер обмена
- Нажимайте Сброс после каждого расчета.
Важные электрические свойства, о которых следует помнить
- Электродвижущий потенциал : измеряется в вольтах, обозначается как V (или E)
- Ток : измеряется в амперах, обозначается буквой I
- Сопротивление : измеряется в Ом, обозначается буквой R (или греческой буквой ω)
- Мощность : измеряется в ваттах, обозначается буквой W
Рекомендовано: Основные электрические термины и определения
Закон Ома
ЗаконОма устанавливает взаимосвязь между напряжением, током и сопротивлением.Учитывая взаимосвязь между этими тремя элементами, если вы знаете любые два из них, можно вычислить третий.
В = ИК
I = В / R
R = V / I
- Вольт = Ампер x Ом
- Ампер = Вольт / Ом
- Ом = Вольт / Ампер
Закон Ватта
ЗаконВатта также полезен для выяснения взаимосвязи между мощностью, напряжением и током.
Вт = VI
В = Вт / I
A = Вт / В
- Ватт = Вольт x Ампер
- Вольт = Ватт / Ампер
- Ампер = Ватт / Вольт
Круговая диаграмма упрощенного закона Ома для использования в цепях переменного и постоянного тока. Фотография: Wikimedia
.Вт, Ампер, Вольт и более
Электричество — важная часть нашей повседневной жизни. Мы заряжаем наши многочисленные устройства, сушим волосы, стираем одежду, нагреваем воду и освещаем наши комнаты — все благодаря электричеству.Если вы похожи на меня, вы, вероятно, используете электричество, не думая о мощности, амперах или вольтах, но эти три термина измерения энергии являются важным компонентом вашей электрической системы, и их понимание, в свою очередь, поможет вам интерпретировать ваш счет за электроэнергию.
В этой статье мы рассмотрим базовую электрическую терминологию и то, как она применима к вашему дому и к вашему кошельку.
Гарантия лучшего выбора для наших компаний. Позвоните сегодня!
Электрическая терминология
Прежде чем вдаваться в подробности того, как электричество работает в вашем доме, важно сначала понять, что такое электричество.Основные компоненты электричества включают мощность (измеряется в ваттах, ), напряжение (измеряется в вольт, ), ток (измеряется в ампер, ) и сопротивление (измеряется в омах).
Примеры того, как работает электричество, часто описывают воду, текущую по трубам. В этом примере ватты — это мощность или энергия, которую обеспечивает вода, ватты — это давление воды в трубах, а амперы — это количество воды, протекающей по трубам.
Определения ватта, вольта и усилителя
Вт измеряет количество потребляемой или генерируемой энергии.Мощность определяется умножением напряжения на силу тока.
вольт измеряет напряжение, которое представляет собой электрическое давление или потенциальную энергию между двумя точками.
Ампер — это единица измерения силы тока, то есть электрического тока или скорости, с которой протекает электричество.
Использование электричества в вашем доме
Мы можем знать, какие сейчас ватты, амперы и вольт, но как они применяются в домашних условиях? Давайте взглянем.
Мощность лампочки
Большинство людей думают о ваттах только тогда, когда приходит время покупать новую лампочку для светильника.Разные светильники имеют разную максимальную мощность. Другими словами, у светильников есть ограничение на количество энергии, которое они могут безопасно использовать. Превышение этого максимального рейтинга увеличивает риск возгорания.
Вт не указывают на яркость лампочки, поэтому не беспокойтесь, когда увидите новые модные светодиодные лампы с мощностью намного ниже, чем вы привыкли покупать. Помните, что ватты измеряют количество потребляемой энергии. Меньшая мощность — это хорошо. Если ваша настольная лампа имеет максимальную мощность 60 Вт, то лампа 8.Светодиодные лампы мощностью 5 Вт, помеченные как сменные лампы мощностью 60 Вт, будут работать нормально и экономить электроэнергию.
Мощность и напряжение прибора
Различные типы приборов потребляют разную мощность и работают от разного напряжения. Более крупные приборы потребляют больше ватт, а некоторые работают от более высокого напряжения. Вот почему некоторые приборы, например духовки, подключаются к розеткам, которые выглядят иначе, чем обычная настенная розетка. Обычно домашние розетки выдерживают напряжение 120 вольт, а розетки для более мощных бытовых приборов — 240 вольт.
