+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как перевести миллиамперы в амперы и наоборот

На любом электроприборе можно найти характеристики в амперах, вольтах или ваттах, также встречаются и другие единицы, в частности миллиамперы или даже микроамперы. Нередко при работе или изучении каких-либо единиц измерения возникает неоходимость перевода их в другой формат. Далее рассказано, как переводить миллиамперы в амперы.

Что такое амперы и миллиамперы

Ампер — единица измерения силы тока, физической величины, равной отношению количества заряда к промежутку времени его прохождения через какую-либо поверхность или предмет; одна из 7 основных единиц в Международной системе единиц (СИ).

Амперметр – прибор, измеряющий в амперах.

Дополнительная информация! В качестве единицы измерения ампер был принят в 1881 году на 1-ом Международном конгрессе электриков, проходившем в Париже, и был так назван в честь французского физика, математика и химика Андре-Мари Ампера.

Андре Ампер

В соответствии с изменениями 2018 года, Международный комитет мер и весов приводит следующее определение ампера:

«Величина ампера устанавливается фиксацией численного значения элементарного заряда e равным 1,602 176 634 × 10^−19, когда он выражен в кулонах. -3 А), который в миллиард раз меньше мегаампера.

Правописание дольных и кратных единиц, в их числе миллиампер и микроампер, будет выполняться в соответствии с правилами написания единиц и приставок, установленными ранее упомянутой Международной системой измерений (СИ).

  • Приставка пишется слитно с наименованием или обозначением единицы.
  • Недопустимо употребление двух или более приставок подряд (например, микромиллиампер).
  • В большинстве случаев принято выбирать приставку таким образом, чтобы стоящее перед ней число находилось в диапазоне от 0,1 до 1000.

Дополнительная информация! Приставка милли переводится с латинского (mille) как «тысяча». Приставка микро имеет древнегреческие корни (μικρός) и переводится как «малый».

Что измеряется в амперах

Основной физической величиной, измеряемой в амперах, является сила тока (в формулах обозначается как «I»). Как говорилось ранее в определении ампера, она равняется отношению количества заряда, прошедшего за определённое время через проводник, к самому времени прохождения.

Также в амперах измеряются магнитодвижущая сила (физическая величина, модуль которой показывает способность создания магнитных потоков при помощи электрических токов) и разность магнитных потенциалов (скалярная величина, характеризующая энергетическую характеристику электростатического поля в данной точке). Зачастую на практике можно встретить употребление термина «ампер-виток» для обозначения этих величин. Но официально это считается устаревшей терминологией.

Как правильно измерять электрический ток в амперах

Следует уточнить, что измерение тока — это измерение его основных характеристик (силы и напряжения). Чаще всего в лабораторных или школьных условиях измеряется сила тока на проводнике или во всей электрической цепи. Для этого используют специальный прибор — амперметр. Который на схемах правильно обозначается как окружность с латинской буквой «A» внутри.

При подключении амперметра следует соблюдать следующие правила:

  • Подключать в электрическую цепь только последовательно с тем участком цепи, на котором необходимо измерить силу тока. Иначе говоря, перед или после участка цепи для измерений.
  • Обязательно соблюдать «знаки» тока в цепи. Провод с «плюсом» от источника питания подключается к «плюсу» амперметра, а «минус» — к «минусу».
  • Стараться не превышать значение в шкале измерений, потому что в таком случае прибор может выйти из строя. Если амперметр с 2-мя шкалами, то используют ту, у которой больший предел допустимого значения.
Схема правильного включения амперметра в электрическую цепь

При измерении сопротивления рекомендуется учитывать внутреннее сопротивление самого амперметра, которое указывается на нём. Но в школе им, как правило, пренебрегают.

Дополнительная информация! Для измерений может использоваться мультиметр — прибор, совмещающий в себе функционал измерения силы, мощности и прочих параметров тока. Для него используются всё те же правила включения в цепь, что и для амперметра.

Как переводить миллиамперы в амперы и наоборот

При переводе значений из одной величины в другую следует уметь работать со степенями и стандартным видом числа в физике. -6 А.

Чтобы перевести микроамперы в миллиамперы, необходимо учитывать, что 1 мА = 1000 мкА. Для перевода величин будут использоваться те же действия, что и для миллиампер и ампер в первом алгоритме.

Электричество — обширнейшая тема в физике, для её усвоения необходимо понимание многих процессов и прежде всего — основной единицы, характеризующей её — ампера. А для правильного перевода величин необходимо знание приставок, принятых в СИ, и математики.

Почему бы производителям не перевести мАч в Ач в обозначении

В основном покупатели Neovolt.ru хорошо разбираются в аккумуляторах и знают сколько мАч в Ач (если нет, то 1000 мА•ч = 1 А•ч — то есть устройство при потреблении 1 ампера тока проработает в течение часа, а при потреблении 0,5 ампера уже два часа*).


Однако почему производители аккумуляторов не хотят перевести мАч в Ач из тысяч в единицы?

Ведь 3000 мАч и 3,0 Ач — это одно и то же. С другой стороны это не просто рекламная надпись (которую каждый может выдумать, как ему хочется), а неумолимая спецификация.



У компаний иногда нет возможности писать «Ач» вместо «мАч»

Производителями приняты спецификации обозначения ёмкости аккумулятора. Строились общие правила, исходя из традиционного расчёта ёмкости аккумуляторов в мА•ч для мобильных устройств и чаще всего в Вт•ч для ноутбуков (почему есть такие различия — мы говорили здесь).


Отклонения от общепринятых спецификаций чреваты убытками

Для сложного технического продукта любое отклонение от правил, стандартов и ограничений может обернуться проблемами на различных рынках сбыта в зависимости от законов конкретных стран.

Традиция обозначать мобильные батареи в мАч пошла со времён аккумуляторов для камер, распространённых типов AA и AAA, специальных элементов для игрушек, радио и так далее. Спецификация формировалась годами и практически не менялась.



Почему производители не хотят изменить обозначения в мАч на Ач?

Тут всё просто — это хорошее правило в маркетинге: «Не пытайтесь бессмысленно менять поведение потребителей». Если мы с вами сегодня изобрели новую батарею и можем выбирать между обозначениями «3000 mAh» и «3.0 Ah», то для нас, как производителя, в этом нет никакой разницы.


Для потребителя же незначительное усложнение в выборе приведёт к изменению маркетингового поведения.

Хотя мы с вами просто сместили множитель в Международной системе единиц. Не все, далеко не все, но некоторые люди будут смущены. Мы с вами столкнёмся с ситуацией, когда кто-то окажется сбит с толку. А этот кто-то может быть потенциальным клиентом.



Почему бы не указать и мАч, и Ач?

Конечно, на аккумуляторе достаточно места, чтобы указать оба значения. Некоторые поставщики батарей на самом деле указывают это и даже обозначают измерение в Вт•ч (в 2020-м году таких производителей всё больше). Хотя в наши дни мы имеем дело в основном с литий-ионной батареей с номинальным напряжением 3,7 В и необходимости в излишних уточнениях попросту нет.


Именно поэтому у нас сегодня 10 000 мАч, 20 000 мАч и даже более 30 000 мАч — обязательно миллиампер-часы, а не ампер-часы.

Установленный стандарт не может быть изменён, так как вмешательство в систему обозначений ёмкости аккумуляторов лишь приведёт в замешательство значительную часть покупателей. Как вы понимаете, такой исход не может понравиться поставщикам и производителям.

* — данный пример для общего понимания, однако так экстраполировать некорректно: внутреннее сопротивление аккумулятора не равно нулю и увеличивается в процессе разряда. Чем выше ток потребления, тем больше разница между номинальным и фактическим временем работы устройства (заметка от нашего читателя Дениса Комарова).

Узнайте больше о характеристиках

Расскажите в комментарии, случалось ли такое, что обозначение в мАч вам помешало выбрать правильный аккумулятор или отправьте сообщение нам ВКонтакте @NeovoltRu.

Подпишитесь в группе на новости из мира гаджетов, узнайте об улучшении их автономности и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.



час — это… Что такое Ампер-час?

Ампер-час (А·ч) — внесистемная единица измерения электрического заряда, используемая главным образом для характеризации ёмкости аккумуляторов.

Исходя из физического смысла, 1 ампер-час — это электрический заряд, который проходит через поперечное сечение проводника в течение одного часа при наличии в нём тока силой в 1 ампер.

Заряженный аккумулятор с заявленной ёмкостью в 1 А·ч теоретически способен обеспечить силу тока 1 ампер в течение одного часа (или, например, 0,1 А в течение 10 часов, или 10 А в течение 0,1 часа). На практике слишком большой ток разряда аккумулятора приводит к менее эффективной отдаче электроэнергии, что нелинейно уменьшает время его работы с таким током и может приводить к перегреву.

На практике же емкость аккумуляторов приводят исходя из 20-часового[источник не указан 186 дней] цикла разряда до конечного напряжения. Для автомобильных аккумуляторов оно составляет 10,8 В[источник не указан 186 дней]. Например, надпись на маркировке аккумулятора «55 А·ч» означает, что он способен выдавать ток 2,75 ампер на протяжении 20 часов, и при этом напряжение на клеммах не опустится ниже 10,8 В.

Часто также применяется производная единица миллиампер-час (мА·ч), которая используется обычно для обозначения ёмкости небольших аккумуляторов.

Величину в ампер-часах можно перевести в системную единицу измерения заряда — кулон. Поскольку 1 Кл/c равен 1 А, то, переведя часы в секунды, получаем, что один ампер-час будет равен 3600 Кл.

Перевод в ватт-часы

Часто производители аккумуляторов указывают в технических характеристиках только запасаемый заряд в мА·ч (mAh), другие — только запасаемую энергию в Вт·ч (Wh). Обе характеристики могут называть словом «ёмкость». Вычислить запасаемую энергию по запасаемому заряду в общем случае непросто: требуется интегрирование мгновенной мощности, выдаваемой аккумулятором за всё время его разряда. Если большая точность не нужна, можно вместо интегрирования воспользоваться средними значениями напряжения и потребляемого тока и воспользоваться формулой:

1 Вт = 1 В · 1 А.

Тогда запасаемая энергия приблизительно равна произведению запасаемого заряда на среднее напряжение:

E = q · U.

Пример

В технических спецификациях устройства указано, что мощность аккумулятора равна 5600 мА·ч, напряжение работы равно 15 В. Тогда мощность в ватт-часах равна (5600/1000)·15 = 84 Вт·ч.

См. также

Литература

  • Г. Д. Бурдун, В. А. Базакуца. Единицы физических величин. Справочник — Харьков: Вища школа, 1984

Как перевести из ампера в миллиампер

Основной единицей измерения силы тока является ампер. Так, например, ток силой 1 ампер (А) протекает через лампочку мощностью 220 Ватт, подключенную к электросети с напряжением 220 Вольт. В современной электронной технике, особенно миниатюрной, используются токи, как правило, значительно меньшей силы. Для их измерения применяется специальная (дробная) единица измерения силы тока – миллиампер (мА).

