Обозначение постоянного и переменного тока на схемах
Каждый домашний мастер и начинающий электрик при выполнении электромонтажных работ пользуется специальными схемами. Для того чтобы правильно прочитать любую из них, необходимо знать все значки и символы, в том числе обозначение постоянного и переменного тока. Эта символика присутствует на корпусах большинства современных измерительных аппаратов, позволяющих определять значение всех основных электрических параметров.
Как обозначаются различные токи
По своим специфическим качествам электрический ток разделяется на два основных типа:
- Постоянный ток. Обозначается прямой линией (—). Кроме того, используются символы DC – Direct Current, которые переводятся как постоянный ток.
- Переменный ток. Известен под собственным обозначением в виде змейки (~) и символов АС, означающих Alternating Current.
Отличительной особенностью постоянного тока является его направленность. Он протекает лишь в одном определенном направлении, условно принимаемое от положительного контакта «+» к отрицательному контакту «-». От этого свойства и происходит наименование этого тока DC, который присутствует в солнечных панелях, всех типах сухих батареек и аккумуляторах, предназначенных для питания маломощных потребителей.
В некоторых технологических процессах, таких как дуговая электросварка, электролиз алюминия или электрифицированный железнодорожный транспорт, необходим постоянный ток DC с высоким значением силы. Чтобы его создать, необходимо выпрямить переменный или воспользоваться любым из генераторов постоянного тока.
Переменный ток AC, в отличие от постоянного, способен к изменению своего направления и величины. Существует параметр, известный как мгновенное значение переменного тока, определяемое в конкретный момент времени. Частота, с которой изменяется направление тока, составляет 50 Гц, то есть данная перемена происходит 50 раз в течение одной секунды.
Переменный ток AC может быть однофазным или трехфазным. В первом случае необходимо только два провода: основной и дополнительный, он же обратный. Именно по основному проводнику протекает электрический ток, а обратный считается нулевым проводом.
Трехфазное переменное напряжение вырабатывается соответствующим генератором тока AC. В этом процессе участвуют три обмотки, каждая из которых является своеобразной однофазной электрической цепью. Между собой они сдвинуты по фазе под углом 120 градусов. Благодаря данной системе электроэнергией могут быть обеспечены сразу три сети, независимые друг от друга. Для этого понадобится уже порядка шести проводов – трех прямых и трех обратных.
При необходимости дополнительные провода возможно соединить между собой и получить в итоге общий проводник, называемый нулевым или нейтральным. В этом случае проводники переменного тока на схемах обозначаются символами L1, L2, L3, а нулевой провод – буквой N.
Обозначения токов в измерительных приборах
Общепринятое обозначение постоянного и переменного тока нашло свое отражение в различных измерительных приборах, в том числе и на мультиметре. Вся необходимая символика наносится на лицевую панель того или иного устройства. Это позволяет измерить именно тот параметр, который необходим в данный момент.
Например, если на шкале выставлено положение АС, в этом случае можно проводить измерение значения переменного тока. Как правило, такие приборы предназначены для работы в электросетях с обычными напряжениями 220 или 380 вольт. Существуют модели с рабочими режимами в пределах 600 В и выше.
Если же мультиметр выставлен напротив отметки DC, то рабочий режим аппарата станет соответствовать постоянному току. В этом положении замеряется ток на аккумуляторах, батарейках и других источниках питания, вырабатывающих постоянный ток. В данном режиме требуется непременно соблюдать полярность полюсов. Диапазон измерений обычно составляет от нуля до нескольких тысяч вольт, в зависимости от характеристик конкретной модификации устройства.
.:Все о радиоэлектронике:.
Главная >> Курс радиоэлектроники >> Постоянный и переменный ток…
Что такое переменный ток и переменное напряжение?
Когда мы говорили о токе, то мы не упоминали о том, какой он может быть, этот ток. А быть он может двух основных видов — постоянным и переменным. Чтобы разобраться с этими терминами, необходимо вспомнить, что ток — это упорядоченное движение электронов. И вот когда эти электроны все время движутся в одном и том же направлении, то такой ток называется постоянным. Но под понятием упорядоченное движение следует также понимать то что в один момент электроны движутся в одном направлении а во второй момент — в обратном и так без остановки. Вот такой ток уже называется переменным. Если говорят о постоянном и переменном напряжении, то имеется в виду что у постоянного напряжения + и — всегда «находятся на одном месте». Примером постоянного напряжения может послужить обыкновенная батарейка, на её корпусе вы всегда найдете обозначения + и -. А у переменного + и — меняются через некоторой отрезок времени. Следственно постоянное напряжение создает постоянный ток, и соответственно переменное напряжение — переменный ток. Примером переменного напряжения может послужить обыкновенная электросеть. Постоянный ток обозначается одной прямой линией, а переменный одной волнистой линией. Я думаю, вам не раз приходилось видеть надписи 220В, перед которой стоит горизонтальная волнистая линия. Это и есть обозначение переменного тока. Обратите внимание на то, что устройства, в который используется постоянный ток, в подавляющем количестве, не допускают чтобы при подключения к ним питания контакты + и — перепутались между собой, поскольку если их перепутать то прибор может попросту «сгореть». А вот для переменного напряжения это уже не актуально, припустим, вы включаете в розетку… да что угодно, и не важно какой именно стороной вставить вилку в розетку, прибор все ровно будет работать. Наверняка, вам также приходилось возле надписей 220В замечать и надпись на подобие 50Гц. Это частота переменного тока. И означает она, сколько раз в секунду меняется «плюс с минусом» местами. Надпись 50Гц (Герц) означает, что за одну секунду полярность напряжения меняется 50 раз.
Графики
Для того чтобы представить, как именно происходит изменение полярности переменного напряжения необходимо разбираться в графиках, которые показывают напряжение в разные моменты времени. Давайте посмотрим на график, демонстрирующий постоянное напряжение (он слева). Припустим, что этот график показывает напряжение на контактах лампочки фонарика.
Начиная с точки 0 и до точки «а» график показывает, что напряжение равно нулю. Или другими словами говоря его там вообще нет (фонарик выключен). В момент времени «а» (в нашем варианте на контактах лампочки) появляется напряжение равное U1, которое остается без изменений в течении времени от «а» до «б» (фонарик включен). В момент времени «б» Напряжение снова пропадает (стает равным нулю). Если посмотреть на второй график, который отображает переменное напряжение, то думаю, несложно разобраться что именно происходит с переменным напряжением в разные моменты времени. В нулевой точке оно равно нулю. На протяжении времени от «0» до «а» напряжение плавно возрастает до значения U1 и в этот же момент начинает спадать. В результате чего в момент времени «б» достигает нулевой отметки. Но как видно на графике, напряжение продолжает падать и становится отрицательным. В точке «г» достигает минимума, и снова начинает возрастать. Это явление повторяется на протяжении существования напряжения (пока свет не отключат :-). Следует заметить, что переменное напряжение может быть не только такой формы. Оно может быть, например, прямоугольной или практически любой другой формы. Теперь еще раз взгляните на этих два графика, и вспомните, как обозначается постоянный и переменный ток (напряжение).
Обозначение постоянного и переменного тока на приборах
МАРКИРОВКА ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВКаждый электроизмерительный прибор имеет установленные ГОСТом обозначения, которые наносят на корпус, шкалу и у клемм.
Обозначение измеряемой величины. Его указывают обычно на шкале в виде единиц измерения, в которых градуирован прибор. Например, mA (мА), mV (мкВ) и т.д. По наименованию единицы измеряемой величины дается наименование прибора. Высокочувствительные приборы, не имеющие стандартной градуировки, называются гальванометрами.
Класс точности. Класс точности указывают в виде числа, которое наносят на шкалу прибора (например, 0,5).
Род и частота тока. Приборы для измерения тока в цепях имеют на шкале следующие обозначения: при постоянном токе — , переменном
, постоянном и переменном ≃ . Приборы переменного тока, работающие на частотах, отличающихся от 50 Гц, имеют обозначение, например 500 Hz ; приборы, пригодные к работе в некотором диапазоне частот, имеют обозначение, например, 45- 550 Hz
Рабочее положение прибора и испытательное напряжение изоляции. Если отклонение рабочего положения прибора достигает допустимого угла, то дополнительная погрешность не превышает величины класса точности данного прибора. Допустимый угол наклона составляет для приборов: обыкновенных и с повышенной механической прочностью – 10°; для переносных класса точности 0,5-1,0 – 20°, а класса точности 1,5-4,0 – 30°.
Рабочее положение прибора указывается на шкале: ― горизонтальное положение; ┴ – вертикальное; ∠ 40° – наклонное положение (угол наклона 40° к горизонту).
Испытательное напряжение изоляции – это напряжение, которое может быть приложено между токоведущими частями и любой металлической деталью, касающейся корпуса прибора. На старых типах приборов испытательное напряжение изоляции обозначается ↯2 кВ,
Температуро- и влагоустойчивость. Приборы градуируют при температуре 20° к относительной влажности до 80 %,, однако они могут эксплуатироваться и при других температурах. По диапазону рабочих температур электроизмерительные приборы делят на пять групп: 1) группа А (на шкале значок А не ставится) – +10…+35 °С, относительная влажность до 80
Перечень всех условных обозначений, наносимых на электроизмерительные приборы, приведен в ГОСТе 23217-78 «Приборы электроизмерительные аналоговые с непосредственным отсчетом. Наносимые условные обозначения».
Расшифровка условных обозначений (таблица 1.)
Мультиметр – один из самых необходимых и многофункциональных приборов электрика. Наверняка все помнят, как на уроках физики в школе измеряли напряжение вольтметром, сопротивление – омметром, силу тока – амперметром. Так вот, мультиметр воплотил в себе все эти измерительные приборы, а также несколько других, о которых чуть ниже расскажем подробнее.
Сам по себе мультиметр работать не будет, все зависит от знания мастера и умения пользоваться этим прибором. То есть, чтобы измерить какой-либо параметр, сначала нужно правильно выставить переключатель, знать какой щуп в какое гнездо воткнуть, и так далее. Поэтому, прежде чем брать прибор в руки, нужно научиться им правильно пользоваться.
Внимание! В данной статье описывается стандартный мультиметр с наиболее распространенными функциями. В зависимости от модели мультиметра, его функционал может быть больше и включать в себя дополнительные возможности. Здесь описываются только те, которые имеются практически в каждом приборе, а также расшифровка обозначений на мультиметре. |
Вкратце опишем основные компоненты прибора:
- 1. Электронное табло
- 2. Шкала обозначений
- 3. Переключатель
- 4. Кнопка “ВКЛ/ВЫКЛ” (вместо нее бывает специальное положение для регулятора)
- 5. Разъемы для щупов
- 6. Специальные разъемы для проверки транзисторов (присутствуют на некоторых тестерах)
- 7. Индикатор прозвонки (зуммер и светодиод красного цвета)
- 8. Батарейка
Из всего вышеперечисленного самым важным моментом является шкала обозначений, так как если вы неправильно выставите регулятор, то можете сжечь измеряемую радиодеталь или сам прибор. Поэтому расшифровка обозначений на мультиметре очень важный момент при работе с этим прибором.
Обозначения на мультиметре
Шкала обозначений включает в себя круговой переключатель положений, а также символы, обозначающие те или иные параметры, разбитые на сектора.
Каждый сектор отвечает за измерение одного конкретного параметра (например сопротивления). Внутри сектора имеется несколько положений регулятора, каждое положение обозначает измеряемый номинал. Каждый сектор обозначается специальным символом. Все сектора разделяются между собой линиями.
Куда подключать щупы мультиметра
Щупы для мультиметра идут в комплекте. Один щуп – красный , второй – черный . Корпус щупа выполнен из диэлектрика, на конце – заостренный металлический стержень
Внимание! Помните золотое правило: красный – всегда плюс , черный – всегда минус . Поэтому важно не перепутать гнезда подключения, иначе есть риск запутаться. Красный щуп всегда кидаем на плюс, черный – на минус.
Щупы подключаются к специальным гнездам, также имеющим обозначения. Самих гнезд может быть три или четыре, в зависимости от модели мультиметра.
Гнезда для подключения щупов:
- 1. Гнездо “СОМ” – обозначает минус (масса, общий). В него подключается щуп черного цвета. Всем известно, что при замере переменного напряжения, допустим, в розетке, полярность не имеет значения. Тем не менее, следуйте следующему правилу: если есть определенный провод (щуп) и для него имеется специальное отверстие, то нужно подключать этот провод именно в это отверстие, так как черный цвет провода недвусмысленно нам намекает на то что он – минусовой.
- 2. Гнездо «VΩCX+» – обозначает плюс, к нему подключается красный провод. Это гнездо используется при измерении сопротивления, напряжения, частоты, температуры, проверки диодов и транзисторов. Проще говоря, это гнездо используется во всех измерениях, за исключением измерения силы тока.
- 3. Гнездо “20А” – специальное гнездо. К нему подключается красный щуп, а функция этого гнезда – измерение силы тока величиной до 20 ампер. 20 ампер это очень большая сила тока, поэтому будьте осторожны. Опять же, очень важное правило: при измерении силы тока, прибор (в нашем случае – мультиметр) нужно подключать к цепи последовательно и только так. Если рядом с этим гнездом увидите надпись “UNFUSED”, то имейте ввиду, что измерение производится без использования предохранителя, поэтому постарайтесь не сжечь прибор. Также нужно знать, как обозначается постоянный ток на мультиметре.
- 4. Гнездо “MACX” – гнездо для измерения силы тока малых значений микро- и миллиампер. Если рядом окажется надпись «0.2А MAX FUSED» – значит измерение производится с защитой прибора предохранителем, максимальное значение измерения – 0.2 ампера.
На приборе может быть нарисован красный треугольник с надписью “МАХ 600V” (значения могут отличаться в зависимости от модели мультиметра). Это максимальное значение измерения напряжения. Нельзя замерять напряжение выше этого параметра.
Внимание! Если вам неизвестны пределы измеряемого значения – устанавливайте регулятор на максимальное значение, по мере измерения – двигайтесь в меньшую сторону. Например, мы знаем, что измеряемый прибор (например, аккумулятор) имеет постоянное напряжение, но не знаем примерный диапазон (то-ли 24 вольта, то-ли 12 вольт, а может быть и 1.6 вольт). В этом случае устанавливаем регулятор на максимальное значение сектора измерения постоянного напряжения и двигаемся в меньшую сторону.
Очень важно! Проводя любые измерения, ни в коем случае не держитесь пальцами за металлическую часть щупа, особенно при каких-либо измерениях опасного напряжения или силы тока.
Диапазоны переключателя мультиметра
Сначала затронем тему включения и выключения мультиметра. Обычно присутствует кнопка “ON/OFF”, но на некоторых моделях мультиметров имеется специальный сектор с таким же названием. Также есть тестеры, которые выключаются самостоятельно, спустя некоторое время.
Сам же регулятор, или переключатель – кому как больше нравится, модно крутить хоть по часовой, хоть против часовой стрелки. Что измерить какой-либо параметр – просто переведите регулятор в нужный сектор на нужное значение.
Важно! Сектора обозначаются буквами, номиналы – цифрами.
Расшифровка обозначений на мультиметре, которую нужно запомнить раз и навсегда:
- 1. DCV – сектор измерения постоянного напряжения
- 2. ACV – сектор измерения переменного напряжения
- 3. DCA – сектор измерения силы постоянного тока
- 4. ACA – сектор измерения переменного тока
Как обозначается сопротивление на мультиметре
Из школьного курса физики мы помним, что сопротивление измеряется в Омах, в честь немецкого физика Георга Симона Ома. Обозначение на мультиметре – «Ω», номиналы сопротивления на стандартном приборе следующие: 20 Ом, 200 Ом, 2 кОм, 20 кОм, 200 кОм, 2 МОМ, 20 МОМ, 200 МОМ. В зависимости от модели используемого мультиметра диапазон значений может быть иным.
Измерение этого параметра является очень популярным как в радиоэлектронике, так и в электрике. С помощью сопротивления можно очень быстро проверить работоспособность лампочки, спирали, провода и т.д.
Для измерения сопротивления переставьте регулятор в сектор «Ω» и выберите нужное значение.
Обозначение постоянного напряжения на мультиметрах
Напряжение измеряется в Вольтах, в честь итальянского физика Алессандро Вольта. Выше мы уже писали, что сектор измерения постоянного напряжения обозначается аббревиатурой “DCV”. Но, на многих моделях вместо этого сокращения используют символ “V-”. В этом сокращении буква “V” обозначает напряжение, а символ “-” – постоянное.
Также, чтобы не перепутать сектор постоянного напряжения с переменным, запомните следующее: диапазон значений сектора постоянного напряжения шире, чем диапазон переменного.
Для измерения постоянного напряжения необходимо выставить регулятор на нужное значение в секторе “V-”.
Внимание! Если в процессе измерения вы перепутали полюса, то на дисплее отобразится то же самое значение, но со знаком “-”. В этом нет ничего страшного.
Обозначение переменного напряжения
Переменное напряжение также измеряется в Вольтах. Аббревиатура “ACV”, либо, как в предыдущем случае, сокращение “V
” – обозначение на мультиметре, расшифровка – “v” – напряжение, знак “
Для электрика этот параметр является основной задачей, поскольку в розетках, выключателях и т.д. всегда используется переменное напряжение. Наши сети работают на 220 Вольт, а на мультиметре присутствуют значения 700 В (750В) и 200 В.
Один знакомый как-то раз спросил меня, для чего на мультиметре имеется значение в 200 Вольт, если в сети используется переменное напряжение 220, а переменка в 200 Вольт и ниже вообще не используется. Так вот, примите к сведению: практически вся Америка использует стандарт 110 Вольт переменного напряжения.
При замере переменного напряжения полярность не важна. То есть при измерении напряжения в розетке без разницы, в какой разъем розетки вы воткнете красный и черный щуп.
Как обозначается постоянный ток на мультиметре
Сила тока измеряется в Амперах в честь французского физика Анри Ампера. На мультиметре сектор измерения постоянного тока обозначается как DCA, либо просто DC. Регулятор, как и в предыдущих случаях, выставляется на нужное для измерения значение в секторе DC.
Не забывайте о том, что для измерения силы тока прибор подключается последовательно. Что это значит? Для измерения силы тока мы разрываем цепь.
Например, нам нужно замерить силу тока в фазном проводе. Нельзя просто взять и прикоснуться в двух местах щупами к проводу. Должен быть разрыв провода (или цепи), именно в этот разрыв мы подключаем прибор.
Как обозначается переменный ток на мультиметре
Не каждый тестер способен измерить силу переменного тока, но на некоторых моделях такая функция присутствует. На вопрос “как обозначается переменный ток на мультиметре” ответим: аналогично обозначению переменного напряжения, сектор переменного тока обозначается как «A
Вообще, мультиметр плохо подходит для измерения переменного тока. Лучше для этой цели использовать токоизмерительные клещи.
Что такое сектор hFE?
Некоторые владельцы мультиметров могут увидеть у себя на приборе сектор hFE, а в придачу к нему – два гнезда по четыре разъема в каждом. Этот сектор отвечает за проверку транзисторов (измерение значения коэффициента передачи тока). Гнезда подписаны “NPN” и “PNP”, а разъемы – буквами “E”, “B”, “C”.
Существует два типа транзисторов: транзистор типа “PNP-переход”, транзистор типа “NPN-переход”. Буквы “E”, “B”, “C” обозначают “эмиттер”, “база”, “коллектор” соответственно.
Чтобы проверить транзистор, выставьте регулятор на сектор hFE, посмотрите распиновку его ножек, тип транзистора, потом вставьте сам транзистор в нужный разъем. Если ваш транзистор неисправен, то прибор покажет значение “0”. Конечно, многих начинающих электриков пугает аббревиатура hFE, но для этого и нужна расшифровка обозначений на мультиметре, чтобы все непонятное стало понятным.
Тест диодов
Выше упоминалось, что практически в каждом мультиметре есть специальный светодиод и зуммер. Кроме этого, на шкале измерений должен быть сектор с нарисованным диодом. Это все необходимо для проверки диодов на работоспособность, а также проверки целостности цепей и всего прочего, сопротивлением не больше 50 Ом.
Чтобы проверить диод, нужно вспомнить о его свойствах. Диод пропускает ток только в одну сторону. Выставляем регулятор на значок диода и начинаем проверять, меняя полюса. Исправный диод в одном положении на дисплее выдаст значение 1, при этом светодиод загорится, а зуммер запищит. При смене полюсов – мультиметр покажет значение диода, например, 436 милливольт. Неисправный диод – будет прозваниваться в обе стороны.
Это лишь поверхностные принципы работы диода, но для проверки исправности диода мультиметром этого достаточно.
Проверка емкости конденсаторов
Чтобы измерить емкость конденсатора необходимо установить переключатель в диапазон F (Фарад). Для проверки ёмкости конденсатора мультиметр должен иметь эту функцию. Чтобы произвести измерение, используют гнёзда -CX+. «-» и «+» означают полярность подключения.
Диапазон измерения емкости в данном мультиметре варьируется от 200 микрофарад до 20 наноФарад.
Что означает kHz?
Этот параметр присутствует не на всех приборах. “Hz” – единица измерения частоты (Герц). С помощью данного сектора можно измерить частоту сигнала.
Для чего нужна кнопка hold
Такая кнопка тоже присутствует не на всех приборах, полное ее название – “Data hold”. Она служит для того, чтобы зафиксировать полученные данные на дисплее. Нужное значение будет отображаться ровно до повторного нажатия этой кнопки. Кто-то считает ее бесполезной, кто-то периодически ее использует.
В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный. Чем отличается переменный ток от постоянного? Характеристики постоянного тока.
Постоянный ток
Direct Current или DC так по-английски обозначают электрический ток который на протяжении любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу. На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос. Важная особенность постоянного электрического тока – это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках. Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств.
Переменный ток
(Alternating Current) или АС английская аббревиатура обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «
». Если говорить о переменном токе простыми словами , то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное. На рисунке обратное направление – это область графика ниже нуля.
Теперь давай разберемся, что такое частота. Частота это – период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние. Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду – это и есть, частота переменного тока. Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.
Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.
Преобразование переменного тока в постоянный
Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель” . Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.
что такое диод и как работает диодный мост , ты можешь узнать в моих следующих статьях.
Как обозначается постоянный ток на мультиметре
При ремонте электрооборудования, проводки, бытовых приборов, автомобиля, часто приходиться проводить измерения некоторых электрических величин. В этом случае домашние умельцы используют многофункциональный электроизмерительный прибор – мультиметр.
Последний пункт мы рассматривать не будем, поскольку это область узкой специализации, да и уровень подготовки тех, кто этим пользуется, отличается от уровня домашнего мастера.
Не вдаваясь в подробности, заметим: постоянное напряжение имеет полярность – плюс и минус, обычно это аккумуляторы, батарейки, источники питания некоторой аппаратуры.
Важно заметить, напряжение можно измерить всегда только между двумя точками. Если говорят, что напряжение на проводе 220 Вольт, то имеют в виду, что 220 вольт относительно чего-то, какого-то провода, как правило, нуля.
Для обозначения постоянного и переменного тока и напряжения принято обозначать:
- Переменное волнистой линией;
- Постоянное – прямой.
Внимание! Если вы собираетесь мерить напряжение, а разъем будет вставлен в гнездо для амперметра, вы получите короткое замыкание!
Для проверки целостности щупов, некоторые мастера прежде включают прибор в режиме измерения сопротивления и замыкают щупы, на экране должно показать нулевое сопротивление, если это не так, то проверяют щупы и их провода.
Внимание, если вы будете мерить в режиме переменного напряжения, а на точках будет постоянное, у вас покажет значение, но оно будет неверным. И наоборот: если прибор в режиме измерения постоянного напряжения, а на точках переменное, то значение не покажет, хотя напряжение будет.
И последнее, помните при проведении электро измерений о технике безопасности! Строго соблюдайте все требования электробезопасности.
Не рекомендуем немедленно пытаться проверить напряжение в сети 220 В. Начните с простого. К примеру, подойдет батарейка или аккумулятор от телефона. Потом попробуйте поиграться с устройствами питания гаджетов. И позднее допускается подойти к розетке. В деле использования мультиметра немало сложностей оттого, что не все диапазоны прописаны с инструкции. Даже бывалый мастер порой неспособен понять написанное.
Диапазоны мультиметров
Проверка правильности подключения щупов становится важной частью понимания методики пользования цифровым мультиметром. Об этом пишут в инструкции, внимательно прочтите. Косвенным подтверждением правильности проделанных операций станет звонок при соприкосновении щупов на диапазоне, помеченном толстой стрелкой с поперечной чертой на конце (прозвонка диодов). Иногда аналогичная функция помечается точкой с расходящимися от неё дугами (так обозначается зуммер, звонок). Чтобы проверить мультиметр на работоспособность, вводится дополнительный режим, требующий специальных приборов. Пробежимся лишь по ключевым опциям.
Обозначения шкал мультиметра
Проверка напряжения
Рекомендуем начать с проверки напряжения на батарейке. Это безопасно для человека и используемого тестера. Батарейка не пострадает. Зато человек научится на примере важной вещи — полярности напряжения.
У мультиметра два щупа. Один красный, это традиционно плюс. Чёрный провод считается общим, на лицевой стороне обозначается как COM (common). Это земля либо — второе название — минус. При этом гнёзд в тестере три либо четыре. Чёрный провод обычно закреплён, а красный передвигается сообразно используемой шкале и виду работ. Преимущественно касается как раз токов и напряжений, остальные работы проводятся в любом состоянии.
Выставляем диапазон положительных напряжений. Находим на лицевой панели букву V с прямой чертой, под которой находится три точки (см. рис). Смотрим номинал батарейки, ставим диапазон, чтобы цифра гарантированно попала внутрь. Отдельные цифры на лицевой панели в разделе постоянных напряжений предваряются буквой m. Это значит, что речь идёт о тысячных долях – милливольтах. Это повышает точность измерений в случаях, где речь идёт о слабых напряжениях.
Красный щуп прислоняется к положительному полюсу батарейки, чёрный – к отрицательному. На экране появится номинал с небольшими отклонениями. Если полярность перепутана, цифра отрицательная. С аккумулятором телефона тоже легко. На корпусе батареи расположены три контакта, и единственный – чаще левый – становится источником напряжения. Два прочих – земля. Напряжение, естественно, положительное.
Дальше действуйте сообразно указаниям, приведённым выше. Номинал батареи надписан на корпусе. К примеру, 3,5 В. Ставим на мультиметре диапазон до 20 В. Допустимо проверить заряд батарейки косвенным путём. С падением запасённой энергии уменьшается вольтаж. Поэтому в быту говорят — батарейки «сели».
Измерение сопротивления
Функция часто нужна в быту, когда приходится возиться с контуром заземления квартиры. Семейство диапазонов, измеряющих сопротивление, находится под буквой греческого алфавита омега (см. рисунок). Избранным цифрам предшествует литера k, когда речь идёт о килоомах. Подбирается соответствующий диапазон для обеспечения максимальной точности. К примеру, на 200 Ом тестер показывает десятые доли, а на 2000 Ом уже нет. Это нечасто требуется, полагается соотносить диапазоны.
Для оценки нужного узнайте, как производится маркировка. На старых резисторах обычно прямо пишут номинал. Буквой к обозначают приставку кило, М – мега, Г (G) – гига, Т – тера. Особо маркируются резисторы мелкого номинала. К примеру, запись 1R5 означает, что сопротивление резистора составляет 1,5 Ом. Потребуется выбрать самый малый диапазон. Недавно в обзорах приводили пример косвенного измерения сопротивления, у которого точность намного выше. Повторяться не будем, листайте сайт. Найдёте массу интересного.
Отдельно маркировке подлежит точность. Обычно идёт после номинала и обозначается цифрой в процентах. Порой допуски приводят в буквенных кодах. К примеру, L соответствует 0,01%. Подробнее почитайте в ГОСТ 28883. Вдобавок удастся ознакомиться с цветовыми маркировками и их назначением. Добавим, что значимых полос на корпусе резистора бывает 4 — 5, а значение номинала удобнее определять по онлайн-калькуляторам. Поищите, к примеру, на сайте магазина Чип&Дип.
Переменное напряжение
После батарейки пора осилить задачу посерьёзнее – переменное напряжение. Предварительно научимся тыкать щупами в нужное место. При работе с промышленным стандартом 220 В велика вероятность что-нибудь испортить. Для тестирования попробуем зарядное устройство любого телефона.
Старайтесь найти старенькое с открытыми контактами, miniUSB — не то, с чем удобно работать штатными щупами тестера. Обычно для труднодоступных мест используются специальные иголки, покупаемые специально, в комплекте отсутствуют. Когда открытый разъем адаптера телефона обращён к человеку лицом, фаза находится слева. Это распространённый шаг. В розетке фаза тоже должна находиться слева. В указанное место ставим красный щуп, чёрный на вторую клемму (либо корпус, если второй клеммы нет). Тестер покажет штатное напряжение питания адаптера. Не забудьте включить его в розетку.
Тестирование переменного напряжения в розетках
Верный диапазон
Перед тестированием переменного напряжения требуется поставить правильный диапазон. Для российских розеток это 750 В. На практике в домах присутствует 230 В (для совместимости с европейской техникой), и 200-вольтовой шкалы оказывается маловато. Сверьтесь с нашим рисунком по поводу установки диапазона. Группа переменных напряжений маркируется латинской литерой V, дальше идёт тильда
При работе в указанном режиме полярность щупов не имеет значения. Рекомендуем применять красный провод для фазы, чтобы обрести правильные навыки работы. Щупы прекрасно входят в евророзетки и в обычные. Дисплей покажет 220-230 В.
Режимы приборов
- Режим прозвонки диодов используются и для тестирования целостности проводов. Перед началом работы рекомендуется замкнуть щупы. При этом раздаётся писк. Для тестирования возьмите переноску (удлинитель). В розетку втыкать не нужно. Теперь присоедините любой щуп к одному штырю вилки, а второй вставляйте в любое гнездо удлинителя (идут двумя рядами). Если писк не раздался, переместите первый щуп на второй штырь. Исправная переноска с лёгкостью звонится. Обратите внимание, по мере проведения работ цифры на дисплее меняются. Тестер показывает одновременно сопротивление линии. Это удобно, но показания не отличаются большой точностью. Поэтому для измерения малых сопротивлений проводов по-прежнему рекомендуется использовать специальный режим из группы Ω. Показания сопротивления предлагается использовать для оценки работоспособности диодов. Известно, что у германиевых указанный параметр ниже, нежели у кремниевых. Часто для оценки параметров требуется знать напряжение на щупах. Тестер формирует некий потенциал для проведения замеров. Для решения задачи необходим хороший конденсатор приличной ёмкости (к примеру, 100 мкФ). Прислоните щупы сообразно полярности (если таковая имеется) для зарядки. Красный провод идёт на плюс. Удобно это делать в рассматриваемом режиме по простой причине: на экране сопротивление конденсатора последовательно пройдёт все стадии от нуля до бесконечности. Когда бег цифр закончится, перейдите в режим измерения малых постоянных напряжений и оцените потенциал. Это окажется собственное вспомогательное напряжение, формируемое тестером. Зная его, понятно, насколько диод соответствует заявленным характеристикам. Это отдельная тема, затронутая ранее.
Современный измерительный прибор
- Современные приборы измеряют коэффициент усиления транзистора по току. Для людей новых сообщаем, что значение зависит от прилагаемого напряжения и пропускаемого тока, не каждый транзистор допускается подвергнуть проверке с полным успехом. Мощные элементы потребуют сборки специальных схем для тестирования. Режим называется hFE по первым буквам параметра на английском языке. Литерой h обозначаются h-параметры (логично). Буквой F обозначается прямое (forward) усиление по току, а Е относится к типу схемы включения транзистора с общим эмиттером (emitter). Для тестирования посмотрите на гнездо, расположенное на передней панели мультиметра. Оно круглое и вертикально поделено на две равные половинки. Каждая предназначается для оценки работоспособности одного из типов биполярных транзисторов: npn и pnp. Полевые транзисторы разрешается проверять, но уже в нештатных режимах. Нужно чётко понимать, как работает мультиметр, тогда удастся даже прозвонить симистор. Каждое отверстие гнезда тестирования транзисторов помечено буквами: B – для базы; С – для коллектора; Е – для эмиттера. Узнайте из документации тип приобретённого транзистора и сообразно введите его ножки в отверстия. Перейдите теперь в режим hFE, на экране появится коэффициент усиления исследуемого транзистора по току.
- Режим измерения ёмкости основан на оценке постоянной разряда цепи из конденсатора и внутреннего сопротивления тестера. Не любой мультиметр включает в себя указанную опцию, и любителям она представляется крайне удобной. Чтобы правильно пользоваться режимом оценки ёмкости, узнайте порядок маркировки. Обычно номинал конденсаторов представляется в виде пФ. В противном случае ставятся буквы: m – милли, μ – микро, n – нано и пр. Они, соответственно, обозначают отрицательные степени числа 10: 3, 6, 9. Пикофарады (р) — отрицательная двенадцатая степень. К примеру, 33,2 пФ обозначается как 33p. На конденсаторы и на резисторы созданы допуски номиналов. Они демонатрируют знакомый вид и определяются аналогичным стандартом – ГОСТ 28883. Оценив номинал собственного конденсатора, правильно выберите диапазон на мультиметре, а потом проведите замер. Полярность порой играет роль. К примеру, при работе с электролитическими конденсаторами. Старайтесь не путать красный плюс и чёрный минус.
Не будем останавливаться на том, как измерить ток мультиметром. Добавим лишь, что работа идёт исключительно с постоянными уровнями. Нарушение правила ради того, чтобы проверить реле на работоспособность, к примеру, приведёт к выходу тестера из строя. Помните, если ожидаемый ток в цепи измерения больше предельного для шкалы, регулятор напряжения генератора питания обязан настраиваться должным образом для исправления упомянутого недостатка — при возможности.
Через некоторое время пользования прибором описанные методики и положения станут очевидны.
Мультиметр – один из тех приборов, который просто обязан быть у каждого домашнего мастера, наряду с рулеткой или линейкой. Возможно многие думают, что это какое-то сложное, узкоспециализированное устройство, необходимое лишь при ремонте электроники, но это не так.
В этой статье я расскажу, какие у мультиметра есть основные функции измерения, что можно с помощью него делать и конечно же как им пользоваться.
Этот материал в первую очередь станет полезен «чайникам», домашним мастерам-любителям, для которых будут востребованы и невероятно полезны некоторые способы именно бытового применения мультиметров, вроде измерения напряжения в розетке, проверки батарейки, поиск короткого замыкания или обрыва и т.д.
В первую очередь вы должны знать – мультиметр позволяет диагностировать неисправности электрооборудования, электросетей, электроматериалов и т.д.
В настоящее время существует большое число разнообразных моделей тестеров, которые, в основном, отличаются количеством функций и точностью измерения. Для того, чтобы правильно пользоваться цифровым мультиметром, давайте рассмотрим, что же он из себя представляет.
При этом, я намеренно не буду описывать возможности профессиональных устройств, ведь для домашнего использования подойдет практически любой, даже самый простой цифровой тестер, который в любом случае сможет измерять напряжение, сопротивление и силу тока в электрических цепях переменного или постоянного тока.
Стандартный цифровой мультиметр выглядит примерно так:
– Экран. На нем отражаются результат
– Колесо выбора режимов, с различными диапазонами измерений. Им выбираются параметры тестирования
– Два щупа – красный и черный. Ими выполняются непосредственно измерения требуемых участков цепи
Давайте более подробно рассмотрим эти основные компоненты, а также режимы работы, способы измерения, всё то, что необходимо знать, чтобы научиться пользоваться цифровым тестером.
Экран мультиметра
У бытовых моделей тестеров экраны монохромные ЖК (жидкокристаллические), чаще всего без подсветки, различаются они по количеству отображаемых символов, наиболее распространены модели с четырьмя разрядами. При этом обычно не все 4 символа могут быть в диапазоне от 0 до 9ки, чаще первая цифра может быть 0 или 1, а вот оставшиеся три могут быть от 0 до 9 каждая.
Чем больше диапазон отображения, тем более точные вы получите показания. Но не следует путать это с погрешностью или точностью измерения приборов, тестер с отображаемыми 5тью разрядами и 4мя, могут одинаково точно выполнять замеры, но вот у первого вы сможете увидеть больше цифр значения, например, после запятой, когда как устройство с четырьмя разрядами, крайнюю цифру не покажет, округлив её значение.
На дисплее так же может отображаться различная дополнительная информация, вроде заряда батареи, выбранного режима измерения и т.д. кроме этого обязательно показывается знак минус, если значение отрицательное.
Колесо выбора режимов работы тестера
Для того, чтобы указать на цифровом тестере функцию, которой вы хотите воспользоваться – существует колесо управления, поворачивая которое, вы выбираете нужный режим и предел измерений.
Чаще всего у стандартного тестера существуют следующие функции измерения:
V= Измерение напряжения постоянного тока
Ω Измерение сопротивления
-hFE Проверка транзисторов
OFF Выключение прибора
Вместо значков переменного «
» и постоянного « = » тока, может так же применяться аббревиатура AC и DC, что означает буквально следующее:
AC – Alternating Current – переменный ток
DC – Direct Current – постоянный ток
И измерение, допустим, постоянного напряжения, в этом случае записывается как, DCV или VDC.
Многие из этих режимов, имеют несколько пределов измерения – диапазонов, которые обычно сгруппированы на панели прибора и соответствующим образом промаркированы, чтобы вы не ошиблись к какой функции они относятся.
Пределы нужны, в том числе, потому, что тестером, в разных областях, требуется измерять совершенно разные величины, где-то показания измеряются сотнями тысяч единиц, а в каких-то сферах измеряются лишь десятые доли.
Чтобы отобразить на экране мультиметра показания для каждого случая, необходимо отржение как минимум 6-7 разрядов (именно столько цифр требуется для того, чтоб показать, миллион Ом – 1 МегаОм), а как вы помните у нас для отображения доступно только 3-4 символа.
Поэтому, когда вы измеряете, сопротивление, которое должно быть 10 Ом, а у вас выставлен на тестере диапазон 2 Мом (МегаОм), то на экране вы увидите лишь нули, а вот искомую величину экран отразит при выборе диапазона 20 кОм.
Различные пределы измерения обозначаются соответствующими единицами этой величины, для удобства сокращения к ним добавляются общеизвестные приставки: микро, мили, кило, мега. Ниже приведены значения этих приставок:
– μ микро n/1 000 000
– m мили n/1 000
– k кило n*1 000
– M мега n*1 000 000
, где n-основная единица измерения.
Так, например, 2 милиАмпер = 2/1000 = 0,002 Ампер.
Проводя измерения, не зная какой результат будет получен, всегда начинайте с самого большого показателя диапазона!
Например, измеряя напряжение в сети переменного тока, сперва выставляйте показатель регулятора на 600 Вольт и лишь затем понижайте его.
Разъемы для подключения и щупы мультиметра
Обычно, даже бытовые мультиметры имеют съемные щупы разного цвета – один черный другой красный, а кроме того два или три разъема для их подключения на панели прибора.
Разъемы цифрового тестера, как в нашем случае, маркируются следующим образом:
10ADC – разъем используется только для измерения постоянного тока в диапазоне до 10 А. В него подключается красный щуп, когда требуется измерить силу тока
COM (common общий) – общий разъем, при различных режимах измерения так же может быть минусовым или заземленным. В него подключается черный щуп
V Ω mA – разъем для основных измерений – сопротивления, напряжения или тока (кроме высоких токов более 10А) В него подключается красный щуп
Наиболее часто пользуются именно общим и V Ω mA разъемами, ими делаются основные измерения.
Когда будете пользоваться цифровым мультиметром, проводя измерения, не бойтесь перепутать местами щупы, или приложить черный к плюсовой клемме, если вы перепутаете полюсы измерения, мультиметр не сгорит, а лишь укажет на это знаком «-» на экране, так кстати определяется фаза и ноль у переменного тока и плюс с минусом у источников постоянного тока.
Как измерять мультиметром
Существует три основных способа измерений мультиметром, каждый применяется для разных режимов:
Подключение щупов последовательно, в разрыв электрической сети , так измеряется сила тока.
Подключение щупов параллельно электрической сети , так измеряется напряжение.
Подключение щупов к полюсам исследуемого объекта , так измеряется сопротивление и делается прозвонка.
Один из вариантов последовательного подключения, разница лишь в том, что источником питания для получения показаний является сам мультиметр, а проверяется так обесточенный элемент.
Теперь, когда вы имеете общее представление о том какие есть режимы работы и пределы измерений, а главное, как пользоваться мультиметром для измерения основных величин, предлагаю закрепить эти знания и приступить к замерам. Вы удивитесь, как много реально полезной информации можно получить тестером в быту.
В следующей статье, я расскажу, как прозвонить провода, как проверить батарейку, узнать напряжение сети и многое-многое другое, а пока вступайте в нашу группу вконтакте, следите за выходом новых материалов!
The simplest of these circuits are a form of rectifier which take an AC voltage as input and outputs a doubled DC voltage. | Простейшие из этих схем представляют собой форму выпрямителя, который принимает переменное напряжение в качестве входного и выводит удвоенное напряжение постоянного тока. |
The rated AC voltage for film capacitors is generally calculated so that an internal temperature rise of 8 to 10 °K is the allowed limit for safe operation. | Номинальное напряжение переменного тока для пленочных конденсаторов обычно рассчитывают таким образом, что внутреннее повышение температуры от 8 до 10 °К является допустимым пределом для безопасной работы. |
Because dielectric losses increase with increasing frequency, the specified AC voltage has to be derated at higher frequencies. | Поскольку диэлектрические потери увеличиваются с увеличением частоты, указанное напряжение переменного тока должно быть понижено на более высоких частотах. |
If film capacitors or ceramic capacitors only have a DC specification, the peak value of the AC voltage applied has to be lower than the specified DC voltage. | Если пленочные конденсаторы или керамические конденсаторы имеют только характеристики постоянного тока, то пиковое значение приложенного переменного напряжения должно быть ниже указанного постоянного напряжения. |
Bipolar electrolytic capacitors, to which an AC voltage may be applicable, are specified with a rated ripple current. | Биполярные электролитические конденсаторы, к которым может применяться переменное напряжение, задаются номинальным пульсирующим током. |
As film capacitors are not polarized, they can be used in AC voltage applications without DC bias, and they have much more stable electrical parameters. | Поскольку пленочные конденсаторы не поляризованы, их можно использовать в приложениях переменного напряжения без смещения постоянного тока, и они имеют гораздо более стабильные электрические параметры. |
The current drawn from the mains supply by this rectifier circuit occurs in short pulses around the AC voltage peaks. | Ток, получаемый от сети питания по этой схеме выпрямителя, возникает короткими импульсами вокруг пиков переменного напряжения. |
Because the rated AC voltage is specified as an RMS value, the nominal AC voltage must be smaller than the rated DC voltage. | Поскольку номинальное напряжение переменного тока задается как среднеквадратическое значение, номинальное напряжение переменного тока должно быть меньше номинального напряжения постоянного тока. |
The rated AC voltage is generally calculated so that an internal temperature rise of 8 to 10 °K sets the allowed limit for film capacitors. | Номинальное напряжение переменного тока обычно рассчитывают таким образом, что внутреннее повышение температуры от 8 до 10 °к устанавливает допустимый предел для пленочных конденсаторов. |
Before solid state AC voltage regulation was available or cost effective, motor generator sets were used to provide a variable AC voltage. | До того, как твердотельное регулирование переменного напряжения стало доступным или экономически эффективным, для обеспечения переменного переменного напряжения использовались мотор-генераторные установки. |
This filtered DC voltage is converted to quasi-sinusoidal AC voltage output using the inverter’s active switching elements. | Это фильтрованное напряжение постоянного тока преобразуется в квазисинусоидальное выходное напряжение переменного тока с помощью активных коммутационных элементов инвертора. |
Electromechanical regulators are used for mains voltage stabilisation — see AC voltage stabilizers below. | Электромеханические регуляторы используются для стабилизации сетевого напряжения — см. ниже стабилизаторы переменного напряжения. |
Such power supplies will employ a transformer to convert the input voltage to a higher or lower AC voltage. | Такие источники питания будут использовать трансформатор для преобразования входного напряжения в более высокое или более низкое напряжение переменного тока. |
The filter removes most, but not all of the AC voltage variations; the remaining AC voltage is known as ripple. | Фильтр удаляет большинство, но не все вариации переменного напряжения; оставшееся переменное напряжение известно как пульсация. |
ROs produced by the General Electric are used in AC voltage stabilizers. | АФК, производимые компанией General Electric, используются в стабилизаторах переменного напряжения. |
Then a second set of rectifier contacts on the vibrator rectified the high AC voltage from the transformer secondary to DC. | Затем второй комплект выпрямительных контактов на вибраторе выпрямил высокое переменное напряжение от вторичной обмотки трансформатора до постоянного тока. |
Другие результаты | |
All high voltage DC wiring shall have insulation rated for 3,000 V DC or AC. | Все провода высоковольтных цепей постоянного тока должны иметь изоляцию, рассчитанную на напряжение З 000 В по постоянному или переменному току. |
Local systems in one building could be connected to local low-voltage DC or 230V AC grids to improve the security of supply. | Локальные системы в одном здании можно было бы подключить к локальному постоянному низковольтному источнику постоянного тока или к сети переменного тока в 230 вольт, чтобы улучшить безопасность электроснабжения. |
AC/DC, which debuted with High Voltage in 1975, is a prime example. | AC / DC, который дебютировал с высоким напряжением в 1975 году, является ярким примером. |
In effect, this converts the DC to AC before application to the voltage doubler. | По сути, это преобразует постоянный ток в переменный перед подачей на удвоитель напряжения. |
They often include options to superimpose a DC voltage or current on the AC measuring signal. | Они часто включают в себя опции для наложения постоянного напряжения или тока на измерительный сигнал переменного тока. |
But in no case, for aluminum as well as for tantalum and niobium electrolytic capacitors, may a reverse voltage be used for a permanent AC application. | Но ни в коем случае для алюминиевых, а также для танталовых и ниобиевых электролитических конденсаторов нельзя использовать обратное напряжение для постоянного переменного тока. |
However, in AC/DC power conversion as well as DC power generation, high voltages and currents or both may be output as ripple. | Однако при преобразовании мощности переменного / постоянного тока, а также при производстве электроэнергии постоянного тока высокие напряжения и токи или то и другое могут быть выведены в виде пульсаций. |
Standardized conditions for capacitors are a low-voltage AC measuring method at a temperature of 20 °C with frequencies of. | Стандартизированные условия для конденсаторов представляют собой низковольтный метод измерения переменного тока при температуре 20 °С с частотами. |
The notion of impedance is useful for performing AC analysis of electrical networks, because it allows relating sinusoidal voltages and currents by a simple linear law. | Понятие импеданса полезно для анализа электрических сетей переменного тока, поскольку позволяет связать синусоидальные напряжения и токи простым линейным законом. |
On each of the alternate halves of the AC cycle, one anode acts as a blocking dielectric, preventing reverse voltage from damaging the opposite anode. | На каждой из чередующихся половин цикла переменного тока один анод действует как блокирующий диэлектрик, предотвращая повреждение противоположного анода обратным напряжением. |
These vibrator power supplies became popular in the 1940s, replacing more bulky motor-generator systems for the generation of AC voltages for such applications. | Эти вибраторные источники питания стали популярны в 1940-х годах, заменив более громоздкие моторно-генераторные системы для генерации переменного напряжения для таких применений. |
Datasheets for film capacitors specify special curves for derating AC voltages at higher frequencies. | Технические характеристики пленочных конденсаторов определяют специальные кривые для снижения напряжения переменного тока на более высоких частотах. |
Each additional stage of two diodes and two capacitors increases the output voltage by twice the peak AC supply voltage. | Каждый дополнительный каскад из двух диодов и двух конденсаторов увеличивает выходное напряжение в два раза по сравнению с пиковым напряжением питания переменного тока. |
A bypass capacitor is often used to decouple a subcircuit from AC signals or voltage spikes on a power supply or other line. | Байпасный конденсатор часто используется для отсоединения подсхемы от сигналов переменного тока или скачков напряжения на источнике питания или другой линии. |
In 2009, Seoul Semiconductor released a high DC voltage LED, named as ‘Acrich MJT’, capable of being driven from AC power with a simple controlling circuit. | В 2009 году Seoul Semiconductor выпустила светодиод высокого напряжения постоянного тока, названный Acrich MJT, способный управляться от сети переменного тока с помощью простой управляющей схемы. |
Because the TRIAC can conduct in both directions, reactive loads can cause it to fail to turn off during the zero-voltage instants of the AC power cycle. | Поскольку симистор может работать в обоих направлениях, реактивные нагрузки могут привести к тому, что он не сможет отключиться во время нулевого напряжения в цикле питания переменного тока. |
The impedance is the complex ratio of the voltage to the current with both magnitude and phase at a particular frequency in an AC circuit. | Импеданс-это сложное отношение напряжения к току как по величине, так и по фазе на определенной частоте в цепи переменного тока. |
The derating factors apply to both DC and AC voltages. | Понижающие коэффициенты применяются как к постоянному, так и к переменному напряжению. |
These losses increase with increasing frequency, and manufacturers specify curves for derating maximum AC voltages permissible at higher frequencies. | Эти потери увеличиваются с увеличением частоты, и производители указывают кривые для снижения максимальных напряжений переменного тока, допустимых на более высоких частотах. |
After 1890, Tesla experimented with transmitting power by inductive and capacitive coupling using high AC voltages generated with his Tesla coil. | После 1890 года Тесла экспериментировал с передачей мощности с помощью индуктивной и емкостной связи с использованием высоких напряжений переменного тока, генерируемых его катушкой Теслы. |
Among the systems proposed by several US and European companies were two-phase and three-phase AC, high-voltage DC, and compressed air. | Среди систем, предложенных несколькими американскими и европейскими компаниями, были двухфазный и трехфазный переменный ток, высоковольтный постоянный ток и сжатый воздух. |
Edison expressed views that AC was unworkable and the high voltages used were dangerous. | Эдисон высказал мнение, что переменный ток не работает, а высокое напряжение опасно. |
These signals may be impressed on one conductor, on two conductors or on all three conductors of a high-voltage AC transmission line. | Эти сигналы могут подаваться на один проводник, на два проводника или на все три проводника высоковольтной линии электропередачи переменного тока. |
The impedance is the complex ratio of the voltage to the current in an AC circuit, and expresses as AC resistance both magnitude and phase at a particular frequency. | Импеданс представляет собой сложное отношение напряжения к току в цепи переменного тока и выражает в виде сопротивления переменного тока как величину, так и фазу на определенной частоте. |
They are used for filtering power supply lines, tuning resonant circuits, and for blocking DC voltages while passing AC signals, among numerous other uses. | Они используются для фильтрации линий электропередач, настройки резонансных цепей, а также для блокировки постоянного напряжения при передаче сигналов переменного тока, среди множества других применений. |
This can cause the voltage from the AC mains or a generator to also become non-sinusoidal. | Это может привести к тому, что напряжение от сети переменного тока или генератора также станет несинусоидальным. |
VFDs are made in a number of different low- and medium-voltage AC-AC and DC-AC topologies. | VFDs изготавливаются в различных топологиях низкого и среднего напряжения AC-AC и DC-AC. |
VFDs are available with voltage and current ratings covering a wide range of single-phase and multi-phase AC motors. | VFDs выпускаются с номинальным напряжением и током, охватывающим широкий спектр однофазных и многофазных двигателей переменного тока. |
This is accomplished by reducing the voltage to the AC terminals and at the same time lowering current and kvar. | Это достигается снижением напряжения на клеммах переменного тока и одновременно снижением тока и Квара. |
Depending on the design, it may be used to regulate one or more AC or DC voltages. | В зависимости от конструкции он может использоваться для регулирования одного или нескольких напряжений переменного или постоянного тока. |
After the inductor or transformer secondary, the high frequency AC is rectified and filtered to produce the DC output voltage. | После вторичной обмотки индуктора или трансформатора высокочастотный переменный ток выпрямляется и фильтруется для получения выходного напряжения постоянного тока. |
Controlled properties may include voltage, current, and in the case of AC output power supplies, frequency. | Контролируемые свойства могут включать напряжение, ток, а в случае с выходными источниками питания переменного тока-частоту. |
A modern computer power supply is a switch-mode power supply that converts AC power from the mains supply, to several DC voltages. | Современный компьютерный источник питания-это импульсный источник питания, который преобразует переменную мощность от сетевого источника питания в несколько напряжений постоянного тока. |
Both commercial and military avionic systems require either a DC-DC or AC/DC power supply to convert energy into usable voltage. | Как коммерческие, так и военные авиационные системы требуют либо постоянного тока, либо переменного/постоянного тока для преобразования энергии в полезное напряжение. |
With AC, transformers can be used to step down high transmission voltages to lower customer utilization voltage. | С переменным током трансформаторы могут быть использованы для снижения высокого напряжения передачи для снижения напряжения использования потребителем. |
The use of AC eliminated the need for spinning DC voltage conversion motor-generators that require regular maintenance and monitoring. | Использование переменного тока устранило необходимость в вращающихся двигателях-генераторах преобразования постоянного напряжения, требующих регулярного технического обслуживания и контроля. |
LED lamps can contain a circuit for converting the mains AC into DC at the correct voltage. | Светодиодные лампы могут содержать схему преобразования сетевого переменного тока в постоянный при правильном напряжении. |
They include driver circuitry to rectify the AC power and convert the voltage to an appropriate value, usually a switched-mode power supply. | Они включают в себя схему драйвера для выпрямления мощности переменного тока и преобразования напряжения в соответствующее значение, как правило, в импульсный источник питания. |
The abbreviations AC and DC are often used to mean simply alternating and direct, as when they modify current or voltage. | Аббревиатуры AC и DC часто используются для обозначения просто переменного и постоянного тока, например, когда они изменяют ток или напряжение. |
Until the late 1980s, X-ray generators were merely high-voltage, AC to DC variable power supplies. | До конца 1980-х годов рентгеновские генераторы были просто высоковольтными, переменными источниками питания от переменного до постоянного тока. |
The voltage over the contact is given by the AC Josephson relation. | Напряжение на контакте задается соотношением Джозефсона переменного тока. |
Until about 1880, the paradigm for AC power transmission from a high voltage supply to a low voltage load was a series circuit. | Примерно до 1880 года парадигмой передачи энергии переменного тока от высоковольтного источника питания к низковольтной нагрузке была последовательная схема. |
Что такое dc напряжение. Обозначение постоянного и переменного тока. Источники электрической энергии
На сегодняшнее время в продаже существует адаптивный ксенон с лампами и блоками розжига AC и DC. Это один и тот же ксенон, но имеющий некоторые различия, о которых вы, как покупатель и пользователь, обязательно должны знать. Этот материал посвящен ксенону AC и DC, особенностям, отличиям и многому другому, что полезно будет знать.
Вступительная часть о ксеноне AC и DC
На первый взгляд отличить блоки розжига AC и DC невозможно. Главное их различие в том, что AC – это блоки розжига, которые имеют переменный ток, а DC – постоянный. Различие таких двух ксенонов можно заметить при их работе, а точнее во время розжига и поддержания тлеющего разряда. Мерцание ламп выдает блоки розжига DC.
Для того, чтобы конкретно понять различия между ксеноном AC и DC необходимо знать их конструкцию. Разительно отличаются такие комплекты именно по принципу работы, что является наиболее важным для данного устройства в светотехнике для автомобилей. Как уже отмечалось, их принцип работы виден в момент розжига ксеноновой лампы и поддержании горения. Для того, чтобы образовать электрическую дугу между электродами в колбе лампы необходима мощная подача импульса, то есть тока до 25000 В.
После того, как запустилось горение источника, для поддержания функционирования лампы необходима беспрерывная подача тока с напряжением 80-85 В, и следит за этим контроллер, который вмонтирован в балласт игнитора. Это стандартный принцип работы блоков розжига ксеноновых ламп. В AC блоках присутствует игнитор (инвертер) и стабильно работающий стабилизатор, в отличие от комплектов DC.
Комплекты блоков розжига DC: принцип розжига лампы
Адаптивные блоки розжига и ксеноновые лампы с постоянным током DC имеют значительно меньшую стоимость, легкий вес и небольшие габариты. Они обеспечивают единичный и нецикличный разряд, что и приводит, зачастую, к дрожанию электрической дуги и мерцанию света ксенонового источника. Чтобы правильно активизировать работу ксеноновой лампы необходим повторный импульс, что занимает дополнительные несколько секунд на ожидание повторной подачи тока. Отметим, что система DС по качеству намного лучше, чем галоген, но все же уступает комплектам AC c переменным током.
Комплекты блоков розжига AC: принцип розжига лампы
Ксеноновые блоки розжига и лампы с переменным током AC работают намного стабильнее и лучше, поскольку оснащены специальным стабилизатором, выравнивающим напряжение. АС блоки создают импульсы необходимой частоты и мощности, что и позволяет обеспечить бесперебойность и стабильность выдачи света лампами. Для того, чтобы создать амплитуду колебания в блоках и лампах АС используются специальные игниторы (иногда могут называться инверторами), которые обеспечивают преобразование низковольтного тока в высоковольтный импульс и наоборот. Таким образом из напряжения бортовой сети транспортного средства 12 В (иногда 24 В) обеспечивается генерация тока в 25000 В, что в считанные секунды гарантирует розжиг ксенонового излучателя. Стоит отметить, что у блоков АС есть двусторонняя связь с ксеноновыми лампами, таким образом, если свет начинает тухнуть, то блок обеспечивает подачу высоковольтного импульса, чтобы не привести к деактивации излучателя. Таким образом, комплекты адаптивного ксенона АС более стабильно работают, не наблюдается мерцаний ламп и скачков напряжения.
Параметры | Блоки AC | Блоки DC |
Ток | Переменный | Постоянный |
Стартовый импульс | Один мощный импульс в 25000 В, что обеспечивает моментальный розжиг ксеноновой лампы. Лампа моментально разжигается, не наблюдается мерцаний и снижения яркости света. | Иногда стартовый импульс полностью не активизирует электрическую дугу, а поэтому приходится ждать повторной реакции, что занимает намного больше времени и свет лампы мерцает. |
Вес | Имеют больший вес, чем блоки с постоянным током, благодаря конструктивным особенностям. | Характеризуются максимальной легкостью, а поэтому не создают давление на блок фары. |
Габариты | Бывают разные габариты, в зависимости от поколения. | Блоки обладают практически одинаковыми габаритами. |
Конструкция | Имеют игнитор (инвертер) и стабилизатор. | Отсутствует инвертер и стабилизатор напряжения. |
Форм-фактор | Бывают стандартного размера и слим, для использования в авто с маленьким подкапотным пространством. | Практически все блоки розжига имеют стандартные размеры, но меньшего формата, чем обыкновенные блоки АС. |
Звуковой сигнал | Обладают специальным звуковым сигналом, который со временем затухает и оповещает водителя о пригодности ксенона для использования и начала движения авто. | Блоки розжига постоянного тока не обеспечивают подачу звукового сигнала для водителя, а поэтому приходится ждать дольше, чтобы начать движение. |
Лампы | Используется исключительно с лампами переменного тока АС. Если подключить блок с лампами DC, то свечение не активизируется, поскольку блок не создает специальную полярность, которая нужна для функционирования ламп с постоянным током. | Необходимо использовать исключительно с лампами DC. Если же подключить блок к лампам с переменным током АС, то увеличивается износ и ламп, и разжигающего изделия. К тому же свет ламп АС будет «дрожать», за счет отсутствия стабильности в дуговом разряде. |
Длительность эксплуатации | Использовав лампы и блоки АС комплект прослужит в среднем 2500-3000 часов. | Пользуясь лампами и блоками DC свет фар будет годен в течении 1500-2000 часов. |
Процент дефективности | В среднем 2% брака. | В среднем 5% брака. |
Надежность | Блоки обладают высокой надежностью и стабильностью работы, не допускают короткого замыкания и гарантируют бесперебойность свечения ксеноновой лампы. | Надежность, по сравнению с блоками розжига АС немного снижена, не говоря о стабильности функционирования и бесперебойности свечения ксенонового излучателя. |
Устойчивость к температурным перепадам | Блоки обладают высокой устойчивостью к перепадам температуры, корпус надежно и герметично запаян, а элементы, которые максимально подвержены выходу из строя при попадании влаги — спрятаны. | Стоит отметить, что блоки DC и AC по устойчивости к температуре идентичны. К тому же, благодаря качественному герметику блоки постоянного напряжения не подвержены попаданию влаги. |
Стоимость | За счет того, что блоки розжига АC оснащаются дополнительными компонентами, они стоят на порядок дороже, чем устройства постоянного тока. | Стоят намного дешевле, чем блоки розжига с переменным током, поскольку отсутствуют важные компоненты, например, стабилизатор напряжения. |
Будьте бдительны!
Зачастую случается так, что приобретая блоки розжига у недобросовестных продавцов, например на базарах, или же магазинах «в подвалах» покупатели наталкиваются на мошенничество. Многие хитрят и монтируют муляж инвертера в блоки розжига DC и выдают их за AC, естественно по стоимости на порядок выше. Именно поэтому, приобретайте адаптивные комплекты ксенона только у проверенных продавцов, которые гарантируют высокое качество продукции и обязательно предоставляют гарантию на любые приобретенные комплекты.
Когда необходимо получить шов максимально высокого качества, используется аргонная сварка. Она может выполняться при помощи инверторов TIG класса DC и AC-DC. Широта функционала — основное отличие между этими двумя аппаратами. Так, агрегат TIG DC представляет собой устройство, которое обычно используется для ручной сварки в быту и на предприятиях. Чтобы начать сварку, потребуются покрытые электроды и подключение агрегата к сети в 220 вольт. В устройстве TIG DC применяется технология создания постоянного тока для сварки. При использовании моделей AC-DC работать можно не в одном, а в двух режимах. То есть в зависимости от существующих задач допускается варить под действием переменного или постоянного тока. Несмотря на такие функциональные различия ремонт сварочного оборудования TIG DC и AC-DC выполняется, как правило, без особых сложностей, но с различными временными затратами.
Нюансы использования инверторов
Для работы с алюминием, а также его сплавами нужен переменный ток. Это значит, что для подобной работы вместо TIG DC потребуется AC-DC. Универсальный агрегат для аргонной сварки считается одним из наиболее сложных среди агрегатов TIG. Переменный контур предусмотрен схемой инверторов AC-DC, что позволяет при смене характера работ легко переходить на сварку алюминия, его сплавов.
На практике доказано, что использование мастерами агрегатов TIG DC, то есть постоянного тока для сваривания алюминия, приводит к низкому качеству швов по причине формирования оксидной тугоплавкой пленки на поверхности сплава. Благодаря особым процессам в дуге под влиянием переменного тока (то есть, когда работает агрегат TIG AC-DC), приводят к разрушению оксидной пленки и увеличению качества шва. Однако для достижения высокого результата сварщик должен действовать более четко и быстро, поскольку скорость создания шва достаточно велика. Качество стыка получается настолько хорошим, что не требуется дополнительной обработки швов. Как правило, ремонт сварочных аппаратов TIG DC и AC-DC выполняется в специализированных мастерских, а частота его проведения во многом зависит от эксплуатационной нагрузки.
Зона-Сварки в Санкт-Петербурге!
Скоро наша компания «Зона-Сварки» откроет сервисный центр в Санкт-Петербурге!
Сегодня, если вы посмотрите вокруг, практически все, что вы видите, питается от электричества в той или иной форме.
Переменный ток и постоянный ток являются двумя основными формами зарядов, питающих наш электрический и электронный мир.
Что такое AC? Переменный ток может быть определен, как поток электрического заряда, который изменяет свое направление через регулярные промежутки времени.
Период / регулярные интервалы, при котором AC меняет свое направление, является его частотой (Гц). Морские транспортные средства, космические аппараты, и военная техника иногда используют AC с частотой 400 Гц. Тем не менее, в течение большей части времени, в том числе внутреннего использования, частота переменного тока устанавливается на 50 или 60 Гц.
Что такое DC? (Условное обозначение на электроприборах) Постоянный ток является током (поток электрического заряда или электронов), который течет только в одном направлении. Впоследствии, нет частоты связанной с DC. DC или постоянный ток имеет нулевую частоту.
Источники переменного и постоянного тока:
АС: Электростанции и генераторы переменного тока производят переменный ток.
DC: Солнечные батареи, топливные элементы, и термопары являются основными источниками для производства DC. Но основным источником постоянного тока является преобразование переменного тока.
Применение переменного и постоянного тока:
АС используется для питания холодильников, домашних каминов, вентиляторов, электродвигателей, кондиционеров, телевизоров, кухонных комбайнов, стиральных машин , и практически всего промышленного оборудования.
DC в основном используется для питания электроники и другой цифровой техники. Смартфоны, планшеты, электромобили и т.д.. LED и LCD телевизоры также работают на DC, который преобразовывается от обычной сети переменного тока.
Почему AC используется для передачи электроэнергии. Это дешевле и проще в производстве. AC при высоком напряжении может транспортироваться на сотни километров без особых потерь мощности. Электростанции и трансформаторы уменьшают величину напряжения до (110 или 230 В) для передачи его в наши дома.
Что является более опасным? AC или DC?
Считается, что DC является менее опасным, чем AC, но нет окончательного доказательства. Существует заблуждение, что контакт с высоким напряжением переменного тока является более опасным, чем с постоянного тока. На самом деле, это не о напряжении, речь идет о сумме тока, проходящего через тело человека. Постоянный и переменный ток может привести к летальному исходу. Не вставляйте пальцы или предметы внутрь розеток или гаджетов и высокой мощности оборудования.
На сегодняшнее время в продаже существует адаптивный ксенон с лампами и блоками розжига AC и DC. Это один и тот же ксенон, но имеющий некоторые различия, о которых вы, как покупатель и пользователь, обязательно должны знать. Этот материал посвящен ксенону AC и DC, особенностям, отличиям и многому другому, что полезно будет знать.
Вступительная часть о ксеноне AC и DC
На первый взгляд отличить блоки розжига AC и DC невозможно. Главное их различие в том, что AC – это блоки розжига, которые имеют переменный ток, а DC – постоянный. Различие таких двух ксенонов можно заметить при их работе, а точнее во время розжига и поддержания тлеющего разряда. Мерцание ламп выдает блоки розжига DC.
Для того, чтобы конкретно понять различия между ксеноном AC и DC необходимо знать их конструкцию. Разительно отличаются такие комплекты именно по принципу работы, что является наиболее важным для данного устройства в светотехнике для автомобилей. Как уже отмечалось, их принцип работы виден в момент розжига ксеноновой лампы и поддержании горения. Для того, чтобы образовать электрическую дугу между электродами в колбе лампы необходима мощная подача импульса, то есть тока до 25000 В.
После того, как запустилось горение источника, для поддержания функционирования лампы необходима беспрерывная подача тока с напряжением 80-85 В, и следит за этим контроллер, который вмонтирован в балласт игнитора. Это стандартный принцип работы блоков розжига ксеноновых ламп. В AC блоках присутствует игнитор (инвертер) и стабильно работающий стабилизатор, в отличие от комплектов DC.
Комплекты блоков розжига DC: принцип розжига лампы
Адаптивные блоки розжига и ксеноновые лампы с постоянным током DC имеют значительно меньшую стоимость, легкий вес и небольшие габариты. Они обеспечивают единичный и нецикличный разряд, что и приводит, зачастую, к дрожанию электрической дуги и мерцанию света ксенонового источника. Чтобы правильно активизировать работу ксеноновой лампы необходим повторный импульс, что занимает дополнительные несколько секунд на ожидание повторной подачи тока. Отметим, что система DС по качеству намного лучше, чем галоген, но все же уступает комплектам AC c переменным током.
Комплекты блоков розжига AC: принцип розжига лампы
Ксеноновые блоки розжига и лампы с переменным током AC работают намного стабильнее и лучше, поскольку оснащены специальным стабилизатором, выравнивающим напряжение. АС блоки создают импульсы необходимой частоты и мощности, что и позволяет обеспечить бесперебойность и стабильность выдачи света лампами. Для того, чтобы создать амплитуду колебания в блоках и лампах АС используются специальные игниторы (иногда могут называться инверторами), которые обеспечивают преобразование низковольтного тока в высоковольтный импульс и наоборот. Таким образом из напряжения бортовой сети транспортного средства 12 В (иногда 24 В) обеспечивается генерация тока в 25000 В, что в считанные секунды гарантирует розжиг ксенонового излучателя. Стоит отметить, что у блоков АС есть двусторонняя связь с ксеноновыми лампами, таким образом, если свет начинает тухнуть, то блок обеспечивает подачу высоковольтного импульса, чтобы не привести к деактивации излучателя. Таким образом, комплекты адаптивного ксенона АС более стабильно работают, не наблюдается мерцаний ламп и скачков напряжения.
Параметры | Блоки AC | Блоки DC |
Ток | Переменный | Постоянный |
Стартовый импульс | Один мощный импульс в 25000 В, что обеспечивает моментальный розжиг ксеноновой лампы. Лампа моментально разжигается, не наблюдается мерцаний и снижения яркости света. | Иногда стартовый импульс полностью не активизирует электрическую дугу, а поэтому приходится ждать повторной реакции, что занимает намного больше времени и свет лампы мерцает. |
Вес | Имеют больший вес, чем блоки с постоянным током, благодаря конструктивным особенностям. | Характеризуются максимальной легкостью, а поэтому не создают давление на блок фары. |
Габариты | Бывают разные габариты, в зависимости от поколения. | Блоки обладают практически одинаковыми габаритами. |
Конструкция | Имеют игнитор (инвертер) и стабилизатор. | Отсутствует инвертер и стабилизатор напряжения. |
Форм-фактор | Бывают стандартного размера и слим, для использования в авто с маленьким подкапотным пространством. | Практически все блоки розжига имеют стандартные размеры, но меньшего формата, чем обыкновенные блоки АС. |
Звуковой сигнал | Обладают специальным звуковым сигналом, который со временем затухает и оповещает водителя о пригодности ксенона для использования и начала движения авто. | Блоки розжига постоянного тока не обеспечивают подачу звукового сигнала для водителя, а поэтому приходится ждать дольше, чтобы начать движение. |
Лампы | Используется исключительно с лампами переменного тока АС. Если подключить блок с лампами DC, то свечение не активизируется, поскольку блок не создает специальную полярность, которая нужна для функционирования ламп с постоянным током. | Необходимо использовать исключительно с лампами DC. Если же подключить блок к лампам с переменным током АС, то увеличивается износ и ламп, и разжигающего изделия. К тому же свет ламп АС будет «дрожать», за счет отсутствия стабильности в дуговом разряде. |
Длительность эксплуатации | Использовав лампы и блоки АС комплект прослужит в среднем 2500-3000 часов. | Пользуясь лампами и блоками DC свет фар будет годен в течении 1500-2000 часов. |
Процент дефективности | В среднем 2% брака. | В среднем 5% брака. |
Надежность | Блоки обладают высокой надежностью и стабильностью работы, не допускают короткого замыкания и гарантируют бесперебойность свечения ксеноновой лампы. | Надежность, по сравнению с блоками розжига АС немного снижена, не говоря о стабильности функционирования и бесперебойности свечения ксенонового излучателя. |
Устойчивость к температурным перепадам | Блоки обладают высокой устойчивостью к перепадам температуры, корпус надежно и герметично запаян, а элементы, которые максимально подвержены выходу из строя при попадании влаги — спрятаны. | Стоит отметить, что блоки DC и AC по устойчивости к температуре идентичны. К тому же, благодаря качественному герметику блоки постоянного напряжения не подвержены попаданию влаги. |
Стоимость | За счет того, что блоки розжига АC оснащаются дополнительными компонентами, они стоят на порядок дороже, чем устройства постоянного тока. | Стоят намного дешевле, чем блоки розжига с переменным током, поскольку отсутствуют важные компоненты, например, стабилизатор напряжения. |
Будьте бдительны!
Зачастую случается так, что приобретая блоки розжига у недобросовестных продавцов, например на базарах, или же магазинах «в подвалах» покупатели наталкиваются на мошенничество. Многие хитрят и монтируют муляж инвертера в блоки розжига DC и выдают их за AC, естественно по стоимости на порядок выше. Именно поэтому, приобретайте адаптивные комплекты ксенона только у проверенных продавцов, которые гарантируют высокое качество продукции и обязательно предоставляют гарантию на любые приобретенные комплекты.
Услышав музыку этой группы хотя бы один раз, её невозможно забыть или спутать с чем-то другим. Потрясающий звук, бешеная энергетика, незабываемый вокал — это всё «AC/DC», культовая рок-группа родом из Австралии, ставшая настоящей легендой хеви-метала и хард-рока. Удивителен тот факт, что коллектив продолжает существовать с 1971 года, а в конце лета 2015 года музыканты, которым давно перевалило за 60, собрались в большой гастрольный тур по Канаде и США, что доказывает, что эту удивительную рок-группу рано списывать со счетов, и они еще могут «задать жару».
Становление рок-легенды
У Уильяма и Маргарет Янг, коренных шотландцев, переехавших в Австралию в 1963 году, всего было девять детей, в том числе трое сыновей — Джордж, Малкольм и Агнус. На удивление, все они были чрезвычайно талантливы в музыкальном плане. Первым братом, втянувшимся в рок-музыку, был старший, Джордж. Он с друзьями основал «Easybeats», подростковый рок-бэнд, чем привлек внимание младших Янгов к музыке. Малкольм, а затем и Агнус, взяв в руки гитару, обнаружили настоящий талант, обучаясь с рекордной быстротой.
После нескольких неудачных попыток участия в музыкальных коллективах, в голову Малкольму Янгу приходит идея создать собственную группу, а его младший брат Агнус с энтузиазмом поддерживает эту задумку. Вокалиста Дейва Эванса братья нашли по объявлению в газете, а на барабаны и бас-гитару были приглашены знакомые молодых Янгов.
Название своей группы будущие легенды рока придумали, а точнее сказать, нашли, довольно быстро: надпись «AC/DC», что означает «переменно-постоянный ток» часто размещалась на бытовых приборах, вроде пылесоса или электрической швейной машины, где её и увидела сестра братьев Янг, Маргарет. Такое название показалось друзьям оригинальным, звучным и очень метким, и было единогласно принято всеми членами группы.
Так как к созданию группы Малкольм и Агнус подходили очень серьезно, они решили придумать также какой-то оригинальный сценический имидж. И здесь им снова помогла Маргарет, которая, как и родители молодых людей, очень поддерживала их в организации собственного музыкального коллектива. Она придумала оригинальную «изюминку» группы: выступать в форменной школьной одежде. Благодаря этой судьбоносной идее, Ангуса Янга узнают по коротким школьным штанишкам, галстучку и забавной кепке, в которые он бессменно облачается на концертах группы и по сей день.
Свое дебютное выступление группа провела в последний день 1973 года, а местом, где квинтет сыграл в первый раз, был выбран бар «Chequers». С этого момента начала своё существование хард-рок-группа, которой было предначертано стать мировой легендой и обрести огромное количество фанатов и последователей.
Карьера: находки и потери
В 1974 году в составе группы произошли множественные перемены, были замещены несколько барабанщиков и бас-гитаристов. А самой главной и судьбоносной заменой того времени в «AC/DC» стала смена вокалиста. Дейв Эванс отказался выходить на сцену на одном из выступлений, необходимо было срочно что-то предпринять, и тут свою кандидатуру предложил шофер группы Бон Скотт, по счастливой случайности оказавшийся в нужное время в нужном месте. После выступления Бон был взят в коллектив на постоянной основе. Настоящим именем нового вокалиста было Роналд Белфорд Скотт, и он оказался необыкновенно харизматичным и энергичным молодым человеком, к тому же, наделенным незаурядным музыкальным талантом и вокальными данными. С ним дела у группы стремительно пошли в гору. Позже британский журнал «Classic Rock» поставит его на первое место в рейтинге «100 величайших фронтменов всех времён».
Группа пишет несколько довольно успешных песен и в 1975 выпускает свой первый альбом — «High Voltage». Альбом хоть и не занял лидирующих мест, тем не менее, был неплохой заявкой на популярность. В этом же году «AC/DC» выпускают второй альбом, под названием «T.N.T.», что в переводе означает «тринитротолуол». Этот альбом имел немалый успех, но, как и первый, официально выпускался лишь в Австралии. Мировая известность была еще впереди.
Участники группы понимают, что для того, чтобы по-настоящему «расправить крылья» им необходимо расширить границы своего влияния. Они активно работают в этом направлении, и вскоре подписывают международный контракт с «Atlantic Records», что позволяет «AC/DC» наконец вырваться из Австралии. Они начинают покорение сцен Великобритании и Европы со старыми хитами, тем не менее, не забывая про новые: в 1976 году выходит «Dirty Deeds Done Dirt Cheap» — третья пластинка группы, имевшая довольно неплохой успех. После этого члены группы принимают решение переселиться в Великобританию. Они активно выступают, общаются с СМИ и поклонниками, постепенно завоевывая все большую популярность.
Работа кипит. Один за одним выходят альбомы «Let There Be Rock» (1977), «Powerage» (1978), «Highway to Hell» (1979). Последний возносит «AC/DC» на пик популярности и на верхушки мировых чартов. Большинство композиций этого альбома являются абсолютными хитами по сей день, по праву считаясь одними из лучших песен в истории мирового рока. Кажется, ничто не может омрачить бешеный успех молодых энергичных исполнителей… Как оказалось, это было не так.
19 февраля 1980 года происходит страшная трагедия — внезапно умирает вокалист группы, блистательный Бон Скотт. По официальной версии это произошло из-за злоупотребления алкоголем. Группа просто раздавлена.
Потеряв свой «голос», «AC/DC» подумывают о прекращении карьеры, но принимают решение сохранить коллектив, полагая, что жизнерадостный Бон Скотт хотел бы именно этого. Друзья встают на ноги после потрясения, и спустя несколько прослушиваний они находят необыкновенно талантливого вокалиста — Брайана Джонсона. У рок-группы словно открывается второе дыхание и они начинают работать не покладая рук.
В том же году выходит легендарный альбом «Back in Black», обложку которого было принято решение сделать черной, в память о бывшем солисте и верном друге. Альбом имеет головокружительный успех, впоследствии он станет самым продаваемым альбомом за всю историю группы и удостоится статуса «дважды бриллиантовый».
Следующие годы рок-коллектив ведет очень продуктивную деятельность. Великолепным «золотым составом» (Малкольм и Агнус Янг, Клифф Уильямс (гитара, бас-гитара), Брайан Джонсон (вокал), Фил Радд (ударные)) они пишут и играют свои лучшие хиты, записывают огромное количество альбомов, выступают на концертах по всему свету, завоевывают престижнейшие музыкальные награды.
В 2003 году легендарная группа была занесена в «Зал славы», так же заняла в США почетное 5-е место по числу проданных альбомов за всю историю. На родине группы, в Австралии в их честь назвали улицу.
Вызывает восхищение неиссякающая энергия группы, которая, несмотря на свой «солидный возраст», не перестает радовать поклонников. «AC/DC» выпустили прекрасные альбомы (2008 и 2014), которые почитатели их творчества встретили с ликованием и раскупили огромными тиражами.
И ни болезнь Малкольма Янга, который вынужден был покинуть группу в 2014, ни небольшие проблемы с законом Фила Радда, не смогли сломить дух легендарных «AC/DC». Вот это и есть настоящие рокеры, которые, несомненно, еще не раз удивят своих фанатов, утерев нос многим молодым группам.
Рано или поздно каждый человек вынужден столкнуться с ситуацией, когда необходимо познакомиться с электричеством ближе, чем на уроках физики в школе. Отправным моментом для этого может стать как поломка электроприборов или розеток, так и просто искренний интерес к электронике со стороны человека. Один из основных вопросов, который необходимо рассмотреть: каким образом обозначены постоянный и переменный ток. Если вы знакомы с понятиями:электрический ток, напряжение и сила тока, вам будет проще понять , о чём идёт речь в этой статье.
Электрическое напряжение делят на два вида:
- постоянное (dc)
- переменное (ас)
Обозначение постоянного тока (-), у переменного тока обозначение (~). Аббревиатуры ac и dc устоявшиеся, и употребляются наравне с названиями «постоянный» и «переменный». Теперь рассмотрим в чём их отличие. Дело в том, что постоянное напряжение течёт только в одном направлении, из чего и вытекает его название. А переменное, как вы уже поняли, может менять своё направление. В частных случаях направление переменного может оставаться одним и тем же. Но, кроме направления, у него также может меняться и величина. В постоянном ни величина, ни направление, не изменяется. Мгновенным значением переменного тока называют его величину, которая берётся в данный момент времени.
В Европе и России принята частота в 50 Гц, то есть изменяет своё направление 50 раз в секунду, в то время, как в США, частота равна 60 Гц. Поэтому техника, приобретённая в Соединённых штатах и в других государствах, с отличающейся частотой может сгореть. Поэтому при выборе техники и электроприборов следует внимательно смотреть на то, чтобы частота была 50 Гц. Чем больше частота у тока, тем больше его сопротивление. Также можно заметить, что в розетках у нас дома течёт именно переменный.
Помимо этого, у переменного электрического тока существует деление ещё на два вида:
- однофазный
- трёхфазный
Для однофазного необходим проводник, который будет проводить напряжение, и обратный проводник. А если рассматривать генератор трёхфазного тока , у него, на всех трёх намотках вырабатывается переменное напряжение частотой в 50 Гц. Трёхфазная система — это не что иное, как три однофазных электрических цепи , сдвинутых по фазе относительно друг друга под углом в 120 градусов. Посредством его использования, можно одновременно обеспечивать энергией три независимые сети, пользуясь при этом только шестью проводами, которые нужны для всех проводников: прямых и обратных, чтобы проводить напряжение.
А если у вас, например, имеется только 4 провода, то и тут проблем не возникнет. Вам нужно будет только соединить обратные проводники. Объединив их, вы получите проводник, который называют нейтральным. Обычно его заземляют. А оставшиеся внешние проводники кратко обозначают как L1, L2 и L3.
Но существует и двухфазный, он представляет из себя комплекс двух однофазных токов, в которых также присутствуют прямой проводник для проведения напряжения и обратный, они сдвинуты по фазе относительно друг друга на 90 градусов.
Применение
Из-за того что постоянный течёт лишь в одну сторону, его использование обычно ограничивается носителями с небольшой энергоёмкостью, например, его можно встретить в обычных батарейках, аккумуляторах для электроприборов с маленьким энергопотреблением, такие как фонарики или телефоны и батареях, использующих солнечную энергию. Но постоянный источник необходим не только для зарядки небольших аккумуляторов, так постоянный ток большой мощности используется для работы электрифицированных железнодорожных путей, при электролизе алюминия или при дуговой электросварке, а также других промышленных процессов .
Для выработки постоянного тока такой силы используют специальные генераторы. Также его можно получить посредству преобразования переменного, для этого используется прибор, в котором применяют электронную лампу, его называют кенотронный выпрямитель, а сам процесс обозначается как выпрямление. Ещё для этого используется двухполупериодный выпрямитель. В нём, в отличие от простого лампового выпрямителя, находятся электронные лампы, которые имеют два анода — двуханодные кенотроны.
Если вы не знаете как определять то, с какого полюса течёт постоянный ток, запоминайте: он всегда течёт от знака «+» к знаку «-«. Первыми источниками постоянного тока были особые химические элементы, их называют гальванические. Уже позже люди изобрели аккумуляторы .
Переменный применяют почти везде , в быту, для работы домашних электроприборов подпитывающихся из домашней розетки, на заводах и фабриках, на стройплощадках и многих других местах. Электрификация железнодорожных путей также может быть и на dc напряжении. Так, напряжение идёт по контактному проводу, а рельсы являются обратным электрическим проводником . По такому принципу работает около половины всех железных дорог в нашей стране и странах СНГ. Но, помимо электровозов, работающих лишь на постоянном и только на переменном, существуют также электровозы, совмещающие в себе способность работы как на одном виде электричества, так и на другом.
Переменный ток используется и в медицине
Так, например,дарсонвализация — это метод воздействия электричеством при большом напряжении, на наружные покровы и слизистые оболочки организма. Посредством этого метода у пациентов улучшается кровоснабжение, улучшается тонус венозных сосудов и обменных процессов организма. Дарсонвализация может быть как местная, на определённом участке, так и общая. Но чаще используют местную терапию.
Таким образом, мы узнали, что есть два вида электрического тока : постоянный и переменный , по-другому их называют ac и dc, поэтому, если вы скажете одну из этих аббревиатур, вас точно поймут. Кроме того, обозначение постоянного и переменного тока в схемах выглядит как (-) и (~), что упрощает их узнавание. Теперь, при починке электроприборов, вы, без сомнений, скажете, что в них используется переменное напряжение, а если вас спросят какой ток находится в батарейках, вы ответите, что постоянный.
Сегодня, если вы посмотрите вокруг, практически все, что вы видите, питается от электричества в той или иной форме.
Переменный ток и постоянный ток являются двумя основными формами зарядов, питающих наш электрический и электронный мир.
Что такое AC? Переменный ток может быть определен, как поток электрического заряда, который изменяет свое направление через регулярные промежутки времени.
Период / регулярные интервалы, при котором AC меняет свое направление, является его частотой (Гц). Морские транспортные средства, космические аппараты, и военная техника иногда используют AC с частотой 400 Гц. Тем не менее, в течение большей части времени, в том числе внутреннего использования, частота переменного тока устанавливается на 50 или 60 Гц.
Что такое DC? (Условное обозначение на электроприборах) Постоянный ток является током (поток электрического заряда или электронов), который течет только в одном направлении. Впоследствии, нет частоты связанной с DC. DC или постоянный ток имеет нулевую частоту.
Источники переменного и постоянного тока:
АС: Электростанции и генераторы переменного тока производят переменный ток.
DC: Солнечные батареи, топливные элементы, и термопары являются основными источниками для производства DC. Но основным источником постоянного тока является преобразование переменного тока.
Применение переменного и постоянного тока:
АС используется для питания холодильников, домашних каминов, вентиляторов, электродвигателей, кондиционеров, телевизоров, кухонных комбайнов, стиральных машин, и практически всего промышленного оборудования.
DC в основном используется для питания электроники и другой цифровой техники. Смартфоны, планшеты, электромобили и т.д.. LED и LCD телевизоры также работают на DC, который преобразовывается от обычной сети переменного тока.
Почему AC используется для передачи электроэнергии. Это дешевле и проще в производстве. AC при высоком напряжении может транспортироваться на сотни километров без особых потерь мощности. Электростанции и трансформаторы уменьшают величину напряжения до (110 или 230 В) для передачи его в наши дома.
Что является более опасным? AC или DC?
Считается, что DC является менее опасным, чем AC, но нет окончательного доказательства. Существует заблуждение, что контакт с высоким напряжением переменного тока является более опасным, чем с низким напряжением постоянного тока. На самом деле, это не о напряжении, речь идет о сумме тока, проходящего через тело человека. Постоянный и переменный ток может привести к летальному исходу. Не вставляйте пальцы или предметы внутрь розеток или гаджетов и высокой мощности оборудования.
Пара слов о «полярности» переменного напряжения
Добавлено 21 августа 2020 в 13:58
Сохранить или поделиться
Комплексные числа полезны для анализа цепей переменного тока, поскольку они предоставляют удобный метод символьной записи сдвига фаз между параметрами переменного тока, такими как напряжение и ток.
Однако большинству людей нелегко понять эквивалентность абстрактных векторов и реальных параметров схемы. Ранее в данной главе мы видели, как источники переменного напряжения задаются значениями напряжения в комплексной форме (амплитуда и угол фазы), а также обозначением полярности.
Поскольку у переменного тока нет параметра «полярности», как у постоянного тока, эти обозначения полярности и их связь с углом фазы могут вводить в заблуждение. Данный раздел написан с целью, прояснить некоторые из этих вопросов.
Напряжение, по своей сути, – относительная величина. Когда мы измеряем напряжение, у нас есть выбор, как подключить вольтметр или другой измерительный прибор к источнику напряжения, поскольку есть две точки, между которыми существует разность потенциалов, и два измерительных щупа у прибора, которые необходимо подключить.
В цепях постоянного тока мы явно обозначаем полярность источников напряжения и падений напряжения, используя символы «+» и «-«, а также используем измерительные щупы с цветовой маркировкой (красный и черный). Если цифровой вольтметр показывает отрицательное постоянное напряжение, мы знаем, что его измерительные щупы подключены «обратно» напряжению (красный провод подключен к «-«, а черный провод – к «+»).
Полярность батарей обозначается специфичными для них символами: короткая линия батареи всегда является отрицательной (-) клеммой, а длинная линия – всегда положительной (+):
Рисунок 1 – Общепринятое обозначение полярности батареиХотя было бы математически правильно представить напряжение батареи в виде отрицательного значения с обозначением обратной полярности, но это было бы явно необычно:
Рисунок 2 – Совершенно нестандартное обозначение полярностиИнтерпретация таких обозначений могла бы быть проще, если бы обозначения полярности «+» и «-» рассматривались как контрольные точки для измерительных щупов вольтметра, «+» означал бы «красный», а «-» означал бы «черный». Вольтметр, подключенный к указанной выше батарее красным щупом к нижней клемме и черным щупом к верхней клемме, действительно будет указывать отрицательное напряжение (-6 вольт).
На самом деле, эта форма обозначения и интерпретации не так уж необычна, как вы могли подумать: она часто встречается в задачах анализа цепей постоянного тока, где знаки полярности «+» и «-» сначала рисуются согласно обоснованному предположению, а затем интерпретируются как правильные или «обратные» в соответствии с математическим знаком рассчитанного значения.
Однако в цепях переменного тока мы не имеем дело с «отрицательными» значениями напряжения. Вместо этого мы описываем, в какой степени одно напряжение совпадает или не совпадает с другим по фазе: т.е. по сдвигу по времени между двумя сигналами. Мы никогда не описываем переменное напряжение как отрицательное по знаку, потому что возможность полярной записи позволяет векторам указывать в противоположных направлениях.
Если одно переменное напряжение прямо противоположно другому переменному напряжению, мы просто говорим, что одно напряжение на 180° не совпадает по фазе с другим.
Тем не менее, напряжение между двумя точками является относительным, и у нас есть выбор, как подключить прибор для измерения напряжения между этими двумя точками. Математический знак показаний вольтметра постоянного напряжения имеет значение только в контексте подключений его измерительных щупов: к какой клемме подключен красный щуп, а к какой клемме подключен черный щуп.
Кроме того, угол фазы переменного напряжения имеет значение только в контексте знания, какая из этих двух точек считаются «опорной». Поэтому, чтобы дать заявленному углу фазы точку отсчета, на схемах часто указываются обозначения полярности «+» и «-» на клеммах переменного напряжения.
Показания вольтметра при подключении измерительных щупов
Давайте рассмотрим эти принципы более наглядно. Во-первых, связь между подключением измерительных щупов со знаком на показаниях вольтметра при измерении постоянного напряжения:
Рисунок 3 – Цвета измерительных щупов служат ориентиром для интерпретации знака (+ или -) показаний измерительного прибораМатематический знак на дисплее цифрового вольтметра постоянного напряжения имеет значение только в контексте подключения его измерительных проводов. Рассмотрим возможность использования вольтметра постоянного напряжения для определения того, складываются ли два источника постоянного напряжения друг с другом или вычитаются друг из друга, предполагая, что на обоих источниках нет маркировки их полярности.
Использование вольтметра для измерения на первом источнике:
Рисунок 4 – Положительные (+) показания указывают, что черный – это (-), красный – это (+)Этот результат первого измерения +24 на левом источнике напряжения говорит нам, что черный провод вольтметра действительно подключен к отрицательной клемме источника напряжения № 1, а красный провод вольтметра действительно подключен к положительной клемме. Таким образом, мы узнаем, что источник №1 – это батарея, включенная следующим образом:
Рисунок 5 – Полярность источника 24 В
Измерение другого неизвестного источника напряжения:
Рисунок 6 – Отрицательные (-) показания указывают, что черный – это (+), красный – это (-)Второе измерение вольтметром показало отрицательные (-) 17 вольт, что говорит нам о том, что черный измерительный щуп на самом деле подключен к положительной клемме источника напряжения № 2, а красный измерительный провод подключен к отрицательной клемме. Таким образом, мы узнаем, что источник №2 – это батарея, включенная в противоположную сторону:
Рисунок 7 – Полярность источника 17 ВДля любого, знакомого с постоянным током, должно быть очевидно, что эти две батареи противодействуют друг другу. Противоположные напряжения, априори, вычитаются друг из друга, поэтому, чтобы получить общее напряжение на обоих батареях, мы вычитаем 17 вольт из 24 вольт и получаем 7 вольт.
Но мы могли бы изобразить два источника в виде невзрачных прямоугольников, помеченных точными значениями напряжений, полученными с помощью вольтметра, и маркировкой полярности, указывающей на положение измерительных щупов вольтметра:
Рисунок 8 – Показания вольтметра, как они отображались на немВажность маркировки полярности
В соответствии со схемой на рисунке 8 (выше) обозначения полярности (которые указывают на положение измерительного щупа вольтметра) указывают, что источники складываются друг с другом. Источники напряжения складываются друг с другом, чтобы сформировать общее напряжение, поэтому мы добавляем 24 вольта к -17 вольтам, чтобы получить 7 вольт: всё еще правильный ответ.
Если мы позволим маркировке полярности определять наше решение, складывать или вычитать значения напряжения (независимо от того, представляют ли эти маркировки полярности истинную полярность или только положение измерительного провода вольтметра), и включим математические знаки этих значений напряжений в наши расчеты, результат всегда будет правильным.
Опять же, маркировка полярности служит ориентиром для размещения математических знаков значений напряжений в правильном контексте.
То же самое верно и для переменного напряжения, за исключением того, что математический знак заменяется углом фазы. Чтобы связать друг с другом несколько переменных напряжений с разными углами фазы, нам нужна маркировка полярности, чтобы обеспечить систему отсчета для углов фаз этих напряжений.
Возьмем, к примеру, следующую схему:
Рисунок 9 – Угол фазы заменяет знак ±Маркировка полярности показывает, что эти два источника напряжения складываются друг с другом, поэтому для определения общего напряжения на резисторе мы должны сложить значения напряжения 10 В 0° и 6 В ∠ 45° вместе, чтобы получить 14,861 В 16,59 °.
Однако было бы вполне приемлемо представить 6-вольтовый источник как 6 В 225°, с обратной маркировкой полярности, и при этом получить такое же общее напряжение:
Рисунок 10 – Переключение проводов вольтметра на источнике 6 В изменяет угол фазы на 180°6 В 45° с минусом слева и плюсом справа – это точно то же самое, что 6 В ∠ 225 ° с плюсом слева и минусом справа: изменение маркировки полярности идеально дополняет добавление 180° к значению угла фазы:
Рисунок 11 – Изменение полярности добавляет 180° к углу фазыВ отличие от источников постоянного напряжения, где полярность определяется символами из линий, у переменных напряжений нет собственного обозначения полярности. Следовательно, любые знаки полярности должны быть включены в качестве дополнительных символов на схему, и не существует единственного «правильного» способа их размещения.
Однако они должны коррелировать с заданными углами фаз, чтобы представлять истинное фазовое соотношение одного напряжения с другими напряжениями в цепи.
Резюме
- Иногда в принципиальных схемах у переменных напряжений, чтобы обеспечить систему отсчета для углов их фаз, обозначается полярность.
Оригинал статьи:
Теги
ВекторКомплексные числаОбучениеПеременный токФазаЦепи переменного токаСохранить или поделиться
Что такое цепь переменного тока? — Различные термины и форма волны
Цепь, возбуждаемая переменным источником, называется цепью переменного тока . Переменный ток (AC) используется в бытовых и промышленных целях. В цепи переменного тока значение величины и направления тока и напряжений не является постоянным, оно изменяется через равные промежутки времени.
Он распространяется как синусоидальная волна, завершая один цикл как половина положительного и полуотрицательного цикла и является функцией времени (t) или угла (θ = wt).
В цепи постоянного тока противодействие протеканию тока является единственным сопротивлением цепи, тогда как противодействие протеканию тока в цепи переменного тока происходит из-за сопротивления (R), индуктивного реактивного сопротивления (X L = 2πfL) и емкостное реактивное сопротивление (X C = 1/2 πfC) цепи.
В цепи переменного тока ток и напряжения представлены величиной и направлением . Переменная величина может быть или не совпадать по фазе друг с другом в зависимости от различных параметров схемы, таких как сопротивление, индуктивность и емкость.Синусоидальные переменные величины — это напряжение и ток, которые изменяются согласно синусу угла θ.
Для выработки электроэнергии во всем мире выбираются синусоидальные напряжение и ток по следующим причинам, которые приведены ниже.
- Синусоидальные напряжение и ток приводят к низким потерям в железе и меди в трансформаторах и вращающихся электрических машинах, что, в свою очередь, повышает эффективность машин переменного тока.
- Они создают меньше помех для ближайшей системы связи.
- Они вызывают меньше помех в электрической цепи.
Переменное напряжение и ток в цепи переменного тока
Напряжение, полярность и величина которого меняется через равные промежутки времени, называется переменным напряжением . Точно так же направление тока изменяется, и величина тока изменяется со временем, это называется переменного тока .
Когда источник переменного напряжения подключается к сопротивлению нагрузки, как показано на рисунке ниже, ток через него течет в одном направлении, а затем в противоположном, когда полярность меняется на противоположную.
Схема цепи переменного токаФорма волны переменного напряжения в зависимости от времени и тока, протекающего через сопротивление (R) в цепи, показана ниже.
Существуют различные типы цепей переменного тока, такие как цепь переменного тока, содержащая только сопротивление (R), цепь переменного тока, содержащая только емкость (C), цепь переменного тока, содержащую только индуктивность (L), комбинацию цепи RL, цепь переменного тока, содержащую сопротивление и емкость ( RC), цепь переменного тока, содержащая индуктивность и емкость (LC) и сопротивление, индуктивность и емкость (RLC), цепь переменного тока.
Различные термины, которые часто используются в цепи переменного тока, следующие:
Максимальное положительное или отрицательное значение, достигаемое переменной величиной за один полный цикл, называется амплитудой, или пиковым значением, или максимальным значением. Максимальные значения напряжения и тока представлены E m или V m и I m соответственно.
Половина цикла называется чередованием. Диапазон чередования составляет 180 градусов.
Когда один набор положительных и отрицательных значений завершается переменным числом или проходит через электрические 360 градусов, считается, что это один полный цикл.
Значение напряжения или тока в любой момент времени называется мгновенным значением. Обозначается он (i или e).
Число циклов, выполняемых переменной величиной в секунду, называется частотой. Он измеряется в циклах в секунду (с / с) или в герцах (Гц) и обозначается буквой (f).
Время в секундах, затрачиваемое напряжением или током для завершения одного цикла, называется периодом времени. Обозначается он (T).
Форма, полученная путем нанесения мгновенных значений переменной величины, такой как напряжение и ток, вдоль оси y и времени (t) или угла (θ = wt) вдоль оси x, называется формой волны.
Это все о цепях переменного тока.
Разница между переменным и постоянным (ток и напряжение)
Разница между переменным и постоянным током
Переменный ток (переменный ток) и Постоянный ток (постоянный ток) — это два типа электрических токов, сосуществующих в нашей повседневной жизни. Оба они используются для подачи питания на электрические устройства. Но они очень разные. Розетки в нашем доме обеспечивают питание переменного тока, а батареи обеспечивают питание постоянного тока.Мы не можем подключить устройство постоянного тока к розетке переменного тока (ну, мы можем, но это не будет работать, и в худшем случае оно взорвется). Причина в различии между их поведением и тем, как они влияют на цепи.
Рис. 1. Разница между переменным и постоянным токомВ этой статье мы кратко обсудим разницу между переменным током (AC) и постоянным током (DC) , но сначала давайте обсудим переменного тока и постоянный ток .
Электрический токЭлектрический ток — это движение или поток свободных электронов в проводящем материале под действием разности потенциалов.Материал, содержащий свободные электроны, называется проводником, и он используется для проведения электрического тока.
Свободные электроны, существующие в материале, возбуждаются при приложении напряжения или разности потенциалов, и они текут в определенном направлении, т.е. от высокого потенциала к низкому. Высокий потенциал или напряжение обозначается положительным знаком (+), а низкий потенциал обозначается отрицательным знаком (-), и они формируют полярность электрического тока.
В зависимости от направления движения электрона или электрического тока он подразделяется на два основных типа; Переменный ток (AC) и Постоянный ток (DC)
Переменный ток (AC)Когда направление электрического тока периодически меняется на противоположное, это называется переменного тока . Поскольку направление тока периодически меняется, полярность напряжения также меняется на противоположную, т.е. высокий потенциал (+) и низкий потенциал (-) меняются местами.Поэтому переменный ток обозначается знаком волны (~). Количество раз, когда электрический ток меняет свое направление за одну секунду, называется его частотой и обычно составляет 50 Гц (Европа) или 60 Гц (США).
GenerationКогда катушка или проволочная петля помещаются в переменное магнитное поле, в катушке индуцируется электрический ток. Этот принцип применяется в устройствах, называемых генераторами переменного тока, которые используются для генерации переменного тока.
Генератор состоит из катушки, которая вращается (с помощью любых средств, таких как водяная или паровая турбина) внутри стационарного магнитного поля. Вращение катушки изменяет силовые линии магнитного поля, воздействующие на катушку; поэтому в катушке индуцируется электрический ток. Поскольку вращающаяся катушка меняет полярность магнитного поля, электрический ток и напряжение, индуцируемые в катушке, периодически меняют свое направление.
Формы сигналовВеличина переменного тока и напряжения непрерывно изменяется во времени.Он колеблется между своей максимальной пиковой точкой и своей минимальной пиковой точкой вдоль общей контрольной точки. Результирующая форма волны может быть синусоидальной, прямоугольной, треугольной, зубчатой и т. Д. Наиболее распространенная форма волны переменного тока, которую мы используем в наших домах, — это синусоидальная волна.
Частота и фазаМы уже знаем, что переменный ток имеет определенную частоту, и мы знаем, что частота влияет на реактивное сопротивление конденсатора и катушки индуктивности. Следовательно, переменный ток вносит в цепь реактивное сопротивление.Реактивное сопротивление вызывает разность фаз между волнами напряжения и тока. Мы также можем сказать, что по этой причине коэффициент мощности присутствует только в системах переменного тока. Поскольку коэффициент мощности определяется как cos (θ), где θ — это разность фаз между формой волны напряжения и формой волны тока
Разность фаз — это разница во временном сдвиге между двумя волнами переменного тока. В таких случаях величина одной волны отстает от величины другой волны.Это вызывает потерю мощности в цепи. Чтобы обеспечить полную мощность нагрузки, переменное напряжение и ток должны быть синхронизированы (или синфазны). Таким образом, коэффициент мощности колеблется от cos 0 ° (коэффициент мощности = 1, разность фаз 0 °) до cos 90 ° (коэффициент мощности = 0, разность фаз 90 °).
Формулы переменного тока, напряжения, сопротивления и мощности
Переменный ток
Однофазные цепи переменного тока
- I = P / (V x Cosθ)
- I = (V / Z)
Трехфазные цепи переменного тока
Напряжение переменного тока
Однофазные цепи переменного тока
- В = P / (I x Cosθ)
- В = I / Z
Трехфазные цепи переменного тока
Сопротивление переменному току
- Z = √ (R 2 + X L 2 )… В случае индуктивной нагрузки
- Z = √ (R 2 + X C 2 )… In случай емкостной нагрузки
- Z = √ (R 2 + (X L — X C ) 2 … В случае как индуктивной, так и емкостной нагрузки.
Питание переменного тока
Однофазные цепи переменного тока
- P = V x I x Cosθ (в однофазных цепях переменного тока)
Трехфазные цепи переменного тока
Активная мощность
- P = √3 x V L x I L x Cosθ (в трехфазных цепях переменного тока)
- P = 3 x V Ph x I Ph x Cosθ
- P = √ (S 2 — Q 2 )
- P = √ (VA 2 — VAR 2 )
Реактивная мощность
- Q = VI Sinθ
- VAR = √ (VA 2 — P 2 )
- кВАр = √ (кВА 2 — кВт 2 )
Полная мощность
- S = √ (P + Q 2 )
- кВА = √кВт 2 + кВАр 2
- S = VI
- S = P + jQ… (In дуктивная нагрузка)
- S = P — jQ… (емкостная нагрузка)
Где
- I = ток в амперах (A)
- V = напряжение в вольтах (В)
- P = мощность в ваттах (Вт)
- R = сопротивление в Ом (Ом)
- Cosθ = R / Z = коэффициент мощности
- Z = импеданс = сопротивление цепей переменного тока
- I Ph = фазный ток
- I L = линейный ток
- V Ph = фазное напряжение
- V L = линейное напряжение
- X L = индуктивное реактивное сопротивление = 2πfL… Где L = индуктивность в Генри.
- X C = емкостное реактивное сопротивление = 1 / 2πfC… где C = емкость в фарадах.
Тип электрического тока, направление которого не меняется, называется постоянным током или DC. Это однонаправленный ток, который течет только в одном направлении и, в отличие от переменного тока, не течет в обратном направлении. Поскольку направление тока не меняет полярность его напряжения также не меняют. Следовательно, постоянный ток всегда обозначается положительным (+) и отрицательным (-). Маркировка
GenerationПостоянный ток может генерироваться разными способами.Тот же метод генерации переменного тока можно использовать для генерации постоянного тока, подключив устройство, называемое коммутатором. Коммутатор — это вращающееся устройство, обеспечивающее однонаправленность тока.
Постоянный ток обычно генерируется с помощью батарей и элементов. Батареи содержат химическое вещество, которое при химической реакции выделяет электроны и подает их в электрическую цепь.
Переменный ток также можно преобразовать в постоянный с помощью устройства, называемого выпрямителем.
Форма волныУ постоянного тока нет определенной формы волны, потому что он течет только в одном направлении. Если вы подключите постоянный ток к осциллографу, он покажет прямую линию. Однако, если напряжение пульсирует, скажем, в цифровой схеме, которая работает исключительно на постоянном напряжении, форма сигнала может выглядеть как последовательность импульсов или прямоугольные волны. Но форма волны никогда не опускается ниже 0 В.
Формулы постоянного тока, напряжения, сопротивления и мощности
Постоянный ток
Напряжение постоянного тока
- В = I x R
- В = P / I
- В = √ (P x R)
Сопротивление постоянному току
Питание постоянного тока
Где
- I = ток в амперах (А)
- В = напряжение в вольтах (В)
- P = мощность в ваттах (Вт)
- R = сопротивление в Ом (Ом)
В повседневной жизни нам нужны оба типа электрического тока.Цифровые устройства, такие как смартфоны, ноутбуки, компьютеры и т. Д., Работают от постоянного тока, в то время как наши домашние и кухонные приборы, такие как вентиляторы, лампы, микшеры и т. Д., Работают от переменного тока.
Переменный и постоянный ток взаимозаменяемы. Их можно легко преобразовать из одной формы в другую. Устройство, которое преобразует переменного тока в постоянный ток , называется Rectifier , а устройство, которое преобразует постоянного тока в переменный ток , называется Inverter . Мы используем их оба для преобразования между источниками питания в соответствии с нашими потребностями.
Розетки в нашем доме обеспечивают питание переменного тока, но когда нам нужно запитать устройство постоянного тока с помощью той же розетки, мы используем выпрямитель (например, блок питания в ПК или адаптер питания в кабеле ноутбука). Это помогает нам использовать один и тот же источник питания для питания обоих типов устройств. И мы также можем использовать источник постоянного тока для аккумуляторов для питания устройств переменного тока с помощью инверторов.
Но есть ограничение переменного тока, то есть электрический ток может сохраняться только тогда, когда он находится в форме постоянного тока.Следовательно, переменный ток преобразуется в плавный постоянный ток перед зарядкой аккумулятора, например, в мобильных телефонах.
Зарядное устройство обеспечивает мобильность и возможность беспроводного подключения к устройству. Он также используется в качестве аварийного резервного питания в суровых условиях для питания критически важного оборудования, например, в больницах и т. Д.
Преобразование и передача напряженияЛинии передачи испытывают потери мощности (I 2 R) в виде тепла из-за величине тока, протекающего через них.Чтобы уменьшить ток, мы увеличиваем напряжение, чтобы поддерживать ту же мощность (P = I * V).
В переменном токе напряжения можно легко преобразовать между высоким и низким напряжением с помощью устройства, называемого трансформатором . Мы используем повышающие трансформаторы на генерирующих станциях для повышения напряжения для передачи на большие расстояния. Кроме того, с помощью понижающего трансформатора , который обычно устанавливается на опорах электросети, те же самые напряжения снижаются до безопасного уровня для домашнего или коммерческого использования.
Потери при высоковольтной передаче постоянного тока очень малы, и для этого требуется только два провода, но его обслуживание и преобразование между высоким и низким напряжением очень дорого, поэтому он никогда не применялся. Напряжение постоянного тока опасно, чем переменное, потому что переменное напряжение колеблется, а постоянное — это постоянный поток тока, и он никогда не отпустит вас.
Основные различия между переменным и постоянным током (напряжение и ток)В следующей таблице показано сравнение и основные различия между переменным током «AC» и постоянным током «DC».
Характеристики | Переменный ток — переменный ток | Постоянный ток — постоянный ток |
Определение | Электрический ток, который периодически течет вперед и назад. | Электрический ток, который течет только в прямом направлении |
Символ | ||
Направление тока | Он является двунаправленным, то есть может течь как в прямом, так и в обратном направлении. | Он однонаправлен и течет только в одном направлении, т.е. вперед |
Напряжение и ток | Ток и напряжение непрерывно меняются. | Ток и напряжение постоянны. |
Полярность | В переменном токе нет полярности, потому что он колеблется. | Имеется фиксированная полярность постоянного тока, обозначенная положительным (+) и отрицательным (-) знаками |
Перестановка клемм или полярность | Перестановка клемм источника не повлияет на схему | Перестановка клемм источника может повредить схему. |
Частота | Частота переменного тока обычно составляет 50 или 60 Гц | Частота постоянного тока равна 0. |
Комплексное сопротивление | Переменный ток вводит в цепь реактивное сопротивление, поэтому возникает комплексное сопротивление. | Цепь постоянного тока имеет чисто резистивные нагрузки. Таким образом, полное сопротивление является чисто резистивным |
Коэффициент мощности | Коэффициент мощности переменного тока всегда равен или находится в диапазоне от 1 до 0. | Частота равна 0, поэтому коэффициент мощности всегда равен 1. |
Поколение | Переменный ток генерируется с помощью генератора переменного тока. | Он генерируется с помощью коммутатора с генератором, солнечных батарей и химической реакции в батареях и элементах. |
Форма волны | Переменный ток существует в форме синусоидальной, квадратной, треугольной, зубчатой и т. Д. | Он существует в виде одиночной линии или импульсной волны. |
Преобразование | Выпрямитель используется для преобразования его в постоянный ток | Инвертор используется для преобразования его в переменный ток |
Хранение | Не может храниться | Его можно хранить напрямую. |
Передача | Есть некоторые потери при передаче на большие расстояния. | Имеет очень низкие потери при передаче высокого напряжения на большие расстояния. |
Линии передачи | Для передачи требуется минимум 3 отдельных проводника | Для передачи требуется только 2 проводника |
Стоимость передачи и техническое обслуживание | Это дорого, но обслуживание и преобразование напряжения проще чем DC | Это дешевле, но его обслуживание довольно опасно и дороже, чем AC |
Опасность | Переменный ток менее опасен, чем постоянный ток, поскольку он достигает 0 В через определенные промежутки времени.(нельзя играть с высоким напряжением) | Постоянный ток очень опасен и опасен для жизни, чем переменный ток, потому что он поддерживает постоянный ток. |
Похожие сообщения:
20.5 Сравнение переменного и постоянного тока — College Physics
Переменный ток
Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения. Как только ток установлен, он также становится постоянным.Постоянный ток (DC) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление. Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока. Примеры включают коммерческую и бытовую энергетику, которая обслуживает так много наших потребностей.На рисунке 20.16 показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока. Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.
Рисунок 20.16 (a) Напряжение и ток постоянного тока постоянны во времени после установления тока. (б) График зависимости напряжения и тока от времени для сети переменного тока частотой 60 Гц. Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления. Частоты и пиковое напряжение источников переменного тока сильно различаются.
Рисунок 20.17 Разность потенциалов VV между клеммами источника переменного напряжения колеблется, как показано. Математическое выражение для VV задается следующим образом: V = V0sin 2 πftV = V0sin 2 πft размер 12 {V = V rSub {размер 8 {0}} «sin» «2» π ital «ft»} {}.На рисунке 20.17 показана схема простой схемы с источником переменного напряжения. Напряжение между клеммами колеблется, как показано, с напряжением переменного тока, равным
. V = V0sin 2πft, V = V0sin 2πft, размер 12 {V = V rSub {size 8 {0}} «sin» «2» π ital «ft»} {}20.38
, где VV размером 12 {V} {} — это напряжение в момент времени tt, размер 12 {t} {} , V0V0, размер 12 {V rSub {size 8 {0}}} {} — пиковое напряжение, и Размер ff 12 {f} {} — частота в герцах. Для этой простой цепи сопротивления I = V / RI = V / R размер 12 {I = курсив «V / R»} {}, и поэтому переменный ток равен
I = I0 sin 2πft, I = I0 sin 2πft, размер 12 {I = I rSub {size 8 {0}} «sin 2» π ital «ft»} {}20,39
, где размер II 12 {I} { } — это текущий в момент времени tt размер 12 {t} {}, а I0 = V0 / RI0 = V0 / R размер 12 {I rSub {size 8 {0}} = V rSub {size 8 {0}} ital «/ R «} {} — пиковый ток.В этом примере считается, что напряжение и ток находятся в фазе, как показано на рисунке 20.16 (b).
Ток в резисторе меняется взад и вперед, как управляющее напряжение, так как I = V / RI = V / R размер 12 {I = курсив «V / R»} {}. Например, если резистор представляет собой люминесцентную лампочку, она становится ярче и тускнеет 120 раз в секунду, когда ток постоянно проходит через ноль. Мерцание с частотой 120 Гц слишком быстро для ваших глаз, но если вы помашите рукой вперед и назад между лицом и флуоресцентным светом, вы увидите стробоскопический эффект, свидетельствующий о переменном токе.Тот факт, что световой поток колеблется, означает, что мощность колеблется. Поставляемая мощность P = IVP = IV размер 12 {P = курс «IV»} {}. Используя приведенные выше выражения для II размера 12 {I} {} и размера VV 12 {V} {}, мы видим, что зависимость мощности от времени составляет P = I0V0sin2 2πftP = I0V0sin2 2πft размер 12 {P = I rSub {size 8 { 0}} V rSub {size 8 {0}} «sin» rSup {size 8 {2}} «2» π ital «ft»} {}, как показано на рисунке 20.18.
Подключение: домашний эксперимент — AC / DC Lights
Помашите рукой между лицом и люминесцентной лампой.Вы наблюдаете то же самое с фарами на своей машине? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет .
Рисунок 20.18 Мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется между нулем и I0V0I0V0 размером 12 {I rSub {размер 8 {0}} В rSub {размер 8 {0}}} {}. Средняя мощность (1/2) I0V0 (1/2) I0V0 размер 12 {\ (1/2 \) I rSub {размер 8 {0}} V rSub {размер 8 {0}}} {} .Чаще всего нас беспокоит средняя мощность, а не ее колебания — например, 60-ваттная лампочка в вашей настольной лампе потребляет в среднем 60 Вт. Как показано на Рис. 20.18, средняя мощность PavePave размером 12 {P rSub {size 8 {«ave»}}} {} составляет
Pave = 12I0V0.Pave = 12I0V0. размер 12 {P rSub {size 8 {«ave»}} = {{1} больше {2}} I rSub {size 8 {0}} V rSub {size 8 {0}}} {}20,40
Это видно из графика, поскольку области выше и ниже (1/2) I0V0 (1/2) I0V0 размер 12 {\ (1/2 \) I rSub {size 8 {0}} V rSub {size 8 { 0}}} {} равны, но это также можно доказать с помощью тригонометрических тождеств.Аналогичным образом мы определяем средний или среднеквадратичный ток IrmsIrms размером 12 {I rSub {size 8 {«rms»}}} {} и среднее или среднеквадратичное напряжение VrmsVrms, размер 12 {V rSub {size 8 {«rms»}}} {} быть, соответственно,
Irms = I02Irms = I02 размер 12 {I rSub {size 8 {«rms»}} = {{I rSub {size 8 {0}}} больше {sqrt {2}}}} {}20,41
и
Vrms = V02.Vrms = V02. размер 12 {V rSub {size 8 {«rms»}} = {{V rSub {size 8 {0}}} over {sqrt {2}}}} {}20,42
, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего.Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее значение (или среднее значение) и извлекается квадратный корень. Это полезно для переменного тока, так как среднее значение равно нулю. Теперь
Pave = IrmsVrms, Pave = IrmsVrms, размер 12 {P rSub {size 8 {«ave»}} = I rSub {size 8 {«rms»}} V rSub {size 8 {«rms»}}} { }20,43
, что дает
Pave = I02⋅V02 = 12I0V0, Pave = I02⋅V02 = 12I0V0, размер 12 {P rSub {size 8 {«ave»}} = {{I rSub {size 8 {0}}} больше {sqrt {2}}) } cdot {{V rSub {размер 8 {0}}} больше {sqrt {2}}} = {{1} больше {2}} I rSub {размер 8 {0}} V rSub {размер 8 {0}} } {}20.44
, как указано выше. Стандартной практикой является указание IrmsIrms размера 12 {I rSub {size 8 {«rms»}}} {}, VrmsVrms размера 12 {V rSub {size 8 {«rms»}}} {} и размера PavePave 12 {P rSub {size 8 {«ave»}}} {}, а не пиковые значения. Например, напряжение в большинстве домашних хозяйств составляет 120 В переменного тока, что означает, что VrmsVrms размер 12 {V rSub {size 8 {«rms»}}} {} составляет 120 В. Обычный автоматический выключатель на 10 А прервет устойчивый IrmsIrms. размер 12 {I rSub {size 8 {«rms»}}} {} больше 10 А.Ваша микроволновая печь мощностью 1,0 кВт потребляет Pave = 1,0 кВт, Pave = 1,0 кВт, размер 12 {P rSub {size 8 {«ave»}} = 1 «.» 0` «кВт»} {} и так далее. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи.
Подводя итог, при работе с переменным током закон Ома и уравнения для мощности полностью аналогичны уравнениям для постоянного тока, но для переменного тока используются среднеквадратические и средние значения. Таким образом, для переменного тока записан закон Ома
Irms = VrmsR.Irms = VrmsR. размер 12 {I rSub {size 8 {«rms»}} = {{V rSub {size 8 {«rms»}}} больше {R}}} {}20.45
Различные выражения для мощности переменного тока PavePave размер 12 {P rSub {size 8 {«ave»}}} {}:
Pave = IrmsVrms, Pave = IrmsVrms, размер 12 {P rSub {size 8 {«ave»} } = I rSub {размер 8 {«rms»}} V rSub {размер 8 {«rms»}}} {}20,46
Pave = Vrms2R, Pave = Vrms2R, размер 12 {P rSub {size 8 {«ave» }} = {{V rSub {размер 8 {«rms»}} rSup {размер 8 {2}}} больше {R}}} {}20,47
и
Проложить = Irms2R. Проложить = Irms2R. size 12 {P rSub {size 8 {«ave»}} = I rSub {size 8 {«rms»}} rSup {size 8 {2}} R} {}20.48
Пример 20.9
Пиковое напряжение и мощность для переменного тока
(a) Каково значение пикового напряжения для сети 120 В переменного тока? (b) Какова пиковая потребляемая мощность лампочки переменного тока мощностью 60,0 Вт?
Стратегия
Нам говорят, что размер 12 VrmsVrms {V rSub {размер 8 {«rms»}}} {} составляет 120 В, а размер PavePave 12 {P rSub {size 8 {«ave»}}} {} — 60,0 Вт. можно использовать Vrms = V02Vrms = V02, размер 12 {V rSub {size 8 {«rms»}} = {{V rSub {size 8 {0}}} над {sqrt {2}}}} {}, чтобы найти пиковое напряжение , и мы можем манипулировать определением мощности, чтобы найти пиковую мощность из заданной средней мощности.
Решение для (а)
Решение уравнения Vrms = V02Vrms = V02 size 12 {V rSub {size 8 {«rms»}} = {{V rSub {size 8 {0}}} over {sqrt {2}}}} {} для пика напряжение V0V0 размер 12 {V rSub {size 8 {0}}} {} и замена известного значения на VrmsVrms размер 12 {V rSub {size 8 {«rms»}}} {} дает
V0 = 2Vrms = 1,414 (120 В) = 170 В. V0 = 2Vrms = 1,414 (120 В) = 170 В. Размер 12 {V rSub {размер 8 {0}} = sqrt {2} V rSub {размер 8 {» rms «}} =» 1 «». » «414» \ («120» «V» \) = «170 В»} {}20.49
Обсуждение для (а)
Это означает, что напряжение переменного тока изменяется от 170 В до –170 В – 170 В и обратно 60 раз в секунду. Эквивалентное постоянное напряжение составляет 120 В.
Решение для (b)
Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом,
P0 = I0V0 = 212I0V0 = 2Pave.P0 = I0V0 = 212I0V0 = 2Pave. размер 12 {P rSub {размер 8 {0}} = I rSub {размер 8 {0}} V rSub {размер 8 {0}} = «2» осталось ({{1} больше {2}} I rSub {size 8 {0}} V rSub {size 8 {0}} right) = «2» P rSub {size 8 {«ave»}}} {}20.50
Мы знаем, что средняя мощность 60,0 Вт, поэтому
P0 = 2 (60,0 Вт) = 120 Вт. P0 = 2 (60,0 Вт) = 120 Вт. Размер 12 {P rSub {size 8 {0}} = «2» \ («60» «.» «0 Вт» \) = «120 Вт»} {}20,51
Обсуждение
Таким образом, мощность меняется от нуля до 120 Вт сто двадцать раз в секунду (дважды за каждый цикл), а средняя мощность составляет 60 Вт.
Зачем использовать переменный ток для распределения электроэнергии?
Большинство крупных систем распределения электроэнергии — это системы переменного тока. Кроме того, мощность передается при гораздо более высоком напряжении, чем 120 В переменного тока (240 В в большинстве частей мира), которые мы используем дома и на работе.Благодаря эффекту масштаба строительство нескольких очень крупных электростанций обходится дешевле, чем строительство множества небольших. Это требует передачи энергии на большие расстояния, и, очевидно, важно минимизировать потери энергии в пути. Как мы увидим, высокие напряжения могут передаваться с гораздо меньшими потерями мощности, чем низкие напряжения. (См. Рис. 20.19.) В целях безопасности напряжение у пользователя снижено до знакомых значений. Решающим фактором является то, что намного легче увеличивать и уменьшать напряжение переменного тока, чем постоянного, поэтому переменный ток используется в большинстве крупных систем распределения электроэнергии.
Рисунок 20.19 Мощность распределяется на большие расстояния при высоком напряжении, чтобы уменьшить потери мощности в линиях передачи. Напряжение, генерируемое на электростанции, повышается пассивными устройствами, называемыми трансформаторами (см. Трансформаторы), до 330 000 вольт (или более в некоторых местах по всему миру). В месте использования трансформаторы снижают передаваемое напряжение для безопасного использования в жилых и коммерческих помещениях. (Фото: GeorgHH, Wikimedia Commons)Пример 20.10
При передаче высокого напряжения потери мощности меньше
(a) Какой ток необходим для передачи мощности 100 МВт при 200 кВ? (b) Какова мощность, рассеиваемая линиями передачи, если их сопротивление равно 1.00Ω1.00Ω размер 12 {1 «.» «00»% OMEGA} {}? (c) Какой процент мощности теряется в линиях электропередачи?
Стратегия
Нам дано Pave = 100 MWPave = 100 MW, мощность 12 {P rSub {size 8 {«ave»}} = «100» `» MW «} {}, Vrms = 200 kVVrms = 200 kV, мощность 12 {V rSub { размер 8 {«rms»}} = «200» `» kV «} {}, а сопротивление линий R = 1,00ΩR = 1,00Ω размер 12 {R = 1″. » «00» `% OMEGA} {}. Используя эти данные, мы можем найти текущий ток (от P = IVP = IV размер 12 {P = ital «IV»} {}), а затем мощность, рассеиваемую в линиях (P = I2RP = I2R размер 12 {P = I rSup {size 8 {2}} R} {}), и мы берем отношение к общей передаваемой мощности.
Решение
Чтобы найти ток, мы изменим соотношение Pave = IrmsVrmsPave = IrmsVrms, размер 12 {P rSub {size 8 {«ave»}} = I rSub {size 8 {«rms»}} V rSub {size 8 {«rms» }}} {} и подставьте известные значения. Это дает
Irms = PaveVrms = 100 × 106 W200 × 103 V = 500 A. Irms = PaveVrms = 100 × 106 W200 × 103 V = 500 A. размер 12 {I rSub {size 8 {«rms»}} = {{P rSub { размер 8 {«ave»}}} больше {V rSub {size 8 {«rms»}}}} = {{«100» умножить на «10» rSup {размер 8 {6}} «W»} больше {«200 «times» 10 «rSup {size 8 {3}}» V «}} =» 500 A «} {}20.52
Решение
Зная ток и учитывая сопротивление линий, мощность, рассеиваемая в них, определяется по формуле Pave = Irms2RPave = Irms2R размер 12 {P rSub {размер 8 {«ave»}} = I rSub {размер 8 {«rms»} } rSup {размер 8 {2}} R} {}. Подстановка известных значений дает
Pave = Irms2R = (500 A) 2 (1,00 Ом) = 250 кВт. Pave = Irms2R = (500 A) 2 (1,00 Ом) = 250 кВт. размер 12 {P rSub {size 8 {«ave»}} = I rSub {size 8 {«rms»}} rSup {size 8 {2}} R = \ («500 A» \) rSup {размер 8 {2 }} \ (1 «.»» 00 «% OMEGA \) =» 250 кВт «} {}20,53
Решение
Процент потерь — это отношение этой потерянной мощности к общей или входной мощности, умноженное на 100:
. % потерь = 250 кВт 100 МВт × 100 = 0,250%.% потерь = 250 кВт 100 МВт × 100 = 0,250%. размер 12 {% «loss =» {{«250» «кВт»} больше {«100» «МВт»}} ´ «100» = 0 «.» «250%»} {}20,54
Обсуждение
Четверть процента — приемлемая потеря. Обратите внимание, что если бы мощность 100 МВт была передана при 25 кВ, то потребовался бы ток 4000 А.Это приведет к потере мощности в линиях на 16,0 МВт, или 16,0%, а не 0,250%. Чем ниже напряжение, тем больше требуется тока и тем больше потери мощности в линиях передачи с фиксированным сопротивлением. Конечно, можно построить линии с меньшим сопротивлением, но для этого потребуются более крупные и дорогие провода. Если бы сверхпроводящие линии можно было бы экономично производить, в линиях передачи вообще не было бы потерь. Но, как мы увидим в следующей главе, в сверхпроводниках тоже есть предел.Короче говоря, высокое напряжение более экономично для передачи энергии, а напряжение переменного тока намного легче повышать и понижать, поэтому переменный ток используется в большинстве крупных систем распределения электроэнергии.
Широко признано, что высокое напряжение представляет большую опасность, чем низкое. Но на самом деле некоторые высокие напряжения, например, связанные с обычным статическим электричеством, могут быть безвредными. Таким образом, опасность определяется не только напряжением. Не так широко признано, что разряды переменного тока часто более вредны, чем аналогичные разряды постоянного тока.Томас Эдисон считал, что электрические разряды более вредны, и в конце 1800-х годов создал систему распределения электроэнергии постоянного тока в Нью-Йорке. Были ожесточенные бои, в частности, между Эдисоном и Джорджем Вестингаузом и Николой Тесла, которые выступали за использование переменного тока в ранних системах распределения энергии. Преобладал переменный ток в значительной степени благодаря трансформаторам и более низким потерям мощности при передаче высокого напряжения.
PhET Explorations
Генератор
Генерируйте электричество с помощью стержневого магнита! Откройте для себя физику этих явлений, исследуя магниты и узнавая, как с их помощью загорается лампочка.
Факты о переменном токе для детей
Огни города просматриваются в размытой экспозиции движения. Мигание переменного тока приводит к тому, что линии становятся точечными, а не непрерывными.Переменный ток ( AC ) — это электрический ток, величина и направление которого меняются, в отличие от постоянного тока, направление которого остается постоянным. Это означает, что направление тока, протекающего в цепи, постоянно меняется взад и вперед. Это делается с любым источником переменного напряжения.
Обычная форма сигнала в цепи питания переменного тока представляет собой синусоидальную волну, поскольку это приводит к наиболее эффективной передаче энергии. Однако в некоторых приложениях используются разные формы сигналов, например треугольные или прямоугольные. Недорогие силовые инверторы выдают прямоугольную волну с паузой между сменой направления.
Когда говорят об переменном токе, в основном подразумевают форму, в которой электричество доставляется на предприятия и жилые дома. AC поступает от электростанции.Направление электричества меняется 60 раз в секунду (или 50 раз в некоторых частях мира). Это происходит так быстро, что лампочка не перестает светиться.
Звуковые и радиосигналы, передаваемые по электрическому проводу, также являются примерами переменного тока. В этих приложениях важной целью часто является восстановление информации, закодированной (или модулированной) в сигнале переменного тока.
История
Никола Тесла экспериментировал с электрическим резонансом и изучал различные системы освещения.Он изобрел асинхронный двигатель, новые типы генераторов и трансформаторов, а также систему передачи энергии переменного тока.
Уильям Стэнли-младший разработал одно из первых практических устройств для эффективной передачи мощности переменного тока между изолированными цепями. Используя пары катушек, намотанных на общий железный сердечник, его конструкция, названная индукционной катушкой, была ранним предшественником современного трансформатора. Система, используемая сегодня, была разработана в конце девятнадцатого века, в основном Николя Тесла. Взносы также сделали Джордж Вестингауз, Люсьен Голар, Джон Диксон Гиббс, Вильгельм Сименс и Оливер Шалленджер.Системы переменного тока преодолели ограничения системы постоянного тока, которую использовал Томас Эдисон для эффективного распределения электроэнергии на большие расстояния.
Гидроэлектростанция Милл-Крик была построена недалеко от Редлендса, Калифорния, в 1893 году. Спроектированная Алмирианом Декером, она использовала трехфазную электроэнергию на 10 000 вольт, которая в конечном итоге стала стандартным методом для электростанций во всем мире.
Как это работает
Электропитаниепеременного тока дешевле и проще в изготовлении электронных устройств.Выключатели питания переменного тока также дешевле в производстве. Это дешевле, чем постоянный ток, потому что вы можете очень легко увеличивать и уменьшать ток. Переменный ток может использовать высокое напряжение с меньшим током, чтобы уменьшить потери при подаче энергии. AC снижает нагрев проводов. Электроэнергия постоянного тока может быть отправлена, но при этом будет потеряно много энергии, и вам придется приложить больше усилий, чтобы отправить ее на большие расстояния. Трансформаторы переменного тока устанавливаются повсюду, в том числе на опорах инженерных сетей и под землей. Переменный ток работает, постоянно переключая ток вперед и назад, пока он возвращается к источнику, из которого он пришел.
- Уильям А. Мейерс, История и размышления о том, как все было: Электростанция Милл-Крик — Создание истории с AC , IEEE Power Engineering Review, февраль 1997 г., стр. 22–24
Связанные страницы
- « AC / DC: в чем разница? «. Чудо света Эдисона, американский опыт. (PBS)
- « AC / DC: внутри генератора переменного тока ». Чудо света Эдисона, американский опыт. (PBS)
- Купхальдт, Тони Р., « Уроки в электрических цепях: Том II — AC «. 8 марта 2003 г. (Лицензия на научный дизайн)
- Нейв, К. Р., « Концепции цепей переменного тока «. Гиперфизика.
- « Переменный ток (AC) ». Магнитопорошковый контроль, Энциклопедия неразрушающего контроля.
- « Переменный ток ». Аналоговые службы управления процессами.
- Хайоб, Эрик, « Применение тригонометрии и векторов к переменному току ».Технологический институт Британской Колумбии, 2004 г.
- « Введение в переменный ток и трансформаторы ». Комплексное издательское дело.
- «Справочное руководство по ветровой энергии , часть 4: Электричество ». Датская ассоциация ветроэнергетики, 2003 г.
- Чан. Килин, « Инструменты переменного тока «. JC Physics, 2002. .
- « Измерение -> ac «. Аналоговые службы управления процессами.
- Williams, Trip «Kingpin», « Общие сведения о переменном токе, еще несколько концепций мощности «.
- « Таблица напряжения, частоты, системы телевещания, радиовещания, по странам ».
- Блэлок, Томас Дж., « Эра частотных преобразователей: взаимосвязанные системы переменных циклов «. История различных частот и схем взаимного преобразования в США в начале 20 века
Детские картинки
Схематическое изображение передачи электроэнергии на большие расстояния. Слева направо: G = генератор, U = повышающий трансформатор, V = напряжение в начале линии передачи, Pt = мощность, подводимая к линии передачи, I = ток в проводах, R = общее сопротивление в проводах, Pw = мощность, потерянная при передаче линии, Pe = мощность, достигающая линии передачи, D = понижающий трансформатор, C = потребители.
Трехфазные линии электропередачи высокого напряжения используют переменные токи для распределения энергии на большие расстояния между электростанциями и потребителями. Линии на картинке расположены в восточной части штата Юта.
Венгерская команда «ZBD» (Кароли Зиперновски, Отто Блати, Микса Дери), изобретатели первого высокоэффективного шунтирующего трансформатора с замкнутым сердечником
Зависимость переменного тока (AC) от постоянного (DC)
Электрический ток — это количество электрических зарядов, проходящих по проводу относительно времени.Когда батарея подключается через проводник, электроны перемещаются от отрицательной клеммы к положительной клемме батареи. Они движутся с очень высокой скоростью (превышающей скорость света) и, таким образом, производят некоторое количество тепловой энергии. Благодаря этому светятся лампочки.
Электрический ток подразделяется на два типа: переменного тока, (переменного тока) и постоянного тока, (постоянный ток). Разница в том, что постоянный ток течет в одном направлении, а переменный ток быстро меняет свое направление.И переменный, и постоянный ток имеют свое собственное применение, но переменный ток является более распространенным типом тока, который мы сегодня используем дома, в офисе и т. Д.
Никола Тесла и Томас Эдисон изобрели переменный и постоянный ток соответственно. Они боролись за стандартизацию нынешних обозначений. В конце концов, AC выиграл битву, когда запустил France Fair и, наконец, появился на свет.
Переменный ток (AC)
Электрический ток — это ток, который меняет направление много раз в секунду с регулярными интервалами.Обычно используется в источниках питания. Количество раз, когда ток меняет свое направление за одну секунду, можно определить как частоту переменного тока. 50 Гц. частота означает, что она изменяется 50 раз в секунду. Частота в США 60 Гц. в то время как в Индии это 50 Гц.
переменного тока генерируется устройствами, называемыми генераторами переменного тока. Генератор — это машина, преобразующая механическую энергию в переменный ток. Он работает по принципу закона электромагнитной индукции Фарадея. Здесь механические источники механической энергии включают паровые турбины, двигатели внутреннего сгорания и водяные турбины.Сегодня генератор обеспечивает почти всю мощность электрических сетей.
Форма волны переменного тока
AC может быть представлен множеством форм сигналов, таких как треугольная волна, прямоугольная волна, но наиболее распространенным представителем является синусоидальная волна. Он представлен амплитудой и временем. Амплитуда — это пиковое значение тока.
Форма сигнала переменного тока
Применения переменного тока:
AC широко используется в отраслях транспорта и производства электроэнергии. Практически каждый дом питается от сети переменного тока.Переменный ток также используется для питания электродвигателей. Постоянный ток не используется для электростанций из-за высокого риска затрат и преобразования напряжений.
Преимущества AC:
- AC легче генерировать, чем DC.
- Это дешевле.
- Потери энергии при передаче незначительны.
- AC может быть легко преобразован в постоянный ток.
- Легко передать.
- В переменном токе сопротивление больше постоянного.
Недостатки AC:
- При высоком напряжении работать с переменным током опасно, поскольку удар переменного тока привлекателен, но удар постоянного тока имеет отталкивающий характер.
- AC неэффективен и требует управления коэффициентом мощности для повышения эффективности.
- Большинство устройств не работают напрямую от сети переменного тока.
Постоянный ток (DC)
Под постоянным током понимаются электрические заряды, протекающие в одном направлении. Этот тип тока чаще всего вырабатывается батареями.
Форма сигнала постоянного тока
Цепи постоянного тока имеют однонаправленный поток тока и, как и переменный ток, периодически не меняют направление.
Форма сигнала постоянного тока представляет собой чистую синусоидальную волну.Как видите, напряжение постоянно во времени.
Форма сигнала постоянного тока
Приложения постоянного тока:
Питание постоянного тока широко применяется в низковольтных устройствах, таких как зарядка аккумуляторов, автомобильных и авиационных приложениях, а также почти во всех электронных устройствах, таких как мобильные телефоны, музыкальные плееры и т. Д.
Преобразование переменного тока в постоянный:
Получаем DC от следующих вещей:
- Батареи, в которых происходят химические реакции, а затем эта химическая энергия преобразуется в электрическую.
- Преобразование переменного тока в постоянный через выпрямитель. Выпрямитель — это электронная схема, преобразующая переменный ток в постоянный. Эти выпрямители можно увидеть в наших мобильных зарядных устройствах, аккумуляторных батареях и т. Д. Большинство устройств питаются или заряжаются косвенно от переменного тока, а затем этот переменный ток преобразуется в постоянный ток.
Источники переменного и постоянного тока:
Источники переменного и постоянного тока могут быть обозначены этими символами.
Обозначения источников напряжения постоянного и переменного тока
Направление тока изменяется с регулярным интервалом времени в источнике переменного тока, в то время как в источнике постоянного тока изменение направления является постоянным.Вы можете увидеть разницу на рисунке ниже:
Направление тока
Преимущества DC:
- Он может питать большинство электронных устройств.
- Хранить DC легко.
- Постоянный ток менее опасен, чем переменный ток, потому что постоянный ток отталкивает.
Недостатки ДЦ:
- Дороже в производстве.
- Трудно транспортировать.
- Трудно генерировать постоянный ток по сравнению с переменным током.
Зависимость переменного тока (AC) от постоянного (DC)
Томас Эдисон предложил сеть электростанций, которые вырабатывают энергию постоянного тока, и они могут обеспечивать электроэнергией дома ближе к 1 миле от этой электростанции. DC очень сложно перевезти из одного места в другое. Итак, Тесла придумал источник переменного тока, но Эдисон считал этот тип тока чрезвычайно опасным. Затем Westinghouse работал над системой распределения электроэнергии, используя патенты Tesla. Переменный ток можно легко транспортировать из одного места в другое с помощью трансформатора.Это может обеспечить электроэнергией дома за много миль от электростанций и, таким образом, охватить большее количество людей. AC наконец появился, когда он успешно работал на выставке France Fair.
Разница между переменным током (AC) и постоянным током (DC)
Основное различие между переменным и постоянным током — это их направления. Переменный ток меняет свое направление через равные промежутки времени, в то время как постоянный ток является однонаправленным потоком. Благодаря множеству преимуществ переменного тока, он используется для питания наших домов и офисов, в то время как постоянный ток используется для питания маломощных устройств.Переменный ток легче преобразовывать между уровнями напряжения, что делает передачу высокого напряжения более возможной. Напротив, постоянный ток присутствует почти во всей электронике.
Сводка
Таким образом, переменный и постоянный ток — это два типа электрического тока. У обоих есть свои преимущества и недостатки. Переменный ток более широко используется для питания зданий и офисов, в то время как постоянный ток более широко используется для питания электронных устройств. Наш образ жизни зависит от них обоих.
электрических цепей — Почему мы используем среднеквадратические значения (RMS), когда говорим о напряжении переменного тока
Попытки найти среднее значение переменного тока напрямую дадут вам ответ ноль … Следовательно, используются значения RMS. Они помогают найти эффективное значение переменного тока (напряжения или тока).
Это RMS — математическая величина (используется во многих математических полях ), используемая для сравнения как переменного, так и постоянного тока (или напряжения). Другими словами (в качестве примера) среднеквадратичное значение переменного тока (тока) — это постоянный ток, который при пропускании через резистор в течение заданного периода времени будет выделять такое же тепло, как и тепло, производимое переменным током при пропускании через такой же резистор за то же время.2/2 $, а затем определение квадратного корня $ I_0 / \ sqrt {2} $ даст среднеквадратичное значение.
Это пример время: (я думаю, вы не просили о выводе RMS)
Учтите, что обе лампы выдают одинаковый уровень яркости. Таким образом, они теряют одинаковое количество тепла (независимо от того, переменный или постоянный ток). Чтобы связать и то и другое, нам нечего использовать лучше, чем значение RMS. Постоянное напряжение лампы 115 В, переменное 170 В.2} $$
Основная теория цепей постоянного тока | Глава 1 — Напряжение, ток, энергия и мощность
Взаимосвязь напряжения и тока
Земля — динамичное место. Объекты движутся, происходят химические реакции, температура повышается и понижается. Это изобилие вечной активности связано с концепцией энергии . Различные формы энергии — тепловая, механическая, химическая и т. Д. — являются проявлениями фундаментальной сущности, которая приводит к физическим изменениям при передаче от одного объекта к другому.
Электричество — это форма энергии, возникающая в результате существования и движения заряженных частиц, называемых электронами. Когда накопление электронов создает разницу в электрической потенциальной энергии между двумя точками, мы имеем напряжение (в уравнениях напряжение обозначается как V). Если эти две точки соединены проводящим материалом, электроны естественным образом перейдут от более низкого напряжения к более высокому; этот механизм называется , электрический ток , обозначается I.
Электричество — это особенно удобный и универсальный вид энергии, и это сделало его мощным инструментом в руках бесчисленных умных людей, которые спроектировали все, от большого электрического оборудования до крошечных электронных устройств. Удивительно представить себе разнообразную и сложную функциональность, которая начинается с электрической энергии, которая может передаваться через два небольших медных провода.
Сравнение напряжения и тока
Текущий | Напряжение | |
Символ | I | В |
Отношения | Ток не может течь без напряжения | Напряжение может существовать без тока |
Измерено с | Амперметр | Вольтметр |
Шт. | А или амперы или сила тока | В или вольт или напряжение |
Единица СИ | 1 ампер = 1 кулон в секунду | 1 вольт = 1 джоуль / кулон (V = W / C) |
Поле | Магнитный | электростатический |
Последовательное соединение | Ток одинаков для всех | Напряжение распределяется по компонентам |
Параллельное соединение | Ток распределяется по компонентам | Напряжения одинаковы для всех компонентов |
Мощность в электронике и ее расчет
В научном контексте мощность означает скорость передачи энергии.Таким образом, электрическая мощность — это скорость, с которой передается электрическая энергия. Единица измерения Вт (Вт), где один ватт равен передаче одного джоуля (Дж) энергии за одну секунду (с).
`1 \ W = 1 \ \ frac {J} {s}`
Электрическая мощность в ваттах равна напряжению в вольтах, умноженному на ток в амперах.
`\ text {power} = \ text {напряжение} \ \ times \ text {current}`
Единица измерения вольт (В) определяется как джоуль на кулон, то есть передает энергию (в джоулях) на кулон заряда. ампер (А) — это кулоны в секунду, то есть сколько кулонов заряда проходит заданную точку за одну секунду. Мы можем использовать эту информацию, чтобы подтвердить, что единица измерения электроэнергии соответствует приведенной выше формуле:
`\ frac {\ text {джоулей}} {\ text {second}} = \ frac {\ text {joules}} {\ text {coulomb}} \ times \ frac {\ text {coulombs}} {\ text { второй}} `
В правой части уравнения два «кулоновских» члена сокращаются, и мы остаемся с джоулями в секунду.
Когда мы анализируем схемы, мы обычно обсуждаем мощность, используя термин «рассеиваемая» или «потребляемая» вместо «переданная».Это подчеркивает тот факт, что мощность покидает электрическую систему или используется электрическим компонентом. Мы не говорим «передан», потому что, как правило, конечное состояние или местоположение энергии не имеет значения.
Например, если напряжение на резисторе составляет 5 В, а ток через резистор составляет 0,5 А, резистор передает 2,5 Вт мощности (в виде тепла) в окружающую среду. Однако в большинстве случаев мы не собираемся передавать энергию. Мы просто хотим разработать функциональную схему и, следовательно, думаем о том, сколько мощности теряется (т.е., рассеянный) или использованный (т. е. потребленный).
Два распространенных типа напряжения: постоянный и переменный ток
Есть два распространенных способа передачи электроэнергии: постоянный ток и переменный ток.
Постоянный ток (DC) может увеличиваться или уменьшаться всевозможными способами, но величина изменений обычно невелика по сравнению со средним значением. Однако наиболее фундаментальной характеристикой постоянного тока является следующее: он не меняет направление регулярно.В этом отличие от переменного тока (AC) , который регулярно меняет направление и используется во всем мире для распределения электроэнергии.
Термины «постоянный ток» и «переменный ток» стали прилагательными, которые часто используются для описания напряжения. Сначала это может немного сбить с толку: что такое напряжение постоянного или переменного тока? Это не лучшая терминология, но вполне стандартная. Напряжение постоянного тока — это напряжение, которое производит или будет производить постоянный ток, а переменное напряжение создает или будет производить переменный ток — и это создает другую терминологическую проблему.Иногда к слову «ток» добавляются «постоянный ток» и «переменный ток», хотя эти фразы означают «постоянный ток» и «переменный ток». Суть в том, что «постоянный ток» и «переменный ток» больше не являются точными эквивалентами «постоянного тока» и «переменного тока»; Постоянный ток в общем относится к величинам, которые не меняют полярность регулярно или имеют очень низкую частоту, а переменный ток в общем случае относится к величинам, которые регулярно меняют полярность на частоте, которая не является «очень низкой» в контексте данная система.
На данный момент мы сосредоточимся на цепях постоянного тока. Цепи переменного тока немного сложнее и будут обсуждаться позже в этой главе.
Обозначения напряжения
Что такое напряжение постоянного тока?
Пожалуй, самый известный источник постоянного напряжения — это аккумулятор. Аккумулятор — это устройство, преобразующее химическую энергию в электрическую; он выдает напряжение, которое не меняется быстро или не меняет полярность, но напряжение постепенно уменьшается по мере разряда батареи.
Напряжение постоянного тока можно измерить с помощью вольтметра или (чаще) многофункционального устройства, известного как мультиметр (сокращенно DMM, где D означает «цифровой»). Мультиметры могут измерять, помимо прочего, напряжение, ток и сопротивление.
Рис. 1. Измерение напряжения, отображаемое на цифровом дисплее мультиметра.Вольтметр обеспечивает самый простой способ определения точного значения постоянного напряжения, хотя в некоторых случаях он не может передать важную информацию, поскольку не может четко отображать быстрые изменения.В настоящее время это важное соображение, потому что многие напряжения постоянного тока генерируются импульсными регуляторами, которые приводят к высокочастотным колебаниям, называемым пульсациями .
Что такое постоянный ток?
Когда между двумя клеммами присутствует постоянное напряжение и к клеммам подключен провод или резистивный элемент, протекает постоянный ток. Самый распространенный резистивный элемент — резистор; мы узнаем больше об этом компоненте на следующей странице. Лампа накаливания также является резистивным элементом.
Ток можно измерить с помощью устройства, называемого амперметром (или функции амперметра мультиметра), но измерение тока менее удобно, чем измерение напряжения. Щупы вольтметра просто помещаются в контакт с двумя проводящими поверхностями (т.е. без изменения схемы), тогда как щупы амперметра должны быть вставлены в токопроводящую дорожку:
Рис. 2. В этой схеме используется переключатель для установления пути тока во время нормальной работы и прерывания пути тока, когда необходимо вставить амперметр или цифровой мультиметр.Обычный расход тока по сравнению с Электронный поток
Очень важно понимать разницу между обычным потоком тока и электронным потоком . Электроны имеют отрицательный заряд, и, следовательно, они переходят от более низкого напряжения к более высокому. Однако на рисунке 2 стрелка указывает, что ток течет от положительного полюса аккумулятора к отрицательному полюсу аккумулятора — другими словами, от более высокого напряжения к более низкому напряжению.
Обычный ток изначально был основан на предположении, что электричество связано с движением положительно заряженных частиц. Теперь мы знаем, что это неверно, но в контексте анализа цепей модель обычного протекания тока не является неверной. Это совершенно справедливо, потому что при последовательном применении всегда дает точные результаты. Кроме того, он имеет преимущество создания интуитивно понятной ситуации, в которой ток течет от более высокого напряжения к более низкому напряжению, точно так же, как жидкость течет от более высокого давления к более низкому давлению, а вода падает с более высокой отметки на более низкую.
В мире электротехники схемы обсуждаются и анализируются с использованием обычного тока, а не электронного.
Как измерить постоянный ток
Рассмотрим простой случай, когда аккумулятор питает две лампочки разного сопротивления.
Рис. 3. Базовая схема, состоящая из батареи 3 В и двух резистивных элементов.Когда через лампочку течет ток, сопротивление нити накала вызывает потерю напряжения, пропорциональную сопротивлению и величине тока.Мы называем это напряжением на лампе или падением напряжения лампы .
Рис. 4. Вольтметры используются для измерения напряжения на лампочках.Мы видим, что напряжение на лампочке A составляет 2 В, а напряжение на лампе B равно 1 В.
Затем мы измерим силу тока.
Рисунок 5.Амперметр вставляется таким образом, чтобы ток, протекающий через лампочки, проходил через один датчик через схему измерения тока устройства и выводился из другого датчика.Предположим, что мы измеряем 1А. Мы выполнили необходимые измерения для определения рассеиваемой мощности лампочек.
Расчет мощности постоянного тока
Для расчета мощности, рассеиваемой каждой лампочкой, мы подставляем измеренные значения в формулу, приведенную выше.
Если мы хотим узнать мощность, рассеиваемую всей схемой, мы складываем мощность, рассеиваемую отдельными компонентами:
Или мы можем умножить ток, подаваемый от батареи, на напряжение батареи:
Следите за обновлениями, потому что на следующей странице мы познакомим вас с законом Ома, который выражает фундаментальную взаимосвязь между током, напряжением и сопротивлением.
.