На сайтеEnergy.gov есть удобный инструмент для расчета стоимости работающей бытовой техники в течение года. Просто введите мощность прибора и количество, которое вы используете. Этот инструмент также может помочь вам сравнить модели с разной мощностью, когда вы покупаете новую бытовую технику (и помните, что меньшее потребление энергии приведет к снижению счетов за электроэнергию).
Электрическая панель обслуживания, сила тока и напряжение
Стандартные электрические сервисные панели в новых домах сегодня обеспечивают ток до 200 ампер.Это означает, что через главный прерыватель панели может протекать до 200 ампер без отключения прерывателя.
Каждый автоматический выключатель в электрической сервисной панели имеет разную номинальную силу тока. Однополюсные автоматические выключатели являются наиболее распространенным типом выключателей. Они подают 120 вольт и рассчитаны на ток от 15 до 20 ампер. Двухполюсные автоматические выключатели обычно предназначены для более крупных устройств. Они подают в цепь 240 вольт и рассчитаны на ток от 15 до 200 ампер, хотя большинство из них находятся в диапазоне от 30 до 50.
Как читать счет за электричество
В большинстве счетов за электроэнергию ежемесячное потребление энергии указывается в киловатт-часах или кВтч. Киловатт-часы определяются путем умножения киловатт на количество часов использования (киловатт равен 1000 ватт). Ваша энергетическая компания умножает киловатт-часы на определенный коэффициент, и в результате получается сумма, указанная в вашем счете.
Советы по снижению потребления энергии
1. Покупайте больше энергоэффективных лампочек. Новые светодиодные фонари имеют гораздо меньшую мощность, что означает, что они потребляют меньше энергии.У вас есть светильники по всему дому. Замена всех лампочек может показаться сложной задачей, но преобразование старых ламп накаливания в новые светодиоды позволит сэкономить энергию.
2. Отключите устройства, которые вы не используете. Некоторые приборы потребляют энергию, когда они подключены к сети, даже если они не используются. Для вашей развлекательной системы или других областей, где трудно отключить все, что вы не используете, подумайте о приобретении продвинутого удлинителя. Они предназначены для защиты вашей электроники от потребления энергии, когда она выключена.
3. Перейдите на более энергоэффективные модели , когда пришло время заменить крупную бытовую технику. Обращайте внимание на этикетку Energy Star для продуктов, которые разработаны в соответствии с определенными стандартами эффективности, превышающими минимальные федеральные стандарты. Также обратите внимание на этикетку EnergyGuide, черно-желтую этикетку, на которой отображается информация об использовании энергии.
4. Сократить использование мощных электроприборов. Системы кондиционирования, сушилки и водонагреватели потребляют много ватт, поэтому, если вы можете сократить использование этих трех устройств, вы можете значительно сократить количество киловатт-часов на своем счете.
Разница между вольтами и ваттами по сравнительной таблице
Одно из основных различий между вольтами и ваттами состоит в том, что вольт — это единица измерения разности потенциалов и электродвижущей силы в системе СИ, а ватт — это единица измерения мощности в системе СИ. Другие различия между ними объясняются ниже в сравнительной таблице.
Вольт и ватт связаны друг с другом. Вольт измеряет разность потенциалов источников питания или напряжение электрических устройств.Символическое представление вольта — V. Измерение в вольтах проще по сравнению с ваттами, потому что ватты являются произведением двух величин, то есть напряжения и тока. Ватт обозначается как W. Он измеряет мощность, потребляемую электрическими устройствами.
Содержание: Вольт против Вт
- Сравнительная таблица
- Определение
- Ключевые отличия
Сравнительная таблица
Основа для сравнения | Вольт | Ватт |
---|---|---|
Определение | Это единица СИ для разности потенциалов и ЭДС. | Это единица измерения мощности в системе СИ. |
Формула | ||
Единицы измерения | Электродвижущая сила и разность потенциалов | Мощность |
Символ | V | W |
Чтение | Легкое | Сложное |
Измерение | Измерьте небольшое напряжение от источника питания. | Измеряет реальную мощность. |
Измерительный прибор | Вольтметр | Измеритель мощности |
Базовый блок | кг / м 2 S -3 | кг / м 2 A -1 S -3 |
Определение напряжения
Вольт измеряет энергию, используемую электронами, движущимися от одного конца к другому. Символически он представлен заглавной буквенной буквой V. Измеряется с помощью электрического прибора, называемого вольтметром.В вольте есть различные субъединицы, такие как микровольт, милливольт, киловольт и т. Д.
Определение ватта
Ватт — это единица мощности в системе СИ. Он определяется как общая энергия, потребляемая устройствами за одну секунду. Один ватт определяется как энергия, необходимая для протекания тока в один ампер через разность потенциалов в один вольт. Мощность — это произведение напряжения и тока, поэтому для измерения мощности в ваттах требуются как вольты, так и амперы.
Ключевые различия между вольтами и ваттами
- Вольт — это единица измерения электродвижущей силы и разности потенциалов в системе СИ, а ватт — это единица измерения мощности в системе СИ.
- Символическое представление вольт — V, тогда как ватт обозначается символом W.
- Измерения в вольтах проще, чем в ваттах, потому что ватт требует как величины напряжения, так и силы тока.
- В вольтах измеряется небольшая мощность, тогда как в ваттах измеряется реальная мощность, используемая электрическими устройствами.
- Значение в вольтах измеряется вольтметром, а ватт измеряется измерителем мощности.
- Базовая единица измерения ватт — кгM 2 S -3 , а базовая единица измерения вольт — кгM 2 A -1 S -3 .Базовая единица — это основная единица, которая не сочетается с другими примерами единиц — метр, килограмм, секунда, ампер и т. Д.
Международная стандартная единица измерения принята во всем мире.
Больше напряжения для газонного оборудования лучше?
По мере того, как уход за газонами и OPE (наружное электрооборудование) продолжают переход на более беспроводные продукты, ориентироваться в ландшафте становится непросто. Большие газовые двигатели означают большую мощность. Похоже, что более высокое напряжение батареи — это то, что профессионалы и потребители считают эквивалентным измерением.Однако проблема не так проста. Чтобы разрешить спор, давайте подробнее рассмотрим вольты, амперы и сопротивление.
Вольт и Ампер
Ни вольт, ни ампер не описывают мощность сами по себе. Это название относится к ваттам, и расчет довольно прост:
Вольт (В) x Амперы (А) = Ватты (Вт)
Допустим, нам нужно 2200 Вт для работы газонокосилки. Есть несколько способов добраться туда.
- 36 В x 61,1 A = 2200 Вт
- 56 В x 39.3A = 2200 Вт
- 108 В x 20,4 A = 2200 Вт
Пока вы можете потреблять от батареи достаточно тока (ампер), вы можете получить такое же количество мощности из многих напряжений.
Таким образом, теоретически более высокое напряжение само по себе не означает большей мощности.
Краткое примечание о вольтах
Числа напряжения, такие как 40 В, 80 В и 120 В, часто представляют пиковые (максимальные) вольты. Это напряжение, которое вы можете измерить сразу после зарядного устройства. Как только вы начнете их использовать, они установятся на свое номинальное напряжение: 36 В, 72 В и 108 В.Как только вы это поймете, вы увидите, что 18 В = 20 В макс., 36 В = 40 В макс. И так далее. В Pro Tool Reviews есть более подробная статья под названием 20V Max Vs 18V: Setting the Record Straight.
Code Embed: Невозможно использовать CODE1 в качестве глобального кода, поскольку он используется для хранения 337 уникальных фрагментов кода в 388 сообщениях
Присоединяйтесь к сопротивлению
Когда энергия достигает двигателя, наше уравнение V x A = W описывает, как он получает большую мощность. Однако сопротивление сводит на нет уравнение и не дает ему быть простым делом.
Возьмем для примера топливопровод. Более тонкая трубка ограничивает легкость попадания топлива в двигатель. Аналогичная проблема существует и с электрической энергией.
Более тонкая проволока и материалы более низкого качества ограничивают поток электронов. Толстая проволока и материалы более высокого качества позволяют электронам плавно течь. Возможно, вы столкнулись с падением напряжения при использовании слишком тонкого удлинителя на электроинструментах на 15 ампер. Или вы могли заметить, что ваш свет мигает, когда в вашем доме включается кондиционер.
Именно здесь в игру вступает парень по имени Ом .Он отвечает за уравнение сопротивления и единицу под названием «Ом».
Ом обнаружил, что сопротивление больше влияет на ток (амперы или амперы), чем на напряжение. Если вы попытаетесь передать одно и то же количество энергии через два разных напряжения, более высокое напряжение имеет меньшее сопротивление.
Краткое исследование
Вольт 2 / Сопротивление = Вт
(В 2 / R = Вт)
или
Ток 2 x сопротивление = Вт
(I 2 x R = Вт)
Примечание. В законе Ома для обозначения тока используется «I», а не «A».
Давайте вернемся к нашему примеру с 56 В и посмотрим, как все меняется, когда мы применяем закон Ома.
56 В x 39,3 A = 2200 Вт
В этом примере сопротивление равно 1,42 Ом. (56 В / 39,3 А = 1,42 Ом)
Увеличение напряжения
Вот что происходит, когда мы увеличиваем напряжение на 20% (67,2 В):
(67,2 В x 67,2 В) / 1,42 Ом = 3180,2 Вт
Увеличение напряжения на 20% дает увеличение мощности на 44,6% при том же сопротивлении.
Увеличение тока
Теперь вернемся назад и вместо этого увеличим ток на 20%.
47,2 ампер x 47,2 ампер x 1,42 Ом = 3163,5 Вт
Это 20% увеличение тока привело к увеличению мощности на 43,8%. Хотя это и похоже на этот пример, для получения большей выходной мощности требуется большее увеличение тока, чем увеличение напряжения. Однако это еще не все.
Вернуться к обсуждению
Одним из последствий сопротивления является то, что оно имеет штраф энергии. Система с более высоким напряжением более эффективна, чем система с более низким напряжением, поскольку она испытывает меньшие потери энергии из-за сопротивления при том же количестве потребляемой мощности.
Это все хорошо, но что, если вы можете снизить сопротивление, чтобы обеспечить более эффективную передачу энергии в системах с более низким напряжением?
Можно!
Аккумулятор на 18 В — отличный тому пример. Используя литий-ионные элементы 18650 и технологию стандартных корпусов, эти блоки обеспечивают мощность 800 Вт. Это означает, что производители уверены, что пропускают через него до 44,4 ампер тока и рассчитывают, что он прослужит 3 года или более.
Когда они модернизируют блоки для использования литий-ионных элементов 21700, большее количество медных компонентов и более толстые провода обеспечивают меньшее сопротивление.Теперь эти блоки достигают мощности до 1440 Вт. Вы получите такое же точное напряжение, но с током 80 ампер. Это на 80% больше энергии!
Теперь удвойте это количество, чтобы покрыть систему на 36 В, и в этом пакете доступно 2 880 Вт — более чем достаточно для нашей газонокосилки мощностью 2200 Вт.
Примечание автора: Типичная домашняя электрическая розетка работает от 120 вольт и 15 ампер. Посчитайте, и вы можете получить только 1800 Вт из вашей домашней розетки. Аккумуляторы теперь могут помочь вам! Единственным препятствием остается время выполнения.
Не забывайте емкость аккумулятора
То же уравнение, которое мы используем для мощности, работает и для потенциальной мощности . Просто возьмите номинальное напряжение аккумулятора и умножьте его на общее количество ампер-часов батареи, чтобы получить ватт-часы. Это общее количество энергии в батарее.
- 18V x 9Ah = 162Wh
- 36V (40V Max) x 5Ah = 180Wh
- 56V x 2.5Ah = 140Wh
- 72V (80V max) x 2,0 Ah = 144 Wh
топливо доступно в системе с более низким напряжением.Конечно, это не всегда так, но теперь у вас есть ключ, чтобы открыть для себя реальный потенциал!
Последние мысли
В целом, более низкое сопротивление систем с более высоким напряжением делает их более электрически эффективными и более простыми в сборке. Системы OPE, которые действительно конкурируют по производительности при более низких напряжениях, должны снижать свое сопротивление за счет лучшей конструкции аккумуляторных батарей и / или использовать для этого модернизированные литий-ионные элементы.