+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Светодиодная контролька автоэлектрика

Давно известно, что контролька это необходимое устройство для автоэлектрика, оперативно посмотреть предохранители, по-быстрому, оценочно, проверить напряжение в цепях. Не всегда это удобно делать это мультиметром, да и компактные размеры тоже большой плюс. Если интересно как сделать аккуратную контрольку из подручных материалов, пожалуйста коротенький обзор
Началось все с предохранителей, сгорел тут у меня один через который подключен прикуриватель, а вкладыш где какие предохранители и за что отвечают где-то потерялся. Либо вытаскивай по одному и проверяй, либо мультиметром, ну крайне неудобно. Пред я конечно нашел и поменял, но задумался над изготовлением контрольки, из говна и палок, как мы любим ))

Итак, что нужно:
1. Кусок провода, лучше силиконового, он остаются мягким на морозе.
2. крокодил
3. 2 светодиода
4. резистор ( из расчета тока через светодиоды ) на 470 ом
5. шариковая ручка прозрачная с колпачком
6. щупы игольчатые от мультиметра
7. Один разъем банан.

Ну все что было под рукой.
Спаиваю два светодиода и резистор последовательно для ограничения тока


получается так


дальше, отрезаю половинку ручки, припаиваю плюс диодов к щупу, припаиваем крокодил к проводу, провод к резистору. Запихиваем все это в ручку и закрываем колпачком.

Приклеил колпачок суперклеем и затянул в термоусадку

проверяю, работает

Чтобы провод не болтался и не путался закрепляем велкролентой, а на острый щуп надеваю силиконовый колпачек

Вот такая конструкция даже не выходного дня, а выходного часа из того что было под рукой, теперь живет у меня в бардачке хлеба не просит, а друзьям уже помог пару раз. Конечно в качестве силовой контрольки не подойдет, ну лампочку припаяю как-нибудь ))
Спасибо за внимание, всем хорошего настроения и исправных автомобилей.

Схема контрольки на светодиодах -собираем своими руками

схема контрольки для авто на светодиодах

Контролька в автомобиле — незаменимый инструмент для автолюбителя, особенно, если необходимо оперативно и правильно определить необходимый провод. Схема контрольки на светодиодах, заключает в себе один принцип, который рассмотрим чуть ниже, и имеет только разнообразные модификации

Наиболее Распространенная Схема контрольки на светодиодах


схема контрольки на светодиодах

Схема контрольки на светодиодах самая наипростейшая. Это даже схемой назвать нельзя — игрушка для детей.

Используем два сетодиода разноцветных — зеленый и красный. Красный — плюс, зеленый — минус. Резистор можно поставить до 5 кОм — защита от того, чтобы не сжечь светодиоды.

Имеется кнопка, при нажатии которой можно с точностью определять слаботочный это провод (т.е. можно ли к нему подключаться или нет).

При обычном прикосновении щупа к плюсовому проводу — загорится красный светодиод. Если плюс «сильный», то будет гореть еще и лампочка. И в том и в другом случае — необходимо нажимать кнопку.

Если горит зеленый светодиод — то мы нашли минус.

Схема контрольки на светодиодах с аккумулятором на 3,7 В с пищалкой


схема контрольки на светодиодах с батареей 3,7 В

Особенности данной схемы:

  1. Светодиоды впаиваются параллельно и встречно.
  2. Данная схема контрольки на светодиодах с пищалкой. Удобная функция.
  3. Выключатель нужен для производства зарядки аккумуляторов. Для этого надо подключить как щуп, так и крокодил к аккумулятору и заряд пойдет. Также выключатель предотвращает саморазряд аккумуляторов, в случае самопроизвольного соприкосновения щупа и крокодила.
  4. Зуммер сигнализирует на цепь
  5.  Лампочка и еще один выключатель создают нагрузку на искомом проводе. Мы можем легко найти силовой «плюс», по аналогии с первой схемой контрольки, которую мы рассматривали выше.

Схема контрольки на светодиодах с автомобильным аккумулятором


Схема контрольки на светодиодах на 12 В

Данная схема контрольки на светодиодах тоже простенькая и ею удобно пользоваться в подкапотном пространстве, т.к. питание данной контрольки происходит от автомобильного аккумулятора.

Для сборки нам потребуются: 2 светодиода, подключенные последовательно и в разных направлениях, 2 стабилитрона на 8В и провода (крокодилы), которые мы подключаем к аккумулятору. Ну и сам щуп. Все это можно уместить в обычной отвертке.

При попадании щупа на провод с плюсом — загорается красный диод. Соединяя щуп с минусом — горит зеленый светодиод. Все очень просто.

Видео на тему схема контрольки на светодиодах


И наконец, подведем итоги: все схемы контрольки на светодиодах имеют похожий вид, просто в зависимости от «хотелок» автолюбителя мы можем предвносить в конструкцию разные изменения, либо выкидывать из схемы часть компонентов.

Сейчас можете посмотреть видео по рассматриваемой нами теме:

Самая крутая контролька автоэлектрика своими руками!

Сайт автоэлектрика. Практика ремонта, электросхемы и т.д.

Меню Перейти к содержимому
  • Главная
  • Вопросы / ответы
  • Задать вопрос
  • Своими руками
    • 3D model 3296W STP, STEP
    • 3D model arduino nano STEP
    • 3D model biper EMX STEP
    • 3D model DIP-8 and DIP16 STEP
    • 3D model OLED display 128×64 adafruit STEP
    • 3D model автомобильного реле
    • 3D модель SMD 1206 ,STL, STEP, Компас3D
    • 3D модель диска
    • 3D модель корпуса SO-8
    • 3d модель сервопривода SG90 форматы STEP, STL, MD3
    • 3д модель вилки STP, STL, компас 3д, bip
    • 3д модель корпуса брелка своими руками
    • LCR-T4 Atmega 328 3D model step
    • Nissan note предохранитель прикуривателя
    • OLED 128*32 в формате STEP, STL, компас 3D
    • Prado 120 предохранитель сигнала
    • Renault Clio Symbol \Thalia размеры и давление в шинах
    • база дампов
    • Демонтаж
    • Диагностический разъём на киа пиканто 2018-2019
    • Диагностический разъем Ниссан жук
    • Замена ламп климата королла 150
    • Замена лампы подсветки клавиши обогрева заднего стекла
    • Замена подсветки клавиш стеклоподъёмника Альмера
    • Замена приводного ремня Хонда Аккорд
    • Замена свечей Хонда Аккорд
    • Изготовление оригинального разборного мангала из металла своими руками без сварки
    • Как заменить батарейку в ключе киа пиканто 2018-2019
    • Как сбросить сервис на Ниссан Тиида
    • Кашкай предохранитель прикуривателя
    • Не работает задний дворник Каптива
    • Ниссан Марч К12 предохранители
    • Ниссан мурано z51 схема приводных ремней
    • Паджеро спорт предохранитель прикуривателя
    • Подмотка спидометра своими руками
    • Прадо 150 снять личинку замка
    • Предохранители Mazda Capella
    • Предохранители Тойота белта
    • Предохранитель и реле бензонасоса Ниссан алмера 16
    • Предохранитель и схема звукового сигнала Ниссан мурано z51
    • Предохранитель прикуривателя киа пиканто 2018-2019
    • Предохранитель прикуривателя Ниссан Альмера 16
    • Предохранитель сигнала ниссан альмера 16
    • Проверка датчика блокировки компрессора кондиционера rx330
    • Проверка указателя уровня топлива Хонда Аирвэйв, Фит
    • Распиновка BCM Nissan Note, Micra K12
    • Реле и предохранитель бензонасоса киа пиканто 2018
    • Реле и предохранитель кондиционера киа пиканто 2018
    • Реле и предохранитель сигнала киа пиканто 2018
    • Самая крутая контролька автоэлектрика своими руками!
    • Создание модели вентилятора в компас 3д
    • Схема драйвера форсунок Прадо 120 1KD-FTV
    • Схема стартера и генератора Рено Меган 2
    • Тойота Опа замена подсветки климата
    • Установка и подключение сидений от лексус на логан
    • Фото платы BCM Nissan Note, Micra, March K12
    • Комфортные поворотники
    • Как подключить видеорегистратор на короллу 120 левый руль
  • статьи
    • #9765 (без названия)
    • 17901FP схема подключения, распиновка
    • 3S-FE отсечка на 3000 об
    • 3д модель крышки пивной бутылки
    • 3д модель отвёртки в форматах STEP, STL, компас 3д
    • 4 основные причины проблем с отопителем
    • 5002A схема подключения, распиновка
    • ASX генератор
    • B1066, B1071 PASSENGER AIR BAG MODULE Nissan
    • B1067, B1072 PASSENGER AIR BAG MODULE Nissan
    • B1068, B1073 PASSENGER AIR BAG MODULE Nissan
    • B1074, B1075, B1076, B1077, B1078, B1079 DIAGNOSIS SENSOR UNIT NISSAN
    • B1080, B1096 DRIVER AIR BAG MODULE NISSAN
    • B1084, B1086 SEAT BELT PRE-TENSIONER NISSAN
    • B1200 Mitsubishi
    • B1794 SRS trouble code
    • BMW X5 E70 предохранитель вебасто
    • C1205, C1210, U1000 Nissan 4WD
    • C120A TOYOTA PRADO 150
    • C1244 Toyota
    • C1330 Toyota Camry
    • C1606 EPS MOTOR Nissan
    • Cadillac Escalade не работает парктроник ошибка B0959-06
    • CAN шина Pajero Sport — ID датчика положения руля
    • card not detected renault megane 2
    • Code P0132 HO2S1 Nissan Dualis, Qashqai HR16DE
    • Code P0133 HO2S1 Nissan Dualis, Qashqai HR16DE
    • Code P0134 HO2S1 Nissan Dualis, Qashqai HR16DE
    • Code P0138 HO2S2 Nissan Dualis, Qashqai HR16DE
    • Code P1579 and P1542 Volkswagen Golf plus
    • Code P2138 APP SENSOR Nissan Dualis, Qashqai HR16DE
    • dtc lexus
    • Fiat 500 замена ламп
    • Fiat Punto замена ламп
    • Freander 2 ошибки блока управления фарами
    • Freander 2 ошибки панели приборов
    • Freelander 2 схема управления двигателем ECM
    • Frelander 2 code audio
    • Frelander 2 коды ошибок блока прицепа
    • Frelander 2 ошибки АКПП
    • Frelander 2 ошибки вебасто
    • Frelander 2 ошибки датчика положения руля
    • Frelander 2 ошибки заднего дифференциала
    • Frelander 2 ошибки пактроника
    • Frelander 2 ошибки панели управления
    • Frelander 2 ошибки системы запирания дверей, стеклоподъёмников, зеркал
    • Frelander 2 ошибки системы навигации
    • Frelander 2 ошибки системы подушек безопасности
    • Frelander 2 ошибки электропривода сиденья водителя
    • Frelander 2 распиновка датчиков коленвала и распредвала
    • Frelander 2 распиновка дросселя дизель
    • Frelander 2 расположение табличек идентификации — VIN, номер двигателя и т.д.
    • Frelander 2 свечи накала
    • Frelander 2 схема АКПП
    • Frelander 2 схема системы контроля давления шин
    • Fuse and headlight washer relay on Hyundai Santa Fe 2013-2016
    • Fuse and relay heating windshield Hyundai Santa Fe 2013
    • Fuse and relay wipers Hyundai Santa Fe 2013-2016
    • Fuse of the fuel pump and ignition coils Hyundai Santa Fe 2013-2016
    • FX35/FX45 масса катушек зажигания
    • FX35/FX45 номер двигателя и ВИН номер
    • FX35/FX45 предохранитель и схема вентилятора отопителя
    • FX35/FX45 расположение разъёмов и жгутов проводов
    • FX35/FX45 схема IPDM
    • FX35/FX45 схема авто регулировки сидений, рулевой колонки и зеркал
    • FX35/FX45 схема подогрева сидений
    • FX35/FX45 схема системы AWD
    • FX50 порядок расположения цилиндров
    • Honda Accord 7 схема круиз контроля
    • Honda Airwave предохранитель габаритов и прикуривателя
    • Honda CR-V адаптация дроссельной заслонки.
    • Honda CRV 2007-2011 снять бензонасос
    • Honda CRV глохнет.
    • Honda CRV трещит замок зажигания
    • Honda Stream предохранитель прикуривателя
    • Hyundai Getz схема и распиновка генератора
    • Hyundai Santa Fe 2013-2016 сақтандырғыш және реле тазалағышы
    • Hyundai Santa Fe, не работают правые габариты и замки
    • Hyundai Tucson горит лампа зарядки.
    • Hyundai Tucson проблемы с сигнализацией
    • Hyunday i10 снять магнитолу
    • Infiniti FX35/45 схема и распиновка MAF сенсора
    • Infiniti QX56 эмулятор катализатора
    • JE331BA8304A фото платы
    • Lamborghini hand made!
    • Lexus GX460 электросхемы
    • Lexus GX470 мигает чек, ошибки P0307, P0420, P0430
    • Lexus GX470 предохранители прикуривателя и розетки 12В
    • Lexus LX470 2006 ошибки P0420/P0430
    • Lexus LX470 низкая эффективность катализатора
    • Lexus NX 200 разъём диагностики
    • Lexus RX330 ошибка В1150 — OCCUPANT CLASSIFICATION SYSTEM MALFUNCTION
    • Lexus RX330 ошибки P0010 / P0020
    • Lexus rx330 ошибки P0420/P0430
    • Lexus rx330 предохранитель прикуривателя
    • Lexus RX350 ошибка P0420, устранение
    • Location relay and fuse horn in Nissan note
    • LR Frelander 2 ошибки ABS
    • LR Frelander 2 ошибки аудиосистемы
    • LX570 / TLC200 ошибки P0230, P0171, P0174
    • M59557FP микросхема
    • Mazda atenza ошибка P0171
    • Mazda CX7 ошибка B1884
    • Mitsubishi ASX предохранители
    • Mitsubishi ASX реле и предохранитель сигнала
    • Mitsubishi ASX схема обогрева заднего стекла
    • Mitsubishi ASX схема подогрева зеркал
    • Mitsubishi ASX схема подогрева сидений
    • Mitsubishi ASX схема предохранителей
    • Mitsubishi ASX схема электропривода сиденья
    • Mitsubishi Colt генератор
    • Mitsubishi Colt предохранители.
    • Mitsubishi Colt схема блока SRS
    • Mitsubishi Colt схема иммобилайзера
    • Mitsubishi Colt схема ламп заднего хода
    • Mitsubishi Colt схема люка
    • Mitsubishi Colt схема магнитолы
    • Mitsubishi Colt схема обогрева заднего стекла
    • Mitsubishi Colt схема прикуривателя
    • Mitsubishi Colt схема регулировки зеркал
    • Mitsubishi Colt схема сигнала
    • Mitsubishi Colt схема стоп сигналов
    • Mitsubishi Colt схема фар
    • Mitsubishi L200 не включаются свечи накала.
    • Mitsubishi Montero ошибка P0125
    • MMC ASX Wiring Diagram PDF
    • MMC Colt глохнет в движении, не заводится
    • MMC Colt не включается стартер
    • MMC Colt реле бензонасоса
    • MMC Colt схема стеклоочистителя и омывателя
    • MMC L200 2006 — 20015 IV поколения электросхемы
    • MMC L200 2015, 2016, 2017,2018, 2019 электросхемы, 5 поколение
    • MMC L200 схема распределителя зажигания, трамблёра
    • M

«Контролька», или простейший тестер автомобилиста своими руками

Здравствуйте, уважаемые читатели и самоделкины!
Эта статья будет интересна многим автомобилистам. Иногда в автомобиле необходимо проверить целостность предохранителей, проводов, наличие напряжения. Конечно, для таких целей есть и обычные измерительные приборы, но они питаются от батареек, которые садятся в самый неподходящий момент, да и экран на морозе не всегда показывает.

В этой статье, автор YouTube канала «George Kosilov» расскажет Вам, как сделать простейший измерительный прибор автомобилиста. Это так называемая «контролька» или контрольная лампа, изготовленная в удобном небольшом корпусе. Изготовить такую самоделку можно за считанные минуты, используя минимум инструмента.

Материалы.
— Шариковая ручка с прозрачным корпусом
— Гвоздь
— Индикаторная лампа на 12 В
— Акустический провод
— Небольшой крокодил
— Секундный клей
— Паяльная кислота, припой
— Сода.

Инструменты, использованные автором.
— Паяльник
— Кусачки, плоскогубцы
— Шуруповерт.

Процесс изготовления.
Автор разбирает шариковую ручку, и подбирает гвоздик подходящего размера. Конец гвоздя необходимо заточить, он будет играть роль щупа.


Затем автор наматывает на основание гвоздика зачищенный край отрезка телефонного провода.
Смазывает место пайки паяльной кислотой, пропаивает место соединения.

В качестве индикатора будет использоваться лампочка панели приборов, либо любая другая небольшой мощности с напряжением питания 12 Вольт. Припаивает один из выводов лампочки к проводу.

Затем собирает головку индикатора, устанавливая в нее гвоздик. Для того, чтобы его зафиксировать, автор применяет обычную соду. Засыпает ее в носик, и пропитывает супер клеем.

Пока клей сохнет, можно подготовить вторую часть ручки. Двухжильный акустический кабель по мягкости отлично подходит для такого прибора, нужна одна жила.


Сверлит отверстие для провода в колпачке, можно прожечь раскаленным гвоздем.

Припаивает второй контакт лампочки к тонкому проводу, обкусывает излишки и соединяет с акустическим кабелем.


Собирает индикатор, протягивая через колпачок провод, а лампочка должна остаться в прозрачной части корпуса ручки.

Вклеивает колпачок в основание ручки при помощи секундного клея.

Затем зачищает край кабеля, и зажимает его плоскогубцами в небольшом «крокодиле». Важно не забыть одеть на кабель кембрик или кусочек термоусадочной трубки.

Пропаивает соединение, надевает кембрик. Устройство готово!


Теперь можно прицепить крокодил на массу автомобиля, и проверить предохранители.

А вот так иногда выглядят похожие изделия.

В общем, вот такой прибор получился у автора, сферу его применения объяснять наверно нет смысла.


Спасибо автору за простую, но полезную и надежную самоделку!

Всем удачи, и ни гвоздя, ни жезла!


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Контроллеры лазерных диодов (ВСЕ ВЕДУЩИЕ БРЕНДЫ)

Определение контроллера лазерного диода:

Контроллер лазерного диода состоит из источника постоянного тока в сочетании с контроллером температуры TEC. Их функция — обеспечивать постоянный стабильный ток полупроводникового лазера и контролировать температуру лазера. Контроллеры лазерных диодов обеспечивают обе функции. Они включают в себя встроенный малошумящий источник тока для смещения лазера, а также встроенный биполярный источник тока для охладителя Пельтье, который регулирует температуру лазера.В то время как основная задача контроллера заключается в смещении анода и катода, контроллер качества следует выбирать в соответствии с предполагаемым применением лазера, требуемым током смещения, требуемой мощностью ТЕС и форм-фактором. Кроме того, с точки зрения семантики, стоит отметить, что некоторые люди используют однословную версию и называют эти продукты LaserDiodeControllers.

Источник тока:

Источник тока в контроллере обычно называют драйвером лазерного диода.Этот источник тока отличается от стандартного настольного лабораторного источника тока. Схема основана на идеальном источнике тока, что означает, что он не зависит от напряжения. Лазерный диод будет выдавать столько напряжения, сколько требуется в зависимости от текущей уставки. Это исходное напряжение называется напряжением соответствия в спецификации. Это противоположно большинству настольных источников питания, в которых ток исходит от заданного значения напряжения. Источник тока обычно может работать в режиме постоянного тока CW и в режиме обратной связи с постоянной мощностью.Режим обратной связи по мощности — это контур управления, основанный на обратной связи от контрольного фотодиода в корпусе диодного лазера. Основные характеристики источника тока обычно включают низкий уровень шума, стабильный выходной ток во времени и защиту лазерного диода. Защита обычно представляет собой ограничение по току, медленное нарастание тока до желаемой уставки и защиту от скачков напряжения переменного тока или отключения электроэнергии в лаборатории.

Контроллер температуры:

Контроллер температуры лазерного диода обычно называют контроллером TEC (термоэлектрический охладитель).Это биполярный источник тока, который обычно основан на конструкции Н-мостовой схемы. Устройство, которое фактически контролирует температуру лазерного диода, известно как элемент Пельтье. Его обычно называют охладителем Пельтье, поскольку он чаще всего охлаждает лазерный диод. Охладитель Пельтье — это твердотельный активный компонент, который передает тепло от одной стороны элемента Пельтье к другой стороне. Это происходит в зависимости от направления тока, прикладываемого к элементу. Следовательно, мост H позволяет току переключаться между двумя сторонами Пельтье.Это позволяет Пельтье охлаждаться или нагреваться, чтобы поддерживать работу лазера на желаемой уставке. Ток нагрева и охлаждения, обеспечиваемый контроллером, основан на измерении температуры, поступающей от устройства обратной связи по температуре, такого как термистор. LaserDiodeController обычно предлагает ограничение для измерения высокой температуры и отключает ток смещения, если достигается предел высокой температуры.

Приобрести популярные бренды контроллеров лазерных диодов:

,

Основы разработки и основы разработки драйвера лазерного диода

Введение:

Если вы собираетесь начать работу с лазерными диодами, вы, скорее всего, знаете, что есть некоторые очень специфические нюансы для безопасного управления ими и контроля их температуры. Для них требуется специальный набор специально разработанных электронных элементов управления. Этот набор элементов управления объединен для создания так называемого драйвера лазерного диода или источника тока лазерного диода.По сути, эти элементы определяют, как лазер включается и приводится в действие для получения определенной длины волны и выходной мощности. И как это сделать, не повредив лазерный диод. Подробнее »

БЫСТРАЯ НАВИГАЦИЯ:

МАГАЗИН ЛАЗЕРНЫХ ДИОДОВ:

Shop Popular Laser Diode Drivers

Купить все драйверы лазерных диодов »

Shop Direct All High Power Laser Diode Drives

Shop High Power (> 5 Amp) Драйверы лазерных диодов »

Shop OEM Laser Diode Drivers

Магазин Печатные платы и OEM-драйверы лазерных диодов »


Краткий обзор лазерных диодов:

Чтобы понять, что такое драйверы лазерных диодов и почему они важны, важно понимать некоторые ключевые особенности устройств с лазерными диодами.Эти устройства требуют особого внимания к тому, как они включаются, работают и выключаются. В сети много подробной информации о лазерных диодах. Короче говоря, лазерный диод — это полупроводниковый прибор, сделанный из двух разных материалов. Один из P-материала, другой из N-материала, зажатый вместе. Прямое электрическое смещение через P-N-переход заставляет соответствующие дырки и электроны с противоположных сторон перехода объединяться, испуская фотон в процессе каждой комбинации.Поверхности зоны стыка (полости) имеют зеркальную отделку. Те, кто знаком с теорией лазера, знают, что происходит, когда фотоны прыгают по полированной полости. Электрическое смещение для перехода должно быть стабильным, малошумным, переходным источником свободного тока.

Laser Diode Construction Image

В этой короткой статье содержится основная информация о драйверах лазерных диодов, также называемых источниками постоянного тока, и почему они важны для управления и защиты этих устройств. Он предоставляет общий обзор того, как работают драйверы лазерных диодов, и многие типы драйверов лазерных диодов, доступных в отрасли.

Что такое драйвер лазерного диода? А что такое источник постоянного тока?

Драйвер — это источник постоянного тока. Вот полезное короткое видео на YouTube, объясняющее источники постоянного тока и постоянного напряжения, а также почему источники тока предпочтительнее для управления лазерными диодами. Если вас оскорбила его простота… приносим свои извинения.

Понимание коэффициентов настройки и эффективности:

Laser Diode Coefficients and Efficiency

Лазерные диоды — это токочувствительные полупроводники.Изменение управляющего тока равно изменению длины волны устройства и выходной мощности. Любая нестабильность управляющего тока (шум, дрейф, индуцированные переходные процессы) повлияет на рабочие характеристики лазерного диода. В частности, они повлияют на выходную мощность и длину волны. Кроме того, на температуру диодного перехода напрямую влияет ток. Текущая нестабильность источника вызовет колебания температуры перехода; выходные характеристики (опять же мощность и длина волны) изменятся.Для того же диода, указанного выше:

Laser Diode Temperature Tuning

Нестабильность управляющего тока напрямую приводит к колебаниям температуры перехода, хотя временная шкала несколько медленнее, чем прямое влияние изменений тока.

Понимание динамического импеданса и прямого напряжения вашего драйвера:

Прямое напряжение на лазерном диоде непостоянно. Он меняется, особенно после пороговой точки. Пороговая точка — это точка, в которой выходная оптическая мощность лазера линейна с входным током возбуждения, мВт / мА.

LIV Curve of Laser Diode

Для тех из вас, кто все еще помнит вычисления, первая производная кривой V-I показывает график динамического сопротивления диода, оно также не является постоянным. Таким образом, вся нагрузочная характеристика лазерного диода непостоянна. Напряжение и сопротивление изменяются в зависимости от тока (и температуры). Итак, как мы узнали из видео об источниках постоянного тока, хороший, стабильный, малошумящий источник тока будет поддерживать постоянный ток независимо от нагрузки, подключенной к его выходу!

Dynamic Resistance of a Laser Diode

Почему не следует использовать настольный источник напряжения:

Источники напряжения (настольные источники питания) увеличивают напряжение при включении, но ток не контролируется.Это не подходит для диодов, требующих постоянного регулируемого тока. Изменение сопротивления источника постоянного напряжения приводит к изменению тока. Если приложение требует постоянной мощности лазера и стабильной длины волны, источник напряжения не будет работать и может подвергнуть лазер риску теплового удара и / или переходных процессов из-за быстрого изменения тока.

Какие основные типы драйверов лазерных диодов?

На самом общем уровне существует несколько классов или «типов» лазерных драйверов, которые вы обычно слышите.Это: постоянного тока (CW), импульсные (включая QCW), маломощные и мощные драйверы . Постоянный ток — это то, что он заявляет, постоянный выходной уровень во времени, скажем 30 мА, теоретически навсегда, если это необходимо. Импульсные драйверы лазерных диодов представляют собой интересную разновидность, поскольку выходная мощность является функцией времени, а коэффициент заполнения — лучший способ ее описать. Рабочий цикл — это время, в течение которого источник тока включен — высокий выходной ток, деленный на общее время импульса (время включения и выключения). Небольшое замечание о временах отключения в источниках тока: они никогда не отключены по-настоящему (то есть нулевой ток), но часто находятся на достаточно низком уровне выходного сигнала, при котором выход лазерного диода минимален — значительно ниже порогового значения.В следующем разделе дано общее определение версий этих типов драйверов с низким и высоким энергопотреблением.

Duty Cycle

Какие стандартные коммерчески доступные уровни мощности доступны для драйверов?

Драйверы «малой мощности» и «высокой мощности» — это общепринятая отраслевая терминология, которая описывает величину выходной мощности нагрузки. Однако это немного неправильное название: выходной уровень не выражается в единицах мощности, то есть в ваттах, он выражается в единицах мкА, мА и амперах. В мире мощных импульсных источников тока вы можете увидеть выходной импульс, выраженный в Джоулях, то есть энергии, то есть 1 Вт = 1 Дж / с.В технических паспортах обычно также указывается величина выходного тока и напряжение, вам просто нужно их найти. Драйвер с низким энергопотреблением примерно определяется как от 1 мА до 5 А. Драйвер мощного лазерного диода составляет 5 ампер и до 100 ампер в режиме CW. Это драйверы уровня кВт, доступные в импульсном и QCW-режиме. Это ни в коем случае не стандарты, а просто обобщение, основанное на опыте автора в мире контроллеров лазерных диодов.

Краткий обзор схемы лазерного драйвера:

Следующий шаг — схематическое представление о том, как работает «типичный» источник тока на лазерном диоде.У Wavelength Electronics есть отличное видео, описывающее их текущие конструкции источников. Это хорошая информация в виде блок-схемы, которую легко понять.

Информация, представленная в этом видео, применима ко всем имеющимся в продаже источникам тока лазерных диодов, различия в функциях и характеристиках будут определять производительность и, конечно же, цену.

Example of Laser Diode Circuit

Конечно, вы можете гораздо глубже понять источники лазерного тока.Есть уровень, на котором вы, возможно, захотите построить свой собственный, здесь вам нужно будет разбираться в электрических схемах и компонентах. Быстрый поиск источников тока лазерных диодов на YouTube приведет к созданию множества собственных источников тока. Для тех из вас, у кого особые требования, не удовлетворяемые коммерческими производителями, есть хорошая статья под названием «Высокоустойчивый малошумящий драйвер лазерного тока от BYU». Он очень подробный, содержит отличные схемы для тех, кто разбирается в электрическом проектировании с математически обоснованными принципами проектирования, а производительность подкрепляется данными и графиками.

Итак, с учетом сказанного, следующий уровень — покупка коммерчески доступного источника тока.

Каковы типичные диапазоны цен на коммерчески доступные драйверы лазерных диодов?

Вот краткий обзор основных стилей корпусов и ценовых диапазонов имеющихся в продаже источников постоянного и импульсного тока.

»Источники тока уровня ИС для монтажа на печатной плате: Это интегральная схема (ИС), припаянная непосредственно к печатной плате (PCB).Обычно это источники тока меньшей мощности и базового тока от 10 мА до 500 мА. Вы найдете их в своем DVD-плеере, сканерах штрих-кода, указателях и т. Д. Диапазон цен: от 10 до 100 долларов. Image of Chip Level Laser Diode Driver

»Драйверы OEM-модулей: Это источники тока, встроенные в небольшой корпус или радиатор; подключения к модулю драйвера требуются для питания переменного или постоянного тока и источников логического управления, а также для подключения к нагрузке. Они доступны в широком диапазоне диапазонов выходного тока, от 50 мА до 100 А.Ценовой диапазон: от 250 до 2500 долларов.

Image of Module Level Laser Diode Driver

»Настольные драйверы: Это автономные источники тока, которые размещены в корпусе с передней панелью для облегчения управления. Единственные подключения к нему — это вход переменного тока и выход для нагрузки лазерного диода. Они могут быть многофункциональными (управление микропроцессором, низкий уровень шума, высокая стабильность, многодиапазонный) или базовыми (аналоговое управление, одиночный диапазон, включение / выключение), малой или высокой мощностью. Они доступны в импульсном и непрерывном режимах от 100 мА до 100 А или более.Вы найдете их во многих оптических лабораториях, чистых комнатах и ​​т. Д. Диапазон цен: от 1000 до 10 000 долларов

Image of Benchtop Laser Diode Driver

Какая функция наиболее важна? Защита вашего лазерного диода:

Защита лазерного диода, о которой часто забывают, забывают или просто игнорируют. Что ж, вы можете рискнуть и просто использовать любой источник тока или напряжения, но вы рискуете либо повредить очень дорогой лазерный диод в разработке, либо рискуете потерять часы лабораторной работы и устранения неполадок из-за перегоревшего лазера.Диодные лазеры имеют низкую стойкость к тепловому удару. Стратегии защиты, применяемые в большинстве имеющихся в продаже источников тока лазерных диодов, включают способ включения и выключения источника тока (схемы медленного пуска), защиту от сверхтоков (ограничения тока), защиту от переходных процессов, прокладку кабелей и т. Д. Существует отличное примечание по применению от Newport Corp. о защите: защита лазерного диода.

Рассмотрение всех уровней защиты должно быть важным фактором не только в коммерческих источниках тока лазерных диодов, но и в реализации и соблюдении в лаборатории или системе разработки продукции.

И не забывайте также о контроле температуры … многие критические параметры лазерного диода, включая длину волны, пороговый ток и эффективность, сильно зависят от температуры перехода. Таким образом, для многих приложений требуется очень стабильный температурный контроль.

Какие наиболее важные характеристики следует учитывать при выборе драйвера?

Этот ответ наверняка зависит от области применения диода. Например, лазерная указка не имеет таких строгих требований к контролю тока, как диод, используемый в спектроскопических приложениях, требующих очень узкой ширины линии.В большинстве исследовательских приложений, где вы собираетесь потратить от сотен до нескольких тысяч долларов на источник тока лазерного диода, наиболее важными характеристиками являются: защита от скачков и переходных процессов по току и напряжению, плотность шума тока и долговременная стабильность. Безусловно, есть много других важных функций, но вам нужен источник постоянного тока, прежде всего, для оптимизации и защиты лазерного диода для конкретного применения.

Laser Diode Driver Noise Drift

Еще одно замечание об атрибутах, хотя и не упомянутых в первой тройке, текущий диапазон, конечно, важен.Но помимо очевидной причины, вот почему: если вы покупаете источник тока с диапазоном 2 А, а диоду требуется только 50 мА, обратите внимание на разрешение источника тока, это функция от общего выходного диапазона. Точность вывода также зависит от диапазона, если это важно для приложения. Обратите особое внимание на спецификации производителя для этих спецификаций. Поищите технические примечания или спросите производителя, как они определяются, измеряются и проверяются.

Кто делает драйверы для лазерных диодов?

Теперь у вас есть основа, которая поможет вам начать поиск конкретного драйвера источника тока для вашей лаборатории.Вы можете посетить наш указатель драйверов для лазерных диодов, чтобы сравнить цены и технические характеристики многих ведущих мировых производителей. Эти компании предлагают широкий спектр маломощных, высокомощных, непрерывных и импульсных драйверов лазерных диодов, богатых функциями и характеристиками.

,

Введение в диоды

  • Раздел 2.0 Введение в диоды.
  • • Обозначения диодных схем.
  • • Ток через диоды.
  • • Конструкция диодов.
  • • PN-переход.
  • • Прямое и обратное смещение.
  • • Характеристики диодов.
  • Раздел 2.1 Кремниевые выпрямители.
  • • Маркировка полярности.
  • • Параметры выпрямителя.
  • Раздел 2.2 Диоды Шоттки.
  • • Конструкция диодов Шоттки.
  • • Потенциал соединения Шоттки.
  • • Высокоскоростное переключение.
  • • Выпрямители мощности Шоттки.
  • • Ограничения по току Шоттки.
  • • Защита от перенапряжения.
  • Раздел 2.3 Малосигнальные диоды.
  • • Конструкция малосигнального диода.
  • • Формирование волн.
  • • Вырезание.
  • • Зажим / восстановление постоянного тока.
  • • ВЧ приложения.
  • • Защитные диоды.
  • Раздел 2.4 Стабилитроны.
  • • Конструкция стабилитрона.
  • • Обозначения схем Зенера.
  • • Эффект Зенера.
  • • Эффект лавины.
  • • Практические стабилитроны.
  • Раздел 2.5. Светодиоды.
  • • Работа светодиода.
  • • Световое излучение.
  • • Цвета светодиодов.
  • • Расчеты цепей светодиодов.
  • • Светодиодные матрицы.
  • • Тестирование светодиодов.
  • Раздел 2.6 Лазерные диоды.
  • • Лазерный свет.
  • • Основы атома.
  • • Конструкция лазерного диода.
  • • Лазерная накачка.
  • • Контроль лазерных диодов.
  • • Лазерные модули.
  • • Лазерная оптика.
  • • Классы лазерных диодов.
  • Раздел 2.7. Фотодиоды.
  • • Основы фотодиодов.
  • • Приложения.
  • • Конструкция лазерного диода.
  • • Лазерная накачка.
  • • Контроль лазерных диодов.
  • • Лазерные модули.
  • • Лазерная оптика.
  • • Классы лазерных диодов.
  • Раздел 2.8 Тестирование диодов.
  • • Неисправности диодов.
  • • Проверка диодов с помощью омметра.
  • • Определение соединений диодов.
  • • Выявление неисправных диодов.
  • Раздел 2.9 Тест диодов.
  • • Проверьте свои знания о диодах.

Рисунок 2.0,1. Диоды

Введение

Диоды — одни из самых простых, но наиболее полезных из всех полупроводниковых устройств. Многие типы диодов используются в широком диапазоне приложений. Выпрямительные диоды — жизненно важный компонент в источниках питания, где они используются для преобразования сетевого напряжения переменного тока в постоянное. Стабилитроны используются для стабилизации напряжения, предотвращения нежелательных изменений в подаче постоянного тока в цепи и для подачи точных опорных напряжений для многих схем. Диоды также могут использоваться для предотвращения катастрофического повреждения оборудования с батарейным питанием, когда батареи подключены с неправильной полярностью.

Сигнальные диоды также широко используются при обработке сигналов в электронном оборудовании; они используются для получения аудио- и видеосигналов из передаваемых радиочастотных сигналов (демодуляция), а также могут использоваться для формирования и изменения форм сигналов переменного тока (ограничение, ограничение и восстановление постоянного тока). Диоды также встроены во многие цифровые интегральные схемы, чтобы защитить их от опасных скачков напряжения.

Рис. 2.0.2 Обозначения диодных цепей

Светодиоды

излучают многоцветный свет в очень широком диапазоне оборудования от простых индикаторных ламп до огромных и сложных видеодисплеев.Фотодиоды также производят электрический ток из света.

Диоды изготавливаются из полупроводниковых материалов, в основном кремния, с различными соединениями (комбинациями более чем одного элемента) и металлами, добавляемыми в зависимости от функции диода. Ранние типы полупроводниковых диодов были сделаны из селена и германия, но эти типы диодов были почти полностью заменены более современными конструкциями кремния.

На рис. 2.0.1 показаны следующие диоды с общим проводом на концах:

1.Три силовых выпрямителя (мостовой выпрямитель для использования с сетевым (линейным) напряжением и два выпрямительных диода сетевого напряжения).

2. Точечный диод (в стеклянной капсуле) и диод Шоттки.

3. Кремниевый малосигнальный диод.

4. Стабилитроны в корпусе из стекла или черной смолы.

5. Подборка светодиодов. Против часовой стрелки от красного: желтый и зеленый светодиоды, инфракрасный фотодиод, 5-миллиметровый теплый белый светодиод и синий светодиод высокой яркости 10 мм.

Обозначения диодных цепей

Диод — это односторонний провод. Он имеет два вывода: анод или положительный вывод и катод или отрицательный вывод. В идеале диод будет пропускать ток, когда его анод сделан более положительным, чем его катод, но предотвращать протекание тока, когда его анод более отрицательный, чем его катод. На схемах, показанных на рис. 2.0.2, катод показан в виде стержня, а анод — в виде треугольника. На некоторых принципиальных схемах анод диода может также обозначаться буквой «а», а катод — буквой «к».

В каком направлении течет диодный ток?

Обратите внимание на рис. 2.0.2, что обычный ток течет от положительной (анодной) клеммы к отрицательной (катодной) клемме, хотя движение электронов (электронный поток) происходит в противоположном направлении, от катода к аноду.

Конструкция кремниевого диода

Рис. 2.0.3 Кремниевый планарный диод

Современные кремниевые диоды обычно производятся с использованием одной из различных версий планарного процесса, который также используется для изготовления транзисторов и интегральных схем.Многослойная конструкция, используемая в методах Silicon Planar, дает ряд преимуществ, таких как предсказуемые характеристики и надежность, а также является преимуществом для массового производства.

Упрощенный планарный кремниевый диод показан на рис. 2.0.3. Использование этого процесса для кремниевых диодов позволяет получить два слоя кремния с различным легированием, которые образуют «PN переход». Нелегированный или «собственный» кремний имеет решеточную структуру из атомов, каждый из которых имеет четыре валентных электрона, но кремний P-типа и кремний N-типа легируют путем добавления относительно очень небольшого количества материала, имеющего атомную структуру с тремя валентными электронами (например,грамм. Бор или алюминий), чтобы получить P-тип, или пять валентных электронов (например, мышьяк или фосфор), чтобы получить кремний N-типа. Эти легированные версии кремния известны как «примесный» кремний. Кремний P-типа теперь имеет нехватку валентных электронов в своей структуре, что также можно рассматривать как избыток «дырок» или носителей положительного заряда, в то время как слой N-типа легирован атомами, имеющими пять электронов в его валентной оболочке и поэтому имеет избыток электронов, которые являются носителями отрицательного заряда.

Диод PN переход

Рис. 2.0.4 Слой истощения диода

Когда кремний P- и N-типа соединяются вместе во время производства, создается переход, где встречаются материалы P-типа и N-типа, и отверстия, расположенные рядом с переходом в кремнии P-типа, притягиваются к отрицательно заряженному материалу N-типа на другой стороне. перехода. Кроме того, электроны вблизи перехода в кремнии N-типа притягиваются к положительно заряженному кремнию P-типа. Следовательно, вдоль перехода между кремнием P- и N-типа создается небольшой естественный потенциал между полупроводниковым материалом P и N с отрицательно заряженными электронами, которые теперь находятся на стороне P-типа перехода, и положительно заряженными дырками на стороне N узел.Этот слой носителей заряда противоположной полярности накапливается до тех пор, пока его не станет достаточно, чтобы предотвратить свободное движение любых дальнейших дырок или электронов. Из-за этого естественного электрического потенциала в переходе между слоями P и N в PN-переходе образовался очень тонкий слой, который теперь обеднен носителями заряда и поэтому называется обедненным слоем. Поэтому, когда диод подключен к цепи, ток не может течь между анодом и катодом, пока анод не станет более положительным, чем катод, с помощью прямого потенциала или напряжения (V F ), по крайней мере, достаточного для преодоления естественного обратного потенциала соединение.Это значение зависит в основном от материалов, из которых сделаны слои P и N диода, и от количества используемого легирования. Различные типы диодов имеют естественный обратный потенциал в диапазоне примерно от 0,1 В до 2 или 3 В. Кремниевые диоды с PN переходом имеют потенциал перехода от 0,6 В до 0,7 В

Диод прямой проводимости

Рис. 2.0.5 Диод вперед
Проводимость

Как только напряжение, приложенное к аноду, становится более положительным, чем на катоде, на величину, превышающую потенциал обедненного слоя, начинается прямая проводимость от анода к обычному катоду, как показано на рис.2.0.5.

По мере того, как напряжение, прикладываемое между анодом и катодом, увеличивается, прямой ток сначала медленно увеличивается, поскольку носители заряда начинают пересекать обедненный слой, а затем быстро возрастает примерно по экспоненте. Следовательно, сопротивление диода, когда он «включен» или проводит в режиме «прямого смещения», не равно нулю, а очень мало. Поскольку прямая проводимость увеличивается после преодоления потенциала истощения по примерно следующей экспоненциальной кривой, прямое сопротивление (V / I) незначительно изменяется в зависимости от приложенного напряжения.

Диод с обратным смещением

Рис. 2.0.6 Обратный диод
Смещенный

Когда диод смещен в обратном направлении (анод подключен к отрицательному напряжению, а катод — к положительному напряжению), как показано на рис. 2.0.6, положительные отверстия притягиваются к отрицательному напряжению на аноде и вдали от перехода. Точно так же отрицательные электроны притягиваются от перехода к положительному напряжению, приложенному к катоду. Это действие оставляет большую площадь в переходе без каких-либо носителей заряда (положительных дырок или отрицательных электронов) по мере расширения обедненного слоя.Поскольку область перехода теперь обеднена носителями заряда, она действует как изолятор, и по мере того, как более высокие напряжения прикладываются с обратной полярностью, обедненный слой становится еще шире, чем больше носителей заряда удаляется от перехода. Диод не будет проводить при приложенном обратном напряжении (обратном смещении), за исключением очень небольшого «обратного тока утечки» (I R ), который в кремниевых диодах обычно меньше 25 нА. Однако, если приложенное напряжение достигает значения, называемого «обратным напряжением пробоя» (V RRM ), ток в обратном направлении резко возрастает до точки, где, если ток не ограничен каким-либо образом, диод будет разрушен.

Вольт-амперные характеристики диода

Рис 2.0.7. Типовой диод I / V
Характеристика

Работа диодов, как описано выше, также может быть описана специальным графиком, называемым «характеристической кривой». Эти графики показывают взаимосвязь между фактическими токами и напряжениями, связанными с различными клеммами устройства. Понимание этих графиков помогает понять, как работает устройство.

Для диодов характеристическая кривая называется ВАХ, потому что она показывает соотношение между напряжением, приложенным между анодом и катодом, и результирующим током, протекающим через диод.Типичная ВАХ показана на рис. 2.0.7.

Оси графика показывают как положительные, так и отрицательные значения и поэтому пересекаются в центре. Пересечение имеет нулевое значение как для тока (ось Y), так и для напряжения (ось X). Оси + I и + V (верхняя правая область графика) показывают круто возрастающий ток после области начального нулевого тока. Это прямая проводимость диода, когда анод положительный, а катод отрицательный. Первоначально ток не течет, пока приложенное напряжение не превысит потенциал прямого перехода.После этого ток резко возрастает примерно по экспоненте.

Оси -V и -I показывают состояние обратного смещения (нижняя левая область графика). Здесь можно увидеть, что очень небольшой ток утечки увеличивается с увеличением обратного напряжения. Однако как только достигается обратное напряжение пробоя, обратный ток (-I) резко возрастает.

Начало страницы

,

SHOP Драйверы для лазерных диодов, драйверы для импульсных лазерных диодов, контроллеры TEC, ВСЕ ЛУЧШИЕ БРЕНДЫ

МАГАЗИН драйверы лазерных диодов, драйверы импульсных лазерных диодов, контроллеры TEC, ВСЕХ ЛУЧШИХ БРЕНДОВ

Почему ученые и инженеры выбирают LaserDiodeControl.com?

Вы получите прямую и быструю техническую поддержку
ОТ ИНЖЕНЕРА

НЕ ПРОДАЖА посередине.
Вы получаете прямой доступ к инженеру по продукту. Системы обмена сообщениями и электронной почты нашей платформы автоматически перенаправляются непосредственно к нужному инженеру. Мы устраняем «посредников» продавца «туда-сюда» во время решения технических вопросов. Больше никаких форм «Связаться с нами». У каждого продукта есть назначенный инженер в нашей базе данных обмена сообщениями, который предоставит вам прямой и немедленный доступ к нужной информации службы поддержки.

читать далее

Вы покупаете — ПРЯМО и получаете
по самым низким ценам

БЕЗ НАЗНАЧЕНИЯ.
Производители устанавливают собственные прямые цены на нашей платформе. Чтобы гарантировать, что вы получаете самую низкую цену, все цены на нашем сайте публикуются непосредственно производителем или поставщиком. Цены указаны напрямую с завода без наценок.

читать далее

вы получаете доступ к проверенным
глобальным поставщикам

НАДЕЖНЫЕ БРЕНДЫ И ПОСТАВЩИКИ.
Мы упрощаем закупки напрямую у ведущих мировых поставщиков. Мы работаем только с проверенными и проверенными поставщиками. Мы заботимся о том, чтобы ваша покупка была защищена, безопасна, чтобы вы получали заказанные вами товары высокого качества и были полностью удовлетворены.

читать далее

Почему ученые и инженеры
выбирают управление лазерным диодом?

Вы получите прямую и быструю техническую поддержку
ОТ ИНЖЕНЕРА

НЕ ПРОДАЖА посередине.Получите ПРЯМОЙ доступ к нужному заводскому инженеру для вашего продукта.
Системы обмена сообщениями и электронной почты нашей платформы автоматически перенаправляются непосредственно к нужному инженеру по продукту у поставщика. Мы устраняем «посредников» продавца «туда-сюда» во время решения технических вопросов. Больше никаких форм «Связаться с нами». У каждого продукта есть назначенный инженер в нашей базе данных обмена сообщениями, который предоставит вам прямой и немедленный доступ к нужной информации службы поддержки.

Вы покупаете — ПРЯМО и получаете
по самым низким ценам

БЕЗ НАЗНАЧЕНИЯ. Производитель устанавливает свои собственные прямые цены через нашу платформу.
Чтобы гарантировать самую низкую цену, все цены на нашем сайте размещаются непосредственно производителем или поставщиком. Цены указаны напрямую с завода без наценок.

вы получаете доступ к проверенным
глобальным поставщикам

Мы упрощаем закупки напрямую у проверенных, надежных и ведущих поставщиков по всему миру.
Мы работаем только с проверенными и проверенными поставщиками. Мы заботимся о том, чтобы ваша покупка была защищена, безопасна, чтобы вы получали заказанные вами товары высокого качества и были полностью удовлетворены.

Вы получаете расширенную
ДОПОЛНИТЕЛЬНУЮ гарантию

На все продукты предоставляется дополнительная 3-месячная гарантия сверх гарантии производителя.
На все новые продукты предоставляется как минимум 365-дневная полная гарантия на детали и ремонт. Помимо стандартной гарантии, мы гарантируем качество продуктов, предлагаемых на наших сайтах, предлагая расширенную 3-месячную гарантию. По истечении гарантийного срока, если возникнет проблема, мы будем работать для вас и с поставщиком, чтобы обеспечить быстрое решение.

Вы выбрали максимальное количество устройств для сравнения

Сравнить сейчас?

,
Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о