Разбираемся как отличить 1 Вт и 3 Вт светодиоды мощные
Свечение кристалловДостаточно часто людям приходится покупать светодиоды мощностью 1 Вт и 3 Вт. Если мы делаем это в проверенных магазинах, то большой проблемы нет. А если это мы делаем на новых площадках? Как не обмануться? Как отличить 1 Вт светодиоды от 3 Вт? В принципе, задача не из невозможных… Посмотрим и попробуем…
Что такое мощные светодиоды 3 Вт и 1 Вт разбирать не буду. Если Вы читаете этот материал, то мне кажется, достаточно не плохо понимаете что и к чему. Для чего и для какой цели покупали.
к оглавлению ↑Сравнение двух светодиодов 1 Вт и 3 Вт
Слева 1 Вт справа 3 Вт
Визуальное сравнение двух светодиодов не даст Вам практически никакой информации, если ни разу с этим не сталкивались. Более продвинутые могут отличить на глаз какой светодиод будет мощнее, а какой — нет, рассмотрев кристалл. Но не всегда и это будет возможно сделать визуально. Кристалл не всегда виден.
Для определения какой LEDs 1 Вт или 3 Вт лежит на столе — стоит провести некоторые измерения и эксперименты.
Характеристики светодиодов 1 Вт и 3 Вт
Мною были взяты светодиоды из местного магазина (происхождение не известно) и диод приобретенный на Aliexpress. По заверению продавцов — оба по 3 W.
Обратимся к характеристикам светодиодов на 1 и 3 Вт. Возьмем наиболее популярные от Epistar. Светодиоды от других производителей, в принципе, не отличаются от этих данных.
Характеристики 3 Вт и 1 Вт светодиодов
Как читать ТТХ светодиодных источников света — смотрите в статье.
Мы видим, что рабочий ток 1 Вт диода составляет 350мА, 3 Вт — 700мА. Максимальный пиковый ток у обоих 0,8 А. Т.е. оба этих диода будут работать на максимально-возможном 0,75А. Они будут работать и при 1 А, но не долго). Не стоит разгонять чипы без надобности, мы все-таки радеем за долговечность. Тем более, если Вы приобрели правильный светодиод, то и яркости Вам хватит.
Как различить светодиоды 3 Вт и 1 Вт
При включении чипов на полную мощность Вы вряд ли сможете отличить 1 Вт и 3 Вт по свету. Глаз не воспримет слишком яркое свечение.
Можно использовать черную коробку, по отдельности включать светодиоды и смотреть, какой образец даст больший световой эффект. Вместо коробки можно использовать черный лист. Это пример, но смысл понятен, думаю.
Если у Вас есть два диода, не понятного происхождения, то определить какой из них 3 Вт, а какой 1 Вт можно следующим способом: подключаем оба к источнику питания и подаем на них 3,5 В. При этом начальное значение тока должны быть в пределах 350мА. Посмотрим на графическую зависимость яркости от тока.
Зависимости светодиодов 1 и 3 Вт от тока
При увеличении начального напряжения в 3,5 В яркость 1 Вт диода еще немного увеличится и практически остановится, если дальше повышать напряжение (ток). В случае, если у Вас 3 Вт диод, то при увеличении напряжения от 3,5 В ток будет расти, а согласно графику, приведенному выше, мы видим, что яркость будет постепенно увеличиваться до момента, пока ток не достигнет 700 мА.
График зависимости тока от напряжения 1 и 3 Вт светодиодов
Т. е. визуально мы можем определить любой светодиод 1 Вт или 3 Вт если подав на него ток 350 мА будем постепенно увеличивать его. Увеличение яркости от 350 мА говорит о том, что перед нами 3 Вт диод. Незначительное увеличение яркости от 350 до 700 мА говорит о том, что перед нами 1 Вт диод.
Другой способ определить где 3 Вт или 1 Вт мощный светодиод — нагрев. Здесь простая физика. При тех же 350 мА 1 Вт светодиод будет нагреваться быстро. И в руке его держать Вы не сможете. 3 Вт же светодиод при том же токе можно достаточно долго держать в руке без заметных неприятных ощущений. Естественно, что это побочный способ определения где какой диод. Но имеет право на существование.
Ну и последний способ — отличить светодиоды по размеру кристалла. Чтобы наверняка это делать, стоит приобрести USB микроскоп. Это бюджетный вариант и достаточно качественный, с необходимыми гаджетами. Здесь можно посмотреть много микроскопов различной ценовой категории. Вообще USB микроскоп интересная штуковина и пригодится дома не один раз. Далее используя калибровочную линейку и предустановленную программу можно легко замерить размеры кристалла. С ним мы точно можем сказать, какой размер кристалла установлен. Однако и этот способ не даст нам точного понятия где какой диод. Но беря во внимание, что чем больше кристалл, тем больше мощность — соответственно можно сделать вывод для себя.
Мощные диоды 1 Вт имеют размеры 30х30mil. Кристаллы в 3 Вт диодах — 45х45mil. Это, конечно идеальные размеры.
Если у Вас нет микроскопа, а хочется узнать размеры, то можно воспользоваться подручными средствами. Подадим на светодиоды очень маленький ток. Кристаллы начнут еле-еле светиться.
Свечение кристалловСлева мы видим, что размер кристалла на порядок больше. Именно этот светодиод был приобретен на Aliexpress. Тот образец, что был приобретен в офф-лайн магазине явно 1 Вт, не смотря на то, что продавался с заявленной мощностью — 3Вт. В принципе, мне хватило одного взгляда на кристалл через микроскоп и понять где какой диод будет.
Ну вот и все. Вот такими нехитрыми способами теперь Вы можете спокойно проверить, сравнить и различить 3 Вт мощные светодиоды от 1 Вт. Но, чтобы этим не заниматься постоянно, стоит приобретать светодиодную продукцию в проверенных магазинах и площадках.
к оглавлению ↑Видео по измерению кристаллов для отличия 1 и 3 Вт светодиодов
Автолампа диод SKYWAY T11 C5W 2 SMD диода 1-контурная 36мм белая S08201315 применяется для организации салонного освещения, подсветки дверей и гос.номера. Имеет следующие особенности:
Комплектация автолампы SKYWAY S08201315 *
Параметры упакованного товара Единица товара: Штука Длина, мм: 43 Произведено
Указанная информация не является публичной офертой ОтзывыОставить свой отзыв На данный момент для этого товара нет расходных материаловСпособы получения товара в МосквеДоставка Вес брутто товара: 0.007 кг В каком городе вы хотите получить товар? выберите городАбаканАксайАктауАлександровАльметьевскАнадырьАнгарскАрзамасАрмавирАрсеньевАртемАрхангельскАстраханьАхтубинскАчинскБалаковоБалашовБалезиноБарнаулБатайскБелгородБелогорскБерезникиБийскБиробиджанБлаговещенскБодайбоБокситогорскБорБорисоглебскБратскБрянскБугульмаБугурусланБуденновскБузулукВеликие ЛукиВеликий НовгородВеликий УстюгВельскВитебскВладивостокВладикавказВладимирВолгоградВолгодонскВолжскВолжскийВологдаВолховВольскВоркутаВоронежВоскресенскВыборгВыксаВышний ВолочекВязьмаВятские ПоляныГеоргиевскГлазовГорно-АлтайскГрозныйГубкинскийГусь-ХрустальныйДальнегорскДедовскДербентДзержинскДимитровградДмитровДонецкДудинкаЕвпаторияЕгорьевскЕкатеринбургЕлецЕссентукиЗаводоуковскЗеленодольскЗлатоустЗубовоИвановоИгнатовоИжевскИзбербашИнтаИркутскИшимЙошкар-ОлаКазаньКалининградКалугаКаменск-УральскийКаменск-ШахтинскийКамень-на-ОбиКанашКанскКарагандаКарасукКаргопольКемеровоКерчьКинешмаКиришиКировКиселевскКисловодскКлинКлинцыКоломнаКолпашевоКомсомольск-на-АмуреКоролевКостромаКотласКраснодарКрасноярскКропоткинКудьмаКузнецкКуйбышевКумертауКунгурКурганКурскКызылЛабинскЛабытнангиЛаговскоеЛангепасЛенинск-КузнецкийЛесосибирскЛипецкЛискиЛуневоЛюдиновоМагаданМагнитогорскМайкопМалые КабаныМахачкалаМеждуреченскМиассМинскМихайловкаМичуринскМоскваМуравленкоМурманскМуромНабережные ЧелныНадымНазраньНальчикНаро-ФоминскНарьян-МарНаходкаНевинномысскНерюнгриНефтекамскНефтеюганскНижневартовскНижнекамскНижний НовгородНижний ТагилНовая ЧараНовозыбковНовокузнецкНовороссийскНовосибирскНовочебоксарскНовочеркасскНовый УренгойНогинскНорильскНоябрьскНурлатНяганьОбнинскОдинцовоОзерскОктябрьскийОмскОнегаОрелОренбургОрехово-ЗуевоОрскПавлодарПангодыПензаПермьПетрозаводскПетропавловскПетропавловск-КамчатскийПикалевоПлесецкПолярныйПригородноеПрокопьевскПсковПятигорскРеутовРоссошьРостов-на-ДонуРубцовскРыбинскРязаньСалаватСалехардСамараСанкт-ПетербургСаранскСарапулСаратовСаянскСвободныйСевастопольСеверныйСеверобайкальскСеверодвинскСеверскСерпуховСимферопольСлавянск-на-КубаниСмоленскСоликамскСочиСтавропольСтарый ОсколСтерлитамакСургутСызраньСыктывкарТаганрогТаксимоТамбовТаштаголТверьТихвинТихорецкТобольскТольяттиТомскТуапсеТулаТуркестанТюменьУдомляУлан-УдэУльяновскУрайУральскУрюпинскУсинскУсолье-СибирскоеУссурийскУсть-ИлимскУсть-КутУсть-ЛабинскУфаУхтаФеодосияХабаровскХанты-МансийскХасавюртЧайковскийЧебоксарыЧелябинскЧеремховоЧереповецЧеркесскЧитаЧусовойШарьяШахтыЭлектростальЭлистаЭнгельсЮгорскЮжно-СахалинскЯкутскЯлтаЯлуторовскЯрославль Самовывоз: бесплатно
Волгоградский просп, д. 32к2 пн. – пт.: 9:00 – 20:00 сб. – вс.: 10:00 – 18:00 В корзинуул. Кантемировская, д. 47 пн. – пт.: 9:00 – 20:00 сб. – вс.: 10:00 – 18:00 В корзинуМожайское шоссе, д. 25 пн. – пт.: 10:00 – 20:00 сб. – вс.: 10:00 – 18:00 В корзинупос. Коммунарка, ул. Александры Монаховой, д. 5к2 пн. – пт.: 9:00 – 20:00 сб. – вс.: 10:00 – 18:00 В корзинуул. Академика Скрябина, д. 26к1 пн. – вс.: 9:00 – 20:00 В корзинуг. Балашиха, микрорайон ЦОВБ, д. 20 пн. – пт.: 9:00 – 20:00 сб. – вс.: 9:00 – 18:00 В корзинуг. Видное, ул. Березовая, д. 6 пн. – пт.: 9:00 – 20:00 сб. – вс.: 10:00 – 18:00 В корзинуг. Железнодорожный, ул. Октябрьская, д. 33 пн. – вс.: 9:00 – 20:00 В корзинуг. Коломна, пр-т Кирова, д. 20А пн. – вс.: 9:00 – 20:00 В корзинуг. Люберцы, ул. Инициативная, д. 7с2 пн. – пт.: 9:00 – 20:00 сб. – вс.: 10:00 – 18:00 В корзинуг. Мытищи, Новомытищинский пр-т, д. 12, корп. 1 пн. – вс.: 9:00 – 20:00 В корзинуСервис от ВсеИнструменты.руМы предлагаем уникальный сервис по обмену, возврату и ремонту товара! Обратиться по обмену, возврату или сдать инструмент в ремонт вы можете в любом магазине или ПВЗ ВсеИнструменты.ру.Гарантия производителяГарантия производителя 1 год | Может понадобиться |
Физики напечатали акустический диод
Звуковые волны в акустическом диоде
Изображение: Yi-Fan Zhu et al. / Applied Physics Letters, 2015
Новое устройство состоит из двух акустических метаматериалов, объединенных в единый канал, прозрачный для света, тепла и свободно пропускающий воздух. Каждый из материалов представляет собой «гребень» с фиксированным расстоянием между бороздами, но постепенно увеличивающейся их глубиной. Для двух частей акустического диода эти расстояния различаются: они равны, соответственно, 0,84 сантиметра и 2,36 сантиметра. Благодаря этому возникает различие между прямыми и обратными звуковыми волнами.
Внешний вид устройства
Изображение: Yi-Fan Zhu et al. / Applied Physics Letters, 2015
В случае, когда звук движется в «запрещенном» направлении, происходит его отражение от канала, он делает своеобразный поворот на 180 градусов и возвращается обратно. В «разрешенном» направлении волна колебания давления проходит свободно. Важно отметить, что устройство рассчитано на работу только лишь с определенной частотой звука, в данном случае — 6064 герца.
Ширина канала составляет 10,6 сантиметра, длина устройства примерно равна 30 сантиметрам. Все изделие напечатано из обычного ABS-пластика, аналогичного тому, из которого делают детальки конструктора LEGO. Авторы предполагают, что разработка может быть использована в ситуациях, когда необходимо подавлять звук определенной частоты (например, работы кондиционирующих систем). В будущем физики надеются расширить диапазон рабочих частот и создать канал, способный звукоизолировать в обоих направлениях.
Существующие акустические диоды представляют собой, как правило, различные упругие среды. Из-за этого они ограничивают прохождение каких-либо веществ или тепла через себя. К примеру один из вариантов такого диода представлял собой цепочку плотно прижатых сфер, одна из которых обладала меньшей массой, чем остальные. При генерации звуковых колебаний в одном из направлений происходит рассеяние из-за возбуждения хаотических колебаний в сферах.
Владимир Королёвдиодов — learn.sparkfun.com
Добавлено в избранное Любимый 61Введение
После того, как вы перейдете от простых пассивных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, пора перейти в удивительный мир полупроводников. Одним из наиболее широко используемых полупроводниковых компонентов является диод.
В этом уроке мы рассмотрим:
- Что такое диод !?
- Теория работы диодов
- Важные свойства диода
- Диоды разные
- Как выглядят диоды
- Типичные применения диодов
Рекомендуемая литература
Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники.Прежде чем переходить к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:
Что такое схема?
Каждый электрический проект начинается со схемы. Не знаю, что такое схема? Мы здесь, чтобы помочь.
Что такое электричество?
Мы можем видеть электричество в действии на наших компьютерах, освещающее наши дома, как удары молнии во время грозы, но что это такое? Это непростой вопрос, но этот урок прольет на него некоторый свет!
Как пользоваться мультиметром
Изучите основы использования мультиметра для измерения целостности цепи, напряжения, сопротивления и тока.
Хотите изучить различные диоды?
Идеальные диоды
Ключевая функция диода ideal заключается в управлении направлением потока тока. Ток, проходящий через диод, может идти только в одном направлении, называемом прямым направлением. Ток, пытающийся течь в обратном направлении, заблокирован. Они похожи на односторонний клапан электроники.
Если напряжение на диоде отрицательное, ток не может течь *, и идеальный диод выглядит как разомкнутая цепь.В такой ситуации говорят, что диод от или с обратным смещением .
Пока напряжение на диоде не отрицательное, он «включается» и проводит ток. В идеале * диод будет действовать как короткое замыкание (0 В на нем), если он проводит ток. Когда диод проводит ток, он смещен в прямом направлении (жаргон электроники означает «включено»).
Соотношение тока и напряжения идеального диода. Любое отрицательное напряжение дает нулевой ток — разрыв цепи.Пока напряжение неотрицательно, диод выглядит как короткое замыкание.
Характеристики идеального диода | ||
Рабочий режим | Вкл. (Смещение в прямом направлении) | Выкл. (Смещение в обратном направлении) |
---|---|---|
Проходной ток | I> 0 | I = 0 |
Поперечное напряжение | В = 0 | В |
Диод выглядит как | Короткое замыкание | Обрыв цепи |
Обозначение цепи
Каждый диод имеет две клеммы — соединения на каждом конце компонента — и эти клеммы поляризованы , что означает, что эти две клеммы совершенно разные.Важно не перепутать соединения на диоде. Положительный конец диода называется анодом , а отрицательный конец называется катодом . Ток может течь от конца анода к катоду, но не в другом направлении. Если вы забыли, в каком направлении протекает ток через диод, попробуйте вспомнить мнемоническое обозначение ACID : «анодный ток в диоде» (также анодный катод — это диод ).
Обозначение цепи стандартного диода представляет собой треугольник, соприкасающийся с линией.Как мы расскажем позже в этом руководстве, существует множество типов диодов, но обычно их обозначение схемы будет выглядеть примерно так:
Вывод, входящий в плоский край треугольника, представляет собой анод. Ток течет в направлении, указанном треугольником / стрелкой, но не может идти в обратном направлении.
Выше приведены несколько простых примеров схем диодов. Слева диод D1 смещен в прямом направлении и позволяет току течь по цепи. По сути это похоже на короткое замыкание.Справа диод D2 имеет обратное смещение. Ток не может течь по цепи, и она выглядит как разомкнутая цепь.
* Внимание! Звездочка! Не совсем так … К сожалению, идеального диода не существует. Но не волнуйтесь! Диоды действительно настоящие, у них просто есть несколько характеристик, которые заставляют их работать немного хуже, чем наша идеальная модель …
Реальные характеристики диода
В идеале , диоды будут блокировать любой ток, текущий в обратном направлении, или просто действовать как короткое замыкание, если ток идет вперед.К сожалению, реальное поведение диодов не совсем идеальное. Диоды действительно потребляют некоторое количество энергии при проведении прямого тока, и они не будут блокировать весь обратный ток. Реальные диоды немного сложнее, и все они имеют уникальные характеристики, которые определяют, как они на самом деле работают.
Соотношение тока и напряжения
Наиболее важной характеристикой диода является его вольт-амперная зависимость ( i-v ). Это определяет, какой ток проходит через компонент, учитывая, какое напряжение на нем измеряется.Резисторы, например, имеют простую линейную зависимость i-v … Закон Ома. Кривая i-v диода, однако, полностью не является линейной для . Выглядит это примерно так:
Соотношение тока и напряжения диода. Чтобы преувеличить несколько важных моментов на графике, масштабы как в положительной, так и в отрицательной половине не равны.
В зависимости от приложенного к нему напряжения диод будет работать в одном из трех регионов:
- Прямое смещение : Когда напряжение на диоде положительное, диод включен, и ток может проходить через него.Напряжение должно быть больше, чем прямое напряжение (V F ), чтобы ток был значительным.
- Обратное смещение : Это режим «выключения» диода, при котором напряжение меньше V F , но больше -V BR . В этом режиме протекание тока (в основном) заблокировано, а диод выключен. очень небольшой ток (порядка нА), называемый током обратного насыщения, может протекать через диод в обратном направлении.
- Пробой : Когда напряжение, приложенное к диоду, очень большое и отрицательное, большой ток может течь в обратном направлении, от катода к аноду.
прямое напряжение
Для того, чтобы «включиться» и провести ток в прямом направлении, диод требует приложения определенного количества положительного напряжения. Типичное напряжение, необходимое для включения диода, называется прямым напряжением (V F ).Его также можно назвать либо , , либо , .
Как мы знаем из кривой i-v , сквозной ток и напряжение на диоде взаимосвязаны. Больше тока означает большее напряжение, меньшее напряжение означает меньший ток. Однако, как только напряжение приближается к номинальному прямому напряжению, большое увеличение тока по-прежнему должно означать лишь очень небольшое увеличение напряжения. Если диод полностью проводящий, обычно можно предположить, что напряжение на нем соответствует номинальному прямому напряжению.
Мультиметр с диодной настройкой можно использовать для измерения (минимального) прямого падения напряжения на диоде.Конкретный диод V F зависит от того, из какого полупроводникового материала он сделан. Обычно кремниевый диод имеет напряжение V F около 0,6–1 В . Диод на основе германия может быть ниже, около 0,3 В. Диод типа также имеет некоторое значение для определения прямого падения напряжения; светоизлучающие диоды могут иметь намного больший V F , в то время как диоды Шоттки разработаны специально для того, чтобы иметь гораздо более низкое, чем обычно, прямое напряжение.
Напряжение пробоя
Если на диод подается достаточно большое отрицательное напряжение, он поддается и позволяет току течь в обратном направлении. Это большое отрицательное напряжение называется напряжением пробоя . Некоторые диоды на самом деле предназначены для работы в области пробоя, но для большинства обычных диодов не очень полезно подвергаться воздействию больших отрицательных напряжений.
Для нормальных диодов это напряжение пробоя составляет от -50 до -100 В или даже более отрицательное.
Таблицы данных диодов
Все вышеперечисленные характеристики должны быть подробно описаны в даташите на каждый диод. Например, в этом техническом описании диода 1N4148 указано максимальное прямое напряжение (1 В) и напряжение пробоя (100 В) (среди множества другой информации):
Таблица данных может даже представить вам очень знакомый график вольт-амперной характеристики, чтобы более подробно описать поведение диода. Этот график из таблицы данных диода увеличивает изогнутую переднюю часть кривой i-v .Обратите внимание, как больший ток требует большего напряжения:
Эта таблица указывает на еще одну важную характеристику диода — максимальный прямой ток. Как и любой другой компонент, диоды могут рассеивать только определенное количество энергии, прежде чем они взорвутся. На всех диодах должны быть указаны максимальный ток, обратное напряжение и рассеиваемая мощность. Если диод подвергается большему напряжению или току, чем он может выдержать, ожидайте, что он нагреется (или того хуже: расплавится, задымится и т.
Некоторые диоды хорошо подходят для больших токов — 1 А или более — другие, такие как малосигнальный диод 1N4148, показанный выше, могут подходить только для тока около 200 мА.
Этот 1N4148 — лишь крошечная выборка из всех существующих типов диодов. Далее мы исследуем, какое удивительное разнообразие существует и для какой цели служит каждый тип.
Типы диодов
Нормальные диоды
Сигнальные диоды
Стандартные сигнальные диоды — одни из самых простых, средних и простых членов семейства диодов. Обычно они имеют средне-высокое прямое падение напряжения и низкий максимальный ток.Типичный пример сигнального диода — 1N4148.
Очень общего назначения, он имеет типичное прямое падение напряжения 0,72 В и максимальный номинальный прямой ток 300 мА.
Слабосигнальный диод, 1N4148. Обратите внимание на черный кружок вокруг диода, который отмечает, какой из выводов является катодом.
Силовые диоды
Выпрямитель или силовой диод — стандартный диод с гораздо более высоким максимальным током. Этот более высокий номинальный ток обычно достигается за счет большего прямого напряжения.1N4001 — это пример силового диода.
1N4001 имеет номинальный ток 1 А и прямое напряжение 1,1 В.
Диод 1N4001 PTH. На этот раз серая полоса указывает, какой вывод является катодом.
И, конечно же, большинство типов диодов также выпускаются для поверхностного монтажа. Вы заметите, что у каждого диода есть способ (независимо от того, насколько крошечный или плохо различимый), чтобы указать, какой из двух контактов является катодом.
Светодиоды (светодиоды!)
Самым ярким членом семейства диодов должен быть светодиод (LED).Эти диоды буквально загораются при подаче положительного напряжения.
Несколько сквозных светодиодов. Слева направо: желтый 3 мм, синий 5 мм, зеленый 10 мм, сверхяркий красный 5 мм, RGB 5 мм и синий 7-сегментный светодиод.Как и обычные диоды, светодиоды пропускают ток только в одном направлении. Они также имеют номинальное прямое напряжение, то есть напряжение, необходимое для их включения. Рейтинг светодиода V F обычно выше, чем у обычного диода (1.2 ~ 3 В), и это зависит от цвета, излучаемого светодиодом. Например, номинальное прямое напряжение сверхяркого синего светодиода составляет около 3,3 В, а для сверхяркого красного светодиода такого же размера — всего 2,2 В.
Очевидно, вы чаще всего найдете светодиоды в осветительных приборах. Они веселые и веселые! Но более того, их высокая эффективность привела к широкому использованию в уличных фонарях, дисплеях, подсветке и многом другом. Другие светодиоды излучают свет, который не виден человеческому глазу, например инфракрасные светодиоды, которые являются основой большинства пультов дистанционного управления.Другое распространенное использование светодиодов — оптическая изоляция опасной высоковольтной системы от низковольтной цепи. Оптоизоляторы соединяют инфракрасный светодиод с фотодатчиком, который пропускает ток при обнаружении света от светодиода. Ниже приведен пример схемы оптоизолятора. Обратите внимание, как схематический символ диода отличается от обычного диода. Светодиодные символы добавляют пару стрелок, выходящих из символа.
Диоды Шоттки
Другой очень распространенный диод — диод Шоттки.
Диод Шоттки
В наличии COM-10926Диоды Шоттки известны своим низким прямым падением напряжения и очень быстрым переключением. Этот диод Шоттки 1 А 40 В составляет…
1Полупроводниковый состав диода Шоттки немного отличается от обычного диода, и это приводит к значительно меньшему на прямому падению напряжения , которое обычно находится между 0.15В и 0,45В. Однако они все равно будут иметь очень большое напряжение пробоя.
Диоды Шотткиособенно полезны для ограничения потерь, когда каждый последний бит напряжения должен быть сброшен. Они достаточно уникальны, чтобы получить собственное обозначение схемы с парой изгибов на конце катодной линии.
Стабилитроны
Стабилитроны— это странный изгоем из семейства диодов. Обычно они используются, чтобы намеренно проводить обратный ток .
Стабилитрон — 5.1 В 1 Вт
Распродано COM-10301Стабилитроны полезны для создания опорного напряжения или в качестве стабилизатора напряжения для слаботочных applications.These диодов …
Стабилитронспроектирован так, чтобы иметь очень точное напряжение пробоя, называемое стабилитроном или напряжением стабилитрона . Когда через стабилитрон протекает достаточный ток в обратном направлении, падение напряжения на нем будет стабильным на уровне напряжения пробоя.
Воспользовавшись их пробивной собственности, стабилитроны часто используются для создания известного опорного напряжения точно по напряжению стабилитрона. Их можно использовать в качестве регуляторов напряжения для небольших нагрузок, но на самом деле они не предназначены для регулирования напряжения в цепях, которые потребляют значительный ток.
Стабилитроныдостаточно особенные, чтобы иметь собственное обозначение схемы с волнистыми концами на катодной линии. Символ может даже обозначать, что такое напряжение стабилитрона диода.Вот 3.3V стабилитрон действует, чтобы создать прочную ссылку 3.3V напряжения:
Фотодиоды
Фотодиоды — это специально сконструированные диоды, которые улавливают энергию фотонов света (см. Физика, квантовая) для генерации электрического тока. Вид работы как анти-светодиод.
Фотодиод BPW34 (не четверть, да еще мелочь). Положите его на солнце, и он может генерировать около нескольких мкВт энергии !.
Солнечные элементы — главный спонсор фотодиодной технологии.Но эти диоды также могут использоваться для обнаружения света или даже для оптической связи.
Применение диодов
Для такого простого компонента диоды имеют огромное применение. Вы найдете диод того или иного типа практически в каждой цепи. Они могут быть представлены в чем угодно, от цифровой логики слабого сигнала до схемы преобразования энергии высокого напряжения. Давайте рассмотрим некоторые из этих приложений.
Выпрямители
Выпрямитель — это схема, преобразующая переменный ток (AC) в постоянный (DC).Это преобразование критично для всякой бытовой электроники. Сигналы переменного тока выходят из розеток вашего дома, но именно постоянный ток питает большинство компьютеров и другой микроэлектроники.
Ток в цепях переменного тока буквально чередуется — быстро переключается между положительным и отрицательным направлениями — но ток в сигнале постоянного тока течет только в одном направлении. Таким образом, чтобы преобразовать переменный ток в постоянный, вам просто нужно убедиться, что ток не может течь в отрицательном направлении. Похоже на работу для ДИОДОВ!
Однополупериодный выпрямитель может быть сделан только из одного диода.Если сигнал переменного тока, такой как, например, синусоида, посылается через диод, любая отрицательная составляющая сигнала отсекается.
Формы входного (красный / левый) и выходного (синий / правый) сигналов напряжения после прохождения через схему полуволнового выпрямителя (в центре).
Двухполупериодный мостовой выпрямитель использует четыре диода для преобразования этих отрицательных горбов в сигнале переменного тока в положительные.
Схема мостового выпрямителя (в центре) и форма выходного сигнала, которую она создает (синий / правый).
Эти цепи являются важным компонентом источников питания переменного тока в постоянный, которые преобразуют сигнал 120/240 В переменного тока сетевой розетки в сигналы постоянного тока 3,3 В, 5 В, 12 В и т. Д. Если вы разорвали стенную бородавку, вы, скорее всего, увидели бы там несколько диодов, исправляющих ее.
Вы можете заметить четыре диода, образующие мостовой выпрямитель в этой бородавке?
Защита от обратного тока
Вы когда-нибудь вставляли батарею неправильно? Или поменять местами красный и черный провода питания? Если это так, то диод может быть благодарен за то, что ваша схема все еще жива.Диод, включенный последовательно с положительной стороной источника питания, называется диодом обратной защиты. Это гарантирует, что ток может течь только в положительном направлении, а источник питания подает только положительное напряжение в вашу цепь.
Этот диод полезен, когда разъем источника питания не поляризован, что позволяет легко испортить и случайно подключить отрицательный источник питания к положительному полюсу входной цепи.
Недостатком диода обратной защиты является то, что он вызывает некоторую потерю напряжения из-за прямого падения напряжения.Это делает диоды Шоттки отличным выбором для диодов обратной защиты.
Логические ворота
Забудьте о транзисторах! Простые цифровые логические вентили, такие как И или ИЛИ, могут быть построены из диодов.
Например, диодный логический элемент ИЛИ с двумя входами может быть построен из двух диодов с общими катодными узлами. Выход логической схемы также находится в этом узле. Когда один из входов (или оба) являются логической 1 (высокий / 5 В), выход также становится логической 1.Когда оба входа имеют логический 0 (низкий / 0 В), на выходе через резистор подается низкий уровень.
Логический элемент И построен аналогичным образом. Аноды и обоих диодов соединены вместе, где и расположен выход схемы. Оба входа должны иметь логическую единицу, заставляя ток течь по направлению к выходному выводу и также подтягивать его к высокому уровню. Если на одном из входов низкий уровень, ток от источника питания 5 В проходит через диод.
Для обоих логических вентилей можно добавить больше входов, добавив только один диод.
Обратные диоды и подавление скачков напряжения
Диодыочень часто используются для ограничения потенциального повреждения от неожиданных больших скачков напряжения. Диоды с подавлением переходных напряжений (TVS) — это специальные диоды, вроде стабилитронов с низким пробивным напряжением (часто около 20 В), но с очень большими номинальными мощностями (часто в диапазоне киловатт). Они предназначены для шунтирования токов и поглощения энергии, когда напряжение превышает их напряжение пробоя.
Обратные диодывыполняют аналогичную работу по подавлению скачков напряжения, в частности, вызванных индуктивным компонентом, например двигателем.Когда ток через катушку индуктивности внезапно изменяется, создается всплеск напряжения, возможно, очень большой отрицательный всплеск. Обратный диод, помещенный на индуктивную нагрузку, даст этому отрицательному сигналу напряжения безопасный путь для разряда, фактически многократно проходя через индуктивность и диод, пока он в конечном итоге не погаснет.
Это всего лишь несколько вариантов применения этого удивительного маленького полупроводникового компонента.
Покупка диодов
Теперь, когда ваш нынешний движется в правильном направлении, пришло время найти хорошее применение вашим новым знаниям.Независимо от того, ищете ли вы отправную точку или просто пополняете запасы, у нас есть набор изобретателя, а также отдельные диоды на выбор.
Наши рекомендации:
Диод Шоттки
В наличии COM-10926Диоды Шоттки известны своим низким прямым падением напряжения и очень быстрым переключением.Этот диод Шоттки 1 А 40 В составляет…
1Комплект изобретателя SparkFun — V3.2
На пенсии КОМПЛЕКТ-12060** Как вы, возможно, видели из [нашего сообщения в блоге] (https://www.sparkfun.com/news/2241), мы недавно переместили нашу литьевую форму для SIK…
76 ПенсионерРесурсы и движение вперед
Теперь, когда вы познакомились с диодами, возможно, вы захотите продолжить изучение других полупроводников:
Или откройте для себя другие распространенные электронные компоненты:
Что такое диод? | Fluke
Диод — это полупроводниковое устройство, которое, по сути, действует как односторонний переключатель тока.Это позволяет току легко течь в одном направлении, но сильно ограничивает протекание тока в противоположном направлении.
Диоды также известны как выпрямители , потому что они преобразуют переменный ток (ac) в пульсирующий постоянный ток (dc). Диоды классифицируются в соответствии с их типом, напряжением и допустимым током.
Диоды имеют полярность, определяемую анодом (положительный вывод) и катодом (отрицательный вывод). Большинство диодов пропускают ток только тогда, когда на анод подается положительное напряжение.На этом рисунке показаны различные конфигурации диодов:
Диоды доступны в различных конфигурациях. Слева: металлический корпус, крепление на шпильке, пластиковый корпус с лентой, пластиковый корпус с фаской, стеклянный корпус.Когда диод пропускает ток, он смещен в прямом направлении . Когда диод имеет обратное смещение , он действует как изолятор и не пропускает ток.
Странно, но факт: стрелка символа диода указывает против направления потока электронов.Причина: инженеры придумали символ, и их схемы показывают ток, текущий от положительной (+) стороны источника напряжения к отрицательной (-). То же самое соглашение используется для символов полупроводников, которые включают стрелки — стрелка указывает в разрешенном направлении «обычного» потока и против разрешенного направления потока электронов.
Контрольный диод диода цифрового мультиметра создает небольшое напряжение между контрольными выводами, достаточное для прямого смещения диодного перехода. Нормальное падение напряжения равно 0.От 5 В до 0,8 В. Смещенное в прямом направлении сопротивление хорошего диода должно находиться в диапазоне от 1000 Ом до 10 Ом. При обратном смещении на дисплее цифрового мультиметра будет отображаться OL (что указывает на очень высокое сопротивление).
Диодам присваиваются номинальные значения тока. Если номинальное значение превышено и диод выходит из строя, он может закоротить и либо а) позволить току течь в обоих направлениях, либо б) остановить ток в любом направлении.
Ссылка: Принципы цифрового мультиметра, автор Glen A.Мазур, американское техническое издательство.
Диодное уравнение | PVEducation
Обзор
- I 0 напрямую связано с рекомбинацией и, следовательно, обратно связано с качеством материала.
- Неидеальные диоды включают член «n» в знаменателе экспоненты. N — коэффициент идеальности в диапазоне от 1-2, который увеличивается с уменьшением тока.
Идеальные диоды
Уравнение диода дает выражение для тока через диод как функцию напряжения.{\ frac {q V} {k T}} — 1 \ right) $$
где:
I = чистый ток, протекающий через диод;
I 0 = «ток темнового насыщения», плотность тока утечки диода в отсутствие света;
В = приложенное напряжение на выводах диода;
q = абсолютное значение заряда электрона;
k = постоянная Больцмана; и
T = абсолютная температура (K). {\ frac {q V} {n k T}} — 1 \ right) $$
где:
n = коэффициент идеальности, число от 1 до 2, которое обычно увеличивается при уменьшении тока.
Уравнение диода показано на интерактивном графике ниже. Измените ток насыщения и наблюдайте за изменением ВАХ. Обратите внимание, что, хотя вы можете просто изменять температуру и коэффициент идеальности, полученные кривые IV вводят в заблуждение. При моделировании подразумевается, что входные параметры независимы, но это не так. В реальных устройствах ток насыщения сильно зависит от температуры устройства. Точно так же механизмы, изменяющие коэффициент идеальности, также влияют на ток насыщения.Температурные эффекты обсуждаются более подробно на странице «Влияние температуры».
Изменение тока темнового насыщения изменяет напряжение включения диода. Фактор идеальности изменяет форму диода. График не соответствует фактору идеальности. Это означает, что увеличение коэффициента идеальности приведет к увеличению напряжения включения. На самом деле это не так, поскольку любой физический эффект, увеличивающий коэффициент идеальности, может существенно увеличить ток темнового насыщения, I 0 , так что устройство с высоким коэффициентом идеальности обычно будет иметь на более низкое напряжение включения .
Диодный закон для кремния показан на следующем рисунке. Повышение температуры заставляет диод «включаться» при более низких напряжениях.
Диодный закон для кремния — ток изменяется в зависимости от напряжения и температуры. При заданном токе кривая сдвигается примерно на 2 мВ / ° C. Голубая кривая показывает влияние на ВАХ, если I 0 не изменяется с температурой. На самом деле I 0 быстро меняется с температурой, что приводит к синей кривой.
Международная команда разработчиков выводит из строя электронику, состоящую из одного диода и одного резистора — ScienceDaily
Международная группа специалистов, связанная с UCF, решила задачу, которая может предвещать новую эру вычислений сверхвысокой плотности.
В течение многих лет инженеры и ученые всего мира пытались сделать электронику компактнее и быстрее. Но мощность, необходимая для сегодняшней конструкции, имеет тенденцию к перегреву и поджариванию цепей. Цепи обычно строятся путем последовательного соединения диодного переключателя с элементом памяти, называемым резистором один диод.Но этот подход требует больших падений напряжения на устройстве, что приводит к высокой мощности и препятствует усадке схемы за пределы определенной точки, поскольку требуются два отдельных элемента схемы. Многие команды работают над объединением диода и резистора в одно устройство.
Эти молекулярные переключатели «один-на-один» — отличные варианты, но они тоже были ограничены выполнением только одной функции, и даже тогда они часто были чреваты проблемами, включая нестабильные колебания электрического напряжения и ограниченный срок службы.
Международная группа во главе с Кристианом Нейхейсом из Национального университета Сингапура и соавторами Дэмиеном Томпсоном из Университета Лимерика и Энрике дель Барко из Университета Центральной Флориды совершила прорыв, подробно описанный 1 июня в рецензируемом журнале Природные материалы .
Команда создала новый тип молекулярного переключателя, который работает как диод, так и как элемент памяти. Устройство имеет толщину 2 нанометра, длину одной молекулы (в 10 000 раз меньше ширины волос), и для него требуется только низкое управляющее напряжение менее 1 Вольт.
«Сообщество быстро продвигается в поиске новых приложений для электронных устройств на молекулярном уровне», — говорит Дель Барко, профессор, специализирующийся на квантовой физике. «Эта работа может помочь ускорить разработку новых технологий с использованием искусственных синапсов и нейронных сетей».
Nijhuis, который специализируется на химии, возглавил команду. Дэмиен Томпсон из Университета Лимерика предоставил экспертные знания в области теории вычислений, а дель Барко и его команда студентов и научных сотрудников предоставили теоретический анализ.
Как это работает
Молекулярный переключатель работает по двухступенчатому механизму, при котором введенный заряд стабилизируется путем миграции заряженных ионов между молекулами и поверхностью устройства. Это стало возможным благодаря соединению молекул парами. Используя комбинацию электрических измерений и измерений в атомном масштабе, руководствуясь квантовой механикой, команда обнаружила золотую середину между стабильностью и коммутационной способностью, которая привела к созданию двухдиодной + резистивной оперативной памяти RAM в микроскопическом масштабе, согласно статье.
«Есть еще некоторые проблемы, и в этой области требуется дополнительная работа, но это значительный прорыв», — говорит Нейхейс.
История Источник:
Материалы предоставлены Университетом Центральной Флориды . Оригинал написан Зенаидой Гонсалес Котала. Примечание. Содержимое можно редактировать по стилю и длине.
Введение в диоды
- Раздел 2.0 Введение в диоды.
- • Обозначения диодных схем.
- • Ток через диоды.
- • Конструкция диодов.
- • PN-переход.
- • Прямое и обратное смещение.
- • Характеристики диодов.
- Раздел 2.1 Кремниевые выпрямители.
- • Маркировка полярности.
- • Параметры выпрямителя.
- Раздел 2.2 Диоды Шоттки.
- • Конструкция диодов Шоттки.
- • Потенциал соединения Шоттки.
- • Высокоскоростное переключение.
- • Выпрямители мощности Шоттки.
- • Ограничения по току Шоттки.
- • Защита от перенапряжения.
- Раздел 2.3 Малосигнальные диоды.
- • Конструкция слабосигнального диода.
- • Формирование волны.
- • Вырезание.
- • Зажим / восстановление постоянного тока.
- • ВЧ приложения.
- • Защитные диоды.
- Раздел 2.4 Стабилитроны.
- • Конструкция стабилитрона.
- • Обозначения схем Зенера.
- • Эффект Зенера.
- • Эффект лавины.
- • Практические стабилитроны.
- Раздел 2.5. Светодиоды.
- • Работа светодиода.
- • Световое излучение.
- • Цвета светодиодов.
- • Расчеты цепей светодиодов.
- • Светодиодные матрицы.
- • Тестирование светодиодов.
- Раздел 2.6 Лазерные диоды.
- • Лазерный свет.
- • Основы атома.
- • Конструкция лазерного диода.
- • Лазерная накачка.
- • Управление лазерным диодом.
- • Лазерные модули.
- • Лазерная оптика.
- • Классы лазерных диодов.
- Раздел 2.7. Фотодиоды.
- • Основы фотодиодов.
- • Приложения.
- • Конструкция лазерного диода.
- • Лазерная накачка.
- • Управление лазерным диодом.
- • Лазерные модули.
- • Лазерная оптика.
- • Классы лазерных диодов.
- Раздел 2.8 Проверка диодов.
- • Неисправности диодов.
- • Проверка диодов с помощью омметра.
- • Определение соединений диодов.
- • Выявление неисправных диодов.
- Раздел 2.9 Тест диодов.
- • Проверьте свои знания о диодах.
Рисунок 2.0.1. Диоды
Введение
Диоды — одни из самых простых, но наиболее полезных из всех полупроводниковых устройств. Многие типы диодов используются в широком диапазоне приложений.Выпрямительные диоды — жизненно важный компонент в источниках питания, где они используются для преобразования сетевого напряжения переменного тока в постоянное. Стабилитроны используются для стабилизации напряжения, предотвращения нежелательных изменений в подаче постоянного тока в цепи и для подачи точных опорных напряжений для многих схем. Диоды также можно использовать для предотвращения катастрофического повреждения оборудования с батарейным питанием, когда батареи подключены с неправильной полярностью.
Сигнальные диоды также широко используются при обработке сигналов в электронном оборудовании; они используются для получения аудио- и видеосигналов из передаваемых радиочастотных сигналов (демодуляция), а также могут использоваться для формирования и изменения форм сигналов переменного тока (ограничение, ограничение и восстановление постоянного тока).Диоды также встроены во многие цифровые интегральные схемы, чтобы защитить их от опасных скачков напряжения.
Рис. 2.0.2 Обозначения диодных цепей
Светодиодыизлучают многоцветный свет в очень широком диапазоне оборудования от простых индикаторных ламп до огромных и сложных видеодисплеев. Фотодиоды также производят электрический ток из света.
Диоды изготавливаются из полупроводниковых материалов, в основном кремния, с добавлением различных соединений (комбинаций более чем одного элемента) и металлов в зависимости от функции диода.Ранние типы полупроводниковых диодов были сделаны из селена и германия, но эти типы диодов были почти полностью заменены более современными конструкциями кремния.
На рис. 2.0.1 показаны следующие диоды с общим проводом на концах:
1. Три силовых выпрямителя (мостовой выпрямитель для использования с сетевым (линейным) напряжением и два выпрямительных диода сетевого напряжения).
2. Точечный диод (в стеклянной капсуле) и диод Шоттки.
3. Кремниевый малосигнальный диод.
4. Стабилитроны в корпусе из стекла или черной смолы.
5. Подборка светодиодов. Против часовой стрелки от красного: желтый и зеленый светодиоды, инфракрасный фотодиод, 5-миллиметровый теплый белый светодиод и синий светодиод высокой яркости 10 мм.
Обозначения диодных цепей
Диод — односторонний провод. Он имеет два вывода: анод или положительный вывод и катод или отрицательный вывод. В идеале диод будет пропускать ток, когда его анод сделан более положительным, чем его катод, но предотвращать протекание тока, когда его анод более отрицательный, чем его катод.В условных обозначениях схем, показанных на рис. 2.0.2, катод показан в виде стержня, а анод — в виде треугольника. На некоторых принципиальных схемах анод диода может также обозначаться буквой «а», а катод — буквой «к».
В какую сторону протекает ток диода?
Обратите внимание на рис. 2.0.2, что обычный ток течет от положительной (анодной) клеммы к отрицательной (катодной) клемме, хотя движение электронов (электронный поток) происходит в противоположном направлении, от катода к аноду.
Конструкция кремниевого диода
Рис. 2.0.3 Кремниевый планарный диод
Современные кремниевые диоды обычно производятся с использованием одной из различных версий планарного процесса, который также используется для изготовления транзисторов и интегральных схем. Многослойная конструкция, используемая в методах Silicon Planar, дает ряд преимуществ, таких как предсказуемые характеристики и надежность, а также является преимуществом для массового производства.
Упрощенный планарный кремниевый диод показан на рис.2.0.3. Использование этого процесса для кремниевых диодов позволяет получить два слоя кремния с различным легированием, которые образуют «PN переход». Нелегированный или «собственный» кремний имеет решеточную структуру из атомов, каждый из которых имеет четыре валентных электрона, но кремний P-типа и кремний N-типа легируют путем добавления относительно очень небольшого количества материала, имеющего атомную структуру с тремя валентными электронами (например, бор или алюминий), чтобы получить P-тип, или пять валентных электронов (например, мышьяк или фосфор), чтобы получить кремний N-типа.Эти легированные версии кремния известны как «примесный» кремний. Кремний P-типа теперь имеет нехватку валентных электронов в своей структуре, что также можно рассматривать как избыток «дырок» или носителей положительного заряда, тогда как слой N-типа легирован атомами, имеющими пять электронов в его валентной оболочке и поэтому имеет избыток электронов, которые являются носителями отрицательного заряда.
Диодный PN переход
Рис. 2.0.4 Слой истощения диода
Когда кремний P- и N-типа объединяются во время производства, создается переход, где встречаются материалы P-типа и N-типа, и отверстия, расположенные рядом с переходом в кремнии P-типа, притягиваются к отрицательно заряженному материалу N-типа на другой стороне. перехода.Кроме того, электроны, близкие к переходу в кремнии N-типа, притягиваются к положительно заряженному кремнию P-типа. Таким образом, вдоль перехода между кремнием P- и N-типа создается небольшой естественный потенциал между полупроводниковым материалом P и N с отрицательно заряженными электронами, которые теперь находятся на стороне P-типа перехода, и положительно заряженными дырками на стороне N соединение. Этот слой носителей заряда противоположной полярности накапливается до тех пор, пока его не будет достаточно, чтобы предотвратить свободное движение любых других дырок или электронов.Из-за этого естественного электрического потенциала на переходе между слоями P и N в PN-переходе образовался очень тонкий слой, который теперь обеднен носителями заряда и поэтому называется обедненным слоем. Поэтому, когда диод подключен к цепи, ток не может течь между анодом и катодом, пока анод не станет более положительным, чем катод, с помощью прямого потенциала или напряжения (V F ), по крайней мере, достаточного для преодоления естественного обратного потенциала соединение.Это значение зависит в основном от материалов, из которых сделаны слои P и N диода, и от количества используемого легирования. Различные типы диодов имеют естественный обратный потенциал в диапазоне примерно от 0,1 В до 2 или 3 В. Кремниевые диоды с PN-переходом имеют потенциал перехода от 0,6 В до 0,7 В
Диод прямой проводимости
Рис. 2.0.5 Диод вперед
Проводимость
Как только напряжение, приложенное к аноду, становится более положительным, чем на катоде, на величину, превышающую потенциал обедненного слоя, начинается прямая проводимость от анода к обычному катоду, как показано на рис.2.0.5.
По мере увеличения напряжения, приложенного между анодом и катодом, прямой ток сначала медленно увеличивается, поскольку носители заряда начинают пересекать обедненный слой, а затем быстро возрастает примерно по экспоненте. Следовательно, сопротивление диода, когда он «включен» или проводит в режиме «прямого смещения», не равно нулю, а очень мало. Поскольку прямая проводимость увеличивается после преодоления потенциала истощения по примерно следующей экспоненциальной кривой, прямое сопротивление (V / I) незначительно изменяется в зависимости от приложенного напряжения.
Диод с обратным смещением
Рис. 2.0.6 Обратный диод
Смещенный
Когда диод смещен в обратном направлении (анод подключен к отрицательному напряжению, а катод — к положительному напряжению), как показано на рис. 2.0.6, положительные отверстия притягиваются к отрицательному напряжению на аноде и вдали от перехода. Точно так же отрицательные электроны притягиваются от перехода к положительному напряжению, приложенному к катоду. Это действие оставляет большую площадь в переходе без каких-либо носителей заряда (положительных дырок или отрицательных электронов) по мере расширения обедненного слоя.Поскольку область перехода теперь обеднена носителями заряда, она действует как изолятор, и по мере того, как более высокие напряжения применяются с обратной полярностью, обедненный слой становится еще шире, чем больше носителей заряда удаляется от перехода. Диод не будет проводить ток при приложенном обратном напряжении (обратном смещении), за исключением очень небольшого «обратного тока утечки» (I R ), который в кремниевых диодах обычно меньше 25 нА. Однако, если приложенное напряжение достигает значения, называемого «обратным напряжением пробоя» (V RRM ), ток в обратном направлении резко возрастает до точки, где, если ток не ограничен каким-либо образом, диод будет разрушен.
I / V характеристики диода
Рис 2.0.7. Типичный диод I / V
Характеристика
Работа диодов, описанная выше, также может быть описана специальным графиком, называемым «характеристической кривой». Эти графики показывают взаимосвязь между фактическими токами и напряжениями, связанными с различными клеммами устройства. Понимание этих графиков помогает понять, как работает устройство.
Для диодов характеристическая кривая называется ВАХ, поскольку она показывает взаимосвязь между напряжением, приложенным между анодом и катодом, и результирующим током, протекающим через диод.Типичная ВАХ показана на рис. 2.0.7.
Оси графика показывают как положительные, так и отрицательные значения и поэтому пересекаются в центре. Пересечение имеет нулевое значение как для тока (ось Y), так и для напряжения (ось X). Оси + I и + V (верхняя правая область графика) показывают круто возрастающий ток после области начального нулевого тока. Это прямая проводимость диода, когда анод положительный, а катод отрицательный. Первоначально ток не течет, пока приложенное напряжение не превысит потенциал прямого перехода.После этого ток резко возрастает примерно по экспоненте.
Оси -V и -I показывают состояние обратного смещения (нижняя левая область графика). Здесь можно увидеть, что очень небольшой ток утечки увеличивается с увеличением обратного напряжения. Однако, как только достигается обратное напряжение пробоя, обратный ток (-I) резко возрастает.
Начало страницы
Объяснениедиодов — инженерное мышление
Изучите основы работы диодов, а также узнайте, почему и где мы их используем.
Прокрутите вниз, чтобы просмотреть руководство YouTube.
Что такое диод
Пример диодаДиод выглядит примерно так, как на изображении выше, и бывает разных размеров. Обычно они имеют черный цилиндрический корпус с полосой на одном конце, а также несколько выводов, которые позволяют нам подключить его в цепь. Этот конец известен как анод, а этот конец — катод, и мы увидим, что это значит, позже в видео.
Вы также можете получить другие формы, такие как стабилитрон или даже светодиод, который представляет собой светоизлучающий диод, но мы не будем рассматривать их в этой статье.
Другие примеры диодовДиод позволяет току течь только в одном направлении.
Представим себе водопровод с установленным поворотным клапаном. Когда вода течет по трубе, она толкает распашную заслонку и продолжает течь. Однако, если вода меняет направление, вода закроет заслонку и не сможет течь. Следовательно, вода может течь только в одном направлении.
Водопроводная трубаЭто очень похоже на диод, мы используем их для управления направлением тока в цепи.
Теперь мы анимировали это с помощью потока электронов, в котором электроны перетекают от отрицательного к положительному. Однако в электронике традиционно используется обычный поток, который изменяется от положительного к отрицательному. Обычный ток, вероятно, легче понять, вы можете использовать любой, на самом деле это не имеет значения, просто помните о двух и о том, какой из них мы используем.
Пример светодиодаИтак, если мы подключим диод в простую светодиодную схему, подобную приведенной выше, необходимо отметить, что светодиод будет включаться только тогда, когда диод установлен правильно.Это позволяет току течь только в одном направлении. Таким образом, в зависимости от того, как он установлен, он может действовать как проводник или изолятор.
Полосатый конец подсоединяется к минусу, а черный конец подсоединяется к плюсу, чтобы он действовал как проводник. Это позволяет току течь, мы называем это прямым смещением. Если мы перевернем диод, он будет действовать как изолятор, и ток не будет течь. Мы называем это обратным смещением.
Прямое смещение и обратное смещениеКак работает диод?
Как вы знаете, электричество — это поток свободных электронов между атомами.Мы используем медные провода, потому что в меди много свободных электронов, что облегчает пропускание электричества. Мы используем резину для изоляции медных проводов и обеспечения безопасности, потому что резина является изолятором, а это означает, что ее электроны удерживаются очень плотно и поэтому не могут перемещаться между атомами.
Если мы посмотрим на базовую модель атома металлического проводника, у нас есть ядро в центре, и оно окружено рядом орбитальных оболочек, удерживающих электроны. Каждая оболочка содержит максимальное количество электронов, и электрон должен иметь определенное количество энергии, чтобы попасть в каждую оболочку.Электроны, расположенные дальше всего от ядра, обладают наибольшей энергией. Самая внешняя оболочка известна как валентная оболочка, и проводник имеет от 1 до 3 электронов в своей валентной оболочке.
Атом медиЭлектроны удерживаются на месте ядром. Но есть еще одна оболочка, известная как зона проводимости. Если электрон может достичь этого, он может вырваться из атома и перейти к другому. У атома металла, такого как медь, зона проводимости и валентная оболочка перекрываются, поэтому электрону очень легко двигаться.
Самая внешняя оболочка уплотнена изолятором. Электрону практически нет места для присоединения. Ядро плотно захватывает электроны, а зона проводимости находится далеко, поэтому электроны не могут добраться до нее, чтобы убежать. Следовательно, электричество не может проходить через этот материал.
Однако есть еще один материал, известный как полупроводник. Кремний — это пример полупроводника. У этого материала слишком много электронов во внешней оболочке, чтобы он мог быть проводником, поэтому он действует как изолятор.Однако следует отметить; что, поскольку зона проводимости довольно близка; если мы подадим некоторую внешнюю энергию, некоторые электроны получат достаточно энергии, чтобы совершить прыжок из баллона в зону проводимости и стать свободными. Поэтому этот материал может действовать как изолятор, так и как проводник.
Чистый кремний почти не имеет свободных электронов, поэтому инженеры добавляют в кремний небольшое количество других материалов, чтобы изменить его электрические свойства.
Изолятор, проводник, полупроводник. ПримерМы называем это легированием P-типа и N-типа.Мы объединяем эти легированные материалы в диод.
Итак, внутри диода у нас есть два вывода, анод и катод, которые соединяются с некоторыми тонкими пластинами. Между этими пластинами имеется слой легированного кремния P-типа на анодной стороне и слой легированного кремния N-типа на катодной стороне. Все это покрыто смолой для изоляции и защиты материалов.
Пример диодаДавайте представим, что материал еще не легирован, так что внутри находится чистый кремний. Каждый атом кремния окружен 4 другими атомами кремния.Каждому атому требуется 8 электронов в его валентной оболочке, но атомы кремния имеют только 4 электрона в своей валентной оболочке, поэтому они тайком делят электрон со своим соседним атомом, чтобы получить 8 желаемых. Это известно как ковалентное связывание.
Ковалентное соединениеКогда мы добавляем материал N-типа, такой как фосфор, он займет положение некоторых атомов кремния. В валентной оболочке атома фосфора 5 электронов. Так как атомы кремния делятся электронами, чтобы получить желаемое 8, им не нужен этот дополнительный электрон, поэтому теперь в материале есть дополнительный электрон, и поэтому они могут свободно перемещаться.
Добавление фосфораПри легировании P-типа мы добавляем такой материал, как алюминий. У этого атома всего 3 электрона в валентной оболочке, поэтому он не может предоставить своим 4 соседям один электрон, поэтому одному из них придется обойтись без него. Таким образом, создается дыра, в которой электрон может сидеть и занимать ее.
Итак, теперь у нас есть два легированных куска кремния, один со слишком большим количеством электронов, а другой с недостаточным количеством электронов.
Два материала соединяются, образуя соединение P-N. На этом стыке мы получаем так называемую область истощения.В этой области часть избыточных электронов со стороны N-типа переместится, чтобы занять дырки со стороны P-типа. Эта миграция образует барьер с скоплением электронов и дырок на противоположных сторонах. Электроны заряжены отрицательно, а дырки считаются положительно заряженными. Таким образом, накопление приводит к образованию слегка отрицательно заряженной области и слегка положительно заряженной области. Это создает электрическое поле и предотвращает перемещение большего количества электронов. Разность потенциалов в этой области составляет около 0.7В в типичных диодах.
Пример истощенияКогда мы подключаем источник напряжения через диод с анодом (P-типа), подключенным к плюсу, а катод (N), соединенным с минусом, это создаст прямое смещение и позволит току течь. Источник напряжения должен быть выше барьера 0,7 В, иначе электроны не смогут сделать перемычку.
Источник напряжения должен быть больше, чем барьерКогда мы меняем местами источник питания, положительный вывод подключается к катоду N-типа, а отрицательный — к аноду P-типа.Отверстия притягиваются к отрицательному полюсу, а электроны притягиваются к положительному полюсу, что вызывает расширение барьера, и поэтому диод действует как проводник, предотвращая прохождение тока.
Технические детали
Пример символаДиоды представлены на технических чертежах символом, подобным изображению выше. Полоса на корпусе обозначена вертикальной линией на символе, а стрелка указывает в направлении обычного тока.
Когда мы смотрим на диод, мы видим эти цифры и буквы на корпусе.Они идентифицируют диод, поэтому вы можете найти технические подробности в Интернете.
I-V DiagramУ диода будет I-V диаграмма, как показано выше. На этой диаграмме показаны характеристики тока и напряжения диода, которые построены в виде изогнутой линии. Эта сторона должна работать как проводник, а эта сторона — как изолятор.
Вы можете видеть, что диод может действовать как изолятор только до определенной разности напряжений на нем, если вы превысите это значение, он станет проводником и позволит току течь.Это приведет к выходу из строя диода и, возможно, вашей схемы, поэтому вам необходимо убедиться, что размер диода соответствует применению.
Точно так же диод может выдерживать только определенное напряжение или ток при прямом смещении. Значение разное для каждого диода, вам нужно будет просмотреть эти данные, чтобы узнать подробности.
Диод требует определенного уровня напряжения для открытия и пропуска тока в прямом смещении. Большинство из них около 0,6 В. Если мы подадим напряжение меньше этого, он не откроется, чтобы пропустить ток.Но по мере того, как мы увеличиваем это значение, величина тока, который может протекать, будет быстро увеличиваться.
Пример напряжения диодаДиоды также будут обеспечивать падение напряжения в цепи. Например, когда я добавил этот диод в простую светодиодную схему, установленную на макетной плате, я получил значение падения напряжения 0,71 В.
Почему мы их используем
Как уже упоминалось, мы используем диоды для управления направлением тока в цепи. Это полезно, например, для защиты нашей цепи, если источник питания был подключен сзади на переднюю.Диод может блокировать ток и обеспечивать безопасность наших компонентов.
Мы также можем использовать их для преобразования переменного тока в постоянный. Как вы, возможно, знаете, переменный или переменный ток перемещает электроны вперед и назад, создавая синусоидальную волну с положительной и отрицательной половиной, но постоянный или постоянный ток перемещает электроны только в одном направлении, что дает плоскую линию в положительной области.
Если мы подключим первичную сторону трансформатора к источнику переменного тока, а затем подключим вторичную сторону к одному диоду, диод пропустит только половину волны и будет блокировать ток в противоположном направлении.Таким образом, цепь проходит только положительную половину цикла, поэтому теперь это очень грубая цепь постоянного тока, хотя ток пульсирует, но мы можем это улучшить.
Пример первичной обмоткиОдин из способов сделать это — если мы подключим четыре диода к вторичной стороне, мы создадим двухполупериодный выпрямитель. Диоды контролируют, по какому пути может течь переменный ток, блокируя или позволяя ему проходить. Как мы только что видели, разрешена прохождение положительной половины синусоидальной волны, но на этот раз разрешено прохождение и отрицательной половины, хотя это было инвертировано, чтобы превратить ее также в положительную половину.Это дает нам лучшую подачу постоянного тока, потому что пульсации значительно уменьшаются. Но мы все еще можем улучшить это, мы просто добавляем несколько конденсаторов, чтобы сгладить пульсацию и, в конечном итоге, получить плавную линию, которая точно имитирует постоянный ток.
Четыре подключенных диодаМы подробно рассмотрели, как работают конденсаторы в нашей предыдущей статье, проверьте, что ЗДЕСЬ .
Как проверить диод
Для проверки диода нам понадобится мультиметр с настройкой проверки диодов, символ будет выглядеть так.Мы настоятельно рекомендуем вам иметь в своем наборе инструментов хороший мультиметр, который поможет вам как в обучении, так и в диагностике проблем.
Итак, берем наш диод и мультиметр. Подключаем черный провод к концу диода линией. Затем к противоположному концу подключаем красный провод. Когда мы это сделаем, мы должны получить показание на экране.
Например, диод модели 1N4001 дает показание 0,516 В. Это минимальное напряжение, необходимое для открытия диода и протекания тока.
Если теперь поменять местами провода, подключенные к диодам, мы должны увидеть на экране OL, что означает выход за пределы.Это говорит нам о том, что он не может измерить, это хорошо, потому что он не может замкнуть цепь, поэтому диод выполняет свою работу.
Если мы получаем сообщение о подключении в обеих конфигурациях, значит, компонент неисправен и не должен использоваться.
Неисправный компонент Чтобы проверить диод в цепи на падение напряжения, мы просто переводим мультиметр в функцию напряжения постоянного тока, а затем помещаем черный щуп к концу полосы, а красный щуп к черному концу. Это даст нам значение, например, 0.71V, что является падением напряжения.
LTspice: простой идеализированный диод | Analog Devices
Модели полупроводниковых диодов LTspice необходимы для моделирования, особенно если вы хотите увидеть результаты, которые включают характеристики пробоя и рекомбинационный ток. Однако, несмотря на всю полноту модели полупроводникового диода в LTspice, бывают случаи, когда вам нужна простая модель «идеализированного диода» для быстрого моделирования, например, активной нагрузки, источника тока или токоограничивающего диода.В помощь LTspice представляет идеализированную модель диода.
Чтобы использовать эту идеализированную модель в LTspice, вставьте оператор .model для диода (D) с уникальным именем и определите один или несколько из следующих параметров: Ron, Roff, Vfwd, Vrev или Rrev.
.model MyIdealDiode D (Ron = 1 Roff = 1Meg Vfwd = 1 Vrev = 2)
Идеализированная модель диода в LTspice имеет три линейных области проводимости: включение, выключение и обратный пробой. Прямая проводимость и обратный пробой можно дополнительно указать с помощью параметров ограничения тока Ilimit и revIlimit.
.model MyIdealDiode D (Ron = 1 Roff = 1Meg Vfwd = 1 Vrev = 2 Ilimit = 1 RevIlimit = 1
Кроме того, для плавного переключения между выключенным и проводящим состояниями также могут быть определены параметры эпсилон и реепсилон.
.model MyIdealDiode D (Ron = 1 Roff = 1Meg Vfwd = 1 Vrev = 2 Ilimit = 1 RevIlimit = 1 Epsilon = 1 RevEpsilon = 1)
Квадратичная функция также используется между выключенным и включенным состоянием, так что идеализированная кривая ВАХ диода является непрерывной по значению и наклону, так что переход происходит при напряжении, определяемом значениями эпсилон и реепсилон.
После того, как вы вставили оператор .model в свою схему, вы можете изменить значение символа диода в атрибутах компонента (Ctrl + щелчок правой кнопкой мыши), чтобы оно соответствовало имени, которое вы указали в своем операторе. Для получения дополнительной информации о моделях диодов LTspice см. Разделы справки (F1).
Ради удовольствия, в приведенном ниже примере схемы используется идеализированная модель диода для имитации RDS (ВКЛ) полевого МОП-транзистора в несинхронном понижающем контроллере. Используя идеализированную модель диода вместо традиционного диода Шоттки, можно легко сравнить потери проводимости при синхронном выпрямлении.
.