+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Схема Подключения Реле Контроля Фаз

В некоторых реле предусмотрена возможность изменения уставок по верхнему и нижнему пределу U, а также T времени срабатывания. Выбор реле Выбор нужного нам типа реле зависит непосредственно от технических характеристик подключаемого устройства и самого реле.


Видео Задачей автоматических выключателей является защита от перегрузок и коротких замыканий, а УЗО , устанавливаемые вместе с ними, защищают от токовых утечек. Схема подключения и монтаж реле напряжения Большинство реле монтируются в распределительном щитке на DIN-рейку.

Выводы и полезное видео по теме Видеоролик посвящен описанию и обзору отдельно взятого изделия от компании EKF.
Реле контроля фаз одномодульные (РКФ) от EKF. Автоматический выключатель

Рассмотрим, какое реле лучше выбрать нам на примере подключения АВР автомата ввода резервного питания. Плюсы использования устройств Преимущественная сторона токовых защитных реле по отношению к реле контроля напряжения очевидна.


При подаче на реле трёхфазного напряжения осуществляется проверка всех контролируемых параметров, если они в норме реле включается контакты размыкаются, контакты — замыкаются. Принципиальная схема работы В нормальном режиме к цепи питания от источника ЭДС E1 рисунок 2 подается напряжение к потребителю, будь то двигатель, станок или другое оборудование.

Рассмотрим схему подключения с нулем.

На выходе устройства с помощью силового контакт подсоединяем контактор, который одним концом своей обмотки подключён к нулевому проводу, а вторым концом к выходу одной из фаз. На верхней кнопке треугольник направлен вершиной вверх, а на нижней — вершиной вниз.


Применяется для контроля U в 3-фазных сетях без 0-го проводника.

Схема АВР с приоритетом на контакторах и реле контроля фаз.

Принцип работы реле контроля фаз

Далее верхнюю кнопку следует нажимать до того момента, пока не установится нужное значение верхнего предела отключения. Как подключить устройство?

Они зависят от назначения конкретного реле и сферы применения. Попытка его запустить в однофазном режиме приведет к блокировке ротора и двигатель не запустится.

Отечественной промышленностью выпускается достаточное количество различных типов реле для трехфазной и однофазной сети, однако наибольшее применение получили реле серии ЕЛ — ЕЛ11Е, ЕЛЕ, ЕЛЕ, которые были разработаны для работы в наших электрических сетях, и где каждый тип реле этой серии имеет свою область применения. Реле также контролирует порядок чередования фаз фазировка , что позволяет определить корректность питающего напряжения, приходящего к потребителю.


Схема реле контроля фаз собирается на транзисторах или микроконтроллере.


Защита электродвигателя, организованная через реле контроля.

Технические характеристики ЕЛЕ и других модификаций серии.

В некоторых реле предусмотрена возможность изменения уставок по верхнему и нижнему пределу U, а также T времени срабатывания. В отличии от реле, работающих только по напряжению обеспечивает действующую защиту от регенерированного напряжения, вырабатываемого обратными ЭДС.
Реле выбора фаз. Как? Зачем? Схемы

Схемы применения и подключения реле контроля фаз и напряжения РНЛ-1

Модель потребляет меньше 2 ВА. После нормализации напряжения контрольное устройство вновь включает подачу электроэнергии через период времени, указанный в заводских настройках.


Преимущества реле контроля фаз В сравнении с другими устройствами аварийных отключений данные электронные реле отличаются рядом весомых преимуществ: в сравнении с реле контроля напряжения не зависит от влияния ЭДС питающей сети, так как его работа отстраивается от тока; позволяет определять аномальные скачки не только в трехфазной сети питания, но и со стороны нагрузки, что позволяет расширить спектр защищаемых компонентов; в отличии от реле, работающих на изменение тока в электродвигателях, данное оборудование позволяет фиксировать еще и параметр напряжения, обеспечивая контроль по нескольким параметрам; способно определить дисбаланс уровней питающих напряжений из-за неравномерности загрузки отдельных линий, что чревато перегревом двигателя и снижением параметров изоляции; не требует формирования дополнительной трансформации со стороны рабочего напряжения. Сгоревшая обмотка статора мотора — можно сказать, обычное явление там, где не предусматривалось внедрение в цепь управления релейного контроля Исходя из всех описанных технических и технологических факторов, становится очевидной важность применения этого типа реле и не только для случаев эксплуатации электрических двигателей, но также для генераторов, трансформаторов и прочего электрооборудования. Если зарубежные производители маркируют по одним канонам, то отечественные — по другим.

В связи с этим, необходим постоянный контроль над состоянием фаз, осуществляемый с помощью трехфазного реле контроля напряжения, установленного в сети. Так выглядит одна из моделей реле контроля напряжения.

На практике применяется для контроля наличия U и правильности симметрии. При выходе за заданные значения какой-либо из фаз, срабатывает реле, отвечающее за данный контур, а остальная нагрузка при условии нахождении в границах нужного диапазона продолжает работать. Следующие две буквы А — регулирование с помощью потенциометра и тип монтажа под дин-рейку.

Обнаружение разворота фазы важно, если двигатель, работающий в обратном направлении, может повредить ведомый механизм или, что еще хуже, — нанести физический вред обслуживающему персоналу. Максимальное напряжение составляет В. Такая ситуация чаще всего возникает из-за ошибки подключения. Число производимых товаров превышает единиц.

Установка коммутирующих устройств на выход реле


Далеко не все модели предоставляют весь комплекс настроек по вышеприведенным параметрам. Установкой каждого из них в то или иное положение создается требуемая конфигурация. Важно учесть, что сфера применения изделия зависит от их типов реле контроля фаз напряжения ЕЛ : 11 и 11 МТ — защита источников питания, участие в системе АВР, питание преобразователей и генераторных установок. Если напряжение основного ввода в норме, то контакт реле KV1. Выявление фазового реверса Выполняется техническое обслуживание на моторном оборудовании.

Подключаемую нагрузку формируют равномерно на каждую из 3-х фаз. Это позволяет легко соединить реле контроля трехфазного напряжения с электрической цепью, соблюдая правила, одинаковые для всех типов этих устройств. Это устройство контролирует трехфазную сеть при обрыве одной и более фаз, неправильном чередование фаз, асимметрии напряжения или перекосе фаз. Яркий пример — компрессор винтового типа, неправильное подключение которого и включение на срок больше пяти секунд приводит к поломке дорогостоящего изделия. Принципиальная схема устройства показана ниже.

Таким образом, контроль происходит автоматически, при аварийной ситуации реле отключает нагрузку, а при восстановлении параметров сети включает напряжение трехфазной сети автоматически. К дополнительным плюсам стоит отнести контроль минимального и максимального U, функцию гистерезиса для 3-фазного тока. Это позволяет значительно увеличить их мощность. Изделия этого предприятия активно применяются как на гражданских объектах, так и в крупных промышленных организациях.

Подключение и работа реле контроля фаз ЕЛ-11Е

4. Схема АВР с применением реле контроля фаз ЕЛ-11Е.

Конструкции реле, осуществляющих контроль фаз, при всем имеющемся обширном ассортименте изделий, имеют унифицированный корпус. Кроме того, ЕЛМ реагирует на факт повышения или снижения U выше ниже установленного параметра.

Монтаж нулевого проводника на таких устройствах обычно не предусматривается, но этот момент конкретно определяется исполнением реле — типом модели.

Поэтому реле контроля фаз в этом случае просто необходимо. Напряжение на внутреннюю схему, как правило, подается с первой фазы L1.

При появлении проблем в одной из фаз срабатывает ответственное реле, а по остальным фазам продолжает поступать нагрузка. В обеспечении нормальной работы прибора важную роль играет правильная настройка времени повторного отключения.

Статья по теме: Энергетическое обследование это

Назначение устройства

Тонкости выбора При выборе реле контроля фаз напряжения нужно ориентироваться на технические параметры устройства, которое подключается к цепи. Различные схемы реле контроля фаз приведены ниже.

Кроме того, при выборе нужно учитывать модификацию реле. На что реагирует устройство защиты и посылает по цепям питания через клеммы 24 и 21 на катушку контактора соответствующий сигнал на отключение.

Рекомендации, касающиеся подключения

Наступает и перегорание бытовой техники, включенной в трехфазную цепь. Назначение схемы: Контроль напряжения питания и привода на обрыв с применением устройств плавного пуска или частотного преобразователя. При асимметрии напряжения или при обрыве одной фазы, встроенное реле выключается через время t, заданное пользователем. В основе деятельности компании лежит разработка и изготовление устройств промышленной автоматики.

Для этого собирается стенд. На практике изделие применяется при частом переносе оборудования, когда при изменении фазировки возможно его повреждение или некорректная работа.
EKF Реле контроля фаз РКФ

tokzamer.ru

что это и как выполнить проверку?

Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.

Что такое чередование фаз?

Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую.  В каждой линии напряжение отличается на 120º от остальных.

Рис. 1. Напряжение в трехфазной сети

Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана  разница между фазным и линейным напряжением.

Если взять за основу, что из нулевой точки на рисунке а) выходит  U­

A, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от U­A  к U­B, а за ним к  C. Это означает, что фазы чередуются в порядке A, B, C.  Такой порядок чередования считается прямым.

Прямое и обратное чередование фаз

В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.

Рисунок 2: Прямая и обратная последовательность

Обратите внимание, цветовая маркировка определяет последовательность  в соответствии их очередностью в алфавите по первым буквам цвета:

  • Желтый – первый;
  • Зеленый – второй;
  • Красный – третий.

На рисунке 2 изображен классический вариант прямой последовательности  A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности  C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A,    C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.

Зачем нужно учитывать порядок фаз?

Последовательность чередования играет значительную роль в таких ситуациях:

  • При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
  • При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
  • При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.

С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.

Как выполнить проверку?

Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.

С помощью фазоуказателя

По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .

Рисунок 3: Принципиальная схема работы ФУ-2

Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.

На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.

На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.

С помощью мегаомметра

Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.

Рис. 4: Прозвонка кабеля мегаомметром

Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.

На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.

По расцветке изоляции жил

Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.

Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает  один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.

При помощи мультиметра

Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.

Рис. 5: фазировка мультиметром

Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута.  Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.

Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.

Защита от нарушения порядка чередования

Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.

Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.

Тематическое видео



www.asutpp.ru

125 фото лучших моделей, преимущества и недостатки применения

Реле контроля фаз представляет собой специальное оборудование, которое устанавливают в местах частых перегрузок на электрической сети и промышленном оборудовании. Они позволяют создать максимальную защиту приборов от преждевременной поломки.

Данная конструкция имеет ряд преимуществ, среди которых выделяют следующие достоинства:

  • продлевает срок службы двигателям;
  • сокращает стоимость ремонта;
  • минимизирует простои в результате дефектов двигателя;
  • защищает от удара электрического тока в процессе работы устройства.

Основное назначение реле контроля фаз заключается в соблюдении правильного полюса электрических фаз. Например, его используют для промышленного оборудования, которое передвигается с одного места в другое.

В ходе подключения станка рекомендуется соблюдать правильное расположение электромагнитных полюсов. В этом случае этот прибор позволяет сократить возникновение каких – либо погрешностей.

Краткое содержимое статьи:

Как работает реле контроля?

В строении каждого промышленного и бытового оборудования должен присутствовать правильный порядок фаз. Благодаря этому все составляющие механизма выполняют свое прямое предназначение. Если в процессе подключения были перепутаны какие – либо отделы, то наблюдают возникновение сбоев, которые приведут к появлению перегрузок на электрической сети.

electrikexpert.ru

Реле контроля чередования и обрыва фаз, наличия и качества сетевого напряжения

Реле контроля наличия фаз и напряжения предназначено для защиты электрооборудования от отклонений параметров питающей трёхфазной электросети.

К основным факторам, на которые реагируют приборы этого класса, относятся:

  • превышение питающим напряжением установленного верхнего предела (уставки) или его падение ниже допустимого уровня;
  • нарушение симметричности трёхфазной системы питания, обрыва одной или двух фаз, как крайнего случая проявления не симметрии;
  • изменение порядка чередования фаз;
  • обрыв нулевого провода (опционально в некоторых конструкциях).

Отдельные экземпляры трёхфазного реле контроля фаз обладают возможностями регулирования уставок верхнего и нижнего пределов отклонения напряжения, а также установки желаемого времени срабатывания.

Для удобства визуального наблюдения и контроля отдельные модели реле могут быть оборудованы индикаторными устройствами, фиксирующими значение фазных параметров.

Реле контроля чередования, обрыва фаз и напряжения содержит несколько функциональных блоков.

БЛОК ИЗМЕРЕНИЙ

Эта часть схемы реле осуществляет непрерывный контроль параметров электропитания – фазных токов и напряжений. Для фиксации искажений симметрии трёхфазной питающей системы напряжений устройство содержит фильтр гармонических составляющих обратной последовательности.

Гармонические составляющие или высшие гармоники представляют собой высокочастотные сигналы, сопутствующие основной частоте промышленного тока и кратные ей.

Теоретически кривые каждого из фазных напряжений, вырабатываемых генераторами электростанций должны иметь строго синусоидальную форму. На практике любой источник напряжения даёт некоторые искажения синусоиды.

Свой вклад в дело ухудшения синусоидальности вносят также разнообразные потребители, содержащие нелинейную нагрузку. В результате, питающее напряжение электрической сети никогда не является синусоидальным на 100%.

В соответствии с теоремой Фурье любая сложная периодическая функция может быть представлена суммой простых гармонических функций.

Примечание. Гармонической называют функцию, изменяющуюся по закону синуса или косинуса.

Таким образом, любое отклонение от синусоидальности влечёт за собой появление высших гармоник – слагаемых формулы разложения Фурье. Каждая из функций – слагаемых имеет частоту, в n раз превышающую частоту основной функции, где n – порядковый номер слагаемого.

То есть применительно к системе питания промышленной частоты 50 Гц, 1-я гармоника обладает частотой 50 Гц, 2-я – 100 Гц, 3-я – 150 Гц и так далее. Амплитуда гармоник уменьшается с увеличением их порядкового номера.

Вся совокупность гармоник образует три последовательности фазных чередований:

  • составляющие 1, 4, 7, 10 … образуют прямую последовательность;
  • 2, 5, 8, 11… — соответствуют обратному фазному чередованию;
  • 3, 6, 9, 12… — составляют нулевую последовательность.

Нарушения симметрии системы характеризуются увеличением гармоник обратной последовательности, что и является критерием отклонения от нормы, применяемым в алгоритме контроля при работе реле.

БЛОК ЛОГИКИ

Данные, полученные из блока измерения, подвергаются здесь сравнению с условиями, определёнными выставленными уставками. Блок логики формирует команды, которые передаются исполнительному органу.

Следует заметить, что в схемотехнике реле контроля бывает невозможно выделить компоненты, относящиеся к блокам логики и измерений. В некоторых моделях используются многофункциональные микропроцессорные чипы, объединяющие эти блоки.

ИСПОЛНИТЕЛЬНЫЙ ОРГАН

Отключение защищаемой электроустановки или части сети производится «сухими» контактами электромагнитного реле или пускателя.

Термин «сухой контакт» является устойчивым жаргонным выражением проектировщиков автоматизированных систем. Выражение заимствовано из жаргона англоязычных коллег путём прямого перевода слов dry contact. Данное выражение никак не связано с отсутствием влаги. Означает оно то, что контакт не имеет гальванической связи с цепями управления, не заземлён и не подключен к источнику питания.

В различных моделях реле контроля фаз применяются исполнительные органы двух типов, коммутирующие нагрузку непосредственно или воздействуя на промежуточный элемент – магнитный пускатель.

В первом случае устройство имеет три входа для подключения трёхфазного питания и три выхода для непосредственного присоединения к нагрузке. Коммутация нагрузки осуществляется внутри устройства.

При подключении реле контроля фаз второго типа подразумевается использование пускателя. В этих приборах имеются выходы контактов исполнительного реле, предназначенных для работы в цепях отключения. Сухие контакты реле контроля фаз коммутируют катушку пускателя.

Такие комбинации используются для защиты оборудования большой мощности, непосредственная коммутация которого невозможна контактами исполнительного органа.

ОБЛАСТЬ ПРИМЕНЕНИЯ И ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Основным оборудованием, нуждающимся в защите от несимметричных режимов и нарушений порядка чередования фаз, являются трёхфазные асинхронные электродвигатели. Несимметрия трёхфазного питания приводит к снижению рабочего и пускового моментов электродвигателя, снижает его КПД и увеличивает величину скольжения.

Полное отсутствие одной из фаз в системе питания приводит к повреждению электродвигателя вследствие перегрева. Усугубляет опасность этого режима небольшой ток потребления и нечувствительность к нему максимальных токовых защит.

Обратное чередование фаз непосредственно двигателю вреда не наносит, но при этом меняется направление его вращения. Такой режим чаще всего губителен для механизмов, приводимых двигателем, и как минимум нарушает технологический процесс.

Изменение порядка чередования фаз возникает в результате ошибки персонала при подключении кабельных линий или шлейфов воздушных линий электропередачи после выполнения ремонтных работ. Это может произойти как на территории потребителя, так и в электроустановках электросетевой компании.

К основным параметрам настройки реле относятся:

  • регулирование уставки срабатывания при повышении уровня напряжения;
  • установка нижнего предела напряжения питания;
  • установка времени повторного включения.

Пределы допустимого изменения параметров питающей электросети устанавливаются исходя из характеристик питаемого оборудования.

Повторное включение происходит после восстановления нормального режима питающей сети. После отключения нагрузки в результате работы реле напряжения и контроля чередования фаз, орган измерения продолжает осуществлять непрерывный контроль состояния сети.

При возвращении параметров электропитания к норме происходит автоматическое повторное включение нагрузки. Время повторного включения выбирают с учётом характеристики сети питания. Необходимость задержки включения обусловлена отстройкой от колебаний параметров переходного режима и возможной неуспешностью попыток включения линий питания.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


eltechbook.ru

Реле контроля фаз | Область применения, модификации, принцип работы, преимущества и недостатки – на промышленном портале Myfta.Ru

Защита оборудования, которое работает от электрической сети, от некачественного напряжения необходима практически на любом предприятии. Особенно эта защита актуальна, когда приборы работают от трёхфазного напряжения. Для защиты электрооборудования существуют реле контроля фаз.

Кроме повышения или снижения напряжения во всех трёх фазах, существует опасность «перекос фаз». «Перекос фаз» – случай в сети электропроводки, когда напряжения имеют разную величину на разных фазах.

Такая ситуация может привести к перегреву трансформаторов или обмоток двигателей. Часто в сети может случиться обрыв одной фазы.

Чаще всего для нормальной работы электрических устройств нужен определённый порядок чередования фаз питающего напряжения. Когда в сети происходит авария, все три фазы могут иметь напряжение 220 В.

При этом две фазы замкнуты между собой. Эта ситуация называется «слипание» фаз. При таком напряжении в сети любое электрооборудование выходит из строя.

Эти приборы выпускаются в различных модификациях.

В основе принципа работы реле контроля фаз лежит так называемый режим самовозврата. При подаче трехфазного напряжения на прибор проверяются все параметры напряжения в сети. Если все параметры в норме, то встроенное электромагнитное реле включается и происходит замыкание цепи. Напряжение подается на приборы.

Если какой-либо параметр напряжения сети выходит из строя, то устройство размыкает сеть и происходит остановка работы оборудования.

Как правило, такое действие сопровождается загоранием красного светодиода на передней панели. Когда параметры напряжения в сети приходят в норму, то оборудование само снова замыкает цепь и электропитание подается на приборы. При нормальной работе на панели светится зеленый светодиод.

Устройство контроля фаз контролирует на протяжении всего времени работы качество напряжения в электрической сети.

К достоинствам моделей из серии ЕЛ относят его дешевизну. Отечественные приборы стоят порядка 20-25 долларов, импортные же – от 50 до 250 долларов. Во времена финансовой нестабильности многих предприятий такие устройства не доступны для использования.

Кроме того, многие импортные аппараты устроены так, что сами требуют питания от источника электроэнергии, отличного от контролируемого. Это усложняет схему их подключения. Отечественные реле контроля фаз питаются всегда от текущей сети, в которую подключены и которую контролируют.

Еще одно из достоинств отечественных приборов – это диапазон рабочих температур. Импортные модели не рассчитаны на работу при температурах ниже -25ºС. Отечественные выдерживают температуру воздуха до -40ºС. В климатических условиях постсоветского пространства это очень существенное достоинство.

Отечественные устройства более выносливы к перепадам напряжения, так как изначально разрабатывались для работы в отечественных сетях электрического напряжения. На металлургических предприятиях, на железных дорогах они проявили себя как более надежные.

Но у реле серии ЕЛ существует ряд недостатков. Это, во-первых, большая теплоотдача, что приводит к снижению надежности. При плохой вентиляции электрического шкафа прибор быстро может выйти из строя. Во-вторых, при аналоговой обработке сигнала в аварийном режиме его работа может быть некорректной. В технической документации производители, к сожалению, об этом умалчивают. Эта проблема решена в моделях с цифровой обработкой сигнала. В частности, в реле контроля фаз Шнайдер, производства Франции.

На рисунке представлена принципиальная схема реле контроля фаз модификации ЕЛ-11.

Ниже приведен пример схемы подключения реле контроля фаз в сеть электрического питания. Применение моделей серии ЕЛ различно: ЕЛ-11 используется непосредственно для контроля показателей напряжения в сети, ЕЛ-12 контролирует чередование фаз их «перекос», ЕЛ-13 – только асимметрию напряжения.

Исходя из вышеприведенных направлений применения, можно определить сферы применения реле. Первый вид приборов можно подключать к сети, где работают генераторы системы АВР. Тип ЕЛ-12 применим для защиты асинхронных двигателей большой мощности, которые работают в режиме без реверса.

Порог срабатывания, которые указывают в технической документации производители, работает только при нормальном номинальном напряжении двух оставшихся фаз. Такая техническая характеристика не дает возможности в полной мере оценить качество работы устройства. Испытания показали, что срабатывает оно при отклонениях напряжения 15-18% при асимметрии.

Когда происходит обрыв одной из фаз, многие типы двигателей начинают генерировать напряжение на фазу, где произошел обрыв. Напряжение на ней может достигать амплитуды 95%. Разница амплитуд зависит от типа двигателя и условий его работы. Модель ЕЛ-12, которая имеет цифровую обработку сигнала, может регулировать асимметрию от 5 до 20% напряжения в сети. Это позволяет произвести остановку двигателя, если обнаруживается обрыв фазы.

Еще одним из достоинств такого реле является присутствие минимального порога включения. Оно включится и подаст напряжение на сеть, только если напряжение в сети будет в нормах допустимого (не ниже 70% минимального). Хорошо использовать подобные приборы в сетях, где питаются двигатели насосов и компрессоров. Другими словами момент вращения вала не зависит от скорости его вращения.

Параметры электрической сети, которые контролирует ЕЛ-13 практически такие же, как у ЕЛ-12. Отличный параметр – это контроль чередования фаз. Время срабатывания подобных устройств от 0,1 до 0,5 сек. Оптимальное применение их может быть на подъемных устройствах (кранах, их стрелах) для безопасного передвижения грузов и защиты их от падения.

myfta.ru

Схемы применения и подключения реле контроля фаз и напряжения РНЛ-1

 

 

Для удобства наших клиентов инженеры «ТДС Прибор» разработали схемы подключения с самыми актуальными примерами использования реле контроля фаз и линии на обрыв электропривода РНЛ-1.

 

 

1. Назначение схемы: Контроль напряжения питания и электропитания привода на обрыв.

При неисправности электропитания двигатель останавливается и выдаётся сигнал неисправности в систему автоматизации или диспетчеризации;

При обрыве проводника кабеля электродвигателя выдаётся сигнал неисправности.

Схема защиты электродвигателя от перенапряжения и обрыва линии питания. 

В шкафах управления вентиляторами дымоудаления и подпора воздуха и насосами пожарного водопровода.


Схема защиты реверсивного привода от перегрузки и обрыва линии питания. 

В шкафах управления пожарными и инженерными задвижками:

 

 

Схема контроля питания и линии на обрыв электропривода 220В. 

В шкафах управления пожарными насосами и вентиляторами, в пожарных и инженерных системах:

 

 

Схема контроля фазного напряжения и линии питания реверсивного привода 220В. 

В шкафах управления задвижками:

 

2. Назначение схемы: Контроль исправности электропитания привода с функцией технологических защиты от сухого хода и перегрева насосов.

При неисправности электропитания,  при перегреве электродвигателя или при срабатывании датчика сухого хода насос останавливается и выдаётся сигнал о неисправности.

Схема защиты насоса от сухого хода и перегрева 380В. 

С биметаллическим датчиком перегрева обмоток и датчиком сухого хода (также можно использовать любые типы датчиков):

3. Назначение схемы: Контроль напряжения с функцией разнесения старта приводов после восстановления электропитания на объекте.

При отказе электропитания объекта и его последующем возобновлении, авто включение различных типов нагрузки объекта происходит не одновременно, а с разнесением времени пуска каждого случайным образом в диапазоне от 5 до 17 сек с момента подачи электроэнергии на объект. Это предотвращает возникновение большого суммарного пускового тока и аварийное отключение вводного автоматического выключателя по перегрузке.

Схема контроля напряжения питания разных типов нагрузки 380В. 

 

4. Назначение схемы: Контроль фазного напряжения с функцией дополнительной сигнализации.

При неисправности электропитания двигатель останавливается и выдаётся сигнал неисправности;

При срабатывании дополнительных датчиков выдаётся сигнал неисправности.

Схема контроля фазного напряжения с подключением дополнительных датчиков 380В. 

5. Назначение схемы: Контроль фаз и напряжения (без доп. функций)

Пример управления нереверсивным приводом реле защиты электродвигателя от перенапряжения

При неисправности электропитания двигатель останавливается и выдаётся сигнал неисправности.

Схема контроля фаз или напряжения 380В. 

6. Назначение схемы: Схема автоматического включения резерва (АВР) с равным приоритетом вводов.

Ввод, включённый первым, становится рабочим, к нему подключаются электропотребители.

Ввод, включённый вторым, становится резервным.

При отказе электропитания на рабочем вводе электро потребители автоматически переключаются на питание от резервного ввода.

 

7. Назначение схемы: Контроль напряжения сети с функцией реле времени.

Включение освещения происходит последовательно отдельными каскадами с разбежкой по времени на 5 секунд. Это снижает пусковые нагрузки на электросеть, а также обеспечивает комфортный темп нарастания освещенности на объекте при включении и спадания при отключении.

Схема управления освещением с каскадным включением:

 

8. Назначение схемы: Контроль напряжения питания и привода на обрыв с применением устройств плавного пуска или частотного преобразователя.

Для корректной работы реле контроля фаз и линии питания на обрыв РНЛ-1 с устройствами плавного пуска и частотными преобразователями рекомендуем использовать следующую схему подключения:

tdspribor.ru

Прибор контроля фаз |

WP_Post Object ( [ID] => 2743 [post_author] => 1 [post_date] => 2015-03-13 06:26:11 [post_date_gmt] => 2015-03-13 02:26:11 [post_content] => [post_title] => Прибор контроля фаз [post_excerpt] => [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => pribor-kontrolya-faz [to_ping] => [pinged] => [post_modified] => 2017-01-18 13:41:19 [post_modified_gmt] => 2017-01-18 09:41:19 [post_content_filtered] => [post_parent] => 0 [guid] => http://plazma-t.dv/?post_type=device&p=2743 [menu_order] => 0 [post_type] => device [post_mime_type] => [comment_count] => 0 [filter] => raw ) Array ( [_edit_lock] => Array ( [0] => 1484732341:7 ) [_edit_last] => Array ( [0] => 7 ) [short] => Array ( [0] => ПКФ ) [description] => Array ( [0] => ПКФ предназначен для контроля исправности фаз двух вводов электропитания (2х380В), выдачи сигнала неисправности электровводов и управления схемой автоматического включения резерва (АВР) ПКФ специально разработан для применения в шкафах аппаратуры коммутации ШАК и обеспечивает реализацию АВР и контроль исправности электропитания ШАК ) [advdesc] => Array ( [0] =>
  • ПКФ обеспечивает контроль исправности сразу двух вводов электропитания 380В и применяется в шкафах аппаратуры коммутации (ШАК) для реализации АВР и сигнализации исправности электропитания ШАК.
  • Контроль электровводов электропитания производится как по амплитуде так и по частоте питающего напряжения
  • ПКФ обеспечивает световую сигнализацию исправности электровводов питания и имеет сигнальный выход типа «сухой контакт»
  • Мощность силового реле ПКФ обеспечивает подключение нагрузок до 8А
  • Регулируемая задержка переключения силового реле позволяет не производить переключения АВР при кратковременных провалах напряжения питания при пуске мощных электродвигателей
  • Электропитание ПКФ обеспечивается от измеряемого ввода электропитания и не требует отдельного источника питания
  • Гарантийный срок составляет 24 месяца с момента ввода в эксплуатацию
) [tth] => Array ( [0] => ) [_pods_razdel] => Array ( [0] => 6 ) [_pods_devicedocs] => Array ( [0] => a:10:{i:0;i:2640;i:1;i:2746;i:2;i:2747;i:3;i:3245;i:4;i:3307;i:5;i:3308;i:6;i:3697;i:7;i:6203;i:8;i:7527;i:10;i:8922;} ) [numorder] => Array ( [0] => 0 ) [tth_tabl] => Array ( [0] =>

Технические характеристики

Контролируемые ввода электропитания основной 380/220 В, 50 Гц и резервный 380/220 В, 50 Гц
    Неисправностью электроввода является снижение напряжения любой из фаз (0,80±0,05) Uф.ном; (176±9В)
перенапряжение по любой фазе (1,15±0,05) Uф.ном.; (253±12,5В)
обрыв одной, двух или трех фаз
обратный порядок чередования фаз
Сигнализация световая
Сигнальный контакт =100В/0,5А НРК «сухой контакт»
Силовой выход 250В/10А перекидной контакт
  Задержка переключения силового выхода регулируемое 0,3-10 сек, обратное переключение происходит без задержки
Электропитание 220В (≤ 4,0ВА)
Средний срок службы не менее 10 лет
Диапазон рабочих температур от -10°C до +55°C
Допустимая относит. влажность до 93% при 40°C
Степень защиты оболочки IP20
Климатическое исполнение УХЛ 3.1.
Масса не более 0,25 кг
Габариты, мм (ШхВхГ) 70х86х59
Установка на DIN рейку
) [_pods_images] => Array ( [0] => a:1:{i:0;i:5678;} ) [razdel] => Array ( [0] => 6 ) [hide_tech] => Array ( [0] => 0 ) [hide_down] => Array ( [0] => 0 ) [razdel_adr] => Array ( [0] => ) [images] => Array ( [0] => 5678 ) [devicedocs] => Array ( [0] => 2640 [1] => 2746 [2] => 2747 [3] => 3245 [4] => 3307 [5] => 3308 [6] => 3697 [7] => 6203 [8] => 7527 [9] => 8922 ) )


смотреть все изображения

ОПИСАНИЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СКАЧАТЬ ПКФ
Прибор контроля фаз

ПКФ предназначен для контроля исправности фаз двух вводов электропитания (2х380В), выдачи сигнала неисправности электровводов и управления схемой автоматического включения резерва (АВР)
ПКФ специально разработан для применения в шкафах аппаратуры коммутации ШАК и обеспечивает реализацию АВР и контроль исправности электропитания ШАК

Подробнее

  • ПКФ обеспечивает контроль исправности сразу двух вводов электропитания 380В и применяется в шкафах аппаратуры коммутации (ШАК) для реализации АВР и сигнализации исправности электропитания ШАК.
  • Контроль электровводов электропитания производится как по амплитуде так и по частоте питающего напряжения
  • ПКФ обеспечивает световую сигнализацию исправности электровводов питания и имеет сигнальный выход типа «сухой контакт»
  • Мощность силового реле ПКФ обеспечивает подключение нагрузок до 8А
  • Регулируемая задержка переключения силового реле позволяет не производить переключения АВР при кратковременных провалах напряжения питания при пуске мощных электродвигателей
  • Электропитание ПКФ обеспечивается от измеряемого ввода электропитания и не требует отдельного источника питания
  • Гарантийный срок составляет 24 месяца с момента ввода в эксплуатацию

Технические характеристики

Контролируемые ввода электропитания основной 380/220 В, 50 Гц и резервный 380/220 В, 50 Гц
 

 

Неисправностью электроввода является

снижение напряжения любой из фаз

(0,80±0,05) Uф.ном; (176±9В)

перенапряжение по любой фазе

(1,15±0,05) Uф.ном.; (253±12,5В)

обрыв одной, двух или трех фаз
обратный порядок чередования фаз
Сигнализация световая
Сигнальный контакт =100В/0,5А НРК «сухой контакт»
Силовой выход 250В/10А перекидной контакт
 

Задержка переключения силового выхода

регулируемое 0,3-10 сек, обратное переключение происходит без задержки
Электропитание 220В (≤ 4,0ВА)
Средний срок службы не менее 10 лет
Диапазон рабочих температур от -10°C до +55°C
Допустимая относит. влажность до 93% при 40°C
Степень защиты оболочки IP20
Климатическое исполнение УХЛ 3.1.
Масса не более 0,25 кг
Габариты, мм (ШхВхГ) 70х86х59
Установка на DIN рейку

plazma-t.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о