Чтобы перевести силу тока, заданную в амперах, в миллиамперы, просто умножьте количество ампер на тысячу. В виде несложной формулы это правило можно записать следующим образом:

Кма = Ка * 1000,
где:
Кма – количество миллиампер,
Ка – количество ампер.

Учтите, что миллиампер – это одна тысячная, а не миллионная часть ампера. Чтобы обозначить полученное количество миллиампер используйте следующие сокращения:

мА (русский вариант), или
mА – международное обозначение.

Иногда встречается написание «ма» или «ma» — такие сокращения применять нежелательно.
Обратите внимание на то, что для обозначения тысячной доли Ампера используется прописная русская или латинская (английская) буква «эм». Нечеткое или неправильное написание этой буквы может привести к путанице. Так, например, через МА обозначается Мегаампер (1000 Ампер), а через μА – микроампер (миллионная часть ампера).

Пример.
Ток какой силы, выраженный в миллиамперах, протекает через энергосберегающую лампочку мощностью 9 Вт, подключенную к бытовой осветительной электросети?
Решение.
Так как стандартное напряжение в бытовой электрической сети составляет 220 В, а сила тока в Амперах равняется мощности, поделенной на напряжение, то количество Ампер, посчитанное на стандартном Windows калькуляторе, равно:
Ка = 9/220 = 0,040909090909090909090909090909091

Чтобы перевести количество Ампер в миллиамперы просто «передвиньте» десятичную точку (в данном случае обозначена через запятую) на три цифры вправо. Получится:
Кма = 0040,909090909090909090909090909091

Этот результат, хотя и является правильным, но для практических расчетов не совсем удобен. Поэтому слева следует убрать «лишние» незначащие нули и округлить число. В итоге получится: 40,91.
Ответ: 40,91 мА.

Итак, если количество Ампер представляет из себя десятичную дробь, то переместите десятичную точку на три знака вправо. Если количество Ампер – целое, то для перевода Ампер в миллиамперы припишите к этому числу справа три нуля.

Пример.
Сколько миллиампер протекает через обогреватель мощностью 2,2 киловатта, включенный в обычную розетку?
Решение.
Переведите мощность в ватты и разделите ее значение на напряжение в электросети (220 В):
2,2 * 1000 / 220 = 2200 / 220 = 10 (А).
Теперь просто припишите к 10 три нуля справа: 10 000.
Ответ: 10000 мА.

Сколько ампер в 1 ма?

  • Погранслужба Украины отреагировала на видео расстрела безоружных беженцев

    Автор ролика утверждал, что силовики Незалежной якобы открыли огонь по нелегалам.Читать далее Далее…

  • Американский журналист: если Овечкин продолжит в том же духе, это будет адская история

    Журналист Пит Трушковски выразил мнение, что российский нападающий Вашингтон Кэпиталз Александр Овечкин является одним из величайших хоккеистов в истории Национальной хоккейной лиги. Слова журналиста передает Yahoo Далее…

  • Вышел новый трейлер четвертой Матрицы с Лоуренсом Фишборном

    Вышел новый трейлер четвертой Матрицы с Лоуренсом Фишборном Далее…

  • Считывание QR-кода на транспорте не станет значимым затруднением для пассажиров

    Правительство РФ готовит изменения в законодательные акты, регулирующие доступ пассажиров к услугам воздушного и железнодорожного транспорта в условиях пандемии COVID-19. В принципиальном плане речь идет о том, что допуск к полетам и посадке на поезда дальнего следования будет производиться исключительно по факту наличия медицинского документа о вакцинации, того самого пресловутого QR-кода. Далее…

  • Мясников назвал единственно верный способ противостоять штамму омикрон

    Доктор выразил уверенность в том, что понадобится корректировка вакцин специально под эту новую мутацию.

    Читать далее Далее…

  • Наследство Меркель на троих: чего ждать от «светофорной» коалиции в Германии?

    Формирование первого правительства Германии после эпохи Ангелы Меркель завершено — коалиция в составе Социал-демократической партии Германии (СДПГ), «свободных демократов» (СвДП) и «Зеленых» завершила переговоры раньше ожидаемого срока до конца года. Далее…

  • Не более 20 российских легкоатлетов смогут поехать на чемпионат мира 2022 года

    Соревнования состоятся с 15 по 24 июля следующего года в американском Юджине.Читать далее Далее…

  • DoS-атаки и вирусы: военные Молдавии участвуют в киберучениях НАТО в Эстонии

    В Эстонии проходят киберучения НАТО Cyber Coalition 2021, в которых принимают участие военнослужащие Центра реагирования на киберинциденты Вооруженных сил Молдавии. Об этом сегодня, 30 ноября, пишет ТГ-канал «Молдавский вагон».

    Далее…

  • Американист Рогулев предположил, чем закончится ситуация с высылкой российских дипломатов

    По мнению специалиста, есть угроза того, что деятельность представительств будет парализована.Читать далее Далее…

  • Лукашенко поблагодарил чеченцев за доставку нелегалов в Белоруссию

    Нелегальные мигранты на границу Белоруссии с Евросоюзом были доставлены из России. Об этом 30 ноября заявил Александр Лукашенко в интервью международному информационному агентству «Россия сегодня».Читайте новости сюжета: Миграционный кризис на границах Белоруссии и стран ЕвросоюзаКак сообщает пресс-служба президента Белоруссии в дополненной 1 декабря публикации об интервью, рассказывая про «беженцев на белорусско-польской границе, Александр Лукашенко отметил, что среди организаторов их доставки были россияне, включая чеченцев». В официальном сообщении нелегальных мигрантов из третьих стран называют «беженцами» (такого статуса им никто не предоставлял — Прим.

    ИА REGNUM).Читайте материалы сюжета: Россия и Белоруссия: стратегия Далее…

  • Россиянин попытался отменить дорожный знак через суд

    В Верховный суд РФ обратились с требованием отменить знак дорожного движения 6.22 Фотовидеофиксация , сообщает ТАСС. Истец настаивал, что этот знак предупреждает потенциальных нарушителей о размещенной на дороге камере. Он Далее…

  • Гинцбург рассказал, сколько доз вакцины для подростков Спутник М уже произведено

    До конца года планируется довести это число до 200–250 тысяч, а пока решается вопрос с введением препарата в гражданский оборот.Читать далее Далее…

  • В столице Южной Кореи задумались о создании метавселенной

    Страны Азии рассматривают метавселенную как перспективное технологическое направление для оказания государственных услуг. В ноябре столица Южной Кореи Сеул и островное государство Барбадос заявили, что намерены создать свои метавселенные для предоставления административных и консульских услуг гражданам. Аналитики считают, что другие города и страны могут последовать их примеру, если технология станет популярной. Далее…

  • Трихолог Галлямова объяснила появление пугающих шрамов на голове Лепса

    Врач не исключает, что артист сделал пластику за ушами. Лишь по фото судить сложно, отметила собеседница.Читать далее Далее…

  • Иран опроверг захват талибами КПП на границе

    Иранские власти опровергли сообщения о потере своих КПП на границе с Афганистаном в ходе произошедших в среду столкновений с боевиками движения Талибан (запрещенная в России террористическая организация), сообщило иранское информационное агентство Tasnim. Далее…

  • Кудрин упрекнул правительство в недостаточной проработке бюджета

    МОСКВА, 1 дек — РИА Новости. Глава Счетной палаты России Алексей Кудрин упрекнул правительство РФ в недостаточной проработке проекта бюджета перед внесением его на рассмотрение парламента. Далее…

  • ребят, как перевести 30 мА(миллиампер) в А(ампер)

    что такое механическая энергия своими словами пж

    При нагревании подсолнечного масла массой 579 г от 39°С до 65°С сожгли 1,6 г керосина. Определи КПД (коэффициент полезного действия) использованной на … гревательной установки. Удельная теплоёмкость подсолнечного масла равна 1700 Дж/(кг·°С), удельная теплота сгорания керосина — 43 МДж/кг. Ответ (округли до десятых): %

    дайте правильный ответ пожалуйста)

    Найди, какое количество теплоты нужно для обращения в пар спирта массой 80 г, взятого(-ой) при температуре 24 °С. (Удельная теплоёмкость спирта с=2400 … Дж/кг·°С, температура кипения спирта равна 78 ° С, удельная теплота парообразования спирта L=857000 Дж/кг).

    помогите очень срочно!!!!!!! 1) Людина масою 60 кг, яка бігла зі швидкістю 4 м/с , стрибнула в нерухомий візок. Визначте масу візка,, якщо він почав р … ухатися зі швидкістю 1 м/с ? 2) Тіло, яке підкинули вертикально вгору зі швидкістю 20 м/с , піднялося на висоту 14 м. Визначте скільки відсотків механічної енергії перейшло у внутрішню енергію.

    Скутер едет со скоростью 24 км/ч. За 102 км пути он расходует 1,3 кг бензина. Определи полезную мощность двигателя, если КПД двигателя скутера равен 2 … 6 %. (Удельная теплота сгорания бензина q=46МДжкг).      Ответ (промежуточный и конечный ответы округли до десятых):  Вт. ​

    Определи, сколько вспышек горючей смеси происходит за 1 с в каждом цилиндре четырёхтактного двигателя, вал которого совершает 3070 оборота(-ов) за 2 м … ин? Ответ (округли до целого числа): вспышек(-​

    Автомобиль мощностью 50 кВт расходует 16 кг дизельного топлива в час. Определи КПД двигателя автомобиля. (Удельная теплота сгорания дизельного топлива …  q=42000 кДжкг).      Ответ (округли до десятых):  %. ​

    Для ковки металла закупили паровой молот мощностью 470 кВт. При нагнетании пара поршень поднимается, для удара пар выпускается — молот опускается под … собственным весом и происходит удар бойка по заготовке, находящейся на наковальне. При ковке металла в течение 1,2 час(-а) рабочее тело получило 5746 МДж тепла. Вычисли количество теплоты, полученное за это же время окружающей средой.   Ответ (округли до целого числа):  МДж. ​

    Перевести миллиампер в вольт / Ом — Перевод единиц измерения

    ›› Перевести миллиамперы в вольт / ом

    Пожалуйста, включите Javascript для использования конвертер величин.
    Обратите внимание, что вы можете отключить большинство объявлений здесь:
    https://www.convertunits.com/contact/remove-some-ads.php



    ›› Дополнительная информация в конвертере величин

    Сколько миллиампер в 1 вольт / ом? Ответ — 1000.
    Мы предполагаем, что вы конвертируете между миллиампер и вольт / Ом .
    Вы можете просмотреть более подробную информацию о каждой единице измерения:
    миллиампер или вольт / ом
    Базовой единицей СИ для электрического тока является ампер.
    1 ампер равен 1000 миллиампер или 1 вольт / ом.
    Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
    Используйте эту страницу, чтобы узнать, как преобразовать миллиампер в вольт / ом.
    Введите свои числа в форму для преобразования единиц!


    ›› Таблица конвертации миллиампер в вольт / ом

    1 миллиампер в вольт / ом = 0.001 вольт / ом

    10 миллиампер в вольт / ом = 0,01 вольт / ом

    50 миллиампер в вольт / ом = 0,05 вольт / ом

    100 миллиампер в вольт / ом = 0,1 вольт / ом

    200 миллиампер в вольт / ом = 0,2 вольт / ом

    500 миллиампер в вольт / ом = 0,5 вольт / ом

    1000 миллиампер в вольт / ом = 1 вольт / ом



    ›› Хотите другие юниты?

    Вы можете произвести обратное преобразование единиц измерения из вольт / Ом в миллиампер или введите любые две единицы ниже:

    ›› Преобразователи электрического тока общие

    миллиампер в гигаампер
    миллиампер в сантиметр
    миллиампер в электростатическом блоке
    миллиампер в пикоампер
    миллиампер в секунду в зависимости от вебера / генри
    миллиампер до предела амплитуды
    миллиампер в секунду
    миллиампер до биота
    миллиампер до мегафона
    миллиампер до биота

    ›› Определение: Миллиампер

    Префикс системы СИ «милли» представляет собой коэффициент 10 -3 , или в экспоненциальной записи 1E-3.

    Итак, 1 миллиампер = 10 -3 ампер.


    ›› Метрические преобразования и др.

    ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

    Преобразование мА в ампер — Преобразование единиц измерения

    ›› Перевести миллиамперы в амперы

    Пожалуйста, включите Javascript для использования конвертер величин.
    Обратите внимание, что вы можете отключить большинство объявлений здесь:
    https://www.convertunits.com/contact/remove-some-ads.php



    ›› Дополнительная информация в конвертере величин

    Сколько мА в 1 ампер? Ответ — 1000.
    Мы предполагаем, что вы конвертируете между миллиампер и ампер .
    Вы можете просмотреть более подробную информацию о каждой единице измерения:
    мА или amp
    Базовой единицей СИ для электрического тока является ампер.
    1 ампер равен 1000 ма, или 1 ампер.
    Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
    Используйте эту страницу, чтобы узнать, как преобразовать миллиамперы в амперы.
    Введите свои числа в форму для преобразования единиц!


    ›› Таблица преобразования ma в amp

    от 1 мА до А = 0,001 А

    от 10 мА до А = 0,01 А

    от 50 мА до А = 0,05 А

    от 100 мА до А = 0,1 А

    200 мА до А = 0,2 А

    500 мА до усилителя = 0,5 А

    1000 мА до усилителя = 1 ампер



    ›› Хотите другие юниты?

    Вы можете произвести обратное преобразование единиц измерения из от ампер до ма, или введите любые две единицы ниже:

    ›› Преобразователи электрического тока общие

    ма на пикоамп
    ма на статамп
    ма на абамп
    ма на вольт / ом
    ма на мегаампер
    ма на вебер / генри
    ма на гектамп
    ма на дециамп
    ма на ватт / вольт
    ма на биот


    ›› Определение: Миллиампер

    Префикс системы СИ «милли» представляет собой коэффициент 10 -3 , или в экспоненциальной записи 1E-3.

    Итак, 1 миллиампер = 10 -3 ампер.


    ›› Определение: Amp

    В физике ампер (символ: A, часто неофициально сокращается до ампер) — это базовая единица СИ, используемая для измерения электрических токов. Нынешнее определение, принятое 9-й ГКПМ в 1948 году, гласит: «Один ампер — это тот постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с ничтожно малым круглым поперечным сечением и помещенных на расстоянии одного метра в вакууме, будет производить между этими проводниками действует сила, равная 2 × 10 -7 ньютон на метр длины ».


    ›› Метрические преобразования и др.

    ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

    А в мА — преобразователь ампер в миллиампер

    Ампер

    Ампер (символ: A), часто называемый просто ампер, является базовой единицей электрического тока в Международной системе единиц (СИ).Ампер формально определяется как постоянный ток, при котором сила 2 × 10 -7 ньютонов на метр длины будет создаваться между двумя проводниками, где проводники параллельны, имеют бесконечную длину, помещены в вакуум и имеют пренебрежимо малые круглые сечения. В единицах измерения заряда СИ, кулонах, один ампер определяется как один кулон заряда, проходящий через заданную точку за одну секунду.

    Ампер назван в честь Андре-Мари Ампера, французского математика и физика.В системе единиц сантиметр-грамм-секунда ампер был определен как одна десятая единицы электрического тока времени, которая теперь известна как абампер. Размер единицы был выбран таким, чтобы она удобно помещалась в системе единиц метр-килограмм-секунда. Текущее определение ампера существует с 1948 года, но может измениться в ближайшем будущем.

    В качестве базовой единицы измерения электрического тока в системе СИ, ампер используется во всем мире почти для всех приложений, связанных с электрическим током.Ампер может быть выражен в виде ватт / вольт или Вт / В, так что ампер равен 1 Вт / В, поскольку мощность определяется как произведение тока и напряжения.

    Определение некоторых базовых единиц СИ может измениться в ближайшем будущем. Международный комитет мер и весов (CIPM) предложил новое определение некоторых базовых единиц СИ в попытке улучшить систему. Хотя определения некоторых единиц могут измениться, фактический размер единиц останется прежним; изменение определения не окажет большого влияния, если вообще повлияет на повседневное использование этих единиц.

    Ампер — одна из единиц, которую необходимо пересмотреть из-за сложности поддержания высокой точности на практике. Предлагаемое новое определение ампера включает использование фиксированного числового значения элементарного заряда 1,602176634 × 10-19, выраженного в кулонах. Это определение также будет основано на переопределении второго, которое будет определяться как фиксированное числовое значение частоты цезия.

    Миллиампер

    Миллиампер (обозначение: мА) является частью основной единицы измерения электрического тока в системе СИ — ампера.Он определяется как одна тысячная ампер.

    Миллиампер берет свое начало от ампера. Префикс «милли» указывает одну тысячную от базовой единицы, которой она предшествует, в данном случае ампера. Амперу может предшествовать любой из метрических префиксов, чтобы указать единицы нужной величины.

    Как часть единицы СИ, миллиампер используется во всем мире, часто для небольших измерений электрического тока. Есть много устройств, которые измеряют единицы в миллиамперах, таких как гальванометры и амперметры, хотя эти устройства не измеряют исключительно миллиамперы.

    Что такое 1000 мА в амперах? — AnswersToAll

    Что такое 1000 мА в амперах?

    Миллиампер в Ампер Таблица преобразования

    Миллиампер [мА] Ампер [A]
    20 мА 0,02 А
    50 мА 0,05 А
    100 мА 0,1 А
    1000 мА 1 А

    Быстрая зарядка 1000 мА?

    Зарядное устройство на 1000 мА сделает работу намного быстрее.Аккумулятор на 2500 миллиампер-часов отлично справится с зарядкой при токе 500 мА.

    Соответствует ли 1000 мА 1 А?

    Mili — это подблок, который составляет 1/1000 от основного блока, таким образом, 1000 мА = 1 А.

    Сколько ватт в 1000 мА?

    Сколько мА в 1 ватте на вольт? Ответ — 1000. Мы предполагаем, что вы конвертируете миллиампер в ватт / вольт. Вы можете просмотреть более подробную информацию о каждой единице измерения: мА или ватт на вольт. Базовой единицей измерения электрического тока в системе СИ является ампер.

    Сколько ватт у выключателя?

    В среднем, 15-амперный выключатель может без перегорания включить одну лампу мощностью 1K или около 1800 — 2000 Вт.

    Для чего используются автоматические выключатели на 20 ампер?

    Двухполюсный выключатель Выключатели на 15 и 20 ампер часто используются для обогревателей плинтуса, 30-амперные водонагреватели и электрические сушилки, 40-амперные и 50-амперные выключатели для электрических плит, а 70-амперные могут использоваться для большого количества воздуха. кондиционер или субпанель.

    Стоит ли устанавливать розетки на 15 или 20 ампер?

    Электрические вилки, обозначенные как 20-амперные, не подходят для 15-амперных розеток. Цепь на 15 ампер обычно обслуживается проводом 14 калибра и защищена автоматическим выключателем на 15 ампер или предохранителем.Цепь на 20 ампер, защищенная автоматом или предохранителем на 20 ампер, должна обслуживаться проводом 12 или 10 калибра.

    Мне нужен переключатель на 15 или 20 ампер?

    Правило: Если у вас есть одна или две лампочки на этом переключателе, то 15 ампер — это хорошо. Но если у вас много света на одном переключателе, я бы просто выбрал переключатель на 20 ампер на всякий случай.

    Вам нужен переключатель на 20 ампер для цепи на 20 ампер?

    Итак, в основном переключатель должен быть переключателем на 20 ампер для нескольких розеток в цепи на 20 ампер.Теоретически это нормально, если общая потребляемая мощность трех розеток никогда не превышает 15 ампер.

    Должна ли каждая комната быть на своем собственном контуре?

    Практически каждый оконный кондиционер должен иметь свою собственную цепь. Не было бы ничего «плохого» в том, чтобы установить отдельный выключатель для каждой комнаты…. НО это будет неэффективно с тем, сколько проводов вы используете … сколько времени это займет … сколько места у вас есть электрическая панель. Таким образом, вы не потеряете целую комнату, если взорвется выключатель.

    Сколько светодиодов может быть в цепи на 20 ампер?

    38 ламп

    Преобразовать миллиамперы в амперы (мА в А)

    Вы переводите единицы электрический ток из Миллиамперы в Амперы

    1 Миллиампер (мА)

    =

    0.001 Ампер (А)

    Результаты в амперах (A):

    1 (мА) = 0,001 (А)

    Конвертировать

    Вы хотите перевести Амперы в Миллиамперы?

    Как преобразовать миллиамперы в амперы

    Чтобы преобразовать миллиамперы в амперы, умножьте электрический ток на коэффициент преобразования. Один миллиампер равен 0,001 ампера, поэтому используйте эту простую формулу для преобразования:

    миллиампер = ампер × 0,001

    Например, вот как преобразовать 500 миллиампер в амперы, используя формулу выше.

    500 мА = (500 × 0,001) = 0,5 А

    1 Миллиампер равен тому, сколько Ампера?

    1 Миллиампер равен 0,001 Ампер: 1 мА = 0,001 А

    В 1 Миллиампере 0,001 Ампер. Чтобы преобразовать миллиамперы в амперы, умножьте полученное значение на 0,001 (или разделите на 1000).

    1 Ампер равен сколько Миллиампер?

    1 Ампер равен 1000 Миллиампер: 1 А = 1000 мА

    В 1 Ампере 1000 Миллиампер. Чтобы преобразовать амперы в миллиамперы, умножьте полученное число на 1000 (или разделите на 0.001).

    Популярные преобразователи электрического тока:

    Килоампер в Мегаампер, Микроампер в Миллиампер, Микроампер в Ампер, Ампер в Мегаампер, Килоампер в Мегаампер, Миллиампер в Мегаампер, Микроампер в Миллиампер, Килоампер в Ампер, Миллиампер в Миллиампер Амперы

    902 мА
    Миллиампер Ампер Ампер Миллиампер
    1 мА 0.001 A 1 A 1000 мА
    2 мА 0,002 A 2 A 2000 мА
    3 мА 0,003 A 3 A 3000 мА 4 мА 0,004 A 4 A 4000 мА
    5 мА 0,005 A 5 A 5000 мА
    6 мА 0,006 A 6 мА
    7 мА 0. 007 A 7 A 7000 мА
    8 мА 0,008 A 8 A 8000 мА
    9 мА 0,009 A 9 A мА 10 мА 0,01 A 10 A 10000 мА
    11 мА 0,011 A 11 A 11000 мА
    12 мА 0,012 A 0,012 A мА
    13 мА 0.013 A 13 A 13000 мА
    14 мА 0,014 A 14 A 14000 мА
    15 мА 0,015 A 15 A 0,015 A 15 A мА 16 мА 0,016 A 16 A 16000 мА
    17 мА 0,017 A 17 A 17000 мА
    18 мА 0,018 A
    19 мА 0.019 A 19 A 19000 мА
    20 мА 0,02 A 20 A 20000 мА

    ампер в миллиампер — как обсуждать

    Ампер в миллиампер 500 мА эквивалентно 0.

    5 А?

    0,5 А соответствует половине ампер. Итак, 0,5 А соответствует 5 дециамперам, но в электротехнике это никогда не назовут. Вместо этого просто назовите это половиной усилителя или 5 десятых усилителя.

    Так что такое 500 мА?

    500 мА соответствует 0,5 ампер. В метрической системе единицей измерения электрического тока является ампер (А) или ампер. Чтобы выполнить этот расчет, вам необходимо знать эквиваленты преобразования между этими двумя устройствами. В отчете говорится, что 1 ампер равен 1 миллиамперу, разделенному на 1000 миллиампер на ампер, или A = мА / 1000.

    Как преобразовать мА в ток?

    Преобразование мА в А (миллиампер в амперы) Формула: (мА) / (1000) = (А). Например, если у вас 2000 мА, количество ампер будет (2000) / (1000) = (2) A.

    Имея это в виду, могу ли я использовать 1000 мА вместо 500 мА?

    и наоборот, если устройству требуется 12 В 1000 мА, но вместо него вы используете адаптер 12 В 500 мА, адаптер будет перегреваться (в отличие от устройства, не являющегося устройством) и, вероятно, будет поврежден (или даже взорвется). безопасно, пока адаптер может обеспечивать PI, чем потребляет устройство.

    Что означает 1000 мА?

    Преобразование миллиампер в амперы Ток I (A) в амперах равен току I (мА) в миллиамперах, разделенному на 1000 миллиампер на ампер: I (A) = I (мА) / 1000 мА / A.Следовательно, ампер равен тому же миллиамперам, разделенным на 1000 миллиампер на ампер: амперы = миллиамперы / 1000. A = мА / 1000.

    Что такое 500 мА ватт?

    500 миллиампер (мА) = 0.

    500000 Вт / вольт (Вт / В)

    Что означает 800 мА?

    Выход 800 мА — это максимальный выход, который зарядное устройство должно обеспечивать, не влияя на указанные выходные уровни.

    Что такое усилители на 200 мА?

    Миллиампер на Ампер Миллиамп [мА] Ампер [А] 20 мА 0,02 А 50 мА 0,05 А 100 мА 0.

    1 А 1000 мА 1 А

    Может ли слишком большой ток повредить устройство?

    Ток — это максимальный ток, который может подаваться.Если по какой-либо причине мощность нового блока питания упадет ниже максимальной, это может быть сгоревшим или перегретым блоком питания, а само устройство может не работать.

    Что такое 1 усилитель?

    Ампер — это единица измерения электронного тока или тока в электрическом проводнике. Один ампер тока соответствует одному кулону электрического заряда (6,24 x 1018 носителей заряда), который превышает определенную точку за одну секунду. Ампер назван в честь Андре Мари Ампера, французского физика (1775–1836).

    Что значит мАч?

    мАч означает миллиампер и представляет собой устройство, измеряющее (электрическую) мощность с течением времени.Он широко используется для измерения энергоемкости батареи. Вообще говоря, чем больше мАч, тем больше емкость или срок службы аккумулятора. Более высокое число означает, что аккумулятор может хранить больше энергии и, следовательно, имеет большую емкость.

    Что меньше миллиампера?

    Согласно этой логике, micro в 10 раз меньше, чем Milli (x106 против x10 3), т.е. в 1000 раз меньше. Итак, 1 миллиампер = 1000 микроампер, как 1 мегампера = 1000 килоампер. Вольтметр с сопротивлением 300 Ом может измерять до 150 вольт. Что такое 2.

    5 мА?

    2,5 мА означает 2,5 мА. 1 миллиампер соответствует 1000-му усилителю (единица СИ для мощности). Итак, 2,5 мА = 0,0025 А (ампер).

    Что означает 600 мА?

    Напряжение и ток измеряют разные вещи. Volt измеряет электрическое напряжение. Ампер измеряет ток. Мощность, измеряющая силу тока, равна напряжению * току. У вас может быть 1 В * 600 мА = 600 мВт (недостаточно для зарядки смартфона).

    Что делать, если сила тока слишком низкая?

    Когда мощность устройства слишком мала для устройства, оно будет пытаться потреблять от блока питания больше тока, чем может подать блок питания, что приведет к его перегреву и возможному взрыву.

    Можно ли использовать зарядное устройство с большей силой тока?

    Зарядить устройство с помощью прилагаемого зарядного устройства не так-то просто. Вы можете использовать зарядные устройства с большей силой тока, такие как: Например, зарядное устройство, поставляемое с планшетом, для зарядки телефона за меньшее время, чем зарядка через USB, или зарядное устройство, поставляемое с телефоном. проблема. Могу ли я использовать 4.

    5В вместо 5В?

    Еще одно примечание: большинство цифровых устройств, которые сегодня работают от 5 В, питаются от регулятора напряжения, значение которого падает до 3.3 В или меньше. Эти устройства требуют немного более высокое входное напряжение, чем целевое напряжение, поэтому может быть не менее 3,63,9 В. Одним словом, блока питания на 4,5В вполне достаточно.

    Что означает 5 В 500 мА?

    5V — фиксированное значение. Не может быть больше или меньше необходимого. 500 мА — максимальное значение. Может быть, больше, чем вам нужно.

    Что такое 300 мА?

    300 миллиампер (мА) = 0,300000 А (А) 1 мА = 0,001000 А. 1 А = 1000 мА.
    Ампер в Миллиампер

    Конвертер ампер [А] в миллиампер [мА] • Конвертер электрического тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

    Конвертер длины и расстоянияМассовый конвертерПреобразователь сухого объема и общие измерения при приготовлении пищиПреобразователь площадиПреобразователь объема и обычного измерения для приготовления пищиПреобразователь температурыПреобразователь давления, напряжения, модуля ЮнгаЭнергия и конвертер работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный конвертер скорости и скоростиКонвертер углаКонвертер топливной экономичности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер удельного ускорения Инерционный преобразователь Конвертер момента силы Преобразователь крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на объем) Конвертер температурного интервалаКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициентов теплопередачиКонвертер объёмного расходаПреобразователь массового расходаМолярный расход раствора в конвертере массового потока Конвертер массового потока ) Конвертер вязкостиПреобразователь кинематической вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемПреобразователь яркостиКонвертер яркости и яркости Конвертер фокусного расстояния: оптическая сила (диопт. r) в увеличение (X) преобразовательПреобразователь электрического зарядаПреобразователь линейной плотности зарядаПреобразователь плотности поверхностного зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимости уровней в дБмВт, дБВ, ваттах и ​​других единицах измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляПреобразователь магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данныхПреобразователь единиц типографии и цифровых изображенийКонвертер единиц измерения объёма древесиныКалькулятор молярной массыПериодическая таблица

    Обзор

    Чесменское сражение Ивана Айвазовского

    Мы обязаны комфортом нашей повседневной жизни электрическому току. Он генерирует излучение в видимом спектре и не только освещает наши дома, но также готовит и разогревает пищу в различных электроприборах, таких как электрические плиты, микроволновые печи и тостеры.Поскольку у нас есть электричество, нам не нужно добывать топливо, чтобы зажечь огонь. Благодаря электричеству мы также можем быстро перемещаться по горизонтальной плоскости внутри поездов, поездов метро и высокоскоростных поездов, а также по вертикальным плоскостям на эскалаторах и лифтах. Мы обязаны теплом и комфортом в наших домах электрическому току, потому что он питает наши электрические обогреватели, кондиционеры и вентиляторы. Различные машины с электрическим приводом значительно упрощают нашу работу как в повседневной жизни, так и в различных отраслях промышленности.Действительно, мы живем в эпоху электричества, потому что именно электричество позволяет нам использовать наши компьютеры, смартфоны, Интернет, телевидение и другие интеллектуальные электронные технологии. Учитывая, насколько удобно использовать электричество как форму энергии, неудивительно, что мы тратим столько усилий на ее выработку.

    Может показаться необычным, но идея практического использования электричества впервые была воспринята некоторыми из наиболее консервативных членов общества — военно-морскими офицерами. В этом элитарном обществе было трудно продвинуться вверх, и столь же трудно было убедить адмиралов, которые начинали юнгой в эпоху парусного спорта, в необходимости перехода на бронированные боевые корабли с паровыми двигателями, но молодые офицеры предпочитали и поддерживали инновации.В связи с успехом использования огневых кораблей во время русско-турецкой войны 1770 года, которая привела к победе в Чесменском сражении, военно-морской флот начал рассматривать возможность модернизации систем защиты порта, используя старую береговую артиллерию в сочетании с военно-морскими минами, которые были новаторскими в то время.

    Корабельная радиостанция, ок. 1910. Канадский музей науки и техники, Оттава

    Разработка различных типов морских мин началась в начале XIX века, и наиболее успешные разработки включали автономные мины, активируемые электричеством. В 1870-х годах немецкий физик Генрих Герц разработал устройство для подрыва поставленных на якорь мин с помощью электричества. Одна из разновидностей этого устройства — морская рогатая мина — широко известна и часто появляется в исторических фильмах о войне. Его свинцовый «рог» имеет емкость с электролитом, который разрушается при контакте с корпусом корабля. Электролит питает простую батарею, которая, в свою очередь, подрывает мину.

    Радиостанция компании Hudson’s Bay, ок. 1937. Канадский музей науки и техники, Оттава

    Морские офицеры были одними из первых, кто оценил потенциал свечей Яблочкова, которые были первыми источниками электрического света.Они были далеки от совершенства, но излучали свет от электрической дуги и раскаленного добела положительного электрода, сделанного из угля. Они использовались для сигнализации поля боя и для освещения поля боя. Использование мощных прожекторов давало преимущество использовавшей их стороне для освещения поля боя в ночных боях или для передачи информации и координации действий различных военно-морских частей во время морских сражений. Прожекторы, используемые в маяках, улучшили навигацию в опасных прибрежных водах.

    Вакуумная лампа, ок. 1921. Канадский музей науки и техники, Оттава

    Неудивительно, что военно-морской флот также был взволнован адаптацией технологий, позволяющих беспроводную передачу информации. Большой размер первых передающих устройств не был проблемой для военно-морского флота, потому что на их кораблях было достаточно места для размещения этих удобных, но порой больших машин.

    Электрическое оборудование использовалось для упрощения заряжания орудий на борту кораблей, в то время как силовые электрические механизмы использовались для поворота орудийных башен и повышения точности и эффективности орудий.Телеграф машинного приказа позволял экипажу общаться и повышал его эффективность, что давало значительное преимущество в бою.

    Одним из самых ужасающих способов использования электрического тока в военно-морском сражении было использование Третьим рейхом подводных лодок рейдеров. Подводные лодки Гитлера, действовавшие по тактике «Волчьей стаи», потопили многие транспортные конвои союзников. Хорошо известная история Convoy PQ 17 — один из примеров.

    Драммондвиль Радиопередатчик, ок. 1926. Канадский музей науки и техники, Оттава

    Британский флот смог получить несколько машин Enigma, используемых немцами для кодирования сообщений, и им удалось взломать их код с помощью Алана Тьюринга, известного как отец современные вычисления.Союзники перехватили радиосвязь немецкого адмирала Карла Дёница, и с этой информацией смогли использовать прибрежные военно-воздушные силы, чтобы загнать в угол Волчью стаю и оттеснить ее к берегам Норвегии, Германии и Дании. Благодаря этому с 1943 года рейды ограничились короткими.

    Беспроводной телеграфный ключ, ок. 1915. Канадский музей науки и техники, Оттава

    Гитлер планировал добавить к своим подводным лодкам ракеты Фау-2, чтобы их можно было использовать для атаки на восточное побережье США.Однако быстрое продвижение союзников на Западном и Восточном фронтах помешало ему сделать это.

    Современный флот сложно представить без авианосцев и атомных подводных лодок. Они питаются от ядерных реакторов, которые сочетают в себе технологии 19 века на основе пара, технологии 20 века на основе электричества и ядерные технологии 21 века. Энергетические системы атомных подводных лодок вырабатывают достаточно электроэнергии для удовлетворения энергетических потребностей большого города.

    В дополнение к использованию электричества, которое мы уже обсуждали, недавно военно-морской флот начал рассматривать другие применения электричества, такие как использование рельсотрона. Рельсотрон — это электрическая пушка, которая использует снаряды кинетической энергии, которые обладают огромным разрушительным потенциалом.

    Джеймс Клерк Максвелл. Статуя Александра Стоддарта. Фото Ad Meskens / Wikimedia Commons

    Немного истории

    С развитием надежных источников энергии для постоянного тока, таких как гальваническая батарея, созданная итальянским физиком Алессандро Вольта, многие выдающиеся ученые по всему миру начали исследовать свойства электрический ток и вызываемые им физические явления, а также его практическое использование в науке и технике.«Звездный список» ученых включает Георга Ома, который вывел закон Ома для описания поведения электрического тока в основной электрической цепи; немецкий физик Густав Кирхгоф, разработавший расчеты для более сложных электрических цепей; и французский физик Андре Мари Ампер, открывший закон, описывающий свойства замкнутого контура, на который действует магнитное поле и через него проходит электрический ток. Этот закон известен теперь как круговой закон Ампера. Независимая работа английского физика Джеймса Прескотта Джоуля и русского ученого Генриха Ленца завершилась открытием закона джоулева нагрева, который количественно определяет тепловой эффект электрического тока.

    Хендрик Антун Лоренц, картина Менсо Камерлинг-Оннеса (1860–1925) в 1916 году.

    Работы Джеймса Клерка Максвелла были посвящены дальнейшему исследованию свойств электрического тока и заложили основу современной электродинамики. Теперь эти работы известны как уравнения Максвелла. Максвелл также разработал теорию электромагнитного излучения и предсказал многие явления, такие как электромагнитные волны, радиационное давление и другие. Позже существование электромагнитных волн было экспериментально доказано немецким физиком Генрихом Рудольфом Герцем.Его работы по отражению, интерференции, дифракции и поляризации электромагнитных волн были использованы при изобретении радио.

    Жан-Батист Био (1774–1862)

    Несколько экспериментальных работ французских физиков Жана-Батиста Био и Феликса Савара о проявлении магнетизма в присутствии электрического тока, обобщенных в законе Био – Савара, и исследованиях блестящего французского математика Пьера-Симона Лапласа, который обобщил приведенные выше экспериментальные результаты в виде математической абстракции, впервые установил связь между двумя сторонами одного явления и положил начало изучению электромагнетизма.Гениальный британский физик Майкл Фарадей продолжил их работу и открыл электромагнитную индукцию. Современная электротехника построена на работах Фарадея.

    Физик из Нидерландов Хендрик Лоренц внес ценный вклад в объяснение природы электрического тока. Он разработал классическую теорию электронов и предположил, что атомы состоят из более мелких заряженных частиц и что свет является результатом колебаний этих частиц. Он также вывел уравнение для описания силы, действующей на движущийся заряд изнутри электромагнитного поля.Эта сила известна как сила Лоренца.

    Определение электрического тока

    Электрический ток можно определить как упорядоченное движение заряженных частиц. Учитывая это определение, электрический ток измеряется количеством заряженных частиц, которые проходят через поперечное сечение проводника за заданную единицу времени.

    I = q / t , где q — заряд в кулонах, t — время в секундах, а I — электрический ток в амперах.

    Другое определение электрического тока зависит от свойств проводников и описывается законом Ома:

    I = В / R , где В, — напряжение в вольтах, R — сопротивление в Ом. , I — ток в амперах.

    Электрический ток измеряется в амперах (A) и единицах, производных от них, таких как наноампер (одна миллиардная часть ампера, нА), микроампер (одна миллионная часть ампера, мкА), миллиампер (тысячная часть ампера, мА). ), килоампер (тысяча ампер, кА) и мегаампер (миллион ампер, МА).

    В СИ единицей измерения электрического тока является

    [А] = [C] / [s]

    Поведение электрического тока в различных средах

    Алюминий является очень хорошим проводником и широко используется в электропроводке.

    Электрический ток в твердых материалах, включая металлы, полупроводники и диэлектрики

    При рассмотрении электрического тока мы должны учитывать среду, которая его переносит, в частности, заряженные частицы, присутствующие в материале или веществе в текущем состоянии.Этот материал или вещество может быть твердым, жидким или газообразным. Уникальным примером различных состояний вещества является монооксид дигидрогена или оксид водорода, известный нам просто как вода. Мы можем увидеть его твердым, если посмотрим на лед из морозильной камеры, который мы сделали для охлаждения напитков — большинство из них основаны на воде. С другой стороны, при приготовлении чая или растворимого кофе мы используем кипяток. Если бы мы подождали, пока вода закипит, прежде чем налить ее в чайник, мы бы увидели «туман», выходящий из носика чайника — этот туман состоит из капель воды, образовавшихся из газообразного состояния воды (пара), которое выходит из носика и контактирует с холодным воздухом.

    Существует еще одно состояние вещества, известное как плазма. Низкотемпературная плазма составляет верхние слои звезд, ионосферу Земли, пламя, электрическую дугу и вещество внутри люминесцентных ламп — это лишь несколько примеров. Трудно воссоздать высокотемпературную плазму в лаборатории, потому что для этого требуются чрезвычайно высокие температуры, превышающие 1 000 000 К.

    Эти высоковольтные автоматические выключатели содержат два основных компонента: размыкающие контакты и изолятор, соединяющий два провода вместе.

    По своей структуре твердые материалы можно разделить на кристаллические и аморфные. Первые имеют структурированную кристаллическую решетку. Атомы и молекулы такого вещества образуют двух- или трехмерные кристаллические решетки. Кристаллические твердые тела включают металлы, их сплавы и полупроводники. Мы можем легко визуализировать кристаллические твердые тела, представляя снежинки, которые представляют собой кристаллы уникальной формы. Аморфные вещества не имеют кристаллической решетки. Диэлектрики обычно аморфны.

    В нормальных условиях электрический ток течет через твердые тела благодаря движению свободных электронов, которые становятся несвязанными в результате отрыва валентных электронов от атома. Мы также можем разделить твердые тела в зависимости от характера потока электричества внутри них на проводники, полупроводники и изоляторы. Свойства различных материалов определяются на основе дискретной электронной зонной структуры. Это зависит от ширины запрещенной зоны, в которой не могут находиться электроны.Изоляторы имеют самую широкую запрещенную зону, которая иногда может достигать 15 эВ. Изоляторы и полупроводники не имеют электронов в проводящем промежутке при температуре абсолютного нуля, но при комнатной температуре будут некоторые электроны, которые были удалены из валентных зон из-за тепловой энергии. В проводниках, таких как металлы, зона проводимости перекрывается с валентными зонами. Вот почему даже при абсолютном нуле существует большое количество электронов, и это все еще верно, когда температура повышается до точки плавления.Эти электроны позволяют электрическому току проходить через материал. Полупроводники имеют небольшую ширину запрещенной зоны, и их способность проводить электричество во многом зависит от температуры, излучения и других факторов, таких как присутствие примесей.

    Трансформатор с ламинированным сердечником. По бокам хорошо видны стальные листы двутавровой и Е-образной формы.

    Сверхпроводники создают особые условия для электрического тока. Это материалы с нулевым сопротивлением прохождению электрического тока.Электроны проводимости этих материалов образуют группы частиц, которые связаны друг с другом за счет квантовых эффектов.

    Как следует из названия, изоляторы плохо проводят электрический ток. Это свойство изоляторов используется для ограничения протекания электрического тока между проводящими поверхностями из разных материалов.

    В дополнение к электрическому току, протекающему по проводникам, когда магнитное поле постоянное, когда магнитное поле переменное, его изменения вызывают явление, известное как вихревые токи, которые также называются токами Фуко.Чем больше скорость изменения магнитного поля, тем сильнее вихревые токи. Они не текут по определенному маршруту, а вместо этого текут в замкнутых контурах в проводнике.

    Вихревые токи вызывают скин-эффект, который представляет собой тенденцию протекания переменного электрического тока (AC) и магнитного потока в основном вдоль поверхностного слоя проводника, что приводит к потере энергии. Чтобы уменьшить эти потери на вихревые токи в сердечниках трансформаторов, их магнитные цепи разделены. Это делается путем наложения слоев тонких стальных изолированных пластин, которые образуют сердечник трансформатора.

    Хромированная пластиковая лейка для душа

    Электрический ток в жидкостях (электролитах)

    Все жидкости могут проводить электрический ток в определенной степени при приложении к ним электрического напряжения. Жидкости, проводящие электрический ток, называются электролитами. Электрический ток переносится положительно и отрицательно заряженными ионами, известными соответственно как катионы и анионы, которые присутствуют в жидкости из-за электролитической диссоциации. В электролитах ток течет из-за движения ионов по сравнению с током, возникающим из-за движения электронов в металлах.Этот ток в электролитах характеризуется перемещением вещества к электродам и образованием новых химических элементов вокруг электродов или отложением этих новых веществ на электроде.

    Это явление легло в основу электрохимии и позволяет количественно определять эквивалентный вес различных химических веществ. Это позволило превратить неорганическую химию в точную науку. Дальнейшее развитие химии электролитов позволило создать химические источники энергии в виде первичных (или одноразовых) и аккумуляторных батарей и топливных элементов.Это, в свою очередь, позволило совершить скачок в развитии технологий. Просто заглянув под капот вашего автомобиля и исследуя автомобильный аккумулятор, вы сможете увидеть результаты десятилетий работы исследователей и инженеров.

    Автомобильный аккумулятор, установленный в 2012 году Honda Civic

    Многие производственные процессы, зависящие от протекания электрического тока в электролитах, могут придать привлекательный вид конечному продукту (например, хромовое и никелевое гальваническое покрытие) и защитить объекты от коррозии.Электроосаждение и электротравление — фундаментальные процессы в современной электротехнике при создании различных электронных компонентов. Эти процессы очень часто используются, например, в микропроизводстве, и количество электронных компонентов, производимых с использованием этих технологий, достигает десятков миллиардов в год.

    Электрический ток в газах

    Электрический ток в газах зависит от количества в нем свободных электронов и ионов. Из-за большего расстояния между частицами газа по сравнению с жидкостями и твердыми телами молекулы и ионы в газах обычно проходят большие расстояния, прежде чем столкнуться.Из-за этого протекание электричества в газах в нормальных условиях затруднено. То же верно и для смесей газов. Примером смеси газов является воздух, который в электротехнике считается хорошим изолятором. В обычных условиях многие другие смеси газов также являются хорошими изоляторами.

    Неоновая лампа для проверки отвертки показывает, что присутствует напряжение 220 В.

    Поток электричества в газах зависит от различных физических факторов, таких как давление, температура и компоненты, составляющие эту смесь.Кроме того, ионизирующее излучение тоже играет роль. Например, газ может проводить электричество, если его облучают ультрафиолетовым или рентгеновским излучением, если на него воздействуют катодные или анодные частицы или частицы, испускаемые радиоактивным веществом, или даже если температура этого газа высока.

    Когда энергия поглощается электрически нейтральными атомами или молекулами газа и когда образуются ионы, этот эндотермический процесс называется ионизацией. Когда энергия достигает определенного порога, электрон или группа электронов преодолевают потенциальный барьер и покидают атом или молекулу, становясь, таким образом, свободными электронами.Атом или молекула, которую оставили электроны, тоже больше не нейтральны, они заряжены положительно. Свободные электроны могут присоединяться к нейтрально заряженным атомам или молекулам и образовывать отрицательно заряженные ионы. Положительно заряженные ионы могут отбирать отрицательно заряженные электроны при столкновении с ними и, таким образом, снова становиться нейтральными. Этот процесс называется рекомбинацией.

    Когда электрический ток течет через газ, его состояние изменяется. Это приводит к сложной зависимости между электрическим током и напряжением, которая более или менее регулируется законом Ома, но только при малых электрических токах.

    Электрические разряды в газах могут быть как несамостоятельными, так и самоподдерживающимися. Несамостоятельные разряды создают электрический ток, который возможен только при наличии внешних ионизирующих факторов. Когда они отсутствуют, электрический ток через газ не течет. С другой стороны, во время самоподдерживающихся разрядов электрический ток поддерживается из-за ионизации нейтральных атомов и молекул в газе, которые были ускорены электрическим полем при столкновении со свободными электронами и ионами.В этих условиях электрический ток возможен даже без внешних ионизирующих факторов.

    Вольт-амперные характеристики бесшумного разряда

    Когда разность потенциалов между анодом и катодом мала, несамостоятельный разряд называют тихим или таунсендовским. С увеличением напряжения увеличивается и сила тока. Сначала это увеличение пропорционально напряжению (участок OA на вольт-амперной характеристике бесшумного разряда), но постепенно скорость нарастания замедляется (участок AB на графике).Когда все оторвавшиеся частицы, которые высвободились в результате процесса ионизации, движутся к катоду и аноду одновременно, увеличения тока не происходит (участок BC на графике). Если напряжение снова увеличивается, ток также увеличивается, и бесшумный разряд становится несамостоятельным лавинным зарядом. Примером несамостоятельного разряда является тлеющий разряд в газоразрядных лампах высокого давления различного назначения.

    Когда несамостоятельный разряд трансформируется в самостоятельный разряд, электрический ток увеличивается (точка E на кривой).Эта точка известна как электрический пробой.

    Электронная фотовспышка с ксеноновой трубкой (красный прямоугольник)

    Все различные типы зарядов, описанные выше, являются стационарными или установившимися разрядами. Их свойства не зависят от времени. Помимо этих разрядов, существуют также нестабильные разряды, которые обычно возникают в очень неравномерных электрических полях, например, на заостренных или искривленных поверхностях проводников или электродов. Существует два типа неравномерных разрядов: коронный разряд и искровой разряд.

    Ионизация при коронном разряде не вызывает электрического пробоя. Этот разряд вызывает повторяющийся процесс запуска несамостоятельного разряда в небольшом ограниченном пространстве вокруг проводника. Хорошим примером коронного разряда является свечение в воздухе вокруг антенн, громоотводов или линий электропередач высоко над землей. Коронный разряд вокруг линий электропередачи вызывает потерю энергии. Раньше это сияние было знакомо мореплавателям — свечение вокруг мачт кораблей было известно как св.Элмо огонь. Коронный разряд используется в лазерных принтерах и копировальных аппаратах. Он генерируется устройством, создающим коронный разряд, металлической струной, к которой приложено высокое напряжение. Коронный разряд ионизирует газ, который, в свою очередь, ионизирует светочувствительный барабан. В этом случае полезен коронный разряд.

    По сравнению с коронным разрядом электростатический разряд вызывает электрический пробой. Это похоже на прерывистые светлые нити, которые разветвляются и заполнены ионизированным газом. Они появляются и исчезают, производя большое количество тепла и света.Типичным примером естественного электростатического разряда является молния. Электрический ток в нем может достигать десятков килоампер. Прежде чем может произойти молния, необходимо создать нисходящую группу лидеров, известную как лидер или искра. Вместе со ступенчатым лидером образует выстроенный строй. Молния обычно состоит из множественных электростатических разрядов в направленном вниз формировании лидера для разряда отрицательной молнии «облако-земля». В электронных вспышках в фотографии используется мощный электростатический разряд.Разряд здесь образуется между электродами импульсной лампы из кварцевого стекла, заполненного смесью благородных ионизированных газов.

    Когда электрический разряд сохраняется в течение длительного периода времени, он называется электрической дугой. Электрическая дуга используется в дуговой сварке, которая является незаменимой технологией в современном строительстве, используется для возведения стальных конструкций различного размера и назначения, от небоскребов до авианосцев и автомобилей. Электрическая дуга используется не только для соединения материалов, но и для их резки.Разница между этими двумя процессами заключается в силе используемого тока. Сварка происходит при относительно более низких токах, в то время как для резки требуются более высокие токи электрической дуги. Само порезание происходит при удалении расплавленного металла, и для его удаления используются разные методы.

    Еще одно применение электрической дуги в газах — это газоразрядные лампы, которые отгоняют тьму на наших улицах, площадях и стадионах (в этих условиях обычно используются натриевые лампы).Металлогалогенные лампы, которые заменили лампы накаливания в автомобильных фарах, также используют эту технологию.

    Электрический ток в вакууме

    Вакуумная трубка в передающей станции. Канадский музей науки и технологий, Оттава

    Вакуум является идеальным диэлектриком, поэтому электрический ток в вакууме возможен только в том случае, если свободные носители тока, такие как электроны или ионы, генерируются термоэлектронной эмиссией, фотоэлектрической эмиссией или другими способами. способами.

    Подобные телекамеры использовались в 1980-х годах.Канадский музей науки и техники, Оттава

    Основным методом получения электрического тока в вакууме с использованием электронов является термоэлектрическая эмиссия электронов металлами. Когда электрод нагревается (он называется горячим катодом), он испускает электроны в трубку. Эти электроны вызывают прохождение электрического тока до тех пор, пока присутствует другой электрод (называемый анодом), и пока между ними существует определенное напряжение требуемой полярности. Такие вакуумные лампы называются диодами и проводят электрический ток только в одном направлении.Они блокируют ток, если есть попытка заставить ток течь в обратном направлении. Это свойство используется для преобразования переменного тока (AC) в постоянный (DC) посредством процесса выпрямления. Это делается системой диодов.

    Если рядом с катодом добавить дополнительный электрод, известный как сетка, мы получим устройство, называемое триодом, которое значительно усиливает даже небольшие изменения напряжения в управляющей сетке относительно катода. В результате это изменяет ток и напряжение на нагрузке, которая последовательно подключена к вакуумной лампе, относительно источника питания.Эта система, называемая усилителем, используется для усиления различных сигналов.

    Использование электронных ламп с большим количеством управляющих сеток, таких как тетроды, пентоды и даже пятиэлектродные преобразователи с семью электродами, было революционным в создании и усилении радиосигналов и позволило создать современные системы радио- и телевещания.

    Современный видеопроектор

    Исторически радио было разработано первым, потому что было относительно легко разработать методы преобразования и передачи относительно низкочастотных сигналов, а также разработать схему для приемных устройств, которые могут усиливать и смешивать радиочастоты для их преобразования. в акустический сигнал посредством процесса демодуляции.

    Когда было изобретено телевидение, электронные лампы, называемые иконоскопами, использовались для испускания электронов за счет фотоэлектрического эффекта падающего на них света. Дальнейшее усиление сигнала производилось ламповым усилителем. Для просмотра захваченного и переданного изображения использовались электронно-лучевые трубки (ЭЛТ), которые также были вакуумными трубками. В ЭЛТ изображение создавалось на экране путем обратного преобразования сигнала. Это было сделано путем ускорения электронов до высокой скорости с помощью одной (или трех для цветного телевидения) электронных пушек в сильном электрическом поле.Поле создавалось приложением большого напряжения между катодом электронной пушки и анодом ЭЛТ. Пучки высокоскоростных электронов направлялись на экран, покрытый люминесцентным материалом, и с него излучался видимый свет. Изображение было создано двумя взаимно синхронизированными системами: одна считывала сигнал с иконоскопа, а другая выполняла растровое сканирование. Первые электронно-лучевые трубки были монохромными.

    SU3500 Сканирующий электронный микроскоп. Департамент материаловедения и инженерии.Университет Торонто

    Вскоре после этого было разработано цветное телевидение. Иконоскопы в цветном телевидении были гибридными системами, которые реагировали только на свет определенного цвета: красного, синего или зеленого. Цветные люминофорные точки электронно-лучевых трубок телевизора излучали свет за счет электрического тока, создаваемого электронной пушкой. Они реагировали на ударяющие по ним ускоренные электроны и излучали свет определенного цвета и яркости. Были использованы специальные теневые маски, чтобы лучи каждой цветной электронной пушки попадали в точки люминофора правильного цвета.

    В современных технологиях теле- и радиовещания используются более современные материалы на основе полупроводников, которые потребляют меньше энергии.

    Одним из широко используемых методов получения изображения внутренних органов является рентгеноскопия. Катод испускает электроны, которые разгоняются до такой скорости, что при попадании на анод генерируют рентгеновское излучение, которое может проникать в мягкие ткани человеческого тела. Рентгенограммы дают врачам уникальную информацию о состоянии костей, зубов и некоторых внутренних органов и даже могут помочь определить такие заболевания, как рак легких.

    Лампа бегущей волны С-диапазона. Канадский музей науки и техники, Оттава

    В общем, электрические токи, образованные движением электронов в вакууме, находят широкое применение. Вакуумные лампы, ускорители частиц, масс-спектрометры, электронные микроскопы, генераторы вакуума высокой частоты, такие как лампы бегущей волны, клистроны и резонаторные магнетроны, — это лишь некоторые из примеров того, как мы используем этот тип электрического тока. Следует отметить, что именно магнетроны нагревают и готовят пищу в микроволновых печах.

    Недавняя очень ценная технология, использующая электрический ток в вакууме, — это осаждение тонких пленок в вакууме. Эти пленки имеют декоративную или защитную функцию. Материалы, используемые в этой технике, — это металлы, их сплавы и их соединения с кислородом, азотом и углеродом. Эти пленки либо изменяют, либо сочетают в себе электрические, оптические, механические, магнитные, каталитические и связанные с коррозией свойства поверхности, которую они покрывают.

    Для получения комплексного соединения пленки используется технология ионно-лучевого осаждения.Некоторыми примерами этой технологии являются катодно-дуговое напыление и его коммерческий вариант мощного импульсного магнетронного распыления. В конце концов, это электрический ток , который создает пленочное покрытие на поверхности благодаря ионам.

    Ионно-лучевое распыление создает пленки из нитридов, карбидов и оксидов металлов, которые обладают необычайным набором механических, теплофизических и оптических свойств, включая твердость, долговечность, электро- и теплопроводность и оптическую плотность.Другим способом добиться этих результатов невозможно.

    Электрический ток в биологии и медицине

    Макет операционной в Институте знаний Ли Ка Шинг, Торонто, Канада. Пациенты-роботы-манекены, которые могут моргать, дышать, плакать, истекать кровью и моделировать болезни, используются для обучения

    Понимание поведения электрического тока внутри биологических систем дает биологам и врачам мощный инструмент для исследований, диагностики и лечения.

    С точки зрения электрохимии все биологические объекты содержат электролиты, независимо от их структуры.

    При рассмотрении того, как электрический ток проходит через биологический объект, мы должны учитывать состояние клеток этого объекта. В этом отношении клеточная мембрана является важной структурой, которую необходимо учитывать. Это внешний слой каждой клетки, который защищает клетку от негативного воздействия окружающей среды за счет избирательной проницаемости для различных веществ. Другими словами, он пропускает одни вещества, а другие останавливает. С точки зрения физики, мы можем рассматривать эту мембрану как эквивалентную схему, которая состоит из параллельного соединения конденсатора с несколькими цепями, которые имеют последовательное соединение между источником электрического тока и резистором.Благодаря такой структуре электропроводность этого биологического объекта зависит от частоты приложенного напряжения и типов напряжения.

    Трехмерное изображение волоконных путей, соединяющих различные области мозга. Это изображение было получено с использованием метода неинвазивной диффузионной тензорной визуализации (DTI)

    Биологическая ткань состоит из клеток, внеклеточной жидкости, кровеносных сосудов и нервных клеток. При подаче электрического тока нервные клетки возбуждаются и посылают сигналы о сокращении или расслаблении мышц и кровеносных сосудов животного.Следует отметить, что течение электрического тока в биологических тканях нелинейно.

    Классическим примером воздействия электрического тока на биологический объект является серия экспериментов итальянского врача, физика и биолога Луиджи Гальвани, который считается одним из отцов-основателей электрохимии. В этих экспериментах он пропустил электрический ток через нервы в ноге лягушки, и это вызвало сокращение мускулов и движение ноги. В 1791 году его открытия были описаны в отчете об электрических силах в движении мышц.Долгое время в учебниках явление, открытое Гальвани, именовалось гальванизмом. Даже сейчас этот термин иногда используется для обозначения определенных процессов и устройств.

    Дальнейшее развитие электрофизиологии тесно связано с нейрофизиологией. В 1875 году британский хирург и врач Ричард Кейтон и русский врач Василий Данилевский независимо друг от друга показали, что мозг может генерировать электричество. Другими словами, они обнаружили ионный ток, протекающий в мозгу.

    Биологические объекты могут генерировать не только микротоки, но также значительные напряжения и токи в рамках своего повседневного функционирования.Задолго до работ Гальвани британский биолог Джон Уолш доказал электрическую природу системы защиты от электрического луча. Шотландский хирург и физиолог Джон Хантер подробно описал механизм, с помощью которого электрические лучи генерируют электричество. Результаты их исследования были опубликованы в 1773 году.

    Функциональная магнитно-резонансная томография (фМРТ) — это неинвазивный метод, который позволяет врачам измерять активность мозга, обнаруживая изменения в кровотоке.

    Современная медицина и биология используют различные методы для исследования. живые организмы, которые включают как инвазивные, так и неинвазивные методы.

    Классическим примером инвазивного метода является исследование крыс, которые бегают по лабиринту или выполняют другие задания с имплантированными в их мозг электродами.

    С другой стороны, неинвазивные методы — это такие широко известные методы диагностики, как электроэнцефалография и электрокардиография. В этих процедурах электроды, контролирующие электрические токи в головном мозге или сердце, используются для измерения на коже человека или животного под наблюдением. Чтобы улучшить контакт с электродами, на кожу наносят физиологический раствор, поскольку он является хорошим электролитом и может хорошо проводить электрический ток.

    Помимо использования электрического тока для исследований и наблюдения за состоянием различных химических процессов и реакций, одним из наиболее эффективных способов использования электричества является дефибрилляция, которая в фильмах иногда изображается как «перезапуск» сердца, которое уже остановилось. работающий.

    Тренировочный автоматический внешний дефибриллятор (AED)

    Действительно, запуск кратковременного импульса значительной силы иногда (но очень редко) может перезапустить сердце. Однако чаще используются дефибрилляторы, чтобы скорректировать аритмическое биение сердца и вернуть его в норму.Хаотические аритмические сокращения известны как фибрилляция желудочков, поэтому устройство, которое возвращает сердце в норму, называется дефибриллятором. Современные автоматические внешние дефибрилляторы могут регистрировать электрическую активность сердца, определять фибрилляцию желудочков сердца, а затем рассчитывать силу тока, необходимую пациенту, на основе этих факторов. Во многих общественных местах теперь есть дефибрилляторы, и медицинское сообщество надеется, что эта мера предотвратит множество смертей, вызванных дисфункцией сердца пациента.

    Медработники обучены определять физиологическое состояние сердечной мышцы по электрокардиограмме и быстро принимать решения о лечении, намного быстрее, чем это могут сделать автоматические внешние дефибрилляторы, доступные для населения.

    Отдельно стоит упомянуть об искусственных кардиостимуляторах, контролирующих сердечные сокращения. Эти устройства имплантируются под кожу или под грудную мышцу пациента и передают импульсы электрического тока напряжением около 3 В через электрод в сердечную мышцу.Это стимулирует нормальный сердечный ритм. Современные кардиостимуляторы могут проработать 6–14 лет, прежде чем потребуется их замена.

    Характеристики электрического тока, его генерация и использование

    Электрический ток характеризуется его величиной и типом. В зависимости от его поведения типы электрического тока делятся на постоянный или постоянный ток (он не изменяется со временем), гармонический ток (он изменяется случайным образом со временем) и переменный ток или переменный ток (он изменяется со временем в соответствии с определенным шаблоном, обычно это регулируется периодическим законом).Для некоторых задач требуется как постоянный, так и переменный ток. В данном случае мы говорим об переменном токе с постоянной составляющей.

    Термоядерный реактор Токамак де Варенн. Варенн, Квебек, 1981. Канадский музей науки и техники, Оттава

    Исторически первый трибоэлектрический генератор электрического тока, машина Вимшерста, создавала его, натирая шерстью кусок янтаря. Более совершенные генераторы того же типа теперь называются генераторами Ван де Граафа — они названы в честь изобретателя самой ранней из этих машин.

    Как мы уже говорили ранее, электрохимический генератор был изобретен итальянским физиком Алессандро Вольта. Этот генератор получил дальнейшее развитие в современных сухих аккумуляторных батареях, аккумуляторных батареях и топливных элементах. Мы до сих пор используем их, потому что это очень удобные источники энергии для всех видов устройств, от часов и смартфонов до автомобильных аккумуляторов и аккумуляторов электромобилей Tesla.

    В дополнение к генераторам постоянного тока, описанным выше, существуют также генераторы, использующие ядерное деление изотопов, известные как атомные батареи, а также магнитогидродинамические генераторы, которые сегодня имеют очень ограниченное применение из-за их низкой мощности, технических ограничений. их конструкции и ряду других причин.Тем не менее генераторы радионуклидов используются в энергонезависимых системах, например, в космосе, в автономных подводных аппаратах и ​​гидроакустических станциях, в маяках, внутри маяковых буев, а также в Арктике и Антарктике.

    Коммутатор в мотор-генераторной установке, 1904. Канадский музей науки и технологий, Оттава

    В электротехнике генераторы делятся на генераторы постоянного и переменного тока.

    Все эти генераторы работают благодаря электромагнитной индукции, открытой Майклом Фарадеем в 1831 году.Фарадей построил первый униполярный генератор малой мощности, который генерировал постоянный ток. Что касается первого генератора переменного тока, то история гласит, что он был описан Фарадею в 1832 году в анонимном письме, подписанном «П. М. » После публикации этого письма Фарадей через год получил еще одно, в котором он благодарил и предлагал усовершенствовать конструкцию, добавив стальное кольцо для переноса магнитного потока магнитных полюсов катушек. Однако неясно, соответствует ли эта история действительности.

    В то время применение переменного тока еще не было найдено, поскольку для всех практических применений электричества в то время требовался постоянный ток, включая ток, используемый в минной войне, электрохимии, недавно разработанном электротелеграфии и первых электродвигателях.Вот почему многие изобретатели сосредоточились пока на улучшении генераторов постоянного тока, изобретая для этого различные коммутационные устройства.

    Одним из первых генераторов, которые нашли практическое применение, был магнитоэлектрический генератор, созданный немецким и российским исследователем Морицем фон Якоби, работавшим в России с 1835 по 1874 год. Он использовался минными отрядами ВМФ Российской армии для воспламенения взрывателей. морских мин. Усовершенствованные генераторы этого типа используются по сей день для активации мин, и их часто можно увидеть в фильмах о Второй мировой войне, где партизаны или диверсанты используют их для взрыва мостов, схода с рельсов поездов и других подобных приложений.

    Линза лазера с приводом компакт-дисков

    С тех пор ведущие инженеры соревновались друг с другом в улучшении генераторов переменного и постоянного тока, создав окончательное противостояние между двумя титанами современной области производства электроэнергии, с Томасом Эдисоном из General Electric на одном с другой стороны, Никола Тесла из Westinghouse. Победил больший капитал, и технологии Tesla для генерации, транспортировки и преобразования переменного тока стали наследием американского общества. Это дало значительный толчок развитию экономики США и вывело страну на лидирующие позиции в мире.

    В дополнение к способности производить электричество для различных нужд, которая зависела от преобразования механического движения в электричество из-за обратимости электрических машин, стала реальностью еще одна возможность обратного преобразования электрического тока в механическое движение. Это было сделано с помощью электродвигателей, работающих на постоянном и переменном токе. Можно сказать, что эти типы машин являются одними из наиболее широко используемых технологий, и они включают стартеры автомобилей и мотоциклов, приводы коммерческих машин и станков, а также бытовые устройства и электронику.Благодаря этим устройствам мы научились выполнять различные задачи, такие как резка, сверление и формование. Благодаря этим технологиям мы также используем оптические диски, такие как компакт-диски и жесткие диски, в наших компьютерах — без них мы не смогли бы создать миниатюрные прецизионные электродвигатели постоянного тока.

    Помимо привычных нам электромеханических двигателей, ионные двигатели также работают за счет электрического тока. Эти двигатели используют принцип движения за счет испускания ускоренных ионов данного вещества.В настоящее время они используются в космосе в основном для вывода на орбиту небольших спутников. Весьма вероятно, что будущие технологии 22-го века, такие как фотонные лазерные двигатели, которые все еще разрабатываются и которые будут вести наши межзвездные корабли на скоростях, приближающихся к скорости света, также будут зависеть от электрического тока.

    Аналоговый мультиметр со снятой верхней крышкой

    Генераторы постоянного тока можно также использовать для выращивания кристаллов для электронных компонентов.Этот процесс требует дополнительных стабильных генераторов постоянного тока. Такие прецизионные твердотельные генераторы электрического тока называются стабилизаторами тока.

    Измерение электрического тока

    Следует отметить, что устройства для измерения электрического тока, такие как микроамперметры, миллиамперметры и амперметры, сильно отличаются друг от друга в зависимости от их конструкции и принципов измерения, которые они используют. К ним относятся амперметры постоянного тока, амперметры переменного тока низкой частоты и амперметры переменного тока высокой частоты.

    Измерительные механизмы этих устройств можно разделить на подвижную катушку, подвижное железо, подвижный магнит, электродинамические, индукционные, термоанемометрические и цифровые амперметры. Большинство аналоговых амперметров включает подвижную или неподвижную раму с намотанной катушкой и неподвижными или подвижными магнитами. Благодаря такой конструкции типичный амперметр имеет эквивалентную схему, которая представляет собой последовательное соединение катушки индуктивности и резистора с конденсатором, подключенным параллельно им. Из-за этого аналоговые амперметры недостаточно чувствительны для измерения высокочастотного тока.

    Подвижная катушка с иглой и спиральными пружинами измерителя, использованная в аналоговом мультиметре выше. Некоторые люди по-прежнему предпочитают аналоговые мультиметры, которые практически не изменились с 1890-х годов.

    Основное измерительное устройство амперметра состоит из миниатюрного гальванометра. Его диапазоны измерения создаются за счет использования дополнительных шунтирующих резисторов с малым сопротивлением, и это сопротивление ниже, чем у обычного гальванометра. Таким образом, используя одно устройство в качестве основы, можно создавать различные измерительные устройства для измерения токов с разными диапазонами, включая микроамперметры, миллиамперметры, амперметры и даже килоамперметры.

    Обычно при электрических измерениях важно поведение тока. Он может быть измерен как функция времени и иметь разные типы, например постоянный, гармонический, гармонический, импульсный и т. Д. Его величина характеризует способ работы электронных схем и устройств. Идентифицированы следующие значения тока:

    • мгновенное,
    • размах амплитуды,
    • среднее,
    • среднеквадратичная амплитуда.

    Мгновенный ток I i — значение тока в любой момент времени.Его можно просмотреть на экране осциллографа и измерить для каждого момента времени, глядя на осциллограф.

    Размах амплитуды тока I м — наибольшее мгновенное значение тока за данный период времени.

    Среднеквадратичное значение амплитуды тока I находится как квадратный корень из среднего арифметического квадратов мгновенных токов для периода формы сигнала.

    Все аналоговые амперметры обычно измеряют среднеквадратичное значение амплитуды тока.

    Среднее значение тока — это среднее значение всех значений мгновенного тока за время измерения.

    Разница между максимальным и минимальным значением электрического тока называется размахом сигнала.

    В наши дни для измерения электрического тока широко используются мультиметры и осциллографы. Оба этих устройства предоставляют информацию не только о форме тока или напряжения, но и о других важных характеристиках сигнала.К ним относятся частота периодических сигналов, и поэтому важно знать предел частоты измерительного устройства при измерении электрического тока.

    Измерение электрического тока с помощью осциллографа

    Проиллюстрируем сказанное выше серией экспериментов по измерению активных и пиковых значений тока синусоидального и треугольного сигналов. Мы будем использовать генератор сигнала, осциллограф и мультиметр.

    Схема эксперимента 1 показана ниже:

    Генератор сигналов FG подключен к нагрузке, которая состоит из мультиметра (MM), соединенного последовательно с шунтом Rs и нагрузочным резистором R.Сопротивление шунтирующего резистора R s составляет 100 Ом, а сопротивление нагрузочного резистора R — 1 кОм. Осциллограф ОС подключен параллельно шунтирующему резистору R s . Номинал шунтирующего резистора выбирается из условия R s << R. Проводя этот эксперимент, помним, что рабочая частота осциллографа намного выше рабочей частоты мультиметра.

    Test 1

    Подаем на нагрузочный резистор синусоидальный сигнал частотой 60 Гц и амплитудой 9 В.Современные осциллографы имеют очень удобную кнопку Auto Set, которая позволяет отображать любой измеренный сигнал, не касаясь других органов управления осциллографа. Давайте нажмем кнопку Auto Set и посмотрим сигнал на экране, как на иллюстрации 1. Здесь диапазон сигнала составляет около пяти больших делений, а значение каждого деления составляет 200 мВ. Мультиметр показывает значение электрического тока как 3,1 мА. Осциллограф определяет среднеквадратичную амплитуду на резисторе как U = 312 мВ. Среднеквадратичное значение тока на резисторе R s можно определить по закону Ома:

    I RMS = U RMS / R = 0.31 В / 100 Ом = 3,1 мА,

    , что соответствует значению 3,1 мА на мультиметре. Обратите внимание, что диапазон тока в нашей цепи, состоящей из двух последовательно соединенных резисторов и мультиметра, равен

    I PP = U PP / R = 0,89 В / 100 Ом = 8,9 мА

    Мы знаем, что пиковый и фактические значения электрического тока и напряжения отличаются в √2 раза. Если мы умножим I RMS = 3,1 мА на √2, мы получим 4,38. Удвоим это значение — получим 8.8 мА, что очень близко к измеренному осциллографом току (8,9 мА).

    Test 2

    Теперь уменьшим генерируемый сигнал вдвое. Диапазон сигнала на осциллографе также уменьшится примерно вдвое (463 мВ), а мультиметр покажет значение, которое также примерно уменьшено вдвое и составляет 1,55 мА. Определим значение активного тока на осциллографе:

    I RMS = U RMS / R = 0,152 В / 100 Ом = 1,52 мА,

    что примерно такое же значение, которое показывает мультиметр (1 .55 мА).

    Test 3

    Теперь увеличим частоту генератора до 10 кГц. Изображение на осциллографе изменится, но диапазон сигнала останется прежним. Значение на мультиметре уменьшится — это связано с диапазоном частот мультиметра.

    Test 4

    Давайте снова воспользуемся начальной частотой 60 Гц и напряжением 9 В, но изменим форму сигнала на генераторе с синусоидальной на треугольную. Диапазон сигнала на осциллографе остается прежним, но значение на мультиметре уменьшается по сравнению со значением тока, которое он показал в Тесте 1.Это связано с изменением среднеквадратичного значения тока. Осциллограф показывает приведенное значение среднеквадратичного напряжения, измеренного на резисторе R s = 100 Ом.

    Меры безопасности при измерении электрического тока и напряжения

    Пьедестал для самостоятельной камеры с телесуфлером и тремя мониторами для домашней видеостудии

    • При измерении тока и напряжения мы должны помнить, что в зависимости от того, насколько безопасно здание, например, относительно малое напряжение 12–36 В может быть опасным и даже опасным для жизни.Поэтому крайне важно соблюдать следующие меры безопасности.
    • Не измеряйте токи, если для измерения требуются специальные навыки (например, измерение токов в цепях с напряжением выше 1000 В).
    • Не измеряйте токи в труднодоступных местах и ​​на высоте.
    • При измерении токов в жилой распределительной сети используйте специальные средства защиты, такие как резиновые перчатки, коврики или ботинки.
    • Не используйте сломанные или поврежденные измерительные приборы.
    • При использовании мультиметров убедитесь, что установлены параметры измерения и правильный диапазон измерения.
    • Не используйте измерительный прибор со сломанными зондами.
    • Тщательно следуйте инструкциям производителя по использованию измерительного прибора.

    Эту статью написал Сергей Акишкин

    У вас есть трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *