+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как правильно заряжать аккумулятор 18650 литий-ионного типа: подробно о главном.

От того, сколько, в каких условиях и какой зарядкой заряжать аккумулятор 18650 литий-ионного типа, напрямую зависит его эксплуатационный ресурс. На срок службы элементов питания негативно влияет глубокий разряд, перезаряд, эксплуатация при низких температурах, хранение в разряженном состоянии и использование неподходящего по параметрам зарядного устройства. Правила подзарядки Li-ion аккумуляторов, прежде всего, зависят от наличия или отсутствия защитной микросхемы (драйвера).

Как правильно заряжать аккумулятор 18650 без защитной микросхемы?

При отсутствии защитной микросхемы Li-ion аккумуляторы важно беречь от перезаряда и сильного разряда – не допускать, чтобы напряжение становилось ниже 2,9 В. Заряжать такие источники питания нужно специальными зарядными устройствами, способными информировать пользователей о полной подзарядке аккумулятора.

После такого информирования элемент питания нужно извлечь из зарядного устройства, иначе возникнет перезаряд.

При необходимости, извлечь элемент питания можно и раньше, до момента полного заряда. Заряжать незащищенные аккумуляторы зарядным устройством, не сообщающим о полном заряде элемента питания, опасно. При перезаряде аккумуляторы без защитной микросхемы перегреваются и могут воспламениться.

Методика зарядки Li-ion аккумулятора 18650 с защитой

Аккумуляторы с защитной микросхемой оснащены платой контроля, оберегающей элемент питания от перезаряда, сильного разряда и короткого замыкания. Подзарядка происходит следующим образом:

  1. Аккумулятор устанавливается в зарядное устройство (ЗУ) с соблюдением полярности – плюс подсоединяется к плюсу, минус к минусу.
  2. ЗУ подключается к сети 220 В или 12 В (для автомобильной модели).
  3. О протекании процесса подзарядки информирует индикатор статуса зарядки. Как правило, красный индикатор говорит о протекании процесса подзарядки, а зеленый – о его завершении.

Многоканальные зарядные устройства позволяют одновременно подзаряжать 1 или несколько аккумуляторов различной емкости. Сколько времени нужно заряжать аккумулятор 18650 – зависит от емкости элемента питания и величины зарядного тока. В среднем длительность полной зарядки составляет от 2 до 4 часов. Основная часть емкости восполняется на протяжении первого часа подзарядки, а затем зарядный ток снижается, и напряжение доводится до максимально допустимого значения в 4,2 В.

Правила подзарядки Li-ion аккумуляторов 18650

Перечислим наиболее важные правила, которые помогут сохранить эксплуатационный ресурс литий-ионных аккумуляторов:

  1. Нельзя заряжать Li-ion элементы в не предназначенных для них зарядных устройствах. Подходящие ЗУ являются источниками постоянного напряжения 5 В, отдают ток заряда величиной 0,5–1 емкости аккумулятора, автоматически начинают подзарядку от 0,05 В и прекращают процесс зарядки при 4,2 В.
  2. Аккумулятор, принесенный в помещение с мороза, нужно выдержать несколько часов при комнатной температуре, а затем заряжать.
  3. Перед длительным хранением аккумулятору нужно обеспечить уровень заряда 40–50%.
  4. Напряжение Li-ion аккумулятора должно всегда находиться в пределах от 2,7–3 до 4,2 В. Эти значения отражают минимальный и максимальный уровень заряда – 0% и 100%. Если напряжение даже на короткий срок выйдет за эти пределы, срок службы аккумулятора значительно сократится.

Как зарядить полностью севший Li-ion аккумулятор 18650?

Если литий-ионный аккумулятор 18650 долго находился в разряженном состоянии, напряжение упало ниже допустимой границы, и защитный модуль отключил банку от клемм, зарядное устройство может отказаться заряжать такой элемент питания. Воспринимая низкое напряжение как внештатную ситуацию, оно блокирует процесс зарядки. Поэтому полностью севший Li-ion аккумулятор необходимо «толкнуть» – повысить напряжение на нем до 3,1–3,2 В.

Можно взять зарядное устройство от мобильного телефона, выдающее напряжение 5 В, и резистор 62 Ом (0,5 Вт) для ограничения зарядного тока. Нужно подсоединить их к аккумулятору, прикрепив проводки к клеммам неодимовыми магнитиками. Сильное нагревание резистора свидетельствует о наличии внутри КЗ.

Если подзарядка не началась (резистор не греется), возможно, произошел внутренний обрыв, или неисправна плата защиты. Можно попробовать убрать внешнюю полимерную оболочку и подсоединить созданную зарядку к банке, четко соблюдая полярность. Если заряд пойдет – нужно дождаться, чтобы напряжение поднялось до 3,1–3,2 В и далее воспользоваться штатной зарядкой.

Желающим собрать зарядник своими руками мы предлагаем ознакомиться с нашей предыдущей статьей, где приведена схема зарядного устройства для Li-ion аккумуляторов.

Как выбрать зарядку для 18650 Li-Ion аккумулятора. / Лайв им. narmattaru / iXBT Live

Итак, мои Топ-5 зарядок для 18650 аккумулятора. Какую выбрать зарядку, чем заряжать 18650 аккумулятор для фонарика или вейпа? На алиэкспресс и других магазинах навалом разных моделей. Вот только когда люди приходят ко мне купить  Li-Ion аккуумулятор и/или зарядку для него, то выясняется показывает что прискорбно небольшое число понимает что именно они хотят.

 

Полезное:

Рабочие купоны и промокоды на aliexpress на 2020 смотрим тут

 Узнать как купить хороший 18650 аккумулятор на алиэкспресс можно тут  

Как выбрать светодиодный фонарик  тут и налобный фонарик тут 

как выбрать зарядное устройство для  21700 аккумулятора. 

 

коли речь зайдет о выборе зарядки,  то уместно отметить что этак года с 2016 я покупаю аккумуляторы на nkon.nl, весьма известном и уважаемом магазине с исключительно широким ассортиментом и отличными ценами. Доставка платная, но в каких-то ситуациях можно даже брать тут 3-4 акка — выйдет столько же сколько из Китая, но быстрее и со 100% гарантией оригинальности.  А если брать в большем кол-ве, для то цена вообще будет вне конкуренции

Ожидаемо, какая-то очередная «самая популярная и дешевая зарядка для 18650 на алиэкспресс» для многих — первый же выбор, хотя бы в силу цены. Чтобы удержать вас от покупки такой дряни, коротко (благо тут нет смысла рассусоливать) раскажу что хорошую зарядку для лития можно купить на алиэкспресс под любой, даже самый скромный бюджет и при этом не упасть до откровенного шлака.

 

Разумно дать ссылку на единственный 18650 аккумулятор, который я покупаю на али.  На мой взгляд, по соотношению цены и емкости это самый хороший литий-ионный 18650 аккумулятор с алиэкпресс.

Во всех остальных случаях шанс нарваться не подделку исключительно высок, если только речь идет не о опять-таки всяких аккумов от фонарных производителей.  Последние адски дОроги и являют собой ту же перепаковку других акков. так что брать их смысла ноль.  А нормальные акки я беру на nkon.nl.ru.  Так вот, аккумулятор, про который я веду речь — перепаковка оригинальных панасониковских NCR18650B. Ячейки ушли с отбраковки, но похоже что ее логика сводится к выводу за борт  всего, что ниже 3350mah и продаже этих несортовых банок для дальнейшей реализации на том же али. Собственно, почти все заказанные мной банки были где-то 3250-3350mah, что меня более чем устроило за свою цену.   Я заказывал ОЧЕНЬ много этих акков, нареканий ноль.  Для бытовых целей этих низкотоковых банок вам хватит за глаза.  Вот ссылка.  Повторюсь, для большинства фонариков это будет самый лучший литий-ион аккумулятор с aliexpress.   токоотдача небольшая, но 3-4А это вполне достаточно для большинства фонариков, а плата защиты спасет от переразряда.

  Графики в моих обзорах фонариков показали что самый популярный фонарик на али — convoy, в своих опять-таки самых популярных моделях (s2+, c8, c8+) работает на этом аккуме фактически также как с каким-то более дорогим оригинальным средне или высокотоковым. Поэтому брать какой-то другой аккумулятор в недорогой китайский фонарик смысла я не вижу.  А если вам нужен 18650 аккумулятор для дешевого налобника с али, то тут только этот вариант — риск глубокого разряда и смерти аккумулятора слишком большой. В таких налобниках нет защиты, приходится полагаться на соответствующую уже в самом 18650 аккумуляторе.

 

 

Начну с того почему не стоит брать вот такие вот изделия всемирно известной компании noname. С учетом копеечной разницы между этой поделкой и нормальной зарядкой,  смысла брать что-то наподобие этого вообще не вижу.

  • работа только с литием.никакого никеля.
  • черт  его  знает  какой  алгоритм зарядки.
  •  хорошо если чуть недозарядит, но может гнать до 4.3в, что весьма плохо для химии
  • качество сборки соответствует цене — не факт что не сломается или не бабахнет. 

 

 

 

ну и важный момент — зарядка для 18650 аккумулятора = зарядка для 26650 аккумулятора, все модели ниже имеют подвижную штангу для зарядки почти всех моделей li-ion аккумуляторов

 

Если вы крайне ограничены в бюджете, то я могу порекомендовать вот эту зарядку. За всего-то полтора бакса вы получите компактную штуку с USB питанием и 0.5-0.6А током.  я покупал, заряжает нормально.  Естественно, поддержка только лития. 

 

Xtar (после недавнего ребрендинга они продаются под маркой allmaybe)

Но, лично для меня, явным фаворитом в сегменте недорогих зарядок на один слот является Xtar MC1.   Это предельно компактная (габаритами где-то в указательный палец) зарядка.  В отличие от литокалы она не может похвастаться тем же 1А током зарядки (upd Xtar MC1plus 1A зарядный ток уже есть. ), но зато тут есть фирменная технология подъёма глубокоразряженных акков.  Да и, в целом,  можно быть уверенным что не будет перезаряда и сам процесс зарядки будет корректный. 

 

Периодически процессе написания обзора фонариков я сталкивался с ситуацией разряда акка ниже 2в.  И другие зарядки, те же литокалы разных мастей просто не определяют такие акки.  Разумеется, ушатанный вообще в ноль аккумулятор с деградировавшей химией тут реанимировать не удастся. В комплекте идет чехол, можно с собой таскать куда-то там.

0.5А ток выливается где-то в 6 часов зарядки, +\- в зависимости от емкости и глубины разрядки акка.  Если ставить на ночь (а в массе своей так и происходит), то этого хватит вообще за глаза.   Для зарядки в машине, по пути, этого уже будет маловато и надо смотреть на ту же литокалу.  

Зарядка не поддерживает никели, т.е. нельзя заряжать обычные АА\ААА.

Ценник у обеих версий ниже на али вполне подъёмный, порядка 4-7 баксов в обычной и plus версиях. Я детально тут их не привожу потому что они туда-сюда гуляют. 

Xtar MC1 aliexpress

 

Есть еще вторая версия. Фактически это тот же MC1, но на два акка. 

xtar mc2 aliexpress 

Для тех кому надо заряжать аккумулятор быстро, Xtar сделали специфическую модель. Это компактная быстрая зарядка с 2А током.  Это избыточно для чего-то типа 2600mah, но вполне приемлемо для 3000-3400, и идеально для емких аккумуляторов типа 21700\2665.  Xtar SC1Ценник реально крохотный и я всячески рекомендую эту модель. Сам заказал уже с десяток. 

 

Из остальных версий отмечу только VC2,  которая при том же корректном алгоритме зарядки имеет преимущество в хорошем и наглядном индикаторе.  Остальные модели, пусть и интересны, но проигрывают литокале по цене\функционалу, поэтому менее предпочтительны и я тут про них рассказывать не буду.  

ценник крутится в районе 14 баксов.  и тут как в других моделях надо отталкиваться от наличия пойнтов и купонов. 

xtar vc2 ali 13.78$

 
Liitokala

долгое время крайне популярной среди осведомленных людей зарядкой на 1 слот был миллер, чей убогий конструктив компенсировался хорошими потрохами и грамотным процессом зарядки.  Так продолжалось до момента выпуска 101й литокалы.  Пусть и простейшая, но индикация процесса зарядки и напряжения акк, всядность химии и типоразмеров, возможность работы в режиме павербанка и 0.5\1А ток на выбор — эта модель моментально стала хитом продажи как самая дешевая и при этой хорошая зарядка для литиевых аккумуляторов.

 после этого постепенно стали выходить модели на большее количество акков, 202 — на два, 402, на 4 и вот недавно вышла модель на 3 акка.  от 101 они отличаются только количеством разъёмов. 

Разумеется, надо понимать что если ваш блок питания выдает 2А, то заряжать 4 акка можно будет не выше 0. 5А на каждый.

Если выход 101й убрал с рынка миллер, то 202\402 полностью уронили продажи найткоровских зарядок.  Я помню как в 15\16 году неплохо ими торговал. Кончилось все тем что остатки я просто сдал в вейп-шоп по закупу, за свои деньги никому этот найткор не впился.  Кроме цены есть и функциональный минус — например кипячение никеля 1А током. 

 

Liitokala 101 ценник в разных магазах гуляет туда-сюда в пределах полубакса, составляя где-то 6$

 По ссылке общий лот на модели с под разное число аккумуляторов. 

Отдельно расскажу про популярную 4хслотовую зарядку. Liitokala Lii-500  это фактически все-в-одном комбайн.

 Зарядка, тест емкости (при его принудительном раз за разом запуске можно фактически запустить тот же refresh что и в Opus), полная индикация (включая сопротивление). Ток зарядки от 0.3 до 1А на канал, куча разных химий и типоразмеров. 

За свою небольшую цену эта зарядка является отличным выбором для тех, кто хочет чего-то большего чем просто зарядка акков или если у вас их много и надо оценивать их состояние, быстро заряжать.

Liitokala Lii-500 aliexpress BANGGOOD

 

Opus

Финальным штрихом (я не буду говорить про модельные зарядки типа Imax, так как коли в в этом деле — вы и так про них знаете) пойдет Opus BT — C3100 V2.2 

Это крайне популярная зарядка среди тех, кому постоянно приходится иметь дело с аккумуляторами. Я сам пользовался такой где-то год, но перешёл все-таки на 500ку. При почти двухкратной разнице в цене я не увидел для себя явного преимущества в функционале.   2А ток зарядки мне не важен, а функция refresh может работать и в 500й литокале, занимая где-то 3-4 ручных запуска norm test, т.е. зарядка-разрядка-зарядка. 

Ну, да, еще одним явным функциональным плюсом является наличие вентилятора, что крайне разумно когда сразу 4 акка заряжаются или разряжаются высоким током

Opus BT — C3100 V2.2 aliexpress    Opus BT — C3100 V2.2  BANGGOOD

 

в принципе, на этом можно и остановится.  Есть еще несколько других специфических моделей, но уверен что для исключительного большинства из читателей хватит какой-то из вышеперечисленных. Я пользовался ими всеми, продавал десятками и за все время только один раз у одной штуки 202 литокалы не срабатывала остановка зарядки, он гнал акк до упора.  Но это один из нескольких дюжин. 

 

Зарядки для 21700 аккумуляторов. 
Отдельно стоит упомянуть популярные когда-то зарядки Nitecore. 
Единственное, чем они сейчас меня привлекают, так это тем что даже в самые простые модели отлично влезают 21700 аккумуляторы.  А так как купить 21700 фонарик на алиэкспрес сейчас стало совсем просто, то факт того что литокаловские зарядки вмещают из со скрипом реально печалит.  А какие-то модные брендовые 21700 аккумуляторы вообще не влезут. 
 Так что в такой ситуации и оправданно покупать зарядки Nightcore, только для 21700 аккумуляторов.  Рекомендую той, которой пользуюсь сам — nitecore UI2 (см мой обзор зарядки Найткор). Еще дешевле —  UI1.

Если финансы позволяют, то можно взять что-то кардинально лучше, благо Найткор исправили тут почти все косяки прошлых моделей (типа прожарка  ААА никелевых акков током в 1А)

Итак, Nitecore UM4  (обзор). Кстати, вот сейчас, добавляя эту зарядку в подборку, обратил внимание что ценник упал до уровня Liitokala Lii-500, очень даже неплохо!

 

 Разумеется, где аккумуляторы — там и фонари.  Посмотрите блок «об авторе» ниже, там есть мои подборки хороших фонарей на любой вкус.

«

Надеюсь текст был интересен! Приглашаю подписаться на мой канал и группу в VK(ссылка ниже в блоке «об авторе») 

Там я до публикации обзоров я выкладывают анонсом какие-то материалы из них, публикую промокоды и купоны на какие-то интересные фонарики + рассказываю о выходе новых моделей.

Зарядное li. Простой зарядник для литиевых аккумуляторов. Усовершенствование зарядного устройства для литиевых li — ion аккумуляторов

Литиевые аккумуляторы представляют гальваническую пару, в которой катодом служат соли лития. Независимо, литий-ионный, литий-полимерный сухой или гибридный аккумулятор, зарядное устройство подходит всем. Изделия могут иметь форму цилиндра, или герметичную мягкую упаковку, способ зарядки для них общий, отвечающий особенностям электрохимической реакции. Как зарядить Li-ion АКБ?

Существует несколько схем зарядки литиевых аккумуляторов. Чаще используется двухэтапная зарядка, разработанная компанией SONY. Не применяются устройства с применением импульсного заряда и ступенчатой зарядки, как для кислотных АКБ.

Зарядка любых разновидностей ионно-литиевых или литий-полимерных аккумуляторов требует строгое соблюдение напряжения. На одном элементе заряженного литиевого аккумулятора должно быть не больше 4,2 В. Номинальным напряжением для них считается 3,7 В.

Литиевые аккумуляторы можно ли заряжать быстро, не полностью? Да. Их всегда можно дозарядить. Работа батареи на 40-80 % емкости удлинняет АКБ срок годности.

Двухступенчатая схема зарядки батареи литиевых аккумуляторов

Принцип схемы CC/CV – постоянная сила зарядного тока/ постоянное напряжение. Как зарядить по этой схеме литиевый аккумулятор?

На схеме до 1 этапа зарядки изображен предэтап, для восстановления глубоко севшего литиевого аккумулятора, с напряжением на клеммах не менее 2,0 В. Первый этап должен восстановить 70-80 % емкости. Ток зарядки выбирают 0,2-0,5 С. Ускоренно заряжать можно, током 0,5-1,0 С. (С – емкость литиевых аккумуляторов, цифровое значение). Каким должно быть напряжение зарядки на первом этапе? Стабильным, 5 В. Когда достигнуто напряжение на клеммах аккумулятора 4,2 – это сигнал перехода на второй этап.

Теперь ЗУ поддерживает стабильное напряжение на клеммах, а зарядный ток по мере поднятия емкости снижается. При уменьшении его значения до 0,05-0,01 С зарядка закончится, устройство отключится, не допуская перезарядки. Общее время восстановления емкости для литиевого аккумулятора не превышает 3 часов.

Если литий-ионная батарея разряжена глубже 3,0 В, потребуется провести «толчок». Это заключается в зарядке малым током до тех пор, пока на клеммах не будет 3,1 В. Потом используется обычная схема.

Как контролируют параметры зарядки

Так как литиевые аккумуляторы работают в узком диапазоне изменения напряжения на клеммах, их нельзя перезаряжать выше 4,2 В и допускать разрядку ниже 3 В.

Контроллер заряда установлен в ЗУ. Но каждый аккумулятор или батарея имеют собственные прерыватели, РСВ плату или РСМ модули защиты. В аккумуляторах установлена именно защита от того или иного фактора. В случае нарушения параметра, она должна отключить банку, разорвать цепь.

Контроллер – устройство, которое должно реализовать функции управления – переводить режимы CC/CV, контролировать количество энергии в банках, отключать зарядку. При этом сборка работает, нагревается.

Самодельные схемы зарядки, применяемые для литиевых аккумуляторов

  • LM317 – схема простого зарядного устройства с индикатором заряда. От USB порта не запитывается.
  • MAX1555, MAX1551- специально для Li Аккумуляторов, устанавливаются в адаптер питания от телефона в USB. Есть функция предварительного заряда.
  • LP2951- стабилизатор ограничивает ток, формирует стабильное напряжение 4,08-4,26В.
  • MCP73831- одна из простейших схем, подходит для зарядки ионных и полимерных устройств.

Если батарея состоит из нескольких банок, разряжаются они не всегда равномерно. При зарядке необходим балансир, распределяющий заряд и обеспечивающий равномерный заряд всех банок в батарее. Балансир может быть отдельным или встроенным в схему подключения АКБ. Устройство защиты батареи называется BMS. Зная как заряжать приборы, разбираясь в схемах, можно своими руками собрать схему защитного устройства для литиевого аккумулятора.

Как зарядить литиевый аккумулятор 12 вольт

Каждый литиевый аккумулятор представляет герметичное изделие цилиндрической, призматической формы, для Li-pol в мягкой упаковке. Все они имеют напряжение 3,6- 4,2 В и разную емкость, измеряемую в мА/ч. Если собрать последовательно 3 банки получится батарея с напряжением на клеммах 10,8 — 12,6 В. Емкость при последовательной зарядке, измеряется по самому слабому литиевому аккумулятору в связке.

Как правильно заряжать литиевый аккумулятор 18650 или Pol на 12 вольт, нужно знать. Для возвращения прибору емкости необходимо использовать ЗУ с контроллером. Важно иметь в сборке РСМ для каждой банки, защиту от недо- и перезаряда. Другая схема незащищенных литиево-ионных аккумуляторов – установка РСВ – управляющей платы, лучше с балансирами, для равномерной зарядки банок.

На зарядном устройстве необходимо задать напряжение, под которым работает батарея, 12,6 В. На приборной доске устанавливается количество банок и ток зарядки, равный 0,2- 0,5 С.

Как заряжать, предлагаем посмотреть видео, способ зарядки для 2, 3 литиевых аккумуляторов 18650, соединенных последовательно. Используется бюджетное зарядное устройство.

Варианты зарядки литий-ионных литиево-полимерных аккумуляторов:

  • Зарядное устройство приобретаемое в комплекте с прибором.
  • Использовать разъем USB от электронной техники – компьютера. Здесь можно получить ток 0,5 А, зарядка будет долгой.
  • От прикуривателя, купив переходник с набором портов. Выбрать тот, что соответствует параметрам батареи на 12 В.
  • Универсальное зарядное устройство «лягушка» с доком для установки гаджета. Как заряжать? Есть панель индикации заряда.

Специалисты советуют использовать для зарядки литиевых аккумуляторов штатное зарядное, остальные – только в форс-мажорных обстоятельствах. Однако, как зарядить литиевый аккумулятор без штатного зарядного устройства, нужно знать.

Как заряжать литиевые аккумуляторы шуруповерта

Шуруповерт на литиевых аккумуляторах почти всегда апгрейд. Если с Ni-Cd элементами были одни требования к зарядке, теперь они стали противоположными. В первую очередь нужно приобрести или собрать зарядник, именно для энергоемких литиевых аккумуляторов шуруповерта с форм фактором 18650. Схема зарядки применяется из двух этапов CC/CV.

Зарядка литиевого аккумулятора шуруповерта оптимальна, когда остается 20-50 % емкости – одна палочка на индикаторе. Чем чаще заряжать, тем стабильнее напряжение на клеммах и длиннее жизнь источника энергии. Чем ровнее напряжение на клеммах, тем больше циклов выдержит литиевый аккумулятор шуруповерта.

Если в шуруповерте 2 аккумулятора, один снимите, зарядите на 50-60 % и держите в резерве. Но второй заряжайте всегда по окончании работы, даже на 10 %. Лучшая температура для заряда +15-25 0 С. При минусе батарея шуруповерта не зарядится, но работать до -10 0 может.

Как заряжать литиевый аккумулятор шуруповерта зарядным устройством, зависит от схемы сбора батареи из банок. В любом случае, напряжение на ЗУ должно быть равно заявленному для прибора, а сила тока 0,5 С на первом этапе. На втором, напряжение клеммное стабильно, а сила тока падает, вплоть до окончания процесса.

Сколько заряжать литиевый аккумулятор

Время зарядки аккумуляторов определяется процессом восстановления емкости. Различают полный и частичный заряд.

Емкость измеряется в ампер-часах. Это значит, если подать заряд, численно равный емкости, то за час на клеммах создастся нужное напряжение, а запас энергии будет 70-80 %. Если емкость измеряется в единицах С, при быстрой зарядке следует подавать ток 1С-2С. Время быстрой зарядки около часа.

Для полного цикла зарядки батарей из нескольких элементов, соединенных последовательно, используют 2 этапа – CC/CV. Этап СС длится, пока на клеммах не появится напряжение, равное рабочему, в вольтах. Второй этап: при стабильном напряжении подается в банку ток, но с увеличением емкости, он стремится к нулю. Время заряда занимает около 3 часов, независимо от емкости.

Можно ли заряжать литиевый аккумулятор обычной зарядкой

Две разных системы аккумуляторов – литиевые и свинцовые требуют разного подхода к восстановлению емкости. Свинцовый АКБ не настолько требовательны к параметрам зарядки, как литиевые. Да и критерии заряда другие.

Для зарядки на первом этапе Li-ion, Li-pol требуется постоянный ток, на втором этапе постоянное напряжение. Если не контролировать параметры на первом этапе, возможен перезаряд. Но если в батарее есть встроенная защита – BMS – она справится. Поэтому несколько добавить энергии можно даже зарядником от телефона.

В зарядном устройстве для свинцовых АКБ главный показатель – стабильное напряжение. Для литиевых зарядников на первом этапе важен стабильный ток.

Правда, появились универсальные ЗУ, которые можно перенастроить на тот или иной режим зарядки. Перед вами российская разработка «Кулон».

Собираем простое зарядное для Литий-ионных аккумуляторов, практически из хлама.


Накопилось у меня большое количество аккумуляторов от ноутбучных аккумуляторов, формата 18650. Обдумывая как их заряжать, я решил не заморачиваться с китайскими модулями, да и закончились они у меня к тому времени. Решил собрать воедино две схемы. Датчик тока и плата BMS с аккумулятора мобильного телефона. Проверено на практике. Хоть и схема примитивная, но она работает и успешно, ни одного аккумулятора не пострадало.

Схема зарядного устройства

Материалы и инструменты

  • шнур USB;
  • крокодильчики;
  • плата защиты BMS;
  • пластиковое яйцо от киндера;
  • два светодиода разного цвета;
  • транзистор кт361;
  • резисторы на 470 и 22 ома;
  • двухватный резистор 2. 2 ома;
  • один диод IN4148;
  • инструменты.

Изготовление зарядного устройства

Шнур USB разбираем и снимаем разъем. У меня это от какого-то аипада.


К крокодилам припаиваем провода.


Глубокую часть пластикового киндера утяжеляем, я залил гайку М6 термоклеем.


Спаиваем нашу простую схемку. Все сделано навесным монтажом и распаяно на плате BMS. Светодиод я применил сдвоенный, но можно два одноцветных. Транзистор выпаял из старой советской радио-аппаратуры.


Провода продеваем в отверстие второй, мелкой, половинке пластикового киндера. Припаиваем схему.


Все компактно запихиваем в пластиковое яйцо. Для светодиода делаем отверстие.


Подключаем к USB порту пк или китайской зарядке, у них тока все равно мало.
Во время зарядки горит оранжевым цвет. Т.е. горят оба светодиода.

Когда заряд окончен, горит зеленый, тот который подключен через диод IN4148.
Можно проверить схему, отключив от аккумулятора, загорится светодиод зеленого цвета, свидетельствующий об окончании заряда.

Цель этой статьи — научиться использовать обычные лабораторные блоки питания для зарядки литий-ионных аккумуляторных батарей, когда нет специального зарядного устройства. Такие АКБ очень распространены, вот только купить ЗУ для его грамотной зарядки может (или хочет) не каждый, часто заряжая их обычными регулируемыми БП. Давайте рассмотрим как это нужно делать.

Возьмём для примера литий-ионный аккумулятор от Panasonic ncr18650b на 3.6 V 3400 mah. Сразу предупредим, что зарядка этого типа аккумуляторов является довольно опасной, если сделать это неправильно. Некоторые образцы издевательства выдерживают, а некоторые китайские «сверхэкономные» не обладают защитами и могут взорваться.

АКБ с протекцией

Защищенный аккумулятор должен иметь следующие элементы защиты:

  • PTC , защита от перегрева и, косвенно, по току.
  • CID , клапан давления, отключит ячейку, если давление высокое внутри, что может возникнуть из-за слишком мощной зарядки.
  • PCB , плата защиты от чрезмерной разрядки, сброс выполняется автоматически или при помещении в зарядное устройство.

На приведенном выше рисунке показано, как устроена защита банки. Эта конструкция используется для любого типа современных защищённых литий-ионных батарей. PTC и клапан давления не будет видно, так как он является частью оригинальной батареи, но все остальные части защиты можно разглядеть. Ниже показаны варианты исполнения электронных защитных модулей, которые встречаются в стандартных круглых Li-Ion АКБ наиболее часто.

Зарядка лития

Вы можете найти типовую схему и принцип зарядки на ncr18650b батареи в даташите. Согласно документации, ток зарядки 1600 мA и напряжение 4.2 вольт.

Сам процесс состоит из двух этапов, первый — это постоянный ток, где необходимо задать значение в 1600 мA постоянного тока, а когда напряжение батареи достигает 4.20 V, начнется вторая стадия — постоянное напряжение. На этой стадии ток будет немного падать, и от ЗУ будет поступать около 10% от зарядного тока — это около 170 мА. Данное руководство относится ко всем литий-ионным и литий-полимерным аккумуляторам не только 18650 типа.

Вручную трудно выставлять и поддерживать на обычном блоке питания указанные выше режимы, поэтому лучше всё-таки использовать специальные микросхемы, предназначенные для автоматизации процесса заряда (схемы смотрите в этом разделе). Как крайний случай, можно заряжать стабильным током в 30-40% полной (паспортной) ёмкости АКБ, пропустив второй этап, но это несколько уменьшит ресурс элемента.

Схемы зарядных устройств

elwo.ru

Схемы индикаторов разряда li-ion аккумуляторов для определения уровня заряда литиевой батареи (например, 18650)

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать контроллеры разряда.

Вариант №1

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный — чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом — переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:
Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше — тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко — между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации — 3 мА, при выключенном светодиоде — 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 — разрешено, 0 — запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector’ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E/TT, CAT809TTBI-G;
  • на 2. 93V: MCP102T-300E/TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
  • серия MN1380 (или 1381, 1382 — они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы — MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог — КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую «моргалку» на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза — коротка вспышка — опять пауза). Это позволяет снизить потребляемый ток до смешных значений — в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом — всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы — инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 — 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914:

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4. 2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на «землю», можно перевести ее в режим «точка». В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения , т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339.

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке.

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Внимание!!! Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2.5В и ниже). Поэтому из всех имеющихся у вас плат необходимо отобрать только те экземпляры, которые срабатывают при правильном напряжении (3.0-3.2V).

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 — это два миллиомных полевика, собранных в одном корпусе.

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Пожалуйста, учитывайте тот факт, что схемы индикаторов разряда сами потребляют энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, предотвращающие глубокий разряд.

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот — в качестве индикатора заряда.

electro-shema.ru

Li-ion и Li-polymer аккумуляторы в наших конструкциях


Прогресс идет вперед, и на смену традиционно используемым NiCd (никель-кадмиевым) и NiMh (никель-металлогидридным) всё чаще приходят литиевые аккумуляторы.
При сравнимом весе одного элемента, литий имеет большую ёмкость, кроме того, напряжение элемента у них в три раза выше — 3,6 V на элемент, вместо 1,2 V.
Стоимость литиевых аккумуляторов стала приближаться к обычным щелочным батареям, вес и размер намного меньше, да к тому же их можно и нужно заряжать. Производитель говорит, 300-600 циклов выдерживают.
Размеры есть разные и подобрать нужный не составляет труда.
Саморазряд настолько низкий, что лежат годами и остаются заряженными, т.е. устройство остается рабочим когда оно нужно.

Основные характеристики литиевых аккумуляторов

Есть два основных типа литиевых аккумуляторов: Li-ion и Li-polymer.
Li-ion — литий-ионная батарея, Li-polymer — литий-полимерная батарея.
Отличие их в технологии изготовления. Li-ion имеют жидкий или гелевый электролит, а Li-polymer — твердый.
Это отличие повлияло на диапазон рабочих температур, немного на напряжение и на форму корпуса, которую можно придать готовому изделию. Ещё — на внутреннее сопротивление, но тут много зависит от качества изготовления.
Li-ion: -20 … +60°C; 3,6 V
LI-polymer: 0 .. +50°С; 3,7 V
Для начала надо разобраться, что это за вольты такие.
Производитель пишет нам 3,6 V, но это среднее напряжение. Обычно в даташитах пишут диапазон рабочих напряжений 2,5 V … 4,2 V.
Когда я первый раз столкнулся с литиевыми аккумуляторами, то долго изучал даташиты.
Ниже представлены их графики разряда при разных условиях.

Рис. 1. При температуре +20°C


Рис. 2. При разных температурах эксплуатации

Из графиков становится понятно, что рабочее напряжение при разряде 0,2С и температуре +20°C составляет 3,7 V … 4,2 V. Безусловно, батареи можно соединить последовательно и получить нужное нам напряжение.
На мой взгляд очень удобный диапазон напряжений, который подходит под многие конструкции, где используется 4,5V — они прекрасно работают. Да и соединив их 2 шт. получим 8,4 V, а это почти 9 V. Я их ставлю во все конструкции, где идёт батарейное питание и уже забыл, когда последний раз покупал батарейки.

Есть у литиевых аккумуляторов нюанс: их нельзя заряжать выше 4,2 V и разряжать ниже 2,5 V. Если разрядить ниже 2,5 V, восстановить не всегда удается, а выкидывать жалко. Значит, нужна защита от сверхразряда. Во многих батареях она уже встроена в виде мелкой платы, и её просто не видно в корпусе.

Схема защиты аккумулятора от сверхразряда

Бывает, попадаются аккумуляторы без защиты, тогда приходится собирать самому. Сложности это не представляет. Во-первых есть ассортимент специализированных микросхем. Во-вторых, кажется есть собранные модули у китайцев.

А в-третьих, мы рассмотрим, что можно собрать по теме из подножных материалов. Ведь не у всех есть в наличии современные чипы или привычка отовариваться на АлиЭкспресс.
Я пользуюсь вот такой суперпростой схемой многие годы и ни разу аккумулятор не вышел из строя!


Рис. 3.
Конденсатор можно не ставить, если нагрузка не импульсная и стабильно потребляющая. Диоды любые маломощные, их количество надо подобрать по напряжению отключения транзистора.
Транзисторы я применяю разные, в зависимости от наличия и тока потребления устройства, главное чтоб напряжение отсечки было ниже 2,5 V, т. е. чтоб он открылся от напряжения аккумулятора.

Настраивать схему лучше на монтажке. Берём транзистор и подавая на затвор напряжение через резистор сопротивлением 100 Ом … 10 К, проверяем напряжение отсечки. Если оно не более 2,5 V, то экземпляр годен, далее подбираем диоды (количество и иногда тип), чтобы транзистор начинал закрываться при напряжении примерно 3 V.
Теперь подаем напряжение от БП и проверяем чтобы схема срабатывала при напряжении примерно 2,8 — 3 V.
Иными словами, если напряжение на аккумуляторе опустится ниже порогового, которые мы установили, то транзистор закроется и отключит нагрузку от питания, предотвратив тем самым вредный глубокий разряд.

Особенности процесса зарядки литиевого аккумулятора

Что ж, наш аккумулятор разрядился, теперь пора его безопасно зарядить.
Как и с разрядкой, с зарядкой тоже не всё так просто. Максимальное напряжение на банке должно быть не более 4,2 V ±0.05 V! При превышении этого значения литий переходит в металлическое состояние и может произойти перегрев, возгорание и даже взрыв аккумулятора.

Заряд аккумуляторов осуществляется по достаточно простому алгоритму: заряд от источника постоянного напряжения 4.20 Вольт на элемент, с ограничением тока в 1С.
Заряд считается завершенным, когда ток упадет до 0.1-0.2С. После перехода в режим стабилизации напряжения при токе в 1С, аккумулятор набирает примерно 70-80% емкости. Для полной зарядки необходимо время около 2-х часов.
К зарядному устройству предъявляются достаточно жесткие требования по точности поддержания напряжения в конце заряда, не хуже ±0.01 Вольт на банку.

Обычно схема ЗУ имеет обратную связь — автоматически подбирается такое напряжение, чтобы ток, проходящий через аккумулятор, был равен необходимому. Как только это напряжение становится равно 4.2 Вольтам (для описываемого аккумулятора), больше поддерживать ток в 1С нельзя — далее напряжение на аккумуляторе возрастёт слишком быстро и сильно.

В этот момент аккумулятор заряжен обычно на 60%-80%, и для зарядки остальных 40%-20% без взрывов ток требуется снизить. Проще всего это сделать, поддерживая постоянное напряжение на аккумуляторе, и он сам возьмет такой ток, который ему необходим.
При снижении этого тока до 30-10 мА аккумулятор считается заряженным.

Для иллюстрации всего вышеописанного привожу график заряда, снятый с подопытного аккумулятора:


Рис. 4.
В левой части графика, подсвеченной синим, мы видим постоянный ток 0.7 А, в то время как напряжение постепенно поднимается с 3.8 В до 4.2 В.
Также видно, что за первую половину заряда аккумулятор достигает 70% своей емкости, в то время как за оставшееся время — всего 30%.

«С» значит Capacity

Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).
Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 Ч емкость аккумулятора)/h или (0.1 Ч емкость аккумулятора)/h соответственно.

Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 Ч 720mAh/h = 360 мА, это относится и к разряду.

Зарядные устройства для литиевых аккумуляторов

У китайцев можно заказать по почте с бесплатной доставкой модули зарядных устройств. Модули контроллера зарядки TP4056 с гнездом мини-USB и защитой можно взять очень недорого.

А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.

Схема простого зарядного устройства на LM317


Рис. 5.
Схема с применением LM317 обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.

LM317 надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.

Схема простого зарядного устройства на LTC4054


Рис. 6.
Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).

Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»

Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120°).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.

Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле

I=1000/R,
где I — ток заряда в Амперах, R — сопротивление резистора в Омах.

Индикатор разрядки литиевого аккумулятора

Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.

Рис. 8.
Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.

Нюанс долговечности

Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более.

Эксплуатация и меры предосторожности

Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.
1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.

Невыполнение первых трех пунктов приводит к пожару, остальных — к полной или частичной потере ёмкости.

Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и ак

datagor.ru

Плата защиты Li-ion вместо зарядного устройства?

На форумах частенько советуют использовать плату защиты от какого-либо литиевого аккумулятора (или, как ее еще называют, PCB-модуль) в качестве ограничителя заряда. То есть сделать зарядное устройство для литий-ионного аккумулятора из платы защиты.

Логика такова: по мере заряда напряжение на Li-ion аккумуляторе возрастает и как только оно достигнет определенного уровня, плата защиты сработает и прекратит зарядку.

Этот принцип, например, применен в схеме зарядки для фонарика, которая то и дело всплывает в интернетах:

На первый взгляд данное решение выглядит вполне логично, не так ли? Но если копнуть немного глубже, то оказывается минусов гораздо больше, чем плюсов.

Мы не будем заострять внимание на том, что в качестве источника зачем-то выбран 8-вольтовый блок питания. Уверен, это сделано для того, чтобы на R1 рассеивалось целых 10 Вт мощности. Резистор будет греть вашу квартиру долгими зимними вечерами.

Вместо этого присмотримся к значению порогового напряжения, при котором срабатывает защита от перезаряда. Элементом, задающим этот порог, является специализированная микросхема.

Первый минус

В платах защиты применяют микросхемы разных типов (подробнее об этом читайте в этой статье), наиболее распространенные из них представлены в таблице:

Нормальным значением, до которого заряжают литий-ионный аккумулятор является 4. 2 Вольта. Однако, как можно видеть из таблицы, большинство микросхем заточены под несколько… эээ… завышенное напряжение.

Это объясняется тем, что платы защиты рассчитаны на срабатывание при возникновении аварийной ситуации для предотвращения закритических режимов работы аккумулятора. Таких ситуаций при нормальной эксплуатации батарей вообще быть не должно.

Редкие перезаряды литиевого аккумулятора до напряжения, например, 4.35В (микросхема SA57608D), наверное, не приведут к каким-либо фатальным последствиям, но это не означает, что так будет всегда. Кто знает, в какой момент это приведет к выделению металлического лития из гелевого электролита, ведущего к неизбежному замыканию электродов и выходу аккумулятора из строя?

Уже одного этого обстоятельства достаточно чтобы отказаться от использования плат защиты в качестве контроллера зарядного устройства. Но если вам этого мало, читайте дальше.

Второй минус

Второй момент, на который обычно мало кто обращает внимание — это кривая заряда Li-ion аккумуляторов. Давайте освежим ее в памяти. На графике ниже показан классический профиль заряда CC/CV, что расшифровывается как Constant Current / Constant Voltage (постоянный ток/постоянное напряжение). Такой способ заряда уже стал стандартом и большинство нормальных зарядных устройств старается его обеспечивать.

Если внимательно посмотреть на график, то можно заметить, что при напряжении на аккумуляторе в 4.2В, он еще не набрал свою полную емкость.

В нашем примере, максимальная емкость аккумулятора равна 2.1А/ч. В тот момент, когда напряжение на нем станет равным 4.2 Вольта, он оказывается заряжен всего лишь до 1.82 А/ч, что составляет 87% от своей макс. емкости.

И именно в этот момент плата защиты сработает и прекратит зарядку.

Даже если ваша плата сработывает при 4.35V (предположим, она собрана на микросхеме 628-8242BACT), это не изменит ситуацию коренным образом. Из-за того, что ближе к окончанию зарядки напряжение на аккумуляторе начинает возрастать очень быстро, разница в набранной емкости при 4. 2В и 4.35В едва ли составит более нескольких процентов. А при использовании такой платы вы еще и сокращаете срок службы аккумулятора.

Выводы

Итак, резюмируя все вышесказанное, можно смело утверждать, что применять платы защиты (PCM-модули) вместо зарядки для литиевых аккумуляторов крайне нежелательно.

Во-первых, это приводит к постоянному превышению пределельно допустимого напряжения на аккумуляторе и, соответственно, снижению срока его службы.

Во-вторых, из-за особенностей процесса зарядки li-ion, применение платы защиты в качестве контроллера заряда не позволит использовать полную емкость литий-ионного аккумулятора. Заплатив за аккумуляторы емкостью 3400 мА/ч, вы сможете использовать не более 2950 мА/ч.

Для полноценной и безопасной зарядки литиевых аккумуляторов лучше всего применять специализированные микросхемы. Наиболее популярной на сегодняшний день является TP4056. Но с этой микросхемой нужно быть осторожным, она не имеет защиты от дурака переполюсовки.

Схема зарядного устройства на микросхеме TP4056, а также другие проверенные схемы зарядников для Li-ion аккумуляторов мы рассматривали в этой статье.

Пользуйтесь литиевыми аккумуляторами правильно, не нарушайте рекомендованные производителем режимы заряда и они выдержат не менее 800 циклов заряд/разряд.

Помните, что даже при самой идеальной эксплуатации, литий-ионные аккумуляторы подвержены деградации (необратимой потери емкости). Также они имеют довольно большой саморазряд, равный примерно 10% в месяц.

electro-shema.ru

Схемы контроллеров заряда-разряда Li-ion аккумуляторов и микросхемы модулей защиты литиевых батарей

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует . Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.

Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

Решение от Advanced Analog Technology — AAT8660 Series.

Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).

FS326 Series

Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.

В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2. 3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.

Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2. 6×4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Схемы правильных зарядок для литиевых аккумуляторов приведены в этой статье.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.

electro-shema. ru

Литиевые аккумуляторы 18650 — особенности эксплуатации, напряжение и методы зарядки

Сложно найти область, где нет приборов, работающих на электрической энергии. Мобильные источники представляют аккумуляторы и одноразовые батарейки, питающие потребителя за счет превращения химической энергии в электрическую. Литий-ионные аккумуляторы представляют электронные пары с активными компонентами, содержащими соли лития. По форме аккумулятор напоминает одноразовую пальчиковую батарейку, но несколько большего размера, имеет сотни циклов зарядки, относится Li-ion аккумуляторам 18650.

Устройство li-ion аккумулятора 18650

Производство литий-ионных аккумуляторов основано на площадках компаний Sanyo, Sony, Panasonic, LG Chem, Samsung SDI, Skme, Moli, BAK, Lishen, ATL, HYB . Другие фирмы покупают элементы, переупаковывают их, выдавая за собственную продукцию. Они еще и пишут на термоусадочной пленке недостоверную информацию об изделии. В настоящий момент нет литий-ионных аккумуляторов 18650 емкостью выше 3600 мА-ч.

Основное отличие аккумуляторов от батарей в возможности многократной перезарядки. Все батарейки рассчитаны на напряжение 1,5 В, у изделия li-ion на выходе 3,7 В. Форм фактор 18650 означает, литиевый аккумулятор длиной 65 мм, диаметром 18 мм.

Характеристики рабочего режима литиевого аккумулятора 18650:

  • Максимальное напряжение 4,2 В, причем даже незначительная перезарядка значительно сокращает срок службы.
  • Минимальное напряжение 2,75 В. При достижении 2,5 В требуются особые условия восстановления емкости, При напряжении на клеммах2,0 В заряд не восстанавливается.
  • Минимальная рабочая температура -20 0 С. Зарядка при минусовой температуре не возможна.
  • Максимальная температура +60 0 С. При более высокой температуре можно ожидать взрыва или загорания.
  • Емкость измеряется Ампер/часах. Полностью заряженный аккумулятор емкостью 1 А/ч может выдать 1А тока в течение часа, 2 А продолжительностью 30 минут или 15 А на протяжении 4 минут.

Контроллер заряда li-ion аккумулятора 18650

Основные производители выпускают стандартные литиевые аккумуляторы 18650 без защитной платы. Этот контроллер, выполненный в виде электронной схемы, устанавливают сверху на корпус, несколько удлиняя его. Плата располагается перед отрицательной клеммой, защищает АКБ от КЗ, перезаряда, переразряда. Собирается защита в Китае. Есть приборы хорошего качества, встречается откровенное надувательство – недостоверная информация, емкость 9 000А/ч. После установки защиты корпус помещается в термоусадочную пленку с надписями. За счет дополнительной конструкции корпус становится длиннее и толще, может не поместиться в предназначенное гнездо. Типоразмер его может быть 18700, увеличиться за счет дополнительных действий. Если аккумулятор 18650 используется для создания батареи в 12 В, в которой предусмотрен общий контроллер заряда, прерыватели на отдельных Li -ion элементах не нужны.

Целью защиты является обеспечение работы источника энергии в заданных параметрах. При зарядке простым ЗУ защита не допустит перезаряда и вовремя отключит питание, если литиевый аккумулятор 18650 сел до напряжения 2,7 В.

Маркировка литиевых аккумуляторов18650

На поверхности корпуса аккумулятора нанесена маркировка. Здесь можно найти полную информацию о технических свойствах. Кроме даты изготовления, срока годности и бренда производителя, зашифровано устройство литиевых аккумуляторов 18650, и связанные с этим аспектом потребительские качества.

  1. ICR катод литий-кобальтовый. Аккумулятор обладает высокой емкостью, но рассчитан на небольшие токи потребления. Используют в ноутбуках, видеокамерах и подобной длительно работающей технике с небольшим потреблением энергии.
  2. IMR – катод литий-марганцевый. Обладает способностью выдавать большие токи, выдерживает разрядку до 2,5 а/ч.
  3. INR катод из никелатов. Обеспечивает высокие токи, выдерживают разряд до 2,5 В.
  4. NCR специфическая маркировка компании Panasonic. По свойствам аккумулятор идентичен IMR. Используются никелаты, соли кобальта, окись алюминия.

Позиции 2,3,4 называют «высокотоковыми», их используют для фонарей, биноклей, фотоаппаратов.

Литий-феррофосфатные аккумуляторы обладают способностью работать при глубоком минусе, восстанавливаются при глубоком разряде. Недооценены на рынке.

По маркировке можно определить, это литиевый заряжаемый аккумулятор буквы — I R. Если есть буквы C/M/F – известен материал катода. Будет указана емкость, обозначенная mA/h. Дата выпуска и срок годности расположены в разных местах.

Следует знать, нет у производителей литиевых многозарядных батарей изделий емкостью больше 3 600 мА/ч. Для того чтобы отремонтировать батарею ноутбука или собрать новую нужно приобретать аккумуляторы без защиты. Для использования в единичном экземпляре нужно покупать элементы с защитой.

Как проверить литиевый аккумулятор 18650

Если покупая дорогой прибор, вы сомневаетесь в правдивости информации на корпусе, есть способы проверки. Кроме специальных измерителей можно использовать подручные средства.

  • У вас есть зарядное устройство, можно засечь время полной зарядки определенной силой тока. Произведение времени на силу тока выявит приблизительную емкость li-ion аккумулятора.
  • Вам поможет интеллектуальное зарядное устройство. Оно покажет и напряжение, и емкость, но стоит прибор дорого.
  • Подключите фонарик, замерьте силу тока, и ждите, когда светоч потухнет. Произведение времени на силу тока дает емкость тока в А/ч.

Определить мощность аккумулятора можно по весу: литиевый аккумулятор 18650 емкостью 2000мА/ч должен весить 40 г. Чем выше емкость, тем больше вес. Но бракоделы научились подсыпать песок в корпус, для тяжести.

Зарядное устройство для литиевых аккумуляторов 18650

Литиевые аккумуляторы требовательны к параметрам напряжения на клеммах. Предельное напряжение 4,2 В, минимальное – 2,7 В. поэтому зарядное устройство работает как стабилизатор напряжения, создавая на выходе 5 В.

Определяющими показателями является ток зарядки и количество элементов в батарее, выставляемые своими руками. Каждый элемент (банка) должен получить полный заряд. Распределяется энергия с использованием схемы балансира для литиевых аккумуляторов 18650. Балансир может быть встроенным или контроль ведется вручную. Хорошее ЗУ стоит дорого. Сделать зарядку своими руками для li-ion может каждый, кто разбирается в электрических схемах и умеет паять.

Предлагаемая схема зарядного устройства, выполненного своими руками для литиевых аккумуляторов 18650, проста, будет отключать потребителя после зарядки самостоятельно. Стоимость комплектующих около 4 долларов, не дефицит. Приспособление надежное, не перегреется и не загорится.

Схема зарядного устройства для литиевых аккумуляторов 18650

В зарядном, сделанном своими руками, ток в цепи регулируется резистором R4. Сопротивление подбирают таким, чтобы первоначальный ток зависит от емкости литиевого аккумулятора 18650.Каким током заряжать li-ion аккумулятор, если его емкость 2 000 мА/ч? 0,5 – 1,0 С составит 1-2 ампера. Это и есть ток зарядки.

Каким током заряжать li-ion аккумулятор 18650

Есть порядок восстановления работоспособности литиевого аккумулятора 18650 после падения напряжения до рабочего. Мы восстанавливаем емкость, измеряемую в ампер-часах. Поэтому вначале подключаем Li-ion аккумулятор форм-фактор 18650 к ЗУ, потом своими руками устанавливаем ток зарядки. Напряжение изменяется по времени, начальное 0,5 В. Как стабилизатор, ЗУ рассчитан на 5 В. Для сохранения работоспособности, благоприятными считают параметры 40-80 % от емкости.

Схема зарядки li-ion аккумулятора 18650 предполагает 2 этапа. Вначале нужно поднять напряжение на полюсах до 4,2 В, далее постепенным снижением силы тока стабилизировать емкость. Заряд считается полным, если сила тока снизилась до значения 5-7 мА, когда питание отключится. Весь цикл зарядки не должен превышать 3 часа.

Самая простая одногнездная китайская зарядка для li-ion аккумуляторов 18650 рассчитана на зарядный ток в 1 А. Но следить за процессом придется самостоятельно, переключать своими руками. Универсальные зарядные устройства дороги, но имеют дисплей и самостоятельно ведут процесс.

Как правильно зарядить Li-ion аккумулятор 18650 в ноутбуке? Подключение комплекта источников энергии в гаджете через Pover Bank. Батарея может заряжаться от сети, но важно отключать питание, как только блок набрал емкость.

Восстановление li-ion аккумулятора 18650

Если АКБ отказывается работать, это может проявиться так:

  • Источник энергии быстро разряжается.
  • Аккумулятор сел и не заряжается вообще.

Быстро разрядиться может любой источник, если емкость пропала. Именно этим страшен перезаряд и глубокий разряд, от которых ставится защита. Но нет спасения от естественного старения, когда хранение на складе ежегодно снижает емкость банок. Способов регенерации нет, только замена.

Что делать, если аккумулятор не заряжается после глубокого разряда? Как восстановить li-ion 18650? После отключения аккумулятора контроллером, в нем еще есть запас энергии, способный выдать 2.8-2.4 В напряжения на полюсах. Но зарядное устройство не распознает заряд до 3,0В, ему все, что ниже, то и ноль. Можно ли разбудить аккумулятор, запустить химическую реакцию вновь? Что нужно сделать, чтобы поднять заряд li-ion 18650 до 3,1 -3,3В? Нужно использовать способ «толкнуть» аккумулятор, дать ему необходимый заряд.

Не вдаваясь в расчеты, используйте предложенную схему, смонтировав ее с резистором 62 Ом (0,5Вт). Здесь использован блок питания на 5 В.

Если резистор греется, на литиевом аккумуляторе ноль, значит, есть КЗ или неисправен модуль защиты.

Как восстановить литиевый аккумулятор 18650, используя универсальное ЗУ? Выставить ток заряда 10 мА, и выполнить предзарядку, как написано в инструкции к прибору. После поднятия напряжения до 3,1 В зарядить в 2 этапа по схеме SONY.

Какие литиевые аккумуляторы 18650 лучше на Али Экспресс

Если для вас важна стоимость и качество литиевого аккумулятора 18650, воспользуйтесь ресурсом AliExpress. Здесь много товара, от разных производителей. Искомый аккумулятор пользуется спросом, его любят подделывать. Поэтому необходимо знать основные отличия хорошей модели от реплики.

Критично отнеситесь к указанной емкости. Только лучшие производители добились 3 600 А/ч, средние имеют показатель 3000-3200 А/ч. Защищенный аккумулятор больше на 2-3 мм в длину и чуть толще незащищенного. Но если вы собираете батарею, защита не нужна, не переплачивайте.

Добротные изделия и здесь стоят дороже. Учтите, что Ultrafire обещает 9000 мА/ч, но на деле оказывается в 5-10 раз ниже. Лучше использовать товар от проверенного производителя, стараться покупать всегда одну и ту же марку аккумулятора.

Предлагаем посмотреть порядок восстановления литиевого аккумулятора 18650

batts.pro

Простая зарядка Li-ion аккумуляторов — IT-блог

Привет. Есть у меня замечательный китайский фонарик с линзой. Светит отлично. Работает на одном Li-ion аккумуляторе форм-фактора 18650. Не так давно досталось мне несколько таких же живых аккумуляторов 18650 от сдохшей ноутбучной батареи. Так как аккумов стало много, надо было что-то делать с зарядкой этого хозяйства. Штатная зарядка от фонарика показалась мне очень подозрительной и неудобной. Откидная вилка для включения в сеть 220 короткая и не в каждую розетку подойдет, да еще и постоянно выпадает из настенной розетки. Шлак короче. В связи с тем что в последнее время руки чешутся что-то попаять, то очень захотелось мне намутить зарядку собственную.
Чуть погуглил и нашел дешевенький китайский контроллер заряда Li-ion аккумуляторов с минимумом обвеса.
В общем взят был за основу QX4054 в корпусе SOT-23-5. Даташит на китайском внизу поста. Есть похожие контроллеры от Linear Technology LT4054 , но ценник на них мне показался не гуманным да и где купить их в Украине я не нашел.(

Что умеет. Судя из того что удалось выяснить из даташита, умеет заряжать аккумуляторы током до 800mA и путем гашения подцепленого к нему светодиода отображать окончание зарядки. Заканчивает процесс заряда аккумулятора при достижении напряжения 4.2Вольт либо есть зарядниый ток опустился до 25mA.

Такая вот букашенция. Привожу примерное описания выводов контроллера:

VCC — Понятно. Питание 4,5 — 6,5 Вольт.
GND — Общий вывод. То есть «земля».
PROG — Вывод для программирования тока заряда.
CHRG — Индикация окончания заряда.
BAT — Поключение плюсового вывода батареи.

Скажу стразу, что в процессе работы QX4054 греется достаточно сильно. Поэтому при расчете тока заряда, я выбрал значение 500mA. Номинал резистора при этом составляет 2кОм.
Формула для расчета очень простая и есть в даташите, но приведу ее и здесь.
I bat = (V prog /R prog )*1000

Где:
I bat — ток заряда в Амперах.
V prog — Берется из даташита и равно 1В
R prog — Сопротивление резистора в Омах.

Подставляем наши 0.5 Ампера: R prog = (V prog /0.5)*1000.
Итого 2000 Ом. Меня это устраивает.
К сожалению этот контроллер не имеет защиты от неправильного включения аккумулятора, и если в рабочем состоянии перепутать полярность подключаемого аккумулятора, то QX4054 за секунду превращается в дым. Поэтому пришлось чуть доработать типовую схему включения. От идеи защитного диода пришлось отказаться, так как я побоялся что падение напряжения на диоде в 0.5 вольта приведет к перезаряду или же каким-то другим последствиям. Поэтому пошел путем включения защитного диода и самовосстанавливающегося предохранителя.
Не знаю насколько такой вариант технически правилен, но он спасает контроллер от выгорания. Плюс есть индикация ошибки подключения. Собственно схема ниже.

Печатку разводил под свой отсек для батарей 18650. Так что для заряда батарей в других форматах, перерисовывайте для себя. Печатная плата в diptrace без заливки:

С заливкой:

Вид сверху:

Травим платку, любым удобным для вас способом. Я, как обычно, делаю печатки при помощи пленочного фоторезиста.

Собираем.Вид почти готовой зарядки без корпуса. В наладке зарядка не нуждается. Правильно собранное устройство работает сразу. Подключаем источник питания 5В, вставляем разряженый аккумулятор и наблюдаем процесс зарядки.

При ошибочном подключении аккумулятора, загорается красный светодиод ошибки.

Осталось подыскать или склеить корпус для зарядки, и можно спокойно эксплуатировать. В качестве корпуса планирую использовать пластик из сгоревшего ноутбучного блока питания.
Если не полениться и добавить в схему линейный стабилизатор типа LM7805, то получится более универсальная зарядка с возможностью использовать различные блоки питания от 6 до 15 вольт. Если придется делать себе еще одну то пожалуй сделаю с LM7805.

Понравились мне мелкие микросхемы для простых зарядных устройств. покупал я их у нас в местном оффлайн магазине, но как назло они там закончились, их долго везли откуда то. Глядя на эту ситуацию, я решил заказать себе их небольшим оптом, так как микросхемы довольно неплохие, и в работе понравились.
Описание и сравнение под катом.

Я не зря написал в заголовке про сравнение, так как за время пути собачка могла подрасти микрухи появились в магазине, я купил несколько штук и решил их сравнить.
В обзоре будет не очень много текста, но довольно много фотографий.

Но начну как всегда с того, как мне это пришло.
Пришло в комплекте с другими разными детальками, сами микрухи были упакованы в пакетик с защелкой, и наклейкой с названием.

Данная микросхема представляет собой микросхему зарядного устройства для литиевых аккумуляторов с напряжением окончания заряда 4.2 Вольта.
Она умеет заряжать аккумуляторы током до 800мА.
Значение тока устанавливается изменением номинала внешнего резистора.
Так же она поддерживает функцию заряда небольшим током, если аккумулятор сильно разряжен (напряжение ниже чем 2.9 Вольта).
При заряде до напряжения 4.2 Вольта и падении зарядного тока ниже чем 1/10 от установленного, микросхема отключает заряд. Если напряжение упадет до 4.05 Вольта, то она опять перейдет в режим заряда.
Так же имеется выход для подключения светодиода индикации.
Больше информации можно найти в , у данной микросхемы существует гораздо более дешевый .
Причем он более дешевый у нас, на Али все наоборот.
Собственно для сравнения я и купил аналог.

Но каково же было мое удивление когда микросхемы LTC и STC оказались на вид полностью одинаковыми, по маркировке обе — LTC4054.

Ну может так даже интереснее.
Как все понимают, микросхему так просто не проверить, к ней надо еще обвязку из других радиокомпонетов, желательно плату и т.п.
А тут как раз товарищ попросил починить (хотя в данном контексте скорее переделать) зарядное устройство для 18650 аккумуляторов.
Родное сгорело, да и ток заряда был маловат.

В общем для тестирования надо сначала собрать то, на чем будем тестировать.

Плату я чертил по даташиту, даже без схемы, но схему здесь приведу для удобства.

Ну и собственно печатная плата. На плате нет диодов VD1 и VD2, они были добавлены уже после всего.

Все это было распечатано, перенесено на обрезок текстолита.
Для экономии я сделал на обрезке еще одну плату, обзор с ее участием будет позже.

Ну и собственно изготовлена печатная плата и подобраны необходимые детали.

А переделывать я буду такое зарядное, наверняка оно очень известно читателям.

Внутри него очень сложная схема, состоящая из разъема, светодиода, резистора и специально обученных проводов, которые позволяют выравнивать заряд на аккумуляторах.
Шучу, зарядное находится в блочке, включаемом в розетку, а здесь просто 2 аккумулятора, соединенные параллельно и светодиод, постоянно подключенный к аккумуляторам.
К родному зарядному вернемся позже.

Спаял платку, выковырял родную плату с контактами, сами контакты с пружинами выпаял, они еще пригодятся.

Просверлил пару новых отверстий, в среднем будет светодиод, отображающий включение устройства, в боковых — процесс заряда.

Впаял в новую плату контакты с пружинками, а так же светодиоды.
Светодиоды удобно сначала вставить в плату, потом аккуратно установить плату на родное место, и только после этого запаять, тогда они будут стоять ровно и одинаково.

Плата установлена на место, припаян кабель питания.
Собственно печатная плата разрабатывалась под три варианта запитки.
2 варианта с разъемом MiniUSB, но в вариантах установки с разных сторон платы и под кабель.
В данном случае я сначала не знал, какбель какой длины понадобится, потому запаял короткий.
Так же припаял провода, идущие к плюсовым контактам аккумуляторов.
Теперь они идут по раздельным проводам, для каждого аккумулятора свой.

Вот как получилось сверху.

Ну а теперь перейдем к тестированию

Слева на плате я установил купленную на Али микруху, справа купленную в оффлайне.
Соответственно сверху они будут расположены зеркально.

Сначала микруха с Али.
Ток заряда.

Теперь купленная в оффлайне.

Ток КЗ.
Аналогично, сначала с Али.

Теперь из оффлайна.



Налицо полная идентичность микросхем, что ну никак не может не радовать:)

Было замечено, что при 4.8 Вольта ток заряда 600мА, при 5 Вольт падает до 500, но это проверялось уже после прогрева, может так работает защита от перегрева, я еще не разобрался, но ведут себя микросхемы примерно одинаково.

Ну а теперь немного о процессе зарядки и доработке переделки (да, даже так бывает).
С самого начала я думал просто установить светодиод на индикацию включенного состояния.
Вроде все просто и очевидно.
Но как всегда захотелось большего.
Решил, что будет лучше, если во время процесса заряда он будет погашен.
Допаял пару диодов (vd1 и vd2 на схеме), но получил небольшой облом, светодиод показывающий режим заряда светит и тогда, когда нет аккумулятора.
Вернее не светит, а быстро мерцает, добавил параллельно клеммам аккумулятора конденсатор на 47мкФ, после этого он стал очень коротко вспыхивать, почти незаметно.
Это как раз тот гистерезис включения повторной зарядки, если напряжение упало ниже 4.05 Вольта.
В общем после этой доработки стало все отлично.
Заряд аккумулятора, светит красный, не светит зеленый и не светит светодиод там, где нет аккумулятора.

Аккумулятор полностью заряжен.

В выключенном состоянии микросхема не пропускает напряжение на разъем питания, и не боится закоротки этого разъема, соответственно не разряжает аккумулятор на свой светодиод.

Не обошлось и без измерения температуры.
У меня получилось чуть более 62 градусов после 15 минут заряда.

Ну а вот так выглядит полностью готовое устройство.
Внешние изменения минимальны, в отличие от внутренних. Блок питания на 5 /Вольт 2 Ампера у товарища был, и довольно неплохой.
Устройство обеспечивает тока заряда 600мА на канал, каналы независимые.

Ну а так выглядело родное зарядное. Товарищ хотел попросить меня поднять в нем зарядный ток. Оно и родного то не выдержало, куда еще поднимать, шлак.

Резюме.
На мой взгляд, для микросхемы за 7 центов очень неплохо.
Микросхемы полностью функциональны и ничем не отличаются от купленных в оффлайне.
Я очень доволен, теперь есть запас микрух и не надо ждать, когда они будут в магазине (недавно опять пропали из продажи).

Из минусов — Это не готовое устройство, потому придется травить, паять и т.п., но при этом есть плюс, можно сделать плату под конкретное применение, а не использовать то, что есть.

Ну и в тоге получить рабочее изделие, изготовленное своими руками, дешевле чем готовые платы, да еще и под свои конкретные условия.
Чуть не забыл, даташит, схема и трассировка —

В прошлый раз я рассматривал вопрос о замене никель-кадмиевых NiСd аккумуляторов шуруповерта на литий-ионные. Теперь остался вопрос зарядки этих аккумуляторов. Литий ионные аккумуляторы формата 18650 обычно могут заряжаться до напряжения 4,20 В на ячейку с допустимым отклонением не больше 50 милливольт потому, что увеличение напряжения может привести повреждению структуры батареи. Ток заряда аккумулятора может находится в пределах от 0,1С до 1С(С-емкость аккумулятора). Лучше выбрать это значение согласно даташиту на конкректный аккумулятор. Я применил в переделке шуруповерта аккумуляторы марки Samsung INR18650-30Q 3000mAh 15A. Смотрим даташит-ток зарядки -1,5А.


Наиболее правильным будет провести заряд литиевых аккумуляторов в два этапа по методу CC/CV (constant current, constant voltage-постоянный ток, постоянное напряжение). Первый этап- должен обеспечен постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для аккумулятора с емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА.. Второй этап — зарядка аккумулятора постоянным напряжением, ток постоянно снижается. Поддерживается напряжение на аккумуляторе в пределах 4.15-4.25 В. Процесс заряда будет законченным когда току падет до 0.05-0.01С.
На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.
Принимая во внимание вышесказанное применил готовые электронные модули с Алиэкспресс. Понижающая плата CC/CV с ограничением по току на микросхеме XL4015E1 или на LM2596. Предпочтительней плата на XL4015E1 так, как она более удобна в настройках.



Характеристики платы на XL4015E1.
Максимальный выходной ток до 5 Ампер.
Напряжение на выходе: 0. 8 В-30 Вольт.
Напряжение на входе: 5 В-32 Вольт.
Плата на LM2596 имеет аналогичные параметры, только ток чуть меньше — до 3 Ампер.
Плату для управление зарядом литий-ионной батареи выбрана ранее. В качестве источника питания можно применить любой со следующими параметрами-выходное напряжение не ниже 18 Вольт (для схемы 4S), ток не ниже 2-3 Ампер. В качестве первого примера построения зарядного устройства для литий-ионных аккумуляторов шуруповерта я использовал адаптер 220\12 Вольт, 3 Ампера.



Предварительно я проверил какой ток он может выдать пир номинальной нагрузке. Подключил к выходу автолампу и выждал полчаса. Выдает свободно без прегруза 1,9 Ампер. Также измерил температуру на радиаторе транзистора-40 градусов Цельсия. Вполне неплохо-нормальный режим.


Но в этом случае не хватает напряжения. Это легко исправимо, с помощью всего одной копеечной радиодетали-переменного резистора (потенциометр) на 10-20 кОм. Рассмотрим типовую схему адаптера.


На схеме есть управляемый стабилитрон TL431, он находится в цепи обратной связи. Его задача поддерживать стабильное выходное напряжение в соответствие с нагрузкой. Через делитель из двух резисторов он подключен к плюсовому выходу адаптера. Нам нужно припаять к резистору(или выпаять его совсем и на его место припаять, тогда напряжение будет регулироваться и в меньшую сторону) который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор. Вращаем ось потенциометра и выставляем нужное напряжение. В моем случае я задал 18 Вольт(небольшой запас от 16,8 В для падения на плате CCCV). Если у вас напряжение указанное на корпусах электролитических конденсаторах стоящих на выходе схемы будет больше нового напряжения они могут взорваться. Тогда надо заменить их с запасом 30% по напряжению.
Далее подключаем к адаптеру плату для управление зарядом. Выставляем подстроечным резистором на плате напряжение 16,8 Вольт. Другим подстроечным резистором выставляем ток 1,5 Ампера, предварительно подключаем тестер в режиме амперметра к выходу платы. Теперь можно подсоединить литий-ионной сборку шуруповерта. Зарядка прошла нормально, ток к концу заряда упал до минимума, батарея зарядилась. Температура на адаптере была в пределах 40-43 градусов Цельсия, что вполне нормально. В перспективе можно в корпусе адаптера для улучшения вентиляции (особенно в летнее время) насверлить отверстия.
Окончание заряда батареи можно увидеть по включению светодиода на плате на XL4015E1. В данном примере я использовал другую плату на LM2596 так, как случайно в ходе экспериментов сжег XL4015E1. Советую делать зарядку лучше на плате XL4015E1.

У меня есть еще штатное зарядное от другого шуруповерта. Оно рассчитано на зарядку никель-кадмиевых аккумуляторов. Хотелось использовать это штатное зарядное чтобы заряжать и никель-кадмиевых аккумуляторы и литий-ионные.


Это решилось просто- припаял к выходным проводам (красный плюс, черный минус) провода к плате CCCV.
Напряжение холостого хода на выходе штатное зарядного было 27 Вольт, это вполне подходит для нашей зарядной платы. После подключил так же как и варианте с адаптером.


Окончание зарядки здесь мы видим по изменению цвета свечения светодиода(переключился с красного на зеленый).
Саму плату CCCV я поместил в подходящую пластмассовую коробку, выведя провода наружу.



Если у вас штатное зарядное на трансформаторе то можно подключить плату CCCV после диодного мостика выпрямителя.
Способ переделки адаптера под силу начинающим и может пригодиться в других целях, в результате получим бюджетный блок для питания различных устройств.
Всем желаю здоровья и успехов в покупках и жизни.
Подробнее процесс работы с зарядным устройством для переделанного шуруповерта можно посмотреть в видео

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +27 Добавить в избранное Обзор понравился +28 +51

Аккумуляторы и зарядки

Аккумулятор 40А 21700 Lii-40A 4000mAh без защиты

Артикул: LiitoKala

Аккумулятор высокого тока литий-ионный Li-ion LiitoKala Lii-40A типоразмера 21700 4000mAh.
БЕЗ платы защиты. Плюсовой контакт — плоский.
Ток разряда макс. : 40 А

Аккумулятор 18650 Li-Ion 3400mAh с защитой

Артикул: LiitoKala

Аккумулятор литий-ионный Li-ion LiitoKala NCR18650B 3400mAh с платой защиты PCB.
Производственные мощности LiitoKala расположены в КНР, однако эта продукция (аккумуляторы и зарядные устройства) прекрасно себя зарекомендовала, значительная часть таких аккумуляторов поступает на рынок и на сборочные предприятия под брендами Samsung и Panasonic.

Аккумулятор LiitoKala NCR18650B 3400mAh без защиты

Артикул: Liitokala

Аккумулятор литий-ионный Li-ion LiitoKala NCR18650B 3400mAh.
БЕЗ платы защиты. Данные аккумуляторы полностью соответствуют заявленной ёмкости и характеристикам. Плюсовой контакт аккумуляторов имеет выступ (Пин), что очень удобно при использовании их в фонарях.

Аккумулятор Soshine RC123 Li-Ion 700mAh

Артикул: Soshine

Аккумулятор RC123 Li-Ion 700mAh. Типоразмер: 16340, RC123. Производитель — Soshine.
Встроенная защита от короткого замыкания, перезаряда и переразряда.

Аккумулятор LiitoKala 26650 5000mAh

Артикул: LitoKala

Аккумулятор Soshine 26650 5500mAh Protected

Артикул: Soshine

Аккумулятор оригинальный LI-ION Soshine 26650 5500mAh Protected.
Снабжён защитной микросхемой, отключается при просадке 2,8V. Размер: 68 х 26,2мм. Вес 95г. 

Аккумулятор сдвоенный 8000 mAh для Atorch TC16

Аккумулятор сдвоенный 8000 mAh.
В этом аккумуляторе соединены параллельно два элемента питания типоразмера 26650. Входит в комплект поставки к фонарю Atorch TC16.

Универсальная зарядка Yupard Li-Ion 1-канальная

Артикул: Yupard

Двухканальная зарядка Li-Ion. Может заряжать следующие литивые аккумуляторы: 26650, 18650, 14500, 16340. Максимальный ток зарядки 700мА. Максимальное напряжение 4,2v.

Зарядное устройство 2-канальное универсальное

Двухканальная зарядка Li-Ion. Может заряжать следующие литивые аккумуляторы: 26650, 18650, 14500, 16340. Максимальный ток зарядки 700мА на один канал. Максимальное напряжение 4,2v

Зарядное устройство 1-канальное LiitoKala Lii-100

Артикул: LitoKala

Устройство автоматически определяет тип батареи и заряжает аккумулятор в соответствии с выбранной программой. Светодиодные индикаторы отображают состояние зарядки и режим output 5 V/100 mAh USB. Совместимые аккумуляторы: Ni-mh, Li-ion, LiFePO4. Совместимые типоразмеры:10440, 14500, 16340, 17355, 17500, 17670, 18490, 18650, 22650, 26500, 26650

Зарядное устройство 2-канальное LiitoKala Lii-202

Артикул: LiitoKala

Устройство автоматически определяет тип батареи и заряжает аккумулятор в соответствии с выбранной программой. Светодиодные индикаторы отображают состояние зарядки и режим output 5 V/100 mAh USB. Совместимые аккумуляторы: Ni-mh, Li-ion, LiFePO4. Совместимые типоразмеры:10440, 14500, 16340, 17355, 17500, 17670, 18490, 18650, 22650, 26500, 26650

Зарядное устройство 4-канальное LiitoKala Lii-402

Артикул: LiitoKala

Устройство автоматически определяет тип батареи и заряжает аккумулятор в соответствии с выбранной программой. Светодиодные индикаторы отображают состояние зарядки и режим output 5 V/100 mAh USB. Совместимые аккумуляторы: Ni-mh, Li-ion, LiFePO4. Совместимые типоразмеры:10440, 14500, 16340, 17355, 17500, 17670, 18490, 18650, 22650, 26500, 26650

Зарядное устройство 4-х канальное универсальное

Каждый канал снабжён отдельным светодиодом и выполняет зарядку независимо от соседних каналов, благодаря этому Вы можете одновременно заряжать аккумуляторы разных типов, размеров, брендов и номиналов. Устройство снабжено регулятором напряжения со значениями: 1,2v 1,5v 3,6v 4,2v. Зарядное устройство подходит ко всем 30-70 мм аккумуляторным батареям.

Зарядное устройство Litokala Lii-260, 2-кан. универс.

Артикул: Litokala

Зарядное устройство двухканальное интеллектуальное Litokala Lii-260. Совместимые типы Li-ion аккумуляторов: 18650, 26650. 
В комплекте — адаптер питания 220В, и переходник для прикуривателя 12V, а также инструкция. Функции: заряд/разряд с шагом 500ma-1000mA, измерение ёмкости и сопротивления.

Силиконовая смазка для фонарей

Артикул: Akvilon

Густая прозрачная силиконовая смазка высокого качества, марки AC-45. Упакована в пластиковые банки по 60мл. Назначение: смазывание резьбы аккмуляторных отсеков подводных фонарей, для лучшей герметизации и продлевания срока службы резиновых орингов и металлической резьбы. Также используется для ухода за любым дайвинговым оборудованием.

Электронный кантер WeiHeng

Артикул: WeiHeng

Весы электронные. Измеряют вес до 50кг, с погрешностью до 10 грамм.
В комплекте — батарея CR 2032, 1шт.

Как восстановить Li-ion аккумулятор 18650 после глубокого разряда в ноль

Автор Акум Эксперт На чтение 20 мин. Просмотров 3.2k. Опубликовано


Аккумуляторы для мобильных устройств постоянно совершенствуются: увеличивается их емкость, повышается надежность и долговечность. Но даже сегодня АКБ – самое слабое место любого мобильного устройства, будь то телефон, планшет или ноутбук. В этой статье мы выясним, как восстановить аккумуляторы 18650 и некоторые другие после глубокого разряда.

Особенности литий-ионных аккумуляторов

Прежде всего выясним, что собой представляет литий-ионный аккумулятор и чем он отличается от источников тока других типов. Конструктивно литий-ионный (Li-ion) элемент представляет собой два электрода – положительный (катод) и отрицательный (анод). Первый выполнен из лития кобальтата, литий-марганца или литий-феррофосфата, нанесенных на алюминиевую подложку. Анод современного Li-ion элемента изготавливается из графита, нанесенного на медную подложку.

Между электродами установлен ионопроводящий сепаратор, пропитанный безводным электролитом. Во время разряда положительные ионы лития покидают катод и внедряются в кристаллическую решетку графита. Во время зарядки происходит обратный процесс.

Принцип работы литий-ионного аккумулятора

Для увеличения электрической емкости элемента и уменьшения его габаритов анод, сепаратор и катод выполнены в виде довольно большого слоеного листа, свернутого в цилиндр (цилиндрические аккумуляторы), или сложен в виде «книжки» (плоские элементы).

Цилиндрический (слева) и плоский литий-ионные аккумуляторы 

Полезно! В некоторых случаях элементы (чаще цилиндрические в жестком корпусе) снабжаются предохранительными клапанами, сбрасывающими избыточное давление. Последнее создается газами, образующимися при неправильной эксплуатации аккумулятора.

В большинство источников питания этого типа встраиваются специальные контроллеры. Как они работают и для чего нужны, мы поговорим в следующем разделе. Если аккумулятор нужен для работы в составе батареи, то обычно в него контроллер не встраивается, а используется один для всей батареи.

Элементы этой батареи для ноутбука обслуживает один общий контроллер

В чем особенности литий-ионных аккумуляторов перед элементами и батареями другого типа? Рассмотрим их достоинства и недостатки.

Хорошее соотношение электрическая емкость/габариты

Низкий саморазряд

Слабо выраженный эффект памяти

Способность отдавать высокие токи в нагрузку

Не нуждаются в обслуживании

Не переносят глубокого разряда и перезарядки

Теряют емкость на холоде

Взрывоопасны при неправильной эксплуатации и повреждении

Относительно небольшое (200-500) количество циклов заряд/разряд

Следует отметить, что существуют так называемые литий-полимерные аккумуляторы, использующие для своей работы электролит из полимерного материала. Это усовершенствованная конструкция литий-ионного перезаряжаемого элемента, работающая по точно такому же принципу. От своего старшего брата литий-полимерный элемент отличается более длительным сроком эксплуатации (до 800-900 циклов заряд/разряд).

Литий-полимерная батарея для мобильного телефона 

Как работает контроллер и для чего он нужен?

Главная особенность литиевых перезаряжаемых источников тока – они не терпят глубокого разряда и перезаряда. Стоит такой источник сильно разрядить или перезарядить, как его срок службы резко сократится, а емкость упадет.

Важно! Чаще всего разряженная до нуля литиевая батарея вообще выходит из строя, а перезарядка грозит не только потерей емкости и выходом из строя, но и возгоранием, а нередко и взрывом.

Для того чтобы предотвратить такую ситуацию, в литиевые батареи встраивают специальную электронную схему — контроллер. Его задача – отключить батарею или аккумулятор от нагрузки при критической разрядке или от зарядного устройства, как только он полностью зарядится. Эта же схема следит за температурой батареи и при значительном перегреве отключает ее от нагрузки или зарядного устройства. Рассмотрим работу типовой схемы контроллера литий-ионного перезаряжаемого источника тока.

Схема контроллера Li-ion аккумулятора

Устройство представляет собой двухпороговый компаратор DW01-P и два мощных полевых MOSFET транзистора FET1 и FET2. Пока напряжение на элементе G1 находится в диапазоне 2.4-4.2 В, оба транзистора открыты. Элемент G1 подключен к клеммам BATT+ и BATT-, через которые его можно заряжать и разряжать. Как только напряжение упадет ниже 2.4 В, компаратор посчитает батарею полностью разряженной и закроет транзистор FET1, отключая источник тока от нагрузки. В таком состоянии элемент перестанет разряжаться, но зарядить его можно. Транзистор FET2 открыт, а диод, шунтирующий FET1, позволит зарядному току поступать на элемент G1.

В процессе зарядки напряжение на аккумуляторе повышается, и как только оно превысит нижний порог, FET1 откроется. Это позволяет пользоваться даже не до конца заряженной батареей. В процессе зарядки напряжение продолжает повышаться. Когда оно достигнет верхнего предела – 4.2 В, компаратор посчитает, что элемент G1 заряжен на 100%, и закроет транзистор FET2. Зарядка прекратится, но батарея может питать нагрузку через открытый FET1 и диод, шунтирующий FET2. Таким образом, аккумулятор, подключенный через контроллер, невозможно ни глубоко разрядить, ни перезарядить.

В более сложных схемах компаратор имеет еще один вход, к которому подключен датчик температуры. Как только элемент G1 нагреется до критической температуры (обычно 42-45 градусов Цельсия), микросхема закроет оба транзистора до тех пор, пока температура батареи не упадет до нормальной.

Важно! Подобным контроллером оснащаются не только элементы 18650, но и любые другие – цилиндрические 14500, 10440, плоские литий-ионные и литий-полимерные для телефонов, смартфонов и планшетов. Поэтому все, описанное в данной статье, относится и к ним.

Разобранный литий-полимерный аккумулятор для мобильного телефона 

Как проявляется износ

Даже правильно эксплуатирующийся источник тока со временем «устает» и в конце концов выходит из строя. Основным показателем износа Li-ion аккумулятора является потеря емкости. Такой источник быстро разряжается и не может выдать большой ток. Мобильное устройство приходится часто заряжать. Про такую батарею обычно говорят, что она «не держит».

Если емкость элемента питания сокращается на 20%, то можно считать, что аккумулятор выработал свой ресурс. Именно на такие показатели ориентируются производители, указывая срок эксплуатации и количество циклов заряд/разряд. Тем не менее даже после такой потери емкости батарея вполне пригодна к использованию, просто заряжать тот же смартфон или планшет придется чуть чаще. Но когда это «чуть чаще» превращается в «три раза на день», стоит задуматься о покупке новой батареи, поскольку пользоваться настолько изношенным элементом питания не только неудобно, но и небезопасно.

Еще одним признаком износа или скорого выхода аккумулятора из строя является повышенный его нагрев во время работы и зарядки. Да, пока еще температура не превысила критическую, и контроллер разрешает элементу работать, но это лишь временно. Таким образом, если крышка батарейного отсека мобильного устройства ощутимо нагревается во время работы или зарядки гаджета, то настало время аккумулятор заменить, не дожидаясь неприятностей. А неприятностей может быть немало, и самая безобидная – остаться без связи в самый неподходящий момент. Но намного хуже, если изношенный элемент вздуется и разорвет мобильное устройство или вообще загорится.

Вздувшаяся батарея может буквально разорвать гаджет

Способы восстановления

Сразу оговоримся, что полностью разряженный Li-ion  аккумулятор качественно восстановить не удастся. Да, его можно попытаться оживить, но полноценного или хотя бы приличного источника тока из него не сделать. И это только в том случае, если элемент не в обрыве и не замкнут. В этом случае восстановление литий-ионных аккумуляторов однозначно невозможно, а в случае внутреннего замыкания может быть и опасным.

О разборке и ремонте элементов этого типа вообще речи быть не может. Единственное, что можно сделать самостоятельно и без риска для здоровья, это заменить вышедший из строя контроллер. Ну а теперь перейдем непосредственно к решению основных проблем с литиевыми элементами.

Как «толкнуть» аккумулятор, если обычным способом не заряжается?

Начнем с самой распространенной неисправности — батарея, установленная в устройство, не хочет заряжаться. Это может происходить по пяти причинам:

  1. Батарея сильно разрядилась, и встроенный контроллер запретил дальнейшую зарядку.
  2. Произошло внутреннее короткое замыкание.
  3. Батарея разрядилась «в ноль» и произошло повреждение ее внутренней структуры.
  4. Произошел внутренний обрыв.
  5. Вышел из строя встроенный в аккумулятор контроллер.

Первая проблема возникает в том случае, если батарея очень долго лежала без дела, особенно если до этого она была не полностью заряжена. Дело в том, что любой аккумулятор обладает саморазрядом и разряжается, даже когда просто лежит. У Li-ion саморазряд невелик, но он есть. Как только напряжение на элементе упадет ниже 2.4 В, контроллер запретит выдачу с нее напряжения.

Но почему в такой ситуации невозможна зарядка? Ведь мы выяснили, что даже при аварийном отключении от нагрузки батарею можно зарядить (см. раздел «Как работает контроллер и для чего он нужен?»).

Любое современный гаджет, работающий с литиевыми батареями, имеет собственный контроллер, следящий за состоянием элемента питания. Он отключает тот же телефон, плеер или фонарь, если напряжение на батарее снижается, но не до 2.4, а до 2.8-3 В и останавливает зарядку, если напряжение на элементе питания поднимается до 4 В. Таким образом, основным устройством защиты является контроллер гаджета, а тот, что встроен в батарейку, срабатывает только в действительно критических ситуациях и обычно бездействует.

А зарядка при срабатывании контроллера батареи невозможна потому, что схемы обслуживания батарейки во всех современных устройствах слишком умные. Если на контактах аккумулятора вообще нет напряжения, то они не начинают зарядку, хотя в принципе она возможна. Сделано это в целях безопасности. Ведь исчезновение выходного напряжения может быть вызвано не только срабатыванием системы защиты батареи, но и ее неисправностью. К примеру, внутренним коротким замыканием. А зарядка аккумулятора с КЗ вызовет вздутие самой батареи, ее перегрев и почти наверняка возгорание.

Можно ли убедить мобильное устройство зарядить такой аккумулятор? Вполне. Для этого достаточно заставить контроллер подключить элемент к выходу, чтобы на выходных клеммах появилось хоть какое-то напряжение. Если батарейка просто сильно разрядилась, то сделать это несложно – достаточно слегка ее подзарядить, подняв напряжение чуть выше 2.4 В, и контроллер ее подключит. А подзаряжать его мы будем самодельным зарядным устройством, для изготовления которого потребуется лишь пятивольтовая сетевая «зарядка» с портом USB от любого мобильного телефона, кабель с вилкой USB А, который не жалко испортить, и токоограничивающий резистор.

Вот и все, что понадобится для изготовления зарядного устройства

Для того чтобы «толкнуть» элемент, достаточно небольшого тока. Ограничимся значением 50 мА – это безопасно, если вдруг элемент имеет внутреннее замыкание, и не потребует много времени для подзарядки до отключения защиты. Рассчитаем номинал резистора, исходя из того, что элемент разряжен до 2 В. На резисторе должно упасть 3 В, ток через резистор – 50 мА. Воспользуемся формулой Ома. R = U / I = 3 / 0.05 = 60 Ом. Ближайший стандартный номинал – 62 Ом.

Теперь выберем мощность прибора, чтобы он выдержал максимально возможный ток. Это на случай, если элемент питания имеет внутреннее короткое замыкание. Рассчитаем ток через резистор при замкнутом аккумуляторе. I = U / R = 5 / 62 = 0.08 А или 80 мА. Считаем рассеиваемую на резисторе мощность. P = I х U = 0.08 х 5 = 0.4 Вт. Выбираем прибор мощностью 0.5 … 1 Вт. Вполне хватит.

Разделываем USB кабель и из четырех проводов оставляем только черный и красный. Вооружаемся паяльником и собираем схему «глупого» зарядного устройства, не обращающего внимания на отсутствие напряжения на батарее:

Схема устройства для начальной подзарядки литиевого аккумулятора

Важно! Ни в коем случае не подпаиваем провода к самому аккумулятору, а зажимаем их на клеммах батареи любым удобным способом – изолентой, скотчем или небольшими магнитами.

Подключение элемента при помощи магнитов

Подключаем конструкцию к сети и начинаем подзарядку, постоянно контролируя напряжение на батарее и ее температуру. Если элемент исправен и просто разрядился, буквально через несколько минут напряжение на нем поднимется до 3-3.2 В. При таком напряжении узел защиты уже подключит элемент к клеммам аккумулятора, и его можно будет зарядить в гаджете обычным способом. При токе зарядки 50 мА исправный аккумулятор абсолютно не должен нагреваться. Если он становится теплым на ощупь, то процесс нужно немедленно прекратить. Элемент неисправен, и от его реанимации лучше отказаться. Если все в порядке, снимаем аккумулятор с зарядки, устанавливаем в устройство и заряжаем обычным образом.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Важно! При внутреннем коротком замыкании сама батарея может не греться, нагреваться будет токоограничивающий резистор и, возможно, плата контроллера. Напряжение на клеммах в таком случае, естественно, никогда не поднимется до значения 3 В. Это тоже верный признак того, что батарея восстановлению не подлежит. Останавливаем реанимацию от греха подальше.

Что делать, если батарейка холодная, но прошло уже полчаса, а напряжение так и не поднялось или поднялось до 5 В сразу после подключения «зарядки»? Тут два варианта – либо элемент неисправен (внутренний обрыв или полная разрядка, разрушившая внутреннюю структуру аккумулятора), либо вышел из строя контроллер. Аккуратно разбираем аккумулятор и добираемся до платы контроллера. На цилиндрических аккумуляторах 18650 и им подобных он расположен на одном из торцов прибора. Чаще — на минусовом, хотя есть модели с платами на «плюсе». Чтобы до нее добраться, достаточно аккуратно удалить покрытие батареи, выполненное из пленки.

Контроллер этого аккумулятора расположен на минусовом торце

В плоских батареях плату защиты можно найти со стороны контактов. У них так же удаляем защитную пленку и видим плату, подпаянную к клеммам элемента. Наша задача – замерить напряжение непосредственно на самом элементе. На фото ниже контакты для измерения обозначены стрелками.

Эти проводники – выходные контакты литиевого элемента

Если напряжение отсутствует, то дальше можно не продолжать. Выпаиваем контроллер (пригодится для ремонта других однотипных батареек), элемент утилизируем. Если на батарейке есть хотя бы 1.5 В, то можно попытаться ее восстановить, подключив нашу зарядку непосредственно к элементу. В процессе зарядки контролируем напряжение и обязательно температуру. Когда напряжение на клеммах поднимется до 3-3.2 В, зарядку прекращаем и измеряем напряжение на выходных клеммах батарейки после контроллера.

Появилось? Все в порядке. Собираем аккумулятор при помощи термоусадки или простого скотча (важно заизолировать боковые поверхности цилиндра). Устанавливаем в гаджет и заряжаем. Если напряжение на элементе есть, но на выходе после контроллера нет, то придется заменить плату электроники, которую можно взять из такого же, но «убитого» аккумулятора или просто купить.

Важно! Все вышеописанные действия справедливы лишь для литиевых аккумуляторов со встроенным контроллером. Элементы без схемы защиты таким образом «толкнуть» не удастся, поэтому не стоит и пытаться. Это не только бесполезно, но и небезопасно.

Восстановление емкости

Вторая наиболее распространенная проблема аккумуляторов этого (да и любого другого) типа – катастрофическая потеря емкости. Вообще, потеря емкости в процессе эксплуатации – нормальный эффект. Литий-ионные аккумуляторы теряют примерно 4-5% своей электрической емкости в год. Но если источник тока эксплуатируется неправильно или в жестких условиях (резкие перепады температуры, большие токи разряда, постоянный глубокий разряд, постоянный недозаряд или перезаряд и пр.), то процесс деградации ускоряется. Можно ли как-то восстановить емкость литий-ионного аккумулятора?

В сети болтается великое множество «мудрых» советов по восстановлению емкости Li-ion  батарей. Но читая подобные вещи, необходимо хорошо понимать, что их в большинстве своем пишут люди, которые не только далеки от электротехники, но и литиевую батарею от свинцовой не отличат. Они даже не пишут. Нашел «умную мысль» в интернете, отрерайтил для заполнения своего сайта с полной потерей смысла, разместил. С этого сайта отрерайтил (лучше бы откопипастил) еще один умник. В результате получается не только бесполезная, но и опасная для здоровья каша из букв, следуя которой, можно превратить литиевую батарею в противопехотную мину (см. раздел «Техника безопасности»).

Так можно ли восстановить емкость литиевого аккумулятора? Увы, нет. Можно попытаться улучшить этот показатель. Но сделать из старого, отслужившего срок элемента работоспособный не получится. Чуть улучшить характеристики возможно, хотя и сомнительно. Такой «оживленный» элемент можно использовать для других целей – питание неэнергоемких самоделок и пр. Но по прямому назначению их применить будет невозможно. Ну а теперь рассмотрим предлагаемые варианты «полного» восстановления литий-ионного аккумулятора, большинство из которых повторять не просто не надо, а категорически не стоит.

Заморозка

Берем аккумулятор, снимаем с него наклейку и помещаем в морозилку. После глубокой (не менее 2-3 ч) заморозки достаем и сразу же устанавливаем в гаджет. Заряжаем 1 минуту (ровно!), после чего 4 часа — на отогрев до комнатной температуры, заряжаем и пользуемся новой батареей.

Аккумулятор в морозилке

Возникает справедливый вопрос – зачем ставить на зарядку вусмерть замороженный аккумулятор, который в таком состоянии не только что-то получить, но и отдать не может? Почему 1 минуту? Что произойдет за это время в замороженной до -15 батарее? Согласно каким законам физики аккумулятор, выработавший свой ресурс, после заморозки станет новым? И, в конце концов, зачем снимать наклейку?

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Что можно сказать по поводу такого метода? Результат такого эксперимента может быть любым: от полного отказа до воспламенения и взрыва. Но емкость элемента таким образом однозначно не увеличить.

Замыкание

Этот метод можно с уверенностью отнести к классической безголовости. Разбираем аккумулятор и замыкаем элемент напрямую, минуя контроллер. Замыкаем любым металлическим предметом – с этим согласны все «блогеры». А вот во времени замыкания мнения расходятся: от одной секунды — у самых осторожных, до полуминуты — у самых отважных.

Что тут можно сказать? Емкость батарейки таким диким методом никак не увеличить, а вот повредить внутреннюю структуру элемента вплоть до внутреннего замыкания — элементарно. Результат: либо тихий покойник, либо покойник, успевший нажать на кнопку самоликвидации. При внутреннем замыкании элемент обязательно загорится. А при замыкании на 30 сек и внутреннее замыкание не нужно – он успешно перегреется и взорвется или загорится.

Прокалывание

Очень часто при неправильной эксплуатации или после выработки своего ресурса литиевый аккумулятор вздувается. Вызвано это усиленным газообразованием. И если цилиндрические элементы в жестком корпусе обычно оснащаются предохранительными клапанами, то плоские в гибком корпусе таких клапанов не имеют. В результате батарея из плоской превращается этакого Винни-Пуха.

Вздувшаяся батарея мобильного устройства

Чем грозит такая неприятность? Естественно, повреждением гаджета – даже просто «распухнув», элемент способен буквально разорвать устройство. Но он также может взорваться или загореться. Народные умельцы нашли выход из этого положения. Берется иголка и… протыкается оболочка аккумулятора. Как бы для того, чтобы газы вышли. Пробитый аккумулятор укладывается между книжками, получившийся бутерброд — под ножку дивана. Сдулся? Заклеиваем дырку скотчем и пользуемся.

Но прежде чем хвататься за шило, подумаем – откуда появились газы? Появились они за счет необратимых химических процессов. Причину мы указали выше – неправильная эксплуатация или старость. И с тем и с другим диагнозом аккумулятор отработал свое. А если он еще и вздулся, то разговора о дальнейшей эксплуатации вообще не может быть. Но это цветочки. Ягодки в том, что, протыкая оболочку, мы запросто можем устроить внутреннее замыкание иглой.

Не удалось закоротить пластины иглой? Это может произойти из-за резкого сброса внутреннего давления и неизбежной деформации элемента. Результат все тот же – аккумулятор не оживает, но есть хорошие шансы выжечь себе глаза или поджечь гаджет. Причем загореться он может не сразу, а спустя некоторое время и без видимых причин. К примеру, ночью.

Вот проткнул так проткнул…

Так стоит ли протыкать? Все будет зависеть от отваги протыкальщика. Если вы человек мужественный и бесстрашный, а гаджет не жалко, то можно попробовать.

Заряд-разряд

Суть метода заключается в следующем: батарею подвергают глубокому разряду, потом полностью заряжают, потом снова разряжают, заряжают и т. д. Для зарядки можно использовать наше «глупое» зарядное устройство, уменьшив номинал резистора до 30 Ом. В качестве нагрузки для разрядки подойдет такой же резистор. Если аккумулятор имеет встроенный контроллер, то процесс предельно прост. Заряжаем, пока не сработает защита и напряжение на клеммах не подскочит до 5 В. Разряжаем, пока напряжение на клеммах не исчезнет вовсе.

Если аккумулятор не имеет встроенного контроллера, то тут несколько сложнее. Придется постоянно контролировать напряжение на клеммах. Поднялось до 4.2 вольта – зарядку прекращаем. Упало до 1.8-2 вольт – прекращаем разрядку.

Насколько эффективен такой метод? Увы, для литиевых батарей малоэффективен, а если элемент сильно изношен, то неэффективен вовсе. Тем не менее можно попробовать: хуже уже не будет.

Полезно! Если в нашем распоряжении есть многофункциональный прибор SkyRC iMax B6 mini, то лучше воспользоваться им. Устройство самостоятельно «погоняет» аккумулятор и при работе с батареей даже проведет автоматическую балансировку отдельных элементов, работающих в составе АКБ.

SkyRC iMax B6 mini  

Техника безопасности

Нельзя сказать, что литиевый аккумулятор опасен, но при неправильной эксплуатации или неаккуратном обращении он может причинить немало бед. Поэтому, эксплуатируя прибор, оснащенный литиевыми батареями, ремонтируя или восстанавливая аккумуляторы, придерживаемся следующих несложных правил:

  • не оставляем приборы с аккумуляторами или сами аккумуляторы в местах, где они могут нагреться до температуры выше 60 градусов Цельсия. К примеру, возле отопительных приборов или на солнце;
  • используем для зарядки батарей только штатные зарядные устройства. При использовании самоделок постоянно контролируем ток, напряжение и температуру батареи. В таком режиме ни в коем случае не оставляем элемент питания без надзора;
  • не разбираем элемент питания ни под каким предлогом. Если мы разбираем аккумулятор для замены, к примеру, контроллера, делаем это очень осторожно, чтобы не повредить корпус элемента;
  • избегаем совместного использования старых и новых элементов;
  • не используем элементы без платы защиты (контроллера). Исключение составляют устройства, имеющие собственную плату защиты;
  • категорически запрещено давить элементы питания, прокалывать, сверлить и применять другие виды механического воздействия, которые могут каким-либо образом нарушить оболочку батареи. Каждое даже малейшее повреждение литиевой батареи потенциально опасно и может привести к возгоранию или взрыву;
  • при зарядке нештатными ЗУ не поднимаем зарядный ток выше 0.5 от емкости — лучше меньше;
  • работая с аккумуляторами без контроллера, не допускаем их глубокого разряда и перезаряда.

И в завершение небольшое видео на тему «Как не надо ремонтировать аккумуляторы».

Вот мы и разобрались с особенностями литиевых аккумуляторов, выяснили, в каких случаях их ремонт и восстановление функционирования оправданы и возможны, а в каких — бесполезны и даже опасны.


Чем заряжать аккумуляторы 18650. Разновидности зарядных устройств

Какой ток заряжает li-ion 18650 и как правильно эксплуатировать аккумулятор? Как такому источнику питания продлить срок службы? Эти вопросы возникают в самых разных отраслях электроники. Литий-ионный элемент питания является разновидностью аккумулятора электрического тока. В 1991 году SONY выпустила батарею на рынок, и она сразу же начала широко применяться в бытовой и электронной технике.

Эти батареи служат источниками питания для мобильных телефонов, ноутбуков и видеокамер, электронных сигарет и электромобилей. Все современные литий-ионные батареи предотвращают перегревы и перезаряды. Однако проблема потери заряда при низкой температуре никуда не исчезла.

Среди неоспоримых достоинств литий-ионных аккумуляторов мы хотели бы выделить следующие:

  1. хорошая емкость;
  2. низкий саморазряд;
  3. нет необходимости в обслуживании.

Оригинальные зарядные устройства

Зарядное для литий-ионных батарей довольно напоминает зарядное устройство для свинцово-кислотных аккумуляторов. Отличаются они только тем, что литий-ионный источник питания имеет очень высокое напряжение на каждой банке и жесткие требования допусков к нему.

Если для свинцово-кислотных аккумуляторов можно допустить некоторые неточности в граничных напряжений во время заряда, то с литий-ионными элементами все обстоит совсем по-другому. Когда при подзарядке напряжение увеличивается до 4.2 В, подачу напряжения нужно прекратить.

Допускается превысить всего 0.05 В. Самое идеальное зарядное для литий-ионных аккумуляторов – это стабилизатор напряжения. Литий необходимо заряжать стабильным напряжением с ограничением тока в начале заряда. Это очень важно. Зарядка будет считаться оконченной, если при стабильном заряде в 4.2 В ток отсутствует либо же имеет совсем небольшую величину примерно в 5-7 мА.

Электрическая схема заряда элемента 18650

Вдобавок ко всему, при установке стабилизатора на радиатор Вы можете спокойно ставить на подзарядку свои батарейки, не боясь, что зарядное перегреется и потом загорится. Это может произойти с китайскими зарядными. Работа схемы довольно проста. Сначала аккумулятор заряжается постоянным током, определенным сопротивлением резистора R4.


Когда батарея будет иметь напряжение 4.2 В, то постоянный ток начнет ее заряжать. Когда он снизится до самых малых значений, светодиод в схеме перестанет гореть. Рекомендуемые токи для зарядки литий-ионных аккумуляторов не должны превышать 10% от объема самой батареи, чтобы увеличить срок эксплуатации Вашего источника питания. При номинале резистора R4 11 Ом ток в цепи составит 100 мА. Если используется сопротивление в 5 Ом, то ток зарядки будет 230 мА.

Как продлить жизнь Вашему 18650-му

Если Вы оставляете литий-ионную батарею на некоторое время без работы, то рекомендуем хранить аккумулятор отдельно от прибора, который они питают. Полностью заряженный элемент через некоторое время часть своего заряда утратит. Если аккумулятор с очень малым зарядом или разряжен вообще, то он может навсегда выйти из строя после длительной спячки. Оптимально хранить 18650-й на уровне заряда на 50 %.


Не стоит допускать полной разрядки и перезаряда батареи. Литий-ионные аккумуляторы не имеют эффекта памяти. Такие элементы питания заряжаются только тогда, когда заряд полностью иссякнет. Это также продлит работоспособность элемента питания.

Литий-ионки не любят жару и холод. Оптимальные температуры для аккумулятора колеблются в диапазоне от 10 до 25 градусов. Холод не только уменьшит время работы, но и разрушит химическую систему элемента питания. Наверное, каждый замечал, как в мороз мгновенно падает уровень заряда в телефоне.

Если Вы собираетесь зарядить литий-ионную батарею зарядным устройством из магазина, обратите внимание, чтобы оно не было китайским. Очень часто они собраны из дешевых материалов и не всегда по правильной технологии.

Это, в свою очередь, может привести к возгоранию. При использовании подобных элементов питания всегда соблюдайте правила эксплуатации и хранения для исключения возможности взрыва от перегрева или же полной неисправности. Это продлит срок эксплуатации литий-ионного аккумулятора и избавит Вас от ненужных затрат.

Берегите Вашу батарею! Она – Ваш помощник.

18.10.2018

Литий-ионные аккумуляторы типоразмера 18650 широко используются в качестве источников питания для разнообразных устройств бытовой и электронной техники. В виде независимых источников питания и в составе аккумуляторных батарей они успешно применяются в ноутбуках, шуруповертах, радиоприемниках, фонариках, электронных сигаретах и многих других устройствах. Важными преимуществами литиевых источников питания выступают значительная емкость, малый саморазряд, безопасность использования и отсутствие потребности в обслуживании.

Имеют высокий эксплуатационный ресурс. Но такие факторы как глубокий разряд, перезаряд, использование при низких температурах и несоблюдение правил заряда приводят к ускоренному износу аккумуляторов и их преждевременному выходу из строя. Поэтому важно знать, каким током заряжать Li-ion аккумулятор 18650, использовать подходящее по всем параметрам зарядное устройство и соблюдать все правила подзарядки, чтобы избежать их перегрева и быстрой потери свойств.

Как зарядить высокотоковые аккумуляторы 18650

Для корректной зарядки Li-ion аккумуляторов 18650 важно:


Для аккумуляторов типоразмера 18650 бывают различных конфигураций. Например, есть модели с зарядным током 1 А, вмещающие 1 элемент питания, и варианты с несколькими «гнездами», индикатором уровня зарядки, системой безопасности и максимальным напряжением 4,2 В.

Выбираем оптимальный ток заряда

Теперь обсудим, каким током лучше заряжать аккумуляторы 18650. Возможные варианты – 0,5 А и 1 А. При силе зарядного тока 1 А процесс подзарядки проходит быстрее, чем при 0,5 А, но для сохранения эксплуатационного ресурса элементов питания более предпочтителен плавный заряд. Поэтому оптимальный ток заряда – 0,5 А. Если нужно ускорить процесс подзарядки, можно увеличить зарядный ток до 1 А, но без особой необходимости этого делать не стоит.

Для подзарядки литиевых элементов питания желательно использовать оригинальные зарядные устройства, рассчитанные на применение с конкретной моделью аккумулятора. Они четко понимают, какая мощность необходима конкретному элементу питания, и своевременно останавливают процесс зарядки. Что касается силы тока, оригинальные зарядные устройства вначале осуществляют подзарядку сильным током, а ближе к завершению процесса подзарядки уменьшают его. Такой алгоритм помогает избежать перегрева элементов питания и продлить срок их службы.

Аккумуляторы

Каким током заряжать li ion аккумулятор 18650? Как правильно эксплуатировать такую батарею. Чего литий-ионные источники тока бояться и как такой батарейке продлить срок службы? Подобные вопросы могут возникать в самых разных отраслях электроники.

И если вы решили собственноручно собрать ваш первый фонарик или электронную сигарету, то вам обязательно нужно ознакомиться с правилами работы с подобными источниками тока.

Литий-ионный аккумулятор – это тип аккумулятора электрического тока, который с 1991 года, после того как на рынок его презентовала компания SONY, приобрел широчайшее распространение в современной бытовой и электронной технике. Как источник питания подобные батареи используются в сотовых телефонах, ноутбуках и видеокамерах, как источник тока для электронной сигареты и электромобиля.

Недостатки этого типа батарей начинаются с того, что литий-ионные батареи первого поколения были взрывом на рынке. Не только в прямом, но и в переносном смысле. Эти батареи взрывались.

Объяснялось это тем, что внутри использовался анод из металлического лития. В процессе многочисленных зарядок и разрядок такого аккумулятора, на аноде появлялись пространственные образования, которые приводили к замыканию электродов, а как следствие – к возгоранию или взрыву.

После того, как этот материал заменили графитом, от подобной проблемы удалось избавиться, но могли еще возникать проблем на катоде, который был выполнен из оксида кобальта. При нарушении условий эксплуатации, а точнее перезарядке проблема могла повториться. Исправлено это было с началом использования литий-ферро-фосфатных батарей.

Все современные литий-ионные батареи предотвращают перегрев и перезаряд, но остается проблема потери заряда при низких температурах пользования приборами.

Среди неоспоримых преимуществ литий-ионных батарей, хотелось бы отметить следующие:

  • высокая емкость батареи;
  • низкий саморазряд;
  • отсутствие необходимости обслуживания.

Оригинальные зарядные устройства

Зарядное устройство для литий-ионных аккумуляторов довольно похоже на зарядное для свинцово-кислотных батарей. Разница состоит лишь в том, что у литий-ионного аккумулятора очень высоки напряжения на каждой банке и более жесткие требования допусков по напряжению.

Банкой такой аккумулятор называют из-за внешней схожести с алюминиевыми банками из-под напитков. Самым распространенным элементом питания подобной формы является 18650. Такое обозначение аккумулятор получил благодаря своим размерам: 18 миллиметров диаметра и 65 миллиметров в высоту.

Если для свинцово-кислотных аккумуляторов допустимы некоторые неточности в указании граничных напряжений во время зарядки, с литий-ионными элементами все обстоит куда конкретнее. В процессе зарядки, когда напряжение увеличивается до 4.2 Вольта, подача напряжения на элемент должна прекратиться. Допустимая погрешность всего 0.05 Вольт.

Китайские зарядки, которые можно встретить на рынке, могут рассчитываться на элементы питания на разных материалах. Li-ion, без ущерба для его работоспособности, можно заряжать током 0.8 А. В этом случае нужно очень внимательно контролировать напряжение на банке. Желательно не допускать величины выше 4.2 Вольт. Если в сборке с батареей будет иметься контроллер, то переживать ни о чем не стоит, контроллер все сделает за вас.

Самым идеальным зарядником для литий-ионных батарей будет стабилизатор напряжения и ограничительно тока в начале заряда.

Литий заряжать нужно стабильным напряжением и ограничением тока в начале заряда.

Самодельное зарядное

Чтобы заряжать 18650 можно купив универсальное зарядное устройство, и не мучиться вопросом, как проверить мультиметром необходимые параметры. Но такое приобретение вылетит вам в копеечку.

Цена на такое устройство будет варьироваться в районе 45 долларов США. А можно все-таки потратить 2-3 часа и собрать зарядное устройство своими руками. Причем это зарядное будет дешевым, надежным и будет автоматически отключать ваш аккумулятор.

Детали, которые сегодня мы будем использовать для создания нашего зарядного устройства, есть у каждого радиолюбителя. Если под рукой не оказалось радиолюбителя с нужными деталями, то на радиорынке вы сможете купить все детали не больше чем за 2-4 доллара. Схема, которая собрана правильно и аккуратно смонтирована, начинает работу сразу же и не нуждается в каких-либо дополнительных отладках.

Электрическая схема заряда аккумулятора 18650.

В довесок ко всему, при установке стабилизатора на подходящий радиатор, вы сможете спокойно ставить заряжаться свои аккумуляторы без страха того, что зарядка перегреется и загорится. Чего совершенно нельзя сказать о китайских зарядных устройствах.

Схема работает довольно просто. Сперва, аккумулятор нужно зарядить постоянным током, который определяется сопротивлением резистора R4. После того, как аккумулятор будет иметь напряжение 4.2 Вольта, начинается зарядка постоянным напряжением. Когда ток зарядки снизится до очень маленьких значений, светодиод в схеме перестанет гореть.

Токи, которыми рекомендуют заряжать литий-ионные аккумуляторы, не должны превышать 10% от емкости аккумулятора. Это позволить увеличить срок службы вашего элемента питания. При номинале резистора R4 – 11 Ом, ток в цепи будет составлять 100 мА. Если вы используете сопротивление в 5 Ом, то ток зарядки будет уже 230 мА.

Как продлить жизнь вашему 18650

Разобранный аккумулятор.

Если ваш литий-ионный аккумулятор вам приходится оставлять на некоторое время без работы, то лучше хранить элементы питания отдельно от устройства, которое они питают. Заряженный полностью элемент, со временем часть своего заряда утратит.

Элемент, который заряжен очень мало, или разряжен вовсе, может навсегда потерять работоспособность после длительной спячки. Оптимальным будет хранение 18650 на уровне заряда около 50 процентов.

Не стоит допускать полного разряда и перезаряда элемента. У литий-ионных элементов питания полностью отсутствует эффект памяти. Желательно заряжать такие элементы питания до того момента, когда их заряд полностью иссякнет. Это тоже способно продлить работоспособность аккумулятора.

Литий-ионки не любят ни жары, ни холода. Оптимальными температурными условиями для этих элементов питания будет диапазон от +10 до +25 градусов Цельсия.

Холод, может не только уменьшить время работы элемента, но и разрушить его химическую систему. Думаю, каждый из нас замечал, как на холоде быстро падает уровень заряда в мобильном телефоне.

Вывод

Резюмируя все вышесказанное, хочется заметить, что если вы собираетесь зарядить литий ионный аккумулятор с помощью зарядного устройства магазинного производства, обращайте внимание на то, чтобы это было не китайское производство. Очень часто эти зарядные собраны из дешевых материалов и не всегда в них соблюдается нужная технология, что может привести к нежелательным последствиям в виде возгораний.

Если вы хотите собирать устройство собственноручно, то заряжать литий-ионный аккумулятор нужно током, который будет составлять 10% от емкости аккумулятора. Максимальной может быть цифра в 20 процентов, но эта величина уже нежелательна.

При пользовании подобными элементами питания стоит соблюдать правила эксплуатации и хранения, чтобы исключить возможность взрыва, к примеру, от перегрева, или же выхода из строя.

Соблюдение условий и правил эксплуатации продлит срок службы литий-ионной батареи, и как следствие – избавит вас от ненужных финансовых затрат. Батарея – ваш помощник. Берегите ее!

19.10.2018

От того, сколько, в каких условиях и какой зарядкой заряжать аккумулятор 18650 литий-ионного типа, напрямую зависит его эксплуатационный ресурс. На срок службы элементов питания негативно влияет глубокий разряд, перезаряд, эксплуатация при низких температурах, хранение в разряженном состоянии и использование неподходящего по параметрам зарядного устройства. Правила подзарядки Li-ion аккумуляторов, прежде всего, зависят от наличия или отсутствия защитной микросхемы (драйвера).

Как правильно заряжать аккумулятор 18650 без защитной микросхемы?

При отсутствии защитной микросхемы Li-ion аккумуляторы важно беречь от перезаряда и сильного разряда – не допускать, чтобы напряжение становилось ниже 2,9 В. Заряжать такие источники питания нужно специальными зарядными устройствами, способными информировать пользователей о полной подзарядке аккумулятора.

После такого информирования элемент питания нужно извлечь из зарядного устройства, иначе возникнет перезаряд. При необходимости, извлечь элемент питания можно и раньше, до момента полного заряда. Заряжать незащищенные аккумуляторы зарядным устройством, не сообщающим о полном заряде элемента питания, опасно. При перезаряде аккумуляторы без защитной микросхемы перегреваются и могут воспламениться.

Методика зарядки Li-ion аккумулятора 18650 с защитой

Аккумуляторы с защитной микросхемой оснащены платой контроля, оберегающей элемент питания от перезаряда, сильного разряда и короткого замыкания. Подзарядка происходит следующим образом:

  1. Аккумулятор устанавливается в зарядное устройство (ЗУ) с соблюдением полярности – плюс подсоединяется к плюсу, минус к минусу.
  2. ЗУ подключается к сети 220 В или 12 В (для автомобильной модели).
  3. О протекании процесса подзарядки информирует индикатор статуса зарядки. Как правило, красный индикатор говорит о протекании процесса подзарядки, а зеленый – о его завершении.
  1. Нельзя заряжать Li-ion элементы в не предназначенных для них зарядных устройствах. Подходящие ЗУ являются источниками постоянного напряжения 5 В, отдают ток заряда величиной 0,5–1 емкости аккумулятора, автоматически начинают подзарядку от 0,05 В и прекращают процесс зарядки при 4,2 В.
  2. Аккумулятор, принесенный в помещение с мороза, нужно выдержать несколько часов при комнатной температуре, а затем заряжать.
  3. Перед длительным хранением аккумулятору нужно обеспечить уровень заряда 40–50%.
  4. Напряжение Li-ion аккумулятора должно всегда находиться в пределах от 2,7–3 до 4,2 В. Эти значения отражают минимальный и максимальный уровень заряда – 0% и 100%. Если напряжение даже на короткий срок выйдет за эти пределы, срок службы аккумулятора значительно сократится.

Как зарядить полностью севший Li-ion аккумулятор 18650?

Если литий-ионный аккумулятор 18650 долго находился в разряженном состоянии, напряжение упало ниже допустимой границы, и защитный модуль отключил банку от клемм, зарядное устройство может отказаться заряжать такой элемент питания. Воспринимая низкое напряжение как внештатную ситуацию, оно блокирует процесс зарядки. Поэтому полностью севший Li-ion аккумулятор необходимо «толкнуть» – повысить напряжение на нем до 3,1–3,2 В.

Можно взять зарядное устройство от мобильного телефона, выдающее напряжение 5 В, и резистор 62 Ом (0,5 Вт) для ограничения зарядного тока. Нужно подсоединить их к аккумулятору, прикрепив проводки к клеммам неодимовыми магнитиками. Сильное нагревание резистора свидетельствует о наличии внутри КЗ.

Если подзарядка не началась (резистор не греется), возможно, произошел внутренний обрыв, или неисправна плата защиты. Можно попробовать убрать внешнюю полимерную оболочку и подсоединить созданную зарядку к банке, четко соблюдая полярность. Если заряд пойдет – нужно дождаться, чтобы напряжение поднялось до 3,1–3,2 В и далее воспользоваться штатной зарядкой.

Желающим собрать зарядник своими руками мы предлагаем ознакомиться с нашей предыдущей статьей, где приведена .

Сегодня одним из самых популярных форматов батарей для различных электронных устройств является 18650. Он требует при эксплуатации правильного обращения. От этого зависит долговечность и функциональность этого источника питания.

Как заряжать аккумулятор 18650, следует рассмотреть подробно. В этом помогут разобраться советы специалистов.

Общая характеристика

Сегодня применяется множество типоразмеров и Одним из наиболее востребованных является аккумулятор типа 18650. Он имеет цилиндрическую форму. Внешне такая батарея напоминает пальчиковые аккумуляторы. Только представленный вид немного больше по габаритам, чем привычные устройства.

В ходе эксплуатации обязательно возникает вопрос о том, как заряжать аккумулятор 18650. Это несложная процедура. Однако отнестись к ней нужно со всей ответственностью. От правильности проведения зарядки зависит долговечность применения батареи.

Аккумуляторы представленного типа применяются сегодня для питания ноутбуков, а также электронных сигарет. Это сделало представленный типоразмер популярным. Также подобные аккумуляторы устанавливают в фонарики и лазерные указки. Чаще всего представленные приборы выпускают литий-ионного типа. Этот вид аккумуляторов доказал свою эффективность и простоту при эксплуатации.

Особенности

Рассматривая, как заряжать аккумулятор 18650 для фонаря, электронной сигареты и прочих устройств, необходимо описать принцип его функционирования. Представленный типоразмер выпускается в категории литий-ионных батарей. Он имеет незначительные габариты. Высота составляет всего 65 мм, а диаметр — 18 мм.

Внутри устройства есть металлические электроды, между которыми циркулируют ионы лития. Это позволяет вырабатывать электрический ток для питания техники. При низком или высоком заряде на одном из электродов образуется больше ионов. Они нарастают на материал, меняя его объем и характеристики.

Чтобы батарея проработала долго и полноценно, необходимо не допускать появления глубокого или слишком высокого заряда. В противном случае прибор быстро выйдет из строя. В зависимости от номинальных показателей аккумулятора применяют специальные типы зарядных устройств.

Защита аккумулятора

Сегодня представленные разновидности аккумуляторов выпускаются в комплекте со специальным контроллером или имеют в своем составе марганец. Раньше выпускались батареи без защиты. Как заряжать аккумулятор 18650 правильно в этом случае, нужно было знать для собственной же безопасности.

Дело в том, что устройство, в котором отсутствовала специальная защита, могло сильно перегреться при неправильной или слишком длительной зарядке. В этом случае могло возникнуть короткое замыкание и даже возгорание или Сегодня применение таких конструкций кануло в Лету.

Все аккумуляторы литий-ионного типа имеют в своей конструкции защиту от подобных негативных явлений. Чаще всего применяется специальный контроллер. Он следит за уровнем емкости аккумулятора. При необходимости он просто отключает батарею. В некоторых типах конструкций в состав входит марганец. Он значительно влияет на химические реакции внутри. Поэтому таким аккумуляторам контроллер не нужен.

Особенности зарядки

Многие покупатели интересуются, как заряжать аккумулятор 18650 Li-Ion (3,7V). Нужно ознакомиться с особенностями такого процесса. Он достаточно простой. Современные производители изготавливают специальные устройства, которые контролируют зарядку аккумулятора.

Литий-ионные батареи практически не имеют эффекта памяти. Это обеспечивает ряд правил при зарядке и эксплуатации батарей. Эффектом памяти называется постепенное снижение емкости аккумулятора при неполном разряде. Это свойство было характерно для батарей никель-кадмиевого типа. Их нужно было разряжать полностью.

Наоборот, не терпят глубокой разрядки. Их нужно заряжать до 80% и разряжать до 14-20%. В таких условиях прибор будет служить максимально долго и продуктивно. Наличие специальных плат в конструкции позволяет упростить этот процесс. Когда уровень емкости опустится до критического значения (чаще всего до 2,4 В), прибор отключает батарею от потребителя.

Проведение зарядки

Многие покупатели различной электротехники интересуются, как заряжать аккумулятор 18650 Li-Ion (3,7V, 6800mah). Этот процесс осуществляется при помощи специального устройства. Оно начинает зарядку при напряжении 0,05 В, а заканчивает при максимальном уровне 4,2 В. Выше этого значения заряжать аккумулятор представленного типа нельзя.

Можно заряжать батареи 18650 током 0,5-1А. Чем он больше, тем быстрее проходит процесс. Однако более плавный ток предпочтительнее. Лучше не ускорять процесс зарядки, если аккумулятор не нужно применять срочно.

Процедура занимает не более 3 часов. После этого прибор отключит батарею. Это предотвращает ее перегрев и выход из строя. В продаже представлены устройства для зарядки, которые не могут контролировать протекание этого процесса. В этом случае пользователь должен сам следить за его выполнением. Специалисты рекомендуют приобретать приборы, которые сами управляют процессом. Это является безопасным методом.

Параметры

В продаже представлены аккумуляторы с разными показателями емкости. Это влияет на продолжительность работы и процесс зарядки. Малой емкостью обладают батареи 1100-2600 мАч. Наиболее популярными в этой категории являются изделия фирмы UltraFire. Этот производитель изготавливает качественные фонари. Поэтому у потребителей резонно возникает вопрос о том, как заряжать аккумулятор 18650 UltraFire.

В этом случае следует отметить, что приборы емкостью до 2600 мАч нужно заряжать током 1,3-2,6 А. Этот процесс осуществляется в несколько стадий. В начале зарядки на батарею поступает ток, который составляет 0,2-1 от величины емкости аккумулятора. В этот момент напряжение поддерживается на уровне около 4,1 В. Эта стадия длится около часа.

Во время второй стадии напряжение удерживается на постоянном уровне. У некоторых производителей зарядных устройств эта процедура может проводиться при помощи переменного тока. Также следует учесть, что при наличии графитового электрода в конструкции батареи, ее нельзя заряжать током больше 4,1 В.

Разновидности зарядных устройств

Существует простая методика, как заряжать аккумулятор Для этого потребуется купить определенный тип устройства. В продаже представлен большой выбор зарядной техники для батарей этого типа. Самым простым и недорогим является прибор для одного аккумулятора. Уровень тока в нем может достигать 1 А.

Большой популярностью пользуются приборы, в которые можно поместить сразу несколько аккумуляторов. Чаще всего подобные конструкции снабжены индикатором. Некоторые модели могут применяться и для других разновидностей батарей литий-ионного типа. Их посадочные гнезда имеют соответствующую конструкцию. Такие приборы отличаются приемлемой стоимостью и высокой функциональностью.

Также в продаже представлены универсальные зарядные устройства. Они могут заряжать батареи не только литий-ионного типа, но и прочие разновидности. Подобные агрегаты нужно правильно настроить перед проведением процедуры.

Самодельный прибор

У некоторых пользователей возникает вопрос о том, как заряжать аккумулятор 18650 в экстренной ситуации, когда специального прибора нет под рукой. В этом случае его можно сделать самостоятельно. Подойдет старое зарядное устройство от телефона (например, «Нокиа»).

Нужно снять оболочку провода и разъединить провода минус (черный) и плюс (красный). При помощи пластилина можно прикрепить оголенные контакты к батарее. Нужно соблюдать соответствующую полярность. Далее устройство включают в сеть.

Такая зарядка может длиться около часа. Этого будет вполне достаточно, чтобы аккумулятор смог обеспечить правильную работу техники.

Специалисты рекомендуют ответственно отнестись к процессу зарядки и От этого зависит ее долговечность. Разряжать батарею полностью и заряжать ее до 100% не стоит. Лучше ограничить процесс зарядки до уровня 90%. Однако периодически (раз в три месяца) можно проводить полную разрядку и полную зарядку аккумулятора. Это необходимо для выполнения калибровки контроллера.

Хранить батарею можно достаточно долго. Для этого нужно ее зарядить на 50%. В таком состоянии она может находиться около месяца. При этом в помещении не должно быть слишком жарко или слишком холодно. Идеальными условиями считается удержание температуры на уровне 15 ºС.

Рассмотрев, как заряжать аккумулятор 18650, можно правильно обслуживать и эксплуатировать батарею. В этом случае срок ее использования будет значительно дольше.

Аккумулятор 18650: Характеристики и Как заряжать

Аккумулятор li ion 18650 представляет собой батарейку цилиндрической формы. Она мало чем отличается от обычных, элементов питания АА «пальчиковых», но имеют большие размеры. В длину они 66 мм, а в диаметре 18 мм.

Виды и типы аккумуляторов Li Ion 18650

Все аккумуляторы 18650 можно разделить на виды по материалу катода. Именно от этого компонента зависят основные эксплуатационные характеристики элементов питания: емкость и возможный ток разряда.

Самыми распространенными являются литий-кобальтовые аккумуляторные батареи. От других элементов питания они отличаются большим значением емкости. Поэтому их можно дольше эксплуатировать.

Существуют еще группа литий-марганцевых аккумуляторных батарей. По сравнению с литий-кобальтовыми, они имеют меньшую емкость, но при этом отличаются более высоким разрядным током.

Последняя группа – это литий-феррофосфатные элементы питания. Несмотря на то, что они не имеют большую емкость и не отличаются высоким напряжением, их можно эксплуатировать более 1000 циклов. Кроме этого, до полной зарядки необходимо подержать батарейки в станции 1 час.

Аккумуляторы 18650 с защитой

Требования безопасности, предъявляемые к эксплуатации литий-ионных аккумуляторных батарей, гласят, что напряжение внутри элементов питания должно находиться в диапазоне 2,5-4,2 вольта. Самостоятельно очень сложно контролировать этот параметр, поэтому специально для этого придумана плата с защитой. Этот элемент предотвращает выход напряжения за указанный диапазон.

Производители припаивают эту плату к выводам, используя стальную или алюминиевую ленту. Крупные заводы питательных элементов редко выпускают подобные защиты. В устройствах, для которых они изготавливаются, имеются контроллеры заряда-разряда. Это батареи для ноутбуков, шуруповертов и других сложных блоков.

Больше всего защищенных литий-ионных батарей 18650 выпускают Китайские производители. На незащищенный аккумулятор припаивают защитную плату и оборачивают в специальный термозащитный материал. Их длина, из-за использования платы, на несколько миллиметров увеличивается.

Все устройства, на которых нет элемента для контроля состояния за батареей, лучше комплектовать защищенными аккумуляторами. В противном случае они могут выйти из строя, разрядившись в ноль или взорваться. При этом защита не сможет предотвратить перегрев элемента питания. Она контролирует состояние напряжения.

Как расшифровывается маркировка

В качестве примера можно рассмотреть литий-ионную батарею ICR18650-26F M.

  1. Первый символ «I» используется на всех элементах данного типа, которые создаются по одной технологии;
  2. Вторая буква позволяет понять, из какого материала выполнен катод. Для литий-ионных батарей это может быть кобальт – С, марганец – М, железофосфат – F;
  3. Следующая буква – R – расшифровывается как аккумулятор;
  4. Цифры 18650 можно разделить на два блока: 18 и 65. Это длина и диаметр соответственно;
  5. Последняя цифра 0 – это форма, то есть цилиндр.

При этом у различных производителей маркировка может сильно отличаться.

Где применяются батарейки 18650

Сфера применения элементов питания и частота их использования намного шире, чем кажется многим. Из-за того, что они закрываются в специальную защиту, их не всегда видно.

Устанавливаются в следующие устройства:

  • Ноутбуки;
  • Фонарики;
  • Power Bank;
  • Различные гаджеты.

Они применяются везде, где обычные пальчиковые батарейки справиться с задачей не способны. Батарейки li ion 18650 отличаются большей емкостью и напряжением, их можно много раз перезаряжать и использовать заново.

Как определить плюс и минус

По сравнению с элементами питания АА и ААА, в литий-ионных нет такой заметной внешней разницы между плюсовой и минусовой клеммы, но разобраться достаточно легко:

  • На «плюсовой» стороне имеются небольшие отверстия в количестве 3-4 штук.
  • «Плюсовая» сторона немного выступает».
  • «Минус полностью плоский.

Общие характеристики 18650

Емкость (mAh)Выходное напряжение (В)Максимальный ток (А)Защитная плата
11003.3+/-
13003.618+/-
16203,6-3,720+/-
20003,6-3,720-30+/-
21003,6-3,720-30+/-
22003,6-3,720-30+/-
24003,6-3,720-30+/-
25003,6-3,720-35+/-
26003,6-3,720-35+/-
28003,6-3,720-35+/-
30003,6-3,720-35+/-
31003,6-3,720-35+/-
32003,6-3,720-35+/-
33503,6-3,720-35+/-
34003,6-3,720-35+/-
35003,6-3,720-35+/-
36003,6-3,720-35+/-

В таблице приведены наиболее популярные аккумуляторы.

Размеры с защитой 66,5*18 мм и 66*18 мм без защиты. Вес в среднем около 40 грамм.

Основные производители: Samsung, Fenix, Avant, LG, Panasonic, Olight, Camelion, Proconnect, Rombica, SANYO и SONY.

Как правильно выбрать для себя батарейку 18650

Литий-ионные батареи отличаются друг от друга по некоторым характеристикам. Из-за этого необходимо обращать внимание на их тип и технические характеристики, прежде чем совершать покупку.

При выборе аккумулятора li ion 18650 необходимо обращать внимание на следующие характеристики:

  • Энергоемкость;
  • Номинальный ток;
  • Напряжение
  • Склонность к перегреву.

Если необходимо приобрести батарейки с большей автономностью, то необходимо обращать внимание на емкость, которая измеряется в mAh. Но, чем выше будет показатель емкости, тем меньше будет ток. Поэтому жертвуя одним, можно приобрести другое. Если говорить простым языком, то сила тока влияет на склонность элемента питания перегреваться.

Напряжение аккумуляторной батареи зависит от заряда. Напряжением может быть номинальным, минимальным, максимальным и реальным. Начальное напряжение производитель указывает на упаковке. Важно, чтобы его значение не опускалось ниже 2,4 Вольт, иначе батарею будет крайне сложно реанимировать. При использовании аккумуляторов, которые плохо выдерживают высокую температуру, можно стать свидетелем ее взрыва.

Рейтинг аккумуляторных батарей исходя из опыта эксплуатации

Схемы соединения аккумуляторов

К батареям можно приобрести кейсы, с помощью которых несколько элементов соединяются в одну большую. Если соединить несколько таких элементов питания с помощью кейсов параллельно, то емкость увеличится на столько, сколько аккумуляторов будет подсоединено 3600*3=10800 mAh. При этом напряжение будет равно напряжению одной батареи. От емкости зависит длительность их использования.

Параллельное соединение аккумуляторов 18650

Их можно соединить последовательно. В этом случае напряжение сложится, а емкость останется равной одной батареи. Сделать это можно с помощью специального кейса. Соединяя 3 элемента питания по 3,7 v мы получим 11,1 вольтовый аккумулятор 3600 мАh.

Последовательное соединение аккумуляторов 18650

Как проверить емкость АКБ

Существует несколько эффективных способов узнать емкость любого аккумулятора. Некоторые из них не требует особых затрат или специальной аппаратуры, а только нехитрые математические вычисления.

Точность таких методов не так высока, как при использовании специальных устройств, однако они позволяют узнать приблизительную емкость. Для многих этого будет достаточно.

Итак, для вычисления емкости бесплатным методом необходимо использовать известный ток. В характеристиках аккумулятора имеется информация о токе. Батарея, имеющая емкость 3600 заряжается на протяжении 36 часов током 100 мАч. Это значит, что конечный результат получается за счет перемножения двух составляющих: времени и тока. Поэтому, зная, сколько требуется для полной зарядки, можно узнать емкость.

Для измерения емкости другим способом, необходимо будет потратить деньги. Существует множество интеллектуальных зарядных устройств, с помощью которых можно быстро измерить емкость. Их можно приобрести в специализированном магазине или на aliexpress. Они используются для измерения различных показателей, а не только емкости.

Устройство измеряющее реальную емкость

Для осуществления третьего способа понадобятся такие детали, как АКБ, часы, амперметр с фонариком. Необходимо вставить батарейку в фонарик, включить его на максимальную мощность. Амперметр необходимо для измерения тока. Если фонарик будет светить 20 часов с потреблением тока в 100 мА, то получаем 20*100= 2000 мАч.

Как заряжать и каким током

Литий-ионные элементы могут заряжаться различными станциями. Главное, чтобы значение напряжения было 5 В, а тока от 0,5 до 1 от номинальной емкости батареи. Зарядка литиевого элемента, имеющего емкость 2600 мАч, производится током значением от 1,3 до 2,6 ампер.

Весь период зарядки можно разделить на несколько этапов. Сначала блок, используя ток 0,2 от величины емкости, производит зарядку на протяжении часа. При этом значение напряжения варьируется в пределах 4,1-4,2 вольта. Далее напряжение возрастает.

Что бы не забивать себе голову стоит просто купить зарядное устройство для пальчиковых аккумуляторов.

Как восстановить аккумулятор 18650

Аккумулятор 18650 восстановить можно только в том случае, если он не полностью разрядился. Иногда даже не полностью разряженную батарею реанимировать сложно. Но есть один далеко не всем известный вариант с отключением платы.

Выполняется он так:

  • Снимается защита в виде платы.
  • С помощью тестера измеряется напряжение на выходах. Его значение должно находиться в диапазоне 2 -2,5 В.
  • Используя зарядное устройство регулировкой тока, необходимо подключить к АКБ, выставив 100 мА и 4,2В.

Если батарея начнет заряжаться, значит, она еще жива и ее можно восстановить.

Остались вопросы по Аккумуляторам 18650 или есть что добавить? Тогда напишите нам об этом в комментариях, это позволит сделает материал более полезным, полным и точным.

18650 Зарядное устройство — Зарядные устройства для литий-ионных аккумуляторов 3,7 В — 18650BatteryStore.com

Зарядное устройство QSO S2 на 2 отсека

QSO S2 Зарядное устройство с 2 отсеками

Обычная цена
7 долларов.99

Цена продажи
7,99 доллара США

Обычная цена

Цена за единицу
/ за

распродажа Распроданный

Настенный адаптер XTAR 18 Вт QC 3.0

XTAR 18 Вт QC 3.0 Настенный адаптер

Обычная цена
5,99 доллара США

Цена продажи
5,99 доллара США

Обычная цена

Цена за единицу
/ за

распродажа Распроданный

Зарядное устройство Basen BO-2

Зарядное устройство Basen BO-2

Обычная цена
9 долларов.99

Цена продажи
9,99 $

Обычная цена

Цена за единицу
/ за

распродажа Распроданный

Зарядное устройство Basen BO-4

Зарядное устройство Basen BO-4

Обычная цена
14 долларов.99

Цена продажи
14,99 $

Обычная цена

Цена за единицу
/ за

распродажа Распроданный

Используйте стрелки влево / вправо для навигации по слайд-шоу или проведите пальцем влево / вправо при использовании мобильного устройства

Безопасность

— Как безопасно зарядить 3 литиевые батареи 18650 для использования в одной упаковке?

Я устанавливаю стробоскопы на свой универсальный велосипед, потому что я устал от людей, которые чуть не сбивают меня с ног только потому, что они полусонные в темные зимние дни.Яркий свет помогает «слепым» водителям видеть вас. Ни один полицейский никогда не прослушивал меня по поводу моего заднего фонаря, и если они выяснят мой случай по поводу стробоскопов, мне придется указать, что это «чрезвычайная ситуация», когда водители автомобилей не видят меня в полдень на тихоокеанском северо-западе.

У меня есть белый луч 9-ваттной формы (по бокам) и для передней части и два янтарных 4-ваттных строба по бокам, а для задней части у меня есть большой L.E.D. Задний фонарь грузовика я использую с мигалкой (для сигналов поворота), но я устанавливаю стробоскоп для заднего фонаря.Он работает на пакете 18650 из 3 ячеек. Я буду использовать 4-элементный блок для остальных трех источников света. Потому что новые стробоскопы могут потреблять до 24 вольт. Если характеристики вашего света говорят, что он потребляет до 14,8 В или меньше, вы должны использовать 3-элементный блок.

Если вы собираете батарею и хотите использовать печатную плату, электроника теперь настолько мала, что в эти защитные платы встроены схемы балансировки заряда, поэтому зарядка будет даже безопаснее. Но новому I-Max B6 не понравится путаница из большего количества схем.

Зарядное устройство I-Max B6 (старого образца) заряжается через цепи защиты, хотя в инструкции сказано, что это не так; Я установил свой на 3 ячейки 3,6 В на ячейку, чтобы ячейки прослужили дольше.

Их следует заряжать не более чем до 4,2 В или даже 4,1 В или даже меньше, если это возможно. Недавно было доказано, что чем дольше элемент батареи держит высокое напряжение, тем быстрее он вырождается. Так что, если вам нужен полный заряд 4,2 вольта, используйте его правильно. Если вы заряжаете их примерно до 5 вольт каждый или больше, вы напрашиваетесь на проблемы !!!

3 Последовательные элементы можно заряжать быстрее, чем отдельные элементы, потому что таким образом они имеют большее сопротивление.Я установил свое зарядное устройство на 1 ампер. Таким образом, 4-элементный блок может заряжаться быстрее при более высоком напряжении. (1/3 В на каждую ячейку), если вам нужно быстрее зарядить, попробуйте при более высоком напряжении. Но если использовать дешевые китайские элементы, заряжайте их в стальном ящике для боеприпасов !! Если они вырабатывают достаточно тепла, чтобы почувствовать, у вас могут возникнуть опасные проблемы. Если в батарее нет проводов к балансировочным пробкам, через некоторое время элементы выровняются, так что не беспокойтесь об этом.

Новый химический состав батареи {LiFePO4} безопаснее, чем старые литий-ионные элементы 18650.Но я не знаю, как они будут заряжаться в I-Max B6. NiMH намного безопаснее, но намного тяжелее.

18650 литий-ионный аккумулятор Revival

Здесь, в Hackerfarm, мы используем литий-ионные аккумуляторные батареи 18650 практически для всего. Мы также ненавидим выбрасывать аккумуляторные батареи, если мы можем этого избежать. Недавно мы просматривали запас литий-ионных аккумуляторов и обнаружили, что некоторые из них полностью разряжены и не подлежат восстановлению. Зарядные устройства, к которым мы их подключили, вообще не заряжались.Для литий-ионных батарей напряжение полностью заряженного элемента составляет около 4,2 В, а для разряженного элемента — около 3,0 В. В глубоко разряженном элементе упало ниже 2,5 В, и большинство зарядных устройств для литий-ионных аккумуляторов не могут восстановить элементы, которые так сильно разряжены.

Когда батарея достигает уровня ниже 2,5 В, порога отключения по низкому напряжению, она переходит в спящий режим, в котором схема защиты отключает все операции. Большинство зарядных устройств не заряжают аккумулятор ниже 2,5 В, что означает, что имеющийся у вас аккумулятор практически бесполезен.Что вам нужно сделать, так это обеспечить достаточно заряда батареи, чтобы повысить напряжение выше порога отсечки низкого напряжения. Как только это произойдет, сработает схема защиты, и аккумулятор сможет нормально заряжаться. Это также отличный способ спасти 18650, особенно от разряженных аккумуляторных батарей портативных компьютеров.

Некоторые зарядные устройства имеют функцию «ускорения», позволяющую заряжать глубоко разряженную батарею и восстанавливать ее, но на самом деле есть простой способ сделать это. Вы просто подключаете аккумулятор к источнику напряжения (3.5 ~ 5,0 В) и заряжайте его около 5 минут, чтобы поднять напряжение. Как только это произойдет, вы можете поместить аккумулятор в зарядное устройство и заставить его нормально заряжаться. Одно предостережение: вы должны присутствовать при этом все время. Не оставляйте аккумулятор подключенным к источнику 5 В без присмотра, поскольку он может перезарядиться и вызвать пожар. Кроме того, вы должны контролировать зарядку аккумуляторов внутри зарядного устройства, чтобы убедиться, что они в порядке, не нагреваются или не надуваются (выделяются газы).

Здесь вы можете увидеть, как я восстанавливаю несколько мертвых батарей 18650, которые слишком долго хранились в хранилище.Эта конкретная батарея имеет напряжение 0,423 В, что намного ниже порогового значения 2,5 В. Его нельзя заряжать в зарядном устройстве.

Я установил источник питания постоянного тока на 5 В, готовясь к подключению к литий-ионной батарее. Это будет целевое напряжение зарядки.

Подключаю аккумулятор 18650 к источнику постоянного тока через зажимы типа «крокодил». Я использую один держатель литий-ионного аккумулятора 18650, чтобы удерживать аккумулятор во время его зарядки. Вы также можете пойти в гетто и припаять к нему провода, или я предпочитаю использовать неодимовые магниты на положительном и отрицательном электродах.Затем просто опустите зажимы из крокодиловой кожи на магниты. Также важно иметь под рукой таймер и следить за тем, чтобы зарядка аккумулятора не оставалась без присмотра. Чрезмерная зарядка приведет к выходу аккумулятора из строя и потенциально может вызвать пожар.

После подключения батареи вы можете увидеть, что напряжение источника питания упало до 3,7 В. Я ограничил ток до 1 А, чтобы аккумулятор не заряжался слишком быстро. Это также может вызвать выделение газа. Вы также можете использовать настенную бородавку постоянного тока 5 В, 1 А, чтобы сделать то же самое, не прибегая к причудливому, элегантному источнику питания, но это намного лучше.

По истечении 5 минут вы можете увидеть, что батареи достигли 3,367 В. Батареи заряжаются быстро до этого момента, потому что между 0,5 В и 3,0 В. емкость накопителя энергии невелика. Вы, вероятно, сможете добраться туда примерно за минуту зарядки. Как только вы превысите 2,5 В, его можно вставить в обычное зарядное устройство.

Теперь я могу просто бросить их в мое быстрое зарядное устройство и полностью зарядить.

Никаких отходов, и вы можете спасти батареи других людей, которые они считают мертвыми.Ура!

Следующая остановка… Сделай сам Powerwall…

акиба

Акиба является соучредителем Tokyo Hackerspace, Hackerfarm и Safecast и специализируется на разработке беспроводного оборудования и программного обеспечения. Он был консультантом по дизайну и технологиям Всемирного банка, ЮНЕСКО и Международного агентства по атомной энергии. Когда его нет на ферме, он работает в своей компании FreakLabs.

Литий-ионная батарея Зарядка »Литий-ионная зарядка» Электроника

Для правильной работы литий-ионных, литий-ионных аккумуляторов они должны быть правильно заряжены, в противном случае они не будут работать правильно.


Литий-ионная батарея Включает:
Литий-ионная технология Типы литий-ионных аккумуляторов Литий-полимерный аккумулятор Литий-ионная зарядка Литий-ионные преимущества и недостатки

Включая аккумуляторную технологию: Обзор аккумуляторной технологии Определения и термины батареи NiCad NiMH Литий-ионный Свинцово-кислотные


Литий-ионные, литий-ионные аккумуляторы обеспечивают превосходный уровень производительности.Чтобы получить от них максимальную пользу, их необходимо правильно заряжать.

Если зарядка ионно-литиевых аккумуляторов не выполняется надлежащим образом, их работа может быть нарушена, и они могут даже выйти из строя, поэтому следует соблюдать осторожность.

Правильная зарядка литий-ионных аккумуляторов обеспечивает максимальную производительность и длительный срок службы. В результате зарядка литий-ионной батареи обычно осуществляется в сочетании с системой управления батареей. Это контролирует уровень заряда, разряда и скорость, с которой это может произойти.

Заряжается литий-ионный аккумулятор электроинструмента

Литий-ионный химический состав для заряда / разряда

Проще говоря, зарядку и разрядку литий-ионной батареи относительно легко объяснить.

Когда ионно-литиевый элемент или батарея разряжается, они подают ток во внешнюю цепь. Внутри анода в процессе окисления высвобождаются ионы лития, которые переходят на катод. Электроны от созданных ионов текут в противоположном направлении, попадая в электрическую или электронную схему, на которую подается питание.Затем ионы и электроны восстанавливаются на катоде.

Этот процесс высвобождает химическую энергию, которая хранится в клетке в виде электрической энергии.

Во время цикла зарядки реакции происходят в обратном направлении, когда ионы лития проходят от катода через электролит к аноду. Электроны, поступающие из внешней цепи, затем объединяются с ионами лития, чтобы обеспечить накопленную электрическую энергию.

Следует помнить, что процесс зарядки не совсем эффективен — некоторая энергия теряется в виде тепла, хотя обычно уровень эффективности составляет около 95% или немного меньше.

Электронные условия зарядки литий-ионного аккумулятора

С точки зрения электроники процесса зарядка литий-ионных аккумуляторов сильно отличается от зарядки никель-кадмиевых или никель-металлгидридных аккумуляторов. По разным причинам использовать одни и те же электронные схемы для их зарядки невозможно.

Зарядка литий-ионных аккумуляторов зависит от напряжения, а не от тока. Таким образом, зарядка литий-ионных аккумуляторов больше похожа на зарядку свинцово-кислотных аккумуляторов.

Одно из отличий от зарядки литий-ионных аккумуляторов состоит в том, что они имеют более высокое напряжение на элемент — от 3,7 до 4 В на элемент, в отличие от 1,2 В. Литий-ионные элементы

также требуют гораздо более жестких допусков по напряжению при обнаружении полного заряда, а после полной зарядки они не позволяют или не требуют подзарядки капельным или плавающим током. Особенно важно иметь возможность точно определять состояние полного заряда, потому что литий-ионные батареи не переносят перезарядки.Они перегреваются, и это сокращает их жизнь, но в экстремальных обстоятельствах это может привести к возгоранию или даже взрыву.

Типичная кривая разрядки потребительского литий-ионного элемента

Большинство ориентированных на потребителя литий-ионных аккумуляторов заряжаются до напряжения 4,2 В на элемент, и это имеет допуск около ± 50 мВ на элемент. Зарядка сверх этого значения вызывает напряжение в элементе и приводит к окислению, которое сокращает срок службы и емкость. Это также может вызвать проблемы с безопасностью.

Показанная выше кривая разряда типична для литий-ионного элемента в форме оксида лития-кобальта.Различные типы ионно-литиевых элементов имеют немного разные напряжения, но все они имеют одинаковую форму кривых разряда.

Зарядку ионно-литиевых батарей можно разделить на два основных этапа:

  • Заряд постоянным током: На первом этапе зарядки литий-ионного аккумулятора или элемента осуществляется управление током заряда. Обычно это значение составляет от 0,5 до 1,0 C. (Примечание: для батареи емкостью 2000 мАч скорость заряда будет составлять 2 000 мА при скорости заряда C).

    Для потребительских элементов LCO и батарей рекомендуется максимальная скорость заряда 0,8 ° C.

    На этом этапе напряжение на литиево-ионном элементе увеличивается при постоянном токе заряда. Время зарядки для этого этапа может составлять около часа.

  • Заряд насыщения: Через некоторое время напряжение достигает пика около 4,2 В для элемента LCO. В этот момент элемент или батарея должны перейти на вторую стадию зарядки, известную как заряд насыщения.Поддерживается постоянное напряжение 4,2 вольта, и ток будет постоянно падать.

    Конец цикла зарядки достигается, когда ток падает примерно до 10% от номинального. Время зарядки на этом этапе может составлять около двух часов в зависимости от типа аккумулятора, производителя и т. Д.

Эффективность заряда, то есть количество заряда, удерживаемого батареей или элементом, по сравнению с количеством заряда, поступающего в элемент, является высоким. Эффективность зарядки может составлять от 95 до 99%.Это отражается на относительно низких уровнях повышения температуры ячеек.

Многие элементы теперь предназначены для быстрой зарядки, хотя в пределах номинальных значений для элемента этот процесс может сократить срок службы батареи, и необходимо найти баланс между удобством и сроком службы.

Меры предосторожности при зарядке литий-ионного аккумулятора

Принимая во внимание количество энергии, хранящейся в ионно-литиевых батареях, их химический состав и т. Д., Необходимо обеспечить, чтобы батареи были заряжены надлежащим образом и с помощью соответствующих зарядных устройств и оборудования.

Зарядные устройства или аккумуляторные батареи

для литий-ионных аккумуляторов включают в себя различные механизмы для предотвращения повреждений и опасности. Часто эти механизмы предусмотрены в аккумуляторном блоке, который затем может использоваться с простым зарядным устройством.

Механизм, необходимый литий-ионной батарее для зарядки и разрядки, включает:

  • Ток заряда: Ток заряда для литий-ионных аккумуляторов должен быть ограничен. Обычно максимальное значение составляет 0,8 ° C, но для обеспечения некоторого запаса чаще устанавливаются более низкие значения.Некоторые батареи могут заряжаться быстрее.

    Даже для батарей или элементов, которые могут выдерживать более высокие токи заряда, это влияет на срок службы. Если можно снизить скорость зарядки и не использовать быструю зарядку, это продлит срок службы элемента.

  • Температура заряда: Следует контролировать температуру заряда литий-ионного аккумулятора. Элемент или аккумулятор нельзя заряжать при температуре ниже 0 ° C или выше 45 ° C.

    Литий-ионные элементы и батареи

    работают лучше всего при комнатной температуре, поэтому зарядка в указанных пределах обеспечивает наилучшую зарядку, а также продлевает срок службы батареи.

  • Ток разряда: Защита по току разряда необходима для предотвращения повреждения или взрыва в результате короткого замыкания. Для конкретного аккумуляторного блока будет установлен предел, и его нельзя превышать. Ввиду огромного запаса энергии превышение пределов может привести к пожару или даже впечатляющему взрыву.

    Обычно аккумуляторные блоки имеют схему управления зарядкой / разрядкой, чтобы гарантировать, что допустимый ток не будет превышен, но всегда лучше не перенапрягать их.

    Различные типы литий-ионных аккумуляторов могут обеспечивать разные возможности — в результате фактический тип литий-ионных аккумуляторов, который нужно выбрать, будет зависеть от области применения и требуемой емкости тока / разряда.

  • Перенапряжение: Защита от перенапряжения заряда необходима для предотвращения подачи слишком высокого напряжения на клеммы аккумулятора.если позволить зарядному напряжению подняться слишком высоко, это может привести к повреждению.

  • Защита от перезарядки: Схема защиты от перезарядки требуется для остановки процесса зарядки литий-ионных аккумуляторов, когда напряжение на элемент превышает 4,30 вольт. Чрезвычайно важно не перезарядить литиевый аккумулятор. Система управления аккумулятором должна обеспечивать защиту от перезарядки.
  • Защита от обратной полярности: Защита от обратной полярности литий-ионного аккумулятора необходима, чтобы гарантировать, что аккумулятор не заряжается в неправильном направлении, поскольку это может привести к серьезным повреждениям или даже взрыву.
  • Чрезмерный разряд Li-Ion: Защита от чрезмерного разряда необходима для предотвращения падения напряжения аккумулятора ниже примерно 2,3 В в зависимости от производителя.
  • Перегрев: Защита от перегрева часто включается, чтобы предотвратить работу батареи, если температура поднимется слишком высоко. Температура выше 100 ° C может нанести непоправимый ущерб.

При использовании литий-ионного аккумулятора обязательно использовать зарядное устройство производителя, поскольку в зарядном устройстве и аккумуляторном блоке могут использоваться различные элементы защиты в зависимости от конструкции.

Литий-ионный заряд, циклы разрядки

Срок службы ионно-литиевых элементов и батарей часто выражается числом циклов заряда-разряда, которые они выдерживают до того, как их способность удержания заряда упадет.

Хотя литий-ионные элементы имеют так называемый календарный срок службы — их срок службы с точки зрения истекшего времени, даже если они не используются, другим важным фактором является количество циклов заряда-разряда, которые они могут выдержать. Обычно это, а не календарный срок службы означает конец полезного срока службы литий-ионного элемента.

По другим характеристикам литий-ионный аккумулятор лучше конкурентов. Было показано, что он способен выдерживать около 1000 циклов зарядки / разрядки при очень осторожном использовании и при этом сохранять 80% своей начальной емкости.

Ni-Cads

обеспечивают до 500 циклов, хотя это очень зависит от способа их использования. Плохо обработанная клетка может дать только 50 или 100. NiMH клетки еще хуже, и это одна из основных областей развития. Они могут дать только 500 циклов в лучшем случае, прежде чем их емкость упадет до 80% от начального рейтинга заряда.

Также обнаружено, что литий-ионные элементы и батареи не страдают от эффекта памяти, который был очевиден с никель-кадмиевыми батареями. Эффект памяти становился очевидным, если клетки разряжались лишь частично каждый раз при их использовании. Со временем они «вспомнили» уровень разряда, и их емкость соответственно уменьшилась. В результате было хорошо периодически выполнять полную разрядку ячеек. Это не так для литий-ионных элементов.

Зарядка и разрядка литий-ионных аккумуляторов являются ключом к их работе и долгой работе.Обычно в аккумуляторные блоки встроены микросхемы управления батареями. Это управляет зарядкой и разрядкой литий-ионного аккумулятора. Таким образом, пользователь может подключить аккумулятор к зарядному устройству и оставить его заряжаться, зная, что его не нужно отключать по прошествии определенного времени. Микросхема управления батареей также гарантирует, что батарея не разряжена слишком сильно. Проблема заключается в том, чтобы убедиться, что руководство батареи понимает точное состояние заряда батареи.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

18650 Распиновка литий-ионного элемента, мАч, номинальные значения C и техническое описание

18650 Элементы и технические характеристики элемента питания
  • Номинальное напряжение: 3,6 В
  • Номинальная емкость: 2850 мАч
  • Минимальное напряжение разряда: 3 В
  • Максимальный ток разряда: 1C
  • Напряжение зарядки: 4,2 В (максимум)
  • Зарядный ток: 0,5 ° C
  • Время зарядки: 3 часа (приблизительно)
  • Метод зарядки: CC и CV
  • Вес ячейки: 48 г (приблизительно)
  • Размер ячейки: 18.4 мм (диаметр) и 65 мм (высота)

Где использовать ячейку 18650

1 8650 Cell — это литий-ионный аккумулятор , который нашел свое применение во многих областях, таких как портативная электроника, например фонари, электромобили / автомобили, такие как Tesla, и многое другое. Основная причина успеха этой батареи — ее характеристики по сравнению с конкурентами. Эти свойства включают в себя пропускную способность по току, напряжение, срок службы, срок хранения, безопасность, рабочую температуру и многое другое.В таблице ниже представлено сравнение популярных аккумуляторов по основным параметрам.

Свинцово-кислотные, Ni-Cd, Ni-MH, щелочные, литий-ионные, литий-полимерные батареи

Параметр

Свинцово-кислотный

Никель-кадмиевый

Ni-MH

Щелочные

Литий-ионный

Литий-полимерный

Напряжение элемента

2 В

1.2В

1,2 В

1,5 В

3,6 В

3,7 В

Стоимость

Низкая

Умеренная

Высокая

Очень низкий

Очень высокий

Очень высокий

Внутреннее сопротивление (IR)

Низкая

Очень низкий

Умеренная

Варьируется

Высокая

Низкая

Саморазряд (% / мес)

от 2% до 4%

от 15% до 30%

от 18% до 20%

0.3%

от 6% до 10%

5%

Цикл зарядки

от 500 до 2000

от 500 до 1000

от 500 до 800

Низкая

от 1000 до 1200

> 1000

Допуск перезарядки

Высокая

Средний

Низкая

Средний

Очень низкий

Очень низкий

Плотность энергии (Втч / кг)

от 30 до 45

от 45 до 50

от 55 до 65

80

от 90 до 110

130 до 200

Эффект памяти

Есть

Есть

Есть

Техническое обслуживание

Очень высокий

Высокая

Низкая

Низкая

Низкая

Низкая

Безопасность

Высокий уровень безопасности

Сейф

Сейф

Сейф

Un-Safe

Un-Safe

Что такое рейтинг C и мАч у аккумулятора?

При работе с аккумуляторами два наиболее распространенных термина, с которыми вы столкнетесь, — это рейтинг мАч и рейтинг C.Ячейка 18650 с номиналом 2850 мАч означает, что когда мы потребляем 2,850 А от аккумулятора, его хватит на 1 час, и аналогично, если мы потребляем только 0,285 А от аккумулятора, его хватит на 10 часов, поэтому мы можем использовать рейтинг Ач чтобы рассчитать, на сколько хватит вашей батареи для вашего приложения на основе потребляемого тока.

Рейтинг

C для батареи 18650 обычно составляет 1C, это означает, что мы можем потреблять максимум 2,85 А от батареи. Это потому, что (рейтинг А · ч * рейтинг C) дает нам максимальный ток, который может быть высосан из батареи.Например, если рейтинг C для нашей батареи был 0,5C, мы должны потреблять максимум 1,42A (2,8 / 2) от батареи.

Как использовать ячейку 18650

Ячейка 18650 относится к литиево-ионному типу, поэтому при ее использовании необходимо соблюдать особую осторожность. Это включает как зарядку, так и разрядку аккумуляторов. В то время как разряжает аккумулятор , следует позаботиться о том, чтобы мы никогда не потребляли больше тока с рейтингом C, а также аккумулятор никогда не должен разряжаться ниже 3.0V. Обычно используется схема для контроля тока разряда и значения пониженного напряжения, чтобы отключить аккумулятор от нагрузки, если что-то пойдет не так. Также следует позаботиться о том, чтобы в аккумуляторе никогда не возникало короткого замыкания или обратной полярности. Если вы используете одну ячейку 18650, то для безопасной зарядки и разрядки этого модуля настоятельно рекомендуется использовать модуль защиты батареи, такой как TP4056.

Как зарядить аккумулятор 18650

Зарядное напряжение ячейки 18650 равно 4.2 В, рекомендуемый зарядный ток — 1 А (0,5 C). И снова такой модуль, как TP4056, очень пригодится для зарядки этого модуля, а также обеспечит защиту при разрядке.

Обычно для достижения более высокого уровня напряжений более одной ячейки 18650 будут подключены последовательно или параллельно, в этом случае следует позаботиться о том, чтобы все ячейки поддерживались на одном уровне напряжения, этот процесс называется балансировкой ячеек и обычно выполняется использование BMS (системы управления батареями), которая берет на себя ответственность за равномерную зарядку и разрядку батарей.

Приложения
  • Портативная электроника
  • Электромобили
  • Устройства на солнечной энергии
  • Силовые стены
  • Внешний аккумулятор
  • Аккумуляторы для ноутбуков

2D-Модель

Как зарядить аккумулятор 18650 без зарядного устройства? -Battery-knowledge

Зарядное устройство почти так же важно в большинстве домов, как и ваши телефоны.Большинство вещей, которые мы используем дома и в офисе, используют батарею для обеспечения части своей энергии. От ноутбуков, игрушек, консервных ножей, ноутбуков, динамиков и т. Д. Мы можем рассчитывать на заряд аккумулятора, чтобы сделать вашу жизнь проще и приятнее.

Как правильно зарядить аккумулятор после того, как мы получим подходящее зарядное устройство? Правильные методы зарядки могут продлить срок службы аккумулятора, и вы можете щелкнуть здесь для дальнейшего чтения: Сколько времени требуется для зарядки аккумулятора 18650, Как зарядить аккумулятор 18650.

Как зарядить аккумулятор 18650?

Покупка перезаряжаемой батареи и зарядного устройства для батареи 18650 сэкономит нам деньги, избавит от лишнего напряжения и слез при отсутствии электричества.Благодаря их высокой емкости, высокому напряжению, длительному сроку службы, хорошим температурным характеристикам и многим другим характеристикам, они широко используются клиентами. Для аккумулятора 18650 необходимы хорошие зарядные устройства. Если не указано иное, большинство зарядных устройств имеют светодиоды зарядки.

Светодиоды зарядки работают следующим образом: зеленый светодиод появляется, когда аккумулятор не вставлен в зарядное устройство, красный светодиод отображается во время зарядки, он загорается, показывая, что зеленый светодиод не включается, когда аккумулятор разряжен. вставлен в неправильном направлении.Время зарядки зависит от входного напряжения и емкости аккумулятора и может занять от 2 до 5 часов. Зарядное устройство 18650 имеет входное напряжение переменного тока от 110 В до 240 В, от 50 до 60 Гц.

Функции защиты зарядного устройства 18650 включают: защиту от обратной полярности аккумулятора, защиту от перегрузки по току и защиту от перенапряжения, автоматическую идентификацию перезаряжаемой батареи и защиту от короткого замыкания. Заряд аккумуляторной батареи начинается автоматически и автоматически переключается в защищенное состояние, когда вы вставляете неперезаряжаемую батарею.

Карманное устройство 18650 Литий-ионный аккумулятор 14,4 В 3400 мАч Батарея: 18650-3350 мАч-3,6 В С SMBUS Communication

Можно ли заряжать аккумулятор 18650 без зарядного устройства?

Мы зависим от зарядных устройств, чтобы все работало должным образом. Но вопрос в том, что происходит, можем ли мы зарядить аккумулятор 18650 без зарядного устройства. Да, аккумулятор 18650 можно заряжать без зарядного устройства. Использование непрерывной зарядки позволяет подзарядить большинство типов батарей. Когда вы используете капельный заряд, он обеспечивает очень слабый электрический ток, который могут поглотить элементы батареи.Для подзарядки разряженного аккумулятора требуется много времени, но это можно сделать безопасно и не повредить аккумулятор, который вы обычно заряжаете.

Вам нужен регулятор, чтобы подавать минимальный заряд, и, к счастью, маленькие лампы накаливания в лампочках и декоративные лампы идеально подходят для этой задачи. Вы должны подключить кабель к лампе, которую вы используете, а другой конец кабеля будет подключен к горячему аккумулятору, например к аккумулятору автомобиля. Батарея передает энергию лампочкам, луч внутри ламп нагревается и при повышении температуры создает сопротивление.Встроенный резистор уменьшает или уменьшает ток, протекающий через лампу.

Медицинский прибор 18650 Литиевый аккумулятор 10,8 В 6600 мАч Батарея: 18650-3350 мАч-3,6 В С SMBUS Communication

Вы можете безопасно использовать ток, исходящий от лампы, для зарядки аккумулятора. Вам нужно будет подключить эквивалент трех маленьких лампочек на Рождество одновременно, чтобы создать поток, измеряющий половину усилителя. Вам понадобятся маленькие зажимы типа «крокодил» на концах кабелей, позволяющие подключаться к положительной и отрицательной клеммам заряжаемой батареи.Помните об этом, если измените полярность аккумулятора во время зарядки. (Если вы подключите отрицательную клемму аккумулятора к положительному заряду или положительный полюс аккумулятора к отрицательному заряду), это приведет к повреждению аккумулятора и может вызвать травму.

Если у вас нет зажима типа «крокодил», вы можете просто отсоединить кабели от используемых кабелей, а затем подсоединить конец кабеля непосредственно к концу батареи. Клеммы аккумулятора будут содержать знак «плюс», указывающий на положительное соединение, и знак «минус», указывающий на отрицательное соединение.При использовании этого метода для зарядки аккумулятора вы должны оставаться с ним, даже если у вас есть зажимы из крокодиловой кожи, и вы должны отключить аккумулятор через несколько минут. Такая зарядка может быть несколько опасной, поэтому мы должны включить некоторые меры безопасности.

Что следует учитывать при зарядке аккумулятора 18650

Автомобильные аккумуляторы, газонокосилки, транспортные средства и т. Д. Могут воспламениться с небольшой искрой, поскольку они часто образуют смесь водорода и легковоспламеняющегося кислорода.Единственная искра может вызвать взрыв, в результате которого серная кислота попадет в капот вашего автомобиля и вызовет механическое повреждение вашего двигателя, травмы вашего автомобиля и травмы.

· Не пытайтесь делать это, если вы не носите защитные очки для защиты глаз от паров и газов.

· Если вы зарядите аккумулятор, вы не сможете полностью зарядить его таким образом без необратимого повреждения аккумулятора.

· Не оставляйте заряженный аккумулятор таким образом без присмотра на какое-то время.Такая отправка может привести к возгоранию и повреждению аккумулятора, поэтому не отходите от аккумулятора, заряженного таким образом.

· Вместо того, чтобы подключать аккумулятор и фары к автомобильному аккумулятору, вы можете подключить его к прикуривателю в автомобиле, чтобы предотвратить взрыв серной кислоты или повреждение автомобиля или аккумулятора.

Возможно, что если вы попытаетесь зарядить аккумулятор без надлежащего зарядного устройства, аккумулятор выйдет из строя, и вам придется покупать запасной.

Первая зарядка аккумулятора 18650

Емкость литиевого аккумулятора 18650 обычно составляет от 1200 мАч до 3400 мАч, а общая емкость аккумулятора составляет всего 800 мАч. 18650 может заряжать литий-ионную упаковку с помощью любого зарядного устройства с функцией зарядки литий-ионной батареи, другими словами, заряд должен заканчиваться на 4,2 В. Вы можете заряжать отдельные элементы с помощью фиксированного источника питания 4,2 В, если у вас нет зарядного устройства. Но для литиевых батарей требуются специальные зарядные устройства.

Зарядка литий-ионных аккумуляторов проще, чем у систем на основе никеля. Схема зарядки проста: легче понять пределы тока и напряжения, чем комплексный анализ сигнатур напряжения, которые зависят от срока службы аккумулятора. Процедура зарядки может быть несколько прерывистой, ионы не нуждаются в насыщении, как в свинцово-кислотной среде. Это дает большое преимущество для хранения возобновляемых источников энергии, таких как солнечные батареи и ветряные турбины, которые не всегда могут полностью зарядить аккумулятор.Отсутствие постоянного заряда упрощает процесс зарядки.

Компания Dongguan Large Electronics Co., Ltd (сокращенно Large Power) обладает 17-летним опытом в настройке литий-ионных аккумуляторных батарей и всегда придерживается политики максимальной надежности и максимальной безопасности. Вы можете использовать продукты большой мощности для включения, и вы не будете разочарованы.

Как восстановить литий-ионные батареи

Литий-ионные батареи, также известные как Li-on батареи, являются перезаряжаемыми батареями, что делает их хорошим выбором для всех типов электронных устройств, от ноутбуков до видеокамер.Преимущества литий-ионных аккумуляторов перед никель-кадмиевыми и никель-металлгидридными батареями заключаются в большей емкости, меньшем саморазряде и большем количестве циклов зарядки до появления проблем. Прежде чем утилизировать литий-ионный аккумулятор, который, похоже, разрядился, попробуйте сначала вернуть его к жизни.

  • Считайте напряжение

  • Выключите источник питания прибора, в котором находится аккумулятор, и извлеките аккумулятор. Снимите напряжение с помощью вольтметра. Литий-ионные аккумуляторы могут перейти в спящий режим, если разрядить аккумулятор слишком сильно.Например, если ваша батарея рассчитана на 3,7 В, а вольтметр показывает только 1,5 В, возможно, она находится в спящем режиме.

  • Подключите к соответствующему зарядному устройству

  • Некоторые зарядные устройства и анализаторы аккумуляторов имеют функцию «пробуждения», «восстановления» или «ускорения», предназначенную для вывода из спящего режима батареи. Это не всегда успешно, и вам не следует пытаться сделать это с батареями, которые были ниже 1,5 В в течение более недели, но иногда это может восстановить батарею. Вставьте аккумулятор, соблюдая полярность.

  • Проверьте батарею через минуту

  • Снимите еще одно показание напряжения батареи примерно через минуту после «пробуждения» или, в качестве альтернативы, просмотрите руководство к зарядному устройству, чтобы узнать, когда процесс должен быть завершен. Помните, что иногда восстановить батарею не получится, поэтому вам, возможно, придется купить новую батарею, если это не поможет.

  • Зарядка и разрядка аккумулятора

  • Верните аккумулятор в литий-ионное зарядное устройство и дайте ему полную зарядку. Это займет около 3 часов, в зависимости от того, какой тип литий-ионного аккумулятора вы восстанавливаете.Некоторые зарядные устройства автоматически переходят из режима восстановления в режим зарядки, поэтому на этих устройствах вы можете просто оставить аккумулятор на месте. Затем снова разрядите литий-ионный аккумулятор в устройстве, которое будет сильно загружать аккумулятор, например, в светодиодном фонарике.

  • Заморозьте аккумулятор

  • Запечатайте литий-ионный аккумулятор в герметичном пакете и положите его в морозильную камеру примерно на 24 часа, убедившись, что в пакете нет влаги, которая могла бы намочить аккумулятор. Когда вы достаете его из морозильной камеры, дайте ему оттаять в течение восьми часов, чтобы он остыл до комнатной температуры.

  • Зарядка аккумулятора

  • Поместите литий-ионный аккумулятор в зарядное устройство и полностью зарядите его. Надеюсь, его производительность улучшится, он снова будет заряжаться и прослужит дольше между циклами зарядки.

    • Чтобы продлить срок службы литий-ионного аккумулятора, всегда храните его при комнатной температуре или ниже.

      Если у вас разряженный литий-ионный аккумулятор, зарядите его как можно скорее.

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *