+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

), скобки и π (число пи), уже поддерживаются на настоящий момент.
  • Из списка выберите единицу измерения переводимой величины, в данном случае ‘микрофарад [мкФ]’.
  • И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘пикофарад [пФ]’.
  • После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.

  • С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘644 микрофарад’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘микрофарад’ или ‘мкФ’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Ёмкость’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение.

    Как вариант, преобразуемое значение можно ввести следующим образом: ’88 мкФ в пФ‘ или ’28 мкФ сколько пФ‘ или ’53 микрофарад -> пикофарад‘ или ’52 мкФ = пФ‘ или ’87 микрофарад в пФ‘ или ’27 мкФ в пикофарад‘ или ’64 микрофарад сколько пикофарад‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.

    Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(44 * 40) мкФ’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии. 3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

    Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 9,999 999 909 ×1025. В этой форме представление числа разделяется на экспоненту, здесь 25, и фактическое число, здесь 9,999 999 909. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 9,999 999 909 E+25. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 99 999 999 090 000 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.

    Содержание

    Таблица маркировки конденсаторов

    Таблица маркировки конденсаторов

    Емкость конденсаторов может измеряться в микрофарадах (uF), нанофарадах (nF), пикофарадах (pF) и обозначаеться специальным кодом. Данная таблица поможет вам разобраться в маркировке обозначений при различных измерительных номиналах и подобрать нужные аналоги для замены. Существует универсальный измерительный прибор для радиокомпонентов. Может измерять индуктивности, ESR и потери электролитических конденсаторов. Проверяет и транзисторы (включая MOSFET), диоды, стабилитроны, кварцы. Тип деталей определяется автоматически и выводит значения на дисплей. В этом обзоре ESR тестер я описывал этот прибор.

     

    uF (мкФ) nF (нФ) pF (пФ) Code (Код)
    1uF 1000nF 1000000pF 105
    0. 82uF 820nF 820000pF 824
    0.8uF 800nF 800000pF 804
    0.7uF 700nF 700000pF 704
    0.68uF 680nF 680000pF 624
    0.6uF 600nF 600000pF 604
    0.56uF 560nF 560000pF 564
    0.5uF 500nF 500000pF 504
    0.47uF 470nF 470000pF 474
    0.4uF 400nF 400000pF 404
    0.39uF 390nF 390000pF 394
    0.33uF 330nF 330000pF 334
    0.3uF 300nF 300000pF 304
    0. 27uF 270nF 270000pF 274
    0.25uF 250nF 250000pF 254
    0.22uF 220nF 220000pF 224
    0.2uF
    200nF
    200000pF 204
    0.18uF 180nF 180000pF 184
    0.15uF 150nF 150000pF 154
    0.12uF 120nF 120000pF 124
    0.1uF 100nF 100000pF 104
    0.082uF 82nF 82000pF 823
    0.08uF 80nF 80000pF 803
    0.07uF 70nF 70000pF 703
    0.068uF 68nF 68000pF 683
    0. 06uF 60nF 60000pF 603
    0.056uF 56nF 56000pF 563
    0.05uF 50nF 50000pF 503
    0.047uF 47nF 47000pF 473
    0.04uF 40nF 40000pF 403
    0.039uF 39nF 39000pF 393
    0.033uF 33nF 33000pF 333
    0.03uF 30nF 30000pF 303
    0.027uF 27nF 27000pF 273
    0.025uF 25nF 25000pF 253
    0.022uF 22nF 22000pF 223
    0.02uF 20nF 20000pF 203
    0. 018uF 18nF 18000pF 183
    0.015uF 15nF 15000pF 153
    0.012uF 12nF 12000pF 123
    0.01uF 10nF 10000pF 103
    0.0082uF 8.2nF 8200pF 822
    0.008uF 8nF 8000pF 802
    0.007uF 7nF 7000pF 702
    0.0068uF 6.8nF 6800pF 682
    0.006uF 6nF 6000pF 602
    0.0056uF 5.6nF 5600pF 562
    0.005uF 5nF 5000pF 502
    0.0047uF 4. 7nF 4700pF 472
    0.004uF 4nF 4000pF 402
    0.0039uF 3.9nF 3900pF 392
    0.0033uF 3.3nF 3300pF 332
    0.003uF 3nF 3000pF 302
    0.0027uF 2.7nF 2700pF 272
    0.0025uF 2.5nF 2500pF 252
    0.0022uF 2.2nF 2200pF 222
    0.002uF 2nF 2000pF 202
    0.0018uF 1.8nF 1800pF 182
    0.0015uF 1.5nF 1500pF 152
    0.0012uF 1.2nF 1200pF 122
    0. 001uF 1nF 1000pF 102
    0.00082uF 0.82nF 820pF 821
    0.0008uF 0.8nF 800pF 801
    0.0007uF 0.7nF 700pF 701
    0.00068uF 0.68nF 680pF 681
    0.0006uF 0.6nF 600pF 621
    0.00056uF 0.56nF 560pF 561
    0.0005uF 0.5nF 500pF 52
    0.00047uF 0.47nF 470pF 471
    0.0004uF 0.4nF 400pF 401
    0.00039uF 0.39nF 390pF 391
    0.00033uF 0. 33nF 330pF 331
    0.0003uF 0.3nF 300pF 301
    0.00027uF 0.27nF 270pF 271
    0.00025uF 0.25nF 250pF 251
    0.00022uF 0.22nF 220pF 221
    0.0002uF 0.2nF 200pF 201
    0.00018uF 0.18nF 180pF 181
    0.00015uF 0.15nF 150pF 151
    0.00012uF 0.12nF 120pF 121
    0.0001uF 0.1nF 100pF 101
    0.000082uF 0.082nF 82pF 820
    0.00008uF 0. 08nF 80pF 800
    0.00007uF 0.07nF 70pF 700
    0.000068uF 0.068nF 68pF 680
    0.00006uF 0.06nF 60pF 600
    0.000056uF 0.056nF 56pF 560
    0.00005uF 0.05nF 50pF 500
    0.000047uF 0.047nF 47pF 470
    0.00004uF 0.04nF 40pF 400
    0.000039uF 0.039nF 39pF 390
    0.000033uF 0.033nF 33pF 330
    0.00003uF 0.03nF 30pF 300
    0.000027uF 0. 027nF 27pF 270
    0.000025uF 0.025nF 25pF 250
    0.000022uF 0.022nF 22pF 220
    0.00002uF 0.02nF 20pF 200
    0.000018uF 0.018nF 18pF 180
    0.000015uF 0.015nF 15pF 150
    0.000012uF 0.012nF 12pF 120
    0.00001uF 0.01nF 10pF 100
    0.000008uF 0.008nF 8pF 080
    0.000007uF 0.007nF 7pF 070
    0.000006uF 0.006nF 6pF 060
    0.000005uF 0. 005nF 5pF 050
    0.000004uF 0.004nF 4pF 040
    0.000003uF 0.003nF 3pF 030
    0.000002uF 0.002nF 2pF 020
    0.000001uF 0.001nF 1pF 010

    Очень часто для проведения ремонтных работ в электронных устройствах, необходимо иметь в запасе конденсаторы различных номиналов. Так как в магазине зачастую на все случаи жизни приобрести нет возможности, поэтому в большинстве случаев заказываю у китайских товарищей на площадке Aliexpress. В продаже имеются также в большем асортименте электролитические конденсаторы. Можно приобрести набором по 10-20 различных номиналов.

     

    Конденсаторы на Aliexpress

    Автор: silver от 14-04-2017, посмотрело: 92258

    Категория: Ремонт

    Комментарии: 0

    Оставить комментарии к этой записи

    Конденсатор 10n это сколько — Морской флот

    Очень важно знать емкость того или иного конденсатора, а под рукой не всегда оказываются измерительные приборы с помощью которых можно эту емкость узнать. Специально для этих случаев были придуманы кодовые маркировки. Существую 4 основных способа маркировки конденсаторов:

    • Кодовая маркировка 3 цифрами;
    • Кодовая маркировка 4 цифрами;
    • Буквенно цифровая маркировка;
    • Специальная маркировка для планарных конденсаторов.

    Кодовая маркировка конденсаторов 3 цифрами

    К примеру конденсатор с обозначением 153 означает что его емкость составляет 15000 пФ.

    КодПикофарады, пФ, pFНанофарады, нФ, nFМикрофарады, мкФ, μF
    1091.0 пФ0.0010нф
    1591.5 пФ0.0015нф
    2292.2 пФ0.0022нф
    3393.3 пФ0.0033нф
    4794. 7 пФ0.0048нф
    6896.8 пФ0.0068нФ
    10010 пФ0.01 нФ
    15015 пФ0.015 нФ
    22022 пФ0.022 нФ
    33033 пФ0.033 нФ
    47047 пФ0.047 нФ
    68068 пФ0.068 нФ
    101100 пФ0.1 нФ
    151150 пФ0.15 нФ
    221220 пФ0.22 нФ
    331330 пФ0. 33 нФ
    471470 пФ0.47 нФ
    681680 пФ0.68 нФ
    1021000 пФ1 нФ
    1521500 пФ1.5 нФ
    2222200 пФ2.2 нФ
    3323300 пФ3.3 нФ
    4724700 пФ4.7 нФ
    6826800 пФ6.8 нФ
    10310000 пФ10 нФ0.01 мкФ
    15315000 пФ15 нФ0. 015 мкФ
    22322000 пФ22 нФ0.022 мкФ
    33333000 пФ33 нФ0.033 мкФ
    47347000 пФ47 нФ0.047 мкФ
    68368000 пФ68 нФ0.068 мкФ
    104100000 пФ100 нФ0.1 мкФ
    154150000 пФ150 нФ0.15 мкФ
    224220000 пФ220 нФ0.22 мкФ
    334330000 пФ330 нФ0. 33 мкФ
    474470000 пФ470 нФ0.47 мкФ
    684680000 пФ680 нФ0.68 мкФ
    1051000000 пФ1000 нФ1 мкФ

    Кодовая маркировка конденсаторов 4 цифрами

    При маркировки конденсаторов этим способом важно запомнить что полученное значение будет измеряться в пикоФарадах. К примеру маркировка конденсатора 1002 будет расшифровываться следующим образом: 1002 = 100*10 2 пФ = 10000 пФ = 10.0 нФ. Последняя цифра это показатель степени по основанию 10. А первые три это число которое необходимо умножить на 10 возведенную в определенную степень.

    Буквенно-цифровая маркировка

    В данном случае вместо запятой ставится соответсвующая единица измерения (пФ, нФ, мкФ).

    Пример: 10п или 10p = 10 пФ, 4n7 или 4н7 = 4,7 нФ, μ22 = 0.22 мкФ.

    Вожно запомнить что буква «п» очень похожа на «n» и не нужно их путать. Что довольно часто делают начинающие радиолюбители.

    Огромное разнообразие конденсаторов позволяет использовать их практически в любой схеме. Для правильного подбора параметров электрической сети необходимо четко владеть знаниями маркировки конденсаторов, которые имеют ключевое значение. Сложность возникает из-за того, что она разнится в большом количестве случаев – на нее влияет производитель, страна-экспортер, вид и параметры самого конденсатора, и даже его размеры.

    В данной статье рассмотрим основные параметры конденсаторов, которые влияют на их маркировку, а также научимся правильно читать значения, нанесенные производителем даже на самые крохотные изделия.

    Параметры конденсаторов

    Эти устройства предназначены для накопления электрического заряда. Емкость измеряется в специальных единицах, именуемых фарадами (Ф, или F). Однако 1 фарад – колоссальная величина, которая не используется в радиотехнике. Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион. Единица обозначается как мкФ практически на всех типах конденсаторов. В теоретических расчетах иногда можно увидеть миллифарад (мФ, mF), что равняется фараду, деленному на тысячу. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10 -9 и 10 -12 фарад. Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений.

    Типы маркировок

    На данный момент производителями используется несколько типов, которые могут располагаться на корпусе как по отдельности, так и взаимозаменяемыми значениями. Все значения ниже будут исключительно теоретическими, предоставленными для наглядного примера.

    • Самый простой тип маркировки – никаких шифров и табличных замещений, емкость напрямую пишется на корпусе, что без лишних движений сразу предоставляет конечному пользователю реальные параметры. И такой способ использовался бы везде, если бы не его громоздкость – полностью написать емкость получится только на довольно больших изделиях, иначе рассмотреть надпись будет невозможно даже с помощью лупы. Например: запись 100 µF±6% означает, что данный конденсатор имеет емкость 100 микрофарад с амортизацией в 6% от общей емкости, что равно значению 94–106 микрофарад. Также допускается использование маркировки вида 100 µF +8%/-10%, что означает неравнозначную амортизацию, равную 90–108 микрофарад. Это самый простой и понятный способ, однако такая маркировка очень громоздкая, поэтому применяется на больших и очень емких конденсаторах.
    • Цифровая маркировка конденсаторов (а также численно-буквенная) используется в тех случаях, когда маленькая площадь изделия не позволяет поместить подробную запись о емкости. Поэтому определенные значения заменяются обычными цифрами и латинскими буквами, которые поочередно расшифровываются для получения полной информации.

    Все очень просто – если используются только цифры (а на подобных изделиях их обычно три штуки), то расшифровывать нужно следующим образом:

    • первые две цифры обозначают первые две цифры емкости;
    • третья цифра обозначает количество нулей, которое необходимо дописать после первых двух цифр;
    • такие конденсаторы всегда измеряются в пикофарадах.

    Возьмем для примера первый вариант с картинки выше с записью 104. Первые две цифры так и оставляем – 10. К ним приписываем количество нулей, обозначенных третьей цифрой, то есть 4. Получаем значение в 100 000 пикофарад. Возвращаемся к таблице в начале статьи, уменьшаем количество нулей и получаем приемлемое значение в 100 микрофарад.

    Если используется одна или две цифры, они так и остаются. Например, обозначения 5 и 15 обозначают 5 и 15 пикофарад соответственно. Маркировка .55 равна 0.55 микрофарад.

    Интересная запись выполняется с использованием букв либо вместо точки, либо как другой величины. Например, 8n2 обозначает 8.2 нанофарад, когда как n82 означает 0.82 нанофарад. Для определенного класса конденсаторов в конце может дописываться дополнительная кодовая маркировка, например, 100V.

    • Маркировка керамических конденсаторов численно-буквенным способом является стандартом для этих изделий. Здесь используются точно такие же алгоритмы шифрования, а сами надписи физически наносятся производителем на керамическую поверхность.
    • Устаревшим, однако все еще используемым вариантом, считается цветовая индикация. Она применялась в советском производстве для упрощения считывания маркировки даже на очень маленьких изделиях. Минус в том, что запомнить сходу такую таблицу достаточно проблематично, поэтому желательно иметь ее под рукой, по крайней мере, поначалу. Цвета наносятся на конденсаторы, где маркировка выполняется в виде монотонных полосок. Считываются следующим образом:
    • первые два цвета означают емкость в пикофарадах;
    • третий цвет показывает количество нулей, которые необходимо дописать;
    • четвертый и пятый цвета соответственно показывают возможный допуск и номинал подаваемого напряжения на изделие.
    ЦветЗначение
    Черный
    Коричневый1
    Красный2
    Оранжевый3
    Желтый4
    Зеленый5
    Голубой6
    Фиолетовый7
    Серый8
    Белый9
    • Маркировка импортных конденсаторов выполняется аналогичными способами, только вместо кириллицы может использоваться латиница. Например, на отечественных вариантах может встречаться 5мк1, что означает 5.1 микрофарад. Тогда как на импортных это значение будет выглядеть как 5µ Если запись совершенно непонятна, то можно обратиться к официальному производителю за разъяснениями, скорее всего на сайте есть таблицы или программа, которые расшифровывают его маркировку. Однако это встречается только в исключительных случаях и редко попадается.

    Заключение

    Чем меньше конденсатор, тем более компактной записи он требует. Однако современное производство способно нанести на корпус достаточно маленькие значения, расшифровка которых выполняется вышеописанными способами. Внимательно проверяйте полученные значения во избежание поломки собранной электрической цепи.

    Кроме буквенно-цифровой маркировки применяется способ цифровой маркировки тремя или четырьмя цифрами по стандартам IEC (табл. 2.5, 2.6).

    При таком способе маркировки первые две или три цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей. При обозначении емкостей менее 10 пФ последней цифрой может быть «9» (109 = 1 пФ), при обозначении емкостей 1 пФ и менее первой цифрой будет «0» (010 = 1 пФ). В качестве разделительной запятой используется буква R (0 R 5 = 0,5 пФ).

    При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка: 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ. В случае необходимости маркировки дробных значений емкости в качестве разделительной запятой ис­пользуется буква R : R 1 — 0,1 мкФ, R 22 — 0,22 мкФ, 3 R 3 — 3,3 мкФ (при обозначении емкости в мкФ перед буквой R цифра 0 не ставится, а она ставится только при обозначении емкостей менее 1 пФ).

    После обозначения емкости может быть нанесен буквенный символ, обозначаю­ щий допустимое отклонение емкости конденсатора в соответствии с табл. 2.4.

    Таблица 2.5. Кодировка номинальной емкости конденсаторов тремя цифрами

    Пикофарады ( пФ ; pF)

    Нанофарады ( нФ ; nF)

    КОД

    Емкость

    Пикофарады ( пф ; pF)

    Нанофарады ( нФ ; nF)

    Микрофарады ( мкФ ; mF)

    Код

    Емкость

    Пикофарады ( пФ ; pF)

    Нанофарады ( нФ ; nF)

    Микрофарады ( мкФ

    ТКЕ (температурный коэффициент емкости) — параметр конденсатора, который характеризует относительное изменение емкости от номинального значения при изменении температуры окружающей среды. Этот параметр принято выражать в миллионных долях емкости конденсатора на градус
    (10/-6 / °С). ТКЕ может быть положительным (обозначается буквой «П» или «Р»), отрицательным
    («М» или « N »), близким к нулю («МП») или ненормированным («Н»).

    Конденсаторы изготавливаются с различными по ТКЕ типами диэлектриков: группы NPO , X 7 R , Z 5 U , Y 5 V и другие. Диэлектрик группы NPO ( COG ) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильно­стью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовлен­ ные с применением этого диэлектрика, наиболее дорогостоящие. Диэлектрик группы X 7 R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность.

    Диэлектрики групп Z 5 U и Y 5 V имеют очень высокую диэлектрическую проница­ емость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющие значительный разброс параметров. SMD конденсаторы с диэлектриками групп X 7 R и Z 5 U используются в цепях общего назначения.

    Радиодетали, приборы, диски, литература почтой.

    Скачать бесплатно схемы,электронные книги (ebook) по радиоэлектронике, схемы для начинающих, радиотехника для начинающих схемы ТВ бесплатно, схемы управления, радиоустройств
    блоков питания, схемы усилителей мощности.
    Справочники радиолюбителя, справочники микросхемы
    справочники электронных компонентов – диоды, тиристоры, транзисторы, конденсаторы, datasheet электронных компонентов.

    Справочники и учебный материал (бесплатно)

    Введение в электронику. Конденсаторы

    Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

    Доброго дня уважаемые радиолюбители!
    Приветствую вас на сайте “Радиолюбитель“

    Конденсаторы

    Надо сказать, что конденсатор, как и резистор, можно увидеть во многих устройствах. Как правило, простейший конденсаторэто две металлических пластинки и воздух между ними. Вместо воздуха может быть фарфор, слюда или другой материал, который не проводит ток. Если резистор пропускает постоянный ток, то через конденсатор он не проходит. А переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где надо отделить постоянный ток от переменного.


    Конденсаторы бывают постоянные, подстроечные, переменные и электролитические. Кроме этого, они отличаются материалом между пластинами и внешней конструкцией. Существуют конденсаторы воздушные, слюдяные, керамические, пленочные и т.п. Применение тех или иных видов конденсаторов обычно описано в сопровождающей документации к принципиальной схеме. Некоторые конденсаторы постоянной емкости и их обозначение на принципиальной схеме показаны на Рис.1.

    Основной параметр конденсатора – емкость. Она измеряется в микро-, нано— и пикофарадах. На схемах Вы встретите все три единицы измерения. Обозначаются они следующим образом: микрофарады – мКф или мFнанофарады – нф, Н или п, пикофарады – пф или pf. Чаще буквенное обозначение пикофарад не указывают ни на схемах, ни на самой радиодетали, т.е. обозначение 27, 510 подразумевают 27 пф, 510 пф. Чтобы проще разбираться в емкости, запомните следующее: 0,001 мкф = 1 нф, или 1000 пф.

    В отечественной электронике применяется буквенно-цифровая маркировка конденсаторов. Если емкость выражают целым числом, то буквенное обозначение емкости ставят после этого числа, например: 12П (12 пф) , 15Н (15 нф = 15 000 пф, или 0,015 мкф), ЮМ (10 мкф). Чтобы выразить номинальную емкость десятичной дробью, буквенное обозначение единицы емкости размещают перед числом: Н15 (0,15 нф = 150 пф) , М22 (0,22 мкф). Для выражения емкости конденсатора целым числом с десятичной дробью буквенное обозначение единицы ставят между целым числом и десятичной дробью, заменяя ее запятой, например: 1П2 (1,2 пф) , 4Н7 (4,7 нф = 4700 пф), 1М5 (1,5 мкф).
    Буквенно-цифровая маркировка конденсаторов используется и в зарубежной электронике. Она нашла широкое применение на конденсаторах большой емкости. Например, надпись 0,47 |iF = 0,47 мкф. Не забыли разработчики и о цветовой маркировке, которая может содержать полосы, кольца или точки. Маркируемые параметры: номинальная емкостьмножитель; допускаемое отклонение напряжения; температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение. Определить емкость можно при помощи следующей таблицы.


    Некоторые примеры цветовой маркировки постоянных конденсаторов показаны на Рис. 2.


    Кроме буквенно-цифровой и цветовой маркировки применяется способ цифровой маркировки конденсаторов тремя или четырьмя цифрами (международный стандарт).  В случае трехзначной маркировки первые две цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра – количество нулей (здесь обращаю ваше внимание на маркировку конденсаторов емкостью менее 10 пикофарад: последней цифрой в этом случае может быть девятка):


    (в таблице ошибка, должно быть: 10010 пикофарад0,01 нанофарада0,00001 мкф(!))



    При кодировании четырехзначным числом последняя цифра так же указывает количество нулей, а первые три — емкость в пикофарадах (pF):


    Некоторые примеры цифровой маркировки конденсаторов представлены на Рис. 3.


    Среди большого разнообразия конденсаторов постоянной емкости особое место занимают электролитические конденсаторы. Сегодня чаще всего можно услышать название оксидные конденсаторы, т.к. в них используется оксидный диэлектрик.  Такие конденсаторы выпускают большой емкости – от 0,5 до 10000 мкф. Оксидные конденсаторы полярны, поэтому на принципиальных схемах для них указывают не только емкость, но и знак ” + ” (плюс), а на самом конденсаторе: в зарубежном варианте нанесен знак “-“, в отечественном устаревшем – ” + ” . Кроме этого, на принципиальных схемах указывают и максимальное напряжение, на котором их можно использовать. Например, надпись 5,0×10 В означает, что конденсатор емкостью 5 мкф надо взять на напряжение не ниже 10 В.

    Многие начинающие бояться применять конденсаторы на большее напряжение, чем указанное в схемах. А зря! Возьмем, к примеру, устройство с питанием 9В. Здесь необходимо использовать конденсатор на напряжение не ниже 10В, но лучше – 16В. Дело в том, что “питание” не застраховано от скачков. А для конденсаторов резкие перепады в сторону увеличения приравниваются к смерти. Поэтому, если Вы примените электролит на напряжение 50В, 160В или еще большее, хуже работать устройство не будет! Разве что размеры увеличатся: чем больше напряжение конденсатора, тем больше его размеры.

    Оксидные конденсаторы обладают неприятным свойством терять емкость – “высыхать” , что является одной из основных причин отказов радиоаппаратуры, находящейся в длительной эксплуатации. Такой неприятной особенностью в частности обладают отечественные электролиты, особенно старые. Поэтому старайтесь ставить зарубежные новые конденсаторы.
    Выпускают производители и неполярные оксидные конденсаторы, хотя применяются они довольно редко. Существую еще и танталовые конденсаторы, которые отличаются долговечностью, высокой стабильностью рабочих характеристик, устойчивостью к повышению температуры. При небольшом внешнем виде они могут обладать достаточно большой емкостью.
    Линия, нанесенная на корпусе танталового конденсатора, означает плюсовой вывод, а не минус, как многие думают.
    Некоторые разновидности оксидных конденсаторов показаны на Рис. 4.


    Особенностью подстроечных и переменных конденсаторов есть изменение емкости при обращении оси, которая выступает наружу. Раньше они широко применялись  радиоприемниках. Именно конденсатор переменной емкости крутили Ваши родители для настройки на нужную радиостанцию. Некоторые подстроечные и переменный конденсаторы показаны на Рис. 5.


    Для подстроечных или переменных конденсаторов на схеме указывают крайние значения емкости, которые создаются, если вращать ось конденсатора от одного крайнего положения к другому или вертеть по кругу (как у подстроечных конденсаторов). Например, надпись 5-180 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пф, а в другом – 180 пф. При плавном возвращении с одного положения в другое емкость конденсатора также плавно будет изменяться от 5 до 180 пф или от 180 до 5 пф. Сегодня не используют конденсаторы переменной емкости, так как их вытеснили варикапы – полупроводниковый элемент, емкость которого зависит от приложенного напряжения.


    Перейти к следующей статье: Диоды



    Конденсатор 100n это сколько

    Конденсатор можно сравнить с небольшим аккумулятором, он умеет быстро накапливать электрическую энергию и так же быстро ее отдавать. Основной параметр конденсатора – это его емкость (C). Важным свойством конденсатора, является то, что он оказывает переменному току сопротивление, чем больше частота переменного тока, тем меньше сопротивление. Постоянный ток конденсатор не пропускает.

    Как и резисторы, конденсаторы бывают постоянной емкости и переменной емкости. Применение конденсаторы находят в колебательных контурах, различных фильтрах, для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

    Основная единица измерения емкости – фарад (Ф) – это очень большая величина, которая на практике не применяется. В электронике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). 1 мкФ равен одной миллионной доле фарада, а 1 пФ – одной миллионной доле микрофарада.

    Обозначение конденсатора на схеме

    На электрических принципиальных схемах конденсатор отображается в виде двух параллельных линий символизирующих его основные части: две обкладки и диэлектрик между ними. Возле обозначения конденсатора обычно указывают его номинальную емкость, а иногда его номинальное напряжение.

    Номинальное напряжение – значение напряжения указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора. Если напряжение в цепи будет превышать номинальное напряжение конденсатора, то он быстро выйдет из строя, может даже взорваться. Рекомендуется ставить конденсаторы с запасом по напряжению, например: в цепи напряжение 9 вольт – нужно ставить конденсатор с номинальным напряжением 16 вольт или больше.

    Электролитические конденсаторы

    Для работы в диапазоне звуковых частот, а так же для фильтрации выпрямленных напряжений питания, необходимы конденсаторы большой емкости. Называются такие конденсаторы – электролитическими. В отличие от других типов электролитические конденсаторы полярны, это значит, что их можно включать только в цепи постоянного или пульсирующего напряжения и только в той полярности, которая указана на корпусе конденсатора. Не выполнение этого условия приводит к выходу конденсатора из строя, что часто сопровождается взрывом.

    Температурный коэффициент емкости конденсатора (ТКЕ)

    ТКЕ показывает относительное изменение емкости при изменении температуры на один градус. ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения на корпусе.

    Маркировка конденсаторов

    Емкость от 0 до 9999 пФ может быть указана без обозначения единицы измерения:

    22 = 22p = 22П = 22пФ

    Если емкость меньше 10пФ, то обозначение может быть таким:

    Так же конденсаторы маркируют в нанофарадах (нФ), 1 нанофарад равен 1000пФ и микрофарадах (мкФ):

    10n = 10Н = 10нФ = 0,01мкФ = 10000пФ

    Н18 = 0,18нФ = 180пФ

    1n0 = 1Н0 = 1нФ = 1000пФ

    330Н = 330n = М33 = m33 = 330нФ = 0,33мкФ = 330000пФ

    100Н = 100n = М10 = m10 = 100нФ = 0,1мкФ = 100000пФ

    1Н5 = 1n5 = 1,5нФ = 1500пФ

    4n7 = 4Н7 = 0,0047мкФ = 4700пФ

    Цифровая маркировка конденсаторов

    Если код трехзначный, то первые две цифры обозначают значение, третья – количество нулей, результат в пикофарадах.

    Например: код 104, к первым двум цифрам приписываем четыре нуля, получаем 100000пФ = 100нФ = 0,1мкФ.

    Если код четырехзначный, то первые три цифры обозначают значение, четвертая – количество нулей, результат тоже в пикофарадах.

    4722 = 47200пФ = 47,2нФ

    Параллельное соединение конденсаторов

    Емкость конденсаторов при параллельном соединении складывается.

    Последовательное соединение конденсаторов

    Общая емкость конденсаторов при последовательном соединении рассчитывается по формуле:

    Если последовательно соединены два конденсатора:

    Если последовательно соединены два одинаковых конденсатора, то общая емкость равна половине емкости одного из них.

    1. Маркировка тремя цифрами.

    В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1. 0пФ).

    кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
    1091.0 пФ
    1591.5 пФ
    2292.2 пФ
    3393.3 пФ
    4794.7 пФ
    6896.8 пФ
    10010 пФ0.01 нФ
    15015 пФ0.015 нФ
    22022 пФ0.022 нФ
    33033 пФ0.033 нФ
    47047 пФ0.047 нФ
    68068 пФ0.068 нФ
    101100 пФ0. 1 нФ
    151150 пФ0.15 нФ
    221220 пФ0.22 нФ
    331330 пФ0.33 нФ
    471470 пФ0.47 нФ
    681680 пФ0.68 нФ
    1021000 пФ1 нФ
    1521500 пФ1.5 нФ
    2222200 пФ2.2 нФ
    3323300 пФ3.3 нФ
    4724700 пФ4.7 нФ
    6826800 пФ6.8 нФ
    10310000 пФ10 нФ0.01 мкФ
    153 15000 пФ15 нФ0. 015 мкФ
    223 22000 пФ22 нФ0.022 мкФ
    333 33000 пФ33 нФ0.033 мкФ
    473 47000 пФ47 нФ0.047 мкФ
    683 68000 пФ68 нФ0.068 мкФ
    104100000 пФ100 нФ0.1 мкФ
    154150000 пФ150 нФ0.15 мкФ
    224220000 пФ220 нФ0.22 мкФ
    334330000 пФ330 нФ0.33 мкФ
    474470000 пФ470 нФ0.47 мкФ
    684680000 пФ680 нФ0. 68 мкФ
    1051000000 пФ1000 нФ1 мкФ

    2. Маркировка четырьмя цифрами.

    Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

    1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

    3. Буквенно-цифровая маркировка.

    При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

    15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

    Очень часто бывает трудно отличить русскую букву «п» от английской «n».

    Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

    0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ

    4. Планарные керамические конденсаторы.

    Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

    N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

    S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

    маркировказначениемаркировказначениемаркировказначениемаркировказначение
    A1.0J2.2S4. 7a2.5
    B1.1K2.4T5.1b3.5
    C1.2L2.7U5.6d4.0
    D1.3M3.0V6.2e4.5
    E1.5N3.3W6.8f5.0
    F1.6P3.6X7.5m6.0
    G1.8Q3.9Y8. 2n7.0
    H2.0R4.3Z9.1t8.0

    5. Планарные электролитические конденсаторы.

    Электролитические SMD конденсаторы маркируются двумя способами:

    1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

    2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

    , по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

    букваeGJACDEVH (T для танталовых)
    напряжение2,5 В4 В6,3 В10 В16 В20 В25 В35 В50 В

    Кодовая маркировка, дополнение

    В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

    А. Маркировка 3 цифрами

    Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

    КодЕмкость [пФ]Емкость [нФ]Емкость [мкФ]
    1091,00,0010,000001
    1591,50,00150,000001
    2292,20,00220,000001
    3393,30,00330,000001
    4794,70,00470,000001
    6896,80,00680,000001
    100*100,010,00001
    150150,0150,000015
    220220,0220,000022
    330330,0330,000033
    470470,0470,000047
    680680,0680,000068
    1011000,10,0001
    1511500,150,00015
    2212200,220,00022
    3313300,330,00033
    4714700,470,00047
    6816800,680,00068
    10210001,00,001
    15215001,50,0015
    22222002,20,0022
    33233003,30,0033
    47247004,70,0047
    68268006,80,0068
    10310000100,01
    15315000150,015
    22322000220,022
    33333000330,033
    47347000470,047
    68368000680,068
    1041000001000,1
    1541500001500,15
    2242200002200,22
    3343300003300,33
    4744700004700,47
    6846800006800,68
    105100000010001,0

    * Иногда последний ноль не указывают.

    В. Маркировка 4 цифрами

    Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

    КодЕмкость[пФ]Емкость[нФ]Емкость[мкФ]
    16221620016,20,0162
    47534750004750,475

    С. Маркировка емкости в микрофарадах

    Вместо десятичной точки может ставиться буква R.

    КодЕмкость [мкФ]
    R10,1
    R470,47
    11,0
    4R74,7
    1010
    100100

    D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

    В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

    КодЕмкость
    p100,1 пФ
    Ip51,5 пФ
    332p332 пФ
    1НО или 1nО1,0 нФ
    15Н или 15n15 нФ
    33h3 или 33n233,2 нФ
    590H или 590n590 нФ
    m150,15мкФ
    1m51,5 мкФ
    33m233,2 мкФ
    330m330 мкФ
    1mO1 мФ или 1000 мкФ
    10m10 мФ

    Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

    Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

    А. Маркировка 2 или 3 символами

    Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

    КодЕмкость [мкФ]Напряжение [В]
    А61,016/35
    А7104
    АА71010
    АЕ71510
    AJ62,210
    AJ72210
    AN63,310
    AN73310
    AS64,710
    AW66,810
    СА71016
    СЕ61,516
    СЕ71516
    CJ62,216
    CN63,316
    CS64,716
    CW66,816
    DA61,020
    DA71020
    DE61,520
    DJ62,220
    DN63,320
    DS64,720
    DW66,820
    Е61,510/25
    ЕА61,025
    ЕЕ61,525
    EJ62,225
    EN63,325
    ES64,725
    EW50,6825
    GA7104
    GE7154
    GJ7224
    GN7334
    GS64,74
    GS7474
    GW66,84
    GW7684
    J62,26,3/7/20
    JA7106,3/7
    JE7156,3/7
    JJ7226,3/7
    JN63,36,3/7
    JN7336,3/7
    JS64,76,3/7
    JS7476,3/7
    JW66,86,3/7
    N50,3335
    N63,34/16
    S50,4725/35
    VA61,035
    VE61,535
    VJ62,235
    VN63,335
    VS50,4735
    VW50,6835
    W50,6820/35

    В. Маркировка 4 символами

    Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

    С. Маркировка в две строки

    Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

    Кроме буквенно-цифровой маркировки применяется способ цифровой маркировки тремя или четырьмя цифрами по стандартам IEC (табл. 2.5, 2.6).

    При таком способе маркировки первые две или три цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей. При обозначении емкостей менее 10 пФ последней цифрой может быть «9» (109 = 1 пФ), при обозначении емкостей 1 пФ и менее первой цифрой будет «0» (010 = 1 пФ). В качестве разделительной запятой используется буква R (0 R 5 = 0,5 пФ).

    При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка: 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ. В случае необходимости маркировки дробных значений емкости в качестве разделительной запятой ис­пользуется буква R : R 1 — 0,1 мкФ, R 22 — 0,22 мкФ, 3 R 3 — 3,3 мкФ (при обозначении емкости в мкФ перед буквой R цифра 0 не ставится, а она ставится только при обозначении емкостей менее 1 пФ).

    После обозначения емкости может быть нанесен буквенный символ, обозначаю­ щий допустимое отклонение емкости конденсатора в соответствии с табл. 2.4.

    Таблица 2.5. Кодировка номинальной емкости конденсаторов тремя цифрами

    Пикофарады ( пФ ; pF)

    Нанофарады ( нФ ; nF)

    КОД

    Емкость

    Пикофарады ( пф ; pF)

    Нанофарады ( нФ ; nF)

    Микрофарады ( мкФ ; mF)

    Код

    Емкость

    Пикофарады ( пФ ; pF)

    Нанофарады ( нФ ; nF)

    Микрофарады ( мкФ

    ТКЕ (температурный коэффициент емкости) — параметр конденсатора, который характеризует относительное изменение емкости от номинального значения при изменении температуры окружающей среды. Этот параметр принято выражать в миллионных долях емкости конденсатора на градус
    (10/-6 / °С). ТКЕ может быть положительным (обозначается буквой «П» или «Р»), отрицательным
    («М» или « N »), близким к нулю («МП») или ненормированным («Н»).

    Конденсаторы изготавливаются с различными по ТКЕ типами диэлектриков: группы NPO , X 7 R , Z 5 U , Y 5 V и другие. Диэлектрик группы NPO ( COG ) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильно­стью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовлен­ ные с применением этого диэлектрика, наиболее дорогостоящие. Диэлектрик группы X 7 R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность.

    Диэлектрики групп Z 5 U и Y 5 V имеют очень высокую диэлектрическую проница­ емость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющие значительный разброс параметров. SMD конденсаторы с диэлектриками групп X 7 R и Z 5 U используются в цепях общего назначения.

    Радиодетали, приборы, диски, литература почтой.

    Скачать бесплатно схемы,электронные книги (ebook) по радиоэлектронике, схемы для начинающих, радиотехника для начинающих схемы ТВ бесплатно, схемы управления, радиоустройств
    блоков питания, схемы усилителей мощности.
    Справочники радиолюбителя, справочники микросхемы
    справочники электронных компонентов – диоды, тиристоры, транзисторы, конденсаторы, datasheet электронных компонентов.

    Справочники и учебный материал (бесплатно)

    Маркировка конденсаторов. Кодовая и цветовая маркировака конденсаторов

    Маркировка тремя цифрами.

    код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
    1. 0 пФ 1000 пФ 1 нФ
    1.5 пФ 1500 пФ 1.5 нФ
    2.2 пФ 2200 пФ 2.2 нФ
    3.3 пФ 3300 пФ 3.3 нФ
    4.7 пФ 4700 пФ 4.7 нФ
    6.8 пФ 6800 пФ 6.8 нФ
    10 пФ 0.01 нФ 10000 пФ 10 нФ 0.01 мкФ
    15 пФ 0.015 нФ 15000 пФ 15 нФ 0.015 мкФ
    22 пФ 0. 022 нФ 22000 пФ 22 нФ 0.022 мкФ
    33 пФ 0.033 нФ 33000 пФ 33 нФ 0.033 мкФ
    47 пФ 0.047 нФ 47000 пФ 47 нФ 0.047 мкФ
    68 пФ 0.068 нФ 68000 пФ 68 нФ 0.068 мкФ
    100 пФ 0.1 нФ 100000 пФ 100 нФ 0.1 мкФ
    150 пФ 0.15 нФ 150000 пФ 150 нФ 0.15 мкФ
    220 пФ 0.22 нФ 220000 пФ 220 нФ 0.22 мкФ
    330 пФ 0.33 нФ 330000 пФ 330 нФ 0. 33 мкФ
    470 пФ 0.47 нФ 470000 пФ 470 нФ 0.47 мкФ
    680 пФ 0.68 нФ 680000 пФ 680 нФ 0.68 мкФ
    1000000 пФ 1000 нФ 1 мкФ
    маркировка значение маркировка значение маркировка значение маркировка значение
    A 1.0 J 2.2 S 4.7 a 2.5
    B 1.1 K 2.4 T 5.1 b 3.5
    C 1.2 L 2. 7 U 5.6 d 4.0
    D 1.3 M 3.0 V 6.2 e 4.5
    E 1.5 N 3.3 W 6.8 f 5.0
    F 1.6 P 3.6 X 7.5 m 6.0
    G 1.8 Q 3.9 Y 8.2 n 7.0
    H 2.0 R 4.3 Z 9.1 t 8.0

    «Справочник» справочная информация по различным электронным компонентам : транзисторам , микросхемам , трансформаторам ,конденсаторам , светодиодам и т.д. Вся справочная информация электронных компонентов электронных компонентов .

    · Допуски

    · Кодовая маркировка

    · Допуски

    · Конденсаторы с линейной зависимостью от температуры

    · Конденсаторы с нелинейной зависимостью от температуры

    · Кодовая маркировка

    · Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

    Допуски

    Таблица 1

    *-Для конденсаторов емкостью

    Δ=(δхС/100%)[Ф]

    Пример:


    Конденсаторы с ненормируемым ТКЕ

    Таблица 2

    Конденсаторы с линейной зависимостью от температуры

    Таблица 3

    Обозначение ГОСТ Обозначение международное ТКЕ * Буквенный код Цвет**
    П100 P100 100 (+130…-49) A красный+фиолетовый
    П33 N серый
    МПО NPO 0(+30. .-75) С черный
    М33 N030 -33(+30…-80] Н коричневый
    М75 N080 -75(+30…-80) L красный
    M150 N150 -150(+30…-105) Р оранжевый
    М220 N220 -220(+30…-120) R желтый
    М330 N330 -330(+60…-180) S зеленый
    М470 N470 -470(+60…-210) Т голубой
    М750 N750 -750(+120…-330) U фиолетовый
    М1500 N1500 -500(-250…-670) V оранжевый+оранжевый
    М2200 N2200 -2200 К желтый+оранжевый

    * В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55. ..+85 ° С.

    ** Современная цветовая кодировка в соответствии с EIA. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

    Кодовая маркировка

    А. Маркировка 3 цифрами

    Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

    Таблица 10

    Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
    1,0 0,001 0,000001
    1,5 0,0015 0,000001
    2,2 0,0022 0,000001
    3,3 0,0033 0,000001
    4,7 0,0047 0,000001
    6,8 0,0068 0,000001
    100* 0,01 0,00001
    0,015 0,000015
    0,022 0,000022
    0,033 0,000033
    0,047 0,000047
    0,068 0,000068
    0,1 0,0001
    0,15 0,00015
    0,22 0,00022
    0,33 0,00033
    0,47 0,00047
    0,68 0,00068
    1,0 0,001
    1,5 0,0015
    2,2 0,0022
    3,3 0,0033
    4,7 0,0047
    6,8 0,0068
    0,01
    0,015
    0,022
    0,033
    0,047
    0,068
    0,1
    0,15
    0,22
    0,33
    0,47
    0,68
    1,0

    В. Маркировка 4 цифрами

    Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

    Таблица 11

    В. Маркировка 4 символами

    Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

    С. Маркировка в две строки

    Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

    Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

    http://www.radioradar.net/hand_book/hand_books/conder.html

    Кодовая маркировка

    В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

    Кодировка тремя цифрами

    Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пФ.

    Таблица 1

    * Иногда последний ноль не указывают.

    Кодировка четырьмя цифрами

    Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).

    Таблица 2

    Цветовая маркировка

    На практике для цветового кодирования постоянных конденсаторов используются несколько методик цветовой маркировки

    * Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.

    ** Цвет корпуса указывает на значение рабочего напряжения.

    Вывод «+» может иметь больший диаметр.

    Для маркировки пленочных конденсаторов используют 5 цветных полос или точек:

    Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.

    Маркировка допусков

    В соответствии с требованиями Публикаций 62 и 115-2 IEC (МЭК) для конденсаторов установлены следующие допуски и их кодировка:

    Маркировка ТКЕ

    Маркировка тремя цифрами.

    Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).

    код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
    1. 0 пФ 1000 пФ 1 нФ
    1.5 пФ 1500 пФ 1.5 нФ
    2.2 пФ 2200 пФ 2.2 нФ
    3.3 пФ 3300 пФ 3.3 нФ
    4.7 пФ 4700 пФ 4.7 нФ
    6.8 пФ 6800 пФ 6.8 нФ
    10 пФ 0.01 нФ 10000 пФ 10 нФ 0.01 мкФ
    15 пФ 0.015 нФ 15000 пФ 15 нФ 0.015 мкФ
    22 пФ 0. 022 нФ 22000 пФ 22 нФ 0.022 мкФ
    33 пФ 0.033 нФ 33000 пФ 33 нФ 0.033 мкФ
    47 пФ 0.047 нФ 47000 пФ 47 нФ 0.047 мкФ
    68 пФ 0.068 нФ 68000 пФ 68 нФ 0.068 мкФ
    100 пФ 0.1 нФ 100000 пФ 100 нФ 0.1 мкФ
    150 пФ 0.15 нФ 150000 пФ 150 нФ 0.15 мкФ
    220 пФ 0.22 нФ 220000 пФ 220 нФ 0.22 мкФ
    330 пФ 0.33 нФ 330000 пФ 330 нФ 0. 33 мкФ
    470 пФ 0.47 нФ 470000 пФ 470 нФ 0.47 мкФ
    680 пФ 0.68 нФ 680000 пФ 680 нФ 0.68 мкФ
    1000000 пФ 1000 нФ 1 мкФ

    2. Маркировка четырьмя цифрами.

    Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

    1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.

    3. Буквенно-цифровая маркировка.

    При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

    15п = 15 пФ, 22p = 22 пФ, 2н2 = 2. 2 нФ, 4n7 = 4,7 нФ, μ33 = 0.33 мкФ

    Очень часто бывает трудно отличить русскую букву «п» от английской «n».

    Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

    0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ

    4. Планарные керамические конденсаторы.

    Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

    N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ

    S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ

    маркировка значение маркировка значение маркировка значение маркировка значение
    A 1. 0 J 2.2 S 4.7 a 2.5
    B 1.1 K 2.4 T 5.1 b 3.5
    C 1.2 L 2.7 U 5.6 d 4.0
    D 1.3 M 3.0 V 6.2 e 4.5
    E 1.5 N 3.3 W 6.8 f 5.0
    F 1.6 P 3.6 X 7.5 m 6.0
    G 1.8 Q 3.9 Y 8.2 n 7.0
    H 2.0 R 4.3 Z 9.1 t 8.0

    5. Планарные электролитические конденсаторы.

    Кодовая и цветовая маркировака конденсаторов

    «Справочник» справочная информация по различным электронным компонентам : транзисторам , микросхемам , трансформаторам ,конденсаторам , светодиодам и т.д. Вся справочная информация содержит все, необходимые для подбора электронных компонентов и проведения инженерных расчетов, параметры, а также цоколевку корпусов, типовые схемы включения и рекомендации по использованию электронных компонентов .

    · Допуски

    · Конденсаторы с линейной зависимостью от температуры

    · Конденсаторы с нелинейной зависимостью от температуры

    · Кодовая маркировка

    · Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

    · Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

    · Допуски

    · Температурный коэффициент емкости (ТКЕ)
    Конденсаторы с ненормируемым ТКЕ

    · Конденсаторы с линейной зависимостью от температуры

    · Конденсаторы с нелинейной зависимостью от температуры

    · Кодовая маркировка

    · Кодовая маркировка электролитических конденсаторов для поверхностного монтажа

    · Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

    Допуски

    В соответствии с требованиями Публикаций 62 и 115-2 IEC для конденсаторов установлены следующие допуски и их кодировка:

    Таблица 1

    *-Для конденсаторов емкостью

    Перерасчет допуска из % (δ) в фарады (Δ):

    Δ=(δхС/100%)[Ф]

    Пример:

    Реальное значение конденсатора с маркировкой 221J (0. 22 нФ ±5%) лежит в диапазоне: С=0.22 нФ ± Δ = (0.22 ±0.01) нФ, где Δ= (0.22 х 10 -9 [Ф] х 5) х 0.01 = 0.01 нФ, или, соответственно, от 0.21 до 0.23 нФ.

    Температурный коэффициент емкости (ТКЕ)
    Конденсаторы с ненормируемым ТКЕ

    Таблица 2

    * Современная цветовая кодировка, Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

    Кроме буквенно-цифровой маркировки применяется способ цифровой маркировки тремя или четырьмя цифрами по стандартам IEC (табл. 2.5, 2.6).

    При таком способе маркировки первые две или три цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей. При обозначении емкостей менее 10 пФ последней цифрой может быть «9» (109 = 1 пФ), при обозначении емкостей 1 пФ и менее первой цифрой будет «0» (010 = 1 пФ). В качестве разделительной запятой используется буква R (0 R 5 = 0,5 пФ).

    При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка: 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ. В случае необходимости маркировки дробных значений емкости в качестве разделительной запятой ис­пользуется буква R: R 1 — 0,1 мкФ, R 22 — 0,22 мкФ, 3 R 3 — 3,3 мкФ (при обозначении емкости в мкФ перед буквой R цифра 0 не ставится, а она ставится только при обозначении емкостей менее 1 пФ).

    После обозначения емкости может быть нанесен буквенный символ, обозначаю­ щий допустимое отклонение емкости конденсатора в соответствии с табл. 2.4.

    Таблица 2.5. Кодировка номинальной емкости конденсаторов тремя цифрами

    Пикофарады (пФ; pF)

    Нанофарады (нФ; nF)

    Микрофарады (мкФ)

    Емкость

    Пикофарады ( пф ; pF)

    Нанофарады ( нФ ; nF)

    Микрофарады ( мкФ ; mF)

    Таблица 2. 6. Кодировка номинальной емкости конденсаторов четырьмя цифрами

    Емкость

    Пикофарады (пФ; pF)

    Нанофарады (нФ; nF)

    Микрофарады (мкФ

    ТКЕ (температурный коэффициент емкости) — параметр конденсатора, который характеризует относительное изменение емкости от номинального значения при изменении температуры окружающей среды. Этот параметр принято выражать в миллионных долях емкости конденсатора на градус
    (10/-6 / °С). ТКЕ может быть положительным (обозначается буквой «П» или «Р»), отрицательным
    («М» или « N »), близким к нулю («МП») или ненормированным («Н»).

    Конденсаторы изготавливаются с различными по ТКЕ типами диэлектриков: группы NPO , X 7 R , Z 5 U , Y 5 V и другие. Диэлектрик группы NPO (COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильно­стью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовлен­ ные с применением этого диэлектрика, наиболее дорогостоящие. Диэлектрик группы X 7 R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность.

    Диэлектрики групп Z 5 U и Y 5 V имеют очень высокую диэлектрическую проница­ емость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющие значительный разброс параметров. SMD конденсаторы с диэлектриками групп X 7 R и Z 5 U используются в цепях общего назначения.


    Очень важно знать емкость того или иного конденсатора, а под рукой не всегда оказываются измерительные приборы с помощью которых можно эту емкость узнать. Специально для этих случаев были придуманы кодовые маркировки. Существую 4 основных способа маркировки конденсаторов :

    • Кодовая маркировка 3 цифрами;
    • Кодовая маркировка 4 цифрами;
    • Буквенно цифровая маркировка;
    • Специальная маркировка для планарных конденсаторов.

    Кодовая маркировка конденсаторов 3 цифрами

    К примеру конденсатор с обозначением 153 означает что его емкость составляет 15000 пФ.

    КодПикофарады, пФ, pFНанофарады, нФ, nFМикрофарады, мкФ, μF
    1091.0 пФ 0.0010нф
    1591.5 пФ0.0015нф
    2292.2 пФ0.0022нф
    3393. 3 пФ 0.0033нф
    4794.7 пФ 0.0048нф
    6896.8 пФ 0.0068нФ
    10010 пФ0.01 нФ
    15015 пФ0.015 нФ
    22022 пФ0.022 нФ
    33033 пФ0.033 нФ
    47047 пФ0.047 нФ
    68068 пФ0. 068 нФ
    101100 пФ0.1 нФ
    151150 пФ0.15 нФ
    221220 пФ0.22 нФ
    331330 пФ0.33 нФ
    471470 пФ0.47 нФ
    681680 пФ0.68 нФ
    1021000 пФ1 нФ
    1521500 пФ1. 5 нФ
    2222200 пФ2.2 нФ
    3323300 пФ3.3 нФ
    4724700 пФ4.7 нФ
    6826800 пФ6.8 нФ
    10310000 пФ10 нФ0.01 мкФ
    15315000 пФ15 нФ0.015 мкФ
    223 22000 пФ22 нФ0.022 мкФ
    33333000 пФ33 нФ0.033 мкФ
    47347000 пФ47 нФ0.047 мкФ
    683 68000 пФ68 нФ0.068 мкФ
    104100000 пФ100 нФ0.1 мкФ
    154150000 пФ150 нФ0.15 мкФ
    224220000 пФ220 нФ0.22 мкФ
    334330000 пФ330 нФ0.33 мкФ
    474470000 пФ470 нФ0.47 мкФ
    684680000 пФ680 нФ0.68 мкФ
    1051000000 пФ1000 нФ1 мкФ

    Кодовая маркировка конденсаторов 4 цифрами

    При маркировки конденсаторов этим способом важно запомнить что полученное значение будет измеряться в пикоФарадах. К примеру маркировка конденсатора 1002 будет расшифровываться следующим образом: 1002 = 100*10 2 пФ = 10000 пФ = 10.0 нФ . Последняя цифра это показатель степени по основанию 10. А первые три это число которое необходимо умножить на 10 возведенную в определенную степень.

    Буквенно-цифровая маркировка

    В данном случае вместо запятой ставится соответсвующая единица измерения (пФ, нФ, мкФ).

    Пример: 10п или 10p = 10 пФ, 4n7 или 4н7 = 4,7 нФ, μ 22 = 0.22 мкФ.

    Вожно запомнить что буква «п» очень похожа на «n» и не нужно их путать. Что довольно часто делают начинающие радиолюбители.

    Иногда вместо мкФ используют букву R.

    Например: 6R8 = 6,8 мкФ

    Маркировка планарных керамических конденсаторов

    Такие конденсаторы маркируются двумя буквами, первая это производитель конденсатора, а вторая это значение в пикофарадах в соответствии с таблицей, приведенной ниже.

    параметры и маркировка, перевод величин емкости

    Конденсатором обычно называют устройство, которое обладает способностью накапливать электрический заряд. Конструктивно конденсатор представляет собой два проводника, разделенных диэлектриком.

    Единицей электрической емкости конденсатора в системе СИ является Фарада. Сокращенно обозначается буквой Ф. Названа в честь английского физика Майкла Фарадея.

    В радиоэлектронике используется емкость конденсатора, выраженная через дробные единицы фарад: пикофарад, нанофарад, микрофарад.

    • 1мкФ=10-6 Ф;
    • 1 нФ = 10-9 Ф;
    • 1 пФ = 10-12 Ф;
    • 1 мкФ = 103 нФ = 106 пФ.

    В старой радиотехнической литературе использовалась единица емкости — сантиметр: 1 см = 1,11 * 10-12 Ф = 1,11 * 10-6 мкФ = 1,11 пФ.

    Конденсаторы, как и резисторы бывают постоянные и переменные (КПЕ — конденсатор переменной емкости). Переменные конденсаторы бывают в виде нескольких блоков и подстроечные.

    В зависимости от материала диэлектриков современные конденсаторы делятся на следующие типы:

    • бумажные;
    • вакуумные;
    • воздушные;
    • керамические;
    • лакопленочные;
    • металлобумажные;
    • оксидные;
    • пленочные;
    • слюдяные;
    • электролитические.

    Основные параметры

    Основными параметрами конденсаторов являются:

    • номинальная емкость (Сном), которая обычно указывается на корпусе конденсатора,
    • температурный коэффициент емкости (ТКЕ)
    • номинальное напряжение (Uном).

    Номинальное напряжение — это максимальное допустимое постоянное напряжение, при котором конденсатор способен работать длительное время, сохраняя параметры неизменными при всех установленных для него температурах. На конденсаторах, в основном, указано номинальное рабочее напряжение при постоянном токе.

    При работе конденсатора в схемах переменного тока его номинальное напряжение, указанное на корпусе, должно в 1,5…2 раза превышать предельно допустимое действующее переменное напряжение цепи.

    На корпусе конденсатора обычно указывают его тип, напряжение, номинальную емкость, допустимое отклонение емкости, ТКЕ и дату изготовления.

    Маркировка конденсаторов

    Маркируют конденсаторы как и резисторы буквенно-цифровым кодом, который обозначает номинальную емкость, единицу измерения, допустимое отклонение емкости и ТКЕ.

    Например, маркировка на конденсаторе 62 pJL расшифровывается так: номинальная емкость 62 пФ с допустимым отклонением ±5%, ТКЕ группы М75 (75 * 10-6/1 градус С). Буквенные коды единиц измерения номинальных емкостей приведены в табл. 1.

    Таблица 1. Обозначение номинальной величины емкости на корпусах конденсаторов.

    Полное обозначение Сокращенное обозначение
    на корпусе
    Обозначение единиц
    измерения  
    Примеры
    обозначения
    Обозначение
    единиц
    измерения
    Примеры
    обозначения
    Старое Новое Старое Новое

    Пикофарады
    0…999 пФ

    пФ 0,82 пФ
    5,1 пФ
    36 пФ
    П Р 5П1
    36П  
    р82
    5р1
    36р
    Нанофарады
    100…999999 нФ  
    нФ,
    1 нФ = 1000 пФ  
    120 пФ
    3300 пФ
    68000 пФ
    Н n 3h4
    68Н  
    n12
    ЗnЗ
    68n
    Микрофарады
    1…999 мкФ
    мкФ 0,022 мкФ
    0,15 мкФ
    2,2 мкФ
    10 мкФ
    М μ 22Н
    М15
    2М2
    10М
    22 n
    μ15
    2 μ2
    10 μ

    Цветовой код маркировки конденсаторов

    Конденсаторы как и резисторы маркируют с помощью цветового кода (рис. 2). Цветовой код состоит из колец или точек. Каждому цвету соответствует определенное цифровое значение.

    Знаки маркировки на конденсаторе сдвинуты к одному из выводов и располагаются слева направо. Номинальная емкость (в пикофарадах) представляет число, состоящее из цифр, соответствующих одной, двум и трем или одной и двум (для конденсаторов с допуском ±20%) полосам, умноженное на множитель, который определен по цвету полосы.

    Последняя полоса маркировки в два раза шире других и соответствует ТКЕ. Конденсаторы с допуском ±0,1… 10% имеют шесть цветовых полос. Первая, вторая и третья полосы — величина емкости в пикофарадах, четыре — множитель, пять — допуск, шесть (последняя) — ТКЕ.

    Конденсаторы с допуском ±20% имеют пять цветовых полос, на них нет цветового кода допуска. Иногда этот тип конденсаторов маркируют четырьмя цветовыми кольцами. При такой маркировке первая и вторая полосы отводятся для обозначения величины, третья полоса — для множителя, четвертая — для ТКЕ.

    Цветовой код танталовых конденсаторов приведен на рис. 3. Следует обратить внимание на то, что у этих конденсаторов положительный вывод в два раза толще другого, и отсчет колец начинается от головки конденсатора.9 — — Нет цвета — — — — ±20 —

    Рис. 2. Цветовой код отечественных конденсаторов широкого применения.

    Цвет
    маркировки
    Номинальная емкость Допуск, %
    Первый
    элемент
    Второй
    элемент
    Третий
    элемент
    (множитель)
    Четвертый
    элемент
    Серебристый 10-2 ±10
    Золотистый 10-1 ±5
    Черный 0 1
    Коричневый 1 1 10 ±1
    Красный 2 2 102 ±2
    Оранжевый 3 3 103
    Желтый 4 4 104
    Зеленый 5 5 105 ±0,5
    Синий 6 6 106 ±0,25
    Фиолетовый 7 7 107 ±0,1
    Серый 8 8 108 ±0,05
    Белый 9 9 109

    Рис. 3. Цветовой код для маркировки танталовых конденсаторов.

    Цвет маркировки 1 и 2
    цифры
    Множитель Допуск, % класс ТКС
    Черный 0 1 20   0
    Коричневый 1 10 1 1 -33
    Красный 2 102 2   -75
    Оранжевый 3 103   2 -150
    Желтый 4 104     -220
    Зеленый 5     3 -330
    Синий 6       -470
    Фиолетовый 7       -750
    Серый 8   0,5    
    Белый 9     4  
    Золотистый     5   +100
    Серебряный     10    

    Рис. 4. Цветовая маркировка зарубежных конденсаторов широкого использования.

    Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

    пикофарад в микрофарад преобразование (пФ в мкФ)

    Введите ниже емкость в пикофарадах, чтобы преобразовать значение в микрофарады.

    Как преобразовать пикофарады в микрофарады

    Чтобы преобразовать измерение пикофарад в измерение микрофарад, разделите емкость на коэффициент преобразования.

    Поскольку один микрофарад равен 1000000 пикофарад, вы можете использовать эту простую формулу для преобразования:

    микрофарады = пикофарады ÷ 1000000

    Емкость в микрофарадах равна пикофарадам, разделенным на 1000000.

    Например, вот как преобразовать 5 000 000 пикофарад в микрофарады, используя формулу выше.

    5 000 000 пФ = (5 000 000 ÷ 1 000 000) = 5 мкФ

    Пикофарады и микрофарады — это единицы, используемые для измерения емкости. Продолжайте читать, чтобы узнать больше о каждой единице измерения.

    Пикофарад составляет 1/1000000000000 фарада, что представляет собой емкость конденсатора с разностью потенциалов в один вольт, когда он заряжается одним кулоном электричества.

    Пикофарад — это величина, кратная фараду, которая является производной единицей измерения емкости в системе СИ. В метрической системе «пико» является префиксом для 10 -12 . Пикофарады могут быть сокращены как пФ ; например, 1 пикофарад можно записать как 1 пФ.

    Микрофарад составляет 1/1 000 000 фарад, что представляет собой емкость конденсатора с разностью потенциалов в один вольт, когда он заряжается одним кулоном электричества.

    Микрофарад — это величина, кратная фараду, которая является производной единицей измерения емкости в системе СИ. В метрической системе «микро» является префиксом для 10 -6 . Микрофарады можно обозначить как мкФ ; например, 1 мкФ можно записать как 1 мкФ.

    Перевести пикофарады в микрофарады — Перевод единиц измерения

    ›› Перевести пикофарады в микрофарады

    Пожалуйста, включите Javascript для использования конвертер величин.
    Обратите внимание, что вы можете отключить большинство объявлений здесь:
    https://www.convertunits.com/contact/remove-some-ads.php



    ›› Дополнительная информация в конвертере величин

    Сколько пикофарад в 1 микрофараде? Ответ — 1000000.
    Мы предполагаем, что вы конвертируете между пикофарад и микрофарад .
    Вы можете просмотреть более подробную информацию о каждой единице измерения:
    пикофарад или микрофарад
    Производная единица СИ для емкости — фарад.
    1 фарад равен 1000000000000 пикофарад, или 1000000 мкФ.
    Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
    Используйте эту страницу, чтобы узнать, как преобразовать пикофарады в микрофарады.
    Введите свои числа в форму для преобразования единиц!



    ›› Хотите другие юниты?

    Вы можете произвести обратное преобразование единиц измерения из микрофарады в пикофарады, или введите любые две единицы ниже:

    ›› Преобразование общей емкости

    пикофарад в декафарад
    пикофарад в терафарад
    пикофарад в банку
    пикофарад в ампер-секунду / вольт
    пикофарад в кулон / вольт
    пикофарад в миллифарад
    пикофарад в статфарад
    пикофарад в децифарад
    пикофарад в децифарад
    пикофарад в децифарад
    пикофарад в децифарад в
    пикофарад в децифарад

    ›› Определение: Пикофарад

    Префикс SI «pico» представляет коэффициент 10 -12 , или в экспоненциальной записи 1E-12.

    Итак, 1 пикофарад = 10 -12 фарад.


    ›› Определение: микрофарад

    Префикс SI «micro» представляет собой коэффициент 10 -6 , или в экспоненциальной записи 1E-6.

    Итак, 1 микрофарад = 10 -6 фарад.


    ›› Метрические преобразования и др.

    ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных.Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

    Таблица преобразования конденсаторов

    »Электроника

    Значения конденсаторов могут быть выражены в мкФ, нФ и пФ, и часто требуется преобразование значений между ними, нФ в мкФ, нФ в пФ и наоборот.


    Емкостное руководство Учебное пособие включает:
    Емкость Формулы конденсаторов Емкостное реактивное сопротивление Параллельные и последовательные конденсаторы Диэлектрическая проницаемость и относительная диэлектрическая проницаемость Коэффициент рассеяния, тангенс угла потерь, СОЭ Таблица преобразования конденсаторов


    Конденсаторы — это очень распространенная форма электронных компонентов, и номиналы конденсаторов обычно выражаются в микрофарадах, мкФ (иногда мкФ, когда микроконтроллер недоступен), нанофарадах, нФ и пикофарадах, пФ.

    Часто эти множители перекрываются. Например, 0,1 мкФ также можно выразить как 100 нФ, и есть еще много примеров такого рода путаницы в обозначениях.

    Также в некоторых областях использование нанофарад, нФ, менее распространено, и значения выражаются в долях мкФ и большим кратным пикофарадам, пФ. В этих обстоятельствах может потребоваться преобразование в нанофарады, нФ, когда доступны компоненты, отмеченные в нанофарадах.

    Иногда может сбивать с толку, когда на принципиальной схеме или в списке электронных компонентов может указываться значение в пикофарадах, например, а в списках дистрибьютора электронных компонентов в магазине электронных компонентов может упоминаться это в другом.

    Также при проектировании электронной схемы необходимо убедиться, что значения электронных компонентов указаны в текущем кратном десяти. Быть вне игры в десять раз может быть катастрофой!

    Таблица преобразования конденсаторов ниже показывает эквиваленты между & microF, nF и pF в удобном табличном формате. Часто при покупке у дистрибьютора электронных компонентов или в магазине электронных компонентов в маркировке спецификаций могут использоваться другие обозначения, и может потребоваться их преобразование.

    Значения конденсаторов могут быть в диапазоне 10 9 и даже больше, поскольку в настоящее время используются суперконденсаторы. Чтобы избежать путаницы с большим количеством нулей, прикрепленных к номиналам различных конденсаторов, широко используются общие префиксы pico (10 -12 ), nano (10 -9 ) и micro (10 -6 ). При преобразовании между ними иногда полезно иметь таблицу преобразования конденсаторов или таблицу преобразования конденсаторов для различных номиналов конденсаторов.

    Еще одним требованием для преобразования емкости является то, что для некоторых схем маркировки конденсаторов фактическое значение емкости указывается в пикофарадах, а затем требуется преобразование значения в более обычные нанофарады или микрофарады.

    Также другие формы электронных компонентов используют те же формы умножителя. Резисторы, как правило, не подходят, поскольку их значения измеряются в Ом и более высоких кратных, таких как кОм или & МОм, но индукторы измеряются в Генри, а значения намного меньше.Поэтому милли-Генри и микро-Генри широко используются, и поэтому могут потребоваться аналогичные преобразования.

    Калькулятор преобразования емкости

    Калькулятор преобразования значений емкости, представленный ниже, позволяет легко преобразовывать значения, выраженные в микрофарадах: мкФ, нанофарадах: нФ и пикофарадах: пФ. Просто введите значение и то, в чем оно выражается, и значение будет отображаться в мкФ, нФ и пФ, а также значение в фарадах!

    Калькулятор преобразования емкости

    Преобразовать электростатическую емкость.


    Конденсатор Таблица преобразования

    Диаграмма или таблица, доказывающая простой перевод между микрофарадами, мкФ; нанофарады, нФ, и пикофарады, пФ приведены ниже. Это помогает уменьшить путаницу, которая может возникнуть при переключении между разными множителями значений.


    Таблица преобразования значений емкости конденсатора
    пФ в нФ, µ в нФ и т. Д. .
    микрофарад (мкФ) нанофарад (нФ) Пикофарады (пФ)
    0.000001 0,001 1
    0,00001 0,01 10
    0,0001 0,1 100
    0,001 1 1000
    0,01 10 10000
    0,1 100 100000
    1 1000 1000000
    10 10000 10000000
    100 100000 100000000

    Эта таблица преобразования конденсаторов или таблица преобразования конденсаторов позволяет быстро и легко найти различные значения, указанные для конденсаторов, и преобразовать их между пикофарадами, нанофарадами и микрофарадами.

    Популярные преобразования конденсаторов

    Существует несколько популярных способов записи значений конденсаторов. Часто, например, керамический конденсатор может иметь значение 100 нФ. При использовании в цепях с электролитическими конденсаторами часто бывает интересно понять, что это 0,1 мкФ. Эти полезные преобразования могут помочь при проектировании, создании или обслуживании схем.


    Преобразование обычных конденсаторов
    100 пФ = 0,1 нФ
    1000pf = 1 нФ
    100 нФ = 0.1 мкФ

    При проектировании схем или любом использовании конденсаторов часто бывает полезно иметь в виду эти преобразования конденсаторов, поскольку значения переходят от пикофарад к нанофарадам, а затем от нанофарад к микрофарадам.

    Более подробная таблица коэффициентов преобразования для преобразования между различными значениями, нФ в пФ, мкФ в нФ и т. Д. Приведена ниже.

    Таблица коэффициентов преобразования для преобразования между мкФ, нФ и пФ
    Преобразовать Умножить на:
    от пФ до нФ 1 x 10 -3
    пФ до мкФ 1 х 10 -6
    нФ до пФ 1 х 10 3
    от нФ до мкФ 1 x 10 -3
    мкФ до пФ 1 х 10 6
    мкФ до нФ 1 х 10 3

    Номенклатура преобразования конденсаторов

    Хотя большинство современных схем и описаний компонентов используют номенклатуру мкФ, нФ и пФ для детализации значений конденсаторов, часто в старых схемах цепей, описаниях схем и даже самих компонентах может использоваться множество нестандартных сокращений, и это не всегда может быть понятно именно то, что они означают.

    Основные варианты для различных подкратных значений емкости приведены ниже:

    • Микрофарад, мкФ: Значения для конденсаторов большей емкости, таких как электролитические конденсаторы, танталовые конденсаторы и даже некоторых бумажных конденсаторов, измеренные в микрофарадах, могли быть обозначены в мкФ, мфд, МФД, МФ или мкФ. Все они относятся к величине, измеренной в мкФ. Эта терминология обычно связана с электролитическими конденсаторами и танталовыми конденсаторами.
    • Нано-Фарад, нФ: Терминология нФ или нано-Фарад не использовалась широко до стандартизации терминологии, и поэтому это подмножество не имело множества сокращений. Термин нанофарад стал гораздо более использоваться в последние годы, хотя в некоторых странах его использование не так широко, поскольку значения выражаются в большом количестве пикофарад, например 1000 пФ на 1 нФ или доли микрофарады, например 0,001 мкФ, опять же для нанофарада.Эта терминология обычно ассоциируется с керамическими конденсаторами, металлизированными пленочными конденсаторами, включая многослойные керамические конденсаторы для поверхностного монтажа, и даже с некоторыми современными конденсаторами из серебряной слюды.
    • Пико-Фарад, пФ: Снова использовали различные сокращения для обозначения значения в пикофарадах, пФ. Используемые термины включали: микроромикрофарады, mmfd, MMFD, uff, мкФ. Все они относятся к значениям в пФ. Значения конденсаторов, измеряемые в пикофарадах, часто используются в радиочастотных, РЧ-цепях и оборудовании.Соответственно, эта терминология используется в основном для керамических конденсаторов, но она также используется для серебряных слюдяных конденсаторов и некоторых пленочных конденсаторов.

    Стандартизация терминологии помогла в преобразовании значений из одного подмножества в другое. Это означает, что здесь значительно меньше места для недоразумений. Проще преобразовать из мкФ в нФ и пФ. Это часто бывает полезно, когда на принципиальной схеме может упоминаться номинал конденсатора, упомянутый одним способом, а в списках дистрибьюторов электронных компонентов — другим.

    Таблица преобразования емкости очень полезна, потому что разные производители электронных компонентов могут маркировать компоненты по-разному, иногда маркируя их как несколько нанофарад, тогда как другие производители могут маркировать свои эквивалентные конденсаторы как доли микрофарад и так далее. Очевидно, что дистрибьюторы электронных компонентов и магазины электронных компонентов будут стремиться использовать номенклатуру производителей.

    Подобным образом на принципиальных схемах компоненты могут быть помечены по-разному, часто для сохранения общности и т. Д.Соответственно, это помогает иметь возможность конвертировать пикофарады в нанофарады и микрофарады и наоборот. Это может помочь идентифицировать компоненты, отмеченные значениями, выраженными в нанофарадах, когда в спецификации или списке деталей для схемы могут быть значения, выраженные в микрофарадах, мкФ и пикофарадах, пФ.

    Часто бывает полезно иметь возможность использовать калькулятор преобразования емкости, подобный приведенному выше, но часто вы знакомы с преобразованиями, и популярные эквиваленты, такие как 1000 пФ — это нанофарад, а 100 нФ — 0.1 мкФ.

    При использовании электронных компонентов и проектировании электронных схем эти преобразования быстро становятся второй натурой, но даже в этом случае таблицы преобразования емкости и калькуляторы часто могут быть очень полезными. Эти преобразования, очевидно, полезны для конденсаторов, а также других электронных компонентов, таких как катушки индуктивности.

    Другие основные концепции электроники:
    Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность Радиочастотный шум
    Вернуться в меню «Основные понятия электроники».. .

    Таблица преобразования конденсаторов

    — AI Synthesis

    В конце концов, в своем путешествии по созданию синтезатора DIY вы столкнетесь с ситуацией, когда вам придется конвертировать между мкФ, нФ и пФ.
    Бумажные и электролитические конденсаторы обычно выражаются в мкФ (микрофарадах). Слюдяные конденсаторы обычно выражаются в пФ (пикофарадах). Между пФ и мкФ находится нФ, которая составляет одну-одну тысячу мкФ. Преобразование назад и вперед между мкФ, нФ
    и пФ сбивает с толку, поэтому ниже приведена таблица преобразования конденсаторов.

    Конденсатор

    Таблица преобразования

    мкФ нФ пФ
    1 мкФ 1000 нФ 1000000пФ
    0,82 мкФ 820нФ 820000пФ
    0,8 мкФ 800 нФ 800000пФ
    0,7 мкФ 700 нФ 700000пФ
    0,68 мкФ 680нФ 680000pF
    0.6 мкФ 600 нФ 600000пФ
    0,56 мкФ 560нФ 560000pF
    0,5 мкФ 500 нФ 500000пФ
    0,47 мкФ 470нФ 470000pF
    0,4 мкФ 400 нФ 400000пФ
    0,39 мкФ 390нФ 3

    pF

    0,33 мкФ 330нФ 330000pF
    0.3 мкФ 300 нФ 300000пФ
    0,27 мкФ 270нФ 270000pF
    0,25 мкФ 250 нФ 250000пФ
    0,22 мкФ 220 нФ 220000pF
    0,2 мкФ 200 нФ 200000пФ
    0,18 мкФ 180 нФ 180000pF
    0,15 мкФ 150 нФ 150000пФ
    0.12 мкФ 120 нФ 120000пФ
    0,1 мкФ 100 нФ 100000пФ
    0,082 мкФ 82нФ 82000пФ
    0,08 мкФ 80 нФ 80000пФ
    0,07 мкФ 70 нФ 70000пФ
    0,068 мкФ 68нФ 68000пФ
    0,06 мкФ 60 нФ 60000пФ
    0.056 мкФ 56нФ 56000пФ
    0,05 мкФ 50 нФ 50000пФ
    0,047 мкФ 47нФ 47000pF
    0,04 мкФ 40 нФ 40000пФ
    0,039 мкФ 39нФ 39000пФ
    0,033 мкФ 33нФ 33000пФ
    0,03 мкФ 30нФ 30000пФ
    0.027 мкФ 27нФ 27000пФ
    0,025 мкФ 25нФ 25000пФ
    0,022 мкФ 22нФ 22000пФ
    0,02 мкФ 20 нФ 20000пФ
    0,018 мкФ 18нФ 18000пФ
    0,015 мкФ 15 нФ 15000пФ
    0,012 мкФ 12 нФ 12000пФ
    0.01 мкФ 10 нФ 10000 пФ
    0,0082 мкФ 8,2 нФ 8200пФ
    0,008 мкФ 8нФ 8000пФ
    0,007 мкФ 7нФ 7000пФ
    0,0068 мкФ 6,8 нФ 6800пФ
    0,006 мкФ 6нФ 6000 пФ
    0,0056 мкФ 5,6 нФ 5600пФ
    0.005 мкФ 5нФ 5000 пФ
    0,0047 мкФ 4,7 нФ 4700пФ
    0,004 мкФ 4нФ 4000 пФ
    0,0039 мкФ 3,9 нФ 3900пФ
    0,0033 мкФ 3,3 нФ 3300пФ
    0,003 мкФ 3нФ 3000 пФ
    0,0027 мкФ 2,7 нФ 2700пФ
    0.0025 мкФ 2,5 нФ 2500пФ
    0,0022 мкФ 2,2 нФ 2200пФ
    0,002 мкФ 2нФ 2000пФ
    0,0018 мкФ 1,8 нФ 1800 пФ
    0,0015 мкФ 1,5 нФ 1500 пФ
    0,0012 мкФ 1,2 нФ 1200 пФ
    0,001 мкФ 1 нФ 1000 пФ
    0.00082 мкФ 0,82 нФ 820пФ
    0,0008 мкФ 0,8 нФ 800 пФ
    0,0007 мкФ 0,7 нФ 700пФ
    0,00068 мкФ 0,68 нФ 680пФ
    0,0006 мкФ 0,6 нФ 600 пФ
    0,00056 мкФ 0,56 нФ 560пФ
    0,0005 мкФ 0.5нФ 500 пФ
    0,00047 мкФ 0,47 нФ 470pF
    0,0004 мкФ 0,4 нФ 400 пФ
    0,00039 мкФ 0,39 нФ 390пФ
    0,00033 мкФ 0,33 нФ 330пФ
    0,0003 мкФ 0,3 нФ 300 пФ
    0,00027 мкФ 0,27 нФ 270пФ
    0.00025 мкФ 0,25 нФ 250пФ
    0,00022 мкФ 0,22 нФ 220 пФ
    0,0002 мкФ 0,2 нФ 200пФ
    0,00018 мкФ 0,18 нФ 180пФ
    0,00015 мкФ 0,15 нФ 150 пФ
    0,00012 мкФ 0,12 нФ 120 пФ
    0,0001 мкФ 0.1нФ 100пФ
    0,000082 мкФ 0,082 нФ 82пФ
    0,00008 мкФ 0,08 нФ 80 пФ
    0,00007 мкФ 0,07 нФ 70пФ
    0,000068 мкФ 0,068 нФ 68pF
    0,00006 мкФ 0,06 нФ 60 пФ
    0,000056 мкФ 0,056 нФ 56пФ
    0.00005 мкФ 0,05 нФ 50 пФ
    0,000047 мкФ 0,047 нФ 47пФ
    0,00004 мкФ 0,04 нФ 40пФ
    0,000039 мкФ 0,039 нФ 39пФ
    0,000033 мкФ 0,033 нФ 33пФ
    0,00003 мкФ 0,03 нФ 30пФ
    0,000027 мкФ 0.027nF 27пФ
    0,000025 мкФ 0,025 нФ 25пФ
    0,000022 мкФ 0,022 нФ 22пФ
    0,00002 мкФ 0,02 нФ 20пФ
    0,000018 мкФ 0,018 нФ 18пФ
    0,000015 мкФ 0,015 нФ 15пФ
    0,000012 мкФ 0,012 нФ 12пФ
    0.00001 мкФ 0,01 нФ 10пФ
    0,0000082 мкФ 0,0082 нФ 8,2 пФ
    0,000008 мкФ 0,008 нФ 8пФ
    0,000007 мкФ 0,007 нФ 7пФ
    0,0000068 мкФ / MFD 0,0068 нФ 6,8 пФ
    0,000006 мкФ 0,006 нФ 6пФ
    0,0000056 мкФ 0.0056nF 5,6 пФ
    0,000005 мкФ 0,005 нФ 5пФ
    0,0000047 мкФ 0,0047 нФ 4,7 пФ
    0,000004 мкФ 0,004 нФ 4пФ
    0,0000039 мкФ 0,0039 нФ 3,9 пФ
    0,0000033 мкФ 0,0033 нФ 3,3 пФ
    0,000003 мкФ 0,003 нФ 3пФ
    0.0000027 мкФ 0,0027 нФ 2,7 пФ
    0,0000025 мкФ 0,0025 нФ 2,5 пФ
    0,0000022 мкФ 0,0022 нФ 2,2 пФ
    0,000002 мкФ 0,002 нФ 2пФ
    0,0000018 мкФ 0,0018 нФ 1,8 пФ
    0,0000015 мкФ 0,0015 нФ 1,5 пФ
    0.0000012 мкФ 0,0012 нФ 1,2 пФ
    0,000001 мкФ 0,001 нФ 1пФ
    Преобразователь единиц емкости

    — Преобразование измерений A-I

    Наиболее часто используемое преобразование единиц измерения

    Фарад в микрофарады (Ф в мкФ) преобразование
    1 Фарад (Ф) равен 1000000 микрофарад (мкФ) используйте этот преобразователь
    Конвертация из микрофарад в фарады (мкФ в Ф)
    1 Микрофарад (мкФ) равен 1.0E-6 Farad (F) используйте этот преобразователь
    Конверсия микрофарад в пикофарады (мкФ в пФ)
    1 микрофарад (мкФ) равно 1000000 пикофарад (пФ) используйте этот преобразователь
    Пикофарады в микрофарады (пФ в мкФ) преобразование
    1 пикофарад (пФ) равен 1.0E-6 микрофарад (мкФ) используйте этот преобразователь

    Определение

    Емкость — количество электрических зарядов, которые может удерживать изолированный проводник.Единица СИ, используемая для описания емкости, — фарад, символ — C.

    Формула емкости:

    Где:
    q — заряды на пластинах V — напряжение между пластинами

    Единицы измерения

    Абфарад (abF), Аттофарад (aF), Сентифарад (cF), Кулон на вольт, Декафарад (daF), Децифарад (dF), Экзафарад (EF), Фарад (F), Фемтофарад (fF), Гигафарад (GF), Гектофарад (hF), Килофарад (kF), Мегафарад (MF), Микрофарад (µF), Миллифарад (mF), Нанофарад (nF), Петафарад (PF), Пикофарад (pF), Статфарад (statF), Терафарад (TF), Йоктофарад (yF), Йоттафарад (YF), Зептофарад (zF), Зеттафарад (ZF)

    Об инструменте «Конвертер единиц емкости».

    Мы используем округление в unit-conversion.info. Это означает, что некоторые результаты будут округлены, чтобы числа не становились слишком длинными. Хотя часто округление работает до определенного десятичного знака, мы решили, что ограничение длины результата 13 цифрами будет более благоприятным для сохранения согласованности результатов. Конвертеры принимают научную нотацию и немедленно преобразуют.

    Конденсатор

    мкФ — нФ — пФ Преобразователь помогает выполнять преобразование обратно и обратно с конденсаторов мкФ нФ и пФ.

    Конденсатор (первоначально известный как конденсатор) — это пассивный электрический компонент, используемый для хранят энергию электростатически в электрическом поле. Общие типы конденсаторов: Алюминий Электролитический , Керамический , Пленка , Бумага , Слюда и Тантал .Конденсаторы выражаются в фарадах. Общие сокращения: мкФ, ( мкФ, фарад), нФ, ( нано, фарад) и пФ, ( пико фарад или микромикро фарад). Менее распространенные сокращения для конденсаторов включают mfd, MFD, mf, MF, MMFD, MMF, uuF, UF , NF и PF .

    Ниже приведен преобразователь мкФ — нФ — пФ , упрощающий преобразование туда и обратно.


    Создаете ли вы прототип на макете, ремонтируете печатную плату, читаете схемы, покупка конденсаторов, или вы занимаетесь какой-либо другой сферой работы или хобби, связанной с электричеством, вам часто может потребоваться преобразование между конденсаторами мкФ, нФ и пФ. Поскольку преобразование От мкФ до нФ, от мкФ до пФ, от нФ до мкФ, от нФ до пФ, от пФ до нФ и от пФ до мкФ может потребоваться много времени, Воспользуйтесь нашей удобной таблицей преобразования, чтобы упростить преобразование туда и обратно.У нас даже есть бесплатная версия для печати, которую вы можете распечатывать и использовать снова и снова. Также обязательно ознакомьтесь с нашим калькулятором делителя напряжения, который поможет вам выбрать подходящие резисторы для вашего следующего проекта.

    Конденсатор мкФ — нФ — пФ Таблица преобразования

    В приведенной ниже таблице преобразования показаны популярные значения конденсаторов и их преобразование обратно и обратно из мкФ, нФ, и пФ

    Версия для печати


    мкФ / МФД нФ пФ / MMFD
    1000 мкФ / MFD 1000000нФ 1000000000pF / MMFD
    680 мкФ / MFD 680000nF 680000000pF / MMFD
    470 мкФ / MFD 470000nF 470000000pF / MMFD
    240 мкФ / MFD 240000нФ 240000000pF / MMFD
    220 мкФ / MFD 220000нФ 220000000pF / MMFD
    150 мкФ / MFD 150000 нФ 150000000pF / MMFD
    100 мкФ / MFD 100000нФ 100000000pF / MMFD
    88 мкФ / MFD 88000нФ 88000000pF / MMFD
    85 мкФ / MFD 85000нФ 85000000pF / MMFD
    82 мкФ / MFD 82000нФ 82000000pF / MMFD
    80 мкФ / MFD 80000нФ 80000000pF / MMFD
    75 мкФ / MFD 75000нФ 75000000pF / MMFD
    72 мкФ / MFD 72000нФ 72000000pF / MMFD
    70 мкФ / MFD 70000нФ 70000000pF / MMFD
    68 мкФ / MFD 68000нФ 68000000pF / MMFD
    65 мкФ / MFD 65000 нФ 65000000pF / MMFD
    64 мкФ / MFD 64000нФ 64000000pF / MMFD
    60 мкФ / MFD 60000нФ 60000000pF / MMFD
    56 мкФ / MFD 56000нФ 56000000pF / MMFD
    53 мкФ / MFD 53000нФ 53000000pF / MMFD
    50 мкФ / MFD 50000нФ 50000000pF / MMFD
    47 мкФ / MFD 47000нФ 47000000pF / MMFD
    45 мкФ / MFD 45000нФ 45000000pF / MMFD
    43 мкФ / MFD 43000 нФ 43000000pF / MMFD
    40 мкФ / MFD 40000 нФ 40000000pF / MMFD
    39 мкФ / MFD 39000нФ 3

    00pF / MMFD

    36 мкФ / MFD 36000 нФ 36000000pF / MMFD
    35 мкФ / MFD 35000нФ 35000000pF / MMFD
    33 мкФ / MFD 33000нФ 33000000pF / MMFD
    30 мкФ / MFD 30000 нФ 30000000pF / MMFD
    27.5 мкФ / MFD 27500нФ 27500000pF / MMFD
    27 мкФ / MFD 27000нФ 27000000pF / MMFD
    25 мкФ / MFD 25000 нФ 25000000pF / MMFD
    24 мкФ / MFD 24000 нФ 24000000pF / MMFD
    22 мкФ / MFD 22000 нФ 22000000pF / MMFD
    21 мкФ / MFD 21000нФ 21000000pF / MMFD
    20 мкФ / MFD 20000нФ 20000000пФ / MMFD
    19 мкФ / MFD 19000нФ 1

    00pF / MMFD

    18 мкФ / MFD 18000нФ 18000000pF / MMFD
    16 мкФ / MFD 16000нФ 16000000pF / MMFD
    15 мкФ / MFD 15000 нФ 15000000pF / MMFD
    12 мкФ / MFD 12000 нФ 12000000pF / MMFD
    10 мкФ / MFD 10000 нФ 10000000pF / MMFD
    8.2 мкФ / МФД 8200нФ 8200000pF / MMFD

    Следует иметь в виду, что каждый конденсатор имеет собственное максимальное напряжение и нормальное Рабочая Температура. Хорошая идея — знать точные электрические требования данной цепи перед тем, как выбор конденсатора для этой схемы.

    Примечание: В конструкциях схем всегда допускайте запас прочности 50% или лучше для максимального напряжения конденсаторов.Например, если напряжение вашей цепи составляет 5 вольт, то ваши конденсаторы должны быть рассчитаны как минимум на 10 вольт.

    Конденсаторы можно использовать отдельно, параллельно или последовательно. Щелкните здесь для получения дополнительной информации о конденсаторах, подключенных последовательно и параллельно.

    Конденсаторы

    работают с переменным и постоянным током по-разному. Когда переменный ток (AC) подается на конденсатор, похоже, что ток проходит через конденсатор с небольшим сопротивлением или без него. Это потому, что конденсатор будет заряжаться и разряд при колебаниях тока.При постоянном токе (DC) конденсатор будет действовать как разрыв цепи, когда он полностью зарядится. По этой причине конденсаторы в цепях переменного тока имеют другое применение, чем в цепях постоянного тока.

    Конденсатор мкФ — нФ — пФ (продолжение таблицы преобразования) (8,0 мкФ и ниже)

    Версия для печати


    мкФ / МФД нФ пФ / MMFD
    8.0 мкФ / MFD 8000 нФ 8000000pF / MMFD
    7,5 мкФ / MFD 7500нФ 7500000pF / MMFD
    6,8 мкФ / MFD 6800нФ 6800000pF / MMFD
    5,6 мкФ / MFD 5600нФ 5600000pF / MMFD
    5,0 мкФ / MFD 5000 нФ 5000000pF / MMFD
    4.7 мкФ / МФД 4700нФ 4700000pF / MMFD
    4,0 мкФ / MFD 4000 нФ 4000000pF / MMFD
    3,9 мкФ / MFD 3900нФ 3

    0pF / MMFD

    3,3 мкФ / MFD 3300нФ 3300000pF / MMFD
    3 мкФ / MFD 3000 нФ 3000000pF / MMFD
    2.7 мкФ / МФД 2700нФ 2700000pF / MMFD
    2,2 мкФ / MFD 2200нФ 2200000pF / MMFD
    2 мкФ / MFD 2000 нФ 2000000pF / MMFD
    1,8 мкФ / MFD 1800 нФ 1800000pF / MMFD
    1,5 мкФ / MFD 1500 нФ 1500000pF / MMFD
    1.2 мкФ / МФД 1200 нФ 1200000pF / MMFD
    1.0 мкФ / MFD 1000 нФ 1000000pF / MMFD
    .82 мкФ / MFD 820нФ 820000pF / MMFD
    0,68 мкФ / MFD 680нФ 680000pF / MMFD
    .47 мкФ / MFD 470нФ 470000pF / MMFD
    .33 мкФ / MFD 330нФ 330000pF / MMFD
    0,22 мкФ / MFD 220 нФ 220000pF / MMFD
    ,2 мкФ / MFD 200 нФ 200000 пФ / MMFD
    .1 мкФ / MFD 100 нФ 100000 пФ / MMFD
    0,01 мкФ / MFD 10 нФ 10000 пФ / MMFD
    .0068 мкФ / MFD 6.8нФ 6800pF / MMFD
    .0047 мкФ / MFD 4,7 нФ 4700pF / MMFD
    0,0033 мкФ / MFD 3,3 нФ 3300pF / MMFD
    .0022 мкФ / MFD 2,2 нФ 2200pF / MMFD
    0,0015 мкФ / MFD 1,5 нФ 1500 пФ / MMFD
    0,001 мкФ / MFD 1 нФ 1000 пФ / MMFD
    .00068 мкФ / MFD 0,68 нФ 680pF / MMFD
    .00047 мкФ / MFD .47нФ 470pF / MMFD
    .00033 мкФ / MFD .33нФ 330 пФ / MMFD
    .00022 мкФ / MFD .22нФ 220 пФ / MMFD
    .00015 мкФ / MFD .15нФ 150 пФ / MMFD
    .0001 мкФ / MFD .1нФ 100 пФ / MMFD
    .000068 мкФ / MFD .068нФ 68pF / MMFD
    .000047 мкФ / MFD .047нФ 47pF / MMFD
    .000033 мкФ / MFD .033нФ 33pF / MMFD
    .000022 мкФ / MFD .022нФ 22pF / MMFD
    .000015 мкФ / MFD .015нФ 15 пФ / MMFD
    .00001 мкФ / MFD .01nF 10 пФ / MMFD
    .0000068 мкФ / MFD .0068нФ 6,8 пФ / MMFD
    .0000047 мкФ / MFD .0047нФ 4,7 пФ / MMFD
    .0000033 мкФ / MFD .0033нФ 3,3 пФ / MMFD
    .0000022 мкФ / MFD .0022нФ 2,2 пФ / MMFD
    .0000015 мкФ / MFD .0015нФ 1,5 пФ / MMFD
    .000001 мкФ / MFD .001нФ 1 пФ / MMFD

    Микрофарад — обзор | Темы ScienceDirect

    1.4.2 Конденсаторы

    Конденсатор — это механическая конфигурация, которая накапливает заряд q при приложении напряжения ν и удерживает этот заряд при снятии напряжения.Константа пропорциональности между зарядом и напряжением — это емкость C , то есть

    (1,15) q = Cυ

    Многие конденсаторы имеют геометрию, которая состоит из двух проводящих параллельных пластин, разделенных небольшим зазором. C такой структуры определяется как C = ɛ A /, где ɛ — диэлектрическая проницаемость среды между пластинами, A — площадь, а — это диэлектрическая проницаемость. разделение пластин.На рисунке 1.1 показан такой конденсатор с параллельными пластинами (обратите внимание, что показанный большой зазор приведет к небольшой емкости; на практике конденсаторы имеют небольшой зазор, обычно менее 1 мм).

    Емкость измеряется в фарад (Ф), что является довольно большой емкостью. Наиболее распространенные конденсаторы имеют значения в диапазоне микрофарад (мкФ = 10 — 6 Ф) или даже пикофарад ( p, Ф = 10 — 12 Ф), при этом большинство практических конденсаторов находится в диапазоне от 0.001 мкФ и 10 F. Чтобы получить большую емкость, мы можем либо увеличить площадь , уменьшить расстояние , либо использовать диэлектрическую среду с большей диэлектрической проницаемостью ɛ . Например, слюда и бумага имеют диэлектрическую проницаемость 7 , равную 6 и 2 соответственно. Следовательно, конденсатор с параллельными пластинами, показанный на рис. 1.1, со слюдой, заполняющей пространство между пластинами, будет иметь емкость в шесть раз больше, чем конденсатор свободного пространства. Большинство трубчатых конденсаторов состоит из двух полос алюминиевой фольги, разделенных изолирующим диэлектрическим материалом, например, бумагой или пластиком, и свернутых в бревна.Заманчиво продолжать уменьшать расстояние между пластинами для достижения высокой емкости. Однако существует предел, обусловленный прочностью диэлектрического пробоя изоляционного материала между пластинами. Когда это превышено, между пластинами будет проскакивать искра, обычно разрушая конденсатор, оставляя проводящую дорожку в изоляционном материале, где прошла искра. Следовательно, зная напряженность электрического поля пробоя диэлектрического материала (для воздуха 3 · 10 4 В / см, для бумаги 2 · 10 5 В / см, для слюды 6 · 10 6 В / см. м) и используя уравнение.(1.3), которое дает электрическое поле, когда заданы напряжение и расстояние между пластинами, мы можем вычислить напряжение, которое безопасно приложить (то, которое не вызовет дуги) к конденсатору с заданным расстоянием между пластинами. Таким образом, на практическом конденсаторе указывается не только емкость, но и напряжение. Например, отметка 50 В DC означает, что на конденсаторе не должно превышать 50 В постоянного тока.

    Чтобы определить, как ток проходит через конденсатор, мы используем формулу. (1.15), q = C · υ , продифференцируем обе части уравнения относительно времени и заметим, что i = dq / dt ; это приводит к

    (1,16) i = Cdυdt

    для тока конденсатора, где мы использовали строчные буквы q , i и ν , чтобы обозначить, что заряд, ток и напряжение могут изменяться во времени. а емкость C, — постоянная. Это выражение показывает, что постоянное напряжение на конденсаторе не вызывает тока через конденсатор ( dυ / dt = 0).Конечно, во время фазы зарядки конденсатора напряжение изменяется и течет ток. 8 Если теперь приложить синусоидальное напряжение к простой конденсаторной схеме на рис. 1.5a, мы увидим, что результирующий ток опережает приложенное напряжение на 90 °, или ν отстает от и на 90 °, как показано на Рис. 1.5b. Это легко увидеть, используя уравнение. (1.16): если ν = В p sin t , то

    Рисунок 1.5. (а) Конденсатор (изображен двойной линией) с приложенным напряжением ν, (б) Синусоидальное напряжение и ток в C .(c) Набросаны мгновенная мощность и энергия, а также средняя энергия. ( Примечание: амплитуд p и w C не в масштабе.)

    i = VpCcost = Ipcost = Ipsint + π / 2

    Угол π /2 также упоминается как сдвиг фазы на 90 ° градусов .

    Мгновенная мощность в C определяется как

    (1,17) p = υi = Cυdυdt = CVp22sin2t

    , где sin 2 t = 2 sin t cost t Использовалось .Уравнение (1.17) схематически изображено на рис. 1.5c. Положительные и отрицательные значения p означают, что мощность течет вперед и назад, сначала от источника к конденсатору, а затем от конденсатора к источнику со средней мощностью P ave = 0. Возвратно-поступательные скачки мощности при удвоенная частота приложенного напряжения, обозначена пунктирными стрелками для p . Таким образом, кажется, что конденсатор, в отличие от резистора, не потребляет энергию от источника, а просто накапливает энергию в течение четверти периода, а затем в течение следующей четверти периода возвращает эту энергию источнику.Таким образом, C принципиально отличается от R , поскольку R рассеивает электрическую энергию, преобразуя ее в тепло. C , с другой стороны, сохраняет только электрическую энергию (в виде заряда, который откладывается на пластинах). Чтобы узнать больше о емкости, давайте рассмотрим энергию, запасенную в C , которая составляет

    (1,18) wC = ∫pdt = 12Cυ2 = CVp22sin2t = CVp241 − cos2t

    В общем, энергия, запасенная в конденсаторе, определяется как C υ 2 /2 член.Для конкретного случая приложенного напряжения, которое является синусоидальным, энергия представлена ​​последним выражением в формуле. (1.18). Когда набросок этого выражения добавлен к рис. 1.5c, мы видим, что средняя энергия, CV p 2 /4, не увеличивается со временем. То есть энергия только пульсирует по мере нарастания и снова уменьшается до нуля. Если сравнить это с соответствующим эскизом для резистора, рис. 1.4c, можно увидеть, что для устройства преобразования энергии, которым является R , энергия неуклонно увеличивается со временем, поскольку R продолжает поглощать энергию из источника и преобразовать его в тепло.

    Пример 1.1

    Первоначально незаряженный конденсатор емкостью 1 мкФ имеет ток, показанный на рис. 1.6, протекающий через него. Определите и нанесите на график напряжение на конденсаторе, создаваемое этим током.

    Рисунок 1.6. Пунктирная линия — ток конденсатора. Результирующее напряжение показано сплошной линией.

    Интегрируя выражение i = C dυ / dt , получаем для напряжения

    υ = 1C∫ − ∞tidt = 1C∫0tidt + V0

    , где V 0 — начальное напряжение на конденсатор из-за первоначального заряда.Для 0 t 3 мс ток, представленный прямой линией, равен i = 0,01 — 5 t , а поскольку V 0 = 0, получаем

    υ = 1041−250tt

    , что является уравнением параболы. При t = 2, 3 мс, напряжение ν = 10, 7,5 В. Для 3 t 5 мс i = — 5 мА, что дает

    υ = 1C∫3tidt + V0 = −5t −3 + 7,5

    , который отображается как прямая линия. Для t > 5 мс i = 0 и напряжение остается постоянным, ν = — 2.5 В.

    Теперь мы можем суммировать характеристики конденсаторов:

    Только напряжение, которое изменяется со временем, вызывает ток через конденсатор. Следовательно, конденсатор представляет собой разомкнутую цепь для постоянного тока (DC).

    Поскольку энергия не может изменяться мгновенно (это непрерывная функция времени) и поскольку энергия, запасенная в конденсаторе, выражается в виде напряжения как 12Cυ2, мы заключаем, что напряжение на конденсаторе не может изменяться мгновенно ( если мы не хотим развлекаться бесконечными токами, что непрактично).

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *