цены на Асинхронные двигатели в RES.UA
Асинхронный электродвигатель на производстве и в быту: сферы применения
Эти приводы переменного тока имеют самое широкое применение среди приводов в промышленности и для бытовых потребностей. Используются для превращения электрической энергии в механическую. Это обусловлено их надежностью конструкции, возможностью регулирования скорости вращения и оптимальными габаритами.
Для собственных потребностей чаще используется однофазный двигатель, где имеет место двухпроводная система, на производстве необходимые трехфазные приводы.
Ленточные конвейеры, вентиляторы, лебедки, подъемные краны, насосы, станки, лифты — это далеко не полный список оборудования, где используются двигатели с разными типами ротора (преимущественно короткозамкнутый).
Они могут подключаться по двум основным схемах: “звезда” и “треугольник”. Преимуществом первого способа является то, что оно идет уже с завода и двигатель готов к подключению 380 В, имеет выше КПД. Второй способ необходимо использовать тогда, когда линейное напряжение нужно понизить до фазного и подключить трехфазный как однофазный электромотор.
При выборе в каталоге необходимо ориентироваться на характеристики:
- Мощность;
- Напряжение;
- Частота вращения;
- Сила тока;
- Угол сдвига фаз;
- КПД.
Существуют и другорядные показатели, которые могут влиять на выбор устройства, но они подбираются под конкретные потребности.
Устройство
Конструкция состоит из основных узлов, которые в свою очередь имеют ряд дополнительных деталей:
- Вал
- Подшипники
- Подшипниковые щиты
- Лапы: способ крепления на основание
- Защитный кожух
- Задние подшипники
- Крыльчатка
- Дополнительные щиты
- Ротор
- Статор
- Клемы.
Принцип работы асинхронного двигателя основан на возникновении сменного электромагнитного поля между основными узлами: статором и ротором, они являются основными частями. Статор неподвижный, собирается с производственной стали в виде листов. В пазы специальным способом укладываются обмотки фаз. Оси их сдвинуты на 120 градусов. Как указывалось выше, могут соединятся в треугольник или звезду. На шильдике прибора указывается заводское исполнение.
Ротор может быть короткозамкнутый или фазный. Первый изготовленный также из листов стали, в пазах которого находятся алюминиевые или медные (для большой мощности) стержни, замкнутые с торцевыми кольцами. В фазном исполнении обмотка похожая на статорную, концы подключены к щеткам, куда можно подключать добавочный резистор. Это позволяет изменять сопротивление ротора для уменьшения пусковых токов.
Виды асинхронных электродвигателей
Типы приводов определяют их основную сферу применения.
- По количеству рабочих фаз: одно-, двух-, трехфазные;
- По типу ротора: с короткозамкнутым и фазным;
- По защищенности: брызгозащищенные и закрытые, взрывозащищенные
Также существуют узконаправленные конденсаторные моторы, с расщепленным полюсом, с немагнитным ротором.
Где приобрести асинхронный двигатель
Когда встает вопрос покупки оборудования лучше отдать предпочтение официальным дистрибьюторам, например res.ua. Это не только гарантия получить оригинальный товар, но также наличие сервисного центра, необходимых комплектующих и запчастей. Магазин предлагает оптовые цены без ущерба качества. Представлены как небольшие модели, так и мощные приводы для промышленности. Все товары находятся в соответствующих условиях хранения, что гарантирует долгую работу механизмов, ведь от них зависит не только налаженный производственный процесс, но и безопасность персонала.
Асинхронные электродвигатели
Асинхронные погружные электродвигатели (ПЭД) — это наиболее широко используемый тип двигателей для привода электроцентробежных насосов. Несмотря на то, что они не способны развивать высокие обороты, как двигатели на постоянных магнитах (вентильные), они доказали свою надежность в ходе эксплуатации, обладают меньшей себестоимостью и трудоемкостью изготовления. Стандартные асинхронные двигатели просты в эксплуатации и доступны в широком диапазоне типоразмеров по мощности, габариту и исполнению.
От технического уровня на стадии проекта, качества изготовления и надежной работы двигателя зависит долговечная работа установки. Компания «Новомет» имеет собственную научно-техническую базу для проектирования, изготовления и испытания опытных образцов, а также производственную базу для серийного изготовления погружных электродвигателей.
область применения
- Применяются в качестве привода центробежных насосов, применяемых для откачки пластовой жидкости.
возможности
- Выпускаются в габаритах от 96 мм до 185 мм
- Номинальная мощность в диапазоне от 16 до 650 кВт
особенности
- Широкая линейка типоразмеров по мощности и габариту
- Применение компаундированного статора позволяет добиться полной герметезации обмоток, устранить перегрев, увеличить сопротивление изоляции в 10 раз
- Фильтр для масла в основании двигателя позволяет продлить срок безотказной эксплуатации
Наружный диаметр двигателя | Номинальная мощность |
||
1 секция |
2 секции |
3 секции |
|
96 мм 3. 78 дюйма |
16-32 кВт (@50Гц) |
45-56 кВт (@50Гц) |
70-100 кВт (@50Гц) |
103 мм 4.06 дюйма |
16-90 кВт (@50Гц) |
63-160 кВт (@50Гц) |
140-250 кВт (@50Гц) |
117 мм 4.60 дюйма |
12-125 кВт (@50Гц) |
90-250 кВт (@50Гц) |
270-400 кВт (@50Гц) |
130 мм 5.12 дюйма |
22-140 кВт (@50Гц) |
160-300 кВт (@50Гц) |
350-560 кВт (@50Гц) |
143 мм 5.62 дюйма |
63-220 кВт (@50Гц) |
260-440 кВт (@50Гц) |
555 кВт (@50Гц) |
185 мм 7. 44 дюйма |
100-400 кВт (@50Гц) |
345-650 кВт (@50Гц) |
|
В настоящее время компанией «НОВОМЕТ» производится широкая линейка асинхронных электродвигателей, освоено 6 габаритов: 96, 103, 117, 130, 143 и 185 мм. Число типоразмеров ПЭД – от 7 до 28 в каждом габарите диапазон мощностей – от 8 до 650 кВт. Обширная номенклатура позволяет подобрать наиболее оптимальное сочетание двигатель-насос, для обеспечения работы установки с максимально возможным КПД.
В зависимости от конструкции электродвигатели могут изготавливаться в различных модификациях, например с трубчатым охладителем (для температуры окружающей среды до 200°С), с двухсторонним выходом вала (для установок перевернутого типа, или присоединения погружного сепаратора механических примесей).
Электродвигатели оснащаются погружным блоком контроля параметров установки различных производителей, в том числе ТМС-Новомет.
Погружной электродвигатель состоит из основных элементов: неподвижного статора, вращающегося ротора, головки с токовводом и основания. Электродвигатель выполняется маслозаполненным. В головке электродвигателя, расположенной в верхней части, размещена колодка токоввода и узел упорного подшипника, который воспринимает осевые нагрузки от веса ротора. Основание расположено в нижней части электродвигателя и содержит фильтр для очистки масла. Головка и основание герметично соединены с корпусом статора резьбой.
Асинхронные двигатели — MirMarine
Асинхронными называются двигатели, у которых число оборотов ротора отстает от скорости вращения магнитного поля статора при прохождении в его обмотках трехфазного тока. При прохождении в обмотках статора трехфазной машины трехфазного тока возникает вращающееся магнитное поле, под действием которого в роторе индуктируется электрический ток. В результате взаимодействия вращающегося магнитного поля статора стоками, индуктируемыми в проводниках ротора, возникает механическое усилие, действующее на проводник с током, которое и создает вращающий момент, приводящий в движение ротор.
Таким образом, асинхронный двигатель получает энергию, подводимую к ротору вращающимся магнитным потоком (индуктивно) в отличие от двигателей постоянного тока, у которых энергия подводится по проводам.
Асинхронные двигатели в отличие от синхронных возбуждаются переменным током.
Асинхронный двигатель, так же как и синхронный, состоит из двух основных частей: статора с фазными обмотками, по которым проходит трехфазный переменный ток, и ротора, ось которого уложена в подшипниках. Ротор может быть коротко-замкнутым и фазным (рис. 175).
Короткозамкнутый ротор(рис. 175, в) представляет из себя цилиндр, по окружности которого параллельно его оси расположены проводники, замкнутые между собой с обеих сторон ротора кольцами (в виде беличьего колеса).
Асинхронный двигатель с таким ротором называется короткозамкнутым. К недостаткам их относятся малый пусковой момент и большой ток в обмотках статора при пуске. Если хотят увеличить пусковой момент или уменьшить пусковой ток, применяют асинхронные двигатели с фазным ротором (рис. 175,г).
У этих двигателей на роторе размещают такую же обмотку, как и на статоре. При этом концы обмоток соединяют с контактными кольцами (рис. 175, д), расположенными на валу двигателя. Контактные кольца при помощи щеток соединяются с пусковым реостатом. Для пуска двигателя в питающую сеть включают статор, после чего постепенно выводят из цепи ротора сопротивление пускового реостата. Когда двигатель пущен в ход, контактные кольца при помощи особых приспособлений замыкаются накоротко, а щетки поднимаются над кольцами. Остановка электродвигателя производится простым выключением рубильника. После остановки двигателя необходимо опустить щетки и разомкнуть контактные кольца. На рис.
Пуск в ход электродвигателя с короткозамкнутым ротором может быть осуществлен непосредственным включением рубильника на полное рабочее напряжение сети (способ прямого пуска.) Однако вследствие резкого возрастания индуктируемой э. д. с. и величины пускового тока напряжение в сети в пусковой момент снижается, что отрицательно сказывается на работе приводного двигателя и других потребителей, питающихся от этой сети. В случае большой величины пускового тока, для его уменьшения асинхронные двигатели с короткозамкнутым ротором обычно пускают двумя способами: переключением обмоток статора в момент пуска со звезды на треугольник, если обмотки статора при нормальной работе электродвигателя соединены треугольником или включением электродвигателя через пусковое сопротивление (или автотрансформатор) в цепи статора.
Остановка электродвигателя производится выключением рубильника. После остановки электродвигателя пусковой реостат или автотрансформатор полностью вводится. Скорость вращения асинхронных двигателей регулируют, изменяя сопротивление реостата, включенного в цепь ротора (у электродвигателей с фазным ротором) и переключением статорных обмоток для изменения числа пар полюсов (у электродвигателей с коротко-замкнутым ротором).
Изменение направления вращения асинхронных электродвигателей достигается изменением направления вращающегося магнитного поля статора путем переключения любых двух из трех фаз обмотки статора (с помощью проводов, соединяющих зажимы статорной обмотки с сетью) при помощи обычного двухполюсного переключателя.
Асинхронные двигатели
- просты по конструкции
- обладают по сравнению с двигателями постоянного тока меньшими габаритами и весом, вследствие чего он значительно дешевле
- более надежны в эксплуатации
- требуют меньшего внимания при обслуживании из-за отсутствия у них вращающегося коллектора и щеточного аппарата
- обладают более высоким к. п. д.
- аппаратура управления ими значительно проще и дешевле, чем у двигателей постоянного тока
- Асинхронные двигатели работают без искрообразования, которое возможно в машинах постоянного тока с нарушенной коммутацией, поэтому они более безопасны в пожарном отношении.
Перечисленными основными преимуществами асинхронных двигателей объясняется современная тенденция повсеместного внедрения переменного тока на морских судах. Следует отметить, что в промышленности асинхронные двигатели давно завоевали господствующее положение по сравнению с другими типами электродвигателей. Асинхронные двигатели строятся мощностью от долей киловатта до многих тысяч киловатт. На судах морского флота в основном применяются асинхронные двигатели с короткозамкнутым ротором, которые выпускаются в водозащищенном и брызгозащищенном исполнении и рассчитаны на напряжение 380/220 в.
Похожие статьи
Двигатель асинхронный — это.
.. Что такое Двигатель асинхронный?Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (меньше) частоте вращения магнитного поля, создаваемого током обмотки статора. Асинхронные машины — наиболее распространённые электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.
Конструкция
Как и любая электромеханическая машина, асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод; все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.
Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120°. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения (вращения) магнитного потока обмотки возбуждения, поэтому его изготавливают шихтованным (набранным из пластин) из электротехнической стали для обеспечения минимальных магнитных потерь.
По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из электротехнической стали и шихтованным.
Короткозамкнутый ротор
Ротор асинхронной машины типа «беличья клетка»
Короткозамкнутая обмотка ротора, часто называемая «беличья клетка» из-за внешней схожести конструкции, состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. В машинах малой и средней мощности ротор обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями «беличьей клетки» отливают короткозамыкающие кольца и торцевые лопасти, осуществляющие самовентиляцию самого ротора и вентиляцию машины в целом. В машинах большой мощности «беличью клетку» выполняют из медных стержней, концы которых вваривают в короткозамыкающие кольца.
Зачастую пазы ротора или статора делают скошенными для уменьшения высших гармонических ЭДС, вызванных пульсациями магнитного потока из-за наличия зубцов, магнитное сопротивление которых существенно ниже магнитного сопротивления обмотки, а также для снижения шума, вызываемого магнитными причинами.
Асинхронные двигатели с таким ротором имеют небольшой пусковой момент и значительный пусковой ток, что является существенным недостатком «беличьей клетки». Поэтому их применяют в тех электрических приводах, где не требуются большие пусковые моменты. Из достоинств следует отметить лёгкость в изготовлении, малый момент инерции и отсутствие механического контакта со статической частью машины, что гарантирует долговечность и снижает затраты на обслуживание.
Фазный ротор
Фазный ротор имеет трёхфазную (в общем случае — многофазную) обмотку, обычно соединённую по схеме «звезда» и выведённую на контактные кольца, вращающиеся вместе с валом машины. С помощью металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора включают пускорегулирующий реостат, выполняющий роль добавочного активного сопротивления, одинакового для каждой фазы.
В двигателях с фазным ротором имеется возможность увеличивать пусковой момент до максимального значения(в первый момент времени) с помощью пускового реостата, тем самым уменьшая пусковой ток. Такие двигатели применяются для привода механизмов, которые пускают в ход при большой нагрузке.
Скорость вращения поля статора
При питании обмотки статора трёхфазным (в общем случае — многофазным) током создаётся вращающееся магнитное поле, синхронная частота вращения [об/мин] которого связана с частотой сети [Гц] соотношением:
- ,
где — число пар магнитных полюсов обмотки статора.
Двигательный режим
Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой по обмотке ротора начинает течь ток. На проводники с током этой обмотки, расположенные в магнитном поле обмотки возбуждения, действуют электромагнитные силы; их суммарное усилие образует электромагнитный вращающий момент, увлекающий ротор за магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение, и его установившаяся частота вращения [об/мин] соответствует равенству электромагнитного момента тормозному, создаваемого нагрузкой на валу, силами трения в подшипниках и инерцией ротора. Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора ЭДС и, в свою очередь, создавать крутящий момент; таким образом, для двигательного режима работы асинхронной машины справедливо неравенство:
- .
Относительная разность частот вращения магнитного поля и ротора называется скольжением:
- .
Очевидно, что при двигательном режиме .
Генераторный режим
Если ротор разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдет в генераторный режим. При этом изменит направление и электромагнитный момент, который станет тормозящим. В генераторном режиме работы скольжение .
При отсутствии первоначального магнитного поля в обмотке статора поток возбуждения создают с помощью постоянных магнитов, либо за счёт остаточной индукции машины и пусковых конденсаторов, параллельно подключенных по схеме «звезда» к фазам обмотки статора .
Асинхронный генератор потребляет намагничивающий ток значительной силы и требует наличия в сети генераторов реактивной мощности в виде синхронных машин,синхронных компенсаторов,батарей статических конденсаторов(БСК). Несмотря на простоту обслуживания, асинхронный генератор применяют сравнительно редко, в основном как вспомогательные источники небольшой мощности и как тормозные устройства.
Режим электромагнитного тормоза
Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Такой режим работы асинхронной машины называется режимом электромагнитного тормоза, и для него справедливы неравенства .
Способы управления асинхронным двигателем
Под управлением асинхронным двигателем переменного тока понимается изменение частоты вращения ротора. Существуют следующие способы управления асинхронным двигателем:
- реостатный — изменение частоты вращения АД с фазным ротором путём изменения сопротивления реостата в цепи ротора,
- частотный — изменение частоты вращения АД путём изменения частоты тока в питающей сети, что влечёт за собой изменение частоты вращения поля статора. Применяется включение двигателя через частотный преобразователь,
- переключением обмоток со схемы «звезда» на схему «треугольник» в процессе пуска двигателя, что даёт снижение пусковых токов в обмотках примерно в три раза;
- импульсный — подачей напряжения питания специального вида (например, пилообразного),
- изменением числа пар полюсов, если такое переключение предусмотрено конструктивно,
- изменением амплитуды питающего напряжения, когда изменяется только амплитуда (или действующее значение) управляющего напряжения. Тогда векторы напряжений управления и возбуждения остаются перпендикулярны,
- Фазовое управление характерно тем, что изменение частоты вращения ротора достигается путём изменения сдвига фаз между векторами напряжений возбуждения и управления,
- Амплитудно-фазовый способ включает в себя оба предыдущих способа.
Ссылки
Wikimedia Foundation. 2010.
| |||||
Основное различие между синхронным и асинхронным двигателем
В чем разница между синхронным и асинхронным двигателем (асинхронным двигателем)Электродвигатели — это машины, которые преобразуют электрическую энергию в механическую для выполнения механических операций. Эти двигатели могут быть предназначены для работы на переменном (AC) или постоянном (DC) токе. Двигатели переменного тока подразделяются на два типа; Синхронные двигатели и асинхронные двигатели. Оба они имеют некоторые общие черты, например, в конструкции, но совершенно разные по принципу действия и производительности.
Прежде чем перейти к списку различий между синхронным двигателем и асинхронным двигателем, мы собираемся обсудить их основы и то, как они работают. Для ясного объяснения вы можете знать разницу между однофазным и трехфазным источником питания, относящуюся к работе однофазных и трехфазных двигателей переменного тока.
Как работает двигатель переменного тока?Как мы знаем из нашей предыдущей статьи «Различия между двигателями переменного и постоянного тока», двигатели постоянного тока работают по принципу магнитного поля, действующего на проводник с током, который испытывает механическую силу.Где статор генерирует статическое магнитное поле, а ротор, состоящий из нескольких обмоток, несет входной постоянный ток.
В двигателях переменного тока используется идея вращательного магнитного поля RMF. Статор состоит из нескольких обмоток, которые создают переменное магнитное поле при подаче входного переменного тока. Это магнитное поле вращается вокруг ротора.
Ротор, состоящий из обмоток или проводников с замкнутым контуром, проводит ток либо посредством индукции, либо от внешнего источника тока, генерирующего собственное магнитное поле.Магнитное поле, создаваемое ротором, взаимодействует с вращающимся магнитным полем и начинает вращаться в его направлении.
Относительная разница между полем вращения статора и скоростью ротора называется скольжением. если скольжение двигателя равно нулю или ротор имеет ту же скорость вращения, что и поле вращения статора, двигатель называется синхронным двигателем переменного тока. если двигатель переменного тока имеет скольжение или существует разница между скоростью возбуждения статора и ротором, двигатель называется асинхронным двигателем. Чтобы узнать больше о различных типах двигателей, обратитесь к предыдущим сообщениям о двигателях BLDC (бесщеточный постоянного тока), шаговых двигателях и серводвигателях.
Связанные сообщения:
Синхронный двигательКак следует из названия, синхронный двигатель имеет ротор, который предназначен для вращения с той же скоростью, что и его вращающееся магнитное поле статора, называемой синхронной скоростью .
Статор создает вращающееся магнитное поле при подаче переменного тока.Ротор может быть спроектирован для создания собственного магнитного поля с использованием внешнего источника постоянного тока через контактные кольца или постоянного магнита .
Ротор предназначен для создания магнитных полюсов, равных полюсам статора или целых кратных полюсов. Когда статор и ротор находятся под напряжением, магнитное поле ротора блокируется с вращающимся магнитным полем статора, и он вращается с точной скоростью поля статора.
Из-за инерции синхронный двигатель не запускается сразу с синхронной скоростью (вращательное магнитное поле).Поэтому для обеспечения пускового момента используется дополнительная обмотка « демпферная обмотка ». Во время запуска он действует как асинхронный двигатель. Таким образом, предполагается, что синхронные двигатели не самозапускающиеся , им нужен дополнительный пусковой механизм.
Это может быть двигатель с раздельным возбуждением или без возбуждения, т.е. первый требует отдельного источника постоянного тока, возбуждает обмотки ротора и генерирует магнитное поле, в то время как последний описывает синхронный двигатель, ротор которого предназначен для намагничивания вращающимся магнитным полем статора. и вращается вместе с ним.
Ротор синхронного двигателя вращается с синхронной скоростью, которая зависит от частоты питания и полюсов обмоток статора. Следовательно, скорость двигателя не зависит от нагрузки. Чтобы изменить скорость синхронного двигателя, необходимо изменять частоту питания. Это достигается за счет использования частотно-регулируемого привода (VFD).
Связанные сообщения:
Асинхронный двигательНазвание асинхронного двигателя предполагает, что скорость ротора асинхронна со скоростью вращения магнитного поля статора.Точнее, ротор асинхронного двигателя вращается с относительно меньшей скоростью, чем статор RMF. Это связано с наличием проскальзывания между его скоростью статора и ротора.
Ротор асинхронного двигателя представляет собой короткозамкнутый ротор с обмоткой. Ротор с короткозамкнутым ротором построен с использованием тяжелых медных стержней, соединенных на конце с помощью токопроводящего кольца, которое электрически закорачивает их вместе. Ротор с обмоткой состоит из нескольких обмоток поверх многослойного стального сердечника.
Вращающееся магнитное поле статора вызывает индуцированный ток в роторе. Этот индуцированный ток течет внутри ротора, создавая собственное магнитное поле. Согласно закону Ленца, это поле ротора противодействует причине, которая его порождает, и пытается устранить ее, догоняя скорость статора RMF (синхронную скорость). При этом ротор вращается в направлении RMF статора. Асинхронный двигатель также известен как асинхронный двигатель , поскольку он работает по принципу индукции.
Асинхронный двигатель никогда не может работать на синхронной скорости, вместо этого она всегда ниже, чем синхронная скорость, и это зависит от скольжения двигателя. Причина в том, что индуцированный ток в роторе генерируется из-за разницы между полем статора и ротора. если в случае, если он работает с синхронной скоростью, это означает, что ротор магнитно заблокирован, и между полем статора и ротора нет разницы. Следовательно, не будет магнитного потока, индуцирующего ток в роторе.Магнитный поток необходим для асинхронного двигателя, поэтому он должен работать с меньшей скоростью, чем его синхронная скорость.
Ротор с короткозамкнутым ротором имеет более простую конструкцию и позволяет наведенному току проходить через медные шины. В то время как заведенный ротор позволяет пользователю изменять ток ротора во время его запуска, как это используется в «Пускателе двигателя». Дело в том, чтобы безопасно запустить двигатель, уменьшив огромный пусковой ток, потребляемый асинхронным двигателем. Обычно это делается путем последовательного подключения переменного резистора к обмоткам ротора с помощью контактных колец.
Скорость асинхронного двигателя зависит от скольжения двигателя, которое изменяется в зависимости от нагрузки и сопротивления ротора. Другими словами, скорость асинхронного двигателя может изменяться в зависимости от нагрузки или за счет изменения сопротивления ротора.
Связанное сообщение:
Различия между синхронным двигателем и асинхронным двигателемВ следующей таблице показаны основные различия между синхронным двигателем и асинхронным (асинхронным) двигателем.
Синхронный двигатель | Асинхронный двигатель |
Синхронный двигатель — это тип двигателя переменного тока, который работает с синхронной скоростью. | Асинхронный двигатель — это тип двигателя переменного тока, который работает со скоростью, меньшей, чем синхронная скорость. |
Он работает по принципу магнитной блокировки между полем ротора и статора. | Он работает по принципу электромагнитной индукции между статором и ротором. |
Нет скольжения, т.е. скольжение синхронного двигателя равно 0. | В асинхронном двигателе есть скольжение, и оно всегда больше 0. |
Скорость двигателя зависит от частоты питания и количество полюсов статора. N s = 120 f / P | Скорость двигателя зависит от нагрузки, сопротивления ротора и скольжения, s. это всегда меньше синхронной скорости. N = N с (1-с) N |
Скорость не меняется при изменении нагрузки, подключенной к двигателю. | Скорость меняется в зависимости от нагрузки двигателя. |
Это не самозапуск и требует дополнительных обмоток для запуска двигателя. | Асинхронные двигатели самозапускаются и не требуют дополнительных механизмов. |
Ротор требует дополнительного источника тока. | Ротор асинхронного двигателя не требует дополнительного питания. |
Синхронному двигателю с независимым возбуждением требуется дополнительный источник постоянного тока для питания его обмотки ротора. | Не требует дополнительных исходников. |
Также необходимы контактные кольца и щетки для подачи постоянного тока на обмотки ротора. | Не требует контактных колец, однако, намотанный тип может использовать контактные кольца для управления скоростью. |
Скорость двигателя регулируется только путем изменения частоты питания с помощью частотно-регулируемого привода. | Скорость двигателя можно регулировать с помощью переменного сопротивления ротора, а также устройств VFD. |
Источник входного напряжения не изменяет скорость или крутящий момент синхронного двигателя. | Источник входного напряжения можно использовать для изменения крутящего момента и скорости двигателя. |
Колебания основного напряжения питания не влияют на работу синхронного двигателя. | Колебания сетевого напряжения влияют на его скорость и работу. |
Начальная стоимость больше, чем у асинхронного двигателя. | Асинхронные двигатели дешевле. |
Операция сложная. | Операция проста и удобна для пользователя. |
Если предлагают высокую эффективность и точность. | Они не так эффективны, как синхронный двигатель. |
Может легко работать на очень низкой скорости с помощью ЧРП. | Работать на малых оборотах довольно сложно. |
Лучше всего работает на более низких оборотах, обычно ниже 300 об / мин. | Лучше всего подходит для работы на скорости выше 600 об / мин. |
Может работать с отстающим, опережающим или единичным коэффициентом мощности, регулируя его возбуждение. | Асинхронный или асинхронный двигатель всегда работает с отстающим коэффициентом мощности. |
Его также можно одновременно использовать для коррекции коэффициента мощности, используя его в качестве опережающего коэффициента мощности. | Его нельзя использовать для корректировки коэффициента мощности, а только для управления механическими нагрузками. |
Поскольку он работает с постоянной скоростью, резкое изменение нагрузки вызовет колебания потребляемого тока. | В асинхронном двигателе такого явления нет. |
Вывод этой статьи состоит в том, что синхронные двигатели эффективны, но дороже и используются для приложений со сверхнизкими оборотами, предлагая при этом функцию коррекции коэффициента мощности. С другой стороны, асинхронные двигатели используются для высоких оборотов с регулируемой скоростью, будучи недорогими и простыми в эксплуатации.
Связанный пост об электрических двигателях.
Типы и удивительные области применения асинхронных двигателей
Индукционные машины являются наиболее часто используемым типом двигателей в жилых, коммерческих и промышленных помещениях. В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора.
Принси А.J | 4 июня 2020 г.
Асинхронный двигатель — это обычно используемый электродвигатель переменного тока. В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора. Ротор асинхронного двигателя может быть ротором с короткозамкнутым ротором или ротором с намоткой.
Асинхронные двигатели, используемые в различных приложениях, также называются асинхронными двигателями.Это связано с тем, что асинхронный двигатель всегда работает с меньшей скоростью, чем синхронная скорость. Скорость вращающегося магнитного поля в статоре называется синхронной скоростью.
Индукционные машины — наиболее часто используемый тип двигателей в жилых, коммерческих и промышленных помещениях. Эти трехфазные двигатели переменного тока обладают следующими характеристиками:
- Простая и грубая конструкция
- Доступное и низкое обслуживание
- Высокая надежность и профессионализм
- Нет необходимости в дополнительном пусковом двигателе и необходимости в синхронизации
Два типа асинхронных двигателей
Однофазный асинхронный двигатель
Однофазный асинхронный двигатель не запускается самостоятельно.Основная обмотка пропускает спорадический ток, когда двигатель подключен к однофазному источнику питания. Вполне логично, что самый дешевый, самый дешевый механизм сортировки должен использоваться наиболее регулярно. В зависимости от способа запуска эти машины классифицируются по-разному. К этим типам относятся двигатели с экранированными полюсами, двигатели с разделенной фазой и конденсаторные двигатели. Кроме того, конденсаторные двигатели запускаются с конденсатора, работают с конденсатором и имеют двигатели с постоянным конденсатором.
В этих однофазных двигателях пусковая обмотка может иметь последовательный конденсатор и центробежный выключатель.Когда подается напряжение питания, ток в основной обмотке удерживает напряжение питания из-за полного сопротивления основной обмотки. И ток в пусковой обмотке опережает / отстает, напряжение питания зависит от импеданса пускового механизма. Угол между двумя обмотками равен разности фаз, достаточной для создания вращающегося магнитного поля для создания пускового момента. В момент, когда двигатель достигает от 70% до 80% синхронной скорости, центробежный переключатель на валу двигателя размыкается и отключает пусковую обмотку.
Применение однофазных асинхронных двигателей
Однофазные асинхронные двигатели используются в системах с малой мощностью. Эти двигатели широко используются в быту и промышленности. Некоторые из приложений упомянуты ниже:
- Насосы
- Компрессоры
- Вентиляторы малые
- Миксеры
- Игрушки
- Высокоскоростные пылесосы
- Электробритвы
- Станки сверлильные
Трехфазный асинхронный двигатель:
Трехфазные асинхронные двигатели, будучи самозапускающимися, не имеют пусковой обмотки, центробежного переключателя, конденсатора или другого пускового устройства.Трехфазные асинхронные двигатели переменного тока находят различное применение в коммерческих и промышленных приложениях. Два типа трехфазных асинхронных двигателей — это двигатели с короткозамкнутым ротором и с контактным кольцом. Особенности, которые делают двигатели с короткозамкнутым ротором широко применяемыми, заключаются в основном в их простой конструкции и прочной конструкции. С внешними резисторами двигатели с контактным кольцом могут иметь высокий пусковой момент.
Трехфазные асинхронные двигатели широко используются в бытовых и промышленных приборах, поскольку они имеют прочную конструкцию, не требуют технического обслуживания, сравнительно дешевле и требуют питания только на статоре.
Применение трехфазного асинхронного двигателя
- Подъемники
- Краны
- Подъемники
- Вытяжные вентиляторы большой мощности
- Станки токарные приводные
- Дробилки
- Маслоэкстракционные заводы
- Текстиль и др.
Модель динамики трехфазной асинхронной машины, также известной как индукционная машина, в единицах СИ или о.у.
Представлять ли крутящий момент, приложенный к валу или ротору скорость как входной сигнал блока Simulink ® , или чтобы представить вал машины как Вращающийся механический порт Simscape ™.
Выберите Torque Tm
, чтобы указать входной крутящий момент в Н · м или о.е.
а так и выставить порт Тм . Скорость машины
определяется по инерции станка Дж (для СИ
машины) или константа инерции H (для машины pu)
и разницей между приложенным механическим крутящим моментом Tm , и внутренний электромагнитный момент, Те . Когда скорость положительная, положительный крутящий момент
сигнал указывает на режим двигателя, а отрицательный сигнал указывает на генератор
режим.
Выберите Speed w
, чтобы указать скорость, в
рад / с или в о.е. и выставить порт w . Машина
скорость навязывается и механическая часть модели (машина
инерция J ) игнорируется. Используя скорость как
механический ввод позволяет моделировать механическую связь между двумя
машины.
На рисунке показано, как смоделировать жесткое соединение валов в мотор-генераторной установке. когда в машине 2 не учитывается момент трения. Скорость вывода машина 1 (двигатель) подключена к входу скорости машины 2 ( генератор), а выход электромагнитного момента машины 2 Te применяется к механическому входу крутящего момента Tm станка 1. Коэффициент Kw учитывает единицы скорости обеих машин (рад / с или о.е.) и передаточное число коробки передач w2 / w1. Коэффициент KT учитывает единицы крутящего момента обеих машин (Н.м или пу) и номиналы машин. Также из-за инерции J2 игнорируется в машине 2, J2 относится к скорости машина 1 и должна быть добавлена к инерции машины 1 Дж1 .
Выберите Механический вращающийся порт
, чтобы открыть механический вращающийся порт Simscape, S , который
позволяет соединять вал машины с другими блоками Simscape, имеющими механические порты вращения.
На рисунке показано, как подключить идеальный крутящий момент Исходный блок из библиотеки Simscape на вал машины для представления машины в в режиме двигателя или в режиме генератора, когда частота вращения ротора положительный.
Трехфазный асинхронный двигательDA в компактном исполнении
Страна* Пожалуйста selectGermanyUnited StatesUnited KingdomIndiaItalyAfghanistanAland IslandsAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Синт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCook IslandsCosta RicaCote д’Ивуар (Берег Слоновой Кости) CroatiaCubaCuracaoCyprusCzech RepublicDemocratic Республика из CongoDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland острова (Мальвинские ) Фарерские острова, Фиджи, Финляндия, Франция, Французская Гвиана, Французская Полинезия, Французские Южные территории, Габон, Гамбия, Грузия, Германия, Гана, Гибралтар, Греция, Гренландия, Гренада, Гуадалуп, Гуам, Гватемала, Гернси, Гуи. neaGuinea-BissauGuyanaHaitiHeard остров и McDonald IslandsHondurasHong KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsle из ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKosovoKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacaoMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldavaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmar (Бирма) NamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorthern Mariana IslandsNorwayOmanPakistanPalauPalestinePanamaPapua Новый GuineaParaguayPeruPhillipinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussiaRwandaSaint BarthelemySaint HelenaSaint Киттс и NevisSaint LuciaSaint MartinSaint Пьер и MiquelonSaint Винсент и GrenadinesSamoaSan MarinoSao Томе и PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint MaartenSlovakiaSloveniaSolomon I slandsSomaliaSouth AfricaSouth Джорджия и Южные Сандвичевы IslandsSouth KoreaSouth SudanSpainSri LankaSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyriaTaiwanTajikistanTanzaniaThailandTimor-Лешть (Восточный Тимор) TogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks и Кайкос IslandsTuvaluUgandaUkraineUnited Арабского EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVatican CityVenezuelaVietnamVirgin остров, BritishVirgin остров, USWallis и FutunaWestern SaharaYemenZambiaZimbabweFind контакт
Особенности асинхронного двигателя с двухслойным ротором в судовом насосном оборудовании
Копылов И. П., Сонин Ю.П., Гуляев И.В. Частотно-регулируемый асинхронный двигатель с двойным источником питания. Электр. Eng ., 1997, т. 68, нет. 8.
Могильников В.С. , Олейников А.М., Теория, технология и режимы работы асинхронных двигателей с двухслоиным ротором , Севастополь: Севаст. Нац. Тех. Ун-та, 2008.
Олейников, А. и Попов С.В., Перспективы использования асинхронного двигателя с двойным ротором, Материалы международной научно-технической конференции «Проблемы повышения эффективности электромеханических преобразователей в электроэнергетических.Тех. Энергетические системы ». Севастополь, 2004.
Олейников А.М. Эксплуатационные характеристики асинхронных электродвигателей с двойным ротором.7.
Олейников А.М. Сравнительные характеристики асинхронного двигателя с короткозамкнутым и сдвоенным ротором в турбомеханизме регулируемого электропривода // Тр. Inst. Электродин., Акад. АН УССР, , 1986.
Олейников А. Последовательные асинхронные двигатели с модернизированным (экранированным) ротором для подъемно-транспортного оборудования, Материалы международной научно-технической конференции «Проблемы повышения эффективности электромеханических технологий.Int. Научно-техн. Конф. «Повышение КПД электромеханических преобразователей в электроэнергетических системах». Севастополь, 2005.
Высоцкий В.Е., Олейников А.М., Нагирняк А.А. Работа асинхронного двигателя с двухслойным ротором в электрической цепи. привод насосов, Учеб. 16-й Int. Конф. «Электромеханика, электротехнология, электроматериалы и компоненты», ICEEE-2016 , Алушта, 2016.
Олейников А.М., Аксенов В.Ф., Титов В.К., Асинхронный двигатель с внешним двойным ротором, Тех. Эльктродин ., 1990, № 4, с. 1.
Рынок асинхронных двигателей вырастет на 6,58 млрд долларов за счет производства электрических компонентов и оборудования
Запросить бесплатный образец отчета для получения дополнительных сведений
Прочтите 120-страничный отчет с TOC «Отчет об анализе рынка асинхронных двигателей по конечным пользователям (промышленные, автомобильные, жилые и коммерческие), географии (Азиатско-Тихоокеанский регион, Северная Америка, Европа, MEA и Южная Америка)» и Сегментные прогнозы на 2021-2025 гг. «
Рынок определяется растущим вниманием к автоматизации производственных процессов. Кроме того, ожидается, что устойчивый рост обрабатывающих производств, таких как цементная, сталелитейная, водопроводная и канализационная, будет стимулировать рост рынка асинхронных двигателей.
Промышленные операторы по всему миру внедряют автоматизацию в свои производственные процессы для увеличения производства и повышения общей операционной эффективности. Это увеличивает использование автоматизированных машин, которые подключены к нескольким электрическим приводам, таким как сервоприводы и приводы переменного тока.Он улучшает работу асинхронных двигателей в точных приложениях, таких как конвейеры, робототехника и процессы обработки материалов. В связи с повышением внимания к автоматизации производственных процессов спрос на асинхронные двигатели в течение прогнозируемого периода будет расти.
Купите 1 отчет Technavio и получите второй со скидкой 50%. Купите 2 отчета Technavio и получите третий бесплатно.
Просмотрите снимок рынка перед покупкой
Пять основных компаний по производству асинхронных двигателей:
ABB Ltd.
Компания производит асинхронные двигатели и генераторы для морского, коммунального и морского секторов.
General Electric Co.
Компания производит асинхронные двигатели и генераторы для коммерческого и промышленного секторов.
Hitachi Ltd.
Компания производит продукцию для асинхронных двигателей, например, самые маленькие микродвигатели и самые большие двигатели.
Nidec Corp.
Компания производит асинхронные двигатели, такие как асинхронные двигатели с короткозамкнутым ротором, вихретоковые двигатели и асинхронные двигатели с фазным ротором.
Regal Beloit Corp.
Компания производит асинхронные двигатели для жилых, коммерческих и промышленных предприятий.
Зарегистрируйтесь для получения бесплатной пробной версии сегодня и получите мгновенный доступ к более чем 17 000 отчетов об исследованиях рынка.
Платформа ПОДПИСКИ Technavio
Прогноз для конечных пользователей рынка асинхронных двигателей (выручка, млрд долларов США, 2020-2025 годы)
- Промышленное производство — размер и прогноз на 2020-2025 годы
- Автомобильная промышленность — размер и прогноз на 2020-2025 годы
- Жилая — площадь и прогноз на 2020-2025 годы
- Коммерческие — размер и прогноз на 2020-2025 годы
Обзор географии рынка асинхронных двигателей (выручка, млрд долларов США, 2020-2025 годы)
- Азиатско-Тихоокеанский регион — размер и прогноз на 2020-2025 годы
- Северная Америка — размер и прогноз на 2020-2025 годы
- Европа — размер и прогноз на 2020-2025 годы
- MEA — размер и прогноз на 2020-2025 годы
- Южная Америка — размер и прогноз на 2020-2025 годы
Образцы отчетов Technavio бесплатны и содержат несколько разделов отчета, таких как размер рынка и прогноз, драйверы, проблемы, тенденции и многое другое.
Запросить бесплатный образец отчета
Соответствующие отчеты по промышленности включают:
Мировой рынок синхронных электродвигателей — Мировой рынок синхронных электродвигателей сегментирован по продукции (синхронные электродвигатели с возбуждением постоянного тока и синхронные электродвигатели без возбуждения). электродвигатели), конечный пользователь (нефть и газ, химическая и нефтехимическая промышленность, металлургия и горнодобывающая промышленность, производство электроэнергии и другие) и география (Азиатско-Тихоокеанский регион, Европа, Северная Америка, MEA и Южная Америка).
Скачать эксклюзивный бесплатный образец отчета
Мировой рынок сервомоторов и приводов — Мировой рынок серводвигателей и приводов сегментирован по продуктам (серводвигатели и приводы постоянного тока и серводвигатели и приводы переменного тока) и географическому положению (Азиатско-Тихоокеанский регион, Европа , Северная Америка, MEA и Южная Америка).
Скачать эксклюзивный бесплатный образец отчета
О Technavio
Technavio — ведущая глобальная исследовательская и консультационная компания в области технологий.Их исследования и анализ сосредоточены на тенденциях развивающихся рынков и предоставляют практические идеи, которые помогают предприятиям определять рыночные возможности и разрабатывать эффективные стратегии для оптимизации своих рыночных позиций.
Библиотека отчетов Technavio, насчитывающая более 500 специализированных аналитиков, включает более 17 000 отчетов и подсчетов, охватывающих 800 технологий из 50 стран. Их клиентская база состоит из предприятий любого размера, в том числе более 100 компаний из списка Fortune 500. Эта растущая клиентская база опирается на всеобъемлющий охват, обширные исследования и практическую информацию о рынке Technavio для выявления возможностей на существующих и потенциальных рынках и оценки их конкурентных позиций в условиях меняющихся рыночных сценариев.
Контакты
Technavio Research
Джесси Майда
Руководитель по СМИ и маркетингу
США: +1 844 364 1100
Великобритания: +44 203 893 3200
Электронная почта: [электронная почта защищена]
Веб-сайт: www.technavio. com /
Отчет: www.technavio.com/report/asynchronous-motor-market-industry-analysis
Отдел новостей: newsroom.technavio.com/news/top-drivers-for-asynchronous-motormarket
ИСТОЧНИК Technavio
Ссылки по теме
https: // www.technavio.com/report/asynchronous-motor-market-industry-analysis?utm_source=prnewswire&utm_medium=pressrelease&utm_campaign=T17-V1_004_wk27_report&utm_content=IRTNTR41614
и синхронные двигатели с постоянными магнитами
* Изображение предоставлено New Energy и Fuel.com
Авторы : Стив Бистак, региональный менеджер по продажам — NE, Департамент приводов переменного тока / HMI, Fuji Electric Corp. of America, и Sun Y.Ким (Шон), старший региональный менеджер, ACDR / HMI, Fuji Electric Corp of America
Большинство насосов и вентиляторов, работающих в промышленных и коммерческих целях, в настоящее время приводится в действие асинхронными двигателями переменного тока. «ACIM», что означает «асинхронный двигатель переменного тока», представляет собой асинхронный тип двигателя, который использует электрический ток для вращения ротора. Крутящий момент создается электрическим током в роторе. Электрический ток создается за счет электромагнитной индукции магнитного поля обмоток статора.В ACIM ротор всегда вращается с меньшей скоростью, чем магнитное поле. «PMSM», что означает «синхронный двигатель с постоянными магнитами», полагается на магниты, вращающие ротор, который вращается с той же скоростью, что и внутреннее вращающееся магнитное поле PMSM.
Есть несколько ключевых различий между асинхронными двигателями переменного тока и синхронными двигателями с постоянными магнитами.
Двигатели с постоянными магнитами ДОЛЖНЫ работать с приводом.
Асинхронные двигателипеременного тока могут использоваться без частотно-регулируемого привода для привода насоса или вентилятора, но часто устанавливаются с частотно-регулируемыми приводами (VFD) в насосных или вентиляционных системах, чтобы повысить эффективность системы.Синхронным двигателям с постоянными магнитами для работы требуется привод. PMSM не могут работать без привода. Частотно-регулируемый привод необходим для точного управления скоростью PMSM в соответствии с требованиями приложения по давлению, расходу, объему и т. Д. Некоторые новые частотно-регулируемые приводы уже поставляются с опциями управления двигателем с постоянными магнитами в качестве стандартной функции, что позволяет операторам управлять двигателем с постоянными магнитами. для более эффективного управления вентилятором и / или насосом.
Двигатели с постоянными магнитами обеспечивают значительное повышение эффективности по сравнению с асинхронными двигателями переменного тока.
Эффективность полной нагрузки двигателя с постоянными магнитами выше, чем у асинхронного двигателя переменного тока. На рисунке 1 ниже показаны диапазоны эффективности между двумя стандартами асинхронных двигателей переменного тока и известными опубликованными двигателями с постоянными магнитами.
Рисунок 1 . Эффективность двигателя с постоянными магнитами на мощности частотно-регулируемого привода. ACIM на синусоиде. Двигатели ACIM теряют 0,5–1,5 балла кпд при работе с частотно-регулируемым приводом.
Важно отметить, что частотно-регулируемые приводы не улучшают КПД двигателя; ЧРП помогают повысить эффективность системы в диапазонах рабочих скоростей, поскольку большинство систем не работают на максимальных скоростях все время.Добавление частотно-регулируемого привода помогает повысить эффективность вашей системы, поскольку он может замедлять двигатель и вентилятор или насос, а не поворачивать клапан для дросселирования насоса или закрывать заслонку, чтобы блокировать поток воздуха.
Взгляните на рисунок 2, на котором сравнивается 10-сильный синхронный двигатель с постоянным магнитом 1800 об / мин и двигатель NEMA Premium, работающий с нагрузкой с переменным крутящим моментом в диапазоне скоростей от 3 до 1. Вы можете видеть, что в обоих случаях эффективность обоих типов двигателей падает. КПД двигателя NEMA Premium падает с примерно 90% до примерно 72% при 600 об / мин, а ECPM падает примерно с 94% до 83%.Хотя работа системы влияет на эффективность оборудования, было доказано, что двигатели с постоянными магнитами демонстрируют более высокий КПД по сравнению с асинхронными двигателями переменного тока.
Рисунок 2 . Сравнение относительной эффективности двигателя PMSM и ACIM с диапазоном изменения 3: 1.
Преимущества и недостатки двигателей с постоянными магнитами
Хотя асинхронные двигатели переменного тока чаще встречаются в системах с моторным приводом, они часто больше по размеру и менее эффективны, чем двигатели с постоянными магнитами. Хотя решения с двигателями с постоянными магнитами обычно имеют более высокую начальную стоимость, они могут предлагать меньший размер для более компактных механических блоков и, что более важно, более высокую эффективность.
Двигатели с постоянными магнитами обычно дороже, чем асинхронные двигатели переменного тока, и, как известно, их труднее запускать, чем асинхронные двигатели переменного тока. Однако преимущества двигателей с постоянными магнитами включают в себя более высокий КПД (как обсуждалось выше), меньшие размеры (двигатели с постоянными магнитами могут составлять до одной трети от большинства размеров двигателей переменного тока, что значительно упрощает установку и обслуживание) и способность PMSM поддерживать полный крутящий момент на низких оборотах.
Тенденция меняется
Использование PMSM в сочетании с VFD не ново; однако инженеры-конструкторы и владельцы оборудования начинают устанавливать больше двигателей с постоянными магнитами для вентиляторов и насосов из-за их меньшего размера и более высокой эффективности.