+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Реле контроля фаз — назначение, принцип работы и схема подключения

Существует много различных аппаратов, которые в ходе их эксплуатации приходится нередко переносить с одного места на другое, каждый раз подключая их к трехфазной сети. Нередки случаи, когда неопытный работник в ходе подключения оборудования нарушает порядок чередования фаз, что может привести к выходу техники из строя. Чтобы не допустить этого, необходимо обеспечить контроль фаз, установив специальное устройство защиты. В этом материале мы расскажем о том, что представляет собой реле контроля фаз, какова схема его подключения и рассмотрим принцип работы этого прибора.

Назначение и принцип работы реле контроля фаз

Реле для контроля напряжения фаз следует включать в схемы приборов, которые приходится часто переподключать к питающей трехфазной сети. К примеру, винтовой компрессор, не являющийся стационарным аппаратом, постоянно перемещают с одного места на другое, каждый раз подсоединяя его к линии заново. Если неправильно выполнить действия по его подключению, спутав при этом фазы, пяти секунд после запуска оборудования будет достаточно для того, чтобы произошла серьезная поломка.

Ремонт аппаратуры сопряжен с немалыми затратами, поэтому в таких устройствах контроль напряжения фаз просто необходим.

Есть и другие приборы, которые при неправильном соединении проводов не сгорают, а просто не включаются. В этом случае работники обычно приходят к выводу, что аппарат сломан, начинают его проверять – а прозвонка показывает, что все в порядке. И хорошо, если понимание того, что при подключении были просто перепутаны фазные жилы, придет быстро, иначе рабочее время будет потрачено впустую.

Что такое реле напряжения и как оно настраивается – на следующем видео:

Теперь поговорим о том, как работает реле контроля. Основная задача прибора заключается в защите электрических аппаратов от повреждения в результате воздействия некачественного напряжения. Это очень важно для дорогостоящего оборудования, поэтому электроприборы импортного производства устанавливаются только вместе с контрольным реле. Оно обеспечивает защиту аппаратуры при обрыве фаз, неправильном подсоединении, а также асимметричном напряжении.

При соответствии фаз параметрам контрольного прибора релейные контакты включаются, пропуская через контактор в цепь трехфазное напряжение. Если ток хотя бы на одной фазной жиле отсутствует, напряжение в линию пропущено не будет

После восстановления питания на фазном проводе по истечении нескольких секунд произойдет автоматическое включение нагрузки. Итак, как можно убедиться, реле осуществляет автоматический контроль, отключая подачу напряжения в случае аварии и включая нагрузку после нормализации параметров электрической цепи.

Порядок подключение реле

Очень важно, чтобы контрольное устройство было включено в схему любого передвижного агрегата, в составе которого имеется трехфазный электрический мотор. Если такого реле в составе оборудования не имеется, неправильное чередование фаз может привести к серьезным последствиям – от нарушения работы аппарата до выхода его из строя.

Наглядно про подключение на видео:

Если оборвется хотя бы один фазный кабель, произойдет быстрый перегрев силового агрегата, и устройство за считанные секунды придет в негодность. Чтобы не допустить этого, на контактор вместо контрольного реле зачастую устанавливают тепловое. Но проблема заключается в том, чтобы правильно его подобрать и отрегулировать по номинальному току. Для этого требуется специальный стенд, которым располагают далеко не все. Поэтому установка прибора фазного контроля – более простой способ решения проблемы.

Принцип работы РК основан на том, что устройство улавливает гармоники обратной последовательности, возникающие в случае перекоса фаз или при обрыве токоведущих проводов. Аналоговые фильтры контрольного прибора выделяют их и подают сигнал на управляющую плату, включающую после его получения релейные контакты.

Схема подключения реле контроля фаз сложностью не отличается. Все три фазных проводника и нулевой кабель нужно подсоединить к соответствующим клеммам прибора, а его контакты пустить в разрыв соленоида магнитного пускателя. Если устройство работает в нормальном режиме, то контактор включен, релейные контакты замкнуты, и производится подача напряжения на аппаратуру.

В случае обнаружения неполадок происходит размыкание контактов контрольного прибора, и электропитание отключается до того момента, когда будут восстановлены сетевые параметры.

Чаще всего для защиты бытовой техники используются реле заводского изготовления, которые имеются в продаже. Но иногда их изготавливают и своими руками. Приведем схему простого самодельного устройства, на которой имеются графические обозначения элементов, включенных в цепь.

Заключение

В этой статье мы рассказали о том, что такое реле контроля фаз, для чего оно нужно и по какому принципу работает. В промышленных условиях оно защищает компрессоры, электродвигатели и другие агрегаты. В быту их наиболее часто используют для защиты стиральных машин и холодильников.

yaelectrik.ru

принцип работы, конструкция, схемы подключения

Качественное выполнение тех или иных технологических процессов в современном мире обеспечивается за счет высокоточного и дорогостоящего оборудования. Работа которого напрямую зависит от качества поставляемой электроэнергии и состояния электроснабжающих линий. Увы, далеко не все отечественные сети способны обеспечить безопасный режим работы для них, из-за чего создается угроза поломки. Для предотвращения которой используются специальные защитные устройства – реле контроля фаз (РКФ).

Они позволяют отключить нагрузку в случае каких-либо неисправностей в питающей сети. Все что может нести угрозу для оборудования и влияет на результативность его работы или технологический процесс, воспринимается как сигнал к немедленному обесточиванию и реле контроля переводит коммутирующие элементы в отключенное положение.

Конструкция и принцип работы

Рис. 1. Конструктивное исполнение реле на примере устройства CKF-2BT

Конструктивно устройство включает в себя входные и выходные контакты, индикаторы нормального электроснабжения и аварийной ситуации, регуляторы, обозначенные на схеме соответствующими номерами (рисунок 1):

  1. Индикатор аварийной ситуации;
  2. Индикатор подключенного питания нагрузки;
  3. Потенциометр, позволяющий выбирать нужный режим;
  4. Регулятор уровня асимметрии;
  5. Регулятор снижения напряжения;
  6. Потенциометр, позволяющий регулировать временную уставку срабатывания.

Далеко не все модели предоставляют весь комплекс настроек по вышеприведенным параметрам. Они зависят от назначения конкретного реле и сферы применения.

Рис. 2. Принципиальная схема работы

В нормальном режиме к цепи питания от источника ЭДС E1 (рисунок 2) подается напряжение к потребителю, будь то двигатель, станок или другое оборудование. Реле контроля фаз R подключается в отпайку через соответствующие клеммы, обозначенные на схеме, как L1, L2, L3 и нулевым проводом N. Внутри устройства собрана логическая схема на транзисторах, которая посылает сигнал с выходных контактов на разрыв катушки пускателя P для отключения. При необходимости сигнал отключения можно настроить как для обесточивания потребителя, так и отключения внешней электрической сети.

В случае аварийной ситуации – пропадания одной из фаз, короткого замыкания, резкого увеличения токов, изменяется гармоническая составляющая электрических параметров сети. На что реагирует устройство защиты и посылает по цепям питания через клеммы 24 и 21 на катушку контактора соответствующий сигнал на отключение.

После срабатывания силовых контактов в практике электроснабжения потребителей может произойти естественное восстановление параметров питающей сети, при которой произойдет выравнивание фаз. При этом реле возвратит контакты во включенное положение, за счет чего реализуется система АПВ и на обмотки двигателя или другого потребителя возобновится подача напряжения.

За счет кнопок “Пуск” и “Стоп” можно осуществлять ручное управление питанием электрического прибора.

Назначение и функции

Данная технология применяется в сети трехфазных нагрузок. Наиболее востребована для защиты электродвигателя синхронного или асинхронного, трехфазных станков высокой точности, технологичной электроники, насосов. Заметьте, что неправильное чередование фаз приведет к низкой эффективности его работы, перегреву и снижению уровня изоляции, что может привести к пробою.

Применяется для следующих целей:

  • Для коммутации преобразовательного оборудования, которому важно соблюдение последовательности фаз: источников питания, выпрямителей, инверторов и генераторов;
  • Для систем АВР (введения в работу резервных источников питания) или подключения системы аварийного освещения;
  • Для специального оборудования – станков, крановых установок, мощность которых составляет не более 100 кВт;
  • Для электроприводов трехфазных двигателей, имеющих мощность не более 75 кВт.

Для коммутации однофазной нагрузки данное устройство не используется.

В целом реле контроля фаз применяется для различного промышленного и бытового оборудования и является обязательным предохранителем для тех схем управления, в которых требуется постоянный мониторинг величины напряжения и других параметров внешних линий.

В трехфазных сетях осуществляет контроль:

  • уровня напряжения, реализуемая, в преимущественном большинстве, для оборудования такого класса в случаях, когда его величина выходит за установленные пределы;
  • чередования фаз – выполнит коммутацию в случае аварийного слипания фаз или при их неверном расположении  относительно питающих вводов оборудования;
  • пропадания фазы – производит отключение потребителя в случае обрыва фазы и последующего отсутствия напряжения;
  • перекоса фаз – производит коммутацию в случае изменения фазного или линейного напряжения по отношению к номинальному значению.

Преимущества реле контроля фаз

В сравнении с другими устройствами аварийных отключений данные электронные реле отличаются рядом весомых преимуществ:

  • в сравнении с реле контроля напряжения не зависит от влияния ЭДС питающей сети, так как его работа отстраивается от тока;
  • позволяет определять аномальные скачки не только в трехфазной сети питания, но и со стороны нагрузки, что позволяет расширить спектр защищаемых компонентов;
  • в отличии от реле, работающих на изменение тока в электродвигателях, данное оборудование позволяет фиксировать еще и параметр напряжения, обеспечивая контроль по нескольким параметрам;
  • способно определить дисбаланс уровней питающих напряжений из-за неравномерности загрузки отдельных линий, что чревато перегревом двигателя и снижением параметров изоляции;
  • не требует формирования дополнительной трансформации со стороны рабочего напряжения.

В отличии от реле, работающих только по напряжению обеспечивает действующую защиту от регенерированного напряжения, вырабатываемого обратными ЭДС. В случае, когда одно из фазных напряжений пропадает, двигатель продолжает набирать достаточный уровень энергии с остающихся двух. При этом в обесточенной фазе будет генерироваться ЭДС от вращения ротора, который продолжает крутиться от двух фаз в аварийном режиме.

Из-за того, что контакторы электродвигателей не размыкаются от реле при такой работе, возникает риск повреждения электрической машины с ее дальнейшей поломкой. Реле контроля, в свою очередь, способно обнаружить смещение фазового угла, за счет чего обеспечивается полноценная защита.

Такая функция особенно актуальна, когда рабочий режим двигателя, в случае его реверсивного вращения, способен повредить вращаемый элемент или травмировать работника. Как правило, такая ситуация возникает при внесении изменений во время обесточивания электрической машины, смене фазных нагрузок, порядка чередования фаз и прочих.

Технические характеристики

Среди технических параметров, реализуемых реле контроля фаз необходимо выделить:

  • питающее напряжение;
  • диапазон контроля перенапряжения;
  • диапазон снижения уровня напряжения;
  • границы временной задержки для включения после скачка напряжения;
  • границы временной задержки для включения после падения напряжения;
  • время, расходуемое на отключение в случае пропадания фазы;
  • номинальный ток на контактах электромагнитного реле;
  • количество контактов для совершения коммутационных опраций;
  • мощность устройства;
  • климатическое исполнение;
  • механическая и электрическая износоустойчивость.

Схема подключения определяет порядок чередования фаз, поэтому нормальное питание нагрузки возможно при условии их правильного соблюдения на этапе монтажа и настройки.  При этом существует возможность регулировки задержки коммутации для различных режимов работы устройства. Таким образом, для двигателей, в момент пуска можно отстроить время задержки срабатывания от 1 до 3 сек, для выдержки пусковых токов.

То же относиться к возможности отстройки аварийного срабатывания в случае перегрузки фаз, где время до коммутации можно регулировать от 5 до 10 сек.

Обзор популярных реле контроля фаз

  • Реле РНПП-311 украинского производства является одним из наиболее популярных и подходящих для сетей постсоветского пространства. Аббревиатура расшифровывается как реле напряжения, перекоса и последовательности фаз. Современные модификации, в дополнение к стандартным параметрам способны отслеживать еще и частоту напряжения.
  • OMRON K8AB данная модель осуществляет контроль не только за снижением, но и за превышением уровня напряжения, выполняя тем самым функции ограничителя или разрядника, причем, куда более эффективно. Имеет ряд модификаций, отличающихся регулировками порогов срабатывания и техническими параметрами.
  • Carlo Gavazzi DPC01 отличается двумя реле на выходных клеммах устройства. Имеет несколько точек регулировки различных параметров, и переключатель режимов. Предоставляет 7 возможных функций по выставлению задержек, интервалов или цикличных функций.
  • Реле ЕЛ-11 отечественного производства контролирует параметры электрической сети, может применяться как в закрытых отапливаемых, так и в не отапливаемых помещениях. Устанавливается в любом положении, но требует защиты от прямого попадания на них солнечных лучей и атмосферной влаги.

Типичные схемы подключения

В большинстве случаев, на корпусе каждого устройства производителем устанавливаются все необходимые данные о способе подключения конкретного реле. Для примера заберем несколько схем известных производителей:

Схема подключения РКФ РНПП-311

На схеме показано  подключение клеммного ряда к соответствующим фазам линии L1, L2, L3 и нейтрале N. На выходе возможно получить две цепи управления “Выход 1” и “Выход 2”, отличающиеся по уровням напряжений.

Схема подключения реле OMRON

Питание осуществляется по вводным каналам L1, L2, L3 и через нейтраль N. На выходе получается два варианта  трехфазная трехпроводная система и трехфазная четырехпроводная, для работы с соответствующим коммутатором.

Схема подключения РКФ Carlo Gavazzi

В отличии от предыдущих вариантов клеммы вводов L1, L2, L3 запитываются через предохранители. Блок регулировки параметров позволяет отстраивать соответствующий режим работы и пределы отключения по ним. Два выхода с возможностью ручной коммутации посылают управленческие сигналы на переключение тех или иных устройств.

Последние две схемы демонстрируют работу вторичных цепей отключения нагрузки с соответствующей временной задержкой по этим клеммам. Как видите, все схемы подключения имеют идентичные компоненты, предназначенные для отслеживания всех параметров сети, способных сигнализировать сбой в электроснабжении трехфазных потребителей.

www.asutpp.ru

принцип работы, виды, маркировка, регулировка и подключение

Результатом технической ситуации, когда статорные обмотки двигателя потребляют тока больше установленных параметрических значений, является избыточное тепло. Этот фактор вызывает снижение качества изоляции двигателя. Оборудование выходит из строя.

Времени реакции тепловых реле перегрузки обычно недостаточно, чтобы обеспечить эффективную защиту от избыточного тепла, создаваемого высоким током. В таких случаях только реле контроля фаз видится действенным защитным устройством.

Содержание статьи:

Общая информация по прибору

Функциональность электрических приборов подобного типа существенно шире, нежели только лишь защита от перегрева и КЗ.

На практике отмечены эффективные свойства реле выбора перегруженных фаз, которые в конечном счете обеспечивают комплексную защиту.

Один из многочисленных вариантов конструкторских решений в производстве реле фаз. Однако, несмотря на разнообразие корпусов и схемных конфигураций, функциональность приборов едина

Благодаря устройствам отслеживания состояния фаз достигаются преимущества:

  • увеличение срока службы двигателя;
  • сокращение дорогостоящего ремонта или замену мотора;
  • уменьшение времени простоя из-за дефектов двигателя;
  • снижение рисков поражения электрическим током.

Кроме того, приспособление обеспечивает надежную защиту от возгорания и от КЗ обмоток двигателя.

Типичное исполнение защитных реле

Существует два основных типа защитных приборов, предназначенных для использования в составе трехфазных систем, — реле измерения тока и измерения напряжения.

Плюсы использования устройств

Преимущественная сторона токовых защитных реле по отношению к очевидна. Этот тип приборов функционирует независимо от влияния ЭДС (электродвижущей силы), которая неизменно сопровождает фазовый сбой при перегрузках двигателя.

Кроме того, устройства, действующие по принципу измерения тока, способны определять аномальное поведение мотора. Контроль возможен либо на стороне линии в цепи ответвления, либо на стороне нагрузки, где установлено реле.

Так выглядит одна из моделей реле контроля напряжения. Подобные устройства могут применяться не только для производственных нужд, но также и для частных хозяйств

Приборы, контролирующие процесс по принципу измерения напряжения, ограничиваются обнаружением ненормальных условий работы только на стороне линии, где подключено устройство.

Тем не менее приспособления, чувствительные к изменению напряжения, тоже обладают важным преимуществом. Заключается оно в способностях приборов подобного типа обнаруживать ненормальное состояние, не зависящее от состояния двигателя.

К примеру, тип реле, чувствительный к изменениям тока, обнаруживает ненормальное состояние фаз только непосредственно в процессе работы двигателя. А вот устройство измерения напряжения обеспечивает защиту непосредственно перед запуском мотора.

Также среди преимуществ аппаратов измерения напряжения выделяются простая установка и меньшая цена.

Этот тип приборов защиты:

  • не нуждается в дополнительных трансформаторах тока;
  • применяется независимо от нагрузки системы.

А для его работы требуется всего лишь подключить напряжение.

Обнаружение фазового сбоя

Сбой фазы вполне возможен по причине выхода из строя предохранителя одной из частей системы распределения электроэнергии. Механический отказ коммутационного оборудования или обрыв одной из линий электропередач также провоцируют сбой фазы.

Защита электродвигателя, организованная через реле контроля. Такой способ позволяет более эффективно эксплуатировать моторы, без опасения их быстрого вывода из строя

Трехфазный двигатель, работающий на одной фазе, вытягивает необходимый ток из оставшихся двух линий. Попытка его запустить в однофазном режиме приведет к блокировке ротора и двигатель не запустится.

Время реакции на единицу тепловой перегрузки может быть слишком продолжительным, чтобы обеспечить эффективную защиту от чрезмерного нагрева. Если для защиты от него не установлено , то когда происходит сбой из-за перегрева, появившегося в обмотках двигателя.

Защита трехфазного двигателя от фактора отказа фазы затруднена по той причине, что недогруженный трехфазный двигатель, работающий на одной фазе из трех, генерирует напряжение, называемое регенерированным (обратной ЭДС).

Оно образуется внутри оборванной обмотки и практически равняется величине утраченного подводимого напряжения. Поэтому реле измерения напряжения, контролирующие только его величину, в таких ситуациях не обеспечивают полной защиты от фактора отказа фазы.

Схема подключения прибора контроля фаз и напряжения в цепь управления трехфазным мотором. Это классический схемный вариант, применяемый на практике повсеместно

Более высокая степень защиты может быть получена с помощью устройства, которому доступно обнаружение смещения фазового угла, как правило, сопровождающего отказ фазы. В нормальных условиях трехфазное напряжение составляет 120 градусов по фазе относительно друг друга. Сбой приведет к смещению угла от нормальных показателей в 120 градусов.

Выявление фазового реверса

Реверсирование фазы может произойти:

  1.  Выполняется техническое обслуживание на моторном оборудовании.
  2. В систему распределения электроэнергии внесены изменения.
  3. Когда восстановление мощности приводит к другой фазовой последовательности, что была до отключения электроэнергии.

Обнаружение разворота фазы важно, если двигатель, работающий в обратном направлении, может повредить ведомый механизм или, что еще хуже, – нанести физический вред обслуживающему персоналу.

Кроме всего прочего, использование защитных реле – это обеспечение безопасности рабочего персонала: 1 – оборванная фаза; 2 – шаговое напряжение

Правила эксплуатации электросетей требуют применения защиты от возможного реверсирования фаз на всем оборудовании, включая транспортные средства для перевозки персонала (эскалаторы, лифты и т. п.).

Обнаружение дисбаланса напряжения

Несбалансированность обычно проявляется, если входящие линейные напряжения, подаваемые электроэнергетической компанией, имеют разные уровни. Дисбаланс может иметь место, когда однофазные нагрузки освещения, электрических выходов,однофазных двигателей и прочего оборудования подключаются на отдельных фазах и не распределяются сбалансированным образом.

В любом из таких случаев в системе образуется дисбаланс тока, который снижает эффективность и сокращает срок службы двигателя.

Несбалансированное или недостаточное напряжение, прикладываемое к трехфазному двигателю, приводит к дисбалансу тока в обмотках статора, равному многократному значению разбаллансировки межфазных напряжений. Этот момент, в свою очередь, сопровождается увеличением нагрева, что является основной причиной быстрого разрушения изоляции двигателя.

Сгоревшая обмотка статора мотора – можно сказать, обычное явление там, где не предусматривалось внедрение в цепь управления релейного контроля

Исходя из всех описанных технических и технологических факторов, становится очевидной важность применения этого типа реле и не только для случаев эксплуатации электрических двигателей, но также для генераторов, трансформаторов и прочего электрооборудования.

Как подключить прибор контроля?

Конструкции реле, осуществляющих контроль фаз, при всем имеющемся обширном ассортименте изделий, имеют унифицированный корпус.

Конструктивные элементы изделия

Клеммники для подключения электрических проводников, как правило, выведены на фронтальную часть корпуса, что удобно для проведения монтажных работ.

Сам прибор сделан под установку на рейку типа DIN либо просто на ровную плоскость. Интерфейс клеммника обычно представляет собой стандартный надежный зажим, предназначенный под крепление медных (алюминиевых) жил сечением до 2,5 мм2.

Передняя панель прибора содержит регулятор/регуляторы настройки, а также световую контрольную индикацию. Последняя показывает присутствие/отсутствие питающего напряжения, а также состояние исполнительного механизма.

Среди элементов настройки потенциометра может быть индикатор аварий, индикатор подключенной нагрузки, потенциометр выбора режима, регулировка уровня асимметрии, регулятор падения напряжения, потенциометр регулировки задержки по времени

Подключение трехфазного напряжения выполняется на рабочих клеммах устройства, обозначенных соответствующими техническими символами (L1, L2, L3). Монтаж нулевого проводника на таких устройствах обычно не предусматривается, но этот момент конкретно определяется исполнением реле — типом модели.

Для соединения с цепями управления используется вторая интерфейсная группа, состоящая обычно не менее чем из 6 рабочих клемм. Одной парой контактной группы реле коммутируется цепь катушки магнитного пускателя, а через вторую — цепь управления электрооборудования.

Все достаточно просто. Однако каждая отдельная модель реле может иметь свои особенности подключения. Поэтому применяя устройство на практике, следует всегда руководствоваться сопроводительной документацией.

Шаги настройки приспособления

Опять же в зависимости от исполнения, конструкция изделия может оснащаться разными схемными вариантами настройки и регулировки. Есть модели простые, предусматривающие конструктивно вывод на панель управления одного-двух потенциометров. И есть устройства с расширенными элементами настройки.

Элементы настройки микропереключателями: 1 – блок микропереключателей; 2, 3, 4 – варианты установки рабочих напряжений; 5, 6, 7, 8 – варианты установки функций асимметрии/симметрии

Среди таких расширенных настроечных элементов часто встречаются блочные микропереключатели, расположенные непосредственно на печатной плате под корпусом прибора или в специальной открываемой нише. Установкой каждого из них в то или иное положение создается требуемая конфигурация.

Настройка обычно сводится к тому, чтобы выставить посредством вращения потенциометров или расположением микропереключателей номинальные значения защиты. Например, для контроля состояния контактов уровень чувствительности разницы напряжений (ΔU) обычно ставят на значение 0,5 В.

Если необходимо контролировать линии питания нагрузки, регулятор чувствительности разницы напряжений (ΔU) настраивают на такое граничное положение, где отмечается точка перехода от рабочего сигнала к аварийному с небольшим допуском в сторону номинала.

Как правило, все нюансы настройки приборов доходчиво описывает сопроводительная документация.

Маркировка устройства контроля фаз

Приборы классического исполнения маркируются просто. На передней или боковой панели корпуса наносится символьно-цифровая последовательность или же обозначение отмечается в паспорте.

Вариант маркировки одного из популярных устройств отечественного производства. Обозначение вынесено на фронтальной панели, но встречаются также вариации с размещением на боковинах

Так, устройство российского производства на подключение без нулевого провода маркируется:

ЕЛ-13М-15 АС400В

где: ЕЛ-13М-15 – наименование серии, АС400В – допустимое напряжение переменного тока.

Образцы импортной продукции имеют маркировку несколько иную.

Например, реле серии «PAHA» отмечено следующей аббревиатурой:

PAHA B400 A A 3 C

Расшифровка примерно такая:

  1. PAHA — наименование серии.
  2. B400 – стандартное напряжение 400 В или подключенное от трансформатора.
  3. А – регулировка потенциометрами и микропереключателями.
  4. А (Е) – тип корпуса под монтаж на DIN рейку или в специальный разъем.
  5. 3 – размер корпуса в 35 мм.
  6. С – конец кодовой маркировки.

На некоторых моделях перед пунктом 2 может добавляться еще одно значение. Например, «400-1» или «400-2», а последовательность остальных не изменяется.

Так маркируются аппараты контроля фаз, наделенные дополнительным интерфейсом питания под внешний источник. В первом случае напряжение питания 10-100 В, во втором 100-1000 В.

С принципом действия, конструктивными особенностями и назначением выключателя нагрузки ознакомит , прочитать которую мы очень советуем.

Выводы и полезное видео по теме

Видеоролик посвящен описанию и обзору отдельно взятого изделия от компании EKF. Однако по такому же принципу действуют практически все выпускаемые аппараты контроля фаз:

При всем многообразии приборов на рынке сложно определить какой-никакой стандарт маркировки. Если зарубежные производители маркируют по одним канонам, то отечественные — по другим. Тем не менее всегда есть возможность обратиться к справочным данным, если требуется точная расшифровка характеристик.

Хотите поделиться собственным опытом в выборе и установке реле напряжения, предназначенного для контроля фаз? Располагаете полезными сведениями, которые пригодятся посетителям сайта? Пишите, пожалуйста, комментарии в расположенном ниже блоке, публикуйте фотоснимки по теме, задавайте вопросы.

sovet-ingenera.com

Схема подключения АВР на контакторах. Реле контроля фаз. Часть 2.

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с работой системы автоматического ввода резерва (АВР). В первой части статьи мы рассмотрели две схемы АВР на одном контакторе, предназначенные для работы в однофазной сети, и которые можно установить в домашнюю электрическую сеть.
В этой части мы разберем схему для трехфазной электрической сети, выполненную на двух контакторах, где в качестве управляющего элемента применено реле контроля фаз (реле контроля трехфазного напряжения).

3. Реле контроля фаз.

В схемах АВР трехфазной сети реле контроля фаз обеспечивает постоянный контроль за питающим напряжением основного ввода. В случае снижения или повышения напряжения на основном вводе, неисправности или обрыва любой из фаз реле производит переключение потребителя на резервный ввод, тем самым, обеспечивая защиту электрооборудования от аварийных режимов электрической сети.

Реле также контролирует порядок чередования фаз (фазировка), что позволяет определить корректность питающего напряжения, приходящего к потребителю. Если чередование фаз питающего ввода дома будет нарушена, например, АСВ вместо АВС, то реле не перейдет в рабочий режим пока ошибка не будет устранена. К тому же эти реле работают в комплекте с электрооборудованием, для которого неправильное чередование фаз может привести к поломке или неправильной работе.

Отечественной промышленностью выпускается достаточное количество различных типов реле для трехфазной и однофазной сети, однако наибольшее применение получили реле серии ЕЛ – ЕЛ11Е, ЕЛ-12Е, ЕЛ-13Е, которые были разработаны для работы в наших электрических сетях, и где каждый тип реле этой серии имеет свою область применения.

Так реле типа ЕЛ-11Е предназначено для контроля уровня напряжения и используется для защиты источников питания, генераторов, а также в качестве приборов контроля в системах АВР.

ЕЛ-12Е служит для контроля порядка чередования фаз и асимметрии напряжения (перекоса фаз) и применяется для защиты мощных асинхронных электродвигателей мощностью до 100 кВт, работающих в нереверсивном режиме.

ЕЛ-13Е контролирует только асимметрию напряжения (перекос фаз) и используется для защиты трехфазных крановых асинхронных электродвигателей мощностью до 75 кВт, работающих в реверсивном режиме.

Реле серии ЕЛ выпускаются с разным временем срабатывания — 0,1; 0,15; 0,5 секунд, а также с регулировкой задержки от 0,1 до 10 секунд, что позволяет избежать ложных срабатываний при наличии кратковременных возмущений в электрической сети.

Практически все реле контроля фаз имеют одинаковое устройство: индикация нормального и аварийного состояния сети, измерительная и силовая часть.

Измерительная часть, как правило, имеет регулируемую уставку нижнего и верхнего порогов напряжения, регулировку задержки срабатывания реле.
Силовая часть представляет собой обычное электромагнитное реле, контакты которого задействуют в схемах управления систем АВР.

4. Схема АВР с применением реле контроля фаз ЕЛ-11Е.

Подключение реле серии ЕЛ очень простое и не представляет особых затруднений: к клеммам L1, L2, L3 подключаются фазы А, В, С соответственно, а через контакты 15-16 и 25-28 напряжение подается в цепь управления катушек контакторов, где в зависимости от состояния электрической сети реле управляет работой контакторов замыканием или размыканием этих контактов.

На рисунке ниже изображена схема АВР, обеспечивающая бесперебойное снабжение трехфазным питающим напряжением потребителей. Схема собрана на двух контакторах КМ1 и КМ2, реле контроля фаз KV1, трехполюсных автоматических выключателей QF1, QF2 и SF1, однополюсного автоматического выключателя SF2 и двух ламп накаливания HL1 и HL2, обеспечивающих индикацию работы АВР.

Рассмотрим работу схемы.
Первым в работу запускаем основной ввод включением автоматических выключателей QF1 и SF1, после чего трехфазное напряжение основного ввода подается на входные клеммы реле L1, L2, L3. Если напряжение основного ввода в норме, то контакт реле KV1.1 замыкается и через него фаза А поступает на левый по схеме вывод катушки контактора КМ1, контактор срабатывает, его силовые контакты КМ1 замыкаются и через них трехфазное сетевое напряжение А3, В3, С3 поступает к потребителю.

Одновременно с этим нормально-замкнутые контакты реле KV1.2 и контактора КМ1.1 размыкаются и разрывают цепь питания катушки КМ2, а нормально-разомкнутый контакт КМ1.2 замыкается и включает лампу HL1, сигнализирующую о работе основного ввода.

Теперь включаем автоматы QF2 и SF2 и запускаем резервный ввод.
Напряжение резервного ввода А2, В2, С2 поступает на верхние клеммы силовых контактов контактора КМ2 и остается там дежурить. Фаза А2 через автомат SF2 поступает на левые по схеме клеммы контактов КМ1.1 и КМ2.2 и также остается на них дежурить. При этом никаких изменений в работе АВР не происходит, так как в данный момент работает основной ввод.

При возникновении аварийной ситуации на основном вводе реле KV1 переключает потребителя на резервный ввод: контакт реле KV1.1 (25-28) размыкается и прекращает подачу питания на катушку контактора КМ1, отчего контактор обесточивается, его силовые контакты КМ1 размыкаются и напряжение основного ввода перестает поступать к потребителю. Об этом также сигнализирует лампа HL1, которая гаснет при размыкании контакта КМ1.2.

Одновременно с этим нормально-замкнутые контакты реле KV1.2 (15-16) и контактора КМ1.1 становятся замкнутыми и через них фаза А2 поступает на катушку контактора КМ2, контактор срабатывает и теперь через его силовые контакты КМ2 трехфазное сетевое напряжение А3, В3, С3 поступает к потребителю.

Также нормально-замкнутый контакт КМ2.1 размыкается и разрывает цепь питания катушки контактора КМ1, а контакт КМ2.2 замыкается и включает лампу HL2, которая сигнализирует о работе резервного ввода.

При восстановлении параметров сетевого напряжения на основном вводе реле контроля фаз автоматически переключит потребителя с резервного ввода на основной.

В рамках этой части статьи мы рассмотрели стандартную схему АВР, реализованную на реле серии ЕЛ. Как уже было сказано выше, отечественной промышленностью выпускается достаточное количество различных типов реле контроля фаз, но принцип построения схем и работа автоматического ввода резерва с использованием подобных реле остается неизменным – будь то трех или четырехпроводная электрическая сеть. Главное надо понимать, что для каждого конкретного случая выбирается конкретный тип реле контроля фаз.

Выражаю благодарность за предоставленную аппаратуру для написания данной статьи интернет-магазину «Электрик-Сантехник» находящемуся по адресу г. Астрахань ул. Адмиралтейская, 53м.

На этом хочу закончить статью о простых системах АВР, выполненных с применением контакторов и реле контроля фаз.
Удачи!

Литература:
Паспорт: реле контроля трехфазного напряжения ЕЛ-11Е, ЕЛ-12Е, ЕЛ-13Е. ТУ 3425-007-49874443-07.

sesaga.ru

Реле контроля фаз | Насосы и принадлежности

Всем доброго времени суток, уважаемые читатели блога nasos-pump.ru

Реле контроля фаз

В рубрике «Принадлежности» рассмотрим реле контроля фаз. В современной жизни насосное оборудование используется широко и повсеместно. Естественно существует проблема защиты этого оборудования от некачественного энергоснабжения. Особенно это актуально для двигателей насосов, у которых питание осуществляется от трёхфазного напряжения. По сравнению с однофазным напряжением, где в основном бывает повышенное или пониженное напряжение сети, у трехфазных сетях еще случаются и перекос фаз, и замыкание фаз, и обрыв фаз, и нарушение последовательности чередования фаз. Все это приводит, как правило, к выходу асинхронного электродвигателя насоса, а в некоторых случаях и самого насоса из строя. Для защиты оборудования применяется реле контроля фаз, которое используется для контроля наличия и симметрии напряжений в трехфазных и однофазных питающих сетях. Прибор выполнен на современной микропроцессорной элементной базе, имеет высокую надежность, простую конструкцию и легко настраивается. Во время эксплуатации оборудования устройство постоянно контролирует параметры сети и если хотя бы один из контролируемых параметров не соответствует, то работа оборудования блокируется, если все параметры возвращаются в норму, то происходит автоматическое включение оборудования. К контролируемым параметрам относится как симметричный так и не симметричный выходы напряжения за допустимые пределы, нарушение порядка чередования фаз, обрыв фаз, пропадание фаз.

Технические характеристики

В качестве примера рассмотрим технические характеристики реле контроля фаз HRN-43 производства фирмы ETI Словения. Характеристики приведены в таблице

 

Таблица. Характеристики реле контроля фаз

Используется для контроля максимального Umax и минимального Umin уровней напряжения, асимметрии, обрыва и последовательности чередования фаз. Обладает функцией “Память”, для возврата из аварийного состояния в рабочий режим. Имеет индикацию: наличие питания, повышенного или пониженного напряжения, последовательности чередования фаз и асимметрии. Крепится данное изделие на DIN рейку.

На (Рис. 1) приведена схема использования реле контроля фаз для защиты трехфазного двигателя.

Схема подключения насоса

 

Эксплуатация, обслуживание и ремонт

В процессе эксплуатации насосного оборудования с трехфазным двигателем случаются различные ситуации с питающим напряжением. Особенно это актуально для стран бывшего союза. К таким ситуациям относятся: повышенное или пониженное напряжение в сети, асимметрия или перекос фаз, пропадание или обрыв фаз, нарушение чередования последовательности фаз. Рассмотрим эти случаи более подробно.

Повышенное или пониженное напряжение сети. Повышение и понижение напряжения, а также резкие скачки напряжения питания оказывают очень сильное влияние на работу асинхронных двигателей, которые наиболее часто применяются в насосном оборудовании. В случае изменения напряжения питающей сети изменяется механическая характеристика асинхронного двигателя – зависимость вращательного момента от скольжения. Вращательный момент на валу двигателя пропорционален квадрату напряжения на его клеммах. При низком напряжении сети питания снижается вращающий момент и частота вращения ротора двигателя, из-за увеличения его скольжения. Низкое напряжения ухудшает условия запуска двигателя, так как это приводит к уменьшению его пускового момента. При повышенном напряжении питающей сети происходит быстрое «старение» обмоток, что приводит к сокращению срока службы двигателей. Быстрое «старение» обмоток ведет к «пробою» обмоток между собой или на корпус. Для ремонта необходимо перематывать статор двигателя. Чтобы избежать таких неприятных моментов лучшим способом защиты являются стабилизаторы напряжения. Однако стоимость стабилизаторов в особенности на большие мощности весьма большая и может быть соизмерима со стоимостью насосного оборудования. Также для защиты насосного оборудования можно использовать и реле контроля фаз. Для этого на реле задаются пределы допустимых колебаний питающей сети. В случае выхода параметров питающей сети за заданные, реле отключает нагрузку. К недостаткам такой защиты нужно отнести то, что на время когда сеть не соответствует заданным параметрам, насос будет отключен. На индикации будет гореть светодиод, указывающий, что в сеты повышенное или пониженное напряжение. Это критично там, где идет технологический процесс, и оборудование не может быть остановлено.

Асимметрия или перекос фаз. При трехфазном питании очень часто бывают ситуации, когда одна из фаз недогружена, а вторая перегружена. Режим запуска в асинхронном двигателе характеризуется кратковременной работой обмоток статора в режиме короткого замыкания и потребляемый двигателем ток в 5-7 раз превышает номинальный. Частые запуски при перекосе фаз, могут вызывать перегрев изоляции и увеличивать потребляемый ток. Как следствие двигатель может, не запустится, или обмотки статора выйдут из строя. Реле позволяет задать уровень перекоса фаз в пределах 5-20%. В случае превышения заданного уровня асимметрии происходит отключение двигателя от сети питания и тем самым оборудование защищается от недопустимых режимов питающей сети и от возможных отказов, а светодиод, указывающий ни асимметрию фаз, при этом загорится.

Пропадание или обрыв фаз. Это один из наиболее часто встречаемых случаев, При пропадании фазы трехфазный двигатель не запускается в работу. Как результат выгорание двух обмоток, которые были под напряжением. Если пропадает одна из фаз в процессе работы двигателя, то ситуация будет аналогичной – выгорание двух фаз из-за повышенно потребляемого тока. Реле контроля фаз отключит нагрузку от сети при пропадании одной из фаз и тем самым защищает статор двигатель от выгорания обмоток.

Нарушение последовательности чередования фаз. Для двигателей с трехфазным питанием очень важно не нарушать чередование последовательности фаз, так как от этого зависит направление вращение двигателя. В случае нарушения последовательности чередования фаз двигатель начинает вращаться в другую сторону. При неправильном вращении двигателя изменяются его гидравлические характеристики (напор насоса очень сильно уменьшается). Более серьезные последствия – это выход из строя и насоса  и двигателя. Реле контролирует правильную последовательность фаз. В случае изменении чередования фаз изделие отключит двигатель. Если включить реле с неправильной последовательностью чередования фаз, то нагрузка не будет подключена к сети питания, до устранения неисправности.

Используя довольно таки простое и не очень дорогое реле контроля фаз можно уберечь насосное оборудование от выхода его из строя и как следствие дорогостоящего ремонта.

Спасибо за оказанное внимание

 

P.S. Понравился пост? Порекомендуйте его своим друзьям и знакомым в социальных сетях.

Еще похожие посты по данной теме:

nasos-pump.ru

Реле контроля фаз | Область применения, модификации, принцип работы, преимущества и недостатки – на промышленном портале Myfta.Ru

Защита оборудования, которое работает от электрической сети, от некачественного напряжения необходима практически на любом предприятии. Особенно эта защита актуальна, когда приборы работают от трёхфазного напряжения. Для защиты электрооборудования существуют реле контроля фаз.

Кроме повышения или снижения напряжения во всех трёх фазах, существует опасность «перекос фаз». «Перекос фаз» – случай в сети электропроводки, когда напряжения имеют разную величину на разных фазах.

Такая ситуация может привести к перегреву трансформаторов или обмоток двигателей. Часто в сети может случиться обрыв одной фазы.

Чаще всего для нормальной работы электрических устройств нужен определённый порядок чередования фаз питающего напряжения. Когда в сети происходит авария, все три фазы могут иметь напряжение 220 В.

При этом две фазы замкнуты между собой. Эта ситуация называется «слипание» фаз. При таком напряжении в сети любое электрооборудование выходит из строя.

Эти приборы выпускаются в различных модификациях.

В основе принципа работы реле контроля фаз лежит так называемый режим самовозврата. При подаче трехфазного напряжения на прибор проверяются все параметры напряжения в сети. Если все параметры в норме, то встроенное электромагнитное реле включается и происходит замыкание цепи. Напряжение подается на приборы.

Если какой-либо параметр напряжения сети выходит из строя, то устройство размыкает сеть и происходит остановка работы оборудования.

Как правило, такое действие сопровождается загоранием красного светодиода на передней панели. Когда параметры напряжения в сети приходят в норму, то оборудование само снова замыкает цепь и электропитание подается на приборы. При нормальной работе на панели светится зеленый светодиод.

Устройство контроля фаз контролирует на протяжении всего времени работы качество напряжения в электрической сети.

К достоинствам моделей из серии ЕЛ относят его дешевизну. Отечественные приборы стоят порядка 20-25 долларов, импортные же – от 50 до 250 долларов. Во времена финансовой нестабильности многих предприятий такие устройства не доступны для использования.

Кроме того, многие импортные аппараты устроены так, что сами требуют питания от источника электроэнергии, отличного от контролируемого. Это усложняет схему их подключения. Отечественные реле контроля фаз питаются всегда от текущей сети, в которую подключены и которую контролируют.

Еще одно из достоинств отечественных приборов – это диапазон рабочих температур. Импортные модели не рассчитаны на работу при температурах ниже -25ºС. Отечественные выдерживают температуру воздуха до -40ºС. В климатических условиях постсоветского пространства это очень существенное достоинство.

Отечественные устройства более выносливы к перепадам напряжения, так как изначально разрабатывались для работы в отечественных сетях электрического напряжения. На металлургических предприятиях, на железных дорогах они проявили себя как более надежные.

Но у реле серии ЕЛ существует ряд недостатков. Это, во-первых, большая теплоотдача, что приводит к снижению надежности. При плохой вентиляции электрического шкафа прибор быстро может выйти из строя. Во-вторых, при аналоговой обработке сигнала в аварийном режиме его работа может быть некорректной. В технической документации производители, к сожалению, об этом умалчивают. Эта проблема решена в моделях с цифровой обработкой сигнала. В частности, в реле контроля фаз Шнайдер, производства Франции.

На рисунке представлена принципиальная схема реле контроля фаз модификации ЕЛ-11.

Ниже приведен пример схемы подключения реле контроля фаз в сеть электрического питания. Применение моделей серии ЕЛ различно: ЕЛ-11 используется непосредственно для контроля показателей напряжения в сети, ЕЛ-12 контролирует чередование фаз их «перекос», ЕЛ-13 – только асимметрию напряжения.

Исходя из вышеприведенных направлений применения, можно определить сферы применения реле. Первый вид приборов можно подключать к сети, где работают генераторы системы АВР. Тип ЕЛ-12 применим для защиты асинхронных двигателей большой мощности, которые работают в режиме без реверса.

Порог срабатывания, которые указывают в технической документации производители, работает только при нормальном номинальном напряжении двух оставшихся фаз. Такая техническая характеристика не дает возможности в полной мере оценить качество работы устройства. Испытания показали, что срабатывает оно при отклонениях напряжения 15-18% при асимметрии.

Когда происходит обрыв одной из фаз, многие типы двигателей начинают генерировать напряжение на фазу, где произошел обрыв. Напряжение на ней может достигать амплитуды 95%. Разница амплитуд зависит от типа двигателя и условий его работы. Модель ЕЛ-12, которая имеет цифровую обработку сигнала, может регулировать асимметрию от 5 до 20% напряжения в сети. Это позволяет произвести остановку двигателя, если обнаруживается обрыв фазы.

Еще одним из достоинств такого реле является присутствие минимального порога включения. Оно включится и подаст напряжение на сеть, только если напряжение в сети будет в нормах допустимого (не ниже 70% минимального). Хорошо использовать подобные приборы в сетях, где питаются двигатели насосов и компрессоров. Другими словами момент вращения вала не зависит от скорости его вращения.

Параметры электрической сети, которые контролирует ЕЛ-13 практически такие же, как у ЕЛ-12. Отличный параметр – это контроль чередования фаз. Время срабатывания подобных устройств от 0,1 до 0,5 сек. Оптимальное применение их может быть на подъемных устройствах (кранах, их стрелах) для безопасного передвижения грузов и защиты их от падения.

myfta.ru

Реле контроля фаз схема подключения

В устройствах автоматического управления уже очень давно применяется реле контроля фаз, схема подключения которого позволяет контролировать наличие и симметрию напряжений. Кроме того, этот прибор выполняет функцию по защите электрооборудования при нарушениях качества тока, поступающего из сети. В основе данного оборудования лежит современная микропроцессорная техника. В результате, обеспечивается простота конструкции, высокая надежность и легкость настройки реле контроля.

Как работает реле контроля фаз

Работа прибора осуществляется, преимущественно, в самовозвратном режиме, то есть, при аварийном срабатывании, происходит отключение оборудования. Помимо этого, с помощью реле контроля производится проверка параметров сети и, если они находятся в соответствии с нормами, то нагрузка включается вновь.

Во время эксплуатации какого-либо оборудования, происходит постоянное слежение за величиной напряжения сети. При возникновении аварийной ситуации, реле производит отключение нагрузки. Это делается при симметричном или несимметричном выходе напряжения сверх допустимых пределов, а также, в случаях, когда нарушается порядок чередования напряжений. С помощью реле контроля производится оперативное слежение за качеством электроэнергии, отсекая недопустимые режимы питающей сети.

Подключения реле напряжения и контроля фаз

Данное устройство выполняет постоянный мониторинг в трехфазных сетях переменного тока. Как правило, проверяется чередование и обрыв фаз, а также значение минимального напряжения. При обнаружении одной из этих аварий, в действие вступает реле контроля фаз, схема подключения которого предусматривает срабатывание выходного переключающего контакта.

Как правило, с помощью выходного контакта могут коммутироваться такие устройства, как контакторы электродвигателей, звуковая аварийная сигнализация, а также дистанционные расцепители, установленные в автоматических выключателях.

Кроме скачков напряжения на каждой из трех фаз, серьезную опасность может представлять перекос фаз. В этом случае, напряжение каждой фазы имеет разное значение, из-за чего очень часто перегреваются обмотки двигателей или трансформаторов, вплоть до выхода их из строя.

В большинстве случаев, нормальная работа оборудования обеспечивается строго определенным порядком чередования фаз напряжения. Иногда происходит так называемое слипание фаз, которое также может вывести из строя электрооборудование. Именно от таких ситуаций защищают реле контроля фаз. Они постоянно совершенствуются, их надежность повышается, а число регулировок увеличивается.

electric-220.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *